
Package Management in Racket (Beta)
Version 5.3.4

Jay McCarthy <jay@racket-lang.org>

May 8, 2013

The Racket package manager lets you install new libraries and collections, and the Racket
package sever helps other Racket programmers find libraries that you make available.

1

mailto:jay@racket-lang.org

Contents

1 Package Concepts 4

2 Managing Packages 8

2.1 Command Line . 8

2.2 Programmatic . 10

3 Developing Packages 12

3.1 GitHub Deployment . 12

3.2 Manual Deployment . 13

3.3 Helping Others Discover Your Package 13

3.4 Naming and Designing Packages . 14

4 Package Metadata 15

5 PLaneT Compatibility 16

6 FAQ 17

6.1 Are package installations versioned with respect to the Racket version? . . 17

6.2 Where and how are packages installed? 17

6.3 How are user-specific and installation-wide package scopes related for con-
flict checking? . 17

6.4 Do I need to change a package’s version when I update a package with error
fixes, etc.? . 18

6.5 How can I specify which version of a package I depend on if its interface
has changed and I need an old version? 18

6.6 Why is the package manager so different than PLaneT? 18

7 Future Plans 20

2

7.1 Short Term . 20

7.2 Long Term . 21

3

1 Package Concepts

A package is a set of modules in some number of collections. Modules installed using the
Racket package manager are required like any other modules. For example, if the package
tic-tac-toe contains the module "matrix.rkt" in a "data" collection, then after tic-tac-

toe is installed,

(require data/matrix)

imports the module. The package name is not mentioned with require, because packages
are a way of managing library collections, not a way of referencing them. It is common,
however, for a package to implement a collection whose name is the same as the package
name—in which case a require might appear to be referencing a package, but it is actually
referencing a collection provided by the package.

Each package has associated package metadata:

• a package name — a string made of the characters a through z, A through Z, 0 through
9, _, and -.

• a checksum — a string that identifies different releases of a package. A package can be
updated when its checksum changes, whether or not its version changes. The check-
sum can be computed as the SHA1 (see openssl/sha1) of the package’s source.

• a version — a string of the form 〈maj〉.〈min〉, 〈maj〉.〈min〉.〈sub〉, or
〈maj〉.〈min〉.〈sub〉.〈rel〉, where 〈maj〉, 〈min〉, 〈sub〉, and 〈rel〉 are all canonical deci-
mal representations of natural numbers, 〈min〉 has no more than two digits, and 〈sub〉
and 〈rel〉 has no more than three digits. A version is intended to reflect available fea-
tures of a package, and should not be confused with different releases of a package as
indicated by the checksum.

• a list of dependencies — a list of packages to be installed simultaneously, optionally
with a lower bound on each package’s version.

A package is typically represented by a directory with the same name as the package.
The checksum is typically left implicit. The package directory can contain a file named
"info.rkt" to declare other metadata (see §4 “Package Metadata”).

A package source identifies a package representation. Each package source type has a dif-
ferent way of storing the checksum. The valid package source types are:

• a local file path naming an archive – The name of the package is the basename
of the archive file. The checksum for archive "f.〈ext 〉" is given by the file
"f.〈ext 〉.CHECKSUM". For example, "∼/tic-tac-toe.zip"’s checksum would

4

be inside "∼/tic-tac-toe.zip.CHECKSUM". The valid archive formats are (cur-
rently) ".zip", ".tar", ".tgz", ".tar.gz", and ".plt".

A package source is inferred to refer to a file only when it has a suffix matching a valid
archive format and when it does not start with alphabetic characters followed by ://.
The inferred package name is the filename without its suffix.

• a local directory – The name of the package is the name of the directory. The checksum
is not present. For example, "∼/tic-tac-toe/" is directory package source.

A package source is inferred to refer to a directory only when it does not have a file-
archive suffix, does not match the grammar of a package name, and does not start with
alphabetic characters followed by ://. The inferred package name is the directory
name.

