How to Design Programs Languages

Version 5.2

November &, 2011

The languages documented in this manual are provided by DrRacket to be used with the
How to Design Programs book.

When programs in these languages are run in DrRacket, any part of the program that was not
run is highlighted in orange and black. These colors are intended to give the programmer
feedback about the parts of the program that have not been tested. To avoid seeing these
colors, use check-expect to test your program. Of course, just because you see no colors,
does not mean that your program has been fully tested; it simply means that each part of the
program has been run (at least once).

http://www.htdp.org/

Contents

|1 Beginning Student]| 6
(L1 _Pre-Defined Variables|, . 7
1.2 Template Variables| 0. 7
..................................... 8
L4 Pre-defined Functionsl 11

I1.4.1 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts| . . 11

[42Booleans 19
1.43 Symbols| 19
ATt 19
L4353 Posnd . . . oo o 25
[L46 Characters] 25

4. trings| e 27

4.8 ges| ... 31

1.49 Misc| 31

2 Beginning Student with List Abbreviations| 34
2.1 Pre-Defined Variablesl, . 35
2.2 Template Variables| 36
2.3 Syntaxes for Beginning Student with List Abbreviations|. 36
2.4 Common Syntaxes| o it e e e e 37
25 Pre-defined Functions| 41

[2.5.1 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts| . . 41

252 Booleans| o o o 48

255 Posnsl 54
256 Characters| o 55
trings| e 57

2.5.8 TS| . e e e e e e e e e e e e e e e e e e 61

259 Miscl 61

3 Intermediate Student| 63
BIPre-Defined Variablesl 64
3.2 Template Variables| 65
3.3 Syntax for Intermediate| 0oL Lo 65
3.4 Common Syntaxes| e 66
3.5 Pre-defined Functions|o 71

3.5.1 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts| . . 71

B32_Booleans 77
............................... 78
B3A LS. . ..o 78
BIS_POSnS - . . oo 84
35.6 Charactersl 84
SEIINGS| e e e e 86

B Images| e 90
359 Miscl 90
3.5.10 Numbers (relaxed conditions)| 92
[3.5.11 Higher-Order Functions| 92
4 Intermediate Student with Lambdal 95

4.2 Template Variables| 97
4.3 Syntax for Intermediate with Lambda] 97
4.4 Common Syntaxes| o i e e 99
4.5 Pre-defined Functionsl Lo Lo 102

4.5.1 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts| . . 102

B32 Booleans 109

4 bols| 109

BSA TSt . .o 110
B33 Posndo 115
45.6 Charactersl 115

4 Strings| 117

4.5.8 ges| .. 121

459 Miscl 121
4.5.10 Numbers (relaxed conditions)| 123
4.5.11 Higher-Order Functions| 123
5_Advanced Student] 126
5.1 Pre-Defined Variables| 128
5.2 ‘Template Variables| 129
5.3 Syntax for Advanced| o 129
5.4 Common Syntaxes| o i e e 132
5.5 Pre-Defined Functions| 136

[5.5.1 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts| . . 136

B35 Posnd . . .o 150
B36 Charactersl 150
557 Strings] 153
5.5.8 ges| .. 156
559 Miscl 157
15.5.10 Numbers (relaxed conditions)| 159
311 Higher-Order Functions| 159
512 Reading and Printing] 161
BAI3Vectors]o oo 163
BOTABOXES . . - o oo e 163
B35 HashTablesl. 164

168

1 Beginning Student

program = def-or-expr

def-or-expr = definition

| expr

| test-case

| library-require
definition = (define (name variable variable ...) expr)
| (define name expr)

| (define name (lambda (variable variable ...) expr))
| (define-struct name (name ...))

expr = (name expr expr ...)

| (cond [expr expr] ... [expr expr])
| (cond [expr expr] ... [else exprl)
| (if expr expr expr)

| (and expr expr expr ...)
| (or expr expr expr ...)
| name

| ’name

| number

| string

| character

test-case = (check-expect expr expr)

| (check-within expr expr expr)

| (check-member-of expr expr ...)
| (check-range expr expr expr)

| (check-error expr expr)

| (check-error expr)
library-require = (require string)

| (require (1ib string string ...))
| (require (planet string package))

package = (string string number number)

An name or a variable is a sequence of characters not including a space or one of the
following:

i AN NNEEl e

A number is a number such as 123, 3/2, or 5.5.

A symbol is a quote character followed by a name. A symbol is a value, just like 0 or empty.

A string is enclosed by a pair of ". Unlike symbols, strings may be split into characters
and manipulated by a variety of functions. For example, "abcdef", "This is a string",
and "This is a string with \" inside" are all strings.

A character begins with #\ and has the name of the character. For example, #\a, #\b,
and #\space are characters.

In function calls, the function appearing immediatly after the open parenthesis can be any
functions defined with def ine or define-struct, or any one of the pre-defined functions.

1.1 Pre-Defined Variables

empty : empty?
The empty list.

true : boolean?

The true value.

false : boolean?

The false value.

1.2 Template Variables

A placeholder for indicating that a definition is a template.

A placeholder for indicating that a definition is a template.

A placeholder for indicating that a definition is a template.

A placeholder for indicating that a definition is a template.

1.3 Syntax

(define (name variable variable ...) expression)

Defines a function named name. The expression is the body of the function. When the
function is called, the values of the arguments are inserted into the body in place of the
variables. The function returns the value of that new expression.

The function name’s cannot be the same as that of another function or variable.

(define name expression)

Defines a variable called name with the the value of expression. The variable name’s
cannot be the same as that of another function or variable, and name itself must not appear
in expression.

(define name (lambda (variable variable ...) expression))

An alternate way on defining functions. The name is the name of the function, which cannot
be the same as that of another function or variable.

A lambda cannot be used outside of this alternate syntax.

’name
(quote name)

A quoted name is a symbol. A symbol is a value, just like O or empty.

(define-struct structure-name (field-name ...))

Defines a new structure called structure-name. The structure’s fields are named by the
field-names. After the define-struct, the following new functions are available:

* make-structure-name : takes a number of arguments equal to the number of fields
in the structure, and creates a new instance of that structure.

e structure-name-field-name : takes an instance of the structure and returns the
value in the field named by field-name.

* structure-name? : takes any value, and returns true if the value is an instance of
the structure.

The name of the new functions introduced by def ine-struct must not be the same as that
of other functions or variables, otherwise def ine-struct reports an error.

(name expression expression ...)

Calls the function named name. The value of the call is the value of name’s body when
every one of the function’s variables are replaced by the values of the corresponding ex-
pressions.

The function named name must defined before it can be called. The number of argument
expressions must be the same as the number of arguments expected by the function.

(cond [question-expression answer-expression] ...)
(cond [question-expression answer-expression]

[else answer-expression])
Chooses a clause based on some condition. cond finds the first question-expression
that evaluates to true, then evaluates the corresponding answer-expression.

If none of the question-expressions evaluates to true, cond’s value is the answer-
expression of the else clause. If there is no else, cond reports an error. If the result of
a question-expression is neither true nor false, cond also reports an error.

else cannot be used outside of cond.

(if test-expression then-expression else-expression)

When the value of the test-expression is true, if evaluates the then-expression.
When the test is false, if evaluates the else-expression.

If the test-expression is neither true nor false, if reports an error.

(and expression expression expression ...)

Evaluates to true if all the expressions are true. If any expression is false, the and
expression evaluates to false (and the expressions to the right of that expression are not
evaluated.)

If any of the expressions evaluate to a value other than true or false, and reports an error.

(or expression expression expression ...)

Evaluates to true as soon as one of the expressions is true (and the expressions to the
right of that expression are not evaluated.) If all of the expressions are false, the or
expression evaluates to false.

If any of the expressions evaluate to a value other than true or false, or reports an error.

(check-expect expression expected-expression)

Checks that the first expression evaluates to the same value as the expected-
expression.

(check-within expression expected-expression delta-expression)

Checks that the first expression evaluates to a value within delta-expression of the
expected-expression. If delta-expression is not a number, check-within reports
an error.

(check-error expression match-expression)
(check-error expression)

Checks that the expression reports an error, where the error messages matches the value
of matchexpression, if it is present.

(check-member-of expression expression expression ...)

Checks that the value of the first expression as that of one of the following expressions.

(check-range expression low-expression high-expression)

Checks that the value of the first expression is a number in between the value of the
low-expression and the high-expression, inclusive.

10

(require string)

Makes the definitions of the module specified by string available in the current module
(i.e., the current file), where string refers to a file relative to the current file.

The string is constrained in several ways to avoid problems with different path conventions
on different platforms: a / is a directory separator, . always means the current directory, . .
always means the parent directory, path elements can use only a through z (uppercase or
lowercase), 0 through 9, -, _, and ., and the string cannot be empty or contain a leading or
trailing /.

(require module-name)

Accesses a file in an installed library. The library name is an identifier with the same con-
straints as for a relative-path string (though without the quotes), with the additional constraint
that it must not contain a ..

(require (1ib string string ...))

Accesses a file in an installed library, making its definitions available in the current module
(i.e., the current file). The first string names the library file, and the remaining strings
name the collection (and sub-collection, and so on) where the file is installed. Each string is
constrained in the same way as for the (require string) form.

(require (planet string (string string number number)))

Accesses a library that is distributed on the internet via the PLaneT server, making it defini-
tions available in the current module (i.e., current file).

1.4 Pre-defined Functions

1.4.1 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts

* : (number number number ... -> number)

Evaluates the product of all of the input numbers.

+ : (number number number ... -> number)

11

Evaluates the sum of the input numbers.

- : (number number ... -> number)

subtracts the second (and following) number(s) from the first; negate the number if there is
only one argument.

/ : (number number number ... -> number)

Divides the first by the second (and all following) number(s); try (/ 3 4) and (/ 3 2 2) only
the first number can be zero.

< : (real real real ... -> boolean)

Compares real numbers for less-than.

<= : (real real real ... -> boolean)

Compares real numbers for less-than or equality.

= : (number number number ... -> boolean)

Compares numbers for equality.

> : (real real real ... -> boolean)

Compares real numbers for greater-than.

>= : (real real real ... -> boolean)

Compares real numbers for greater-than or equality.

abs : (real -> real)

Evaluates the absolute value of a real number.

acos : (number -> number)

12

Evaluates the arccosine (inverse of cos) of a number.

addl : (number -> number)

Evaluates a number one larger than a given number.

angle : (number -> real)

Extracts the angle from a complex number.

asin : (number -> number)

Evaluates the arcsine (inverse of sin) of a number.

atan : (number (number) -> number)

Evaluates the arctan of the given number or the ratio of the two given numbers.

ceiling : (real -> integer)

Determines the closest integer (exact or inexact) above a real number.

complex? : (any -> boolean)

Determines whether some value is complex.

conjugate : (number -> number)

Evaluates the conjugate of a complex number.

cos : (number -> number)

Evaluates the cosine of a number (radians).

cosh : (number -> number)

13

Evaluates the hyperbolic cosine of a number.

current-seconds : (-> integer)

Evaluates the current time in seconds elapsed (since a platform-specific starting date).

denominator : (rat -> integer)

Evaluates the denominator of a rational.

e : real

Euler’s number.

even? : (integer -> boolean)

Determines if some integer (exact or inexact) is even or not.

exact->inexact : (number -> number)

Converts an exact number to an inexact one.

exact? : (number -> boolean)

Determines whether some number is exact.

exp : (number -> number)

Evaluates e raised to a number.

expt : (number number -> number)

Evaluates the power of the first to the second number.

floor : (real -> integer)

Determines the closest integer (exact or inexact) below a real number.

14

gcd : (integer integer ... -> integer)

Evaluates the greatest common divisior of two integers (exact or inexact).

imag-part : (number -> real)

Extracts the imaginary part from a complex number.

inexact->exact : (number -> number)

Approximates an inexact number by an exact one.

inexact? : (number -> boolean)

Determines whether some number is inexact.

integer->char : (integer -> char)

Lookups the character that corresponds to the given integer (exact only!) in the ASCII table
(if any).

integer-sqrt : (number -> integer)

Evaluates the integer (exact or inexact) square root of a number.

integer? : (any -> boolean)

Determines whether some value is an integer (exact or inexact).

lcm : (integer integer ... -> integer)

Evaluates the least common multiple of two integers (exact or inexact).

log : (number -> number)

Evaluates the base-e logarithm of a number.

15

magnitude : (number -> real)

Determines the magnitude of a complex number.

make-polar : (real real -> number)

Creates a complex from a magnitude and angle.

make-rectangular : (real real -> number)

Creates a complex from a real and an imaginary part.

max : (real real ... -> real)

Determines the largest number.

min : (real real ... -> real)

Determines the smallest number.

modulo : (integer integer -> integer)

Finds the remainder of the division of the first number by the second; try (modulo 4 3)
(modulo 4 -3).

negative? : (number -> boolean)

Determines if some value is strictly smaller than zero.

number->string : (number -> string)

Converts a number to a string.

number? : (any -> boolean)

Determines whether some value is a number.

16

numerator : (rat -> integer)

Evaluates the numerator of a rational.

odd? : (integer -> boolean)

Determines if some integer (exact or inexact) is odd or not.

pi : real

The ratio of a circle’s circumference to its diameter.

positive? : (number -> boolean)

Determines if some value is strictly larger than zero.

quotient : (integer integer -> integer)

Divides the first integer (exact or inexact) into the second; try (quotient 3 4) and (quotient 4
3).

random : (integer -> integer)

Generates a random natural number less than some given integer (exact only!).

rational? : (any -> boolean)

Determines whether some value is a rational number.

real-part : (number -> real)

Extracts the real part from a complex number.

real? : (any -> boolean)

Determines whether some value is a real number.

17

remainder : (integer integer -> integer)
Determines the remainder of dividing the first by the second integer (exact or inexact).
round : (real -> integer)
Rounds a real number to an integer (rounds to even to break ties).
sgn : (real -> (union 1 1.0 0 0.0 -1 -1.0))
Evaluates the sign of a real number.
sin : (number -> number)

Evaluates the sine of a number (radians).
sinh : (number -> number)

Evaluates the hyperbolic sine of a number.
sqr : (number -> number)

Evaluates the square of a number.
sqrt : (number -> number)

Evaluates the square root of a number.
subl : (number -> number)

Evaluates a number one smaller than a given number.
tan : (number -> number)

Evaluates the tangent of a number (radians).
zero? : (number -> boolean)

Determines if some value is zero or not.

18

1.4.2 Booleans

boolean=7 : (boolean boolean -> boolean)
Determines whether two booleans are equal.
boolean? : (any -> boolean)

Determines whether some value is a boolean.

false? : (any -> boolean)
Determines whether a value is false.

not : (boolean -> boolean)

Evaluates the negation of a boolean value.

1.4.3 Symbols

symbol->string : (symbol -> string)
Converts a symbol to a string.

symbol=7 : (symbol symbol -> boolean)
Determines whether two symbols are equal.

symbol? : (any -> boolean)

Determines whether some value is a symbol.

1.4.4 Lists

((listof any)
(listof any)
listof

append : (1istof any)

->
(listof any))

19

Creates a single list from several, by juxtaposition of the items.

X

(listof (coms X Y))

->

(union false (comns X Y)))

assq :

Determines whether some item is the first item of a pair in a list of pairs.

((cons
(cons (cons W (listof Z)) (listof Y))
caaar : (listof X))
>
W)

Selects the first item of the first list in the first list of a list.

((cons
(cons (cons W (listof Z)) (listof Y))
caadr : (listof X))
>
(listof Z))

Selects the rest of the first list in the first list of a list.

caar : ((cons (cons Z (listof Y)) (listof X)) -> Z)

Selects the first item of the first list in a list.

((cons (cons W (cons Z (listof Y))) (listof X))
cadar : ->
Z)

Selects the second item of the first list of a list.

cadddr : ((listof Y) -> Y)

Selects the fourth item of a non-empty list.

caddr : ((cons W (cons Z (cons Y (listof X)))) -> Y)

20

Selects the third item of a non-empty list.

cadr : ((cons Z (cons Y (listof X))) -> Y)

Selects the second item of a non-empty list.

car : ((cons Y (listof X)) -> Y)

Selects the first item of a non-empty list.

((cons
(cons (cons W (listof Z)) (listof Y))
cdaar : (listof X))
>
(listof Z))

Selects the rest of the first list in the first list of a list.

((cons W (cons (cons Z (listof Y)) (listof X)))
cdadr : ->
(listof Y))

Selects the rest of the first list in the rest of a list.

((cons (cons Z (listof Y)) (listof X))
cdar : ->
(listof Y))

Selects the rest of a non-empty list in a list.

((cons (cons W (cons Z (listof Y))) (listof X))
cddar : ->
(listof Y))

Selects the rest of the rest of the first list of a list.

((cons W (cons Z (cons Y (listof X))))
cdddr : ->
(listof X))

21

Selects the rest of the rest of the rest of a list.

cddr : ((cons Z (cons Y (listof X))) -> (listof X))

Selects the rest of the rest of a list.

cdr : ((cons Y (listof X)) -> (listof X))

Selects the rest of a non-empty list.

cons : (X (listof X) -> (listof X))

Constructs a list.

cons? : (any -> boolean)

Determines whether some value is a constructed list.

eighth : ((listof Y) -> Y)

Selects the eighth item of a non-empty list.

empty? : (any -> boolean)

Determines whether some value is the empty list.

fifth : ((listof Y) -> Y)

Selects the fifth item of a non-empty list.

first : ((cons Y (listof X)) ->Y)

Selects the first item of a non-empty list.

fourth : ((listof Y) -> Y)

Selects the fourth item of a non-empty list.

22

length : ((listof any) -> number)

Evaluates the number of items on a list.

list : (any ... -> (listof any))

Constructs a list of its arguments.

list* : (any ... (listof any) -> (listof any))

Constructs a list by adding multiple items to a list.

list-ref : ((listof X) natural-number -> X)

Extracts the indexed item from the list.

make-list : (natural-number any -> (listof any))

Constructs a list of k (the first argument) copies of x (the second argument).

member : (any (listof any) -> boolean)

Determines whether some value is on the list (comparing values with equal?).

member? : (any (listof any) -> boolean)

Determines whether some value is on the list (comparing values with equal?).

memq : (any (listof any) -> (union false list))

Determines whether some value is on some list if so, it produces the suffix of the list that
starts with x if not, it produces false. (It compares values with the eq? predicate.)

memv : (any (listof any) -> (union false list))

Determines whether some value is on the list if so, it produces the suffix of the list that starts
with x if not, it produces false. (It compares values with the eqv? predicate.)

23

null : empty

The empty list.

null? : (any -> boolean)

Determines whether some value is the empty list.

remove : (any (listof any) -> (listof any))

Constructs a list like the given one with the first occurrence of the given item removed
(comparing values with equal?).

rest : ((cons Y (listof X)) -> (listof X))

Selects the rest of a non-empty list.

reverse : ((listof any) -> list)

Creates a reversed version of a list.

second : ((cons Z (cons Y (listof X))) -> Y)

Selects the second item of a non-empty list.

seventh : ((listof Y) -> Y)

Selects the seventh item of a non-empty list.

sixth : ((listof Y) -> Y)

Selects the sixth item of a non-empty list.

third : ((cons W (cons Z (cons Y (listof X)))) ->Y)

Selects the third item of a non-empty list.

24

1.4.5 Posns

make-posn : (number number -> posn)

Constructs a posn.

posn : signature

Signature for posns.

posn-x : (posn -> number)

Extracts the x component of a posn.

posn-y : (posn -> number)

Extracts the y component of a posn.

posn? : (anything -> boolean)

Determines if its input is a posn.

1.4.6 Characters

char->integer : (char -> integer)

Lookups the number that corresponds to the given character in the ASCII table (if any).

char-alphabetic? : (char -> boolean)

Determines whether a character represents an alphabetic character.

char-ci<=?7 : (char char char ... -> boolean)

Determines whether a character precedes another (or is equal to it) in a case-insensitive
manner.

25

char-ci<? : (char char char ... -> boolean)

Determines whether a character precedes another in a case-insensitive manner.

char-ci=? : (char char char ... -> boolean)

Determines whether two characters are equal in a case-insensitive manner.

char-ci>=? : (char char char ... -> boolean)

Determines whether a character succeeds another (or is equal to it) in a case-insensitive
manner.

char-ci>? : (char char char ... -> boolean)

Determines whether a character succeeds another in a case-insensitive manner.

char-downcase : (char -> char)

Determines the equivalent lower-case character.

char-lower-case? : (char -> boolean)

Determines whether a character is a lower-case character.

char-numeric? : (char -> boolean)

Determines whether a character represents a digit.

char-upcase : (char -> char)

Determines the equivalent upper-case character.

char-upper-case? : (char -> boolean)

Determines whether a character is an upper-case character.

