
raco: Racket Command-Line Tools
Version 5.3

August 6, 2012

The raco program supports various Racket tasks from a command line. The first argument
to raco is always a specific command name. For example, raco make starts a command to
compile a Racket source module to bytecode format.

The set of commands available through raco is extensible. Use raco help to get a com-
plete list of available commands for your installation. This manual covers the commands
that are available in a typical Racket installation.

1

Contents

1 raco make: Compiling Source to Bytecode 6

1.1 Bytecode Files . 6

1.2 Dependency Files . 7

1.3 API for Making Bytecode . 8

1.4 API for Parallel Builds . 14

1.5 Compilation Manager Hook for Syntax Transformers 15

1.6 Compiling to Raw Bytecode . 15

2 raco link: Library Collection Links 17

2.1 API for Collection Links . 18

3 raco exe: Creating Stand-Alone Executables 20

3.1 API for Creating Executables . 21

3.1.1 Executable Creation Signature . 28

3.1.2 Executable Creation Unit . 29

3.1.3 Finding the Racket Executable . 29

3.2 Installation-Specific Launchers . 29

3.2.1 Creating Launchers . 29

3.2.2 Launcher Path and Platform Conventions 32

3.2.3 Launcher Configuration . 34

3.2.4 Launcher Creation Signature . 36

3.2.5 Launcher Creation Unit . 36

4 raco distribute: Sharing Stand-Alone Executables 37

4.1 API for Distributing Executables . 38

2

4.2 API for Bundling Distributions . 38

5 raco pack: Packing Library Collections 40

5.1 Format of ".plt" Archives . 42

5.2 API for Packing . 44

6 raco unpack: Unpacking Library Collections 49

6.1 Unpacking API . 49

7 raco planet: Automatic Package Distribution 52

8 raco setup: Installation Management 53

8.1 Running raco setup . 53

8.1.1 Controlling raco setup with "info.rkt" Files 54

8.2 "info.rkt" File Format . 57

8.3 API for Installation . 59

8.3.1 raco setup Unit . 59

8.3.2 Options Unit . 60

8.3.3 Options Signature . 60

8.4 API for Installing ".plt" Archives . 64

8.4.1 Non-GUI Installer . 64

8.4.2 GUI Installer . 65

8.4.3 GUI Unpacking Signature . 66

8.4.4 GUI Unpacking Unit . 66

8.5 API for Finding Installation Directories 66

8.6 API for Reading "info.rkt" Files . 69

8.7 API for Relative Paths . 71

3

8.7.1 Representing paths relative to "collects" 71

8.7.2 Displaying paths relative to a common root 72

8.8 API for Cross-References for Installed Manuals 73

9 raco decompile: Decompiling Bytecode 74

9.1 API for Decompiling . 75

9.2 API for Parsing Bytecode . 75

9.3 API for Marshaling Bytecode . 77

9.4 Bytecode Representation . 77

9.4.1 Prefix . 77

9.4.2 Forms . 79

9.4.3 Expressions . 82

9.4.4 Syntax Objects . 89

10 raco demod: Demodularizing Programs 94

11 raco ctool: Working with C Code 95

11.1 Compiling and Linking C Extensions . 95

11.1.1 API for 3m Transformation . 96

11.2 Embedding Modules via C . 96

11.3 API for Raw Compilation . 96

11.3.1 Bytecode Compilation . 97

11.3.2 Loading Compiler Support . 99

11.3.3 Options for the Compiler . 99

11.3.4 The Compiler as a Unit . 100

12 raco test: Run tests 102

4

13 Adding a raco Command 103

13.1 Command Argument Parsing . 104

5

1 raco make: Compiling Source to Bytecode

The raco make command accept filenames for Racket modules to be compiled to bytecode
format. Modules are re-compiled only if the source Racket file is newer than the bytecode file
and has a different SHA-1 hash, or if any imported module is recompiled or has a different
SHA-1 hash for its compiled form plus dependencies.

The raco make command accepts a few flags:

• -j 〈n〉— Compiles argument modules in parallel, using up to 〈n〉 parallel tasks.

• --disable-inline — Disables function inlining while compiling (but does not re-
compile files that are already up-to-date). This flag is often useful to simplify gen-
erated code before decompiling, and it corresponds to setting compile-context-

preservation-enabled to #t.

• --disable-constant — Disables inference of definitions within a module as con-
stant (but does not re-compile files that are already up-to-date). The value associated
with a non-constant definition is never inlined or constant-propagated, either within
its own module or an importing module. This flag corresponds to setting compile-

enforce-module-constants to #f.

• --no-deps — Compiles a non-module file (i.e., one that is run via load instead of
require). See §1.6 “Compiling to Raw Bytecode” for more information.

• -p 〈file〉 or --prefix 〈file〉— For use with --no-deps; see §1.6 “Compiling to Raw
Bytecode”.

• -no-prim — For use with --no-deps; see §1.6 “Compiling to Raw Bytecode”.

• -v — Verbose mode, which shows which files are compiled.

• --vv — Very verbose mode, which implies -v and also shows every dependency that
is checked.

1.1 Bytecode Files

A file "〈name 〉.〈ext 〉" is compiled to bytecode that is saved as
"compiled/〈name 〉_〈ext 〉.zo" relative to the file. As a result, the bytecode file is
normally used automatically when "〈name 〉.〈ext 〉" is required as a module, since the
underlying load/use-compiled operation detects such a bytecode file.

For example, in a directory that contains the following files:

• "a.rkt":

6

#lang racket

(require "b.rkt" "c.rkt")

(+ b c)

• "b.rkt":

#lang racket

(provide b)

(define b 1)

• "c.rkt":

#lang racket

(provide c)

(define c 1)

then

raco make a.rkt

triggers the creation of "compiled/a_rkt.zo", "compiled/b_rkt.zo", and
"compiled/c_rkt.zo". A subsequent

racket a.rkt

loads bytecode from the generated ".zo" files, paying attention to the ".rkt" sources only
to confirm that each ".zo" file has a later timestamp.

In contrast,

racket b.rkt c.rkt

would create only "compiled/b_rkt.zo" and "compiled/c_rkt.zo", since neither
"b.rkt" nor "c.rkt" imports "a.rkt".

1.2 Dependency Files

In addition to a bytecode file, raco make creates a file "compiled/〈name 〉_〈ext 〉.dep"
that records dependencies of the compiled module on other module files and the source
file’s SHA-1 hash. Using this dependency information, a re-compilation request via raco

make can consult both the source file’s timestamp/hash and the timestamps/hashes for the
bytecode of imported modules. Furthermore, imported modules are themselves compiled as
necessary, including updating the bytecode and dependency files for the imported modules,
transitively.