• a remote URL naming an archive – This type follows the same rules as a local file
path, but the archive and checksum files are accessed via HTTP(S). For example,
"http://game.com/tic-tac-toe.zip" is a remote URL package source whose
checksum is found at "http://game.com/tic-tac-toe.zip.CHECKSUM".

A package source is inferred to be a URL only when it starts with http:// or
https://, and it is inferred to be a file URL when the URL ends with a path ele-
ment that could be inferred as a file archive. The inferred package name is from the
URL’s file name in the same way as for a file package source.

• a remote URL naming a directory – The remote directory must contain a file named
"MANIFEST" that lists all the contingent files. These are downloaded into a local
directory and then the rules for local directory paths are followed. However, if the
remote directory contains a file named ".CHECKSUM", then it is used to determine
the checksum. For example, "http://game.com/tic-tac-toe/" is a directory
URL package source whose checksum is found at "http://game.com/tic-tac-
toe/.CHECKSUM".

A package source is inferred to be a URL the same for a directory or file, and it
is treated as a directory URL when it does not end with a path element that has an
archive file suffix. The inferred package name is the directory name.

• a remote URL naming a GitHub repository – The format for such URLs is:

github://github.com/〈user〉/〈repository〉/〈branch-or-tag〉/〈optional-
subpath〉
For example, "github://github.com/game/tic-tac-toe/master/" is a
GitHub package source.

The zip-formatted archive for the repository (generated by GitHub for every branch
and tag) is used as a remote URL archive path, except the checksum is the hash iden-
tifying the branch (or tag).

A package source is inferred to be a GitHub reference when it starts with github://;
a package source that is otherwise specified as a GitHub reference is automatically pre-
fixed with "github://github.com/". The inferred package name is the last element
of 〈optional-subpath〉 if it is non-empty, otherwise the inferred name is 〈repository〉.

5

• a package name – A package name resolver is consulted to determine the source and
checksum for the package. For example, tic-tac-toe is a package name that can be
used as a package source.

A package source is inferred to be a package name when it fits the grammar of package
names, which means that it has only the characters a through z, A through Z, 0 through
9, _, and -.

A package name resolver (PNR) is a server that converts package names to other pack-
age sources. A PNR is identified by a string representing a URL. This URL is combined
with pkg/〈package〉 path segments (where 〈package〉 is a package name) plus a ver-

sion=〈version〉 query (where 〈version〉 is the Racket version number) to form a URL that
should refer to a read-able hash table with the keys: 'source mapped to the package source
string and 'checksum mapped to the checksum value. Typically, the package source value
for 'source will be a remote URL.

PLT supports two package name resolvers that are enabled by default: https://pkg.

racket-lang.org for new packages and https://planet-compat.racket-lang.org

for automatically generated packages for old PLaneT packages. Anyone may host their own
package name resolver. The source for the PLT-hosted resolvers is in the (collection-

file-path "pkg-index" "meta") directory.

After a package is installed, the original source of its installation is recorded, as well as if it
was an automatic installation. An automatic installation is one that was installed because it
was a dependency of a non-automatic installation package.

Two packages are in conflict if they contain the same module. For example, if the package
tic-tac-toe contains the module file "data/matrix.rkt" and the package factory-optimize

contains the module file "data/matrix.rkt", then tic-tac-toe and factory-optimize are
in conflict. A package may also be in conflict with Racket itself, if it contains a module
file that is part of the core Racket distribution. For example, any package that contains
"racket/list.rkt" is in conflict with Racket. For the purposes of conflicts, a module is
a file that ends in ".rkt" or ".ss".

Package A is a package update of Package B if (1) B is installed, (2) A and B have the same
name, and (3) A’s checksum is different than B’s. Note that a package version is not taken
into account when determining a package update, although a change in a package’s version
(in either direction) implies a change in the checksum because the checksum is computed
from the package source and the meta-data that specifies the version is part of the source.