26

char-whitespace? : (char -> boolean)

Determines whether a character represents space.

char<=?7 : (char char char ... -> boolean)

Determines whether a character precedes another (or is equal to it).

char<? : (char char char ... -> boolean)

Determines whether a character precedes another.

char=?7 : (char char char ... -> boolean)

Determines whether two characters are equal.

char>=?7 : (char char char ... -> boolean)

Determines whether a character succeeds another (or is equal to it).

char>? : (char char char ... -> boolean)

Determines whether a character succeeds another.

char? : (any -> boolean)

Determines whether a value is a character.

1.4.7 Strings

explode : (string -> (listof string))

Translates a string into a list of 1-letter strings.

format : (string any ... -> string)

27

Formats a string, possibly embedding values.

implode : ((listof string) -> string)

Concatenates the list of 1-letter strings into one string.

int->string : (integer -> string)

Converts an integer in [0,55295] or [57344 1114111] to a 1-letter string.

list->string : ((listof char) -> string)

Converts a s list of characters into a string.

make-string : (nat char -> string)

Produces a string of given length from a single given character.

replicate : (nat string -> string)

Replicates the given string.

string : (char ... -> string)

Builds a string of the given characters.

string->int : (string -> integer)

Converts a 1-letter string to an integer in [0,55295] or [57344, 1114111].

string->list : (string -> (listof char))

Converts a string into a list of characters.

string->number : (string -> (union number false))

28

Converts a string into a number, produce false if impossible.

string->symbol : (string -> symbol)

Converts a string into a symbol.

string-alphabetic? : (string -> boolean)

Determines whether all ’letters’ in the string are alphabetic.

string-append : (string ... -> string)

Juxtaposes the characters of several strings.

string-ci<=7 : (string string string ... -> boolean)

Determines whether one string alphabetically precedes another (or is equal to it) in a case-
insensitive manner.

string-ci<? : (string string string ... -> boolean)

Determines whether one string alphabetically precedes another in a case-insensitive manner.

string-ci=7 : (string string string ... -> boolean)

Compares two strings character-wise in a case-insensitive manner.

string-ci>=? : (string string string ... -> boolean)

Determines whether one string alphabetically succeeds another (or is equal to it) in a case-
insensitive manner.

string-ci>? : (string string string ... -> boolean)

Determines whether one string alphabetically succeeds another in a case-insensitive manner.

string-copy : (string -> string)

29

Copies a string.

string-ith : (string nat -> string)

Extracts the ith 1-letter substring from the given one.

string-length : (string -> nat)

Determines the length of a string.

string-lower-case? : (string -> boolean)

Determines whether all *letters’ in the string are lower case.

string-numeric? : (string -> boolean)

Determines whether all ’letters’ in the string are numeric.

string-ref : (string nat -> char)

Extracts the i-the character from a string.

string-upper-case? : (string -> boolean)

Determines whether all ’letters’ in the string are upper case.

string-whitespace? : (string -> boolean)

Determines whether all ’letters’ in the string are white space.

string<=7 : (string string string ... -> boolean)

Determines whether one string alphabetically precedes another (or is equal to it).

string<? : (string string string ... -> boolean)

30

Determines whether one string alphabetically precedes another.

string=7 : (string string string ... -> boolean)

Compares two strings character-wise.

string>=7 : (string string string ... -> boolean)

Determines whether one string alphabetically succeeds another (or is equal to it).

string>? : (string string string ... -> boolean)

Determines whether one string alphabetically succeeds another.

string? : (any -> boolean)

Determines whether a value is a string.

substring : (string nat nat -> string)

Extracts the substring starting at a 0-based index up to the second 0-based index (exclusive).

1.4.8 Images

image=7 : (image image -> boolean)

Determines whether two images are equal.

image? : (any -> boolean)

Determines whether a value is an image.

1.4.9 Misc

=~ : (number number non-negative-real -> boolean)

31

Checks whether two numbers are within some amount (the third argument) of either other.

eof : eof

The end-of-file value.

eof-object? : (any -> boolean)

Determines whether some value is the end-of-file value.

eq? : (any any -> boolean)

Determines whether two values are equivalent from the computer’s perspective (intensional).

equal? : (any any -> boolean)

Determines whether two values are structurally equal where basic values are compared with
the eqv? predicate.

equal~? : (any any non-negative-real -> boolean)

Compares like equal? on the first two arguments, except using =~ in the case of numbers.

eqv? : (any any -> boolean)

Determines whether two values are equivalent from the perspective of all functions that can
be applied to it (extensional).

error : (any ... -> void)

signals an error, combining the given values into an error message.

29

If any of the values’ printed representations is too long, it is truncated and “...” is put into
the string. If the first value is a symbol, it is treated specially; it is suffixed with a colon and
a space (the intention is that the symbol is the name of the function signalling the error).

exit : (-> void)

32

Exits the running program.

identity : (any -> any)

Returns the argument unchanged.

struct? : (any -> boolean)

Determines whether some value is a structure.

33

2 Beginning Student with List Abbreviations

program = def-or-expr

def-or-expr = definition

| expr

| test-case

| library-require
definition = (define (name variable variable ...) expr)
| (define name expr)

| (define name (lambda (variable variable ...) expr))
| (define-struct name (name ...))

expr = (name expr expr ...)

| (prim-op expr ...)

| (cond [expr expr] ... [expr exprl)

| (cond [expr expr] ... [else expr])

| (if expr expr expr)

| (and expr expr expr ...)

| (or expr expr expr ...)

| name

| ’quoted

| ‘quasiquoted
| number
| string
| character

quoted = name

| number

| string

| character

| (quoted ...)

| ’quoted

| ‘quoted

| ,quoted

| ,@quoted

quasiquoted = name

| number

| string

| character

| (quasiquoted ...)

| ’quasiquoted

| ‘quasiquoted

34

| ,expr
| ,@expr

= (check-expect expr expr)
(check-within expr expr expr)
P P P

(check-member-of expr expr ...)
P P
(check-range expr expr expr)
g P P P
(check-error expr expr)
P P
| (check-error expr)

library-require (require string)

| (require (lib string string ...))
| (require (planet string package))

package = (string string number number)

An name or a variable is a sequence of characters not including a space or one of the
following:

"L ITLY
A number is a number such as 123, 3/2, or 5.5.
A symbol is a quote character followed by a name. A symbol is a value, just like 0 or empty.
A string is enclosed by a pair of ". Unlike symbols, strings may be split into characters
and manipulated by a variety of functions. For example, "abcdef", "This is a string",

and "This is a string with \" inside" are all strings.

A character begins with #\ and has the name of the character. For example, #\a, #\b,
and #\space are characters.

In function calls, the function appearing immediatly after the open parenthesis can be any
functions defined with define or define-struct, or any one of the pre-defined functions.

2.1 Pre-Defined Variables
empty : empty?

The empty list.

true : boolean?

The true value.

35

false : boolean?

The false value.

2.2 Template Variables

A placeholder for indicating that a definition is a template.

A placeholder for indicating that a definition is a template.

A placeholder for indicating that a definition is a template.

A placeholder for indicating that a definition is a template.

2.3 Syntaxes for Beginning Student with List Abbreviations

’name
’part
(quote name)
(quote part)

A quoted name is a symbol. A quoted part is an abbreviation for a nested lists.

Normally, this quotation is written with a ?, like ’ (apple banana), but it can also be
written with quote, like (quote (apple banana)).

36

‘name
‘part
(quasiquote name)
(quasiquote part)

Like quote, but also allows escaping to expression “unquotes.”

Normally, quasi-quotations are written with a backquote, ¢, like ¢ (apple ,(+ 1 2)),
but they can also be written with quasiquote, like (quasiquote-elem (apple ,(+ 1

2))).

,expression
(unquote expression)

Under a single quasiquote, , expression escapes from the quote to include an evaluated
expression whose result is inserted into the abbreviated list.

Under multiple quasiquotes, , expression is really the literal , expression, decrementing
the quasiquote count by one for expression.

Normally, an unquote is written with ,, but it can also be written with unquote.

,Q@Qexpression
(unquote-splicing expression)

Under a single quasiquote, ,@expression escapes from the quote to include an evaluated
expression whose result is a list to splice into the abbreviated list.

Under multiple quasiquotes, a splicing unquote is like an unquote; that is, it decrements the
quasiquote count by one.

Normally, a splicing unquote is written with ,, but it can also be written with unquote-
splicing.

2.4 Common Syntaxes

The following syntaxes behave the same in the Beginner with List Abbreviations level as
they did in the §1 “Beginning Student” level.

(define (name variable variable ...) expression)

Defines a function named name. The expression is the body of the function. When the
function is called, the values of the arguments are inserted into the body in place of the
variables. The function returns the value of that new expression.

37

The function name’s cannot be the same as that of another function or variable.

(define name expression)

Defines a variable called name with the the value of expression. The variable name’s
cannot be the same as that of another function or variable, and name itself must not appear
in expression.

(define name (lambda (variable variable ...) expression))

An alternate way on defining functions. The name is the name of the function, which cannot
be the same as that of another function or variable.

A lambda cannot be used outside of this alternate syntax.

(define-struct structure-name (field-name ...))

Defines a new structure called structure-name. The structure’s fields are named by the
field-names. After the define-struct, the following new functions are available:

* make-structure-name : takes a number of arguments equal to the number of fields
in the structure, and creates a new instance of that structure.

e structure-name-field-name : takes an instance of the structure and returns the
value in the field named by field-name.

* structure-name? : takes any value, and returns true if the value is an instance of
the structure.

The name of the new functions introduced by def ine-struct must not be the same as that
of other functions or variables, otherwise def ine-struct reports an error.

(name expression expression ...)

Calls the function named name. The value of the call is the value of name’s body when
every one of the function’s variables are replaced by the values of the corresponding ex-
pressions.

The function named name must defined before it can be called. The number of argument
expressions must be the same as the number of arguments expected by the function.

(cond [question-expression answer-expression] ...)
(cond [question-expression answer-expression]

[else answer-expression])

38

Chooses a clause based on some condition. cond finds the first question-expression
that evaluates to true, then evaluates the corresponding answer-expression.

If none of the question-expressions evaluates to true, cond’s value is the answer-
expression of the else clause. If there is no else, cond reports an error. If the result of
a question-expression is neither true nor false, cond also reports an error.

else cannot be used outside of cond.

(if test-expression then-expression else-expression)

When the value of the test-expression is true, if evaluates the then-expression.
When the test is false, if evaluates the else-expression.

If the test-expression is neither true nor false, if reports an error.

(and expression expression expression ...)

Evaluates to true if all the expressions are true. If any expression is false, the and
expression evaluates to false (and the expressions to the right of that expression are not
evaluated.)

If any of the expressions evaluate to a value other than true or false, and reports an error.

(or expression expression expression ...)

Evaluates to true as soon as one of the expressions is true (and the expressions to the
right of that expression are not evaluated.) If all of the expressions are false, the or
expression evaluates to false.

If any of the expressions evaluate to a value other than true or false, or reports an error.

(check-expect expression expected-expression)

Checks that the first expression evaluates to the same value as the expected-
expression.

(check-within expression expected-expression delta-expression)

Checks that the first expression evaluates to a value within delta-expression of the
expected-expression. If delta-expression is not a number, check-within reports
an error.

39

(check-error expression match-expression)
(check-error expression)

Checks that the expression reports an error, where the error messages matches the value
of matchexpression, if it is present.

(check-member-of expression expression expression ...)

Checks that the value of the first expression as that of one of the following expressions.

(check-range expression low-expression high-expression)

Checks that the value of the first expression is a number in between the value of the
low-expression and the high-expression, inclusive.

(require string)

Makes the definitions of the module specified by string available in the current module
(i.e., the current file), where string refers to a file relative to the current file.

The string is constrained in several ways to avoid problems with different path conventions
on different platforms: a / is a directory separator, . always means the current directory, . .
always means the parent directory, path elements can use only a through z (uppercase or
lowercase), 0 through 9, -, _, and ., and the string cannot be empty or contain a leading or
trailing /.

(require module-name)

Accesses a file in an installed library. The library name is an identifier with the same con-
straints as for a relative-path string (though without the quotes), with the additional constraint
that it must not contain a ..

(require (1ib string string ...))

Accesses a file in an installed library, making its definitions available in the current module
(i.e., the current file). The first string names the library file, and the remaining strings
name the collection (and sub-collection, and so on) where the file is installed. Each string is
constrained in the same way as for the (require string) form.

(require (planet string (string string number number)))

Accesses a library that is distributed on the internet via the PLaneT server, making it defini-
tions available in the current module (i.e., current file).

40

2.5 Pre-defined Functions

2.5.1 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts

* : (number number number ... -> number)

Evaluates the product of all of the input numbers.

+ : (number number number ... -> number)

Evaluates the sum of the input numbers.

- : (number number ... -> number)

subtracts the second (and following) number(s) from the first; negate the number if there is
only one argument.

/ : (number number number ... -> number)

Divides the first by the second (and all following) number(s); try (/ 3 4) and (/ 3 2 2) only
the first number can be zero.

< : (real real real ... -> boolean)

Compares real numbers for less-than.

<= : (real real real ... -> boolean)

Compares real numbers for less-than or equality.

= : (number number number ... -> boolean)

Compares numbers for equality.

> : (real real real ... -> boolean)

Compares real numbers for greater-than.

41

>= : (real real real ... -> boolean)

Compares real numbers for greater-than or equality.

abs : (real -> real)

Evaluates the absolute value of a real number.

acos : (number -> number)

Evaluates the arccosine (inverse of cos) of a number.

addl : (number -> number)

Evaluates a number one larger than a given number.

angle : (number -> real)

Extracts the angle from a complex number.

asin : (number -> number)

Evaluates the arcsine (inverse of sin) of a number.

atan : (number (number) -> number)

Evaluates the arctan of the given number or the ratio of the two given numbers.

ceiling : (real -> integer)

Determines the closest integer (exact or inexact) above a real number.

complex? : (any -> boolean)

Determines whether some value is complex.

42

conjugate : (number -> number)

Evaluates the conjugate of a complex number.

cos : (number -> number)

Evaluates the cosine of a number (radians).

cosh : (number -> number)

Evaluates the hyperbolic cosine of a number.

current-seconds : (-> integer)

Evaluates the current time in seconds elapsed (since a platform-specific starting date).

denominator : (rat -> integer)

Evaluates the denominator of a rational.

e : real

Euler’s number.

even? : (integer -> boolean)

Determines if some integer (exact or inexact) is even or not.

exact->inexact : (number -> number)

Converts an exact number to an inexact one.

exact? : (number -> boolean)

Determines whether some number is exact.

43

exp : (number -> number)

Evaluates e raised to a number.

expt : (number number -> number)

Evaluates the power of the first to the second number.

floor : (real -> integer)

Determines the closest integer (exact or inexact) below a real number.

gcd @ (integer integer ... -> integer)

Evaluates the greatest common divisior of two integers (exact or inexact).

imag-part : (number -> real)

Extracts the imaginary part from a complex number.

inexact->exact : (number -> number)

Approximates an inexact number by an exact one.

inexact? : (number -> boolean)

Determines whether some number is inexact.

integer->char : (integer -> char)

Lookups the character that corresponds to the given integer (exact only!) in the ASCII table
(if any).

integer-sqrt : (number -> integer)

Evaluates the integer (exact or inexact) square root of a number.

44

integer? : (any -> boolean)

Determines whether some value is an integer (exact or inexact).

lcm : (integer integer ... -> integer)

Evaluates the least common multiple of two integers (exact or inexact).

log : (number -> number)

Evaluates the base-e logarithm of a number.

magnitude : (number -> real)

Determines the magnitude of a complex number.

make-polar : (real real -> number)

Creates a complex from a magnitude and angle.

make-rectangular : (real real -> number)

Creates a complex from a real and an imaginary part.

max : (real real ... -> real)

Determines the largest number.

min : (real real ... -> real)

Determines the smallest number.

modulo : (integer integer -> integer)

Finds the remainder of the division of the first number by the second; try (modulo 4 3)
(modulo 4 -3).

45

negative? : (number -> boolean)

Determines if some value is strictly smaller than zero.

number->string : (number -> string)

Converts a number to a string.

number? : (any -> boolean)

Determines whether some value is a number.

numerator : (rat -> integer)

Evaluates the numerator of a rational.

odd? : (integer -> boolean)

Determines if some integer (exact or inexact) is odd or not.

pi : real

The ratio of a circle’s circumference to its diameter.

positive? : (number -> boolean)

Determines if some value is strictly larger than zero.

quotient : (integer integer -> integer)

Divides the first integer (exact or inexact) into the second; try (quotient 3 4) and (quotient 4
3).

random : (integer -> integer)

Generates a random natural number less than some given integer (exact only!).

46

rational? : (any -> boolean)

Determines whether some value is a rational number.

real-part : (number -> real)

Extracts the real part from a complex number.

real? : (any -> boolean)

Determines whether some value is a real number.

remainder : (integer integer -> integer)

Determines the remainder of dividing the first by the second integer (exact or inexact).

round : (real -> integer)

Rounds a real number to an integer (rounds to even to break ties).

sgn : (real -> (union 1 1.0 0 0.0 -1 -1.0))

Evaluates the sign of a real number.

sin : (number -> number)

Evaluates the sine of a number (radians).

sinh : (number -> number)

Evaluates the hyperbolic sine of a number.

sqr : (number -> number)

Evaluates the square of a number.

47

sqrt : (number -> number)

Evaluates the square root of a number.

subl : (number -> number)

Evaluates a number one smaller than a given number.

tan : (number -> number)

Evaluates the tangent of a number (radians).

zero? : (number -> boolean)

Determines if some value is zero or not.

2.5.2 Booleans

boolean=7 : (boolean boolean -> boolean)

Determines whether two booleans are equal.

boolean? : (any -> boolean)

Determines whether some value is a boolean.

false? : (any -> boolean)

Determines whether a value is false.

not : (boolean -> boolean)

Evaluates the negation of a boolean value.

48

2.5.3 Symbols

symbol->string : (symbol -> string)
Converts a symbol to a string.

symbol=7 : (symbol symbol -> boolean)
Determines whether two symbols are equal.

symbol? : (any -> boolean)

Determines whether some value is a symbol.

2.5.4 Lists

((listof any)
(1istof any)

append : (l1istof any)

>
(1istof any))

Creates a single list from several, by juxtaposition of the items.

X

(listof (coms X Y))

->

(union false (cons X Y)))

assq :

Determines whether some item is the first item of a pair in a list of pairs.

((cons
(cons (cons W (listof Z)) (listof Y))
caaar : (listof X))
>
W)

Selects the first item of the first list in the first list of a list.

49

((cons
(cons (cons W (listof Z)) (listof Y))
caadr : (listof X))
>
(listof Z))

Selects the rest of the first list in the first list of a list.

caar : ((cons (cons Z (listof Y)) (listof X)) -> Z)

Selects the first item of the first list in a list.

((cons (cons W (cons Z (listof Y))) (listof X))
cadar : ->
Z)

Selects the second item of the first list of a list.

cadddr : ((listof Y) -> Y)

Selects the fourth item of a non-empty list.

caddr : ((cons W (cons Z (cons Y (listof X)))) -> Y)

Selects the third item of a non-empty list.

cadr : ((cons Z (cons Y (listof X))) -> Y)

Selects the second item of a non-empty list.

car : ((cons Y (listof X)) -> Y)

Selects the first item of a non-empty list.

((cons
(cons (cons W (listof Z)) (listof Y))
cdaar : (listof X))
>
(listof Z))

50

Selects the rest of the first list in the first list of a list.

((cons W (cons (cons Z (listof Y)) (listof X)))
cdadr : ->
(listof Y))

Selects the rest of the first list in the rest of a list.

((cons (cons Z (listof Y)) (listof X))
cdar : ->
(listof Y))

Selects the rest of a non-empty list in a list.

((cons (cons W (cons Z (listof Y))) (listof X))
cddar : ->
(listof Y))

Selects the rest of the rest of the first list of a list.

((cons W (cons Z (cons Y (listof X))))
cdddr : ->
(listof X))

Selects the rest of the rest of the rest of a list.

cddr : ((cons Z (cons Y (listof X))) -> (listof X))

Selects the rest of the rest of a list.

cdr : ((cons Y (listof X)) -> (listof X))

Selects the rest of a non-empty list.

cons : (X (listof X) -> (listof X))

Constructs a list.

cons? : (any -> boolean)

51

Determines whether some value is a constructed list.

eighth : ((listof Y) -> Y)

Selects the eighth item of a non-empty list.

empty? : (any -> boolean)

Determines whether some value is the empty list.

fifth : ((listof Y) -> Y)

Selects the fifth item of a non-empty list.

first : ((cons Y (listof X)) -> Y)

Selects the first item of a non-empty list.

fourth : ((listof Y) -> Y)

Selects the fourth item of a non-empty list.

length : ((listof any) -> number)

Evaluates the number of items on a list.

list : (any ... -> (listof any))

Constructs a list of its arguments.

list* : (any ... (listof any) -> (listof any))

Constructs a list by adding multiple items to a list.

list-ref : ((listof X) natural-number -> X)

Extracts the indexed item from the list.