7

Continuing the raco make a.rkt example from the previous section, the raco

make command creates "compiled/a_rkt.dep", "compiled/b_rkt.dep",
and "compiled/c_rkt.dep" at the same time as the ".zo" files. The
"compiled/a_rkt.dep" file records the dependency of "a.rkt" on "b.rkt", "c.rkt"
and the racket library. If the "b.rkt" file is modified (so that its timestamp and SHA-1
hash changes), then running

raco make a.rkt

again rebuilds "compiled/a_rkt.zo" and "compiled/b_rkt.zo".

For module files that are within library collections, raco setup uses the same ".zo" and
".dep" conventions and files as raco make, so the two tools can be used together.

1.3 API for Making Bytecode

(require compiler/cm)

The compiler/cm module implements the compilation and dependency management used
by raco make and raco setup.

(make-compilation-manager-load/use-compiled-handler

[delete-zos-when-rkt-file-does-not-exist?
#:security-guard security-guard])
→ (path? (or/c symbol? false/c) . -> . any)

delete-zos-when-rkt-file-does-not-exist? : any/c = #f

security-guard : (or/c security-guard? #f) = #f

Returns a procedure suitable as a value for the current-load/use-compiled parame-
ter. The returned procedure passes it arguments on to the current-load/use-compiled

procedure that is installed when make-compilation-manager-load/use-compiled-

handler is called, but first it automatically compiles a source file to a ".zo" file if

• the file is expected to contain a module (i.e., the second argument to the handler is a
symbol);

• the value of each of (current-eval), (current-load), and (namespace-

module-registry (current-namespace)) is the same as when make-

compilation-manager-load/use-compiled-handler was called;

• the value of use-compiled-file-paths contains the first path that was present
when make-compilation-manager-load/use-compiled-handler was called;

• the value of current-load/use-compiled is the result of this procedure; and

• one of the following holds:

8

– the source file is newer than the ".zo" file in the first sub-directory listed in
use-compiled-file-paths (at the time that make-compilation-manager-
load/use-compiled-handler was called), and either no ".dep" file exists
or it records a source-file SHA-1 hash that differs from the current version and
source-file SHA-1 hash;

– no ".dep" file exists next to the ".zo" file;

– the version recorded in the ".dep" file does not match the result of (version);

– one of the files listed in the ".dep" file has a ".zo" timestamp newer than
the target ".zo", and the combined hashes of the dependencies recorded in the
".dep" file does not match the combined hash recorded in the ".dep" file.

If SHA-1 hashes override a timestamp-based decision to recompile the file, then the target
".zo" file’s timestamp is updated to the current time.

After the handler procedure compiles a ".zo" file, it creates a corresponding ".dep" file that
lists the current version and the identification of every file that is directly required by the
module in the compiled file. Additional dependencies can be installed during compilation via
compiler/cm-accomplice. The ".dep" file also records the SHA-1 hash of the module’s
source, and it records a combined SHA-1 hash of all of the dependencies that includes their
recursive dependencies.

The handler caches timestamps when it checks ".dep" files, and the cache is maintained
across calls to the same handler. The cache is not consulted to compare the immediate
source file to its ".zo" file, which means that the caching behavior is consistent with the
caching of the default module name resolver (see current-module-name-resolver).

If use-compiled-file-paths contains an empty list when make-compilation-

manager-load/use-compiled-handler is called, then exn:fail:contract exception
is raised.

If the delete-zos-when-rkt-file-does-not-exist? argument is a true value, then the
returned handler will delete ".zo" files when there is no corresponding original source file.

If the security-guard argument is supplied, it is used when creating ".zo" files, ".dep"
files, and "compiled/" directories, and when it adjusts the timestamps for existing files. If
it is #f, then the security guard in the current-security-guard when the files are cre-
ated is used (not the security guard at the point make-compilation-manager-load/use-
compiled-handler is called).

Do not install the result of make-compilation-manager-load/use-compiled-handler
when the current namespace contains already-loaded versions of modules that may need to
be recompiled—unless the already-loaded modules are never referenced by not-yet-loaded
modules. References to already-loaded modules may produce compiled files with inconsis-
tent timestamps and/or ".dep" files with incorrect information.

9

(managed-compile-zo file

[read-src-syntax
#:security-guard security-guard]) → void?

file : path-string?

read-src-syntax : (any/c input-port? . -> . syntax?)

= read-syntax

security-guard : (or/c security-guard? #f) = #f

Compiles the given module source file to a ".zo", installing a compilation-manager han-
dler while the file is compiled (so that required modules are also compiled), and creating a
".dep" file to record the timestamps of immediate files used to compile the source (i.e., files
required in the source).

If file is compiled from source, then read-src-syntax is used in the same way as read-
syntax to read the source module. The normal read-syntax is used for any required files,
however.

If security-guard is not #f, then the provided security guard is used when creating the
"compiled/" directories, ".dep" and ".zo" files, and when it adjusts the timestamps of
existing files. If it is #f, then the security guard in the current-security-guard when
the files are created is used (not the security guard at the point managed-compile-zo is
called).

(trust-existing-zos) → boolean?

(trust-existing-zos trust?) → void?

trust? : any/c

A parameter that is intended for use by setup-plt when installing with pre-built ".zo"
files. It causes a compilation-manager load/use-compiled handler to “touch” out-of-date
".zo" files instead of re-compiling from source.

(make-caching-managed-compile-zo

read-src-syntax

[#:security-guard security-guard])
→ (path-string? . -> . void?)

read-src-syntax : (any/c input-port? . -> . syntax?)

security-guard : (or/c security-guard? #f) = #f

Returns a procedure that behaves like managed-compile-zo (providing the same read-

src-syntax each time), but a cache of timestamp information is preserved across calls to
the procedure.

(manager-compile-notify-handler) → (path? . -> . any)

(manager-compile-notify-handler notify) → void?

notify : (path? . -> . any)

10

A parameter for a procedure of one argument that is called whenever a compilation starts.
The argument to the procedure is the file’s path.

(manager-trace-handler) → (string? . -> . any)

(manager-trace-handler notify) → void?

notify : (string? . -> . any)

A parameter for a procedure of one argument that is called to report compilation-manager
actions, such as checking a file. The argument to the procedure is a string.

