
Unstable: May Change Without Warning
Version 5.3.3

February 13, 2013

This manual documents some of the libraries available in the unstable collection.

The name unstable is intended as a warning that the interfaces in particular are unsta-
ble. Developers of planet packages and external projects should avoid using modules in the
unstable collection. Contracts may change, names may change or disappear, even entire
modules may move or disappear without warning to the outside world.

Developers of unstable libraries must follow the guidelines in §1 “Guidelines for Developing
unstable Libraries”.

1



1 Guidelines for Developing unstable Libraries

Any collection developer may add modules to the unstable collection.

Every module needs an owner to be responsible for it.

• If you add a module, you are its owner. Add a comment with your name at the top of
the module.

• If you add code to someone else’s module, tag your additions with your name. The
module’s owner may ask you to move your code to a separate module if they don’t
wish to accept responsibility for it.

When changing a library, check all uses of the library in the collections tree and update them
if necessary. Notify users of major changes.

Place new modules according to the following rules. (These rules are necessary for main-
taining PLT’s separate text, gui, and drracket distributions.)

• Non-GUI modules go under unstable (or subcollections thereof). Put the docu-
mentation in unstable/scribblings and include with include-section from
unstable/scribblings/unstable.scrbl.

• GUI modules go under unstable/gui. Put the documentation in un-

stable/scribblings/gui and include them with include-section from
unstable/scribblings/gui.scrbl.

• Do not add modules depending on DrRacket to the unstable collection.

• Put tests in tests/unstable.

Keep documentation and tests up to date.

2



2 Automata: Compiling State Machines

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/automata)

This package provides macros and functions for writing state machines over racket/match
patterns (as opposed to concrete characters.)

2.1 Machines

(require unstable/automata/machine)

Each of the subsequent macros compile to instances of the machines provided by this mod-
ule. This is a documented feature of the modules, so these functions should be used to, for
example, determine if the machine is currently accepting.

(struct machine (next))
next : (any/c . -> . machine?)

An applicable structure for machines. When the structure is applied, the next field is used
as the procedure.

(struct machine-accepting machine (next))

next : (any/c . -> . machine?)

A sub-structure of machine that is accepting.

(machine-accepts? m i) → boolean?

m : machine?

i : (listof any/c)

Returns #t if m ends in an accepting state after consuming every element of i .

(machine-accepts?/prefix-closed m i) → boolean?

m : machine?

i : (listof any/c)

Returns #t if m stays in an accepting state during the consumption of every element of i .

machine-null : machine?

A machine that is never accepting.

3



machine-epsilon : machine?

A machine that is initially accepting and never accepting afterwards.

machine-sigma* : machine?

A machine that is always accepting.

(machine-complement m) → machine?

m : machine?

A machine that inverts the acception criteria of m .

(machine-star m) → machine?
m : machine?

A machine that simulates the Kleene star of m . m may be invoked many times.

(machine-union m0 m1) → machine?
m0 : machine?

m1 : machine?

A machine that simulates the union of m0 and m1 .

(machine-intersect m0 m1) → machine?
m0 : machine?

m1 : machine?

A machine that simulates the intersection of m0 and m1 .

(machine-seq m0 m1) → machine?

m0 : machine?

m1 : machine?

A machine that simulates the sequencing of m0 and m1 . m1 may be invoked many times.

(machine-seq* m0 make-m1) → machine?

m0 : machine?

make-m1 : (-> machine?)

A machine that simulates the sequencing of m0 and (make-m1). (make-m1) may be in-
voked many times.

4



2.2 Deterministic Finite Automata

(require unstable/automata/dfa)

This module provides a macro for deterministic finite automata.

(dfa start

(end ...)

[state ([evt next-state]

...)]

...)

start : identifier?

end : identifier?

state : identifier?

next-state : identifier?

A machine that starts in state start where each state behaves as specified in the rules. If
a state is in (end ...), then it is constructed with machine-accepting. next-state
need not be a state from this DFA.

Examples:

(define M

(dfa s1 (s1)

[s1 ([0 s2]

[(? even?) s1])]

[s2 ([0 s1]

[(? even?) s2])]))

> (machine-accepts? M (list 2 0 4 0 2))

#t

> (machine-accepts? M (list 0 4 0 2 0))

#f

> (machine-accepts? M (list 2 0 2 2 0 8))

#t

> (machine-accepts? M (list 0 2 0 0 10 0))

#t

> (machine-accepts? M (list))

#t

> (machine-accepts? M (list 4 0))

#f

5



2.3 Non-Deterministic Finite Automata

(require unstable/automata/nfa)

This module provides a macro for non-deterministic finite automata.

(nfa (start:id ...)

(end:id ...)

[state:id ([evt:expr (next-state:id ...)]

...)]

...)

start : identifier?

end : identifier?

state : identifier?

next-state : identifier?

A machine that starts in state (set start ...) where each state behaves as specified in
the rules. If a state is in (end ...), then the machine is accepting. next-state must be a
state from this NFA.

These machines are efficiently compiled to use the smallest possible bit-string as a set repre-
sentation and unsafe numeric operations where appropriate for inspection and adjusting the
sets.

Examples:

(define M

(nfa (s1 s3) (s1 s3)

[s1 ([0 (s2)]

[1 (s1)])]

[s2 ([0 (s1)]

[1 (s2)])]

[s3 ([0 (s3)]

[1 (s4)])]

[s4 ([0 (s4)]

[1 (s3)])]))

> (machine-accepts? M (list 1 0 1 0 1))

#t

> (machine-accepts? M (list 0 1 0 1 0))

#t

> (machine-accepts? M (list 1 0 1 1 0 1))

#t

> (machine-accepts? M (list 0 1 0 0 1 0))

6



#t

> (machine-accepts? M (list))

#t

> (machine-accepts? M (list 1 0))

#f

2.4 Non-Deterministic Finite Automata (with epsilon transitions)

(require unstable/automata/nfa-ep)

This module provides a macro for non-deterministic finite automata with epsilon transitions.

epsilon

A binding for use in epsilon transitions.

(nfa/ep (start:id ...)

(end:id ...)

[state:id ([epsilon (epsilon-state:id ...)]

...

[evt:expr (next-state:id ...)]

...)]

...)

start : identifier?

end : identifier?

state : identifier?

epsilon-state : identifier?

next-state : identifier?

Extends nfa with epsilon transitions, which must be listed first for each state.

Examples:

(define M

(nfa/ep (s0) (s1 s3)

[s0 ([epsilon (s1)]

[epsilon (s3)])]

[s1 ([0 (s2)]

[1 (s1)])]

[s2 ([0 (s1)]

[1 (s2)])]

[s3 ([0 (s3)]

7



[1 (s4)])]

[s4 ([0 (s4)]

[1 (s3)])]))

> (machine-accepts? M (list 1 0 1 0 1))

#t

> (machine-accepts? M (list 0 1 0 1 0))

#t

> (machine-accepts? M (list 1 0 1 1 0 1))

#t

> (machine-accepts? M (list 0 1 0 0 1 0))

#t

> (machine-accepts? M (list))

#t

> (machine-accepts? M (list 1 0))

#f

2.5 Regular Expressions

(require unstable/automata/re)

This module provides a macro for regular expression compilation.

(re re-pat)

re-pat = (rec id re-pat)

| ,expr

| (complement re-pat)

| (seq re-pat ...)

| (union re-pat ...)

| (star re-pat)

| epsilon

| nullset

| re-transformer

| (re-transformer . datum)

| (dseq pat re-pat)

| pat

Compiles a regular expression over match patterns to a machine.

The interpretation of the pattern language is mostly intuitive. The pattern language may be
extended with define-re-transformer. dseq allows bindings of the match pattern to be
used in the rest of the regular expression. (Thus, they are not really regular expressions.)
unquote escapes to Racket to evaluate an expression that evaluates to a regular expression

8



(this happens once, at compile time.) rec binds a Racket identifier to a delayed version
of the inner expression; even if the expression is initially accepting, this delayed version is
never accepting.

The compiler will use an NFA, provided complement and dseq are not used. Oth-
erwise, many NFAs connected with the machine simulation functions from unsta-

ble/automata/machine are used.

complement
seq

union

star
epsilon

nullset
dseq

rec

Bindings for use in re.

(define-re-transformer id expr)

Binds id as an regular expression transformer used by the re macro. The expression should
evaluate to a function that accepts a syntax object and returns a syntax object that uses the
regular expression pattern language.

2.5.1 Extensions

(require unstable/automata/re-ext)

This module provides a few transformers that extend the syntax of regular expression pat-
terns.

(opt re-pat)

Optionally matches re-pat .

(plus re-pat)

Matches one or more re-pat in sequence.

(rep re-pat num)

9



Matches re-pat in sequence num times, where num must be syntactically a number.

(difference re-pat_0 re-pat_1)

Matches everything that re-pat_0 does, except what re-pat_1 matches.

(intersection re-pat_0 re-pat_1)

Matches the intersection of re-pat_0 and re-pat_1 .

(seq/close re-pat ...)

Matches the prefix closure of the sequence (seq re-pat ...).

2.5.2 Examples

Examples:

> (define-syntax-rule (test-re R (succ ...) (fail ...))

(let ([r (re R)])

(printf "Success: ∼v => ∼v\n" succ (machine-

accepts? r succ))

...

(printf "Failure: ∼v => ∼v\n" fail (machine-

accepts? r fail))

...))

> (test-re epsilon

[(list)]

[(list 0)])

Success: '() => #t

Failure: '(0) => #f

> (test-re nullset

[]

[(list) (list 1)])

Failure: '() => #f

Failure: '(1) => #f

> (test-re "A"

[(list "A")]

[(list)

(list "B")])

10



Success: '("A") => #t

Failure: '() => #f

Failure: '("B") => #f

> (test-re (complement "A")

[(list)

(list "B")

(list "A" "A")]

[(list "A")])

Success: '() => #t

Success: '("B") => #t

Success: '("A" "A") => #t

Failure: '("A") => #f

> (test-re (union 0 1)

[(list 1)

(list 0)]

[(list)

(list 0 1)

(list 0 1 1)])

Success: '(1) => #t

Success: '(0) => #t

Failure: '() => #f

Failure: '(0 1) => #f

Failure: '(0 1 1) => #f

> (test-re (seq 0 1)

[(list 0 1)]

[(list)

(list 0)

(list 0 1 1)])

Success: '(0 1) => #t

Failure: '() => #f

Failure: '(0) => #f

Failure: '(0 1 1) => #f

> (test-re (star 0)

[(list)

(list 0)

(list 0 0)]

[(list 1)])

Success: '() => #t

Success: '(0) => #t

Success: '(0 0) => #t

Failure: '(1) => #f

11



> (test-re (opt "A")

[(list)

(list "A")]

[(list "B")])

Success: '() => #t

Success: '("A") => #t

Failure: '("B") => #f

> (define-re-transformer my-opt

(syntax-rules ()

[(_ pat)

(union epsilon pat)]))

> (test-re (my-opt "A")

[(list)

(list "A")]

[(list "B")])

Success: '() => #t

Success: '("A") => #t

Failure: '("B") => #f

> (test-re (plus "A")

[(list "A")

(list "A" "A")]

[(list)])

Success: '("A") => #t

Success: '("A" "A") => #t

Failure: '() => #f

> (test-re (rep "A" 3)

[(list "A" "A" "A")]

[(list)

(list "A")

(list "A" "A")])

Success: '("A" "A" "A") => #t

Failure: '() => #f

Failure: '("A") => #f

Failure: '("A" "A") => #f

> (test-re (difference (? even?) 2)

[(list 4)

(list 6)]

[(list 3)

(list 2)])

Success: '(4) => #t

Success: '(6) => #t

12



Failure: '(3) => #f

Failure: '(2) => #f

> (test-re (intersection (? even?) 2)

[(list 2)]

[(list 1)

(list 4)])

Success: '(2) => #t

Failure: '(1) => #f

Failure: '(4) => #f

> (test-re (complement (seq "A" (opt "B")))

[(list "A" "B" "C")]

[(list "A")

(list "A" "B")])

Success: '("A" "B" "C") => #t

Failure: '("A") => #f

Failure: '("A" "B") => #f

> (test-re (seq epsilon 1)

[(list 1)]

[(list 0)

(list)])

Success: '(1) => #t

Failure: '(0) => #f

Failure: '() => #f

> (test-re (seq 1 epsilon)

[(list 1)]

[(list 0)

(list)])

Success: '(1) => #t

Failure: '(0) => #f

Failure: '() => #f

> (test-re (seq epsilon

(union (seq (star 1) (star (seq 0 (star 1) 0 (star 1))))

(seq (star 0) (star (seq 1 (star 0) 1 (star 0)))))

epsilon)

[(list 1 0 1 0 1)

(list 0 1 0 1 0)

(list 1 0 1 1 0 1)

(list 0 1 0 0 1 0)

(list)]

[(list 1 0)])

Success: '(1 0 1 0 1) => #t

13



Success: '(0 1 0 1 0) => #t

Success: '(1 0 1 1 0 1) => #t

Success: '(0 1 0 0 1 0) => #t

Success: '() => #t

Failure: '(1 0) => #f

> (test-re (star (complement 1))

[(list 0 2 3 4)

(list)

(list 2)

(list 234 5 9 1 9 0)

(list 1 0)

(list 0 1)]

[(list 1)])

Success: '(0 2 3 4) => #t

Success: '() => #t

Success: '(2) => #t

Success: '(234 5 9 1 9 0) => #t

Success: '(1 0) => #t

Success: '(0 1) => #t

Failure: '(1) => #f

> (test-re (dseq x (? (curry equal? x)))

[(list 0 0)

(list 1 1)]

[(list)

(list 1)

(list 1 0)])

Success: '(0 0) => #t

Success: '(1 1) => #t

Failure: '() => #f

Failure: '(1) => #f

Failure: '(1 0) => #f

14



3 Bytes

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/bytes)

(read/bytes b) → printable/c

b : bytes?

reads a value from b and returns it.

(write/bytes v) → bytes?

v : printable/c

writes v to a bytes and returns it.

15



4 Contracts

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/contract)

(non-empty-string? x) → boolean?

x : any/c

Returns #t if x is a string and is not empty; returns #f otherwise.

port-number? : contract?

Equivalent to (between/c 1 65535).

tcp-listen-port? : contract?

Equivalent to (between/c 0 65535).

path-piece? : contract?

Equivalent to (or/c path-string? (symbols 'up 'same)). The subsequent
bindings were
added by Ryan
Culpepper.

(if/c predicate then-contract else-contract) → contract?

predicate : (-> any/c any/c)

then-contract : contract?

else-contract : contract?