52

make-list : (natural-number any -> (listof any))

Constructs a list of k (the first argument) copies of x (the second argument).

member : (any (listof any) -> boolean)

Determines whether some value is on the list (comparing values with equal?).

member? : (any (listof any) -> boolean)

Determines whether some value is on the list (comparing values with equal?).

memq : (any (listof any) -> (union false list))

Determines whether some value is on some list if so, it produces the suffix of the list that
starts with x if not, it produces false. (It compares values with the eq? predicate.)

memv : (any (listof any) -> (union false list))

Determines whether some value is on the list if so, it produces the suffix of the list that starts
with x if not, it produces false. (It compares values with the eqv? predicate.)

null : empty

The empty list.

null? : (any -> boolean)

Determines whether some value is the empty list.

remove : (any (listof any) -> (listof any))

Constructs a list like the given one with the first occurrence of the given item removed
(comparing values with equal?).

rest : ((cons Y (listof X)) -> (listof X))

53

Selects the rest of a non-empty list.

reverse : ((listof any) -> list)

Creates a reversed version of a list.

second : ((cons Z (cons Y (listof X))) -> Y)

Selects the second item of a non-empty list.

seventh : ((listof Y) -> Y)

Selects the seventh item of a non-empty list.

sixth : ((listof Y) -> Y)

Selects the sixth item of a non-empty list.

third : ((cons W (cons Z (cons Y (listof X)))) -> Y)

Selects the third item of a non-empty list.

2.5.5 Posns

make-posn : (number number -> posn)

Constructs a posn.

posn : signature

Signature for posns.

posn-x : (posn -> number)

Extracts the x component of a posn.

54

posn-y : (posn -> number)

Extracts the y component of a posn.

posn? : (anything -> boolean)

Determines if its input is a posn.

2.5.6 Characters

char->integer : (char -> integer)

Lookups the number that corresponds to the given character in the ASCII table (if any).

char-alphabetic? : (char -> boolean)

Determines whether a character represents an alphabetic character.

char-ci<=?7 : (char char char ... -> boolean)

Determines whether a character precedes another (or is equal to it) in a case-insensitive
manner.

char-ci<? : (char char char ... -> boolean)

Determines whether a character precedes another in a case-insensitive manner.

char-ci=?7 : (char char char ... -> boolean)

Determines whether two characters are equal in a case-insensitive manner.

char-ci>=7 : (char char char ... -> boolean)

Determines whether a character succeeds another (or is equal to it) in a case-insensitive
manner.

55

char-ci>? : (char char char ... -> boolean)

Determines whether a character succeeds another in a case-insensitive manner.

char-downcase : (char -> char)

Determines the equivalent lower-case character.

char-lower-case? : (char -> boolean)

Determines whether a character is a lower-case character.

char-numeric? : (char -> boolean)

Determines whether a character represents a digit.

char-upcase : (char -> char)

Determines the equivalent upper-case character.

char-upper-case? : (char -> boolean)

Determines whether a character is an upper-case character.

char-whitespace? : (char -> boolean)

Determines whether a character represents space.

char<=?7 : (char char char ... -> boolean)

Determines whether a character precedes another (or is equal to it).

char<? : (char char char ... -> boolean)

Determines whether a character precedes another.

56

char=? : (char char char ... -> boolean)

Determines whether two characters are equal.

char>=?7 : (char char char ... -> boolean)

Determines whether a character succeeds another (or is equal to it).

char>? : (char char char ... -> boolean)

Determines whether a character succeeds another.

char? : (any -> boolean)

Determines whether a value is a character.

2.5.7 Strings

explode : (string -> (listof string))

Translates a string into a list of 1-letter strings.

format : (string any ... -> string)

Formats a string, possibly embedding values.

implode : ((listof string) -> string)

Concatenates the list of 1-letter strings into one string.

int->string : (integer -> string)

Converts an integer in [0,55295] or [57344 1114111] to a 1-letter string.

list->string : ((listof char) -> string)

57

Converts a s list of characters into a string.

make-string : (nat char -> string)

Produces a string of given length from a single given character.

replicate : (nat string -> string)

Replicates the given string.

string : (char ... -> string)

Builds a string of the given characters.

string->int : (string -> integer)

Converts a 1-letter string to an integer in [0,55295] or [57344, 1114111].

string->list : (string -> (listof char))

Converts a string into a list of characters.

string->number : (string -> (union number false))

Converts a string into a number, produce false if impossible.

string->symbol : (string -> symbol)

Converts a string into a symbol.

string-alphabetic? : (string -> boolean)

Determines whether all ’letters’ in the string are alphabetic.

string-append : (string ... -> string)

58

Juxtaposes the characters of several strings.

string-ci<=7 : (string string string ... -> boolean)

Determines whether one string alphabetically precedes another (or is equal to it) in a case-
insensitive manner.

string-ci<? : (string string string ... -> boolean)

Determines whether one string alphabetically precedes another in a case-insensitive manner.

string-ci=7 : (string string string ... -> boolean)

Compares two strings character-wise in a case-insensitive manner.

string-ci>=? : (string string string ... -> boolean)

Determines whether one string alphabetically succeeds another (or is equal to it) in a case-
insensitive manner.

string-ci>? : (string string string ... -> boolean)

Determines whether one string alphabetically succeeds another in a case-insensitive manner.

string-copy : (string -> string)

Copies a string.

string-ith : (string nat -> string)

Extracts the ith 1-letter substring from the given one.

string-length : (string -> nat)

Determines the length of a string.

string-lower-case? : (string -> boolean)

59

Determines whether all *letters’ in the string are lower case.

string-numeric? : (string -> boolean)

Determines whether all ’letters’ in the string are numeric.

string-ref : (string nat -> char)

Extracts the i-the character from a string.

string-upper-case? : (string -> boolean)

Determines whether all *letters’ in the string are upper case.

string-whitespace? : (string -> boolean)

Determines whether all ’letters’ in the string are white space.

string<=7 : (string string string ... -> boolean)

Determines whether one string alphabetically precedes another (or is equal to it).

string<? : (string string string ... -> boolean)

Determines whether one string alphabetically precedes another.

string=7 : (string string string ... -> boolean)

Compares two strings character-wise.

string>=7 : (string string string ... -> boolean)

Determines whether one string alphabetically succeeds another (or is equal to it).

string>? : (string string string ... -> boolean)

60

Determines whether one string alphabetically succeeds another.

string? : (any -> boolean)

Determines whether a value is a string.

substring : (string nat nat -> string)

Extracts the substring starting at a 0-based index up to the second 0-based index (exclusive).

2.5.8 Images

image=7 : (image image -> boolean)

Determines whether two images are equal.

image? : (any -> boolean)

Determines whether a value is an image.

2.59 Misc

=~ : (number number non-negative-real -> boolean)

Checks whether two numbers are within some amount (the third argument) of either other.

eof : eof

The end-of-file value.

eof-object? : (any -> boolean)

Determines whether some value is the end-of-file value.

eq? : (any any -> boolean)

61

Determines whether two values are equivalent from the computer’s perspective (intensional).

equal? : (any any -> boolean)

Determines whether two values are structurally equal where basic values are compared with
the eqv? predicate.

equal~? : (any any non-negative-real -> boolean)

Compares like equal? on the first two arguments, except using =~ in the case of numbers.

eqv? : (any any -> boolean)

Determines whether two values are equivalent from the perspective of all functions that can
be applied to it (extensional).

error : (any ... -> void)

signals an error, combining the given values into an error message.

29

If any of the values’ printed representations is too long, it is truncated and “...” is put into
the string. If the first value is a symbol, it is treated specially; it is suffixed with a colon and
a space (the intention is that the symbol is the name of the function signalling the error).

exit : (-> void)

Exits the running program.

identity : (any -> any)

Returns the argument unchanged.

struct? : (any -> boolean)

Determines whether some value is a structure.

62

3 Intermediate Student

program = def-or-expr

def-or-expr = definition

| expr

| test-case

| library-require
definition = (define (name variable variable ...) expr)
| (define name expr)

| (define name (lambda (variable variable ...) expr))
| (define-struct name (name ...))

expr = (local [definition ...] expr)

| (letrec ([name expr-for-let] ...) expr)
| (let ([name expr-for-let] ...) expr)
| (let* ([name expr-for-let] ...) expr)
| (name expr expr ...)

| (cond [expr expr] ... [expr exprl)
| (cond [expr expr] ... [else expr])
| (if expr expr expr)

| (and expr expr expr ...)
| (or expr expr expr ...)
| (time expr)

| name

| ’quoted

| ‘quasiquoted

| number

| string

| character

expr-for-let = (lambda (variable variable ...) expr)
| expr
quoted = name
| number
| string
| character
| (quoted ...)
| ’quoted
| ‘quoted
| ,quoted
| ,@quoted

63

quasiquoted

test-case

library-require

package =

An name or a variable
following:

i SEHNDONEN,

name
number

string

character
(quasiquoted ...)
’quasiquoted
‘quasiquoted

, €Xpr

,Q@expr

(check-expect expr expr)
(check-within expr expr expr)
(check-member-of expr expr ...)
(check-range expr expr expr)
(check-error expr expr)
(check-error expr)

(require string)
(require (1lib string string ...))

(require (planet string package))

(string string number number)

is a sequence of characters not including a space or one of the

i

A number is a number such as 123, 3/2, or 5.5.

A symbol is a quote character followed by a name. A symbol is a value, just like 0 or empty.

A string is enclosed by

a pair of "". Unlike symbols, strings may be split into characters
and manipulated by a variety of functions. For example, "abcdef", "This is a string",

and "This is a string with \" inside" are all strings.

A character begins with #\ and has the name of the character. For example, #\a, #\b,

and #\space are characters.

In function calls, the function appearing immediatly after the open parenthesis can be any
functions defined with define or define-struct, or any one of the pre-defined functions.

3.1 Pre-Defined Variables

empty : empty?

64

The empty list.

true : boolean?

The true value.

false : boolean?

The false value.

3.2 Template Variables

A placeholder for indicating that a definition is a template.

A placeholder for indicating that a definition is a template.

A placeholder for indicating that a definition is a template.

A placeholder for indicating that a definition is a template.

3.3 Syntax for Intermediate

(local [definition ...] expression)

65

Groups related definitions for use in expression. Each definition can be either a de-
fine or a define-struct.

When evaluating local, each definition is evaluated in order, and finally the body ex-
pression is evaluated. Only the expressions within the local (including the right-hand-
sides of the definitions and the expression) may refer to the names defined by the
definitions. If a name defined in the local is the same as a top-level binding, the inner
one “shadows” the outer one. That is, inside the 1local, any references to that name refer to
the inner one.

(letrec ([name expr-for-let] ...) expression)

Like local, but with a simpler syntax. Each name defines a variable (or a function) with the
value of the corresponding expr-for-let. If expr-for-let is a lambda, letrec defines
a function, otherwise it defines a variable.

(let* ([name expr-for-let] ...) expression)

Like letrec, but each name can only be used in expression, and in expr-for-lets
occuring after that name.

(let ([name expr-for-let] ...) expression)

Like letrec, but the defined names can be used only in the last expression, not the
expr-for-lets next to the names.

(time expression)

Measures the time taken to evaluate expression. After evaluating expression, time
prints out the time taken by the evaluation (including real time, time taken by the CPU, and
the time spent collecting free memory). The value of time is the same as that of expres-
sion.

3.4 Common Syntaxes

The following syntaxes behave the same in the Infermediate level as they did in the §2
“Beginning Student with List Abbreviations” level.

’name
’part
(quote name)
(quote part)

66

A quoted name is a symbol. A quoted part is an abbreviation for a nested lists.

Normally, this quotation is written with a ?, like ’ (apple banana), but it can also be
written with quote, like (quote (apple banana)).

‘name
‘part
(quasiquote name)
(quasiquote part)

Like quote, but also allows escaping to expression “unquotes.”

Normally, quasi-quotations are written with a backquote, ¢, like ¢ (apple ,(+ 1 2)),
but they can also be written with quasiquote, like (quasiquote-elem (apple ,(+ 1

2))).

,expression
(unquote expression)

Under a single quasiquote, ,expression escapes from the quote to include an evaluated
expression whose result is inserted into the abbreviated list.

Under multiple quasiquotes, , expression is really the literal , expression, decrementing
the quasiquote count by one for expression.

Normally, an unquote is written with ,, but it can also be written with unquote.

,Qexpression
(unquote-splicing expression)

Under a single quasiquote, ,@expression escapes from the quote to include an evaluated
expression whose result is a list to splice into the abbreviated list.

Under multiple quasiquotes, a splicing unquote is like an unquote; that is, it decrements the
quasiquote count by one.

Normally, a splicing unquote is written with ,, but it can also be written with unquote-
splicing.

(define (name variable variable ...) expression)

Defines a function named name. The expression is the body of the function. When the
function is called, the values of the arguments are inserted into the body in place of the
variables. The function returns the value of that new expression.

67

The function name’s cannot be the same as that of another function or variable.

(define name expression)

Defines a variable called name with the the value of expression. The variable name’s
cannot be the same as that of another function or variable, and name itself must not appear
in expression.

(define name (lambda (variable variable ...) expression))

An alternate way on defining functions. The name is the name of the function, which cannot
be the same as that of another function or variable.

A lambda cannot be used outside of this alternate syntax.

(define-struct structure-name (field-name ...))

Defines a new structure called structure-name. The structure’s fields are named by the
field-names. After the define-struct, the following new functions are available:

* make-structure-name : takes a number of arguments equal to the number of fields
in the structure, and creates a new instance of that structure.

e structure-name-field-name : takes an instance of the structure and returns the
value in the field named by field-name.

* structure-name? : takes any value, and returns true if the value is an instance of
the structure.

The name of the new functions introduced by def ine-struct must not be the same as that
of other functions or variables, otherwise def ine-struct reports an error.

(name expression expression ...)

Calls the function named name. The value of the call is the value of name’s body when
every one of the function’s variables are replaced by the values of the corresponding ex-
pressions.

The function named name must defined before it can be called. The number of argument
expressions must be the same as the number of arguments expected by the function.

(cond [question-expression answer-expression] ...)
(cond [question-expression answer-expression]

[else answer-expression])

68

Chooses a clause based on some condition. cond finds the first question-expression
that evaluates to true, then evaluates the corresponding answer-expression.

If none of the question-expressions evaluates to true, cond’s value is the answer-
expression of the else clause. If there is no else, cond reports an error. If the result of
a question-expression is neither true nor false, cond also reports an error.

else cannot be used outside of cond.

(if test-expression then-expression else-expression)

When the value of the test-expression is true, if evaluates the then-expression.
When the test is false, if evaluates the else-expression.

If the test-expression is neither true nor false, if reports an error.

(and expression expression expression ...)

Evaluates to true if all the expressions are true. If any expression is false, the and
expression evaluates to false (and the expressions to the right of that expression are not
evaluated.)

If any of the expressions evaluate to a value other than true or false, and reports an error.

(or expression expression expression ...)

Evaluates to true as soon as one of the expressions is true (and the expressions to the
right of that expression are not evaluated.) If all of the expressions are false, the or
expression evaluates to false.

If any of the expressions evaluate to a value other than true or false, or reports an error.

(check-expect expression expected-expression)

Checks that the first expression evaluates to the same value as the expected-
expression.

(check-within expression expected-expression delta-expression)

Checks that the first expression evaluates to a value within delta-expression of the
expected-expression. If delta-expression is not a number, check-within reports
an error.

69

(check-error expression match-expression)
(check-error expression)

Checks that the expression reports an error, where the error messages matches the value
of matchexpression, if it is present.

(check-member-of expression expression expression ...)

Checks that the value of the first expression as that of one of the following expressions.

(check-range expression low-expression high-expression)

Checks that the value of the first expression is a number in between the value of the
low-expression and the high-expression, inclusive.

(require string)

Makes the definitions of the module specified by string available in the current module
(i.e., the current file), where string refers to a file relative to the current file.

The string is constrained in several ways to avoid problems with different path conventions
on different platforms: a / is a directory separator, . always means the current directory, . .
always means the parent directory, path elements can use only a through z (uppercase or
lowercase), 0 through 9, -, _, and ., and the string cannot be empty or contain a leading or
trailing /.

(require module-name)

Accesses a file in an installed library. The library name is an identifier with the same con-
straints as for a relative-path string (though without the quotes), with the additional constraint
that it must not contain a ..

(require (1ib string string ...))

Accesses a file in an installed library, making its definitions available in the current module
(i.e., the current file). The first string names the library file, and the remaining strings
name the collection (and sub-collection, and so on) where the file is installed. Each string is
constrained in the same way as for the (require string) form.

(require (planet string (string string number number)))

Accesses a library that is distributed on the internet via the PLaneT server, making it defini-
tions available in the current module (i.e., current file).

70

3.5 Pre-defined Functions

3.5.1 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts

< : (real real real ... -> boolean)

Compares real numbers for less-than.

<= : (real real real ... -> boolean)

Compares real numbers for less-than or equality.

= : (number number number ... -> boolean)

Compares numbers for equality.

> : (real real real ... -> boolean)

Compares real numbers for greater-than.

>= : (real real real ... -> boolean)

Compares real numbers for greater-than or equality.

abs : (real -> real)

Evaluates the absolute value of a real number.

acos : (number -> number)

Evaluates the arccosine (inverse of cos) of a number.

addl : (number -> number)

Evaluates a number one larger than a given number.

angle : (number -> real)

71

Extracts the angle from a complex number.

asin : (number -> number)

Evaluates the arcsine (inverse of sin) of a number.

atan : (number (number) -> number)

Evaluates the arctan of the given number or the ratio of the two given numbers.

ceiling : (real -> integer)

Determines the closest integer (exact or inexact) above a real number.

complex? : (any -> boolean)

Determines whether some value is complex.

conjugate : (number -> number)

Evaluates the conjugate of a complex number.

cos : (number -> number)

Evaluates the cosine of a number (radians).

cosh : (number -> number)

Evaluates the hyperbolic cosine of a number.

current-seconds : (-> integer)

Evaluates the current time in seconds elapsed (since a platform-specific starting date).

denominator : (rat -> integer)

72

Evaluates the denominator of a rational.

e : real

Euler’s number.

even? : (integer -> boolean)

Determines if some integer (exact or inexact) is even or not.

exact->inexact : (number -> number)

Converts an exact number to an inexact one.

exact? : (number -> boolean)

Determines whether some number is exact.

exp : (number -> number)

Evaluates e raised to a number.

expt : (number number -> number)

Evaluates the power of the first to the second number.

floor : (real -> integer)

Determines the closest integer (exact or inexact) below a real number.

gcd : (integer integer ... -> integer)

Evaluates the greatest common divisior of two integers (exact or inexact).

imag-part : (number -> real)

Extracts the imaginary part from a complex number.

73

inexact->exact : (number -> number)

Approximates an inexact number by an exact one.

inexact? : (number -> boolean)

Determines whether some number is inexact.

integer->char : (integer -> char)

Lookups the character that corresponds to the given integer (exact only!) in the ASCII table
(if any).

integer-sqrt : (number -> integer)

Evaluates the integer (exact or inexact) square root of a number.

integer? : (any -> boolean)

Determines whether some value is an integer (exact or inexact).

lcm : (integer integer ... -> integer)

Evaluates the least common multiple of two integers (exact or inexact).

log : (number -> number)

Evaluates the base-e logarithm of a number.

magnitude : (number -> real)

Determines the magnitude of a complex number.

make-polar : (real real -> number)

Creates a complex from a magnitude and angle.

74

make-rectangular : (real real -> number)

Creates a complex from a real and an imaginary part.

max : (real real ... -> real)

Determines the largest number.

min : (real real ... -> real)

Determines the smallest number.

modulo : (integer integer -> integer)

Finds the remainder of the division of the first number by the second; try (modulo 4 3)
(modulo 4 -3).

negative? : (number -> boolean)

Determines if some value is strictly smaller than zero.

number->string : (number -> string)

Converts a number to a string.

number? : (any -> boolean)

Determines whether some value is a number.

numerator : (rat -> integer)

Evaluates the numerator of a rational.

0dd? : (integer -> boolean)

Determines if some integer (exact or inexact) is odd or not.

75

pi : real

The ratio of a circle’s circumference to its diameter.

positive? : (number -> boolean)

Determines if some value is strictly larger than zero.

quotient : (integer integer -> integer)

Divides the first integer (exact or inexact) into the second; try (quotient 3 4) and (quotient 4
3).

random : (integer -> integer)

Generates a random natural number less than some given integer (exact only!).

rational? : (any -> boolean)

Determines whether some value is a rational number.

real-part : (number -> real)

Extracts the real part from a complex number.

real? : (any -> boolean)

Determines whether some value is a real number.

remainder : (integer integer -> integer)

Determines the remainder of dividing the first by the second integer (exact or inexact).

round : (real -> integer)

Rounds a real number to an integer (rounds to even to break ties).