(manager-skip-file-handler)

→ (-> path? (or/c (cons/c number? promise?) #f))

(manager-skip-file-handler proc) → void?

proc : (-> path? (or/c (cons/c number? promise?) #f))

A parameter whose value is called for each file that is loaded and needs recompilation. If the
procedure returns a pair, then the file is skipped (i.e., not compiled); the number in the pair
is used as the timestamp for the file’s bytecode, and the promise may be forced to obtain a
string that is used as hash of the compiled file plus its dependencies. If the procedure returns
#f, then the file is compiled as usual. The default is (lambda (x) #f).

(file-stamp-in-collection p)

→ (or/c (cons/c number? promise?) #f)

p : path?

Calls file-stamp-in-paths with p and (current-library-collection-paths).

(file-stamp-in-paths p paths)

→ (or/c (cons/c number? promise?) #f)

p : path?

paths : (listof path?)

Returns the file-modification date and delayed hash of p or its bytecode form (i.e., ".zo"
file), whichever exists and is newer, if p is an extension of any path in paths (i.e., exists in
the directory, a subdirectory, etc.). Otherwise, the result is #f.

This function is intended for use with manager-skip-file-handler.

(get-file-sha1 p) → (or/c string? #f)

p : path?

Computes a SHA-1 hash for the file p ; the result is #f if p cannot be opened.

(get-compiled-file-sha1 p) → (or/c string? #f)

p : path?

11

Computes a SHA-1 hash for the bytecode file p , appending any dependency-describing hash
available from a ".dep" file when available (i.e., the suffix on p is replaced by ".dep" to
locate dependency information). The result is #f if p cannot be opened.

(with-compile-output p proc) → any

p : path-string?

proc : ([port input-port?] [tmp-path path?] . -> . any)

Opens a temporary path for writing and calls proc passing the resulting port and tmp-

path. Once proc returns, with-compile-output renames tmp-path to p and arranges
to delete temp-path if there’s an exception. Breaks are managed so that the port is reliably
closed and the tmp-path file is reliably deleted if there’s a break. The result of proc is the
result of the with-compile-output call.

Windows prevents programs from overwriting files that are open. As a result, with-

compile-output calls to rename-file-or-directory will fail if the destination file
argument is an open file. Windows, however, does allow you to rename an open file. To
avoid overwriting open files windows, with-compile-output creates a second temporary
file tmp-path2, renames p to tmp-path2, renames tmp-path to p , and finally deletes
tmp-path2.

(parallel-lock-client)

→

(or/c #f

(->i ([command (or/c 'lock 'unlock)]

[file bytes?])

[res (command) (if (eq? command 'lock)

boolean?

void?)]))

(parallel-lock-client proc) → void?

proc :

(or/c #f

(->i ([command (or/c 'lock 'unlock)]

[file bytes?])

[res (command) (if (eq? command 'lock)

boolean?

void?)]))

Holds the parallel compilation lock client, which is used by the result of make-

compilation-manager-load/use-compiled-handler to prevent compilation races be-
tween parallel builders.

When proc is #f (the default), no checking for parallel compilation is done (and thus multi-
ple threads or places running compilations via make-compilation-manager-load/use-
compiled-handler will potentially corrupt each other’s ".zo" files).

When proc is a function, its first argument is a command, indicating if it wants to lock or
unlock the path specified in the second argument.

12

When the proc 'lock command returns #t, the current builder has obtained the lock for
zo-path. Once compilation of zo-path is complete, the builder process must release the
lock by calling proc 'unlock with the exact same zo-path.

When the proc 'lock command returns #f, another parallel builder obtained the lock first
and has already compiled the zo. The parallel builder should continue without compiling
zo-path. (In this case, make-compilation-manager-load/use-compiled-handler’s
result will not call proc with 'unlock.)

Example:

> (let* ([lc (parallel-lock-client)]

[zo-name #"collects/racket/compiled/draw_rkt.zo"]

[locked? (and lc (lc 'lock zo-name))]

[ok-to-compile? (or (not lc) locked?)])

(dynamic-wind

(lambda () (void))

(lambda ()

(when ok-to-compile?

(printf "Do compile here ...\n")))

(lambda ()

(when locked?

(lc 'unlock zo-name)))))

Do compile here ...

(compile-lock->parallel-lock-client pc

[cust])
→ (-> (or/c 'lock 'unlock) bytes? boolean?)

pc : place-channel?

cust : (or/c #f custodian?) = #f

Returns a function that follows the parallel-lock-client by communicating over pc .
The argument must have be the result of make-compile-lock.

This communication protocol implementation is not kill safe. To make it kill safe, it needs
a sufficiently powerful custodian, i.e., one that is not subject to termination (unless all of the
participants in the compilation are also terminated). It uses this custodian to create a thread
that monitors the threads that are doing the compilation. If one of them is terminated, the
presence of the custodian lets another one continue. (The custodian is also used to create a
thread that manages a thread safe table.)

(make-compile-lock) → place-channel?

Creates a place-channel? that can be used with compile-lock->parallel-lock-

client to avoid concurrent compilations of the same racket source files in multiple places.

13

1.4 API for Parallel Builds

(require setup/parallel-build)

The setup/parallel-build library provides the parallel-compilation functionality of
raco setup and raco make.

(parallel-compile-files list-of-files

[#:worker-count worker-count

#:handler handler]) → void?

list-of-files : (listof path?)

worker-count : non-negative-integer? = (processor-count)

handler :

(->i ([handler-type symbol?]

[path path-string?]

[msg string?]

[out string?]

[err string?])

void?)

= void

The parallel-compile utility function is used by raco make to compile a list of paths in
parallel. The optional #:worker-count argument specifies the number of compile workers
to spawn during parallel compilation. The callback, handler , is called with the symbol
'done as the handler-type argument for each successfully compiled file, 'output when
a successful compilation produces stdout/stderr output, 'error when a compilation error
has occured, or 'fatal-error when a unrecoverable error occurs. The other arguments
give more information for each status update.

(parallel-compile-files

source-files

#:worker-count 4

#:handler (lambda (type work msg out err)

(match type

['done (when (verbose) (printf " Made ∼a\n" work))]

['output (printf " Output from: ∼a\n∼a∼a" work out err)]

[else (printf " Error compiling ∼a\n∼a\n∼a∼a"
work

msg

out

err)])))

(parallel-compile worker-count

setup-fprintf

append-error

collects-tree) → (void)

worker-count : non-negative-integer?

14

setup-fprintf :
(->* ([stage string?] [format string?])