Produces a contract that, when applied to a value, first tests the value with predicate ; if
predicate returns true, the then-contract is applied; otherwise, the else-contract

is applied. The resulting contract is a flat contract if both then-contract and else-

contract are flat contracts.

For example, the following contract enforces that if a value is a procedure, it is a thunk;
otherwise it can be any (non-procedure) value:

(if/c procedure? (-> any) any/c)

Note that the following contract is not equivalent:

(or/c (-> any) any/c) ; wrong!

16



The last contract is the same as any/c because or/c tries flat contracts before higher-order
contracts.

failure-result/c : contract?

A contract that describes the failure result arguments of procedures such as hash-ref.

Equivalent to (if/c procedure? (-> any) any/c).

(rename-contract contract name) → contract?
contract : contract?

name : any/c

Produces a contract that acts like contract but with the name name .

The resulting contract is a flat contract if contract is a flat contract. The subsequent
bindings were
added by Asumu
Takikawa.

(option/c contract) → contract?

contract : contract?

Creates a contract that acts like contract but will also accept #f. Intended to describe
situations where a failure or default value may be used. The subsequent

bindings were
added by Carl
Eastlund
<cce@racket-
lang.org>.

truth/c : flat-contract?

This contract recognizes Scheme truth values, i.e., any value, but with a more informative
name and description. Use it in negative positions for arguments that accept arbitrary truth
values that may not be booleans.

(sequence/c elem/c ...) → contract?

elem/c : contract?

Wraps a sequence, obligating it to produce as many values as there are elem/c contracts,
and obligating each value to satisfy the corresponding elem/c . The result is not guaranteed
to be the same kind of sequence as the original value; for instance, a wrapped list is not
guaranteed to satisfy list?.

Examples:

> (define/contract predicates

(sequence/c (-> any/c boolean?))

(in-list (list integer?

string->symbol)))

> (for ([P predicates])

(printf "∼s\n" (P "cat")))

17

mailto:cce@racket-lang.org
mailto:cce@racket-lang.org


#f

predicates: broke its contract
promised: boolean?
produced: ’cat
in: the range of

...

...
(sequence/c predicate/c)

contract from: (definition predicates)
blaming: (definition predicates)
at: eval:2.0

> (define/contract numbers&strings

(sequence/c number? string?)

(in-dict (list (cons 1 "one")

(cons 2 "two")

(cons 3 'three))))

> (for ([(N S) numbers&strings])

(printf "∼s: ∼a\n" N S))

1: one

2: two

numbers&strings: broke its contract
promised: string?
produced: ’three
in: (sequence/c number? string?)
contract from: (definition numbers&strings)
blaming: (definition numbers&strings)
at: eval:4.0 The subsequent

bindings were
added by Neil
Toronto
<neil.toronto@gmail.com>.

(treeof elem-contract) → contract?
elem-contract : contract?

Identifies values that meet the contract elem-contract , lists of such values, lists of lists,
and so on.

Examples:

> (define number-tree/c (treeof number?))

> (flat-contract? number-tree/c)

#t

> (define number-tree? (flat-contract-predicate number-tree/c))

> (number-tree? 4)

#t

> (number-tree? '(4 5))

18

mailto:neil.toronto@gmail.com


#t

> (number-tree? '((4 5) 6))

#t

> (number-tree? '(4 . 5))

#f

19



5 Contracts for Macro Subexpressions

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/wrapc)

This library provides a procedure wrap-expr/c for applying contracts to macro subexpres-
sions.

(wrap-expr/c contract-expr

expr

[#:positive pos-blame

#:negative neg-blame

#:name expr-name

#:macro macro-name

#:context context ]) → syntax?

contract-expr : syntax?

expr : syntax?

pos-blame :
(or/c syntax? string? module-path-index?

'from-macro 'use-site 'unknown)

= 'use-site

neg-blame :
(or/c syntax? string? module-path-index?

'from-macro 'use-site 'unknown)

= 'from-macro

expr-name : (or/c identifier? symbol? string? #f) = #f

macro-name : (or/c identifier? symbol? string? #f) = #f

context : (or/c syntax? #f) = (current-syntax-context)

Returns a syntax object representing an expression that applies the contract represented by
contract-expr to the value produced by expr .

The other arguments have the same meaning as for expr/c.

Examples:

> (define-syntax (myparameterize1 stx)

(syntax-case stx ()

[(_ ([p v]) body)

(with-syntax ([cp (wrap-expr/c

#'parameter? #'p

#:name "the parameter argument"

#:context stx)])

#'(parameterize ([cp v]) body))]))

> (myparameterize1 ([current-input-port

20



(open-input-string "(1 2 3)")])

(read))

'(1 2 3)

> (myparameterize1 (['whoops 'something])

'whatever)

the parameter argument of myparameterize1: broke its
contract

promised: parameter?
produced: ’whoops
in: parameter?
contract from: top-level
blaming: top-level
at: eval:4.0

> (module mod racket

(require (for-syntax unstable/wrapc))

(define-syntax (app stx)

(syntax-case stx ()

[(app f arg)

(with-syntax ([cf (wrap-expr/c

#'(-> number? number?)

#'f

#:name "the function argument"

#:context stx)])

#'(cf arg))]))

(provide app))

> (require 'mod)

> (app add1 5)

6

> (app add1 'apple)

the function argument of app: contract violation
expected: number?
given: ’apple
in: the 1st argument of

(-> number? number?)
contract from: top-level
blaming: (quote mod)
at: eval:8.0

> (app (lambda (x) 'pear) 5)

the function argument of app: broke its contract
promised: number?
produced: ’pear
in: the range of

(-> number? number?)
contract from: top-level

21



blaming: top-level
at: eval:9.0

22



6 Debugging

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/debug)

This module provides macros and functions for printing out debugging information.

(debug options ... expr)

options = #:name name-expr

| #:source srcloc-expr

Writes debugging information about the evaluation of expr to the current error port. The
name and source location of the expression may be overridden by keyword options; their de-
faults are the syntactic form of the expression and its syntactic source location, respectively.

Examples:

> (debug 0)

>> eval:2.0: 0
result: 0

<< eval:2.0: 0
0

> (debug #:name "one, two, three" (values 1 2 3))

>> eval:3.0: "one, two, three"
results: (values 1 2 3)

<< eval:3.0: "one, two, three"
1

2

3

> (debug #:source (make-srcloc 'here 1 2 3 4)

(error 'function "something went wrong"))

>> here:1.2: (error ’function "something went wrong")
raised exception: function: something went wrong

<< here:1.2: (error ’function "something went wrong")
function: something went wrong

(dprintf fmt arg ...) → void?

fmt : string?

arg : any/c

Constructs a message in the same manner as format and writes it to (current-error-

port), with indentation reflecting the number of nested debug forms.

23



Examples:

> (dprintf "level: ∼a" 0)

level: 0

> (debug (dprintf "level: ∼a" 1))

>> eval:6.0: (dprintf "level: ∼a" 1)
level: 1
result: #<void>

<< eval:6.0: (dprintf "level: ∼a" 1)

> (debug (debug (dprintf "level: ∼a" 2)))

>> eval:7.0: (debug (dprintf "level: ∼a" 2))
>> eval:7.0: (dprintf "level: ∼a" 2)

level: 2
result: #<void>

<< eval:7.0: (dprintf "level: ∼a" 2)
result: #<void>

<< eval:7.0: (debug (dprintf "level: ∼a" 2))

(debugf function-expr argument ...)

argument = argument-expr

| argument-keyword argument-expr

Logs debugging information for (#%app function-expr argument ...), including the
evaluation and results of the function and each argument.

Example:

> (debugf + 1 2 3)

>> eval:8.0: debugf
>> eval:8.0: +

result: #<procedure:+>
<< eval:8.0: +
>> eval:8.0: 1

result: 1
<< eval:8.0: 1
>> eval:8.0: 2

result: 2
<< eval:8.0: 2
>> eval:8.0: 3

result: 3
<< eval:8.0: 3
result: 6

<< eval:8.0: debugf

24



6

(begin/debug expr ...)

(define/debug id expr)

(define/debug (head args) body ...+)

(define/private/debug id expr)

(define/private/debug (head args) body ...+)

(define/public/debug id expr)

(define/public/debug (head args) body ...+)

(define/override/debug id expr)

(define/override/debug (head args) body ...+)

(define/augment/debug id expr)

(define/augment/debug (head args) body ...+)

(let/debug ([lhs-id rhs-expr] ...) body ...+)

(let/debug loop-id ([lhs-id rhs-expr] ...) body ...+)

(let*/debug ([lhs-id rhs-expr] ...) body ...+)

(letrec/debug ([lhs-id rhs-expr] ...) body ...+)

(let-values/debug ([(lhs-id ...) rhs-expr] ...) body ...+)

(let*-values/debug ([(lhs-id ...) rhs-expr] ...) body ...+)

(letrec-values/debug ([(lhs-id ...) rhs-expr] ...) body ...+)

(with-syntax/debug ([pattern stx-expr] ...) body ...+)

(with-syntax*/debug ([pattern stx-expr] ...) body ...+)

(parameterize/debug ([param-expr value-expr] ...) body ...+)

These macros add logging based on debug to the evaluation of expressions in begin, de-
fine, define/private, define/public, define/override, define/augment, let,
let*, letrec, let-values, let*-values, letrec-values, with-syntax, with-

syntax*, and parameterize.

25



7 Definitions

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/define)

Provides macros for creating and manipulating definitions.

(at-end expr)

When used at the top level of a module, evaluates expr at the end of the module. This can
be useful for calling functions before their definitions.

Examples:

> (module Failure scheme

(f 5)

(define (f x) x))

> (require 'Failure)

f: undefined;
cannot reference an identifier before its definition

in module: ’Failure
> (module Success scheme

(require unstable/define)

(at-end (f 5))

(define (f x) x))

> (require 'Success)

(in-phase1 e)

Executes e during phase 1 (the syntax transformation phase) relative to its context, during
pass 1 if it occurs in a head expansion position.

(in-phase1/pass2 e)

Executes e during phase 1 (the syntax transformation phase) relative to its context, during
pass 2 (after head expansion).

26



8 Errors

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/error)

(raise-misc-error name

message

field

value ...

...

[#:continued continued-message

#:constructor constructor ]) → any

name : symbol?

message : string?

field :
(let ([option/c (or/c 'value 'multi 'maybe)])

(or/c string? (cons/c string? (listof option/c))))

value : any/c

continued-message : (or/c string? (listof string?)) = null

constructor : (-> string? continuation-mark-set? exn?)

= exn:fail

Raises an exception with a message composed according to the Racket error message con-
vention. The exception is created with constructor , which is exn:fail by default.

The composed error message includes details consisting of the alternating field and value
arguments. By default, value is formatted as if by display unless it is #f, in which case
the detail line is omitted. The following options affect the formatting of the detail line:

• 'multi formats each element in the corresponding value, which must be a list, as a
separate line

• 'value formats the value using error-value->string-handler; the detail line is
not omittable unless 'maybe or 'multi is also provided

Examples:

> (raise-misc-error 'mcbean "too many stars upon thars"

'("given" value) 'star-bellied-sneetch

'("stars" value) 3)

mcbean: too many stars upon thars
given: ’star-bellied-sneetch
stars: 3

> (raise-misc-error 'hal "unable to open pod bay doors"

#:continued

27



"this mission is too important to let you

jeopardize it"

"threat" "David Bowman"

"detection" "lip reading")

hal: unable to open pod bay doors;
this mission is too important to let you jeopardize it

threat: David Bowman
detection: lip reading

> (raise-misc-error 'car "missing car keys"

'("searched" multi)

(list "dresser" "desk" "kitchen table" "under

sofa"

"behind microwave" "in washing machine")

"last seen"

#f)

car: missing car keys
searched:

dresser
desk
kitchen table
under sofa
behind microwave
in washing machine

(compose-error-message name

message

field

value ...

...

[#:continued continued-message ]) → string?

name : symbol?

message : string?

field :
(let ([option/c (or/c 'value 'multi 'maybe)])

(or/c string? (cons/c string? (listof option/c))))

value : any/c

continued-message : (or/c string? (listof string?)) = null

Like raise-misc-error, but produces a string conforming to the Racket error message
convention.

28



9 Filesystem

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/file)

(make-directory*/ignore-exists-exn pth) → void

pth : path-string?

Like make-directory*, except it ignores errors when the path already exists. Useful to
deal with race conditions on processes that create directories.

29



10 Find

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/find)

(find pred

x

[#:stop-on-found? stop-on-found?

#:stop stop

#:get-children get-children ]) → list?

pred : (-> any/c any/c)

x : any/c

stop-on-found? : any/c = #f

stop : (or/c #f (-> any/c any/c)) = #f

get-children : (or/c #f (-> any/c (or/c #f list?))) = #f

Returns a list of all values satisfying pred contained in x (possibly including x itself).

If stop-on-found? is true, the children of values satisfying pred are not examined. If
stop is a procedure, then the children of values for which stop returns true are not exam-
ined (but the values themselves are; stop is applied after pred ). Only the current branch of
the search is stopped, not the whole search.

The search recurs through pairs, vectors, boxes, and the accessible fields of structures. If
get-children is a procedure, it can override the default notion of a value’s children by
returning a list (if it returns false, the default notion of children is used).

No cycle detection is done, so find on a cyclic graph may diverge. To do cycle checking
yourself, use stop and a mutable table.

Examples:

> (find symbol? '((all work) and (no play)))

'(all work and no play)

> (find list? '#((all work) and (no play)) #:stop-on-found? #t)

'((all work) (no play))

> (find negative? 100

#:stop-on-found? #t

#:get-children (lambda (n) (list (- n 12))))

'(-8)

> (find symbol? (shared ([x (cons 'a x)]) x)

#:stop (let ([table (make-hasheq)])

(lambda (x)

(begin0 (hash-ref table x #f)

30



(hash-set! table x #t)))))

'(a)

(find-first pred

x

[#:stop stop

#:get-children get-children

#:default default ]) → any/c

pred : (-> any/c any/c)

x : any/c

stop : (or/c #f (-> any/c any/c)) = #f

get-children : (or/c #f (-> any/c (or/c #f list?))) = #f

default : any/c = (lambda () (error ....))

Like find, but only returns the first match. If no matches are found, default is applied as
a thunk if it is a procedure or returned otherwise.

Examples:

> (find-first symbol? '((all work) and (no play)))

'all

> (find-first list? '#((all work) and (no play)))

'(all work)

> (find-first negative? 100

#:get-children (lambda (n) (list (- n 12))))

-8

> (find-first symbol? (shared ([x (cons 'a x)]) x))

'a

31



11 Flonums

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/flonum)

(flonum->bit-field x) → (integer-in 0 (- (expt 2 64) 1))

x : flonum?