76

sgn : (real -> (union 1 1.0 0 0.0 -1 -1.0))

Evaluates the sign of a real number.

sin : (number -> number)

Evaluates the sine of a number (radians).

sinh : (number -> number)

Evaluates the hyperbolic sine of a number.

sqr : (number -> number)

Evaluates the square of a number.

sqrt : (number -> number)

Evaluates the square root of a number.

subl : (number -> number)

Evaluates a number one smaller than a given number.

tan : (number -> number)

Evaluates the tangent of a number (radians).

zero? : (number -> boolean)

Determines if some value is zero or not.

3.5.2 Booleans

boolean=7 : (boolean boolean -> boolean)

71

Determines whether two booleans are equal.

boolean? : (any -> boolean)

Determines whether some value is a boolean.

false? : (any -> boolean)

Determines whether a value is false.

not : (boolean -> boolean)

Evaluates the negation of a boolean value.

3.5.3 Symbols

symbol->string : (symbol -> string)
Converts a symbol to a string.

symbol=7 : (symbol symbol -> boolean)
Determines whether two symbols are equal.

symbol? : (any -> boolean)

Determines whether some value is a symbol.

3.54 Lists

append : ((listof any) ... -> (listof any))

Creates a single list from several, by juxtaposition of the items.

X

(listof (coms X Y))

->

(union false (cons X Y)))

assq :

78

Determines whether some item is the first item of a pair in a list of pairs.

((cons
(cons (cons W (listof Z)) (listof Y))
caaar : (listof X))
->
W)

Selects the first item of the first list in the first list of a list.

((cons
(cons (cons W (listof Z)) (listof Y))
caadr : (listof X))
->
(listof Z))

Selects the rest of the first list in the first list of a list.

caar : ((cons (cons Z (listof Y)) (listof X)) -> Z)

Selects the first item of the first list in a list.

((cons (cons W (cons Z (listof Y))) (listof X))
cadar : ->
Z)

Selects the second item of the first list of a list.

cadddr : ((listof Y) -> Y)

Selects the fourth item of a non-empty list.

caddr : ((cons W (cons Z (cons Y (listof X)))) -> Y)

Selects the third item of a non-empty list.

cadr : ((cons Z (cons Y (listof X))) -> Y)

Selects the second item of a non-empty list.

79

car : ((cons Y (listof X)) -> Y)

Selects the first item of a non-empty list.

((cons
(cons (cons W (listof Z)) (listof Y))
cdaar : (listof X))
>
(listof Z))

Selects the rest of the first list in the first list of a list.

((cons W (cons (cons Z (listof Y)) (listof X)))
cdadr : ->
(listof Y))

Selects the rest of the first list in the rest of a list.

((cons (cons Z (listof Y)) (listof X))
cdar : ->
(listof Y))

Selects the rest of a non-empty list in a list.

((cons (cons W (cons Z (listof Y))) (listof X))
cddar : ->
(listof Y))

Selects the rest of the rest of the first list of a list.

((cons W (cons Z (cons Y (listof X))))
cdddr : ->
(listof X))

Selects the rest of the rest of the rest of a list.

cddr : ((cons Z (cons Y (listof X))) -> (listof X))

Selects the rest of the rest of a list.

80

cdr : ((cons Y (listof X)) -> (listof X))

Selects the rest of a non-empty list.

cons : (X (listof X) -> (listof X))

Constructs a list.

cons? : (any -> boolean)

Determines whether some value is a constructed list.

eighth : ((listof Y) -> Y)

Selects the eighth item of a non-empty list.

empty? : (any -> boolean)

Determines whether some value is the empty list.

fifth : ((listof Y) -> Y)

Selects the fifth item of a non-empty list.

first : ((cons Y (listof X)) -> Y)

Selects the first item of a non-empty list.

fourth : ((listof Y) -> Y)

Selects the fourth item of a non-empty list.

length : ((listof any) -> number)

Evaluates the number of items on a list.

81

list : (any ... -> (listof any))

Constructs a list of its arguments.

list* : (any ... (listof any) -> (listof any))

Constructs a list by adding multiple items to a list.

list-ref : ((listof X) natural-number -> X)

Extracts the indexed item from the list.

make-list : (natural-number any -> (listof any))

Constructs a list of k (the first argument) copies of x (the second argument).

member : (any (listof any) -> boolean)

Determines whether some value is on the list (comparing values with equal?).

member? : (any (listof any) -> boolean)

Determines whether some value is on the list (comparing values with equal?).

memq : (any (listof any) -> (union false list))

Determines whether some value is on some list if so, it produces the suffix of the list that
starts with x if not, it produces false. (It compares values with the eq? predicate.)

memv : (any (listof any) -> (union false list))

Determines whether some value is on the list if so, it produces the suffix of the list that starts
with x if not, it produces false. (It compares values with the eqv? predicate.)

null : empty

82

The empty list.

null? : (any -> boolean)

Determines whether some value is the empty list.

remove : (any (listof any) -> (listof any))

Constructs a list like the given one with the first occurrence of the given item removed
(comparing values with equal?).

rest : ((cons Y (listof X)) -> (listof X))

Selects the rest of a non-empty list.

reverse : ((listof any) -> list)

Creates a reversed version of a list.

second : ((cons Z (cons Y (listof X))) -> Y)

Selects the second item of a non-empty list.

seventh : ((listof Y) -> Y)

Selects the seventh item of a non-empty list.

sixth : ((listof Y) -> Y)

Selects the sixth item of a non-empty list.

third : ((cons W (cons Z (cons Y (listof X)))) ->Y)

Selects the third item of a non-empty list.

83

3.5.5 Posns

make-posn : (number number -> posn)

Constructs a posn.

posn : signature

Signature for posns.

posn-x : (posn -> number)

Extracts the x component of a posn.

posn-y : (posn -> number)

Extracts the y component of a posn.

posn? : (anything -> boolean)

Determines if its input is a posn.

3.5.6 Characters

char->integer : (char -> integer)

Lookups the number that corresponds to the given character in the ASCII table (if any).

char-alphabetic? : (char -> boolean)

Determines whether a character represents an alphabetic character.

char-ci<=?7 : (char char char ... -> boolean)

Determines whether a character precedes another (or is equal to it) in a case-insensitive
manner.

84

char-ci<? : (char char char ... -> boolean)

Determines whether a character precedes another in a case-insensitive manner.

char-ci=? : (char char char ... -> boolean)

Determines whether two characters are equal in a case-insensitive manner.

char-ci>=? : (char char char ... -> boolean)

Determines whether a character succeeds another (or is equal to it) in a case-insensitive
manner.

char-ci>? : (char char char ... -> boolean)

Determines whether a character succeeds another in a case-insensitive manner.

char-downcase : (char -> char)

Determines the equivalent lower-case character.

char-lower-case? : (char -> boolean)

Determines whether a character is a lower-case character.

char-numeric? : (char -> boolean)

Determines whether a character represents a digit.

char-upcase : (char -> char)

Determines the equivalent upper-case character.

char-upper-case? : (char -> boolean)

Determines whether a character is an upper-case character.

85

char-whitespace? : (char -> boolean)

Determines whether a character represents space.

char<=?7 : (char char char ... -> boolean)

Determines whether a character precedes another (or is equal to it).

char<? : (char char char ... -> boolean)

Determines whether a character precedes another.

char=?7 : (char char char ... -> boolean)

Determines whether two characters are equal.

char>=?7 : (char char char ... -> boolean)

Determines whether a character succeeds another (or is equal to it).

char>? : (char char char ... -> boolean)

Determines whether a character succeeds another.

char? : (any -> boolean)

Determines whether a value is a character.

3.5.7 Strings

explode : (string -> (listof string))

Translates a string into a list of 1-letter strings.

format : (string any ... -> string)

86

Formats a string, possibly embedding values.

implode : ((listof string) -> string)

Concatenates the list of 1-letter strings into one string.

int->string : (integer -> string)

Converts an integer in [0,55295] or [57344 1114111] to a 1-letter string.

list->string : ((listof char) -> string)

Converts a s list of characters into a string.

make-string : (nat char -> string)

Produces a string of given length from a single given character.

replicate : (nat string -> string)

Replicates the given string.

string : (char ... -> string)

Builds a string of the given characters.

string->int : (string -> integer)

Converts a 1-letter string to an integer in [0,55295] or [57344, 1114111].

string->list : (string -> (listof char))

Converts a string into a list of characters.

string->number : (string -> (union number false))

87

Converts a string into a number, produce false if impossible.

string->symbol : (string -> symbol)

Converts a string into a symbol.

string-alphabetic? : (string -> boolean)

Determines whether all ’letters’ in the string are alphabetic.

string-append : (string ... -> string)

Juxtaposes the characters of several strings.

string-ci<=7 : (string string string ... -> boolean)

Determines whether one string alphabetically precedes another (or is equal to it) in a case-
insensitive manner.

string-ci<? : (string string string ... -> boolean)

Determines whether one string alphabetically precedes another in a case-insensitive manner.

string-ci=7 : (string string string ... -> boolean)

Compares two strings character-wise in a case-insensitive manner.

string-ci>=? : (string string string ... -> boolean)

Determines whether one string alphabetically succeeds another (or is equal to it) in a case-
insensitive manner.

string-ci>? : (string string string ... -> boolean)

Determines whether one string alphabetically succeeds another in a case-insensitive manner.

string-copy : (string -> string)

88

Copies a string.

string-ith : (string nat -> string)

Extracts the ith 1-letter substring from the given one.

string-length : (string -> nat)

Determines the length of a string.

string-lower-case? : (string -> boolean)

Determines whether all *letters’ in the string are lower case.

string-numeric? : (string -> boolean)

Determines whether all ’letters’ in the string are numeric.

string-ref : (string nat -> char)

Extracts the i-the character from a string.

string-upper-case? : (string -> boolean)

Determines whether all ’letters’ in the string are upper case.

string-whitespace? : (string -> boolean)

Determines whether all ’letters’ in the string are white space.

string<=7 : (string string string ... -> boolean)

Determines whether one string alphabetically precedes another (or is equal to it).

string<? : (string string string ... -> boolean)

&9

Determines whether one string alphabetically precedes another.

string=7 : (string string string ... -> boolean)

Compares two strings character-wise.

string>=7 : (string string string ... -> boolean)

Determines whether one string alphabetically succeeds another (or is equal to it).

string>? : (string string string ... -> boolean)

Determines whether one string alphabetically succeeds another.

string? : (any -> boolean)

Determines whether a value is a string.

substring : (string nat nat -> string)

Extracts the substring starting at a 0-based index up to the second 0-based index (exclusive).

3.5.8 Images

image=7 : (image image -> boolean)

Determines whether two images are equal.

image? : (any -> boolean)

Determines whether a value is an image.

3.59 Misc

=~ : (number number non-negative-real -> boolean)

90

Checks whether two numbers are within some amount (the third argument) of either other.

eof : eof

The end-of-file value.

eof-object? : (any -> boolean)

Determines whether some value is the end-of-file value.

eq? : (any any -> boolean)

Determines whether two values are equivalent from the computer’s perspective (intensional).

equal? : (any any -> boolean)

Determines whether two values are structurally equal where basic values are compared with
the eqv? predicate.

equal~? : (any any non-negative-real -> boolean)

Compares like equal? on the first two arguments, except using =~ in the case of numbers.

eqv? : (any any -> boolean)

Determines whether two values are equivalent from the perspective of all functions that can
be applied to it (extensional).

error : (any ... -> void)

signals an error, combining the given values into an error message.

29

If any of the values’ printed representations is too long, it is truncated and “...” is put into
the string. If the first value is a symbol, it is treated specially; it is suffixed with a colon and
a space (the intention is that the symbol is the name of the function signalling the error).

exit : (-> void)

91

Exits the running program.

identity : (any -> any)

Returns the argument unchanged.

struct? : (any -> boolean)

Determines whether some value is a structure.

3.5.10 Numbers (relaxed conditions)

* : (number ... -> number)

Multiplys all given numbers.

+ : (number ... -> number)

Adds all given numbers.

- : (number ... -> number)

Subtracts from the first all remaining numbers.

/ : (number ... -> number)

Divides the first by all remaining numbers.

3.5.11 Higher-Order Functions

andmap : ((X -> boolean) (listof X) -> boolean)

(andmap p (list x-1 ... x-n)) = (and (p x-1) ... (p x-n))

92

((X-1 ... X-N ->Y)
X-1

apply : X-i
(1ist X-i+1 ... X-N)
->
Y)

Applies a function using items from a list as the arguments.
argmax : ((X -> real) (listof X) -> X)

Finds the (first) element of the list that maximizes the output of the function.
argmin : ((X -> real) (listof X) -> X)

Finds the (first) element of the list that minimizes the output of the function.
build-list : (nat (mat -> X) -> (listof X))

(build-list n f) = (list (f 0) ... (f (- n 1)))
build-string : (nat (nat -> char) -> string)

(build-string n f) = (string (f 0) ... (f (-n 1)))

((Y-1 -> 2)
compose . (Y_N e Y_N_l)
POSE © (X211 ... X-N -> Y-N)
N
(X-1 ... X-N -> 7))

Composes a sequence of procedures into a single procedure.

filter : ((X -> boolean) (listof X) -> (listof X))

Constructs a list from all those items on a list for which the predicate holds.

93

foldl : (X Y ->Y) Y (listof X) -> Y)
(foldl f base (list x-1 ... x-n)) = (f x-n ... (f x-1 base))
foldr : (X Y -> Y) Y (listof X) -> Y)
(foldr f base (list x-1 ... x-n)) = (f x-1 ... (f x-n base))
for-each : ((any ... -> any) (listof any) ... -> void)
Applies a function to each item on one or more lists for effect only.
map : ((X ... -> Z) (listof X) ... -> (listof Z))

Constructs a new list by applying a function to each item on one or more existing lists.

((X -> any)
(listof X)
memf N

(union false (listof X)))

Produces true if the function given as the first argument produces a non-false value for any
item in the second argument.

ormap : ((X -> boolean) (listof X) -> boolean)
(ormap p (list x-1 ... x-n)) = (or (p x-1) ... (p x-n))
procedure? : (any -> boolean)
Produces true if the value is a procedure.

quicksort : ((listof X) (X X -> boolean) -> (listof X))
Constructs a list from all items on a list in an order according to a predicate.

sort : ((listof X) (X X -> boolean) -> (listof X))

Constructs a list from all items on a list in an order according to a predicate.

94

4 Intermediate Student with Lambda

program = def-or-expr

def-or-expr = definition

| expr

| test-case

| library-require
definition = (define (name variable variable ...) expr)
| (define name expr)

| (define-struct name (name ...))

expr = (lambda (variable variable ...) expr)
| (A (variable variable ...) expr)
| (local [definition ...] expr)
| (letrec ([name expr] ...) expr)
| (let ([name exprl] ...) expr)
| (let* ([name expr]l ...) expr)

| (expr expr expr ...)

| (cond [expr expr] ... [expr expr])
| (cond [expr expr] ... [else expr])
| (if expr expr expr)

| (and expr expr expr ...)

| (or expr expr expr ...)

| (time expr)
| name
| prim-op
| ’quoted
| ‘quasiquoted
| number
| string
| character

quoted = name
| number

| string

| character

| (quoted ...)
| ’quoted

| ‘quoted

| ,quoted

|

,Qquoted

quasiquoted = name

95

test-case

library-require

package =

An name or a variable
following:

i SEHNDONEN,

number

string

character
(quasiquoted ...)
’quasiquoted
‘quasiquoted

, €Xpr

,Q@expr

(check-expect expr expr)
(check-within expr expr expr)
(check-member-of expr expr ...)
(check-range expr expr expr)
(check-error expr expr)
(check-error expr)

(require string)
(require (1lib string string ...))

(require (planet string package))

(string string number number)

is a sequence of characters not including a space or one of the

it

A number is a number such as 123, 3/2, or 5.5.

A symbol is a quote character followed by a name. A symbol is a value, just like O or empty.

A string is enclosed by a pair of ". Unlike symbols, strings may be split into characters
and manipulated by a variety of functions. For example, "abcdef", "This is a string",

and "This is a string with \" inside" are all strings.

A character begins with #\ and has the name of the character. For example, #\a, #\b,

and #\space are characters.

In function calls, the function appearing immediatly after the open parenthesis can be any
functions defined with define or define-struct, or any one of the pre-defined functions.

4.1 Pre-Defined Variables

empty : empty?

The empty list.

96

true : boolean?

The true value.

false : boolean?

The false value.

4.2 Template Variables

A placeholder for indicating that a definition is a template.

A placeholder for indicating that a definition is a template.

A placeholder for indicating that a definition is a template.

A placeholder for indicating that a definition is a template.

4.3 Syntax for Intermediate with Lambda

(lambda (variable variable ...) expression)

Creates a function that takes as many arguments as given variables, and whose body is
expression.

97

(A (variable variable ...) expression)

The Greek letter) is a synonym for lambda.

(expression expression expression ...)

Calls the function that results from evaluating the first expression. The value of the call
is the value of function’s body when every instance of name’s variables are replaced by the
values of the corresponding expressions.

The function being called must come from either a definition appearing before the function
call, or from a 1ambda expression. The number of argument expressions must be the same
as the number of arguments expected by the function.

(local [definition ...] expression)

Groups related definitions for use in expression. Each definition can be either a de-
fine or a define-struct.

When evaluating local, each definition is evaluated in order, and finally the body ex-
pression is evaluated. Only the expressions within the local (including the right-hand-
sides of the definitions and the expression) may refer to the names defined by the
definitions. If a name defined in the local is the same as a top-level binding, the inner
one “shadows” the outer one. That is, inside the 1ocal, any references to that name refer to
the inner one.

(letrec ([name expr-for-let] ...) expression)

Like local, but with a simpler syntax. Each name defines a variable (or a function) with the
value of the corresponding expr-for-let. If expr-for-let is a lambda, letrec defines
a function, otherwise it defines a variable.

(let* ([name expr-for-let] ...) expression)

Like letrec, but each name can only be used in expression, and in expr-for-lets
occuring after that name.

(let ([name expr-for-let] ...) expression)

Like letrec, but the defined names can be used only in the last expression, not the
expr-for-lets next to the names.

98

(time expression)

Measures the time taken to evaluate expression. After evaluating expression, time
prints out the time taken by the evaluation (including real time, time taken by the CPU, and
the time spent collecting free memory). The value of time is the same as that of expres-
sion.

4.4 Common Syntaxes

The following syntaxes behave the same in the Intermediate with Lambda level as they did
in the §3 “Intermediate Student” level.

(define (name variable variable ...) expression)

Defines a function named name. The expression is the body of the function. When the
function is called, the values of the arguments are inserted into the body in place of the
variables. The function returns the value of that new expression.

The function name’s cannot be the same as that of another function or variable.

(define name expression)

Defines a variable called name with the the value of expression. The variable name’s
cannot be the same as that of another function or variable, and name itself must not appear
in expression.

(define-struct structure-name (field-name ...))

Defines a new structure called structure-name. The structure’s fields are named by the
field-names. After the define-struct, the following new functions are available:

* make-structure-name : takes a number of arguments equal to the number of fields
in the structure, and creates a new instance of that structure.

e structure-name-field-name : takes an instance of the structure and returns the
value in the field named by field-name.

* structure-name? : takes any value, and returns true if the value is an instance of
the structure.

The name of the new functions introduced by def ine-struct must not be the same as that
of other functions or variables, otherwise def ine-struct reports an error.

99

(cond [question-expression answer-expression] ...)
(cond [question-expression answer-expression]

[else answer-expression])

Chooses a clause based on some condition. cond finds the first question-expression
that evaluates to true, then evaluates the corresponding answer-expression.

If none of the question-expressions evaluates to true, cond’s value is the answer-
expression of the else clause. If there is no else, cond reports an error. If the result of
a question-expression is neither true nor false, cond also reports an error.

else cannot be used outside of cond.

(if test-expression then-expression else-expression)

When the value of the test-expression is true, if evaluates the then-expression.
When the test is false, if evaluates the else-expression.

If the test-expression is neither true nor false, if reports an error.

(and expression expression expression ...)

Evaluates to true if all the expressions are true. If any expression is false, the and
expression evaluates to false (and the expressions to the right of that expression are not
evaluated.)

If any of the expressions evaluate to a value other than true or false, and reports an error.
(or expression expression expression ...)

Evaluates to true as soon as one of the expressions is true (and the expressions to the
right of that expression are not evaluated.) If all of the expressions are false, the or
expression evaluates to false.

If any of the expressions evaluate to a value other than true or false, or reports an error.

(check-expect expression expected-expression)

Checks that the first expression evaluates to the same value as the expected-
expression.

100

(check-within expression expected-expression delta-expression)

Checks that the first expression evaluates to a value within delta-expression of the
expected-expression. If delta-expression is not a number, check-within reports
an error.

(check-error expression match-expression)
(check-error expression)

Checks that the expression reports an error, where the error messages matches the value
of matchexpression, if it is present.

(check-member-of expression expression expression ...)

Checks that the value of the first expression as that of one of the following expressions.

(check-range expression low-expression high-expression)

Checks that the value of the first expression is a number in between the value of the
low-expression and the high-expression, inclusive.