()

#:rest (listof any/c) void)

append-error :

(-> cc?

[prefix string?]

[exn (or/c exn? null?)]

[out string?]

[err srtring?]

[message string?]

void?)

collects-tree : (listof any/c)

The parallel-compile internal utility function is used by rack setup to compile col-
lects in parallel. The worker-count argument specifies the number of compile workers to
spawn during parallel compilation. The setup-fprintf and append-error functions are
internal callback mechanisms that raco setup uses to communicate intermediate compi-
lation results. The collects-tree argument is a compound datastructure containing an
in-memory tree representation of the collects directory.

1.5 Compilation Manager Hook for Syntax Transformers

(require compiler/cm-accomplice)

(register-external-file file) → void?

file : (and path? complete-path?)

Logs a message (see log-message) at level 'info. The message data is a file-

dependency prefab structure type with one field whose value is file .

A compilation manager implemented by compiler/cm looks for such messages to register
an external dependency. The compilation manager records (in a ".dep" file) the path as
contributing to the implementation of the module currently being compiled. Afterward, if
the registered file is modified, the compilation manager will know to recompile the module.

The include macro, for example, calls this procedure with the path of an included file as it
expands an include form.

1.6 Compiling to Raw Bytecode

The --no-deps mode for raco make is an improverished form of the compilation, because
it does not track import dependencies. It does, however, support compilation of non-module
source in an namespace that initially imports scheme.

15

Outside of a module, top-level define-syntaxes, module, #%require, define-values-
for-syntax, and begin expressions are handled specially by raco make --no-deps: the
compile-time portion of the expression is evaluated, because it might affect later expressions.

For example, when compiling the file containing

(require racket/class)

(define f (class object% (super-new)))

the class form from the racket/class library must be bound in the compilation names-
pace at compile time. Thus, the require expression is both compiled (to appear in the
output code) and evaluated (for further computation).

Many definition forms expand to define-syntaxes. For example, define-signature
expands to define-syntaxes. In --no-deps mode, raco make --no-deps detects
define-syntaxes and other expressions after expansion, so top-level define-signature
expressions affect the compilation of later expressions, as a programmer would expect.

In contrast, a load or eval expression in a source file is compiled—but not evaluated!—as
the source file is compiled. Even if the load expression loads syntax or signature definitions,
these will not be loaded as the file is compiled. The same is true of application expressions
that affect the reader, such as (read-case-sensitive #t). The -p or --prefix flag
for raco make takes a file and loads it before compiling the source files specified on the
command line.

By default, the namespace for compilation is initialized by a require of scheme. If
the --no-prim flag is specified, the namespace is instead initialized with namespace-

require/copy, which allows mutation and redefinition of all initial bindings (other than
syntactic forms, in the case of mutation).

In general, a better solution is to put all code to compile into a module and use raco make

in its default mode.

16

2 raco link: Library Collection Links

The raco link command inspects and modifies a collection links file to display, add, or
remove mappings from collection names to filesystem directories.

For example, the command

raco link maze

installs a user-specific link for the "maze" collection, mapping it to the "maze" subdirectory
of the current directory. Supply multiple directory paths to create multiple links at once,
especially with a command-shell wildcard:

raco link *

By default, the linked collection name is the same as each directory’s name, but the collection
name can be set separately for a single directory with the --name flag.

To remove the link created by the first example above, use

raco link --remove maze

or

raco link -r maze

Like link-adding mode, removing mode accepts multiple directory paths to remove multiple
links, and all links that match any directory are removed. If --name is used with --remove,
then only links matching both the collection name and directory are removed.

Full command-line options:

• -l or --list — Shows the current link table. If any other command-line arguments
are provided that modify the link table, the table is shown after modifications. If no
directory arguments are provided, and if none of -u, --user, -i, --installation,
-f, or --file are specified, then the link table is shown for both the user-specific and
installation-wide collection links files.

• -n 〈name〉 or --name 〈name〉— Sets the collection name for adding a single link or
removing matching links. By default, the collection name for an added link is derived
from the directory name. When the -r or --remove flag is also used, only links
with a collection name matching 〈name〉 are removed, and if no directory arguments
are provided, all links with a match to 〈name〉 are removed. This flag is mutually
exclusive with -d and --root.

• -d or --root — Treats each directory as a collection root that contains collection
directories, instead of a directory for a specific collection. When the -r or --remove

17

flag is also used, only collection-root links that match a directory are removed. This
flag is mutually exclusive with -n and --name.

• -x 〈regexp〉 or --version-regexp 〈regexp〉— Sets a version regexp that limits the
link to use only by Racket versions (as reported by version) matching 〈regexp〉.
When the -r or --remove flag is also used, only links with a version regexp matching
〈regexp〉 are removed.

• -r or --remove — Selects remove mode instead of add mode.

• -u or --user — Limits listing and removal of links to the user-specific collection
links file and not the collection-wide collection links file. This flag is mutually exclu-
sive with -i, --installation, -f, and --file.

• -i or --installation — Reads and writes links in installation-wide collection links
file and not the user-specific collection links file. This flag is mutually exclusive with
-u, --user, -f, and --file.

• -f 〈file〉 or --file 〈file〉 — Reads and writes links in 〈file〉 instead of the user-
specific collection links file. This flag is mutually exclusive with -u, --user, -i,
and --installation.

• --repair — Enables repairs to the existing file content when the content is erroneous.
The file is repaired by deleting individual links when possible.

2.1 API for Collection Links

(require setup/link)

(links dir

...

[#:user? user?

#:file file

#:name name

#:root? root?

#:version-regexp version-regexp

#:error error-proc

#:remove? remove?

#:show? show?

#:repair? repair?

#:with-path? with-path?]) → list?

dir : path?

user? : any/c = #t

file : (or/c path-string? #f) = #f

name : (or/c string? #f) = #f

root? : any/c = #f

version-regexp : (or/c regexp? #f) = #f

18

error-proc : (symbol? string? any/c -> . any) = error

remove? : any/c = #f

show? : any/c = #f

repair? : any/c = #f

with-path? : any/c = #f

A function version of the raco link command that always works on a single file—either
file if it is a path string, the user-specific collection links file if user? is true, of the
installation-wide collection links file if user? is false.

The error-proc argument is called to raise exceptions that would be fatal to the raco

link command.

If remove? is true, the result is a list of entries that were removed from the file. If remove?
is #f but root? is true, the result is a list of paths for collection roots. If remove? and
root? are both #f, the result is a list for top-level collections that are mapped by file and
that apply to the running version of Racket; the list is a list of strings for collection names
if with-path? is #f, or it is a list of pairs of collection-name strings and complete paths if
with-path? is true.

