
The Typed Racket Guide
Version 5.3.3

Sam Tobin-Hochstadt <samth@racket-lang.org>
and Vincent St-Amour <stamourv@racket-lang.org>

February 13, 2013

Typed Racket is a family of languages, each of which enforce that programs written in the
language obey a type system that ensures the absence of many common errors. This guide is
intended for programmers familiar with Racket. For an introduction to Racket, see the The
Racket Guide.

1

mailto:samth@racket-lang.org
mailto:stamourv@racket-lang.org


1 Quick Start

Given a module written in the racket language, using Typed Racket requires the following
steps:

1. Change the language to typed/racket.

2. Change the uses of (require mod) to (require typed/mod).

3. Annotate structure definitions and top-level definitions with their types.

Then, when the program is run, it will automatically be typechecked before any execution,
and any type errors will be reported. If there are any type errors, the program will not run.

Here is an example program, written in the racket language:

#lang racket

(struct pt (x y))

; distance : pt pt -> real

(define (distance p1 p2)

(sqrt (+ (sqr (- (pt-x p2) (pt-x p1)))

(sqr (- (pt-y p2) (pt-y p1))))))

Here is the same program, in typed/racket:

#lang typed/racket

(struct: pt ([x : Real] [y : Real]))

(: distance (pt pt -> Real))

(define (distance p1 p2)

(sqrt (+ (sqr (- (pt-x p2) (pt-x p1)))

(sqr (- (pt-y p2) (pt-y p1))))))

1.1 Using Typed Racket from the Racket REPL

It is possible to use Typed Racket from the Racket REPL. To do so, start Racket with the
following command line:

racket -I typed/racket

2



2 Beginning Typed Racket

Recall the typed module from §1 “Quick Start”:

#lang typed/racket

(struct: pt ([x : Real] [y : Real]))

(: distance (pt pt -> Real))

(define (distance p1 p2)

(sqrt (+ (sqr (- (pt-x p2) (pt-x p1)))

(sqr (- (pt-y p2) (pt-y p1))))))

Let us consider each element of this program in turn.

#lang typed/racket

This specifies that the module is written in the typed/racket language, which is a typed
version of the racket language. Typed versions of other languages are provided as well; for
example, the typed/racket/base language corresponds to racket/base.

(struct: pt ([x : Real] [y : Real]))
Many forms in
Typed Racket have
the same name as
the untyped forms,
with a : suffix.

This defines a new structure, name pt, with two fields, x and y. Both fields are speci-
fied to have the type Real, which corresponds to the real numbers. The struct: form
corresponds to the struct form from racket—when porting a program from racket to
typed/racket, uses of struct should be changed to struct:.

(: distance (pt pt -> Real))

This declares that distance has the type (pt pt -> Real).

The type (pt pt -> Real) is a function type, that is, the type of a procedure. The input
type, or domain, is two arguments of type pt, which refers to an instance of the pt structure.
The -> both indicates that this is a function type and separates the domain from the range,
or output type, in this case Real.

(define (distance p1 p2)

(sqrt (+ (sqr (- (pt-x p2) (pt-x p1)))

(sqr (- (pt-y p2) (pt-y p1))))))

This definition is unchanged from the untyped version of the code. The goal of Typed Racket
is to allow almost all definitions to be typechecked without change. The typechecker verifies
that the body of the function has the type Real, under the assumption that p1 and p2 have
type pt, taking these types from the earlier type declaration. Since the body does have this
type, the program is accepted.

3



2.1 Datatypes and Unions

Many data structures involve multiple variants. In Typed Racket, we represent these using
union types, written (U t1 t2 ...).

#lang typed/racket

(define-type Tree (U leaf node))

(struct: leaf ([val : Number]))

(struct: node ([left : Tree] [right : Tree]))

(: tree-height (Tree -> Integer))

(define (tree-height t)

(cond [(leaf? t) 1]

[else (max (+ 1 (tree-height (node-left t)))

(+ 1 (tree-height (node-right t))))]))

(: tree-sum (Tree -> Number))

(define (tree-sum t)

(cond [(leaf? t) (leaf-val t)]

[else (+ (tree-sum (node-left t))

(tree-sum (node-right t)))]))

In this module, we have defined two new datatypes: leaf and node. We’ve also defined
the type name Tree to be (U node leaf), which represents a binary tree of numbers. In
essence, we are saying that the tree-height function accepts a Tree, which is either a
node or a leaf, and produces a number.