A package scope determines the effect of package installations, updates, etc., with respect
to different users, Racket versions, and Racket installations. The default package scope can
be configured, but it is normally user, which is user-specific and version-specific; that is,
package installation makes the package visible only for the installing user and with the in-
stalling version of Racket. The installation scope means that package installation makes
the package visible to all users of the specific Racket installation that is used to install the
package. Finally, the shared scope means user-specific, but for all versions and installations

6

https://pkg.racket-lang.org
https://pkg.racket-lang.org
https://planet-compat.racket-lang.org

of Racket.

7

2 Managing Packages

The Racket package manager has two user interfaces: a command line raco sub-command
and a library. They have the exact same capabilities, as the command line interface invokes
the library functions and reprovides all their options.

2.1 Command Line

The raco pkg sub-command provides the following sub-sub-commands:

• raco pkg install 〈option〉 ... 〈pkg-source〉 ... — Installs the given package sources
with the given 〈option〉s:

– --type 〈type〉 or -t 〈type〉— specifies an interpretation of the package source,
where 〈type〉 is either file, dir, file-url, dir-url, github, or name.

– --name 〈pkg〉 or -n 〈pkg〉 — specifies the name of the package, which makes
sense only when a single 〈pkg-source〉 is provided. The name is normally in-
ferred for each 〈pkg-source〉.

– --deps 〈behavior〉— Selects the behavior for dependencies, where 〈behavior〉
is one of

* fail — Cancels the installation if dependencies are version requirements
are unmet (default for most packages)

* force — Installs the package(s) despite missing dependencies or version
requirements (unsafe)

* search-ask — Looks for the dependencies or updates via the configured
package name resolvers (default if the dependency is an indexed name) but
asks if you would like it installed or updated.

* search-auto — Like search-ask, but does not ask for permission to
install or update.

– --force — Ignores conflicts (unsafe)

– --ignore-checksums— Ignores errors verifying package checksums (unsafe).

– --no-setup — Does not run raco setup after installation. This behavior is
also the case if the environment variable PLT_PKG_NOSETUP is set to any non-
empty value.

– --link — Implies --type dir (and overrides any specified type), and links
the existing directory as an installed package.

– --scope 〈scope〉— Selects the package scope for installation, where 〈scope〉 is
one of

* installation — Install packages for all users of a Racket installation,
rather than user-specific.

8

* user — Install packages as user-specific and Racket version-specific.

* shared — Install packages as user-specific, but for all Racket versions.

The default package scope is normally user, but it can be configured with raco

pkg config -i --set default-scope 〈scope〉.
– -i or --installation — Shorthand for --scope installation.

– -u or --user — Shorthand for --scope user.

– -s or --shared — Shorthand for --scope shared.

• raco pkg update 〈option〉 ... 〈pkg〉 ... — Checks the specified packages for package
updates. If an update is found, but it cannot be installed (e.g. it conflicts with another
installed package), then this command fails without installing any of the 〈pkg〉s (or
their dependencies). The update sub-command accepts the following 〈option〉s:

– --deps 〈behavior〉— Same as for raco pkg install.

– --all or -a — Update all packages, if no packages are given in the argument
list.

– --update-deps — Checks the named packages, and their dependencies (tran-
sitively) for updates.

– --no-setup — Same as for raco pkg install.

– --scope 〈scope〉 — Selects a package scope, the same as for raco pkg in-

stall.

– -i or --installation — Shorthand for --scope installation.

– -u or --user — Shorthand for --scope user.

– -s or --shared — Shorthand for --scope shared.

• raco pkg remove 〈option〉 ... 〈pkg〉 ... — Attempts to remove the given packages. If
a package is the dependency of another package that is not listed, this command fails
without removing any of the 〈pkg〉s. It accepts the following 〈option〉s:

– --force — Ignore dependencies when removing packages.

– --no-setup — Same as for raco pkg install.