19

3 raco exe: Creating Stand-Alone Executables
Use a smaller base
language to achieve
a faster startup time
such as #lang
racket/base

instead of #lang
racket rather than
relying on raco

exe.

Compiled code produced by raco make relies on Racket executables to provide run-time
support to the compiled code. However, raco exe can package code together with its run-
time support to form an executable, and raco distribute can package the executable into
a distribution that works on other machines. Running an executable produced by raco exe

will not improve performance over raco make.

The raco exe command embeds a module, from source or byte code, into a copy of the
racket executable. (On Unix, the embedding executable is actually a copy of a wrapper ex-
ecutable.) The created executable invokes the embedded module on startup. The --gui flag
causes the program to be embedded in a copy of the gracket executable. If the embedded
module refers to other modules via require, then the other modules are also included in the
embedding executable.

For example, the command

raco exe --gui hello.rkt

produces either "hello.exe" (Windows), "hello.app" (Mac OS X), or "hello" (Unix),
which runs the same as running the "hello.rkt" module in gracket.

Library modules or other files that are referenced dynamically—through eval, load, or
dynamic-require—are not automatically embedded into the created executable. Such
modules can be explicitly included using the ++lib flag to raco exe. Alternately, use
define-runtime-path to embed references to the run-time files in the executable; the
files are then copied and packaged together with the executable when creating a distribution
(as described in §4 “raco distribute: Sharing Stand-Alone Executables”).

Modules that are implemented directly by extensions—i.e., extensions that are automatically
loaded from (build-path "compiled" "native" (system-library-subpath)) to
satisfy a require—are treated like other run-time files: a generated executable uses them
from their original location, and they are copied and packaged together when creating a
distribution.

The raco exe command works only with module-based programs. The compiler/embed
library provides a more general interface to the embedding mechanism.

A stand-alone executable is “stand-alone” in the sense that you can run it without start-
ing racket, gracket, or DrRacket. However, the executable depends on Racket shared
libraries, and possibly other run-time files declared via define-runtime-path. The ex-
ecutable can be packaged with support libraries to create a distribution using raco dis-

tribute, as described in §4 “raco distribute: Sharing Stand-Alone Executables”.

The --ico (Windows) or --icns (Mac OS X) flag sets the icon for the generated executable.
For generally, ++aux attaches information to the executable based on the auxilliary file’s

20

suffix; see extract-aux-from-path for a list of recognized suffixes and meanings.

The -l or --launcher flag creates a launcher instead of a stand-alone executable. See §3.2
“Installation-Specific Launchers” for more information on launchers. The --lib has no
effect in that case.

3.1 API for Creating Executables

(require compiler/embed)

The compiler/embed library provides a function to embed Racket code into a copy of
Racket or GRacket, thus creating a stand-alone Racket executable. To package the exe-
cutable into a distribution that is independent of your Racket installation, use assemble-

distribution from compiler/distribute.

Embedding walks the module dependency graph to find all modules needed by some initial
set of top-level modules, compiling them if needed, and combining them into a “module
bundle.” In addition to the module code, the bundle extends the module name resolver, so
that modules can be required with their original names, and they will be retrieved from the
bundle instead of the filesystem.

The create-embedding-executable function combines the bundle with an executable
(Racket or GRacket). The write-module-bundle function prints the bundle to the current
output port, instead; this stream can be loaded directly by a running program, as long as the
read-accept-compiled parameter is true.

21

(create-embedding-executable

dest

#:modules mod-list

[#:configure-via-first-module? config-via-first?

#:literal-files literal-files

#:literal-expression literal-sexp

#:literal-expressions literal-sexps

#:cmdline cmdline

#:gracket? gracket?

#:mred? mred?

#:variant variant

#:aux aux

#:collects-path collects-path

#:collects-dest collects-dest

#:launcher? launcher?

#:verbose? verbose?

#:expand-namespace expand-namespace

#:compiler compile-proc

#:src-filter src-filter

#:on-extension ext-proc

#:get-extra-imports extras-proc])
→ void?

dest : path-string?

mod-list :

(listof (or/c (list/c (or/c symbol? (one-of/c #t #f))

(or/c module-path? path?))

(list/c (or/c symbol? (one-of/c #t #f))

(or/c module-path? path?)

(listof symbol?))))

config-via-first? : any/c = #f

literal-files : (listof path-string?) = null

literal-sexp : any/c = #f

literal-sexps : list? =
(if literal-sexp

(list literal-sexp)

null)

cmdline : (listof string?) = null

gracket? : any/c = #f

mred? : any/c = #f

variant : (or/c 'cgc '3m) = (system-type 'gc)

aux : (listof (cons/c symbol? any/c)) = null

collects-path :
(or/c #f

path-string?

(listof path-string?))

= #f

collects-dest : (or/c #f path-string?) = #f

launcher? : any/c = #f

verbose? : any/c = #f

expand-namespace : namespace? = (current-namespace)

22

compile-proc : (any/c . -> . compiled-expression?)

=

(lambda (e)

(parameterize ([current-namespace

expand-namespace])

(compile e)))

src-filter : (path? . -> . any) = (lambda (p) #t)

ext-proc : (or/c #f (path-string? boolean? . -> . any)) = #f

extras-proc :
(path? compiled-module-expression?

. -> . (listof module-path?))

= (lambda (p m) null)

Copies the Racket (if gracket? and mred? are #f) or GRacket (otherwise) binary, embed-
ding code into the copied executable to be loaded on startup. On Unix, the binary is actually
a wrapper executable that execs the original; see also the 'original-exe? tag for aux .

The embedding executable is written to dest , which is overwritten if it exists already (as a
file or directory).

The embedded code consists of module declarations followed by additional (arbitrary) code.
When a module is embedded, every module that it imports is also embedded. Library mod-
ules are embedded so that they are accessible via their lib paths in the initial namespace ex-
cept as specified in mod-list , other modules (accessed via local paths and absolute paths)
are embedded with a generated prefix, so that they are not directly accessible.

The #:modules argument mod-list designates modules to be embedded, as described
below. The #:literal-files and #:literal-expressions arguments specify literal
code to be copied into the executable: the content of each file in literal-files is copied
in order (with no intervening space), followed by each element of literal-sexps . The
literal-files files or literal-sexps list can contain compiled bytecode, and it’s pos-
sible that the content of the literal-files files only parse when concatenated; the files
and expression are not compiled or inspected in any way during the embedding process. Be-
ware that the initial namespace contains no bindings; use compiled expressions to bootstrap
the namespace. If literal-sexp is #f, no literal expression is included in the executable.
The #:literal-expression (singular) argument is for backward compatibility.