In order to calculate interesting facts about trees, we have to take them apart and get at their
contents. But since accessors such as node-left require a node as input, not a Tree, we
have to determine which kind of input we were passed.

For this purpose, we use the predicates that come with each defined structure. For example,
the leaf? predicate distinguishes leafs from all other Typed Racket values. Therefore, in
the first branch of the cond clause in tree-sum, we know that t is a leaf, and therefore we
can get its value with the leaf-val function.

In the else clauses of both functions, we know that t is not a leaf, and since the type of t
was Tree by process of elimination we can determine that t must be a node. Therefore, we
can use accessors such as node-left and node-right with t as input.

2.2 Type Errors

When Typed Racket detects a type error in the module, it raises an error before running the
program.

4



Example:

> (add1 "not a number")

eval:2:0: Type Checker: Expected Number, but got String
in: (quote "not a number")

5



3 Specifying Types

The previous section introduced the basics of the Typed Racket type system. In this section,
we will see several new features of the language, allowing types to be specified and used.

3.1 Type Annotation and Binding Forms

In general, variables in Typed Racket must be annotated with their type.

3.1.1 Annotating Definitions

We have already seen the : type annotation form. This is useful for definitions, at both the
top level of a module

(: x Number)

(define x 7)

and in an internal definition

(let ()

(: x Number)

(define x 7)

(add1 x))

In addition to the : form, almost all binding forms from racket have counterparts which
allow the specification of types. The define: form allows the definition of variables in both
top-level and internal contexts.

(define: x : Number 7)

(define: (id [z : Number]) : Number z)

Here, x has the type Number, and id has the type (Number -> Number). In the body of
id, z has the type Number.

3.1.2 Annotating Local Binding

(let: ([x : Number 7])

(add1 x))

6



The let: form is exactly like let, but type annotations are provided for each variable bound.
Here, x is given the type Number. The let*: and letrec: are similar. Annotations are
optional with let: and variants.

(let-values: ([([x : Number] [y : String]) (values 7 "hello")])

(+ x (string-length y)))

The let*-values: and letrec-values: forms are similar.

3.1.3 Annotating Functions

Function expressions also bind variables, which can be annotated with types. This function
expects two arguments, a Number and a String:

(lambda: ([x : Number] [y : String]) (+ x 5))

This function accepts at least one String, followed by arbitrarily many Numbers. In the
body, y is a list of Numbers.

(lambda: ([x : String] . [y : Number *]) (apply + y))

This function has the type (String Number * -> Number). Functions defined by cases
may also be annotated:

(case-lambda: [() 0]

[([x : Number]) x])

This function has the type (case-lambda (-> Number) (Number -> Number)).

3.1.4 Annotating Single Variables

When a single variable binding needs annotation, the annotation can be applied to a single
variable using a reader extension:

(let ([#{x : Number} 7]) (add1 x))

This is equivalent to the earlier use of let:. This is especially useful for binding forms
which do not have counterparts provided by Typed Racket, such as let+:

(let+ ([val #{x : Number} (+ 6 1)])

(* x x))

7



3.1.5 Annotating Expressions

It is also possible to provide an expected type for a particular expression.

(ann (+ 7 1) Number)

This ensures that the expression, here (+ 7 1), has the desired type, here Number. Other-
wise, the type checker signals an error. For example:

> (ann "not a number" Number)

eval:2:0: Type Checker: Expected Number, but got String
in: (quote "not a number")

3.2 Type Inference

In many cases, type annotations can be avoided where Typed Racket can infer them. For
example, the types of all local bindings using let and let* can be inferred.

(let ([x 7]) (add1 x))

In this example, x has the type Exact-Positive-Integer.

Similarly, top-level constant definitions do not require annotation:

(define y "foo")

In this examples, y has the type String.

Finally, the parameter types for loops are inferred from their initial values.

(let loop ([x 0] [y (list 1 2 3)])

(if (null? y) x (loop (+ x (car y)) (cdr y))))

Here x has the inferred type Integer, and y has the inferred type (Listof Integer). The
loop variable has type (Integer (Listof Integer) -> Integer).

3.3 New Type Names

Any type can be given a name with define-type.

(define-type NN (Number -> Number))

Anywhere the name NN is used, it is expanded to (Number -> Number). Type names may
not be recursive.