– --auto — Remove packages that were installed by the search-auto or
search-ask dependency behavior and are no longer required.

– --scope 〈scope〉 — Selects a package scope, the same as for raco pkg in-

stall.

– -i or --installation — Shorthand for --scope installation.

– -u or --user — Shorthand for --scope user.

– -s or --shared — Shorthand for --scope shared.

• raco pkg show 〈option〉 ... — Print information about currently installed packages.
By default, packages are shown for all installation modes (installation-wide, user-
and Racket-version-specific, and user-specific all-version). The command accepts the
following 〈option〉s:

9

– -d — Adds a column in the output for the directory the package is installed to.

– --scope 〈scope〉— Shows only packages in 〈scope〉, which is one of

* installation — Show only installation-wide packages.

* user — Show only user-specific, version-specific packages.

* shared — Show only user-specific, all-version packages.

The default is to show packages for all package scopes.

– -i or --installation — Shorthand for --scope installation.

– -u or --user — Shorthand for --scope user.

– -s or --shared — Shorthand for --scope shared.

– --version 〈vers〉 or -v 〈vers〉— Show only user-specific packages for Racket
version 〈vers〉.

• raco pkg config 〈option〉 ... 〈key〉 〈val〉 ... — View and modify package configu-
ration options. It accepts the following 〈option〉s:

– --set — Sets an option, rather than printing it.

– --scope 〈scope〉 — Selects a package scope, the same as for raco pkg in-

stall.

– -i or --installation — Shorthand for --scope installation.

– -u or --user — Shorthand for --scope user.

– -s or --shared — Shorthand for --scope shared.

The valid keys are:

– indexes — A list of URLs for package name resolvers.

– default-scope — Either installation, user, or shared. This configura-
tion option exists only with the installation scope (i.e., it’s an installation-
wide configuration of the default package scope for raco pkg commands).

• raco pkg create 〈option〉 ... 〈package-directory〉 — Bundles a package directory
into a package archive. It accepts the following 〈option〉s:

– --format 〈format〉— Specifies the archive format. The allowed 〈format〉s are:
zip (the default), tgz, and plt. This option must be specified if --manifest is
not present.

– --manifest — Creates a manifest file for a directory, rather than an archive.

2.2 Programmatic

(require pkg)

The pkg module provides a programmatic interface to the command sub-sub-commands.

10

install : procedure?

update : procedure?

remove : procedure?

show : procedure?

config : procedure?

create : procedure?

Duplicates the command line interface.

Each long form option of the command-line interface is keyword argument. An argument
corresponding to --type, --deps, --format, or --scope accepts its argument as a sym-
bol. All other options accept booleans, where #t is equivalent to the presence of the option.

11

3 Developing Packages

To create a package, first make a directory for your package and select its name, 〈package〉:

mkdir 〈package〉

Next, link your development directory to your local package repository:

raco pkg install --link 〈package〉

Optionally, enter your directory and create a basic "info.rkt" file:

cd 〈package〉

echo "#lang setup/infotab" > info.rkt

echo "(define deps (list))" >> info.rkt

The "info.rkt" file is not necessary if you have no dependencies, but you may wish to
create it to simplify adding dependencies in the future. (Note that this "info.rkt" is for
the package, not for a collection; definitions such as scribblings or raco-commands work
only in a collection’s "info.rkt".)

Next, inside the 〈package〉 directory, create directories for the collections and modules that
your package will provide. For example, the developer of tic-tac-toe package that provides
games/tic-tac-toe/main and data/matrix libraries might create directories and files
like this:

mkdir -p games/tic-tac-toe

touch games/tic-tac-toe/info.rkt

touch games/tic-tac-toe/main.rkt

mkdir -p data

touch data/matrix.rkt

After your package is ready to deploy, choose either §3.1 “GitHub Deployment” or §3.2
“Manual Deployment”.