Returns the bits comprising x as an integer. A convenient shortcut for composing integer-

bytes->integer with real->floating-point-bytes.

Examples:

> (number->string (flonum->bit-field -inf.0) 16)

"fff0000000000000"

> (number->string (flonum->bit-field +inf.0) 16)

"7ff0000000000000"

> (number->string (flonum->bit-field -0.0) 16)

"8000000000000000"

> (number->string (flonum->bit-field 0.0) 16)

"0"

> (number->string (flonum->bit-field -1.0) 16)

"bff0000000000000"

> (number->string (flonum->bit-field 1.0) 16)

"3ff0000000000000"

> (number->string (flonum->bit-field +nan.0) 16)

"7ff8000000000000"

(bit-field->flonum i) → flonum?
i : (integer-in 0 (- (expt 2 64) 1))

The inverse of flonum->bit-field.

(flonum->ordinal x)
→ (integer-in (- (- (expt 2 63) 1)) (- (expt 2 63) 1))

x : flonum?

Returns the signed ordinal index of x in a total order over flonums.

When inputs are not +nan.0, this function is monotone and symmetric; i.e. if (fl<=

x y) then (<= (flonum->ordinal x) (flonum->ordinal y)), and (= (flonum-

>ordinal (- x)) (- (flonum->ordinal x))).

Examples:

32



> (flonum->ordinal -inf.0)

-9218868437227405312

> (flonum->ordinal +inf.0)

9218868437227405312

> (flonum->ordinal -0.0)

0

> (flonum->ordinal 0.0)

0

> (flonum->ordinal -1.0)

-4607182418800017408

> (flonum->ordinal 1.0)

4607182418800017408

> (flonum->ordinal +nan.0)

9221120237041090560

These properties mean that flonum->ordinal does not distinguish -0.0 and 0.0.

The following plot demonstrates how the density of floating-point numbers decreases with
magnitude:

Example:

> (parameterize ([y-axis-ticks? #f])

(plot (list (function (compose flonum->ordinal exact-

>inexact) 1/4 8)

(y-axis 1/2) (y-axis 1) (y-axis 2) (y-axis 4))))

33



(ordinal->flonum i) → flonum?
i : (integer-in (- (- (expt 2 63) 1)) (- (expt 2 63) 1))

The inverse of flonum->ordinal.

(flonums-between x y) → exact-integer?

x : flonum?

y : flonum?

Returns the number of flonums between x and y , excluding one endpoint. Equivalent to (-

(flonum->ordinal y) (flonum->ordinal x)).

34



Examples:

> (flonums-between 0.0 1.0)

4607182418800017408

> (flonums-between 1.0 2.0)

4503599627370496

> (flonums-between 2.0 3.0)

2251799813685248

> (flonums-between 1.0 +inf.0)

4611686018427387904

(flstep x n) → flonum?

x : flonum?

n : exact-integer?

Returns the flonum n flonums away from x , according to flonum->ordinal. If x is
+nan.0, returns +nan.0.

Examples:

> (flstep 0.0 1)

4.9406564584125e-324

> (flstep (flstep 0.0 1) -1)

0.0

> (flstep 0.0 -1)

-4.9406564584125e-324

> (flstep +inf.0 1)

+inf.0

> (flstep +inf.0 -1)

1.7976931348623157e+308

> (flstep -inf.0 -1)

-inf.0

> (flstep -inf.0 1)

-1.7976931348623157e+308

> (flstep +nan.0 1000)

+nan.0

(flnext x) → flonum?
x : flonum?

Equivalent to (flstep x 1).

(flprev x) → flonum?

x : flonum?

Equivalent to (flstep x -1).

35



-max.0 : flonum?

-min.0 : flonum?

+min.0 : flonum?

+max.0 : flonum?

The rational flonums with maximum and minimum magnitude.

Examples:

> (list -max.0 +max.0 -min.0 +min.0)

'(-1.7976931348623157e+308

1.7976931348623157e+308

-4.9406564584125e-324

4.9406564584125e-324)

> (plot (function sqrt 0 (* 20 +min.0)))

36



37



12 Futures

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/future)

(for/async (for-clause ...) body ...+)

(for*/async (for-clause ...) body ...+)

Like for and for*, but each iteration of the body is executed in a separate future, and the
futures may be touched in any order.

38



13 Functions

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/function)

This module provides tools for higher-order programming and creating functions.

13.1 Higher Order Predicates

((conjoin f ...) x ...) → boolean?

f : (-> A ... boolean?)

x : A

Combines calls to each function with and. Equivalent to (and (f x ...) ...)

Examples:

(define f (conjoin exact? integer?))

> (f 1)

#t

> (f 1.0)

#f

> (f 1/2)

#f

> (f 0.5)

#f

((disjoin f ...) x ...) → boolean?

f : (-> A ... boolean?)

x : A

Combines calls to each function with or. Equivalent to (or (f x ...) ...)

Examples:

(define f (disjoin exact? integer?))

> (f 1)

#t

> (f 1.0)

#t

39



> (f 1/2)

#t

> (f 0.5)

#f

40



14 Hash Tables

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/hash)

This module provides tools for manipulating hash tables.

(hash-union h0

h ...

[#:combine combine

#:combine/key combine/key ])
→ (and/c hash? hash-can-functional-set?)

h0 : (and/c hash? hash-can-functional-set?)

h : hash?

combine : (-> any/c any/c any/c)

= (lambda _ (error 'hash-union ....))

combine/key : (-> any/c any/c any/c any/c)

= (lambda (k a b) (combine a b))

Computes the union of h0 with each hash table h by functional update, adding each element
of each h to h0 in turn. For each key k and value v, if a mapping from k to some value v0

already exists, it is replaced with a mapping from k to (combine/key k v0 v).

Examples:

> (hash-union (make-immutable-hash '([1 . one]))

(make-immutable-hash '([2 . two]))

(make-immutable-hash '([3 . three])))

'#hash((1 . one) (2 . two) (3 . three))

> (hash-union (make-immutable-hash '([1 one uno] [2 two dos]))

(make-immutable-hash '([1 ein une] [2 zwei deux]))

#:combine/key (lambda (k v1 v2) (append v1 v2)))

'#hash((1 . (one uno ein une)) (2 . (two dos zwei deux)))

(hash-union! h0

h ...

[#:combine combine

#:combine/key combine/key ]) → void?

h0 : (and/c hash? hash-mutable?)

h : hash?

combine : (-> any/c any/c any/c)

= (lambda _ (error 'hash-union ....))

combine/key : (-> any/c any/c any/c any/c)

= (lambda (k a b) (combine a b))

41



Computes the union of h0 with each hash table h by mutable update, adding each element
of each h to h0 in turn. For each key k and value v, if a mapping from k to some value v0

already exists, it is replaced with a mapping from k to (combine/key k v0 v).

Examples:

(define h (make-hash))

> h

'#hash()

> (hash-union! h (make-immutable-hash '([1 one uno] [2 two dos])))

> h

'#hash((2 . (two dos)) (1 . (one uno)))

> (hash-union! h

(make-immutable-hash '([1 ein une] [2 zwei deux]))

#:combine/key (lambda (k v1 v2) (append v1 v2)))

> h

'#hash((2 . (two dos zwei deux)) (1 . (one uno ein une)))

42



15 Interface-Oriented Programming for Classes

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/class-iop)

(define-interface name-id (super-ifc-id ...) (method-id ...))

Defines name-id as a static interface extending the interfaces named by the super-ifc-

ids and containing the methods specified by the method-ids.

A static interface name is used by the checked method call variants (send/i, send*/i,
and send/apply/i). When used as an expression, a static interface name evaluates to an
interface value.

Examples:

> (define-interface stack<%> () (empty? push pop))

> stack<%>

#<interface:stack<%>>

> (define stack%

(class* object% (stack<%>)

(define items null)

(define/public (empty?) (null? items))

(define/public (push x) (set! items (cons x items)))

(define/public (pop) (begin (car items) (set! items (cdr items))))

(super-new)))

(define-interface/dynamic name-id ifc-expr (method-id ...))

Defines name-id as a static interface with dynamic counterpart ifc-expr , which must
evaluate to an interface value. The static interface contains the methods named by the
method-ids. A run-time error is raised if any method-id is not a member of the dynamic
interface ifc-expr .

Use define-interface/dynamic to wrap interfaces from other sources.

Examples:

> (define-interface/dynamic object<%> (class-

>interface object%) ())

> object<%>

#<interface:object%>

43



(send/i obj-exp static-ifc-id method-id arg-expr ...)

Checked variant of send.

The argument static-ifc-id must be defined as a static interface. The method method-

id must be a member of the static interface static-ifc-id ; otherwise a compile-time
error is raised.

The value of obj-expr must be an instance of the interface static-ifc-id ; otherwise, a
run-time error is raised.

Examples:

> (define s (new stack%))

> (send/i s stack<%> push 1)

> (send/i s stack<%> popp)

eval:9:0: send/i: method not in static interface
in: popp

> (send/i (new object%) stack<%> push 2)

send/i: interface check failed on: (object)

(send*/i obj-expr static-ifc-id (method-id arg-expr ...) ...)

Checked variant of send*.

Example:

> (send*/i s stack<%>

(push 2)

(pop))

(send/apply/i obj-expr static-ifc-id method-id arg-expr ... list-

arg-expr)

Checked variant of send/apply.

Example:

> (send/apply/i s stack<%> push (list 5))

(define/i id static-ifc-id expr)

44



Checks that expr evaluates to an instance of static-ifc-id before binding it to id . If
id is subsequently changed (with set!), the check is performed again.

No dynamic object check is performed when calling a method (using send/i, etc) on a name
defined via define/i.

(init/i (id static-ifc-id maybe-default-expr) ...)

(init-field/i (id static-ifc-id maybe-default-expr) ...)

(init-private/i (id static-ifc-id maybe-default-expr) ...)

maybe-default-expr = ()

| default-expr

Checked versions of init and init-field. The value attached to each id is checked
against the given interface.

No dynamic object check is performed when calling a method (using send/i, etc) on a name
bound via one of these forms. Note that in the case of init-field/i this check omission
is unsound in the presence of mutation from outside the class. This should be fixed.

(define-interface-expander id transformer-expr)

Defines id as a macro that can be used within define-interface forms.

Examples:

> (define-interface-expander stack-methods

(lambda (stx) #'[empty? push pop]))

> (define-interface stack<%> ()

((stack-methods)))

> (interface->method-names stack<%>)

'(pop push empty?)

45



16 Lazy Require

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/lazy-require)

(begin-on-demand #:export (fun-id ...)

body ...+)

Defines each fun-id as a function that, when called, dynamically loads and executes the
body forms. The body forms must contain definitions for each fun-id , and the value of
each fun-id must be a function.

A body form may be any module-level form except provide. In particular, require forms
are allowed.

The body forms are placed within a submodule that extends the scope of the enclosing
module (ie, module* with #f in the language position). Consequently, any references to
sibling submodules must include a with ".." module path element.

46



17 Lists

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/list)

(list-prefix? l r) → boolean?

l : list?

r : list?

True if l is a prefix of r .

Example:

> (list-prefix? '(1 2) '(1 2 3 4 5))

#t

(take-common-prefix l r #:same? same?) → list?

l : list?

r : list?

same? : equal?

Returns the longest common prefix of l and r .

Example:

> (take-common-prefix '(a b c d) '(a b x y z))

'(a b)

(drop-common-prefix l r #:same same?) → list? list?

l : list?

r : list?

same? : equal?

Returns the tails of l and r with the common prefix removed.

Example:

> (drop-common-prefix '(a b c d) '(a b x y z))

'(c d)

'(x y z)

(split-common-prefix l r #:same? same?) → list? list? list?

l : list?

r : list?

same? : equal?

47



Returns the longest common prefix together with the tails of l and r with the common prefix
removed.

Example:

> (split-common-prefix '(a b c d) '(a b x y z))

'(a b)

'(c d)

'(x y z) The subsequent
bindings were
added by Sam
Tobin-Hochstadt.

(filter-multiple l f ...) → list? ...

l : list?

f : procedure?

Produces (values (filter f l) ...).

Example:

> (filter-multiple (list 1 2 3 4 5) even? odd?)

'(2 4)

'(1 3 5)

(extend l1 l2 v) → list?
l1 : list?

l2 : list?

v : any/c

Extends l2 to be as long as l1 by adding (- (length l1) (length l2)) copies of v
to the end of l2 .

Example:

> (extend '(1 2 3) '(a) 'b)

'(a b b) The subsequent
bindings were
added by Ryan
Culpepper.

(check-duplicate lst

[#:key extract-key

#:same? same?]) → (or/c any/c #f)

lst : list?

extract-key : (-> any/c any/c) = (lambda (x) x)

same? :
(or/c (any/c any/c . -> . any/c)

dict?)
= equal?

Returns the first duplicate item in lst . More precisely, it returns the first x such that there
was a previous y where (same? (extract-key x) (extract-key y)).

The same? argument can either be an equivalence predicate such as equal? or eqv? or a
dictionary. In the latter case, the elements of the list are mapped to #t in the dictionary until
an element is discovered that is already mapped to a true value. The procedures equal?,
eqv?, and eq? automatically use a dictionary for speed.

48



Examples:

> (check-duplicate '(1 2 3 4))

#f

> (check-duplicate '(1 2 3 2 1))

2

> (check-duplicate '((a 1) (b 2) (a 3)) #:key car)

'(a 3)

> (define id-t (make-free-id-table))

> (check-duplicate (syntax->list #'(a b c d a b))

#:same? id-t)

#<syntax:13:0 a>

> (dict-map id-t list)

'((#<syntax:13:0 b> #t)

(#<syntax:13:0 d> #t)

(#<syntax:13:0 a> #t)

(#<syntax:13:0 c> #t)) The subsequent
bindings were
added by Carl
Eastlund.

(map/values n f lst ...) → (listof B_1) ... (listof B_n)

n : natural-number/c

f : (-> A ... (values B_1 ... B_n))

lst : (listof A)

Produces lists of the respective values of f applied to the elements in lst ... sequentially.

Example:

> (map/values

3

(lambda (x)

(values (+ x 1) x (- x 1)))

(list 1 2 3))

'(2 3 4)

'(1 2 3)

'(0 1 2)

(map2 f lst ...) → (listof B) (listof C)

f : (-> A ... (values B C))

lst : (listof A)

Produces a pair of lists of the respective values of f applied to the elements in lst ...

sequentially.

Example:

> (map2 (lambda (x) (values (+ x 1) (- x 1))) (list 1 2 3))

49



'(2 3 4)

'(0 1 2) The subsequent
bindings were
added by David Van
Horn.