If the #:configure-via-first-module? argument is specified as true, then the language
of the first module in mod-list is used to configure the run-time environment before the ex-
pressions added by #:literal-files and #:literal-expressions are evaluated. See
also §17.1.5 “Language Run-Time Configuration”.

The #:cmdline argument cmdline contains command-line strings that are prefixed onto
any actual command-line arguments that are provided to the embedding executable. A
command-line argument that evaluates an expression or loads a file will be executed after
the embedded code is loaded.

Each element of the #:modules argument mod-list is a two- or three-item list, where

23

the first item is a prefix for the module name, and the second item is a module path datum
(that’s in the format understood by the default module name resolver), and the third is a list
of submodule names to be included if they are available. The prefix can be a symbol, #f to
indicate no prefix, or #t to indicate an auto-generated prefix. For example,

'((#f "m.rkt"))

embeds the module m from the file "m.rkt", without prefixing the name of the module; the
literal-sexpr argument to go with the above might be '(require m). When submod-
ules are available and included, the submodule is given a name by symbol-appending the
write form of submodule path to the enclosing module’s name.

Modules are normally compiled before they are embedded into the target executable; see
also #:compiler and #:src-filter below. When a module declares run-time paths via
define-runtime-path, the generated executable records the path (for use both by imme-
diate execution and for creating a distribution that contains the executable).

If collects-dest is a path instead of #f, then instead of embedding collection-based mod-
ules into the executable, the modules (in compiled form, only) are copied into collections in
the collects-dest directory.

The optional #:aux argument is an association list for platform-specific options (i.e., it is a
list of pairs where the first element of the pair is a key symbol and the second element is the
value for that key). See also build-aux-from-path. The currently supported keys are as
follows:

• 'icns (Mac OS X) : An icon file path (suffix ".icns") to use for the executable’s
desktop icon.

• 'ico (Windows) : An icon file path (suffix ".ico") to use for the executable’s desktop
icon; the executable will have 16x16, 32x32, and 48x48 icons at 4-bit, 8-bit, and 32-
bit (RGBA) depths; the icons are copied and generated from any 16x16, 32x32, and
48x48 icons in the ".ico" file.

• 'creator (Mac OS X) : Provides a 4-character string to use as the application signa-
ture.

• 'file-types (Mac OS X) : Provides a list of association lists, one for each type of
file handled by the application; each association is a two-element list, where the first
(key) element is a string recognized by Finder, and the second element is a plist value
(see xml/plist). See "drracket.filetypes" in the "drracket" collection for
an example.

• 'uti-exports (Mac OS X) : Provides a list of association lists, one for each Uniform
Type Identifier (UTI) exported by the executable; each association is a two-element
list, where the first (key) element is a string recognized in a UTI declaration, and the
second element is a plist value (see xml/plist). See "drracket.utiexports" in
the "drracket" collection for an example.

24

• 'resource-files (Mac OS X) : extra files to copy into the "Resources" directory
of the generated executable.

• 'framework-root (Mac OS X) : A string to prefix the executable’s path
to the Racket and GRacket frameworks (including a separating slash); note
that when the prefix starts "@executable_path/" works for a Racket-based
application, the corresponding prefix start for a GRacket-based application is
"@executable_path/../../../"; if #f is supplied, the executable’s framework
path is left as-is, otherwise the original executable’s path to a framework is converted
to an absolute path if it was relative.

• 'dll-dir (Windows) : A string/path to a directory that contains Racket DLLs needed
by the executable, such as "racket〈version 〉.dll", or a boolean; a path can be
relative to the executable; if #f is supplied, the path is left as-is; if #t is supplied,
the path is dropped (so that the DLLs must be in the system directory or the user’s
PATH); if no value is supplied the original executable’s path to DLLs is converted to
an absolute path if it was relative.

• 'subsystem (Windows) : A symbol, either 'console for a console application
or 'windows for a consoleless application; the default is 'console for a Racket-
based application and 'windows for a GRacket-based application; see also 'single-

instance?, below.

• 'single-instance? (Windows) : A boolean for GRacket-based apps; the default is
#t, which means that the app looks for instances of itself on startup and merely brings
the other instance to the front; #f means that multiple instances are expected.

• 'forget-exe? (Windows, Mac OS X) : A boolean; #t for a launcher (see launcher?
below) does not preserve the original executable name for (find-system-path

'exec-file); the main consequence is that library collections will be found rela-
tive to the launcher instead of the original executable.

• 'original-exe? (Unix) : A boolean; #t means that the embedding uses the original
Racket or GRacket executable, instead of a wrapper binary that execs the original; the
default is #f.

• 'relative? (Unix, Windows, Mac OS X) : A boolean; #t means that, to the degree
that the generated executable must refer to another, it can use a relative path (so the
executables can be moved together, but not separately); a #f value (the default) means
that absolute paths should be used (so the generated executable can be moved).

• 'wm-class (Unix) : A string; used as the default WM_CLASS program class for the
program’s windows.

If the #:collects-path argument is #f, then the created executable maintains its built-
in (relative) path to the main "collects" directory—which will be the result of (find-
system-path 'collects-dir) when the executable is run—plus a potential list of

25

other directories for finding library collections—which are used to initialize the current-

library-collection-paths list in combination with PLTCOLLECTS environment vari-
able. Otherwise, the argument specifies a replacement; it must be either a path, string, or
list of paths and strings. In the last case, the first path or string specifies the main collec-
tion directory, and the rest are additional directories for the collection search path (placed,
in order, after the user-specific "collects" directory, but before the main "collects"

directory; then the search list is combined with PLTCOLLECTS, if it is defined). If the list
is empty, then (find-system-path 'collects-dir) will return the directory of the ex-
ecutable, but current-library-collection-paths is initialized to an empty list and
use-collection-link-paths is set to false to disable the use of collection links files.

If the #:launcher? argument is #t, then lid-list should be null, literal-files should
be null, literal-sexp should be #f, and the platform should be Windows or Mac OS
X. The embedding executable is created in such a way that (find-system-path 'exec-

file) produces the source Racket or GRacket path instead of the embedding executable
(but the result of (find-system-path 'run-file) is still the embedding executable).

The #:variant argument indicates which variant of the original binary to use for embed-
ding. The default is (system-type 'gc); see also current-launcher-variant.