3.1 GitHub Deployment

First, create a free account on GitHub, then create a repository for your package. After that,
publish your package source as:

12

https://github.com/signup/free
https://help.github.com/articles/create-a-repo

github://github.com/〈user〉/〈package〉/〈branch〉

Typically, 〈branch〉 will be master, but you may wish to use different branches for releases
and development.

Whenever you

git push

your changes will automatically be discovered by those who used your package source when
they use raco pkg update.

3.2 Manual Deployment
By default, raco
pkg create

generates a Zip
archive. For more
options, refer to the
raco pkg create

documentation. If
you want to
generate an archive
through some other
means, simply
archive what you
made in the first
part of this section.
For more formal
details, refer to the
package definition.

Alternatively, you can deploy your package by publishing it on a URL you control. If you
do this, it is preferable to create an archive from your package directory first:

raco pkg create 〈package〉

And then upload the archive and its checksum to your site:

scp 〈package〉.zip 〈package〉.zip.CHECKSUM your-host:public_html/

Now, publish your package source as:

http://your-host/∼〈user〉/〈package〉.zip

Whenever you want to provide a new release of a package, recreate and reupload the package
archive (and checksum). Your changes will automatically be discovered by those who used
your package source when they use raco pkg update.

3.3 Helping Others Discover Your Package

By using either of the above deployment techniques, anyone will be able to use your package
by referring to your package source. However, they will not be able to refer to it by a simple
name until it is listed on a package name resolver.

If you’d like to use the official package name resolver, browse to https://pkg.racket-
lang.org/manage/upload and upload a new package. You will need to create an account
and log in first.

You only need to go to this site once to list your package. The server will periodically check
the package source you designate for updates.

If you use this server, and use GitHub for deployment, then you will never need to open a

13

https://pkg.racket-lang.org/manage/upload
https://pkg.racket-lang.org/manage/upload

web browser to update your package for end users. You just need to push to your GitHub
repository, then within 24 hours, the official package name resolver will notice, and raco

pkg update will work on your user’s machines.

3.4 Naming and Designing Packages

Although of course not required, we suggest the following system for naming and designing
packages:

• Packages should not include the name of the author or organization that produces
them, but be named based on the content of the package. For example, data-priority-
queue is preferred to johns-amazing-queues.

• Packages that provide an interface to a foreign library or service should be named the
same as the service. For example, cairo is preferred to Racket-cairo or a similar name.

• Packages should not generally contain version-like elements in their names, initially.
Instead, version-like elements should be added when backwards incompatible changes
are necessary. For example, data-priority-queue is preferred to data-priority-queue1.
Exceptions include packages that present interfaces to external, versioned things, such
as sqlite3 or libgtk2.

• A version declaration for a package is used only by other package implementors to
effectively declare dependencies on provided features. Such declarations allow raco

pkg install and raco pkg update to help check dependencies. Declaring and
changing a version is optional, and package name resolvers ignore version declara-
tions; in particular, a package is a candidate for updating when its checksum changes,
independent of whether the package’s version changes or in which direction the ver-
sion changes.

• Packages should not combine large sets of utilities libraries with other functionality.
For example, a package that contain many extensions to the "racket" collection,
like "racket/more-lists.rkt" and "racket/more-bools.rkt" should not also
contain complete applications, as other packages interested in the "racket/more-

bools.rkt" library will not wish to depend on in such application.

• Packages should generally provide one collection with a name similar to the name
of the package. For example, libgtk1 should provide a collection named "libgtk".
Exceptions include extensions to existing collection, such as new data-structures for
the "data" collection, DrRacket tools, new games for PLT Games, etc.

• Packages are not allowed to start with plt, racket, or planet without special approval
from PLT curation.

14

4 Package Metadata

Package metadata, including dependencies on other packages, is reported by an "info.rkt"
module within the package. This module must be implemented in the setup/infotab

language.

The following fields are used by the package manager:

• version — a version string. The default version of a package is "0.0".