(remf pred lst) → list?

pred : procedure?

lst : list?

Returns a list that is like lst , omitting the first element of lst for which pred produces a
true value.

Example:

> (remf negative? '(1 -2 3 4 -5))

'(1 3 4 -5) The subsequent
bindings were
added by Vincent
St-Amour.

(group-by =? lst [#:key extract-key ]) → (listof (listof A))

=? : (-> B B any/c)

lst : (listof A)

extract-key : (-> A B) = values

Groups the given list into equivalence classes, with equivalence being determined by =?.

Example:

> (group-by = '(1 2 1 2 54 2 5 43 7 2 643 1 2 0))

'((0) (2 2 2 2 2) (7) (43) (5) (54) (643) (1 1 1)) The subsequent
bindings were
added by Eric
Dobson.

(list-update lst index updater) → list?

lst : list?

index : (and/c (>=/c 0) (</c (length lst)))

updater : (-> any/c any/c)

Returns a list that is the same as lst except at the specified index. The element at the
specified index is (updater (list-ref lst index)).

Example:

> (list-update '(zero one two) 1 symbol->string)

'(zero "one" two)
(list-set lst index value) → list?

lst : list?

index : (and/c (>=/c 0) (</c (length lst)))

value : any/c

Returns a list that is the same as lst except at the specified index. The element at the
specified index is value .

Example:

> (list-set '(zero one two) 2 "two")

'(zero one "two")

50



18 Logging

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/logging)

This module provides tools for logging.

(with-logging-to-port port proc log-spec ...) → any

port : output-port?

proc : (-> any)

log-spec : (or/c 'fatal 'error 'warning 'info 'debug symbol? #f)

Runs proc , outputting any logging that would be received by (make-log-receiver

(current-logger) log-spec ...) to port . Returns whatever proc returns.

Example:

> (let ([my-log (open-output-string)])

(with-logging-to-port my-log

(lambda ()

(log-warning "Warning World!")

(+ 2 2))

'warning)

(get-output-string my-log))

"Warning World!\n"

(with-intercepted-logging interceptor

proc

log-spec ...) → any

interceptor :

(-> (vector/c

(or/c 'fatal 'error 'warning 'info 'debug)

string?

any/c

(or/c symbol? #f))

any)

proc : (-> any)

log-spec : (or/c 'fatal 'error 'warning 'info 'debug symbol? #f)

Runs proc , calling interceptor on any log message that would be received by (make-

log-receiver (current-logger) log-spec ...). interceptor receives the entire
log vectors (see §14.5.3 “Receiving Logged Events”) as arguments. Returns whatever proc
returns.

Example:

51



> (let ([warning-counter 0])

(with-intercepted-logging

(lambda (l)

(when (eq? (vector-ref l 0)

'warning)

(set! warning-counter (add1 warning-counter))))

(lambda ()

(log-warning "Warning!")

(log-warning "Warning again!")

(+ 2 2))

'warning)

warning-counter)

2

A lower-level interface to logging is also available.

(start-recording log-spec ...) → listener?

log-spec : (or/c 'fatal 'error 'warning 'info 'debug symbol? #f)

(stop-recording listener)

→

(listof (vector/c (or/c 'fatal 'error 'warning 'info 'debug)

string?

any/c

(or/c symbol? #f)))

listener : listener?

start-recording starts recording log messages matching the given log-spec . Messages
will be recorded until stopped by passing the returned listener object to stop-recording.
stop-recording will then return a list of the log messages that have been reported.

Examples:

(define l (start-recording 'warning))

> (log-warning "1")

> (log-warning "2")

> (stop-recording l)

'(#(warning "1" #<continuation-mark-set> #f)

#(warning "2" #<continuation-mark-set> #f))

52



19 Mark Parameters

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/markparam)

This library provides a simplified version of parameters that are backed by continuation
marks, rather than parameterizations. This means they are slightly slower, are not inherited
by child threads, do not have initial values, and cannot be imperatively mutated.

(struct mark-parameter ())

The struct for mark parameters. It is guaranteed to be serializable and transparent. If used as
a procedure, it calls mark-parameter-first on itself.

(mark-parameter-first mp [tag ]) → any/c

mp : mark-parameter?

tag : continuation-prompt-tag?

= default-continuation-prompt-tag

Returns the first value of mp up to tag .

(mark-parameter-all mp [tag ]) → list?

mp : mark-parameter?

tag : continuation-prompt-tag?

= default-continuation-prompt-tag

Returns the values of mp up to tag .

(mark-parameters-all mps none-v [tag ]) → (listof vector?)

mps : (listof mark-parameter?)

none-v : [any/c #f]

tag : continuation-prompt-tag?

= default-continuation-prompt-tag

Returns the values of the mps up to tag . The length of each vector in the result list is
the same as the length of mps , and a value in a particular vector position is the value for
the corresponding mark parameter in mps . Values for multiple mark parameter appear in
a single vector only when the mark parameters are for the same continuation frame in the
current continuation. The none-v argument is used for vector elements to indicate the lack
of a value.
(mark-parameterize ([mp expr] ...) body-expr ...)

Parameterizes (begin body-expr ...) by associating each mp with the evaluation of
expr in the parameterization of the entire expression.

53



20 Match

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/match) The subsequent
bindings were
added by Carl
Eastlund
<cce@racket-
lang.org>.

(match? val-expr pat ...)

Returns #t if the result of val-expr matches any of pat , and returns #f otherwise.

Examples:

> (match? (list 1 2 3)

(list a b c)

(vector x y z))

#t

> (match? (vector 1 2 3)

(list a b c)

(vector x y z))

#t

> (match? (+ 1 2 3)

(list a b c)

(vector x y z))

#f

(as ([lhs-id rhs-expr] ...) pat ...)

As a match expander, binds each lhs-id as a pattern variable with the result value of rhs-
expr , and continues matching each subsequent pat .

Example:

> (match (list 1 2 3)

[(as ([a 0]) (list b c d)) (list a b c d)])

'(0 1 2 3) The subsequent
bindings were
added by Asumu
Takikawa
<asumu@racket-
lang.org>.

(define/match (head args)

match*-clause ...)

54

mailto:cce@racket-lang.org
mailto:cce@racket-lang.org
mailto:asumu@racket-lang.org
mailto:asumu@racket-lang.org


head = id

| (head args)

args = arg ...

| arg ... . rest-id

arg = arg-id

| [arg-id default-expr]

| keyword arg-id

| keyword [arg-id default-expr]

match*-clause = [(pat ...+) body ...+]

| [(pat ...+) (=> id) body ...+]

Binds id to a procedure that is defined by pattern matching clauses using match*. Each
clause takes a sequence of patterns that correspond to the arguments in the function header.
The arguments are ordered as they appear in the function header for matching purposes.

The function header may contain optional or keyword arguments, or may be in curried form.

Examples:

> (define/match (fact n)

[(0) 1]

[(n) (* n (fact (sub1 n)))])

> (fact 5)

120

> (define/match ((f x) #:y [y '(1 2 3)])

[((regexp #rx"p+") `(,a 2 3)) a]

[(_ _) #f])

> ((f "ape") #:y '(5 2 3))

5

> ((f "dog"))

#f

> (define/match (g x y . rst)

[(0 0 '()) #t]

[(5 5 '(5 5)) #t]

[(_ _ _) #f])

> (g 0 0)

#t

> (g 5 5 5 5)

#t

> (g 1 2)

55



#f

(object maybe-class field-clause ...)

maybe-class =
| class-expr

field-clause = (field field-id maybe-pat)

maybe-pat =
| pat

A match expander that checks if the matched value is an object and contains the fields named
by the field-ids. If pats are provided, the value in each field is matched to its correspond-
ing pat . If a pat is not provided, it defaults to the name of the field.

If class-expr is provided, the match expander will also check that the supplied object is
an instance of the class that the given expression evaluates to.

Examples:

(define point%

(class object%

(super-new)

(init-field x y)))

> (match (make-object point% 3 5)

[(object point% (field x) (field y))

(sqrt (+ (* x x) (* y y)))])

5.830951894845301

> (match (make-object point% 0 0)

[(object (field x (? zero?))

(field y (? zero?)))

'origin])

'origin

> (match (make-object object%)

[(object (field x) (field y))

'ok]

[_ 'fail])

'fail

56



21 Open place expressions

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/open-place) The subsequent
bindings were
added by Sam
Tobin-Hochstadt
<samth@racket-
lang.org>.

(open-place id body ...+)

Like (place id body ...), but body ... may have free lexical variables, which are
automatically sent to the newly-created place. Note that these variables must have values
accepted by place-message-allowed?, otherwise an exn:fail:contract exception is
raised.

57

mailto:samth@racket-lang.org
mailto:samth@racket-lang.org


22 Parameter Groups

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/parameter-group)

Parameter groups are parameter-like views that represent multiple parameters.

Examples:

> (require unstable/parameter-group)

> (define param1 (make-parameter 1))

> (define param2 (make-parameter 2))

> (define-parameter-group params (param1 param2))

> (params)

(params-value 1 2)

> (parameterize/group ([params (params-value 10 20)])

(list (param1) (param2)))

'(10 20)

> (params)

(params-value 1 2)

> (params (params-value 100 200))

> (list (param1) (param2))

'(100 200)

Use parameter groups to conveniently set multiple parameters. For example, the plot library
uses parameter groups to save and restore appearance-controlling parameters when it must
draw plots within a thunk.

(parameter-group? v) → boolean?

v : any/c

Returns #t when v is a parameter group.

(define-parameter-group name (param-or-group-expr ...) options)

options =
| #:struct struct-name

param-or-group-expr : (or/c parameter? parameter-group?)

58



Defines a new parameter group.

If struct-name is not given, define-parameter-group defines a new struct <name>-
value to hold the values of parameters.

If struct-name is given, it must have a constructor (struct-name param-or-group-

expr ...) that accepts as many arguments as there are parameters in the group, and a
struct-name match expander that accepts as many patterns as there are parameters.

Examples:

> (struct two-params (p1 p2) #:transparent)

> (define-parameter-group params* (param1 param2) #:struct two-

params)

> (params*)

(two-params 100 200)

(parameterize/group ([param-or-group-expr value-expr] ...)

body-expr ...+)

param-or-group-expr : (or/c parameter? parameter-group?)

Corresponds to parameterize, but can parameterize parameter groups as well as parame-
ters.

(parameterize*/group ([param-or-group-expr value-expr] ...)

body-expr ...+)

param-or-group-expr : (or/c parameter? parameter-group?)

Corresponds to parameterize*, but can parameterize parameter groups as well as param-
eters.

59



23 Pretty-Printing

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/pretty)

This module provides tools for pretty-printing.

(pretty-format/write x [columns ]) → string?

x : any/c

columns : (or/c exact-nonnegative-integer? 'infinity)

= (pretty-print-columns)

This procedure behaves like pretty-format, but it formats values consistently with write

instead of print.

Examples:

> (struct both [a b] #:transparent)

> (pretty-format/write (list (both (list 'a 'b) (list "a" "b"))))

"(#(struct:both (a b) (\"a\" \"b\")))\n"

(pretty-format/display x [columns ]) → string?

x : any/c

columns : (or/c exact-nonnegative-integer? 'infinity)

= (pretty-print-columns)

This procedure behaves like pretty-format, but it formats values consistently with dis-

play instead of print.

Examples:

> (struct both [a b] #:transparent)

> (pretty-format/display (list (both (list 'a 'b) (list "a" "b"))))

"(#(struct:both (a b) (a b)))\n"

(pretty-format/print x [columns ]) → string?

x : any/c

columns : (or/c exact-nonnegative-integer? 'infinity)

= (pretty-print-columns)

This procedure behaves the same as pretty-format, but is named more explicitly to de-
scribe how it formats values. It is included for symmetry with pretty-format/write and
pretty-format/display.

60



Examples:

> (struct both [a b] #:transparent)

> (pretty-format/print (list (both (list 'a 'b) (list "a" "b"))))

"(list (both '(a b) '(\"a\" \"b\")))\n" The subsequent
bindings were
added by Vincent
St-Amour
<stamourv@racket-
lang.org>.

(break-lines s [columns ]) → string?

s : string?

columns : exact-nonnegative-integer? = (pretty-print-columns)

Splits the string s into multiple lines, each of width at most columns , splitting only at
whitespace boundaries.

Example:

> (display (break-lines "This string is more than 80 characters

long. It is 98 characters long, nothing more, nothing less."))

This string is more than 80 characters long. It is 98 characters

long,

nothing more, nothing less.

61

mailto:stamourv@racket-lang.org
mailto:stamourv@racket-lang.org


24 Re-Contracting Identifiers

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/recontract)

(recontract-out id ...)

Provides each id with its existing contract, but changes the positive blame party of the
contract to the enclosing module, instead of the module that originally attached the contract
to id . Each id must be imported from a module that exports it via contract-out or
recontract-out; otherwise a syntax error is raised.

Use recontract-out when you want to use the same contracts both between different parts
of a library and between the library and its clients. The library should use recontract-out
in the public interface modules so that clients do not see references to private implementation
modules in contract errors.

Examples:

> (module private racket

(define (f x) (if (positive? x) x 'wrong))

(provide (contract-out [f (-> real? real?)])))

> (module public racket

(require 'private unstable/recontract)

(provide (recontract-out f)))

> (require 'public)

> (f 1)

1

> (f -2)

f: broke its contract
promised: real?
produced: ’wrong
in: the range of

(-> real? real?)
contract from: public
blaming: public
at: eval:2.0

> (f 'apple)

f: contract violation
expected: real?
given: ’apple

62



in: the 1st argument of
(-> real? real?)

contract from: public
blaming: top-level
at: eval:2.0

63



25 Sandbox

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/sandbox)

(make-log-based-eval log-file mode) → (-> any/c any)

log-file : path-string?

mode : (or/c 'record 'replay)

Creates an evaluator (like make-base-eval) that uses a log file to either record or replay
evaluations.

If mode is 'record, the evaluator records every interaction to log-file , replacing log-

file if it already exists. The result of each interaction must be serializable.

If mode is 'replay, the evaluator uses the contents of log-file instead of actually per-
forming evaluatings. For each interaction, it compares the term to evaluate against the next
interaction recorded in log-file . If the term matches, the stored result is returned; if not,
the evaluator raises an error indicating that it is out of sync with log-file .

Use make-log-based-eval to document libraries when the embedded examples rely on
external features that may not be present or appropriately configured on all machines.

64



26 Sequences

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/sequence)

(in-syntax stx) → sequence?

stx : syntax?

Produces a sequence equivalent to (syntax->list lst).

An in-syntax application can provide better performance for syntax iteration when it ap-
pears directly in a for clause.