(require string)
Makes the definitions of the module specified by string available in the current module

(i.e., the current file), where string refers to a file relative to the current file.

The string is constrained in several ways to avoid problems with different path conventions
on different platforms: a / is a directory separator, . always means the current directory, . .
always means the parent directory, path elements can use only a through z (uppercase or
lowercase), 0 through 9, -, _, and ., and the string cannot be empty or contain a leading or
trailing /.

(require module-name)

Accesses a file in an installed library. The library name is an identifier with the same con-
straints as for a relative-path string (though without the quotes), with the additional constraint
that it must not contain a ..

(require (1ib string string ...))

101

Accesses a file in an installed library, making its definitions available in the current module
(i.e., the current file). The first string names the library file, and the remaining strings
name the collection (and sub-collection, and so on) where the file is installed. Each string is
constrained in the same way as for the (require string) form.

(require (planet string (string string number number)))

Accesses a library that is distributed on the internet via the PLaneT server, making it defini-
tions available in the current module (i.e., current file).

4.5 Pre-defined Functions

4.5.1 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts

< : (real real real ... -> boolean)

Compares real numbers for less-than.

<= : (real real real ... -> boolean)

Compares real numbers for less-than or equality.

= : (number number number ... -> boolean)

Compares numbers for equality.

> : (real real real ... -> boolean)

Compares real numbers for greater-than.

>= : (real real real ... -> boolean)

Compares real numbers for greater-than or equality.

abs : (real -> real)

Evaluates the absolute value of a real number.

102

acos : (number -> number)

Evaluates the arccosine (inverse of cos) of a number.

addl : (number -> number)

Evaluates a number one larger than a given number.

angle : (number -> real)

Extracts the angle from a complex number.

asin : (number -> number)

Evaluates the arcsine (inverse of sin) of a number.

atan : (number (number) -> number)

Evaluates the arctan of the given number or the ratio of the two given numbers.

ceiling : (real -> integer)

Determines the closest integer (exact or inexact) above a real number.

complex? : (any -> boolean)

Determines whether some value is complex.

conjugate : (number -> number)

Evaluates the conjugate of a complex number.

cos : (number -> number)

Evaluates the cosine of a number (radians).

103

cosh : (number -> number)

Evaluates the hyperbolic cosine of a number.

current-seconds : (-> integer)

Evaluates the current time in seconds elapsed (since a platform-specific starting date).

denominator : (rat -> integer)

Evaluates the denominator of a rational.

e : real

Euler’s number.

even? : (integer -> boolean)

Determines if some integer (exact or inexact) is even or not.

exact->inexact : (number -> number)

Converts an exact number to an inexact one.

exact? : (number -> boolean)

Determines whether some number is exact.

exp : (number -> number)

Evaluates e raised to a number.

expt : (number number -> number)

Evaluates the power of the first to the second number.

104

floor : (real -> integer)

Determines the closest integer (exact or inexact) below a real number.

gcd : (integer integer ... -> integer)

Evaluates the greatest common divisior of two integers (exact or inexact).

imag-part : (number -> real)

Extracts the imaginary part from a complex number.

inexact->exact : (number -> number)

Approximates an inexact number by an exact one.

inexact? : (number -> boolean)

Determines whether some number is inexact.

integer->char : (integer -> char)

Lookups the character that corresponds to the given integer (exact only!) in the ASCII table

(if any).

integer-sqrt : (number -> integer)

Evaluates the integer (exact or inexact) square root of a number.

integer? : (any -> boolean)

Determines whether some value is an integer (exact or inexact).

lcm : (integer integer ... -> integer)

Evaluates the least common multiple of two integers (exact or inexact).

105

log : (number -> number)

Evaluates the base-e logarithm of a number.

magnitude : (number -> real)

Determines the magnitude of a complex number.

make-polar : (real real -> number)

Creates a complex from a magnitude and angle.

make-rectangular : (real real -> number)

Creates a complex from a real and an imaginary part.

max : (real real ... -> real)

Determines the largest number.

min : (real real ... -> real)

Determines the smallest number.

modulo : (integer integer -> integer)

Finds the remainder of the division of the first number by the second; try (modulo 4 3)
(modulo 4 -3).

negative? : (number -> boolean)

Determines if some value is strictly smaller than zero.

number->string : (number -> string)

Converts a number to a string.

106

number? : (any -> boolean)

Determines whether some value is a number.

numerator : (rat -> integer)

Evaluates the numerator of a rational.

odd? : (integer -> boolean)

Determines if some integer (exact or inexact) is odd or not.

pi : real

The ratio of a circle’s circumference to its diameter.

positive? : (number -> boolean)

Determines if some value is strictly larger than zero.

quotient : (integer integer -> integer)

Divides the first integer (exact or inexact) into the second; try (quotient 3 4) and (quotient 4
3).

random : (integer -> integer)

Generates a random natural number less than some given integer (exact only!).

rational? : (any -> boolean)

Determines whether some value is a rational number.

real-part : (number -> real)

Extracts the real part from a complex number.

107

real? : (any -> boolean)

Determines whether some value is a real number.

remainder : (integer integer -> integer)

Determines the remainder of dividing the first by the second integer (exact or inexact).

round : (real -> integer)

Rounds a real number to an integer (rounds to even to break ties).

sgn : (real -> (union 1 1.0 0 0.0 -1 -1.0))

Evaluates the sign of a real number.

sin : (number -> number)

Evaluates the sine of a number (radians).

sinh : (number -> number)

Evaluates the hyperbolic sine of a number.

sqr : (number -> number)

Evaluates the square of a number.

sqrt : (number -> number)

Evaluates the square root of a number.

subl : (number -> number)

Evaluates a number one smaller than a given number.

108

tan : (number -> number)
Evaluates the tangent of a number (radians).
zero? : (number -> boolean)

Determines if some value is zero or not.

4.5.2 Booleans

boolean=7 : (boolean boolean -> boolean)
Determines whether two booleans are equal.
boolean? : (any -> boolean)

Determines whether some value is a boolean.

false? : (any -> boolean)

Determines whether a value is false.

not : (boolean -> boolean)

Evaluates the negation of a boolean value.

4.5.3 Symbols

symbol->string : (symbol -> string)
Converts a symbol to a string.

symbol=7 : (symbol symbol -> boolean)
Determines whether two symbols are equal.

symbol? : (any -> boolean)
Determines whether some value is a symbol.

109

4.54 Lists

append : ((listof any) ... -> (listof any))

Creates a single list from several, by juxtaposition of the items.

X

(listof (coms X Y))

->

(union false (cons X Y)))

assq :

Determines whether some item is the first item of a pair in a list of pairs.

((cons
(cons (cons W (listof Z)) (listof Y))
caaar : (listof X))
>
W)

Selects the first item of the first list in the first list of a list.

((cons
(cons (cons W (listof Z)) (listof Y))
caadr : (listof X))
>
(listof Z))

Selects the rest of the first list in the first list of a list.

caar : ((cons (cons Z (listof Y)) (listof X)) -> Z)

Selects the first item of the first list in a list.

((cons (cons W (cons Z (listof Y))) (listof X))
cadar : ->
Z)

Selects the second item of the first list of a list.

cadddr : ((listof Y) -> Y)

110

Selects the fourth item of a non-empty list.

caddr : ((cons W (cons Z (cons Y (listof X)))) -> Y)

Selects the third item of a non-empty list.

cadr : ((cons Z (cons Y (listof X))) -> Y)

Selects the second item of a non-empty list.

car : ((cons Y (listof X)) -> Y)

Selects the first item of a non-empty list.

((cons
(cons (cons W (listof Z)) (listof Y))
cdaar : (listof X))
>
(listof Z))

Selects the rest of the first list in the first list of a list.

((cons W (cons (cons Z (listof Y)) (listof X)))
cdadr : ->
(listof Y))

Selects the rest of the first list in the rest of a list.

((cons (cons Z (listof Y)) (listof X))
cdar : ->
(listof Y))

Selects the rest of a non-empty list in a list.

((cons (cons W (cons Z (listof Y))) (listof X))
cddar : ->
(listof Y))

Selects the rest of the rest of the first list of a list.

111

((cons W (cons Z (cons Y (listof X))))
cdddr : ->
(listof X))

Selects the rest of the rest of the rest of a list.

cddr : ((cons Z (cons Y (listof X))) -> (listof X))

Selects the rest of the rest of a list.

cdr : ((cons Y (listof X)) -> (listof X))

Selects the rest of a non-empty list.

cons : (X (listof X) -> (listof X))

Constructs a list.

cons? : (any -> boolean)

Determines whether some value is a constructed list.

eighth : ((listof Y) -> Y)

Selects the eighth item of a non-empty list.

empty? : (any -> boolean)

Determines whether some value is the empty list.

fifth : ((listof Y) -> Y)

Selects the fifth item of a non-empty list.

first : ((cons Y (listof X)) ->Y)

Selects the first item of a non-empty list.

112

fourth : ((listof Y) -> Y)

Selects the fourth item of a non-empty list.

length : ((listof any) -> number)

Evaluates the number of items on a list.

list : (any ... -> (listof any))

Constructs a list of its arguments.

list* : (any ... (listof any) -> (listof any))

Constructs a list by adding multiple items to a list.

list-ref : ((listof X) natural-number -> X)

Extracts the indexed item from the list.

make-list : (natural-number any -> (listof any))

Constructs a list of k (the first argument) copies of x (the second argument).

member : (any (listof any) -> boolean)

Determines whether some value is on the list (comparing values with equal?).

member? : (any (listof any) -> boolean)

Determines whether some value is on the list (comparing values with equal?).

memq : (any (listof any) -> (union false list))

Determines whether some value is on some list if so, it produces the suffix of the list that
starts with x if not, it produces false. (It compares values with the eq? predicate.)

113

memv : (any (listof any) -> (union false list))

Determines whether some value is on the list if so, it produces the suffix of the list that starts
with x if not, it produces false. (It compares values with the eqv? predicate.)

null : empty

The empty list.

null? : (any -> boolean)

Determines whether some value is the empty list.
remove : (any (listof any) -> (listof any))

Constructs a list like the given one with the first occurrence of the given item removed
(comparing values with equal?).

rest : ((cons Y (listof X)) -> (listof X))

Selects the rest of a non-empty list.

reverse : ((listof any) -> list)

Creates a reversed version of a list.

second : ((cons Z (cons Y (listof X))) -> Y)

Selects the second item of a non-empty list.

seventh : ((listof Y) -> Y)

Selects the seventh item of a non-empty list.
sixth : ((listof Y) -> Y)

Selects the sixth item of a non-empty list.

third : ((cons W (cons Z (cons Y (listof X)))) ->Y)

Selects the third item of a non-empty list.

114

4.5.5 Posns

make-posn : (number number -> posn)

Constructs a posn.

posn : signature

Signature for posns.

posn-x : (posn -> number)

Extracts the x component of a posn.

posn-y : (posn -> number)

Extracts the y component of a posn.

posn? : (anything -> boolean)

Determines if its input is a posn.

4.5.6 Characters

char->integer : (char -> integer)

Lookups the number that corresponds to the given character in the ASCII table (if any).

char-alphabetic? : (char -> boolean)

Determines whether a character represents an alphabetic character.

char-ci<=?7 : (char char char ... -> boolean)

Determines whether a character precedes another (or is equal to it) in a case-insensitive
manner.

115

char-ci<? : (char char char ... -> boolean)

Determines whether a character precedes another in a case-insensitive manner.

char-ci=? : (char char char ... -> boolean)

Determines whether two characters are equal in a case-insensitive manner.

char-ci>=? : (char char char ... -> boolean)

Determines whether a character succeeds another (or is equal to it) in a case-insensitive
manner.

char-ci>? : (char char char ... -> boolean)

Determines whether a character succeeds another in a case-insensitive manner.

char-downcase : (char -> char)

Determines the equivalent lower-case character.

char-lower-case? : (char -> boolean)

Determines whether a character is a lower-case character.

char-numeric? : (char -> boolean)

Determines whether a character represents a digit.

char-upcase : (char -> char)

Determines the equivalent upper-case character.

char-upper-case? : (char -> boolean)

Determines whether a character is an upper-case character.

116

char-whitespace? : (char -> boolean)

Determines whether a character represents space.

char<=?7 : (char char char ... -> boolean)

Determines whether a character precedes another (or is equal to it).

char<? : (char char char ... -> boolean)

Determines whether a character precedes another.

char=?7 : (char char char ... -> boolean)

Determines whether two characters are equal.

char>=?7 : (char char char ... -> boolean)

Determines whether a character succeeds another (or is equal to it).

char>? : (char char char ... -> boolean)

Determines whether a character succeeds another.

char? : (any -> boolean)

Determines whether a value is a character.

4.5.7 Strings

explode : (string -> (listof string))

Translates a string into a list of 1-letter strings.

format : (string any ... -> string)

117

Formats a string, possibly embedding values.

implode : ((listof string) -> string)

Concatenates the list of 1-letter strings into one string.

int->string : (integer -> string)

Converts an integer in [0,55295] or [57344 1114111] to a 1-letter string.

list->string : ((listof char) -> string)

Converts a s list of characters into a string.

make-string : (nat char -> string)

Produces a string of given length from a single given character.

replicate : (nat string -> string)

Replicates the given string.

string : (char ... -> string)

Builds a string of the given characters.

string->int : (string -> integer)

Converts a 1-letter string to an integer in [0,55295] or [57344, 1114111].

string->list : (string -> (listof char))

Converts a string into a list of characters.

string->number : (string -> (union number false))

118

Converts a string into a number, produce false if impossible.

string->symbol : (string -> symbol)

Converts a string into a symbol.

string-alphabetic? : (string -> boolean)

Determines whether all ’letters’ in the string are alphabetic.

string-append : (string ... -> string)

Juxtaposes the characters of several strings.

string-ci<=7 : (string string string ... -> boolean)

Determines whether one string alphabetically precedes another (or is equal to it) in a case-
insensitive manner.

string-ci<? : (string string string ... -> boolean)

Determines whether one string alphabetically precedes another in a case-insensitive manner.

string-ci=7 : (string string string ... -> boolean)

Compares two strings character-wise in a case-insensitive manner.

string-ci>=? : (string string string ... -> boolean)

Determines whether one string alphabetically succeeds another (or is equal to it) in a case-
insensitive manner.

string-ci>? : (string string string ... -> boolean)

Determines whether one string alphabetically succeeds another in a case-insensitive manner.

string-copy : (string -> string)

119

Copies a string.

string-ith : (string nat -> string)

Extracts the ith 1-letter substring from the given one.

string-length : (string -> nat)

Determines the length of a string.

string-lower-case? : (string -> boolean)

Determines whether all *letters’ in the string are lower case.

string-numeric? : (string -> boolean)

Determines whether all ’letters’ in the string are numeric.

string-ref : (string nat -> char)

Extracts the i-the character from a string.

string-upper-case? : (string -> boolean)

Determines whether all ’letters’ in the string are upper case.

string-whitespace? : (string -> boolean)

Determines whether all ’letters’ in the string are white space.

string<=7 : (string string string ... -> boolean)

Determines whether one string alphabetically precedes another (or is equal to it).

string<? : (string string string ... -> boolean)

120

Determines whether one string alphabetically precedes another.

string=7 : (string string string ... -> boolean)

Compares two strings character-wise.

string>=7 : (string string string ... -> boolean)

Determines whether one string alphabetically succeeds another (or is equal to it).

string>? : (string string string ... -> boolean)

Determines whether one string alphabetically succeeds another.

string? : (any -> boolean)

Determines whether a value is a string.

substring : (string nat nat -> string)

Extracts the substring starting at a 0-based index up to the second 0-based index (exclusive).

4.5.8 Images

image=7 : (image image -> boolean)

Determines whether two images are equal.

image? : (any -> boolean)

Determines whether a value is an image.

4.59 Misc

=~ : (number number non-negative-real -> boolean)

121

Checks whether two numbers are within some amount (the third argument) of either other.

eof : eof

The end-of-file value.

eof-object? : (any -> boolean)

Determines whether some value is the end-of-file value.

eq? : (any any -> boolean)

Determines whether two values are equivalent from the computer’s perspective (intensional).

equal? : (any any -> boolean)

Determines whether two values are structurally equal where basic values are compared with
the eqv? predicate.

equal~? : (any any non-negative-real -> boolean)

Compares like equal? on the first two arguments, except using =~ in the case of numbers.

eqv? : (any any -> boolean)

Determines whether two values are equivalent from the perspective of all functions that can
be applied to it (extensional).

error : (any ... -> void)

signals an error, combining the given values into an error message.

29

If any of the values’ printed representations is too long, it is truncated and “...” is put into
the string. If the first value is a symbol, it is treated specially; it is suffixed with a colon and
a space (the intention is that the symbol is the name of the function signalling the error).

exit : (-> void)

122

Exits the running program.

identity : (any -> any)

Returns the argument unchanged.

struct? : (any -> boolean)

Determines whether some value is a structure.

4.5.10 Numbers (relaxed conditions)

* : (number ... -> number)

Multiplys all given numbers.

+ : (number ... -> number)

Adds all given numbers.

- : (number ... -> number)

Subtracts from the first all remaining numbers.

/ : (number ... -> number)

Divides the first by all remaining numbers.

4.5.11 Higher-Order Functions

andmap : ((X -> boolean) (listof X) -> boolean)

(andmap p (list x-1 ... x-n)) = (and (p x-1) ... (p x-n))

123

((X-1 ... X-N ->Y)
X-1

apply : X-i
(1ist X-i+1 ... X-N)
->
Y)

Applies a function using items from a list as the arguments.
argmax : ((X -> real) (listof X) -> X)

Finds the (first) element of the list that maximizes the output of the function.
argmin : ((X -> real) (listof X) -> X)

Finds the (first) element of the list that minimizes the output of the function.
build-list : (nat (mat -> X) -> (listof X))

(build-list n f) = (list (f 0) ... (f (- n 1)))
build-string : (nat (nat -> char) -> string)

(build-string n f) = (string (f 0) ... (f (-n 1)))

((Y-1 -> 2)
compose . (Y_N e Y_N_l)
POSE © (X211 ... X-N -> Y-N)
N
(X-1 ... X-N -> 7))

Composes a sequence of procedures into a single procedure.

filter : ((X -> boolean) (listof X) -> (listof X))

Constructs a list from all those items on a list for which the predicate holds.

124

foldl : (X Y ->Y) Y (listof X) -> Y)
(foldl f base (list x-1 ... x-n)) = (f x-n ... (f x-1 base))
foldr : (X Y -> Y) Y (listof X) -> Y)
(foldr f base (list x-1 ... x-n)) = (f x-1 ... (f x-n base))
for-each : ((any ... -> any) (listof any) ... -> void)
Applies a function to each item on one or more lists for effect only.
map : ((X ... -> Z) (listof X) ... -> (listof Z))

Constructs a new list by applying a function to each item on one or more existing lists.

((X -> any)
(listof X)
memf N

(union false (listof X)))

Produces true if the function given as the first argument produces a non-false value for any
item in the second argument.

ormap : ((X -> boolean) (listof X) -> boolean)
(ormap p (list x-1 ... x-n)) = (or (p x-1) ... (p x-n))
procedure? : (any -> boolean)
Produces true if the value is a procedure.

quicksort : ((listof X) (X X -> boolean) -> (listof X))
Constructs a list from all items on a list in an order according to a predicate.

sort : ((listof X) (X X -> boolean) -> (listof X))

Constructs a list from all items on a list in an order according to a predicate.

125

5 Advanced Student

program

def-or-expr

definition

expr

def-or-expr ...

definition

expr

test-case
library-require

(define (name variable ...) expr)

(define name expr)

(define-struct name (name ...))

(define-datatype name (name name ...)

(begin expr expr ...)

(begin0 expr expr ...)

(set! variable expr)

(delay expr)

(lambda (variable ...) expr)

(A (variable ...) expr)

(local [definition ...] expr)

(letrec ([name expr] ...) expr)

(shared ([name expr] ...) expr)

(let ([name expr] ...) expr)

(let name ([name expr] ...) expr)

(let* ([name expr] ...) expr)

(recur name ([name expr] ...) expr)

(expr expr ...)

(cond [expr expr] ... [expr exprl)

(cond [expr expr] ... [else expr])

(case expr [(choice choice ...) expr]
[(choice choice ...) expr])

(case expr [(choice choice ...) expr]
[else exprl)

(match expr [pattern expr] ...)

(if expr expr expr)
(when expr expr)
(unless expr expr)

(and expr expr expr ...)
(or expr expr expr ...)
(time expr)

name

’quoted

‘quasiquoted

number

126

| string
| character

choice = name
| number

name

pattern

|

| number

| true

| false

| string

| character
| ’quoted

| ‘quasiquoted-pattern

| (cons pattern pattern)
|

|

|

|

(list pattern ...)

(list* pattern ...)
(struct id (pattern ...))
(vector pattern ...)