8



4 Types in Typed Racket

Typed Racket provides a rich variety of types to describe data. This section introduces them.

4.1 Basic Types

The most basic types in Typed Racket are those for primitive data, such as True and False

for booleans, String for strings, and Char for characters.

> '"hello, world"

- : String

"hello, world"

> #\f

- : Char

#\f

> #t

- : Boolean [generalized from True]

#t

> #f

- : False

#f

Each symbol is given a unique type containing only that symbol. The Symbol type includes
all symbols.

> 'foo

- : Symbol [generalized from 'foo]

'foo

> 'bar

- : Symbol [generalized from 'bar]

'bar

Typed Racket also provides a rich hierarchy for describing particular kinds of numbers.

> 0

- : Integer [generalized from Zero]

0

> -7

- : Integer [generalized from Negative-Fixnum]

-7

> 14

- : Integer [generalized from Positive-Byte]

14

9



> 3.2

- : Flonum [generalized from Positive-Flonum]

3.2

> 7.0+2.8i

- : Float-Complex

7.0+2.8i

Finally, any value is itself a type:

> (ann 23 : 23)

- : Integer [generalized from 23]

23

4.2 Function Types

We have already seen some examples of function types. Function types are constructed
using ->, with the argument types before the arrow and the result type after. Here are some
example function types:

(Number -> Number)

(String String -> Boolean)

(Char -> (values String Natural))

The first type requires a Number as input, and produces a Number. The second requires two
arguments. The third takes one argument, and produces multiple values, of types String
and Natural. Here are example functions for each of these types.

> (lambda: ([x : Number]) x)

- : (Number -> Number : ((! False @ 0) | (False @ 0)) (0))

#<procedure>

> (lambda: ([a : String] [b : String]) (equal? a b))

- : (String String -> Boolean)

#<procedure>

> (lambda: ([c : Char]) (values (string c) (char->integer c)))

- : (Char -> (values String Index))

#<procedure>

4.3 Union Types

Sometimes a value can be one of several types. To specify this, we can use a union type,
written with the type constructor U.

10



> (let ([a-number 37])

(if (even? a-number)

'yes

'no))

- : Symbol [generalized from (U 'yes 'no)]

'no

Any number of types can be combined together in a union, and nested unions are flattened.

(U Number String Boolean Char)

4.4 Recursive Types

Recursive types can refer to themselves. This allows a type to describe an infinite family of
data. For example, this is the type of binary trees of numbers.

(define-type BinaryTree (Rec BT (U Number (Pair BT BT))))

The Rec type constructor specifies that the type BT refers to the whole binary tree type within
the body of the Rec form.

4.5 Structure Types

Using struct: introduces new types, distinct from any previous type.

(struct: point ([x : Real] [y : Real]))

Instances of this structure, such as (point 7 12), have type point.

4.6 Subtyping

In Typed Racket, all types are placed in a hierarchy, based on what values are included in
the type. When an element of a larger type is expected, an element of a smaller type may be
provided. The smaller type is called a subtype of the larger type. The larger type is called a
supertype. For example, Integer is a subtype of Real, since every integer is a real number.
Therefore, the following code is acceptable to the type checker:

(: f (Real -> Real))

(define (f x) (* x 0.75))

11



(: x Integer)

(define x -125)

(f x)

All types are subtypes of the Any type.

The elements of a union type are individually subtypes of the whole union, so String is
a subtype of (U String Number). One function type is a subtype of another if they have
the same number of arguments, the subtype’s arguments are more permissive (is a super-
type), and the subtype’s result type is less permissive (is a subtype). For example, (Any ->

String) is a subtype of (Number -> (U String #f)).

4.7 Polymorphism

Typed Racket offers abstraction over types as well as values. This allows the definition of
functions that use parametric polymorphism.

4.7.1 Polymorphic Data Structures

Virtually every Racket program uses lists and other collections. Fortunately, Typed Racket
can handle these as well. A simple list processing program can be written like this:

#lang typed/racket

(: sum-list ((Listof Number) -> Number))

(define (sum-list l)

(cond [(null? l) 0]

[else (+ (car l) (sum-list (cdr l)))]))

This looks similar to our earlier programs — except for the type of l, which looks like a
function application. In fact, it’s a use of the type constructor Listof, which takes another
type as its input, here Number. We can use Listof to construct the type of any kind of list
we might want.