• deps — a list of dependencies, where each dependency is either a package source
strings or a list containing a package source string and a version string.

Each elements of the deps list determines a dependency on the package whose name is
inferred from the package source (i.e., dependencies are on package names, not pack-
age sources), while the package source indicates where to get the package if needed
to satisfy the dependency.

When provided, a version string specifies a lower bound on an acceptable version of
the package.

Use the package name "racket" to specify a dependency on the version of the Racket
installation.

• setup-collects — a list of path strings and/or lists of path strings, which are used
as collection names to set up via raco setup after the package is installed, or 'all to
indicate that all collections need to be setup. By default, only collections included in
the package are set up (plus collections for global documentation indexes and links).

For example, a basic "info.rkt" file might be

#lang setup/infotab

(define version "1.0")

(define deps (list package-source-string ...))

15

5 PLaneT Compatibility

PLT maintains a package name resolver to serve packages that were developed using
the original PLaneT package system. This compatibility resolver is at https://planet-
compat.racket-lang.org/, which is included by default in the package-server search path.

Copies of PLaneT packages are automatically created by the server according to the fol-
lowing system: for all packages that are in the 4.x PLaneT repository, the latest mi-
nor version of 〈user〉/〈package〉.plt/〈major-version〉 will be available as planet-〈user〉-
〈package〉〈major-version〉. For example, jaymccarthy/opencl.plt/1 minor version 2,
will be available as planet-jaymccarthy-opencl1.

The contents of these copies is a single collection with the name
"〈user 〉/〈package 〉〈major-version 〉" with all the files from the original PLaneT
package in it.

Each file has been transliterated to use direct Racket-style requires rather than PLaneT-style
requires. For example, if any file contains (planet jaymccarthy/opencl/module), then
it is transliterated to jaymccarthy/opencl1/module. This transliteration is purely syntac-
tic and is trivial to confuse, but works for most packages, in practice. Any transliterations
that occurred are automatically added as dependencies for the compatibility package.

We do not intend to improve this compatibility system much more over time, because it is
simply a stop-gap as developers port their PLaneT packages to the new system. Additionally,
the existence of the compatibility server is not meant to imply that we will be removing
PLaneT from existence in the near future.

16

https://planet-compat.racket-lang.org/
https://planet-compat.racket-lang.org/

6 FAQ

This section answers anticipated frequently asked questions about the package manager.

6.1 Are package installations versioned with respect to the Racket ver-
sion?

By default, when you install a package, it is installed for a specific user and a specific version
of Racket. That is, the package scope is user- and version-specific.

You can change the default package scope (for a particular Racket installation) with raco

pkg config -i --set default-scope installation, in which case package opera-
tions apply for all users of a Racket installation. You can also use the -i or --installation
flag with a specific raco pkg command, instead of changing the default scope for all uses
of raco pkg. Note that an installation-wide package is not exactly version-specific, because
the version of an installation can change if it corresponds to a source-code checkout that is
periodically updated and rebuilt.

If you change the default package scope, you can use the -u or --user flag with a spe-
cific raco pkg command to perform the command with user- and version-specific package
scope.

Finally, you can use the -s or --shared flag with raco pkg commands to install user-
specific packages that apply to all Racket versions that you run. (In contrast, PLaneT requires
reinstallation of all packages every version change.)

6.2 Where and how are packages installed?

User-specific and Racket-version-specific packages are in (build-path (find-system-

path 'addon-dir) (version) "pkgs"), user-specific and all-version packages are
in (build-path (find-system-path 'addon-dir) "pkgs"), and installation-wide
packages are in (build-path (find-lib-dir) "pkgs"). They are linked as collection
roots with raco link.

6.3 How are user-specific and installation-wide package scopes related
for conflict checking?

User-specific packages are checked against installation-wide packages for conflicts.
Installation-wide packages are checked only against other installation-wide packages.