(box pattern)
quasiquoted-pattern = name
| number
| string
| character
| (quasiquoted-pattern ...)
| ’quasiquoted-pattern
| ‘quasiquoted-pattern
| ,pattern
| ,@pattern
quoted = name
| number
| string
| character
| (quoted ...)
| ’quoted
| ‘quoted
| ,quoted
| ,@quoted
quasiquoted = name
| number
| string
| character

127

| (quasiquoted ...)

| ’quasiquoted

| ‘quasiquoted

| ,expr
| ,@expr

test-case = (check-expect expr expr)

| (check-within expr expr expr)

| (check-error expr expr ...)

| (check-member-of expr expr expr)

| (check-range expr expr)

| (check-range expr)

= (require string)
| (require (1ib string string ...))
| (require (planet string package))

library-require

package = (string string number number)

An name or a variable is a sequence of characters not including a space or one of the
following:

B, 20 Il [0 IO ORI
A number is a number such as 123, 3/2, or 5.5.
A symbol is a quote character followed by a name. A symbol is a value, just like 0 or empty.

A string is enclosed by a pair of ". Unlike symbols, strings may be split into characters
and manipulated by a variety of functions. For example, "abcdef", "This is a string",
and "This is a string with \" inside" are all strings.

A character begins with #\ and has the name of the character. For example, #\a, #\b,
and #\space are characters.

In function calls, the function appearing immediatly after the open parenthesis can be any
functions defined with def ine or define-struct, or any one of the pre-defined functions.

5.1 Pre-Defined Variables

empty : empty?

The empty list.

true : boolean?

128

The true value.

false : boolean?

The false value.

5.2 Template Variables

A placeholder for indicating that a definition is a template.

A placeholder for indicating that a definition is a template.

A placeholder for indicating that a definition is a template.

A placeholder for indicating that a definition is a template.

5.3 Syntax for Advanced

In Advanced, set! can be used to mutate variables, and define-struct’s structures are
mutatable. define and lambda can define functions of zero arguments, and function calls
can invoke functions of zero arguments.

(lambda (variable ...) expression)

Creates a function that takes as many arguments as given variables, and whose body is
expression.

129

(A (variable ...) expression)

The Greek letter) is a synonym for lambda.

(expression expression ...)

Calls the function that results from evaluating the first expression. The value of the call
is the value of function’s body when every instance of name’s variables are replaced by the
values of the corresponding expressions.

The function being called must come from either a definition appearing before the function
call, or from a 1ambda expression. The number of argument expressions must be the same
as the number of arguments expected by the function.

(define-datatype dataype-name [variant-name field-name ...] ...)

A short-hand for defining a group of related structures. The following define-datatype:

(define-datatype datatype-name
[variant-name field-name ...]

)

is equivalent to:

(define (datatype-name? x)

(or (variant-name? x) ...))
(define-struct variant-name (field-name ...))
(begin expression expression ...)

Evaluates the expressions in order from left to right. The value of the begin expression
is the value of the last expression.

(begin0 expression expression ...)
Evaluates the expressions in order from left to right. The value of the begin expression
is the value of the first expression.

(set! variable expression)

Evaluates expression, and then mutates the variable to have expression’s value. The
variable must be defined by define, letrec, let*, or let.

130

(delay expression)

Produces a “promise” to evaluate expression. The expression is not evaluated until the
promise is forced with force; when the promise is forced, the result is recorded, so that any
further force of the promise immediately produces the remembered value.

(shared ([name expression] ...) expression)

Like letrec, but when an expression nextto an id is a cons, 1list, vector, quasiquoted
expression, or make-struct-name from a define-struct, the expression can refer
directly to any name, not just names defined earlier. Thus, shared can be used to create
cyclic data structures.

(recur name ([name expression] ...) expression)

A short-hand syntax for recursive loops. The first name corresponds to the name of the
recursive function. The names in the parenthesis are the function’s arguments, and each
corresponding expression is a value supplied for that argument in an initial starting call of
the function. The last expression is the body of the function.

More precisely, the following recur:
(recur func-name ([arg-name arg-expression] ...)

body-expression)

is equivalent to:

(local [(define (func-name arg-name ...) body-expression)]
(func-name arg-expression ...))
(let name ([name expression] ...) expression)

An alternate syntax for recur.

(case expression [(choice ...) expression] ... [(choice ...) expression])

A case form contains one or more clauses. Each clause contains a choices (in
parentheses)—either numbers or names—and an answer expression. The initial expres-
sion is evaluated, and its value is compared to the choices in each clause, where the lines
are considered in order. The first line that contains a matching choice provides an answer
expression whose value is the result of the whole case expression. Numbers match with
the numbers in the choices, and symbols match with the names. If none of the lines contains
a matching choice, it is an error.

131

(case expression [(choice ...) expression] ... [else expression])

This form of case is similar to the prior one, except that the final else clause is taken if no
clause contains a choice matching the value of the initial expression.

(match expression [pattern expression] ...)

A match form contains one or more clauses that are surrounded by square brackets. Each
clause contains a pattern—a description of a value—and an answer expression. The initial
expression is evaluated, and its value is matched against the pattern in each clause, where
the clauses are considered in order. The first clause that contains a matching pattern provides
an answer expression whose value is the result of the whole match expression. This
expression may reference identifiers defined in the matching pattern. If none of the clauses
contains a matching pattern, it is an error.

(when test-expression body-expression)

If test-expression evaluates to true, the result of the when expression is the re-
sult of evaluating the body-expression, otherwise the result is (void) and the body-
expression is not evaluated. If the result of evaluating the test-expression is neither
true nor false, it is an error.

(unless test-expression body-expression)

Like when, but the body-expression is evaluated when the test-expression produces
false instead of true.

5.4 Common Syntaxes

The following syntaxes behave the same in the Advanced level as they did in the §4 “Inter-
mediate Student with Lambda” level.

(local [definition ...] expression)

Groups related definitions for use in expression. Each definition can be either a de-
fine or a define-struct.

When evaluating local, each definition is evaluated in order, and finally the body ex-
pression is evaluated. Only the expressions within the local (including the right-hand-
sides of the definitions and the expression) may refer to the names defined by the
definitions. If a name defined in the local is the same as a top-level binding, the inner
one “shadows” the outer one. That is, inside the 1ocal, any references to that name refer to
the inner one.

132

(letrec ([name expr-for-let] ...) expression)

Like local, but with a simpler syntax. Each name defines a variable (or a function) with the
value of the corresponding expr-for-let. If expr-for-let is a lambda, letrec defines
a function, otherwise it defines a variable.

(let* ([name expr-for-let] ...) expression)

Like letrec, but each name can only be used in expression, and in expr-for-lets
occuring after that name.

(let ([name expr-for-let] ...) expression)

Like letrec, but the defined names can be used only in the last expression, not the
expr-for-lets next to the names.

(time expression)

Measures the time taken to evaluate expression. After evaluating expression, time
prints out the time taken by the evaluation (including real time, time taken by the CPU, and
the time spent collecting free memory). The value of time is the same as that of expres-
sion.

(define (name variable variable ...) expression)

Defines a function named name. The expression is the body of the function. When the
function is called, the values of the arguments are inserted into the body in place of the
variables. The function returns the value of that new expression.

The function name’s cannot be the same as that of another function or variable.

(define name expression)

Defines a variable called name with the the value of expression. The variable name’s
cannot be the same as that of another function or variable, and name itself must not appear
in expression.

(define-struct structure-name (field-name ...))

Defines a new structure called structure-name. The structure’s fields are named by the
field-names. After the define-struct, the following new functions are available:

133

* make-structure-name : takes a number of arguments equal to the number of fields
in the structure, and creates a new instance of that structure.

e structure-name-field-name : takes an instance of the structure and returns the
value in the field named by field-name.

* structure-name? : takes any value, and returns true if the value is an instance of
the structure.

The name of the new functions introduced by def ine-struct must not be the same as that
of other functions or variables, otherwise def ine-struct reports an error.

In Advanced, define-struct introduces one additional function:

* set-structure-name-field-name! : takes an instance of the structure and a
value, and mutates the instance’s field to the given value.

(cond [question-expression answer-expression] ...)
(cond [question-expression answer-expression]

[else answer-expression])

Chooses a clause based on some condition. cond finds the first question-expression
that evaluates to true, then evaluates the corresponding answer-expression.

If none of the question-expressions evaluates to true, cond’s value is the answer-
expression of the else clause. If there is no else, cond reports an error. If the result of
a question-expression is neither true nor false, cond also reports an error.

else cannot be used outside of cond.

(if test-expression then-expression else-expression)

When the value of the test-expression is true, if evaluates the then-expression.
When the test is false, if evaluates the else-expression.

If the test-expression is neither true nor false, if reports an error.

(and expression expression expression ...)

Evaluates to true if all the expressions are true. If any expression is false, the and
expression evaluates to false (and the expressions to the right of that expression are not
evaluated.)

134

If any of the expressions evaluate to a value other than true or false, and reports an error.

(or expression expression expression ...)

Evaluates to true as soon as one of the expressions is true (and the expressions to the
right of that expression are not evaluated.) If all of the expressions are false, the or
expression evaluates to false.

If any of the expressions evaluate to a value other than true or false, or reports an error.

(check-expect expression expected-expression)

Checks that the first expression evaluates to the same value as the expected-
expression.

(check-within expression expected-expression delta-expression)

Checks that the first expression evaluates to a value within delta-expression of the
expected-expression. If delta-expression is not a number, check-within reports
an error.

(check-error expression match-expression)
(check-error expression)

Checks that the expression reports an error, where the error messages matches the value
of matchexpression, if it is present.

(check-member-of expression expression expression ...)

Checks that the value of the first expression as that of one of the following expressions.

(check-range expression low-expression high-expression)

Checks that the value of the first expression is a number in between the value of the
low-expression and the high-expression, inclusive.

(require string)

135

Makes the definitions of the module specified by string available in the current module
(i.e., the current file), where string refers to a file relative to the current file.

The string is constrained in several ways to avoid problems with different path conventions
on different platforms: a / is a directory separator, . always means the current directory, . .
always means the parent directory, path elements can use only a through z (uppercase or
lowercase), 0 through 9, -, _, and ., and the string cannot be empty or contain a leading or
trailing /.

(require module-name)

Accesses a file in an installed library. The library name is an identifier with the same con-
straints as for a relative-path string (though without the quotes), with the additional constraint
that it must not contain a ..

(require (1ib string string ...))

Accesses a file in an installed library, making its definitions available in the current module
(i.e., the current file). The first string names the library file, and the remaining strings
name the collection (and sub-collection, and so on) where the file is installed. Each string is
constrained in the same way as for the (require string) form.

(require (planet string (string string number number)))

Accesses a library that is distributed on the internet via the PLaneT server, making it defini-
tions available in the current module (i.e., current file).

5.5 Pre-Defined Functions

5.5.1 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts

< : (real real real ... -> boolean)

Compares real numbers for less-than.

<= : (real real real ... -> boolean)

Compares real numbers for less-than or equality.

136

= : (number number number ... -> boolean)

Compares numbers for equality.

> : (real real real ... -> boolean)

Compares real numbers for greater-than.

>= : (real real real ... -> boolean)

Compares real numbers for greater-than or equality.

abs : (real -> real)

Evaluates the absolute value of a real number.

acos : (number -> number)

Evaluates the arccosine (inverse of cos) of a number.

addl : (number -> number)

Evaluates a number one larger than a given number.

angle : (number -> real)

Extracts the angle from a complex number.

asin : (number -> number)

Evaluates the arcsine (inverse of sin) of a number.

atan : (number (number) -> number)

Evaluates the arctan of the given number or the ratio of the two given numbers.

137

ceiling : (real -> integer)

Determines the closest integer (exact or inexact) above a real number.

complex? : (any -> boolean)

Determines whether some value is complex.

conjugate : (number -> number)

Evaluates the conjugate of a complex number.

cos : (number -> number)

Evaluates the cosine of a number (radians).

cosh : (number -> number)

Evaluates the hyperbolic cosine of a number.

current-seconds : (-> integer)

Evaluates the current time in seconds elapsed (since a platform-specific starting date).

denominator : (rat -> integer)

Evaluates the denominator of a rational.

e : real

Euler’s number.

even? : (integer -> boolean)

Determines if some integer (exact or inexact) is even or not.

138

exact->inexact : (number -> number)

Converts an exact number to an inexact one.

exact? : (number -> boolean)

Determines whether some number is exact.

exp : (number -> number)

Evaluates e raised to a number.

expt : (number number -> number)

Evaluates the power of the first to the second number.

floor : (real -> integer)

Determines the closest integer (exact or inexact) below a real number.

gcd @ (integer integer ... -> integer)

Evaluates the greatest common divisior of two integers (exact or inexact).

imag-part : (number -> real)

Extracts the imaginary part from a complex number.

inexact->exact : (number -> number)

Approximates an inexact number by an exact one.

inexact? : (number -> boolean)

Determines whether some number is inexact.

139

integer->char : (integer -> char)

Lookups the character that corresponds to the given integer (exact only!) in the ASCII table
(if any).

integer-sqrt : (number -> integer)

Evaluates the integer (exact or inexact) square root of a number.

integer? : (any -> boolean)

Determines whether some value is an integer (exact or inexact).

lcm : (integer integer ... -> integer)

Evaluates the least common multiple of two integers (exact or inexact).

log : (number -> number)

Evaluates the base-e logarithm of a number.

magnitude : (number -> real)

Determines the magnitude of a complex number.

make-polar : (real real -> number)

Creates a complex from a magnitude and angle.

make-rectangular : (real real -> number)

Creates a complex from a real and an imaginary part.

max : (real real ... -> real)

Determines the largest number.

140

min : (real real ... -> real)

Determines the smallest number.

modulo : (integer integer -> integer)

Finds the remainder of the division of the first number by the second; try (modulo 4 3)
(modulo 4 -3).

negative? : (number -> boolean)

Determines if some value is strictly smaller than zero.

number->string : (number -> string)

Converts a number to a string.

number? : (any -> boolean)

Determines whether some value is a number.

numerator : (rat -> integer)

Evaluates the numerator of a rational.

0dd? : (integer -> boolean)

Determines if some integer (exact or inexact) is odd or not.

pi : real

The ratio of a circle’s circumference to its diameter.

positive? : (number -> boolean)

Determines if some value is strictly larger than zero.

141

quotient : (integer integer -> integer)

Divides the first integer (exact or inexact) into the second; try (quotient 3 4) and (quotient 4
3).

(case->
random : (integer -> integer)
(-> (and/c real inexact? (>/c 0) (</c 1))))

Generates a random natural number less than some given integer, or to generate a random
inexact number between 0.0 and 1.0 exclusive.

rational? : (any -> boolean)

Determines whether some value is a rational number.

real-part : (number -> real)

Extracts the real part from a complex number.

real? : (any -> boolean)

Determines whether some value is a real number.

remainder : (integer integer -> integer)

Determines the remainder of dividing the first by the second integer (exact or inexact).

round : (real -> integer)

Rounds a real number to an integer (rounds to even to break ties).

sgn : (real -> (union 1 1.0 0 0.0 -1 -1.0))

Evaluates the sign of a real number.

sin : (number -> number)

142

Evaluates the sine of a number (radians).

sinh : (number -> number)

Evaluates the hyperbolic sine of a number.

sqr : (number -> number)

Evaluates the square of a number.

sqrt : (number -> number)

Evaluates the square root of a number.

subl : (number -> number)

Evaluates a number one smaller than a given number.

tan : (number -> number)

Evaluates the tangent of a number (radians).

zero? : (number -> boolean)

Determines if some value is zero or not.

5.5.2 Booleans

boolean=7 : (boolean boolean -> boolean)

Determines whether two booleans are equal.

boolean? : (any -> boolean)

Determines whether some value is a boolean.

143

false? : (any -> boolean)

Determines whether a value is false.

not : (boolean -> boolean)

Evaluates the negation of a boolean value.

5.5.3 Symbols
symbol->string : (symbol -> string)
Converts a symbol to a string.
symbol=7 : (symbol symbol -> boolean)
Determines whether two symbols are equal.
symbol? : (any -> boolean)
Determines whether some value is a symbol.
5.5.4 Lists
append : ((listof any) ... -> (listof any))
Creates a single list from several.
assoc : (any (listof any) -> (listof any) or false)
Produces the first element on the list whose first is equal? to v; otherwise it produces false.

X

(listof (coms X Y))

->

(union false (cons X Y)))

assq :

144

Determines whether some item is the first item of a pair in a list of pairs.

((cons
(cons (cons W (listof Z)) (listof Y))
caaar : (listof X))
->
W)

Selects the first item of the first list in the first list of a list.

((cons
(cons (cons W (listof Z)) (listof Y))
caadr : (listof X))
->
(listof Z))

Selects the rest of the first list in the first list of a list.

caar : ((cons (cons Z (listof Y)) (listof X)) -> Z)

Selects the first item of the first list in a list.

((cons (cons W (cons Z (listof Y))) (listof X))
cadar : ->
Z)

Selects the second item of the first list of a list.

cadddr : ((listof Y) -> Y)

Selects the fourth item of a non-empty list.

caddr : ((cons W (cons Z (cons Y (listof X)))) -> Y)

Selects the third item of a non-empty list.

cadr : ((cons Z (cons Y (listof X))) -> Y)

Selects the second item of a non-empty list.

145

car : ((cons Y (listof X)) -> Y)

Selects the first item of a non-empty list.

((cons
(cons (cons W (listof Z)) (listof Y))
cdaar : (listof X))
>
(listof Z))

Selects the rest of the first list in the first list of a list.

((cons W (cons (cons Z (listof Y)) (listof X)))
cdadr : ->
(listof Y))

Selects the rest of the first list in the rest of a list.

((cons (cons Z (listof Y)) (listof X))
cdar : ->
(listof Y))

Selects the rest of a non-empty list in a list.

((cons (cons W (cons Z (listof Y))) (listof X))
cddar : ->
(listof Y))

Selects the rest of the rest of the first list of a list.

((cons W (cons Z (cons Y (listof X))))
cdddr : ->
(listof X))

Selects the rest of the rest of the rest of a list.

cddr : ((cons Z (cons Y (listof X))) -> (listof X))

Selects the rest of the rest of a list.

146

cdr : ((cons Y (listof X)) -> (listof X))

Selects the rest of a non-empty list.

cons : (X (listof X) -> (listof X))

Constructs a list.

cons? : (any -> boolean)

Determines whether some value is a constructed list.

eighth : ((listof Y) -> Y)

Selects the eighth item of a non-empty list.

empty? : (any -> boolean)

Determines whether some value is the empty list.

fifth : ((listof Y) -> Y)

Selects the fifth item of a non-empty list.

first : ((cons Y (listof X)) -> Y)

Selects the first item of a non-empty list.

fourth : ((listof Y) -> Y)

Selects the fourth item of a non-empty list.

length : ((listof any) -> number)

Evaluates the number of items on a list.

147

list : (any ... -> (listof any))

Constructs a list of its arguments.

list* : (any ... (listof any) -> (listof any))

Constructs a list by adding multiple items to a list.

list-ref : ((listof X) natural-number -> X)

Extracts the indexed item from the list.

list? : (any -> boolean)

Determines whether some value is a list.

make-list : (natural-number any -> (listof any))

Constructs a list of k (the first argument) copies of x (the second argument).

member : (any (listof any) -> boolean)

Determines whether some value is on the list (comparing values with equal?).

member? : (any (listof any) -> boolean)

Determines whether some value is on the list (comparing values with equal?).

memq : (any (listof any) -> (union false list))

Determines whether some value is on some list if so, it produces the suffix of the list that
starts with x if not, it produces false. (It compares values with the eq? predicate.)

memv : (any (listof any) -> (union false list))

Determines whether some value is on the list if so, it produces the suffix of the list that starts
with x if not, it produces false. (It compares values with the eqv? predicate.)

148

null : empty

The empty list.

null? : (any -> boolean)

Determines whether some value is the empty list.

remove : (any (listof any) -> (listof any))

Constructs a list like the given one with the first occurrence of the given item removed
(comparing values with equal?).

rest : ((cons Y (listof X)) -> (listof X))

Selects the rest of a non-empty list.

reverse : ((listof any) -> list)

Creates a reversed version of a list.

second : ((cons Z (cons Y (listof X))) -> Y)

Selects the second item of a non-empty list.

seventh : ((listof Y) -> Y)

Selects the seventh item of a non-empty list.

sixth : ((listof Y) -> Y)

Selects the sixth item of a non-empty list.

third : ((cons W (cons Z (cons Y (listof X)))) ->Y)

Selects the third item of a non-empty list.

149

5.5.5 Posns

make-posn : (number number -> posn)

Constructs a posn.

posn : signature

Signature for posns.

posn-x : (posn -> number)

Extracts the x component of a posn.

posn-y : (posn -> number)

Extracts the y component of a posn.

posn? : (anything -> boolean)

Determines if its input is a posn.

set-posn-x! : (posn number -> void)

Updates the x component of a posn.

set-posn-y! : (posn number -> void)

Updates the x component of a posn.