Example:

> (for/list ([x (in-syntax #'(1 2 3))])

x)

'(#<syntax:2:0 1> #<syntax:2:0 2> #<syntax:2:0 3>)

(in-pairs seq) → sequence?

seq : sequence?

Produces a sequence equivalent to (in-parallel (sequence-lift car seq)

(sequence-lift cdr seq)).

(in-sequence-forever seq val) → sequence?

seq : sequence?

val : any/c

Produces a sequence whose values are the elements of seq , followed by val repeated.

(sequence-lift f seq) → sequence?

f : procedure?

seq : sequence?

Produces the sequence of f applied to each element of seq .

Example:

> (for/list ([x (sequence-lift add1 (in-range 10))])

x)

'(1 2 3 4 5 6 7 8 9 10) The subsequent
bindings were
added by David
Vanderson.

65



(in-slice length seq) → sequence?

length : exact-positive-integer?

seq : sequence?

Returns a sequence where each element is a list with length elements from the given se-
quence.

Example:

> (for/list ([e (in-slice 3 (in-range 8))]) e)

'((0 1 2) (3 4 5) (6 7))

66



27 Strings

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/string) The subsequent
bindings were
added by Vincent
St-Amour.

(regexp-filter pattern lst)

→ (listof (or/c string? bytes? path? input-port?))

pattern : (or/c string? bytes? regexp? byte-regexp?)

lst : (listof (or/c string? bytes? path? input-port?))

Keeps only the elements of lst that match pattern .

67



28 Structs

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/struct)

(make struct-id expr ...)

Creates an instance of struct-id , which must be bound as a struct name. The number of
exprs is statically checked against the number of fields associated with struct-id . If they
are different, or if the number of fields is not known, an error is raised at compile time.

Examples:

> (define-struct triple (a b c))

> (make triple 3 4 5)

#<triple>

> (make triple 2 4)

eval:4:0: make: wrong number of arguments for struct triple
(expected 3, got 2)

in: (make triple 2 4)

(struct->list v [#:on-opaque on-opaque ]) → (or/c list? #f)

v : any/c

on-opaque : (or/c 'error 'return-false 'skip) = 'error

Returns a list containing the struct instance v ’s fields. Unlike struct->vector, the struct
name itself is not included.

If any fields of v are inaccessible via the current inspector the behavior of struct->list
is determined by on-opaque . If on-opaque is 'error (the default), an error is raised. If
it is 'return-false, struct->list returns #f. If it is 'skip, the inaccessible fields are
omitted from the list.

Examples:

> (define-struct open (u v) #:transparent)

> (struct->list (make-open 'a 'b))

'(a b)

> (struct->list #s(pre 1 2 3))

'(1 2 3)

> (define-struct (secret open) (x y))

68



> (struct->list (make-secret 0 1 17 22))

struct->list: expected argument of type <non-opaque struct>;
given: (secret 0 1 ...)
> (struct->list (make-secret 0 1 17 22) #:on-opaque 'return-false)

#f

> (struct->list (make-secret 0 1 17 22) #:on-opaque 'skip)

'(0 1)

> (struct->list 'not-a-struct #:on-opaque 'return-false)

#f

> (struct->list 'not-a-struct #:on-opaque 'skip)

'()

69



29 Struct Printing

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/custom-write)

(make-constructor-style-printer get-constructor

get-contents)

→ (-> any/c output-port? (or/c #t #f 0 1) void?)

get-constructor : (-> any/c (or/c symbol? string?))

get-contents : (-> any/c sequence?)

Produces a function suitable as a value for prop:custom-write. The function prints values
in “constructor style.” When the value is printed as an expression, it is shown as an ap-
plication of the constructor (as returned by get-constructor ) to the contents (as returned
by get-contents ). When given to write, it is shown as an unreadable value with the
constructor separated from the contents by a colon.

Examples:

> (struct point (x y)

#:property prop:custom-write

(make-constructor-style-printer

(lambda (obj) 'point)

(lambda (obj) (list (point-x obj) (point-y obj)))))

> (print (point 1 2))

(point 1 2)

> (write (point 1 2))

#<point: 1 2>

The function also cooperates with pretty-print:

Examples:

> (parameterize ((pretty-print-columns 10))

(pretty-print (point 3000000 4000000)))

(point

3000000

4000000)

> (parameterize ((pretty-print-columns 10))

(pretty-write (point 3000000 4000000)))

70



#<point:

3000000

4000000>

prop:auto-custom-write : (struct-type-property/c 'constructor)

When attached to a struct type, automatically generates a printer using make-constructor-
style-printer and attaches it to the struct type’s prop:custom-write property. It also
sets the prop:custom-print-quotable property to 'never.

Examples:

> (struct point3 (x y z)

#:property prop:auto-custom-write 'constructor)

> (print (point3 3 4 5))

(point3 3 4 5)

> (write (point3 3 4 5))

#<point3: 3 4 5>

71



30 Syntax

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/syntax)

(explode-module-path-index mpi)

→ (listof (or/c module-path? resolved-module-path? #f))

mpi : module-path-index?

Unfolds mpi using module-path-index-split, returning a list of the relative module
paths together with the terminal resolved module path or #f for the “self” module.

Examples:

> (explode-module-path-index (car (identifier-binding #'lambda)))

'("kw.rkt" racket/private/pre-base #f)

> (explode-module-path-index (caddr (identifier-

binding #'lambda)))

'(racket/base #f)

> (explode-module-path-index (car (identifier-binding #'define-

values)))

'('#%kernel #f)

(phase-of-enclosing-module)

Returns the phase level of the module in which the form occurs (and for the instantiation of
the module in which the form is executed). For example, if a module is required directly by
the “main” module (or the top level), its phase level is 0. If a module is required for-syntax
by the “main” module (or the top level), its phase level is 1.

Examples:

> (module helper racket

(require unstable/syntax)

(displayln (phase-of-enclosing-module)))

> (require 'helper)

0

> (require (for-meta 1 'helper))

1

(make-variable-like-transformer reference-stx

[setter-stx ])

72



→ set!-transformer?

reference-stx : syntax?

setter-stx : (or/c syntax? #f) = #f

Creates a transformer that replaces references to the macro identifier with reference-stx .
Uses of the macro in operator position are interpreted as an application with reference-

stx as the function and the arguments as given.

If the macro identifier is used as the target of a set! form, then the set! form expands into
the application of setter-stx to the set! expression’s right-hand side, if setter-stx is
syntax; otherwise, the identifier is considered immutable and a syntax error is raised.

Examples:

> (define the-box (box add1))

> (define-syntax op

(make-variable-like-transformer

#'(unbox the-box)

#'(lambda (v) (set-box! the-box v))))

> (op 5)

6

> (set! op 0)

> op

0 The subsequent
bindings were
added by Vincent
St-Amour
<stamourv@racket-
lang.org>.

(format-unique-id lctx

fmt

v ...

[#:source src

#:props props

#:cert cert ]) → identifier?

lctx : (or/c syntax? #f)

fmt : string?

v : (or/c string? symbol? identifier? keyword? char? number?)

src : (or/c syntax? #f) = #f

props : (or/c syntax? #f) = #f

cert : (or/c syntax? #f) = #f

Like format-id, but returned identifiers are guaranteed to be unique.

(syntax-within? a b) → boolean?

a : syntax?

b : syntax?

73

mailto:stamourv@racket-lang.org
mailto:stamourv@racket-lang.org


Returns true is syntax a is within syntax b in the source. Bounds are inclusive. The subsequent
bindings were
added by Sam
Tobin-Hochstadt
<samth@racket-
lang.org>.

(syntax-map f stxl ...) → (listof A)

f : (-> syntax? A)

stxl : syntax?

Performs (map f (syntax->list stxl) ...).

Example:

> (syntax-map syntax-e #'(a b c))

'(a b c) The subsequent
bindings were
added by Carl
Eastlund
<cce@racket-
lang.org>.

30.1 Syntax Object Source Locations

(syntax-source-directory stx) → (or/c path? #f)

stx : syntax?

(syntax-source-file-name stx) → (or/c path? #f)

stx : syntax?

These produce the directory and file name, respectively, of the path with which stx is asso-
ciated, or #f if stx is not associated with a path.

Examples:

(define loc

(list (build-path "/tmp" "dir" "somewhere.rkt")

#f #f #f #f))

(define stx1 (datum->syntax #f 'somewhere loc))

> (syntax-source-directory stx1)

#<path:/tmp/dir/>

> (syntax-source-file-name stx1)

#<path:somewhere.rkt>

(define stx2 (datum->syntax #f 'nowhere #f))

> (syntax-source-directory stx2)

#f

> (syntax-source-directory stx2)

#f

74

mailto:samth@racket-lang.org
mailto:samth@racket-lang.org
mailto:cce@racket-lang.org
mailto:cce@racket-lang.org


31 Temporal Contracts: Explicit Contract Monitors

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/temp-c)

The contract system implies the presence of a "monitoring system" that ensures that con-
tracts are not violated. The racket/contract system compiles this monitoring system
into checks on values that cross a contracted boundary. This module provides a facility to
pass contract boundary crossing information to an explicit monitor for approval. This moni-
tor may, for example, use state to enforce temporal constraints, such as a resource is locked
before it is accessed.

31.1 Warning! Experimental!

This library is truly experimental and the interface is likely to drastically change as we get
more experience making use of temporal contracts. In particular, the library comes with
no advice about designing temporal contracts, which are much more subtle than standard
contracts. This subtlety is compounded because, while temporal contract violations have
accurate blame information, we cannot yet connect violations to sub-pieces of the temporal
formula.

For example, applying f to "three" when it is contracted to only accept numbers will error
by blaming the caller and providing the explanation "expected a <number?>, received:
"three"". In contrast, applying g to "even" and then to "odd" when g is contracted to
accept strings on every odd invocation, but numbers on every even invocation, will error
by blaming the second (odd) call, but will not provide any explanation except "the monitor
disallowed the call with arguments: "odd"". Translating non-acceptance of an event trace by
an automata into a palatable user explanation is an open problem.

31.2 Monitors

(require unstable/temp-c/monitor)

(struct monitor (label)

#:transparent)

label : symbol?

(struct monitor:proj monitor (label proj-label v)

#:transparent)

label : symbol?

proj-label : symbol?

v : any/c

75



(struct monitor:call monitor (label

proj-label

f

app-label

kws

kw-args

args)

#:transparent)

label : symbol?

proj-label : symbol?

f : procedure?

app-label : symbol?

kws : (listof keyword?)

kw-args : list?

args : list?

(struct monitor:return monitor (label

proj-label

f

app-label

kws

kw-args

args

rets)

#:transparent)

label : symbol?

proj-label : symbol?

f : procedure?

app-label : symbol?

kws : (listof keyword?)

kw-args : list?

args : list?

rets : list?

(monitor/c monitor-allows? label c) → contract?
monitor-allows? : (-> monitor? boolean?)

label : symbol?

c : contract?

monitor/c creates a new contract around c that uses monitor-allows? to approve con-
tract boundary crossings. (c approves positive crossings first.)

Whenever a value v is projected by the result of monitor/c, monitor-allows? must
approve a (monitor:proj label proj-label v) structure, where proj-label is a
unique symbol for this projection.

If monitor-allows? approves and the value is not a function, then the value is returned.

76



If the value is a function, then a projection is returned, whenever it is called, monitor-
allows? must approve a (monitor:call label proj-label v app-label kws kw-

args args) structure, where app-label is a unique symbol for this application and kws,
kw-args, args are the arguments passed to the function.

Whenever it returns, monitor-allows? must approve a (monitor:return label

proj-label v app-label kws kw-args args rets) structure, where ret are the re-
turn values of the application.

The unique projection label allows explicitly monitored contracts to be useful when used in
a first-class way at different boundaries.

The unique application label allows explicitly monitored contracts to pair calls and returns
when functions return multiple times or never through the use of continuations.

Here is a short example that uses an explicit monitor to ensure that malloc and free are
used correctly.

(define allocated (make-weak-hasheq))

(define memmon

(match-lambda

[(monitor:return 'malloc _ _ _ _ _ _ (list addr))

(hash-set! allocated addr #t)

#t]

[(monitor:call 'free _ _ _ _ _ (list addr))

(hash-has-key? allocated addr)]

[(monitor:return 'free _ _ _ _ _ (list addr) _)

(hash-remove! allocated addr)

#t]

[_

#t]))

(provide/contract

[malloc (monitor/c memmon 'malloc (-> number?))]

[free (monitor/c memmon 'free (-> number? void))])

31.3 Domain Specific Language

(require unstable/temp-c/dsl)

Constructing explicit monitors using only monitor/c can be a bit onerous. This module
provides some helpful tools for making the definition easier. It provides everything from
unstable/temp-c/monitor, as well as all bindings from unstable/automata/re and
unstable/automata/re-ext. The latter provide a DSL for writing "dependent" regular
expression machines over arbitrary racket/match patterns.

77



First, a few match patterns are available to avoid specify all the details of monitored events
(since most of the time the detailed options are unnecessary.)

(call n a ...)

A match expander for call events to the labeled function n with arguments a .

(ret n a ...)

A match expander for return events to the labeled function n with return values a .

(with-monitor contract-expr re-pat)

Defines a monitored contract where the structural portion of the contract is the contract-

expr (which may included embedded label expressions) and where the temporal portion
of the contract is the regular expression given by re-pat . (Note: re-pat is not a Racket
expression that evaluates to a regular expression. It is a literal regular expression.) An
optional #:concurrent may be added between the contract and the regular expression to
ensure that the machine is safe against race-conditions.

(label id contract-expr)

Labels a portion of a structural contract inside of with-monitor with the label id .

Here is a short example for malloc and free :

(with-monitor

(cons/c (label 'malloc (-> addr?))

(label 'free (-> addr? void?)))

(complement

(seq (star _)

(dseq (call 'free addr)

(seq

(star (not (ret 'malloc (== addr))))

(call 'free (== addr)))))))

78



32 GUI Libraries

32.1 Notify-boxes

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/gui/notify)

notify-box% : class?
superclass: object%

A notify-box contains a mutable cell. The notify-box notifies its listeners when the contents
of the cell is changed.

Examples:

> (define nb (new notify-box% (value 'apple)))

> (send nb get)

'apple

> (send nb set 'orange)

> (send nb listen (lambda (v) (printf "New value: ∼s\n" v)))

> (send nb set 'potato)

New value: potato

(new notify-box% [value value]) → (is-a?/c notify-box%)

value : any/c

Creates a notify-box initially containing value .

(send a-notify-box get) → any/c

Gets the value currently stored in the notify-box.

(send a-notify-box set v) → void?

v : any/c

Updates the value stored in the notify-box and notifies the listeners.