17

Beware that a new installation-wide package can invalidate previous conflict checks for user-
specific packages. Similarly, new user-specific but all-version packages can invalidate pre-
vious user-specific conflict checks for a different Racket version.

6.4 Do I need to change a package’s version when I update a package
with error fixes, etc.?

If you have new code for a package, then it should have a new checksum. When package up-
dates are searched for, the checksum of the installed package is compared with the checksum
of the source, if they are different, then the source is re-installed. This allows code changes
to be distributed. You do not need to declare an update a version number, except to allow
other package implementors to indicate a dependency on particular features (where a bug fix
might be considered a feature, but it is not usually necessary to consider it that way).

6.5 How can I specify which version of a package I depend on if its
interface has changed and I need an old version?

In such a situation, the author of the package has released a backwards incompatible edition
of a package. The package manager provides no help to deal with this situation (other
than, of course, not installing the “update”). Therefore, package authors should not make
backwards incompatible changes to packages. Instead, they should release a new package
with a new name. For example, package libgtk might become libgtk2. These packages
should be designed to not conflict with each other, as well.

6.6 Why is the package manager so different than PLaneT?

There are two fundamental differences between PLaneT and this package manager.

The first is that PLaneT uses “internal linking” whereas the current package manager uses
“external linking.” For example, an individual module requires a PLaneT package directly
in a require statement:

(require (planet game/tic-tac-toe/data/matrix))

whereas using the package manager, the module would simply require the module of interest:

(require data/matrix)

and would rely on the external system having the tic-tac-toe package installed.

18

This change is good because it makes the origin of modules more flexible—so that code can
migrate in and out of the core, packages can easily be split up, combined, or taken over by
other authors, etc.

This change is bad because it makes the meaning of your program dependent on the state of
the system.

The second major difference is that PLaneT is committed to guaranteeing that packages that
never conflict with one another, so that any number of major and minor versions of the same
package can be installed and used simultaneously. The package manager does not share this
commitment, so package authors and users must be mindful of potential conflicts and plan
around them.

This change is good because it is simpler and lowers the burden of maintenance (provided
most packages don’t conflict.)

The change is bad because users must plan around potential conflicts.

In general, the goal of the package manager is to be a lower-level system, more like the
package systems used by operating systems. The goals of PLaneT are not bad, but we
believe they are needed infrequently and a system like PLaneT could be more easily built
atop the package manager than the reverse.

In particular, our plans to mitigate the downsides of these changes are documented in §7.1
“Short Term”.

19

7 Future Plans

7.1 Short Term

This section lists some short term plans for the package manager. These are important, but
didn’t block its release. The package manager will be considered out of beta when these are
completed.

• The official PNR will divide packages into three categories: planet, solar-system,
and galaxy. The definitions for these categories are:

– galaxy — No restrictions.

– solar-system — Must not conflict any package in solar-system or planet.

– planet — Must not conflict any package in solar-system or planet. Must
have documentation and tests. The author must be responsive about fixing re-
gressions against changes in Racket, etc.

These categories will be curated by PLT.

Our goal is for all packages to be in the solar-system, with the galaxy as a tempo-
rary place while the curators work with the authors of conflicting packages to deter-
mine how modules should be renamed for unity.

However, before curation is complete, each package will be automatically placed in
galaxy or solar-system depending on its conflicts, with preference being given to
older packages. (For example, if a new package B conflicts with an old package A,
then A will be in solar-system, but B will be in galaxy.) During curation, however,
it is not necessarily the case that older packages have preference. (For example, tic-
tac-toe should probably not provide "data/matrix.rkt", but that could be spun off
into another package used by both tic-tac-toe and factory-optimize.)

In contrast, the planet category will be a special category that authors may apply for.
Admission requires a code audit and implies a "stamp of approval" from PLT. In the
future, packages in this category will have more benefits, such as automatic regression
testing on DrDr, testing during releases, provided binaries, and advertisement during
installation.