5.5.6 Characters

char->integer : (char -> integer)

Lookups the number that corresponds to the given character in the ASCII table (if any).

150

char-alphabetic? : (char -> boolean)

Determines whether a character represents an alphabetic character.

char-ci<=7 : (char char char ... -> boolean)

Determines whether a character precedes another (or is equal to it) in a case-insensitive
manner.

char-ci<? : (char char char ... -> boolean)

Determines whether a character precedes another in a case-insensitive manner.

char-ci=7 : (char char char ... -> boolean)

Determines whether two characters are equal in a case-insensitive manner.

char-ci>=?7 : (char char char ... -> boolean)

Determines whether a character succeeds another (or is equal to it) in a case-insensitive
manner.

char-ci>? : (char char char ... -> boolean)

Determines whether a character succeeds another in a case-insensitive manner.

char-downcase : (char -> char)

Determines the equivalent lower-case character.

char-lower-case? : (char -> boolean)

Determines whether a character is a lower-case character.

char-numeric? : (char -> boolean)

Determines whether a character represents a digit.

151

char-upcase : (char -> char)

Determines the equivalent upper-case character.

char-upper-case? : (char -> boolean)

Determines whether a character is an upper-case character.

char-whitespace? : (char -> boolean)

Determines whether a character represents space.

char<=7 : (char char char ... -> boolean)

Determines whether a character precedes another (or is equal to it).

char<? : (char char char ... -> boolean)

Determines whether a character precedes another.

char=? : (char char char ... -> boolean)

Determines whether two characters are equal.

char>=?7 : (char char char ... -> boolean)

Determines whether a character succeeds another (or is equal to it).

char>? : (char char char ... -> boolean)

Determines whether a character succeeds another.

char? : (any -> boolean)

Determines whether a value is a character.

152

5.5.7 Strings

explode : (string -> (listof string))

Translates a string into a list of 1-letter strings.

format : (string any ... -> string)

Formats a string, possibly embedding values.

implode : ((listof string) -> string)

Concatenates the list of 1-letter strings into one string.

int->string : (integer -> string)

Converts an integer in [0,55295] or [57344 1114111] to a 1-letter string.

list->string : ((listof char) -> string)

Converts a s list of characters into a string.

make-string : (nat char -> string)

Produces a string of given length from a single given character.

replicate : (nat string -> string)

Replicates the given string.

string : (char ... -> string)

Builds a string of the given characters.

string->int : (string -> integer)

Converts a 1-letter string to an integer in [0,55295] or [57344, 1114111].

153

string->list : (string -> (listof char))

Converts a string into a list of characters.

string->number : (string -> (union number false))

Converts a string into a number, produce false if impossible.

string->symbol : (string -> symbol)

Converts a string into a symbol.

string-alphabetic? : (string -> boolean)

Determines whether all ’letters’ in the string are alphabetic.

string-append : (string ... -> string)

Juxtaposes the characters of several strings.

string-ci<=7 : (string string string ... -> boolean)

Determines whether one string alphabetically precedes another (or is equal to it) in a case-
insensitive manner.

string-ci<? : (string string string ... -> boolean)

Determines whether one string alphabetically precedes another in a case-insensitive manner.

string-ci=?7 : (string string string ... -> boolean)

Compares two strings character-wise in a case-insensitive manner.

string-ci>=7 : (string string string ... -> boolean)

Determines whether one string alphabetically succeeds another (or is equal to it) in a case-
insensitive manner.

154

string-ci>7 : (string string string ... -> boolean)

Determines whether one string alphabetically succeeds another in a case-insensitive manner.

string-copy : (string -> string)

Copies a string.

string-ith : (string nat -> string)

Extracts the ith 1-letter substring from the given one.

string-length : (string -> nat)

Determines the length of a string.

string-lower-case? : (string -> boolean)

Determines whether all ’letters’ in the string are lower case.

string-numeric? : (string -> boolean)

Determines whether all ’letters’ in the string are numeric.

string-ref : (string nat -> char)

Extracts the i-the character from a string.

string-upper-case? : (string -> boolean)

Determines whether all ’letters’ in the string are upper case.

string-whitespace? : (string -> boolean)

Determines whether all ’letters’ in the string are white space.

155

string<=7 : (string string string ... -> boolean)

Determines whether one string alphabetically precedes another (or is equal to it).

string<? : (string string string ... -> boolean)

Determines whether one string alphabetically precedes another.

string=7 : (string string string ... -> boolean)

Compares two strings character-wise.

string>=7 : (string string string ... -> boolean)

Determines whether one string alphabetically succeeds another (or is equal to it).

string>? : (string string string ... -> boolean)

Determines whether one string alphabetically succeeds another.

string? : (any -> boolean)

Determines whether a value is a string.

substring : (string nat nat -> string)

Extracts the substring starting at a 0-based index up to the second 0-based index (exclusive).

5.5.8 Images

image=7 : (image image -> boolean)

Determines whether two images are equal.

image? : (any -> boolean)

Determines whether a value is an image.

156

5.59 Misc

=~ : (number number non-negative-real -> boolean)

Checks whether two numbers are within some amount (the third argument) of either other.

current-milliseconds : (-> exact-integer)

Returns the current “time” in fixnum milliseconds (possibly negative).

eof : eof

The end-of-file value.

eof-object? : (any -> boolean)

Determines whether some value is the end-of-file value.

eq? : (any any -> boolean)

Determines whether two values are equivalent from the computer’s perspective (intensional).

equal? : (any any -> boolean)

Determines whether two values are structurally equal where basic values are compared with
the eqv? predicate.

equal~7 : (any any non-negative-real -> boolean)

Compares like equal? on the first two arguments, except using =~ in the case of numbers.

eqv? : (any any -> boolean)

Determines whether two values are equivalent from the perspective of all functions that can
be applied to it (extensional).

error : (any ... -> void)

157

signals an error, combining the given values into an error message.

Et)

If any of the values’ printed representations is too long, it is truncated and “...” is put into
the string. If the first value is a symbol, it is treated specially; it is suffixed with a colon and
a space (the intention is that the symbol is the name of the function signalling the error).

exit : (-> void)
Exits the running program.
force : (delay -> any)
Finds the delayed value; see also delay.
gensym : (-> symbol?)
Generates a new symbol, different from all symbols in the program.
identity : (any -> any)
Returns the argument unchanged.
promise? : (any -> boolean)
Determines if a value is delayed.
sleep : (-> positive-number void)
Causes the program to sleep for the given number of seconds.
struct? : (any -> boolean)

Determines whether some value is a structure.

void : (-> void)

Produces a void value.

void? : (any -> boolean)

Determines if a value is void.

158

5.5.10 Numbers (relaxed conditions)

* : (number ... -> number)

Multiplys all given numbers.

+ : (number ... -> number)

Adds all given numbers.

- : (number ... -> number)

Subtracts from the first all remaining numbers.

/ : (number ... -> number)

Divides the first by all remaining numbers.

5.5.11 Higher-Order Functions

andmap : ((X -> boolean) (listof X) -> boolean)

(andmap p (list x-1 ... x-n)) = (and (p x-1) ... (p X-n))

(X-1 ... X-N > Y)
X-1

apply : X-i
(1ist X-i+1 ... X-N)
->
Y)

Applies a function using items from a list as the arguments.

argmax : ((X -> real) (listof X) -> X)

Finds the (first) element of the list that maximizes the output of the function.

159

argmin : ((X -> real) (listof X) -> X)
Finds the (first) element of the list that minimizes the output of the function.
build-list : (nat (nat -> X) -> (listof X))
(build-list n f) = (list (f0) ... (f (-n 1)))
build-string : (nat (nat -> char) -> string)
(build-string n f) = (string (f0) ... (f (-n 1)))
((Y-1 -> 2)

(Y-N -> Y-N-1)
compose :

X-1 ... X-N -> Y-N)
->
(X-1 ... X-N -> 7))

Composes a sequence of procedures into a single procedure.

filter : ((X -> boolean) (listof X) -> (listof X))

Constructs a list from all those items on a list for which the predicate holds.

foldl : ((X Y -> Y) Y (listof X) -> Y)

(foldl f base (list x-1 ... x-n)) = (f x-n ... (f x-1 base))

foldr : ((X Y -> Y) Y (listof X) -> Y)

(foldr f base (list x-1 ... x-n)) = (f x-1 ... (f x-n base))

for-each : ((any ... -> any) (listof any) ... -> void)

Applies a function to each item on one or more lists for effect only.

160

map : ((X ... -> Z) (listof X) ... -> (listof Z))

Constructs a new list by applying a function to each item on one or more existing lists.

((X -> any)
(listof X)
memf N

(union false (listof X)))

Produces true if the function given as the first argument produces a non-false value for any
item in the second argument.

ormap : ((X -> boolean) (listof X) -> boolean)

(ormap p (list x-1 ... x-n)) = (or (p x-1) ... (p x-n))

procedure? : (any -> boolean)

Produces true if the value is a procedure.

quicksort : ((listof X) (X X -> boolean) -> (listof X))

Constructs a list from all items on a list in an order according to a predicate.

sort : ((listof X) (X X -> boolean) -> (listof X))

Constructs a list from all items on a list in an order according to a predicate.

5.5.12 Reading and Printing

display : (any -> void)

Prints the argument to stdout (without quotes on symbols and strings, etc.).

newline : (-> void)

Prints a newline to stdout.

161

pretty-print : (any -> void)

Like write, but with standard newlines and indentation.

print : (any -> void)

Prints the argument as a value to stdout.

printf : (string any ... -> void)

Formats the rest of the arguments according to the first argument and print it to stdout.

read : (-> sexp)

Reads input from the user.

with-input-from-file : (string (-> any) -> any)

Opens the named input file and to extract all input from there.

with-input-from-string : (string (-> any) -> any)

Turns the given string into input for read* operations.

with-output-to-file : (string (-> any) -> any)

Opens the named output file and to put all output there.

with-output-to-string : (string (-> any) -> any)

Produces a string from all write/display/print operations.

write : (any -> void)

Prints the argument to stdout (in a traditional style that is somewhere between print and
display).

162

5.5.13 Vectors

build-vector : (nat (nat -> X) -> (vectorof X))

Constructs a vector.

make-vector : (number X -> (vectorof X))

Constructs a vector.

vector : (X ... -> (vector X ...))

Constructs a vector.

vector-length : ((vector X) -> nat)

Determines the length of a vector.

vector-ref : ((vector X) nat -> X)

Extracts an element from a vector.

vector-set! : ((vectorof X) nat X -> void)

Updates a vector.

vector? : (any -> boolean)

Determines if a value is a vector.

5.5.14 Boxes

box : (any -> box)

Constructs a box.

box? : (any -> boolean)

163

Determines if a value is a box.

set-box! : (box any -> void)

Updates a box.

unbox : (box -> any)

Extracts the boxed value.

5.5.15 Hash Tables

hash-copy : (hash -> hash)

Copies a hash table.

hash-count : (hash -> integer)

Determines the number of keys mapped by a hash table.

hash-eq? : (hash -> boolean)

Determines if a hash table uses eq? for comparisions.

hash-equal? : (hash -> boolean)

Determines if a hash table uses equal? for comparisions.

hash-eqv? : (hash -> boolean)

Determines if a hash table uses eqv? for comparisions.

hash-for-each : ((hash X Y) (X Y -> any) -> void)

Applies a function to each mapping of a hash table for effect only.

164

hash-has-key? : ((hash X Y) X -> boolean)

Determines if a key is associated with a value in a hash table.

hash-map : ((hash X Y) (X Y -> A) -> (listof A))

Constructs a new list by applying a function to each mapping of a hash table.

(case->

((hash X Y) X -> Y)

((thash X Y) X Y -> Y)
(thash X Y) X (->Y) ->Y))

hash-ref :

Extracts the value associated with a key from a hash table; the three argument case allows a
default value or default value computation.

(case->
hash-ref! : ((hash X Y) XY -> Y)
(thash X Y) X (->Y) ->Y))

Extracts the value associated with a key from a mutable hash table; if the key does not have
an mapping, the third argument is used as the value (or used to compute the value) and is
added to the hash table associated with the key.

hash-remove : ((hash X Y) X -> (hash X Y))

Constructs an immutable hash table with one less mapping than an existing immutable hash
table.

hash-remove! : ((hash X Y) X -> void)

Removes an mapping from a mutable hash table.

hash-set : ((hash X Y) X Y -> (hash X Y))

Constructs an immutable hash table with one new mapping from an existing immutable hash
table.

165

hash-set! : ((hash X Y) X Y -> void)

Updates a mutable hash table with a new mapping.

(case->

(thash X Y) X (Y -> Y) -> (hash X Y))

(thash X Y) X (Y =>Y) Y -> (hash X Y))
((hash X Y) X (Y -=>Y) (->Y) -> (hash X Y)))

hash-update :

Composes hash-ref and hash-set to update an existing mapping; the third argument is used
to compute the new mapping value; the fourth argument is used as the third argument to
hash-ref.

(case->

((hash X Y) X (Y -> Y) -> void)

((hash X Y) X (Y -=> Y) Y -> void)
((hash X Y) X (Y -=> Y) (-> Y) -> void))

hash-update! :

Composes hash-ref and hash-set! to update an existing mapping; the third argument is used
to compute the new mapping value; the fourth argument is used as the third argument to
hash-ref.

hash? : (any -> boolean)

Determines if a value is a hash table.

(case->
make-hash : (-> (hash X Y))
((1listof (list X Y)) -> (hash X Y)))

Constructs a mutable hash table from an optional list of mappings that uses equal? for
comparisions.

(case->
make-hasheq : (-> (hash X Y))
((listof (list X Y)) -> (hash X Y)))

Constructs a mutable hash table from an optional list of mappings that uses eq? for compar-
isions.

166

(case->
make-hasheqv : (-> (hash X Y))
((listof (1ist X Y)) -> (hash X Y)))

Constructs a mutable hash table from an optional list of mappings that uses eqv? for com-
parisions.

(case->
make-immutable-hash : (-> (hash X Y))
((listof (list X Y)) -> (hash X Y)))

Constructs an immutable hash table from an optional list of mappings that uses equal? for
comparisions.

(case->
make-immutable-hasheq : (-> (hash X Y))
((listof (1ist X Y)) -> (hash X Y)))

Constructs an immutable hash table from an optional list of mappings that uses eq? for
comparisions.

(case->
make-immutable-hasheqv : (-> (hash X Y))
((listof (1list X Y)) -> (hash X Y)))

Constructs an immutable hash table from an optional list of mappings that uses eqv? for
comparisions.

167

DRURSURIU NNNNN oo 8 8888 8 8
,,,,,,,,,,,,,,,,,,, 0@ @ o

~NN"N"NNV V V V V V 2 | | | | | | | | | | A A N2 N A N A N A N AP A PAN

Index

168

acos, [71]
acos,
acos,
add1,[137]
addi,[13]
add1,[103|
addi,
addi,[7]]
Advanced Student, [126]
and, [69]
and,[9]

and,
and, [134]
and, [39]
andmap, @
andmap, @
andmap, @
angle, @
angle, |7_T|
angle, ﬂ}l
angle, @
angle, @
append, @
append, IT_R5|
append, @
append, @
append, IE
apply.[[27]
apply.[[59
apply.[93]
argmax, [T59]
argmax, [124]
argmax, [93]
argmin, [T60]
argmin, [124]
argmin, 03]
asin,[137]
asin,
asin,[13
asin,
asin,[103|
assoc,[144]

assq, 49

assq,[T44]

assq, 20|

assq,[T10]

assq,[7§]

atan,[13

atan, 7]

atan,[103|

atan,[137]

atan,[72]

begin, [130]

begin0, [130]

Beginning Student, [6]

Beginning Student with List Abbreviations,
B4

boolean=7,[109

boolean=7,[143|

boolean=7, 48

boolean="7,[77]

boolean=7,[19

boolean?, d3]

boolean?,[143]

boolean?,[7§|

boolean?,[19

boolean?,[T09]

Booleans, [T43|

Booleans, 48]

Booleans, [T9]

Booleans, [T09]

Booleans, [77]

box, [163]

box?,[163

Boxes, [163]

build-list,[124]

build-1list,[T60]

build-1list,[93]

build-string,[160]

build-string,[124]

build—string,@

build-vector,[163

caaar, [20]

caaar,[T10]

169

caaar, [143]
caaar,
caaar,[79
caadr,
caadr, [143]
caadr,[79
caadr,[T10]
caadr,
caar,[79
caar,[50]
caar,[T10]
caar, [20)
caar,[143]
cadar,[79
cadar,
cadar, |50
cadar, |-115|
cadar, m

cadddr, [79]
cadddr, |3_U|

cadddr, [T10]

cadddr,m
cadddr,m
caddr,
caddr, m
caddr,
caddr, m
caddr, |7_g|
cadr,@l
cadr, [143]
cadr,[TT]]
cadr,[50]
cadr,[21]
car, [TT1]
car,[21]
car, |80
car,[50]
car,|146
case,[13]]
cdaar,[146|
cdaar,[2]]
cdaar,[T1]]

cdaar, |50
cdaar,
cdadr,[5]]
cdadr, [T1]]
cdadr,[2]]
cdadr,
cdadr,[146|
cdar,[51]
cdar,[TT]]
cdar,
cdar,
cdar,[146]
cddar,[2]]
cddar, |80
cddar, [T1]]
cddar,[5]]
cddar, [146]
cdddr,[T12]
cdddr, [146]

cdddr, 2]
cdddr,[5]]

cdddr, [80]

cddr,@

cddr, 80|

cddr,

cddr, ﬂlzl

cddr, |ﬂ_7|

cdr,@

cdr,

cdr, 1]

cdr, [147]

cdr,[112]
ceiling,[T3§]
ceiling,[I3]
ceiling,[T03]
ceiling,[72]
ceiling,[@7]
char->integer, [[15]
char->integer, [150]
char->integer, [84]
char->integer, 23|
char->integer, 53|

170

char-alphabet ic?,|3_3]
char-alphabetic?,[TT3]
char-alphabetic?,[23|
char-alphabetic?,[84]
char-alphabetic?,[T3]]
char-ci<=7,[153]]
char-ci<=7,[13]
char-ci<=7,[23)
char-ci<=7,[%4]
char-ci<=7,[33)
char-ci<?,[83]
char-ci<?,[26|
char-ci<?,[15]]
char-ci<?,[116]
char—ci<?,|3_3|
char-ci=?,[83
char-ci=?,[53
char—ci=?,
char—ci=?,|-ﬂ_3|
char—ci=?,|-1lT|
char—ci>=?,m
Char—ci>=?,|§|
char—ci>=?,m
char—ci>=?,|3_3|
char—ci>=?,|m
char—ci>'?,|ﬂ_3|
char—ci>'?,
char—ci>'?,
char—ci>?,|§_5|
char-ci>?,[13]]
char-downcase, [T16]
char-downcase, [83]
char-downcase, 56|
char-downcase, [I3]]
char-downcase, 26|
char-lower-case?,[56|
char-lower-case?, 26|
char-lower-case?,[15]]
char-lower-case?,[116]
char-lower-case?,[83
char-numeric?,[83]
char-numeric?,[T15]]

char—numeric'?,lﬂ_zl
char-numeric?,[26|
char-numeric?,[36|
char-upcase, [56]
char-upcase, [[57]
char-upcase, 26|
char-upcase, 83|
char-upcase,[T16|
char-upper-case?,[26]
char-upper-case?,[853]
char-upper-case?,[56]
char-upper-case?,[152]
char-upper-case?,[I16]
char-whitespace?,[I52]
char—whitespace?,m
char—whitespace?,|7_7|
char—whitespace?,|3_3|
char—whitespace?,@
char<=?,m
char<=?,
Char<=?,|z7|
char<=7,[86|
char<=?,|ﬁ
char<7?,[86

Char<?,|ﬁ
Char<?,m
char<?,|ﬂ|
char<?,ﬂl7|
char=?,|31|
char=7,[1572]
char=7,[117]
char=7,[36|

char="7,[27]
char>=7,[57]
char>=7,[27]
char>=7,[86]
char>=?,[117]
char>=7,[152]
char>7,[27]

char>7,[57]
char>?,[117]
char>7?,[152]

171

char>7,[80

char?, |T_7|

char?, |T_F7|

char?, @

char?, @

char?, |3_7|

Characters,
Characters, 53]
Characters, 23]
Characters, [T13]
Characters, [84]
check—error,lml
check—error,lm
check-error, 40
check—error,|7_U|
check—error,m
check—expect,@
check—expect,@
check—expect,@
check—expect,
check—expect,l@
check-member-of, @
check-member-of, @
check-member-of,
check-member-of,
check-member-of,
check—range,m
check—range,lm
check—range,@
check—range,
check—range,lm
check—within,m
check—within,m
check—within,m
check—within,@
check—within,@
Common Syntaxes, [132]
Common Syntaxes,
Common Syntaxes,
Common Syntaxes,
complex?,@
complex?,@

complex?,lm
complex?,[T3§]
complex?,[T3
compose, [T60]
compose, 03]
compose,[124]
cond, [P

cond, [68]

cond, [3§]

cond, [134]
cond, [T00]
conjugate, 43|
conjugate,[I03|
conjugate,
conjugate, @
conjugate, ﬂ}l
cons, 22|

cons, [147]
cons, [[12]
cons, 7]

cons, 5]
Cons?,m
cons?,@
cons?,lS_Tl
Cons?,lm
Cons?,lg;fl
cos,[103]

cos, 43
cos,[13]
cos,[72

cos, [13§]
cosh,[77]

cosh, i3]
cosh,[T3]

cosh, [T04]
cosh, [13§]

current-milliseconds,[157]

current-seconds,[104]
current-seconds,[13§]
current-seconds, 43|
current-seconds,|[14]
current-seconds,[72]