We can define our own type constructors as well. For example, here is an analog of the
Maybe type constructor from Haskell:

#lang typed/racket

(struct: None ())

(struct: (a) Some ([v : a]))

(define-type (Opt a) (U None (Some a)))

12



(: find (Number (Listof Number) -> (Opt Number)))

(define (find v l)

(cond [(null? l) (None)]

[(= v (car l)) (Some v)]

[else (find v (cdr l))]))

The first struct: defines None to be a structure with no contents.

The second definition

(struct: (a) Some ([v : a]))

creates a parameterized type, Some, which is a structure with one element, whose type is that
of the type argument to Some. Here the type parameters (only one, a, in this case) are written
before the type name, and can be referred to in the types of the fields.

The type definiton

(define-type (Opt a) (U None (Some a)))

creates a parameterized type — Opt is a potential container for whatever type is supplied.

The find function takes a number v and list, and produces (Some v) when the number is
found in the list, and (None) otherwise. Therefore, it produces a (Opt Number), just as the
annotation specified.

4.7.2 Polymorphic Functions

Sometimes functions over polymorphic data structures only concern themselves with the
form of the structure. For example, one might write a function that takes the length of a list
of numbers:

#lang typed/racket

(: list-number-length ((Listof Number) -> Integer))

(define (list-number-length l)

(if (null? l)

0

(add1 (list-number-length (cdr l)))))

and also a function that takes the length of a list of strings:

13



#lang typed/racket

(: list-string-length ((Listof String) -> Integer))

(define (list-string-length l)

(if (null? l)

0

(add1 (list-string-length (cdr l)))))

Notice that both of these functions have almost exactly the same definition; the only dif-
ference is the name of the function. This is because neither function uses the type of the
elements in the definition.

We can abstract over the type of the element as follows:

#lang typed/racket

(: list-length (All (A) ((Listof A) -> Integer)))

(define (list-length l)

(if (null? l)

0

(add1 (list-length (cdr l)))))

The new type constructor All takes a list of type variables and a body type. The type
variables are allowed to appear free in the body of the All form.

4.7.3 Lexically Scoped Type Variables

When the : type annotation form includes type variables for parametric polymorphism, the
type variables are lexically scoped. In other words, the type variables are bound in the body
of the definition that you annotate.

For example, the following definition of my-id uses the type variable a to annotate the
argument x :

(: my-id (All (a) (a -> a)))

(define my-id (lambda: ([x : a]) x))

Lexical scope also implies that type variables can be shadowed, such as in the following
example:

(: my-id (All (a) (a -> a)))

(define my-id

(lambda: ([x : a])

(: helper (All (a) (a -> a)))

(define helper

(lambda: ([y : a]) y))

(helper x)))

14



The reference to a inside the inner lambda: refers to the type variable in helper ’s annota-
tion. That a is not the same as the a in the annotation of the outer lambda: expression.

4.8 Variable-Arity Functions: Programming with Rest Arguments

Typed Racket can handle some uses of rest arguments.

4.8.1 Uniform Variable-Arity Functions

In Racket, one can write a function that takes an arbitrary number of arguments as follows:

#lang racket

(define (sum . xs)

(if (null? xs)

0

(+ (car xs) (apply sum (cdr xs)))))

(sum)

(sum 1 2 3 4)

(sum 1 3)

The arguments to the function that are in excess to the non-rest arguments are converted to a
list which is assigned to the rest parameter. So the examples above evaluate to 0, 10, and 4.

We can define such functions in Typed Racket as well:

#lang typed/racket

(: sum (Number * -> Number))

(define (sum . xs)

(if (null? xs)

0

(+ (car xs) (apply sum (cdr xs)))))

This type can be assigned to the function when each element of the rest parameter is used at
the same type.

4.8.2 Non-Uniform Variable-Arity Functions

However, the rest argument may be used as a heterogeneous list. Take this (simplified)
definition of the R6RS function fold-left:

15



#lang racket

(define (fold-left f i as . bss)

(if (or (null? as)

(ormap null? bss))

i

(apply fold-left

f

(apply f i (car as) (map car bss))

(cdr as)

(map cdr bss))))

(fold-left + 0 (list 1 2 3 4) (list 5 6 7 8))

(fold-left + 0 (list 1 2 3) (list 2 3 4) (list 3 4 5) (list 4 5 6))

(fold-left (λ (i v n s) (string-append i (vector-ref v n) s))

""

(list (vector "A cat" "A dog" "A mouse")

(vector "tuna" "steak" "cheese"))

(list 0 2)

(list " does not eat " "."))