The #:compiler argument is used to compile the source of modules to be included in the
executable (when a compiled form is not already available). It should accept a single ar-
gument that is a syntax object for a module form. The default procedure uses compile

parameterized to set the current namespace to expand-namespace .

The #:expand-namespace argument selects a namespace for expanding extra modules (and
for compiling using the default compile-proc). Extra-module expansion is needed to de-
tect run-time path declarations in included modules, so that the path resolutions can be di-
rected to the current locations (and, ultimately, redirected to copies in a distribution).

The #:src-filter src-filter argument takes a path and returns true if the correspond-
ing file source should be included in the embedding executable in source form (instead of
compiled form), #f otherwise. The default returns #f for all paths. Beware that the current
output port may be redirected to the result executable when the filter procedure is called.
Each path given to src-filter corresponds to the actual file name (e.g., ".ss"/".rkt"
conversions have been applied as needed to refer to the existing file).

If the #:on-extension argument is a procedure, the procedure is called when the traversal
of module dependencies arrives at an extension (i.e., a DLL or shared object). The default,
#f, causes a reference to a single-module extension (in its current location) to be embedded
into the executable. The procedure is called with two arguments: a path for the extension,
and a #f (for historical reasons).

The #:get-extra-imports extras-proc argument takes a source pathname and com-
piled module for each module to be included in the executable. It returns a list of quoted
module paths (absolute, as opposed to relative to the module) for extra modules to be in-
cluded in the executable in addition to the modules that the source module requires. For

26

example, these modules might correspond to reader extensions needed to parse a module
that will be included as source, as long as the reader is referenced through an absolute
module path. Each path given to extras-proc corresponds to the actual file name (e.g.,
".ss"/".rkt" conversions have been applied as needed to refer to the existing file).

(make-embedding-executable dest

mred?

verbose?

mod-list

literal-files

literal-sexp

cmdline

[aux
launcher?

variant

collects-path]) → void?

dest : path-string?

mred? : any/c

verbose? : any/c

mod-list :

(listof (or/c (list/c (or/c symbol? (one-of/c #t #f))

(or/c module-path? path?))

(list/c (or/c symbol? (one-of/c #t #f))

(or/c module-path? path?)

(listof symbol?))))

literal-files : (listof path-string?)

literal-sexp : any/c

cmdline : (listof string?)

aux : (listof (cons/c symbol? any/c)) = null

launcher? : any/c = #f

variant : (one-of/c 'cgc '3m) = (system-type 'gc)

collects-path :
(or/c #f

path-string?

(listof path-string?))

= #f

Old (keywordless) interface to create-embedding-executable.

(write-module-bundle verbose?

mod-list

literal-files

literal-sexp) → void?

verbose? : any/c

mod-list :

(listof (or/c (list/c (or/c symbol? (one-of/c #t #f))

(or/c module-path? path?))

(list/c (or/c symbol? (one-of/c #t #f))

(or/c module-path? path?)

(listof symbol?))))

27

literal-files : (listof path-string?)

literal-sexp : any/c

Like make-embedding-executable, but the module bundle is written to the current output
port instead of being embedded into an executable. The output of this function can be read
to load and instantiate mod-list and its dependencies, adjust the module name resolver
to find the newly loaded modules, evaluate the forms included from literal-files , and
finally evaluate literal-sexpr. The read-accept-compiled parameter must be true to
read the stream.

(embedding-executable-is-directory? mred?) → boolean

mred? : any/c

Indicates whether Racket/GRacket executables for the current platform correspond to direc-
tories from the user’s perspective. The result is currently #f for all platforms.

(embedding-executable-is-actually-directory? mred?) → boolean?

mred? : any/c

Indicates whether Racket/GRacket executables for the current platform actually correspond
to directories. The result is #t on Mac OS X when mred? is #t, #f otherwise.

(embedding-executable-put-file-extension+style+filters mred?)

→
(or/c string? false/c)

(listof (one-of/c 'packages 'enter-packages))

(listof (list/c string? string?))

mred? : any/c

Returns three values suitable for use as the extension, style, and filters arguments to
put-file, respectively.

If Racket/GRacket launchers for the current platform were directories form the user’s per-
spective, the style result is suitable for use with get-directory, and the extension

result may be a string indicating a required extension for the directory name.

(embedding-executable-add-suffix path

mred?) → path-string?

path : path-string?

mred? : any/c

Adds a suitable executable suffix, if it’s not present already.

3.1.1 Executable Creation Signature

(require compiler/embed-sig)

28

compiler:embed^ : signature

Includes the identifiers provided by compiler/embed.

3.1.2 Executable Creation Unit

(require compiler/embed-unit)

compiler:embed@ : unit?

A unit that imports nothing and exports compiler:embed^.

3.1.3 Finding the Racket Executable

(require compiler/find-exe)

(find-exe [gracket? variant]) → path?

gracket? : any/c = #f

variant : (or/c 'cgc '3m) = (system-type 'gc)

Finds the path to the racket or gracket (when gracket? is true) executable.

3.2 Installation-Specific Launchers

A launcher is similar to a stand-alone executable, but a launcher is usually smaller and can
be created more quickly, because it depends permanently on the local Racket installation
and the program’s sources. In the case of Unix, a launcher is simply a shell script that
runs racket or gracket. Launchers cannot be packaged into a distribution using raco

distribute. The raco exe command creates a launcher when the -l or --launcher flag
is specified.

(require launcher/launcher)

The launcher/launcher library provides functions for creating launchers.

3.2.1 Creating Launchers

(make-gracket-launcher args dest [aux]) → void?

29

args : (listof string?)

dest : path-string?

aux : (listof (cons/c symbol? any/c)) = null

Creates the launcher dest , which starts GRacket with the command-line arguments spec-
ified as strings in args . Extra arguments passed to the launcher at run-time are appended
(modulo special Unix/X flag handling, as described below) to this list and passed on to
GRacket. If dest exists already, as either a file or directory, it is replaced.

The optional aux argument is an association list for platform-specific options (i.e., it is a list
of pairs where the first element of the pair is a key symbol and the second element is the value
for that key). See also build-aux-from-path. See create-embedding-executable for
a list that applies to both stand-alone executables and launchers on Windows and Mac OS X
GRacket; the following additional associations apply to launchers:

• 'independent? (Windows) — a boolean; #t creates an old-style launcher that work
with any Racket or GRacket binary, like setup-plt.exe. No other aux associations
are used for an old-style launcher.