172

def ine,lg_gl
define,[§
define,[133
define,[67]
define,[37]
define-datatype,[I30]
define-struct,[133
define-struct,[99|
define-struct,
define-struct,
define-struct,[38
delay, [I31]
denominator,[13§]
denominator, [104]
denominator, 43|
denominator,[T4]
denominator,[72]
display,@

e,[14

e,[104

e,

e,[138]

e.[73]

eighth, [T47]
eighth,[52]
eighth,27]

eighth, [§T]

eighth, [T12]
else,

else,[39

else,[134]
else,|100

else,[69|

empty, [64]

empty,[7]

empty, [12§]

empty, 06]

empty, [35]
empty?,[112]
empty?,[52]
empty?,[22]

empty?, [81]

empty?,m
eof,[157]

eof, [61]

eof,P1]

eof,[37

eof,[122]
eof-object?,[0]]
eof-object?,[6]]
eof-object?,[32]
eof-object?,[122]
eof-object?,[157]
eq?,[32)

eq?,91]

eq?,[122]
eq?,@

eq?,lB_TI
equal?,@
equal?,@
equal?,l@
equal?,@
equal?,lZfl
equal~?, |3_7|
equal~?, |3_7|
equal~?, @
equal~"?, m
equal~"?, @
eqv?,|62)

eqv?, @

eqv?,
equ?,[157]
equ?,[122]
error,[157]
error,[122]
error,[0]]
error,[32]
error,[62]
even?,[d3|
even?,[138|
even?,[14]
even?,[104]
even?,[73|

exact->inexact,[139

173

exact->inexact, I]T_W
exact->inexact,[[4]
exact->inexact, {3
exact->inexact,[73|

exact?,[43
exact?,[73
exact?,[T4]
exact?,[139
exact?,[104]
exit,[62]
exit,[122]
exit,[]]
exit,[158
exit,[32]
exp,[14]

exp, [104]
exp, [#4]
exp,[139]
exp,[73]
explode,@
explode,@
explode,m
explode,lgjl
explode,@
expt,@
expt,@
expt,@
expt,@
expt,@
false,[63)]
false,[36]
false,[129]
false,[]]
false,[07]
false?,[19
false?,[109
false?,[7§|
false?,48
false?,[144]
fifth,[112]
fifth,[52]
fifth,[8]]

fifth,[147]
fifth,[22]
filter,[T60]
filter,[124]
filter,[03
first,[22]
first,[147]
first,[8]]
first,[52]
first,[12]
floor,[139
floor,[14]
floor,[73|
floor,[d4]
floor,[T03]
foldl,[T60]
foldl,[P4
foldl,[123
foldr,[123
foldr,[94]
foldr,[T60]
for-each, [T60]
for-each, 94
for-each,[123
force,[158]
format,[153]
format, [117]

format,[57]
format, [86]
format, 27|
fourth,22]

fourth, [147]

fourth,[52]

fourth,[T13|
fourth, [§T]
ged, [13]

gcd, [139]
gcd, 34

gcd, [103]
ged, [73]
gensym, [[58]

Hash Tables, [164]

174

hash-copy, I@
hash-count, [164]
hash-eq?,[164]
hash-equal?,[T64]
hash-eqv?,[164]
hash-for-each,[164]
hash-has-key?,[163
hash-map, [I63]
hash-ref,[163)

hash-ref!,[163
hash-remove,[163]

hash-remove!,[T163]
hash-set,[163]
hash-set!,[166]
hash—update,@
hash-update!,|166

hash?,[T66]

Higher-Order Functions, [159]
Higher-Order Functions, [123]
Higher-Order Functions,

How to Design Programs Languages, |I|

ident ity,@
ident ity,l@
ident ity,@
ident ity,@
ident ity,@
if,[9

if,[39]

if,[134]

if,[T00]

if,[69]
imag-part,[T39]
imag-part,[73|
imag-part, @4
imag-part,[[3]
imag-part, [T03]
image="7,[12]]
image="7,[31]
image="7,[6]]
image="7,[156|
image="7,[90]

image?,[121]

image?,@
image?,[00]
image?,[6]]
image?,31]

Images, [T156]

Images, [61]

Images, [31]

Images, [T21]

Images, [90]
implode,[153)|
implode,[TT§|
implode,[57]
implode, 28]
implode,[87]
inexact->exact, /4]
inexact->exact, {44
inexact->exact,[1J|
inexact->exact, m
inexact->exact, m
inexact?,m
inexact?,lm
inexact?,lLSI
inexact?,@
inexact?, 44
int->string, ISjl
int->string, Ig_7|
int->string, @
int->string, m
int->string, m
integer->char,[103]
integer->char,[#4]
integer->char,[74]
integer->char,
integer->char,[IJ
integer-sqrt,[[3]
integer-sqrt, [I03]
integer-sqrt, [[40]
integer-sqrt,[74]
integer-sqrt, 44|
integer?,[[3]
integer?,[74]

integer?,[103]

175

integer'?,
integer?, 43|

Intermediate Student,
Intermediate Student with Lambda, [93]

lambda,[129]

lambda, [68]
lambda,[§]
lambda, 38|
lambda,[07]

lcm, [T40]

lcm, [T03]

lcm, [74

lcm,[T3]

lcm, [43]
length,@
length,[52]
length, [147]
length, [8T]
length, [I13]
let,@

let,@

let,m

let,[66]

let*, 08
let*,m
letrec,@
letrec,IG_El
letrec,@
list,[23
list,[T13]
list,[T49
list,[87

list,p2
list*,[82
list*,[57]
list*,[23|
listx*,[T43)
list*,[T13]
list->string,[[1§]
list->string,[I53]
list->string,[57]
list->string, 2§

list->string, |§_7|
list-ref,[23
list-ref,f2
list-ref,[143
list-ref,[T13
list-ref,[87
list?,[T48)

Lists, [T44]

Lists, 9]

Lists, [T9]

Lists, [T10]

Lists, [78]

local,[98|
local,[132]
local,[63]

log,[74]

log,[13]

log,[106]

log,[T40]

log,[3|
magnitude, @l
magnitude, @
magnitude, @
magnitude, @
magnitude, @
make-hash, @
make—hasheq,l@
make—hasheqv,@
make-immutable-hash, @
make-immutable-hasheq,[T67]
make-immutable-hasheqv, [167]
make-1list,[T4g]
make-1list,[T13]
make-1ist,[53
make-1list,[23
make-1ist,[§7]
make-polar, [I06]

make-polar, [I40]
make-polar, [16]

make-polar, @3]
make-polar, [74]

make-posn, [[15]

176

make—posn,|7_5|
make-posn, [150]
make-posn, [§4]

make-posn, [54]
make-rectangular, {3

make-rectangular, [T06]
make-rectangular,[T6|
make-rectangular, [T40]
make-rectangular,[73]
make-string, [[18]
make-string, [5§|
make-string, [87]
make-string, 2§
make-string, [[53]
make-vector, [163]
map, [94]

map, [123]

map, [16]]

match, m

max, 3]

max, [106

max, [T6]

max, [73]

max, |140

member,@

member,@

member,ls_gl

member, ﬂlgl
member, m
member?,[82]
member?,[T13|
member?,[23)
member?,[33)|

member?, 14§
memf, 123
memf,
memf, [T6]]
memq, [14§]
memq,
memg, [53]
memgq, 23]
memgq, [TT3]

memv, [82]
memv, [[14]
memv, 53]
memv, [T4§]
memv, 23]
min, [T47]
min, {3

min, [T06]
min, [73]
min,[16
Misc, [157]
Misc, [61]
Misc,[3]]
Misc, [I21]
Misc,
modulo, |7_3|
modulo, m
modulo, ﬂlﬂ

modulo,@
modulo,lEl
negative?, @l
negative?, |7_'5|
negative?, IE'
negative?, @
negative?, @
newline,l@
not,@
not,l@l
not,l@

not, 48]
not,[T9|
null,[114]
null, 24
null,[87]
null,p3|
null,[T49]
null?,[53
null?,24]
null?,[114]
null?,[83
null?,[149

number->string, 46|

177

nu.mber—>s1:ring,|]§|

number->string, [106]

number->string, [[4]]

number->string,[73|

number?, [T4]]

number?,[T6|

number?,[73]

number?,[T07]

number?, 46|

Numbers (relaxed conditions), @

Numbers (relaxed conditions), [123]

Numbers (relaxed conditions),

Numbers: Integers, Rationals, Reals, Com-
plex, Exacts, Inexacts,m

Numbers: Integers, Rationals, Reals, Com-
plex, Exacts, Inexacts,@

Numbers: Integers, Rationals, Reals, Com-
plex, Exacts, Inexacts, [TT]

Numbers: Integers, Rationals, Reals, Com-
plex, Exacts, Inexacts, [I02]

Numbers: Integers, Rationals, Reals, Com-
plex, Exacts, Inexacts,@

numerator, @l

numerator, El

numerator, ﬂlﬂ

numerator, m

numerator, E]

0dd?,[17]

odd?, 46

odd?, [4]]

0dd?,[107]

0dd?,[73]

or,[69]

or,[39

or,[10]

or, [T00]

or,[133]

ormap,[94]

ormap, [T6T]

ormap, [123]

pi. [

pi.[17]

pi,[107]

pi,[76]

pi.[14]]
positive?,[T4]]
positive?,[I07]
positive?, [
positive?,[76]
positive?,[I7]
posn, [T13]
posn, 23]

posn, [150]
posn, [84]
posn, 54|
posn-x, 23]
posn-x,[150]
posn-x,[113]
posn-x,[54|
posn-x,[84]
posn-y,[23]
posn-y,[T13]
posn-y,[53|
posn-y,[150]
posn-y,[84]
posn?,@
posn?,m
posn?,@
posn?,@
posn?,IS_SI
Posns, [T50]
Posns, [74]
Posns, 23]
Posns, [TT3]
Posns, [§4]

Pre-Defined Functions, [136]
Pre-defined Functions, [T]
Pre-defined Functions, [T]]
Pre-defined Functions, [7]]
Pre-defined Functions,[T02]
Pre-Defined Variables, [T28]
Pre-Defined Variables, [7]
Pre-Defined Variables, [33]
Pre-Defined Variables, [64]

178

Pre-Defined Variables, [96]
pretty-print,[T62]
print,[T62]
printf,[T67]
procedure?,[123|
procedure?, [I6]]
procedure?, 94
promise?, [I5§]
quasiquote,[67]
quasiquote,
quicksort,[I6]]
quicksort, 94
quicksort,[123]
quote, [66]

quote, El

quote, @

quot ient,
quot ient,@l
quot ient,lﬂl
quot ient,@
quot ient,@
random,lm
ra.ndom,@

ra.ndom,|7_3|
ra.ndom,@
ra.ndom,lﬂl

rat ional?,@
rat ional'?,
rat ional'?,lﬂl
rational?,[{7]
rational?,[107]
read,[162]
Reading and Printing, [T6]]
real-part, [76]
real-part, [7]
real-part, 7]
real-part,[[07]
real-part,[[42]
real?,[10§]
real?,[142]
real?,[17]
real?,[76]

real?,@
recur, [13]]

remainder, [76]
remainder, 7]
remainder, [T§|
remainder, [10§]
remainder, [147]
remove, 53]
remove, [T14
remove, 24
remove, [83]
remove, [149]
replicate, 2§
replicate,[87]
replicate, |3_§|
replicate, @
replicate, @
require,@
require,
require,l-ﬂ_ﬂ'l
require,ﬂ;fl
require,|7_U|
rest,lﬂ_Z]

rest, @

rest, ﬂl@l

rest, @

rest, 24
reverse,[34]
reverse,[83]
reverse,[114]
reverse,[24]
reverse,[149|
round, [T§]
round, [47]
round, [10§]
round, [76]
round, [1472]
second, [114]
second,[54]
second,[24]
second,[83]
second, [149]

179

set!,
set-box!,[164]
set-posn-x!,[I50]
set-posn-y!,[I50]
seventh, [149]
seventh, 24
seventh,[T14]
seventh,[54]
seventh, 83
sgn, [142]
sgn, 1§

sgn, [T7]

sgn, [10§]
sgn, |{7]
shared,m
sin,lEI
sin,@
sin,[77]
sin,lm
sin,
sinh,m
sinh,m
sinh,lm
sinh,@
sinh,[77]
sixth, @
sixth, @
sixth, ﬂﬂl
sixth, @
sixth,[24]
sleep,[I58]
sort, P4
sort,[123]
sort,[T6]]
sqr, [T0§]

sqr, [143]
sqr, 7]

sqr, [77]

sqr, [I8]
sqrt,[77]
sqrt, [143]
sqrt, @8]

sqrt, @

sqrt, [T08]

string, [IT§]

string, 2§

string, [5§|

string,[153|

string,[87]
string->int,[I5]
string->int,[87]
string->int, [I1§]
string->int,[5§|
string->int, 2§
string->list,[[1§]
string->list,[87]
string->list, @
string->list, @
string->list, |3_§|
string->number, |3_§|
string->number, |§_7|
string->number, @
string->number, @
string->number, |7_8'|
string->symbol, |3_8'|
string->symbol, @
string->symbol, @
string->symbol, @
string->symbol, @
string-alphabetic?,
string-alphabetic?,
string-alphabetic?,[154]
string-alphabetic?, (88
string-alphabetic?,[IT9
string-append, [8]
string-append, [5§|
string-append, 29|
string-append, [IT9]
string-append, [[534]
string-ci<=7,[8§|
string-ci<=7,[29
string-ci<=7,[I19
string-ci<=7,[154]
string-ci<=7,[59

180

string—ci<?,|8;8'|
string-ci<?,[29
string-ci<?,[I54]
string-ci<?,[IT9
string-ci<?,[59
string-ci=?,[29
string-ci=7,[T19
string-ci=7,[154]
string-ci=?,[8§|
string-ci=?,[59
string-ci>=?,[59
string-ci>=?,[29
string-ci>=7,[8§|
string-ci>=7,[154]
string—ci>=?,|@|
string—ci>?,@
string—ci>?,|3_§|
string—ci>?,@
string—ci>?,@
string—ci>?,@
string—copy,lg_'gl
string—copy,lf_gl
string—copy,@
string—copy,m
string—copy,@
string—ith,@
string—ith,@
string—ith,@
string—ith,@
string-ith,[30]
string-length, [I53
string-length, [30]
string-length,[59
string-length,[§9
string-length, [120]
string-lower-case?,[I20]
string-lower-case?,[30]
string-lower-case?,[89
string-lower-case?,[59
string-lower-case?,[I55
string-numeric?,[89
string-numeric?,[120]

string—numeric?,
string-numeric?,[30]
string-numeric?,[T33]
string-ref,[89]
string-ref,[T33]
string-ref,[60]
string-ref,[T120]
string-ref,[30]
string-upper-case?,[I20]
string-upper-case?, [60]
string-upper-case?,[89
string-upper-case?,[I53
string-upper-case?,[30]
string-whitespace?, [60]
string—whitespace?,
string—whitespace?,@
string—whitespace?,
string—whitespace?,l@l
string<=7?, @
string<=7?, @
string<=7?,
string<=7?,
string<=7?, @
string<?,|30)
string<?,@
string<?,
string<?,
string<?,@
string=7,|60)
string="7,190
string=7,[156]
string=7,[12]]
string=7,[3]]

string>=7,
string>=7,[156]
string>=7,[3]]
string>=7,[12]]
string>=7,
string>7,[12]]
string>7,[156]
string>?,[60]
string>?,[3]]

181

string>?, Symbols,@l

string?,[90 Symbols, [T9]

string?,[12]] Symbols, [T09]

string?, % Symbolslg,lm

string?, Syntax,

string?,[3]] Syntax for Advanced, [T29]

Strings, [T53] Syntax for Intermediate, [63)]

Strings, [57] Syntax for Intermediate with Lambda, [97]
Strings, [27] Syntaxes for Beginning Student with List
Strings, Abbreviations, 36]

Strings, [86] tan, [T§]

struct?,[02] tan, [T09]

struct?,[62] tan,[77]

struct?,[123 tan, 4§

struct?,[13§ tan, [143]

struct?,[33 Template Variables, [129]

sub1,[10g| Template Variables, [7]

sub1,[77] Template Variables, [36]

subl,@
subl,m
subl, 43
substring,@

Template Variables, [63]
Template Variables, [97]
third,[T49]

third,[54]

substring,[156] third,[T14]
substring, [12]] third,[24]
substring, [6]] third,[83
substring, 90| time,[133]
symbol->string,[7§] time, [66]
symbol->string, {9 time, 09
symbol->string, [T09 true, [12§
symbol->string, [T44] true, 33
symbol->string,[T9 true,[07]
symbol=7,[T§] true,[6)]
symbol=7,[T09] true,[]]
symbo1=7,[T9 unbox, [164]
symbo1=7,[T44] unless,[132]
symbol=7,[49 unquote, [37]

symbo17,[T44]
symbo17,[109]
symbo17,[19
symbol7,[49]
symbo17,[7§]
Symbols, [T44]

unquote, [67]
unquote-splicing,
unquote-splicing, |€_7|
vector,m
vector—length,@
vector—ref,@

182

vector-set!,[163]

vector?,[163)|

Vectors, [163]

void, 139

void?,[13§|

when, [132]
with-input-from-file,[I627]
with-input-from-string, [67]
with-output-to-file,[I62]
with-output-to-string, [[62]
write,[162]

zero?,[T]]

zero?,[109]

zero?,[1§|

zero?,[143]

zero?, 48

\.08

A, 130

183

	1 Beginning Student
	1.1 Pre-Defined Variables
	1.2 Template Variables
	1.3 Syntax
	1.4 Pre-defined Functions
	1.4.1 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts
	1.4.2 Booleans
	1.4.3 Symbols
	1.4.4 Lists
	1.4.5 Posns
	1.4.6 Characters
	1.4.7 Strings
	1.4.8 Images
	1.4.9 Misc

	2 Beginning Student with List Abbreviations
	2.1 Pre-Defined Variables
	2.2 Template Variables
	2.3 Syntaxes for Beginning Student with List Abbreviations
	2.4 Common Syntaxes
	2.5 Pre-defined Functions
	2.5.1 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts
	2.5.2 Booleans
	2.5.3 Symbols
	2.5.4 Lists
	2.5.5 Posns
	2.5.6 Characters
	2.5.7 Strings
	2.5.8 Images
	2.5.9 Misc

	3 Intermediate Student
	3.1 Pre-Defined Variables
	3.2 Template Variables
	3.3 Syntax for Intermediate
	3.4 Common Syntaxes
	3.5 Pre-defined Functions
	3.5.1 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts
	3.5.2 Booleans
	3.5.3 Symbols
	3.5.4 Lists
	3.5.5 Posns
	3.5.6 Characters
	3.5.7 Strings
	3.5.8 Images
	3.5.9 Misc
	3.5.10 Numbers (relaxed conditions)
	3.5.11 Higher-Order Functions

	4 Intermediate Student with Lambda
	4.1 Pre-Defined Variables
	4.2 Template Variables
	4.3 Syntax for Intermediate with Lambda
	4.4 Common Syntaxes
	4.5 Pre-defined Functions
	4.5.1 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts
	4.5.2 Booleans
	4.5.3 Symbols
	4.5.4 Lists
	4.5.5 Posns
	4.5.6 Characters
	4.5.7 Strings
	4.5.8 Images
	4.5.9 Misc
	4.5.10 Numbers (relaxed conditions)
	4.5.11 Higher-Order Functions

	5 Advanced Student
	5.1 Pre-Defined Variables
	5.2 Template Variables
	5.3 Syntax for Advanced
	5.4 Common Syntaxes
	5.5 Pre-Defined Functions
	5.5.1 Numbers: Integers, Rationals, Reals, Complex, Exacts, Inexacts
	5.5.2 Booleans
	5.5.3 Symbols
	5.5.4 Lists
	5.5.5 Posns
	5.5.6 Characters
	5.5.7 Strings
	5.5.8 Images
	5.5.9 Misc
	5.5.10 Numbers (relaxed conditions)
	5.5.11 Higher-Order Functions
	5.5.12 Reading and Printing
	5.5.13 Vectors
	5.5.14 Boxes
	5.5.15 Hash Tables

	Index