The PLaneT compatibility packages will also be included in the solar-system cate-
gory, automatically.

• In order to mitigate the costs of external linking vis a vis the inability to understand
code in isolation, we will create a module resolver that searches for providers of mod-
ules on the configured package name resolvers. For example, if a module requires
"data/matrix.rkt", and it is not available, then the PNR will be consulted to dis-
cover what packages provide it. Only packages in solar-system or planet will be
returned. (This category restriction ensures that the package to install is unique.)

20

Users can configure their systems to then automatically install the package provided
is has the appropriate category (i.e., some users may wish to automatically install
planet packages but not solar-system packages, while others may not want to
install any.)

This feature will be generalized across all package name resolvers, so users could
maintain their own category definitions with different policies.

7.2 Long Term

This section lists some long term plans for the package manager. Many of these require a lot
of cross-Racket integration.

• The official PNR is bare bones. It could conceivably do a lot more: keep track of more
statistics, enable "social" interactions about packages, link to documentation, problem
reports, licenses, etc. Some of this is easy and obvious, but the community’s needs are
unclear.

• It would be nice to encrypt information from the official package name resolver with
a public key shipped with Racket, and allow other resolvers to implement a similar
security scheme.

• Packages in the planet category should be tested on DrDr. This would require a way
to communicate information about how they should be run to DrDr. This is currently
done via the "meta/props" script for things in the core. We should generalize this
script to a "meta/props.d" directory so that packages can install DrDr metadata to
it.

• We hope that this package system will encourage more incremental improvements to
pieces of Racket. In particular, it would be wonderful to have a very thorough "data"

collection of different data-structures. However, our existing setup for Scribble would
force each new data structue to have a different top-level documentation manual, rather
than extending the documentation of the existing "data" collection. Similar issues
will exist for the "net" and "file" collections. We should design a way to have such
"documentation plugins" in Scribble and support similar "plugin" systems elsewhere
in the code-base.

• Packages can contain any kinds of files, including bytecode and documentation, which
would reduce the time required to install a package (since we must run raco setup).
However, packages with these included are painful to maintain and unreliable given
users with different versions of Racket installed.

One solution is to have a separate place where such "binary" packages are
available. For example, PLT could run a PNR for every Racket version, i.e.,
"https://binaries.racket-lang.org/5.3.1.4", that would contain the bina-
ries for all the packages in the planet category. Thus, when you install package
tic-tac-toe you could also install the binary version from the appropriate PNR.

21

There are obvious problems with this... it could be expensive for PLT in terms of
space and time... Racket compilation is not necessarily deterministic or platform-
independent.

This problem requires more thought.

• The user interface could be improved, including integration with DrRacket and a GUI.
For example, it would be good if DrRacket would poll for package updates periodi-
cally and if when it was first started it would display available, popular packages.

• The core distribution should be split apart into many more packages. For example,
Redex, Plot, the Web Server, and the teaching languages are natural candidates for
being broken off.

• The core should be able to be distributed with packages that will be installed as soon
as the system is installed. Ideally, this would be customizable by instructors so they
could share small distributions with just the right packages for their class.

22

	1 Package Concepts
	2 Managing Packages
	2.1 Command Line
	2.2 Programmatic

	3 Developing Packages
	3.1 GitHub Deployment
	3.2 Manual Deployment
	3.3 Helping Others Discover Your Package
	3.4 Naming and Designing Packages

	4 Package Metadata
	5 PLaneT Compatibility
	6 FAQ
	6.1 Are package installations versioned with respect to the Racket version?
	6.2 Where and how are packages installed?
	6.3 How are user-specific and installation-wide package scopes related for conflict checking?
	6.4 Do I need to change a package's version when I update a package with error fixes, etc.?
	6.5 How can I specify which version of a package I depend on if its interface has changed and I need an old version?
	6.6 Why is the package manager so different than PLaneT?

	7 Future Plans
	7.1 Short Term
	7.2 Long Term