Here the different lists that make up the rest argument bss can be of different types, but the
type of each list in bss corresponds to the type of the corresponding argument of f. We also
know that, in order to avoid arity errors, the length of bss must be two less than the arity of
f. The first argument to f is the accumulator, and as corresponds to the second argument of
f.

The example uses of fold-left evaluate to 36, 42, and "A cat does not eat

cheese.".

In Typed Racket, we can define fold-left as follows:

#lang typed/racket

(: fold-left

(All (C A B ...)

((C A B ... B -> C) C (Listof A) (Listof B) ... B

->

C)))

(define (fold-left f i as . bss)

(if (or (null? as)

(ormap null? bss))

i

(apply fold-left

f

(apply f i (car as) (map car bss))

(cdr as)

(map cdr bss))))

16



Note that the type variable B is followed by an ellipsis. This denotes that B is a dotted type
variable which corresponds to a list of types, much as a rest argument corresponds to a list
of values. When the type of fold-left is instantiated at a list of types, then each type t

which is bound by B (notated by the dotted pre-type t ... B) is expanded to a number of
copies of t equal to the length of the sequence assigned to B. Then B in each copy is replaced
with the corresponding type from the sequence.

So the type of (inst fold-left Integer Boolean String Number) is

((Integer Boolean String Number -> Integer) Integer (Listof Boolean)

(Listof String) (Listof Number) -> Integer).

17



5 Optimization in Typed Racket

Typed Racket provides a type-driven optimizer that rewrites well-typed programs to poten-
tially make them faster. It should in no way make your programs slower or unsafe. For general

information on
Racket performance
and benchmarking,
see §18
“Performance”.

5.1 Turning the optimizer off

Typed Racket’s optimizer is turned on by default. If you want to deactivate it (for debugging,
for instance), you must add the #:no-optimize keyword when specifying the language of
your program:

#lang typed/racket #:no-optimize

5.2 Getting the most out of the optimizer

Typed Racket’s optimizer can improve the performance of various common Racket idioms.
However, it does a better job on some idioms than on others. By writing your programs
using the right idioms, you can help the optimizer help you.

5.2.1 Numeric types

Being type-driven, the optimizer makes most of its decisions based on the types you assigned
to your data. As such, you can improve the optimizer’s usefulness by writing informative
types.

For example, the following programs both typecheck:

(define: (f (x : Real)) : Real (+ x 2.5))

(f 3.5)

(define: (f (x : Float)) : Float (+ x 2.5))

(f 3.5)

However, the second one uses more informative types: the Float type includes only 64-bit
floating-point numbers whereas the Real type includes both exact and inexact real numbers
and the Inexact-Real type includes both 32- and 64-bit floating-point numbers. Typed
Racket’s optimizer can optimize the latter program to use float -specific operations whereas
it cannot do anything with the former program.

18



Thus, to get the most of Typed Racket’s optimizer, you should use the Float type when
possible. For similar reasons, you should use floating-point literals instead of exact literals
when doing floating-point computations.

When mixing floating-point numbers and exact reals in arithmetic operations, the result is not
necessarily a Float. For instance, the result of (* 2.0 0) is 0 which is not a Float. This
can result in missed optimizations. To prevent this, when mixing floating-point numbers and
exact reals, coerce exact reals to floating-point numbers using exact->inexact. This is not
necessary when using + or -. When mixing floating-point numbers of different precisions,
results use the highest precision possible.

On a similar note, the Float-Complex type is preferable to the Complex type for the same
reason. Typed Racket can keep float complex numbers unboxed; as such, programs using
complex numbers can have better performance than equivalent programs that represent com-
plex numbers as two real numbers. As with floating-point literals, float complex literals (such
as 1.0+1.0i) should be preferred over exact complex literals (such as 1+1i). Note that both
parts of a literal must be present and inexact for the literal to be of type Float-Complex;
0.0+1.0i is of type Float-Complex but 0+1.0i is not. To get the most of Typed Racket’s
optimizer, you should also favor rectangular coordinates over polar coordinates.