(send a-notify-box listen listener) → void?

listener : (-> any/c any)

79



Adds a callback to be invoked on the new value when the notify-box’s contents
change.

(send a-notify-box remove-listener listener) → void?

listener : (-> any/c any)

Removes a previously-added callback.

(send a-notify-box remove-all-listeners) → void?

Removes all previously registered callbacks.

(notify-box/pref proc

[#:readonly? readonly?]) → (is-a?/c notify-box%)

proc : (case-> (-> any/c) (-> any/c void?))

readonly? : boolean? = #f

Creates a notify-box with an initial value of (proc). Unless readonly? is true, proc is
invoked on the new value when the notify-box is updated.

Useful for tying a notify-box to a preference or parameter. Of course, changes made directly
to the underlying parameter or state are not reflected in the notify-box.

Examples:

> (define animal (make-parameter 'ant))

> (define nb (notify-box/pref animal))

> (send nb listen (lambda (v) (printf "New value: ∼s\n" v)))

> (send nb set 'bee)

New value: bee

> (animal 'cow)

> (send nb get)

'bee

> (send nb set 'deer)

New value: deer

> (animal)

'deer

(define-notify name value-expr)

value-expr : (is-a?/c notify-box%)

80



Class-body form. Declares name as a field and get-name , set-name , and listen-name

as methods that delegate to the get, set, and listen methods of value.

The value-expr argument must evaluate to a notify-box, not just the initial contents for a
notify box.

Useful for aggregating many notify-boxes together into one “configuration” object.

Examples:

> (define config%

(class object%

(define-notify food (new notify-box% (value 'apple)))

(define-notify animal (new notify-box% (value 'ant)))

(super-new)))

> (define c (new config%))

> (send c listen-food

(lambda (v) (when (eq? v 'honey) (send c set-

animal 'bear))))

> (let ([food (get-field food c)])

(send food set 'honey))

> (send c get-animal)

'bear

(menu-option/notify-box parent

label

notify-box)

→ (is-a?/c checkable-menu-item%)

parent : (or/c (is-a?/c menu%) (is-a?/c popup-menu%))

label : label-string?

notify-box : (is-a?/c notify-box%)

Creates a checkable-menu-item% tied to notify-box . The menu item is checked when-
ever (send notify-box get) is true. Clicking the menu item toggles the value of
notify-box and invokes its listeners.

(check-box/notify-box parent

label

notify-box) → (is-a?/c check-box%)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

label : label-string?

notify-box : (is-a?/c notify-box%)

81



Creates a check-box% tied to notify-box . The check-box is checked whenever (send
notify-box get) is true. Clicking the check box toggles the value of notify-box and
invokes its listeners.
(choice/notify-box parent

label

choices

notify-box) → (is-a?/c choice%)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

label : label-string?

choices : (listof label-string?)

notify-box : (is-a?/c notify-box%)

Creates a choice% tied to notify-box . The choice control has the value (send notify-

box get) selected, and selecting a different choice updates notify-box and invokes its
listeners.

If the value of notify-box is not in choices , either initially or upon an update, an error is
raised.
(menu-group/notify-box parent

labels

notify-box)

→ (listof (is-a?/c checkable-menu-item%))

parent : (or/c (is-a?/c menu%) (is-a?/c popup-menu%))

labels : (listof label-string?)

notify-box : (is-a?/c notify-box%)

Returns a list of checkable-menu-item% controls tied to notify-box . A menu item
is checked when its label is (send notify-box get). Clicking a menu item updates
notify-box to its label and invokes notify-box ’s listeners.

32.2 Preferences

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/gui/prefs)

(pref:get/set pref) → (case-> (-> any/c) (-> any/c void?))

pref : symbol?

Returns a procedure that when applied to zero arguments retrieves the current value of the
preference (framework/preferences) named pref and when applied to one argument
updates the preference named pref .

82



32.3 Pict Utilities

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/gui/pict)

The functions and macros exported by this module are also exported by unsta-

ble/gui/slideshow.

32.3.1 Pict Colors

(color c p) → pict?

c : color/c

p : pict?

Applies color c to picture p . Equivalent to (colorize p c).

Example:

> (color "red" (disk 20))

(red pict) → pict?

pict : pict?

(orange pict) → pict?

pict : pict?

(yellow pict) → pict?

pict : pict?

(green pict) → pict?

pict : pict?

(blue pict) → pict?

pict : pict?

(purple pict) → pict?

pict : pict?

(black pict) → pict?

pict : pict?

(brown pict) → pict?

pict : pict?

(gray pict) → pict?

pict : pict?

(white pict) → pict?

pict : pict?

(cyan pict) → pict?

pict : pict?

83



(magenta pict) → pict?

pict : pict?

These functions apply appropriate colors to picture p.

Example:

> (red (disk 20))

(light color) → color/c

color : color/c

(dark color) → color/c
color : color/c

These functions produce ligher or darker versions of a color.

Example:

> (hc-append (colorize (disk 20) "red")

(colorize (disk 20) (dark "red"))

(colorize (disk 20) (light "red")))

color/c : flat-contract?

This contract recognizes color strings, color% instances, and RGB color lists.

32.3.2 Pict Manipulation

(fill pict width height) → pict?

pict : pict?

width : (or/c real? #f)

height : (or/c real? #f)

Extends pict ’s bounding box to a minimum width and/or height , placing the original
picture in the middle of the space.

Example:

> (frame (fill (disk 20) 40 40))

84



(scale-to pict width height [#:mode mode ]) → pict?

pict : pict?

width : real?

height : real?

mode : (or/c 'preserve 'inset 'distort) = 'preserve

Scales pict so that its width and height are at most width and height , respectively. If
mode is 'preserve, the width and height are scaled by the same factor so pict ’s aspect
ratio is preserved; the result’s bounding box may be smaller than width by height . If
mode is 'inset, the aspect ratio is preserved as with 'preserve, but the resulting pict is
centered in a bounding box of exactly width by height . If mode is 'distort, the width
and height are scaled separately.

Examples:

> (frame (scale-to (circle 100) 40 20))

> (frame (scale-to (circle 100) 40 20 #:mode 'inset))

> (frame (scale-to (circle 100) 40 20 #:mode 'distort))

Conditional Manipulations

These pict transformers all take boolean arguments that determine whether to transform
the pict or leave it unchanged. These transformations can be useful for staged slides, as
the resulting pict always has the same size and shape, and its contents always appear at
the same position, but changing the boolean argument between slides can control when the
transformation occurs.

(show pict [show?]) → pict?

pict : pict?

show? : truth/c = #t

(hide pict [hide?]) → pict?

pict : pict?

hide? : truth/c = #t

These functions conditionally show or hide an image, essentially choosing between pict

and (ghost pict). The only difference between the two is the default behavior and
the opposite meaning of the show? and hide? booleans. Both functions are provided for
mnemonic purposes.

(strike pict [strike?]) → pict?

pict : pict?

strike? : truth/c = #t

85



Displays a strikethrough image by putting a line through the middle of pict if strike? is
true; produces pict unchanged otherwise.

Example:

> (strike (colorize (disk 20) "yellow"))

(shade pict [shade? #:ratio ratio ]) → pict?

pict : pict?

shade? : truth/c = #t

ratio : (real-in 0 1) = 1/2

Shades pict to show with ratio of its normal opacity; if ratio is 1 or shade? is #f,
shows pict unchanged.

Example:

> (shade (colorize (disk 20) "red"))

Conditional Combinations

These pict control flow operators decide which pict of several to use. All branches are
evaluated; the resulting pict is a combination of the pict chosen by normal conditional flow
with ghost applied to all the other picts. The result is a picture large enough to accommodate
each alternative, but showing only the chosen one. This is useful for staged slides, as the pict
chosen may change with each slide but its size and position will not.

(pict-if maybe-combine test-expr then-expr else-expr)

maybe-combine =
| #:combine combine-expr

Chooses either then-expr or else-expr based on test-expr , similarly to if. Combines
the chosen, visible image with the other, invisible image using combine-expr , defaulting
to pict-combine.

Example:

> (let ([f (lambda (x)

(pict-if x

(disk 20)

(disk 40)))])

(hc-append 10

(frame (f #t))

86



(frame (f #f))))

(pict-cond maybe-combine [test-expr pict-expr] ...)

maybe-combine =
| #:combine combine-expr

Chooses a pict-expr based on the first successful test-expr , similarly to cond. Com-
bines the chosen, visible image with the other, invisible images using combine-expr , de-
faulting to pict-combine.

Example:

> (let ([f (lambda (x)

(pict-cond

[(eq? x 'circle) (circle 20)]

[(eq? x 'disk) (disk 40)]

[(eq? x 'text) (text "ok" null 20)]))])

(hc-append 10

(frame (f 'circle))

(frame (f 'disk))

(frame (f 'text))))

ok
(pict-case test-expr maybe-combine [literals pict-expr] ...)

maybe-combine =
| #:combine combine-expr

Chooses a pict-expr based on test-expr and each list of literals , similarly to case.
Combines the chosen, visible image with the other, invisible images using combine-expr ,
defaulting to pict-combine.

Example:

> (let ([f (lambda (x)

(pict-case x

[(circle) (circle 20)]

[(disk) (disk 40)]

[(text) (text "ok" null 20)]))])

(hc-append 10

(frame (f 'circle))

87



(frame (f 'disk))

(frame (f 'text))))

ok
(pict-match test-expr maybe-combine [pattern pict-expr] ...)

maybe-combine =
| #:combine combine-expr

Chooses a pict-expr based on test-expr and each pattern , similarly to match. Com-
bines the chosen, visible image with the other, invisible images using combine-expr , de-
faulting to pict-combine.

pict-combine

This syntax parameter determines the default pict combining form used by the above macros.
It defaults to lbl-superimpose.

(with-pict-combine combine-id body ...)

Sets pict-combine to refer to combine-id within each of the body terms, which are
spliced into the containing context.

Example:

> (let ([f (lambda (x)

(with-pict-combine cc-superimpose

(pict-case x

[(circle) (circle 20)]

[(disk) (disk 40)]

[(text) (text "ok" null 20)])))])

(hc-append 10

(frame (f 'circle))

(frame (f 'disk))

(frame (f 'text))))

ok

32.3.3 Shapes with Borders
The subsequent
bindings were
added by Vincent
St-Amour.

88



(ellipse/border w

h

[#:color color

#:border-color border-color

#:border-width border-width ]) → pict?

w : real?

h : real?

color : color/c = "white"

border-color : color/c = "black"

border-width : real? = 2

(circle/border diameter

[#:color color

#:border-color border-color

#:border-width border-width ]) → pict?

diameter : real?

color : color/c = "white"

border-color : color/c = "black"

border-width : real? = 2

(rectangle/border w

h

[#:color color

#:border-color border-color

#:border-width border-width ]) → pict?

w : real?

h : real?

color : color/c = "white"

border-color : color/c = "black"

border-width : real? = 2

(rounded-rectangle/border w

h

[#:color color

#:border-color border-color

#:border-width border-width

#:corner-radius corner-radius

#:angle angle ])
→ pict?

w : real?

h : real?

color : color/c = "white"

border-color : color/c = "black"

border-width : real? = 2

corner-radius : real? = -0.25

angle : real? = 0

These functions create shapes with border of the given color and width.

89



Examples:

> (ellipse/border 40 20 #:border-color "blue")

> (rounded-rectangle/border 40 20 #:color "red")

32.3.4 Lines with Labels
The subsequent
bindings were
added by Scott
Owens.

(pin-label-line label

pict

src-pict

src-coord-fn

dest-pict

dest-coord-fn

[#:start-angle start-angle

#:end-angle end-angle

#:start-pull start-pull

#:end-pull end-pull

#:line-width line-width

#:color color

#:under? under?

#:x-adjust x-adjust

#:y-adjust y-adjust ]) → pict?

label : pict?

pict : pict?

src-pict : pict-path?

src-coord-fn : (-> pict-path? (values real? real?))

dest-pict : pict-path?

dest-coord-fn : (-> pict-path? (values real? real?))

start-angle : (or/c real? #f) = #f

end-angle : (or/c real? #f) = #f

start-pull : real? = 1/4

end-pull : real? = 1/4

line-width : (or/c real? #f) = #f

color : (or/c #f string? (is-a?/c color%)) = #f

under? : any/c = #f

x-adjust : real? = 0

y-adjust : real? = 0

90



(pin-arrow-label-line label

arrow-size

pict

src-pict

src-coord-fn

dest-pict

dest-coord-fn

[#:start-angle start-angle

#:end-angle end-angle

#:start-pull start-pull

#:end-pull end-pull

#:line-width line-width

#:color color

#:under? under?

#:hide-arrowhead? hide-arrowhead?

#:x-adjust x-adjust

#:y-adjust y-adjust ])
→ pict?

label : pict?

arrow-size : real?

pict : pict?

src-pict : pict-path?

src-coord-fn : (-> pict-path? (values real? real?))

dest-pict : pict-path?

dest-coord-fn : (-> pict-path? (values real? real?))

start-angle : (or/c real? #f) = #f

end-angle : (or/c real? #f) = #f

start-pull : real? = 1/4

end-pull : real? = 1/4

line-width : (or/c real? #f) = #f

color : (or/c #f string? (is-a?/c color%)) = #f

under? : any/c = #f

hide-arrowhead? : any/c = #f

x-adjust : real? = 0

y-adjust : real? = 0

91



(pin-arrows-label-line label

arrow-size

pict

src-pict

src-coord-fn

dest-pict

dest-coord-fn

[#:start-angle start-angle

#:end-angle end-angle

#:start-pull start-pull

#:end-pull end-pull

#:line-width line-width

#:color color

#:under? under?

#:hide-arrowhead? hide-arrowhead?

#:x-adjust x-adjust

#:y-adjust y-adjust ])
→ pict?

label : pict?

arrow-size : real?

pict : pict?

src-pict : pict-path?

src-coord-fn : (-> pict-path? (values real? real?))

dest-pict : pict-path?

dest-coord-fn : (-> pict-path? (values real? real?))

start-angle : (or/c real? #f) = #f

end-angle : (or/c real? #f) = #f

start-pull : real? = 1/4

end-pull : real? = 1/4

line-width : (or/c real? #f) = #f

color : (or/c #f string? (is-a?/c color%)) = #f

under? : any/c = #f

hide-arrowhead? : any/c = #f

x-adjust : real? = 0

y-adjust : real? = 0

These functions behave like pin-line, pin-arrow-line and pin-arrows-line with the
addition of a label attached to the line.

Example:

> (let* ([a (red (disk 20))]

[b (blue (filled-rectangle 20 20))]

[p (vl-append a (hb-append (blank 100) b))])

(pin-arrow-label-line

(rotate (text "label" null 10) (/ pi -4))

92



10 p

a rb-find

b lt-find))

label

32.3.5 Blur
The subsequent
bindings were
added by Ryan
Culpepper.

(blur p h-radius [v-radius ]) → pict?

p : pict?

h-radius : (and/c real? (not/c negative?))

v-radius : (and/c real? (not/c negative?)) = h-radius

Blurs p using an iterated box blur that approximates a gaussian blur. The h-radius and
v-radius arguments control the strength of the horizontal and vertical components of the
blur, respectively. They are given in terms of pict units, which may not directly correspond
to screen pixels.

The blur function takes work proportional to

(* (pict-width p) (pict-height p))

but it may be sped up by a factor of up to (processor-count) due to the use of futures.

Examples:

> (blur (text "blur" null 40) 5)

> (blur (text "more blur" null 40) 10)

> (blur (text "much blur" null 40) 20)

93



> (blur (text "horiz. blur" null 40) 10 0)

The resulting pict has the same bounding box as p , so when picts are automatically clipped
(as in Scribble documents), the pict should be inset by the blur radius.

Example:

> (inset (blur (text "more blur" null 40) 10) 10)

(shadow p

radius

[dx
dy

#:color color

#:shadow-color shadow-color ]) → pict?

p : pict?

radius : (and/c real? (not/c negative?))

dx : real? = 0

dy : real? = dx

color : (or/c #f string? (is-a?/c color%)) = #f

shadow-color : (or/c #f string? (is-a?/c color%)) = #f

Creates a shadow effect by superimposing p over a blurred version of p . The shadow is
offset from p by (dx , dy ) units.

If color is not #f, the foreground part is (colorize p color); otherwise it is just p . If
shadow-color is not #f, the shadow part is produced by blurring (colorize p shadow-

color); otherwise it is produced by blurring p .

The resulting pict has the same bounding box as p .

Examples:

> (inset (shadow (text "shadow" null 50) 10) 10)

shadow
94



> (inset (shadow (text "shadow" null 50) 10 5) 10)

shadow
> (inset (shadow (text "shadow" null 50)

5 0 2 #:color "white" #:shadow-color "red")

10)

shadow
(blur-bitmap! bitmap h-radius [v-radius ]) → void?

bitmap : (is-a?/c bitmap%)

h-radius : (and/c real? (not/c negative?))

v-radius : (and/c real? (not/c negative?)) = h-radius

Blurs bitmap using blur radii h-radius and v-radius .

Tagged Picts

(tag-pict p tag) → pict?

p : pict?

tag : symbol?

Returns a pict like p that carries a symbolic tag. The tag can be used with find-tag to
locate the pict.

(find-tag p find) → (or/c pict-path? #f)

p : pict?

find : tag-path?

Locates a sub-pict of p . Returns a pict-path that can be used with functions like lt-find,
etc.

Example:

> (let* ([a (tag-pict (red (disk 20)) 'a)]

[b (tag-pict (blue (filled-rectangle 20 20)) 'b)]

[p (vl-append a (hb-append (blank 100) b))])

(pin-arrow-line 10 p

(find-tag p 'a) rb-find

95



(find-tag p 'b) lt-find))

(find-tag* p find) → (listof pict-path?)

p : pict?

find : tag-path?

Like find-tag, but returns all pict-paths corresponding to the given tag-path.

Example:

> (let* ([a (lambda () (tag-pict (red (disk 20)) 'a))]

[b (lambda () (tag-pict (blue (filled-

rectangle 20 20)) 'b))]

[as (vc-append 10 (a) (a) (a))]

[bs (vc-append 10 (b) (b) (b))]

[p (hc-append as (blank 60 0) bs)])

(for*/fold ([p p])

([apath (in-list (find-tag* p 'a))]

[bpath (in-list (find-tag* p 'b))])

(pin-arrow-line 4 p

apath rc-find

bpath lc-find)))

(tag-path? x) → boolean?

x : any/c

Returns #t if x is a symbol or a non-empty list of symbols, #f otherwise.

32.3.6 Shadow Frames

96



(shadow-frame pict

...

[#:sep separation

#:margin margin

#:background-color bg-color

#:frame-color frame-color

#:frame-line-width frame-line-width

#:shadow-side-length shadow-side-length

#:shadow-top-y-offset shadow-top-y-offset

#:shadow-bottom-y-offset shadow-bottom-y-offset

#:shadow-descent shadow-descent

#:shadow-alpha-factor shadow-alpha-factor

#:blur blur-radius ])
→ pict?

pict : pict?

separation : real? = 5

margin : real? = 20

bg-color : (or/c string? (is-a?/c color%)) = "white"

frame-color : (or/c string? (is-a?/c color%)) = "gray"

frame-line-width : (or/c real? #f) = 0

shadow-side-length : real? = 4

shadow-top-y-offset : real? = 10

shadow-bottom-y-offset : real? = 4

shadow-descent : (and/c real? (not/c negative?)) = 40

shadow-alpha-factor : real? = 3/4

blur-radius : (and/c real? (not/c negative?)) = 20

Surrounds the picts with a rectangular frame that casts a symmetric “curled paper” shadow.

The picts are vertically appended with separation space between them. They are placed
on a rectangular background of solid bg-color with margin space on all sides. A frame
of frame-color and frame-line-width is added around the rectangle. The rectangle
casts a shadow that extends shadow-side-length to the left and right, starts shadow-

top-y-offset below the top of the rectangle and extends to shadow-bottom-y-offset

below the bottom of the rectangle in the center and an additional shadow-descent below
that on the sides. The shadow is painted using a linear gradient; shadow-alpha-factor
determines its density at the center. Finally, the shadow is blurred by blur-radius ; all
previous measurements are pre-blur measurements.

Example:

> (scale (shadow-frame (text "text in a nifty

frame" null 60)) 1/2)

97



text in a nifty frame

(arch outer-width

inner-width

solid-height

leg-height) → pict?

outer-width : real?

inner-width : real?

solid-height : real?

leg-height : real?

Creates an arch.

Example:

> (colorize (arch 100 80 20 20) "red")

32.3.7 Additional combinators
The subsequent
bindings were
added by Asumu
Takikawa.

(backdrop pict [#:color color ]) → pict?

pict : pict?

color : color/c = "white"

Adds a background highlighted with color to pict .

Examples:

> (backdrop (circle 20) #:color "whitesmoke")

> (backdrop (text "broccoli rabé") #:color "PaleGreen")

broccoli rabé

(cross-out pict

[#:width width

#:style style

#:color color ]) → pict?

98



pict : pict?

width : real? = 1

style :

(or/c 'transparent 'solid 'xor

'hilite 'dot 'long-dash 'short-dash

'dot-dash 'xor-dot 'xor-long-dash

'xor-short-dash 'xor-dot-dash)

= 'solid

color : color/c = "black"

Crosses out pict with two diagonal lines drawn with the given line width and with the line
style . The lines are colored with color .

Examples:

> (cross-out (circle 20))

> (cross-out (rectangle 30 20) #:width 2 #:style 'long-dash)

> (cross-out (text "rapini") #:width 3 #:color "red")

rapini

32.4 Slideshow Presentations

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/gui/slideshow)

This module also exports everything provided by unstable/gui/pict.

32.4.1 Text Formatting

(with-size size expr)

Sets current-font-size to size while running expr .

(with-scale scale expr)

Multiplies current-font-size by scale while running expr .

(big text)

(small text)

99



Scale current-font-size by 3/2 or 2/3, respectively, while running text .

(with-font font expr)

Sets current-main-font to font while running expr .

(with-style style expr)

Adds style to current-main-font (via cons) while running expr .

(bold text)

(italic text)
(subscript text)

(superscript text)

(caps text)

Adds the attributes for bold, italic, superscript, subscript, or small caps text, respectively, to
current-main-font while running text .

32.4.2 Tables

(tabular row

...

[#:gap gap

#:hgap hgap

#:vgap vgap

#:align align

#:halign halign

#:valign valign ]) → pict?

row : (listof (or/c string? pict?))

gap : natural-number/c = gap-size

hgap : natural-number/c = gap

vgap : natural-number/c = gap

align : (->* [] [] #:rest (listof pict?) pict?)

= lbl-superimpose

halign : (->* [] [] #:rest (listof pict?) pict?) = align

valign : (->* [] [] #:rest (listof pict?) pict?) = align

Constructs a table containing the given rows, all of which must be of the same length.
Applies t to each string in a row to construct a pict. The hgap , vgap , halign , and valign

are used to determine the horizontal and vertical gaps and alignments as in table (except
that every row and column is uniform).

100



32.4.3 Multiple Columns

(two-columns one two)

Constructs a two-column pict using one and two as the two columns. Sets current-para-
width appropriately in each column.

(mini-slide pict ...) → pict?

pict : pict?

Appends each pict vertically with space between them, similarly to the slide function.

(columns pict ...) → pict?

pict : pict?

Combines each pict horizontally, aligned at the top, with space in between.

(column width body ...)

Sets current-para-width to width during execution of the body expressions.

(column-size n [r ]) → real?

n : exact-positive-integer?

r : real? = (/ n)

Computes the width of one column out of n that takes up a ratio of r of the available space
(according to current-para-width).

32.4.4 Staged Slides

(staged [name ...] body ...)

Executes the body terms once for each stage name . The terms may include expressions and
mutually recursive definitions. Within the body, each name is bound to a number from 1 to
the number of stages in order. Furthermore, during execution stage is bound to the number
of the current stage and stage-name is bound to a symbol representing the name of the
current stage. By comparing stage to the numeric value of each name , or stage-name to
quoted symbols of the form 'name, the user may compute based on the progression of the
stages.

stage

stage-name

101



These keywords are bound during the execution of staged and should not be used otherwise.

(slide/staged [name ...] arg ...)

Creates a staged slide. Equivalent to (staged [name ...] (slide arg ...)).

Within a staged slide, the boolean arguments to hide, show, strike, and shade can be
used to determine in which stages to perform a transformation. The macros pict-if, pict-
cond, pict-case, and pict-match may also be used to create images which change natu-
rally between stages.

32.4.5 Revealing Slides
The subsequent
bindings were
added by Jon
Rafkind.

(reveal number expr ...)

Expands to either (show expr ...) or (hide expr ...) if number is greater than or
equal to the current revealed slide within a revealing-slide.

(revealing-slide expr ...)

Creates N slides where N is the maximum number given to a reveal expression as the first
argument. Each slide has the current reveal number incremented by one so progressive slides
can reveal picts in that appear in arbitrary places.

(revealing-slide

(hc-append (reveal 0 (t "I show up first"))

(reveal 1 (t "I show up second")))

(reveal 1 (t "I also show up second")))

(items-slide (name ...) expr ...)

Creates N slides where N is the maximum number given to a reveal similar to revealing-
slide. Each slide will show the names on the left hand side using right justification and only
one reveal will be displayed on the right. The order of the names will be matched with the
current reveal number so the first item will be displayed while the first reveal is displayed.
Reveals that are not active will have their corresponding items displayed but in a light font
so as to indicate inactivity.

(items-slide ("item1" "item2" "item3")

(reveal 0

(t "I will show up for item1"))

(reveal 1

(t "I will show up for item2"))

(reveal 2

(t "I will show up for item3")))

102



32.4.6 Miscellaneous Slide Utilities
The subsequent
bindings were
added by Scott
Owens.

(blank-line) → pict?

Adds a blank line of the current font size’s height.

32.5 Progressive Picts and Slides

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

32.5.1 Progressive Picts

(require unstable/gui/ppict)

A progressive pict or “ppict” is a kind of pict that has an associated “pict placer,” which
generally represents a position and alignment. New picts can be placed on the progressive
pict by calling ppict-add, and the placer can be updated by calling ppict-go. The ppict-
do form provides a compact notation for sequences of those two operations.

(ppict-do base-expr ppict-do-fragment ...)

(ppict-do* base-expr ppic-do-fragment ...)

ppict-do-fragment = #:go placer-expr

| #:set pict-expr

| #:next

| #:alt (ppict-do-fragment ...)

| elem-expr

base-expr : pict?

placer-expr : placer?

pict-expr : pict?

elem-expr : (or/c pict? real? #f)

Builds a pict (and optionally a list of intermediate picts) progressively. The ppict-do form
returns only the final pict; any uses of #:next are ignored. The ppict-do* form returns
two values: the final pict and a list of all partial picts emitted due to #:next (the final pict is
not included).

A #:go fragment changes the current placer. A #:set fragment replaces the current pict
state altogether with a new computed pict. A #:next fragment saves a pict including only

103



the contents emitted so far (but whose alignment takes into account picts yet to come). A
#:alt fragment saves the current pict state, executes the sub-sequence that follows, saves
the result (as if the sub-sequence ended with #:next), then restores the saved pict state
before continuing.

The elem-exprs are interpreted by the current placer. A numeric elem-expr usually rep-
resents a spacing change, but some placers do not support them. A spacing change only
affects added picts up until the next placer is installed; when a new placer is installed, the
spacing is reset, usually to 0.

The ppict-do-state form tracks the current state of the pict. It is updated before a #:go
or #:set fragment or before a sequence of elem-exprs. It is not updated in the middle of
a chain of elem-exprs, however.

Examples:

> (define base

(ppict-do (colorize (rectangle 200 200) "gray")

#:go (coord 1/2 1/2 'cc)

(colorize (hline 200 1) "gray")

#:go (coord 1/2 1/2 'cc)

(colorize (vline 1 200) "gray")))

> base

The use of ppict-do in the defnition of base above is equivalent to

(let* ([pp (colorize (rectangle 200 200) "gray")]

[pp (ppict-go pp (coord 1/2 1/2 'cc))]

[pp (ppict-add pp (colorize (hline 200 1) "gray"))]

[pp (ppict-go pp (coord 1/2 1/2 'cc))]

[pp (ppict-add pp (colorize (vline 1 200) "gray"))])

pp)

104



Examples:

> (define circles-down-1

(ppict-do base

#:go (grid 2 2 2 1 'ct)

10

(circle 20)

(circle 20)

30

(circle 20)))

> circles-down-1

> (define circles-down-2

(ppict-do circles-down-1

(colorize (circle 20) "red")

40

(colorize (circle 20) "red")))

> (inset circles-down-2 20) ; draws outside its bounding box

105



> (inset (clip circles-down-2) 20)

> (ppict-do base

#:go (coord 0 0 'lt)

(tag-pict (circle 20) 'circA)

#:go (coord 1 1 'rb)

(tag-pict (circle 20) 'circB)

#:set (let ([p ppict-do-state])

(pin-arrow-line 10 p

(find-tag p 'circA) rb-find

(find-tag p 'circB) lt-find)))

106



> (let-values ([(final intermediates)

(ppict-do* base

#:go (coord 1/4 1/2 'cb)

(text "shapes:")

#:go (coord 1/2 1/2 'lb)

#:alt [(circle 20)]

#:alt [(rectangle 20 20)]

(text "and more!"))])