5.2.2 Lists

Typed Racket handles potentially empty lists and lists that are known to be non-empty dif-
ferently: when taking the car or the cdr of a list Typed Racket knows is non-empty, it can
skip the check for the empty list that is usually done when calling car and cdr.

(define: (sum (l : (Listof Integer))) : Integer

(if (null? l)

0

(+ (car l) (sum (cdr l)))))

In this example, Typed Racket knows that if we reach the else branch, l is not empty. The
checks associated with car and cdr would be redundant and are eliminated.

In addition to explicitly checking for the empty list using null?, you can inform Typed
Racket that a list is non-empty by using the known-length list type constructor; if your data
is stored in lists of fixed length, you can use the List type constructors.

For instance, the type of a list of two Integers can be written either as:

(define-type List-2-Ints (Listof Integer))

or as the more precise:

19



(define-type List-2-Ints (List Integer Integer))

Using the second definition, all car and cdr-related checks can be eliminated in this func-
tion:

(define: (sum2 (l : List-2-Ints) : Integer)

(+ (car l) (car (cdr l))))

5.2.3 Vectors

In addition to known-length lists, Typed Racket supports known-length vectors through the
Vector type constructor. Known-length vector access using constant indices can be opti-
mized in a similar fashion as car and cdr.

; #(name r g b)

(define-type Color (Vector String Integer Integer Integer))

(define: x : Color (vector "red" 255 0 0))

(vector-ref x 0) ; good

(define color-name 0)

(vector-ref x color-name) ; good

(vector-ref x (* 0 10)) ; bad

In many such cases, however, structs are preferable to vectors. Typed Racket can optimize
struct access in all cases.

5.2.4 Optimization Coaching

Typed Racket provides optimization coaching support to help you get the most of its opti-
mizer.

The Optimization Coach DrRacket plugin can be used when editing a Typed Racket program
in DrRacket. Clicking the Optimization Coach button runs the optimizer and reports the
results. All performed optimizations are highlighted in green in the editor. In addition,
the optimizer also reports cases where an optimization was close to happening, but was not
ultimately safe to perform. These cases are highlighted in shades of red in the editor. The
redder the highlight, the higher the potential for optimization in the highlighted region is.

Additional information can be accessed by right-clicking on the highlighted regions and
picking the Show Optimization Info menu entry. A summary of the performed optimiza-
tions and advice on how to adjust code to make it more amenable to optimization is provided
as appropriate, and can serve as a starting point for further optimization.

20



Optimization Coach is also available for other Racket languages through the Show Opti-
mization Coach entry in the View menu. When running from unytped Racket languages,
Optimization Coach does not report information about Typed Racket optimizations, and only
reports information from the Racket inliner.

Similar information (albeit without in-depth explanations or advice) is available from the
command line. When compiling a Typed Racket program, setting the racket logging facilities
to the 'debug level causes Typed Racket to display performance debugging information.
Setting the Racket logging level can be done on the command line with the -W flag:

racket -W debug my-typed-program.rkt

21


	1 Quick Start
	1.1 Using Typed Racket from the Racket REPL

	2 Beginning Typed Racket
	2.1 Datatypes and Unions
	2.2 Type Errors

	3 Specifying Types
	3.1 Type Annotation and Binding Forms
	3.1.1 Annotating Definitions
	3.1.2 Annotating Local Binding
	3.1.3 Annotating Functions
	3.1.4 Annotating Single Variables
	3.1.5 Annotating Expressions

	3.2 Type Inference
	3.3 New Type Names

	4 Types in Typed Racket
	4.1 Basic Types
	4.2 Function Types
	4.3 Union Types
	4.4 Recursive Types
	4.5 Structure Types
	4.6 Subtyping
	4.7 Polymorphism
	4.7.1 Polymorphic Data Structures
	4.7.2 Polymorphic Functions
	4.7.3 Lexically Scoped Type Variables

	4.8 Variable-Arity Functions: Programming with Rest Arguments
	4.8.1 Uniform Variable-Arity Functions
	4.8.2 Non-Uniform Variable-Arity Functions


	5 Optimization in Typed Racket
	5.1 Turning the optimizer off
	5.2 Getting the most out of the optimizer
	5.2.1 Numeric types
	5.2.2 Lists
	5.2.3 Vectors
	5.2.4 Optimization Coaching