(append intermediates (list final)))

'(

shapes: shapes: shapes: and more!

)

More examples of ppict-do are scattered throughout this section.

ppict-do-state

Tracks the current state of a ppict-do or ppict-do* form.

(ppict? x) → boolean?

x : any/c

Returns #t if x is a progressive pict, #f otherwise.

107



(ppict-go p pl) → ppict?

p : pict?

pl : placer?

Creates a progressive pict with the given base pict p and the placer pl .

(ppict-add pp elem ...) → pict?

pp : ppict?

elem : (or/c pict? real? #f 'next)

(ppict-add* pp elem ...) → pict? (listof pict?)

pp : ppict?

elem : (or/c pict? real? #f 'next)

Creates a new pict by adding each elem pict on top of pp according to pp ’s placer. The
result pict may or may not be a progressive pict, depending on the placer used. The ppict-
add function only the final pict; any occurrences of 'next are ignored. The ppict-add*

function returns two values: the final pict and a list of all partial picts emitted due to 'next

(the final pict is not included).

An elem that is a real number changes the spacing for subsequent additions. A elem that
is #f is discarded; it is permitted as a convenience for conditionally including sub-picts.
Note that #f is not equivalent to (blank 0), since the latter will cause spacing to be added
around it.

(placer? x) → boolean?

x : any/c

Returns #t if x is a placer, #f otherwise.

(refpoint-placer? x) → boolean?

x : any/c

Returns #t if x is a placer based on a reference point, #f otherwise.

(coord rel-x

rel-y

[align
#:abs-x abs-x

#:abs-y abs-y

#:compose composer ]) → refpoint-placer?

rel-x : real?

rel-y : real?

align : (or/c 'lt 'ct 'rt 'lc 'cc 'rc 'lb 'cb 'rb) = 'cc

abs-x : real? = 0

abs-y : real? = 0

composer : procedure? = computed from align

108



Returns a placer that places picts according to rel-x and rel-y , which are interpeted as
fractions of the width and height of the base progressive pict. That is, 0, 0 is the top left
corner of the base’s bounding box, and 1, 1 is the bottom right. Then abs-x and abs-y

offsets are added to get the final reference point.

Additions are aligned according to align , a symbol whose name consists of a horizontal
alignment character followed by a vertical alignment character. For example, if align is
'lt, the pict is placed so that its left-top corner is at the reference point; if align is 'rc, the
pict is placed so that the center of its bounding box’s right edge coincides with the reference
point.

By default, if there are multiple picts to be placed, they are vertically appended, aligned
according to the horizontal component of align . For example, if align is 'cc, the default
composer is vc-append; for 'lt, the default composer is vl-append. The spacing is
initially 0.

Examples:

> (ppict-do base

#:go (coord 1/2 1/2 'rb)

(colorize (circle 20) "red")

#:go (coord 1/2 1/2 'lt)

(colorize (circle 20) "darkgreen"))

> (ppict-do base

#:go (coord 1 0 'rt #:abs-x -5 #:abs-y 10)

50 ; change spacing

(text "abc")

(text "12345")

0 ; and again

(text "ok done"))

109



abc

12345
ok done

> (ppict-do base

#:go (coord 0 0 'lt #:compose ht-append)

(circle 10)

(circle 20)

(circle 30))

(grid cols

rows

col

row

[align
#:abs-x abs-x

#:abs-y abs-y

#:compose composer ]) → refpoint-placer?

cols : exact-positive-integer?

rows : exact-positive-integer?

col : exact-integer?

row : exact-integer?

align : (or/c 'lt 'ct 'rt 'lc 'cc 'rc 'lb 'cb 'rb) = 'cc

abs-x : real? = 0

110



abs-y : real? = 0

composer : procedure? = computed from align

Returns a placer that places picts according to a position in a virtual grid. The row and col

indexes are numbered starting at 1.

Uses of grid can be translated into uses of coord, but the translation depends on the align-
ment. For example, (grid 2 2 1 1 'lt) is equivalent to (coord 0 0 'lt), but (grid
2 2 1 1 'rt) is equivalent to (coord 1/2 0 'rt).

Examples:

> (define none-for-me-thanks

(ppict-do base

#:go (grid 2 2 1 1 'lt)

(text "You do not like")

(colorize (text "green eggs and

ham?") "darkgreen")))

> none-for-me-thanks
You do not like
green eggs and ham?

> (ppict-do none-for-me-thanks

#:go (grid 2 2 2 1 'rb)

(colorize (text "I do not like them,") "red")

(text "Sam-I-am."))

111



You do not like
green eggs and ham?

I do not like them,
Sam-I-am.

(cascade [step-x step-y ]) → placer?

step-x : (or/c real? 'auto) = 'auto

step-y : (or/c real? 'auto) = 'auto

Returns a placer that places picts by evenly spreading them diagonally across the base pict
in “cascade” style. This placer does not support changing the spacing by including a real
number within the pict sequence.

When a list picts is to be placed, their bounding boxes are normalized to the maximum width
and height of all picts in the list; each pict is centered in its new bounding box. The picts are
then cascaded so there is step-x space between each of the picts’ left edges; there is also
step-x space between the base pict’s left edge and the first pict’s left edge. Similarly for
step-y and the vertical spacing.

If step-x or step-y is 'auto, the spacing between the centers of the picts to be placed is
determined automatically so that the inter-pict spacing is the same as the spacing between
the last pict and the base.

Examples:

> (ppict-do base

#:go (cascade)

(colorize (filled-rectangle 100 100) "red")

(colorize (filled-rectangle 100 100) "blue"))

112



> (ppict-do base

#:go (cascade 40 20)

(colorize (filled-rectangle 100 100) "red")

(colorize (filled-rectangle 100 100) "blue"))

(tile cols rows) → placer?

cols : exact-positive-integer?

rows : exact-positive-integer?

Returns a placer that places picts by tiling them in a grid cols columns wide and rows rows
high.

Example:

> (ppict-do base

#:go (tile 2 2)

(circle 50)

(rectangle 50 50)

(jack-o-lantern 50)

113



(standard-fish 50 30 #:color "red"))

(at-find-pict find-path

[finder
align

#:abs-x abs-x

#:abs-y abs-y

#:compose composer ]) → refpoint-placer?

find-path : (or/c tag-path? pict-path?)

finder : procedure? = cc-find

align : (or/c 'lt 'ct 'rt 'lc 'cc 'rc 'lb 'cb 'rb) = 'cc

abs-x : real? = 0

abs-y : real? = 0

composer : procedure? = computed from align

Returns a placer that places picts according to a reference point based on an existing pict
within the base.

Example:

> (ppict-do base

#:go (cascade)

(tag-pict (standard-fish 40 20 #:direction 'right #:color "red") 'red-

fish)

(tag-pict (standard-fish 50 30 #:direction 'left #:color "blue") 'blue-

fish)

#:go (at-find-pict 'red-fish rc-find 'lc #:abs-x 10)

(text "red fish"))

114



red fish

(merge-refpoints x-placer y-placer) → refpoint-placer?

x-placer : refpoint-placer?

y-placer : refpoint-placer?

Returns a placer like x-placer except that the y-coordinate of its reference point is com-
puted by y-placer .

Example:

> (ppict-do base

#:go (cascade)

(tag-pict (standard-fish 40 20 #:direction 'right #:color "red") 'red-

fish)

(tag-pict (standard-fish 50 30 #:direction 'left #:color "blue") 'blue-

fish)

#:go (merge-refpoints (coord 1 0 'rc)

(at-find-pict 'red-fish))

(text "red fish"))

red fish

115



32.5.2 Progressive Slides

(require unstable/gui/pslide)

(pslide ppict-do-fragment ...)

Produce slide(s) using progressive picts. See ppict-do for an explanation of ppict-do-
fragments.

Note that like slide but unlike ppict-do*, the number of slides produced is one greater
than the number of #:next uses; that is, a slide is created for the final pict.

Remember to include gap-size after updating the current placer if you want slide-like
spacing.

Example:

> (pslide #:go (coord 0 0 'lt)

(t "You do not like")

(colorize (t "green eggs and ham?") "darkgreen")

#:next

#:go (coord 1 1 'rb)

(colorize (t "I do not like them,") "red")

(t "Sam-I-am."))

slides

You do not like
green eggs and ham?

You do not like
green eggs and ham?

I do not like them,
Sam-I-am.

Note that the text is not flush against the sides of the slide, because pslide uses a base pict
the size of the client area, excluding the margins.

(pslide-base-pict) → (-> pict)

(pslide-base-pict make-base-pict) → void?

make-base-pict : (-> pict)

Controls the initial pict used by pslide. The default value is

116



(lambda () (blank client-w client-h))

(pslide-default-placer) → placer?

(pslide-default-placer placer) → void?

placer : placer?

Controls the initial placer used by pslide. The default value is

(coord 1/2 1/2 'cc)

32.6 Snip Utilities

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/gui/snip)

snip-canvas% : class?
superclass: editor-canvas%

A canvas that contains a single snip.

Snips cannot be placed directly on dialogs, frames and panels. To use an interactive snip
(such as one returned by plot-snip) in a GUI, it must be inserted into an editor, which
itself must be placed on a special canvas, which can be placed in a GUI container. To
provide a seamless user experience, the editor should be enabled but not writable, not be
able to receive focus, not have scrollbars, and other small details.

The snip-canvas% class handles these details, making it easy to use interactive snips as
normal GUI elements.

(new snip-canvas%

[parent parent]

[make-snip make-snip]

[[style style]

[label label]

[horizontal-inset horizontal-inset]

[vertical-inset vertical-inset]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])

117



→ (is-a?/c snip-canvas%)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

make-snip : ((integer-in 0 10000) (integer-in 0 10000) . -> . snip%)

style :
(listof (one-of/c 'no-border 'control-border 'combo

'resize-corner 'no-focus 'deleted

'transparent))

= null

label : (or/c label-string? false/c) = #f

horizontal-inset : (integer-in 0 1000) = 5

vertical-inset : (integer-in 0 1000) = 5

enabled : any/c = #t

vert-margin : (integer-in 0 1000) = 0

horiz-margin : (integer-in 0 1000) = 0

min-width : (integer-in 0 10000) = 0

min-height : (integer-in 0 10000) = 0

stretchable-width : any/c = #t

stretchable-height : any/c = #t

Unlike instances of editor-canvas%, each instance of this class creates and
manages its own editor. The editor contains one object: a snip% instance cre-
ated by make-snip .

The make-snip function receives the requested width and height of the snip,
which are calculated from the size of the snip canvas. It is called the first time
the snip canvas is resized, which most likely coincides with the first time the
snip canvas is shown. The snip is thus created lazily: only when needed, at the
size needed. See on-size for more details and an example.

The style list is prepended with 'no-hscroll and 'no-vscroll before be-
ing passed to the editor-canvas% constructor. The other constructor argu-
ments are passed untouched.

(send a-snip-canvas get-snip) → (or/c (is-a?/c snip%) #f)

Returns the wrapped snip, or #f if make-snip has not been called yet.

(send a-snip-canvas on-size width height) → void?

width : (integer-in 0 10000)

height : (integer-in 0 10000)

Overrides on-size in editor-canvas%.

This is called when the snip canvas is resized.

On the first call, on-size calls make-snip with width and height arguments
respectively (max 0 (- width (* 2 horizontal-inset))) and (max 0

(- height (* 2 vertical-inset))). It then inserts the resulting snip into
its editor.

118



On subsequent calls, on-size calls the snip’s resize method, calculating the
width and height arguments the same way.

When a snip-canvas% instance is intended to wrap an existing snip% instance,
make-snip should simply resize it and return it.

Example: plot-frame and plot3d-frame create snips and call a function
similar to the following to place them in a frame:

(define (make-snip-frame snip w h label)

(define (make-snip width height)

(send snip resize width height)

snip)

(define frame

(new frame%

[label label]

[width (+ 5 5 5 5 w)]

[height (+ 5 5 5 5 h)]))

(new snip-canvas%

[parent frame]

[make-snip make-snip]

[horiz-margin 5] [vert-margin 5]

[horizontal-inset 5] [vertical-inset 5])

frame)

32.7 Scribble Utilities

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/gui/scribble)

(codeblock->pict block) → pict?

block : block?

Converts a scribble block element into a pict.

119


	1 Guidelines for Developing IdentifierColorunstable Libraries
	2 Automata: Compiling State Machines
	2.1 Machines
	2.2 Deterministic Finite Automata
	2.3 Non-Deterministic Finite Automata
	2.4 Non-Deterministic Finite Automata (with epsilon transitions)
	2.5 Regular Expressions
	2.5.1 Extensions
	2.5.2 Examples


	3 Bytes
	4 Contracts
	5 Contracts for Macro Subexpressions
	6 Debugging
	7 Definitions
	8 Errors
	9 Filesystem
	10 Find
	11 Flonums
	12 Futures
	13 Functions
	13.1 Higher Order Predicates

	14 Hash Tables
	15 Interface-Oriented Programming for Classes
	16 Lazy Require
	17 Lists
	18 Logging
	19 Mark Parameters
	20 Match
	21 Open IdentifierColorblackplace expressions
	22 Parameter Groups
	23 Pretty-Printing
	24 Re-Contracting Identifiers
	25 Sandbox
	26 Sequences
	27 Strings
	28 Structs
	29 Struct Printing
	30 Syntax
	30.1 Syntax Object Source Locations

	31 Temporal Contracts: Explicit Contract Monitors
	31.1 Warning! Experimental!
	31.2 Monitors
	31.3 Domain Specific Language

	32 GUI Libraries
	32.1 Notify-boxes
	32.2 Preferences
	32.3 Pict Utilities
	32.3.1 Pict Colors
	32.3.2 Pict Manipulation
	32.3.3 Shapes with Borders
	32.3.4 Lines with Labels
	32.3.5 Blur
	32.3.6 Shadow Frames
	32.3.7 Additional combinators

	32.4 Slideshow Presentations
	32.4.1 Text Formatting
	32.4.2 Tables
	32.4.3 Multiple Columns
	32.4.4 Staged Slides
	32.4.5 Revealing Slides
	32.4.6 Miscellaneous Slide Utilities

	32.5 Progressive Picts and Slides
	32.5.1 Progressive Picts
	32.5.2 Progressive Slides

	32.6 Snip Utilities
	32.7 Scribble Utilities