• 'exe-name (Mac OS X, 'script-3m or 'script-cgc variant) — provides the base
name for a '3m-/'cgc-variant launcher, which the script will call ignoring args . If
this name is not provided, the script will go through the GRacket executable as usual.

• 'relative? (all platforms) — a boolean, where #t means that the generated launcher
should find the base GRacket executable through a relative path.

For Unix/X, the script created by make-mred-launcher detects and handles X Windows
flags specially when they appear as the initial arguments to the script. Instead of appending
these arguments to the end of args , they are spliced in after any X Windows flags already
listed in args . The remaining arguments (i.e., all script flags and arguments after the last X
Windows flag or argument) are then appended after the spliced args .

(make-racket-launcher args dest [aux]) → void?

args : (listof string?)

dest : path-string?

aux : (listof (cons/c symbol? any/c)) = null

Like make-gracket-launcher, but for starting Racket. On Mac OS X, the 'exe-name

aux association is ignored.

(make-gracket-program-launcher file

collection

dest) → void?

file : string?

collection : string?

dest : path-string?

30

Calls make-gracket-launcher with arguments that start the GRacket program imple-
mented by file in collection : (list "-l-" (string-append collection "/"

file)). The aux argument to make-gracket-launcher is generated by stripping the
suffix (if any) from file , adding it to the path of collection , and passing the result to
build-aux-from-path.

(make-racket-program-launcher file

collection

dest) → void?

file : string?

collection : string?

dest : path-string?

Like make-gracket-program-launcher, but for make-racket-launcher.

(install-gracket-program-launcher file

collection

name) → void?

file : string?

collection : string?

name : string?

Same as

(make-gracket-program-launcher

file collection

(gracket-program-launcher-path name))

(install-racket-program-launcher file

collection

name) → void?

file : string?

collection : string?

name : string?

Same as

(make-racket-program-launcher

file collection

(racket-program-launcher-path name))

(make-mred-launcher args dest [aux]) → void?

args : (listof string?)

dest : path-string?

aux : (listof (cons/c symbol? any/c)) = null

31

(make-mred-program-launcher file

collection

dest) → void?

file : string?

collection : string?

dest : path-string?

(install-mred-program-launcher file

collection

name) → void?

file : string?

collection : string?

name : string?

Backward-compatible version of make-gracket-launcher, etc., that adds "-I"

"scheme/gui/init" to the start of the command-line arguments.

(make-mzscheme-launcher args dest [aux]) → void?

args : (listof string?)

dest : path-string?

aux : (listof (cons/c symbol? any/c)) = null

(make-mzscheme-program-launcher file

collection

dest) → void?

file : string?

collection : string?

dest : path-string?

(install-mzscheme-program-launcher file

collection

name) → void?

file : string?

collection : string?

name : string?

Backward-compatible version of make-racket-launcher, etc., that adds "-I"

"scheme/init" to the start of the command-line arguments.

3.2.2 Launcher Path and Platform Conventions

(gracket-program-launcher-path name) → path?

name : string?

Returns a pathname for an executable in the Racket installation called something like name .
For Windows, the ".exe" suffix is automatically appended to name . For Unix, name is

32

changed to lowercase, whitespace is changed to -, and the path includes the "bin" subdi-
rectory of the Racket installation. For Mac OS X, the ".app" suffix is appended to name .

(racket-program-launcher-path name) → path?

name : string?

Returns the same path as (gracket-program-launcher-path name) for Unix and Win-
dows. For Mac OS X, the result is the same as for Unix.

(gracket-launcher-is-directory?) → boolean?

Returns #t if GRacket launchers for the current platform are directories from the user’s
perspective. For all currently supported platforms, the result is #f.

(racket-launcher-is-directory?) → boolean?

Like gracket-launcher-is-directory?, but for Racket launchers.

(gracket-launcher-is-actually-directory?) → boolean?

Returns #t if GRacket launchers for the current platform are implemented as directories
from the filesystem’s perspective. The result is #t for Mac OS X, #f for all other platforms.

(racket-launcher-is-actually-directory?) → boolean?

Like gracket-launcher-is-actuall-directory?, but for Racket launchers. The result
is #f for all platforms.

(gracket-launcher-add-suffix path-string?) → path?

path-string? : path

Returns a path with a suitable executable suffix added, if it’s not present already.

(racket-launcher-add-suffix path-string?) → path?

path-string? : path

Like gracket-launcher-add-suffix, but for Racket launchers.

(gracket-launcher-put-file-extension+style+filters)

→
(or/c string? false/c)

(listof (one-of/c 'packages 'enter-packages))

(listof (list/c string? string?))

33

Returns three values suitable for use as the extension, style, and filters arguments to
put-file, respectively.

If GRacket launchers for the current platform were directories form the user’s perspective,
the style result is suitable for use with get-directory, and the extension result may be
a string indicating a required extension for the directory name.

(racket-launcher-put-file-extension+style+filters)

→
(or/c string? false/c)

(listof (one-of/c 'packages 'enter-packages))

(listof (list/c string? string?))

Like gracket-launcher-get-file-extension+style+filters, but for Racket
launchers.
(mred-program-launcher-path name) → path?

name : string?

(mred-launcher-is-directory?) → boolean?

(mred-launcher-is-actually-directory?) → boolean?

(mred-launcher-add-suffix path-string?) → path?

path-string? : path

(mred-launcher-put-file-extension+style+filters)

→
(or/c string? false/c)

(listof (one-of/c 'packages 'enter-packages))

(listof (list/c string? string?))

Backward-compatible aliases for gracket-program-launcher-path, etc.

(mzscheme-program-launcher-path name) → path?

name : string?

(mzscheme-launcher-is-directory?) → boolean?

(mzscheme-launcher-is-actually-directory?) → boolean?

(mzscheme-launcher-add-suffix path-string?) → path?

path-string? : path

(mzscheme-launcher-put-file-extension+style+filters)

→
(or/c string? false/c)

(listof (one-of/c 'packages 'enter-packages))

(listof (list/c string? string?))

Backward-compatible aliases for racket-program-launcher-path, etc.

3.2.3 Launcher Configuration

(gracket-launcher-up-to-date? dest aux) → boolean?

dest : path-string?

aux : (listof (cons/c symbol? any/c))

34

Returns #t if the GRacket launcher dest does not need to be updated, assuming that dest
is a launcher and its arguments have not changed.

(racket-launcher-up-to-date? dest aux) → boolean?

dest : path-string?

aux : (listof (cons/c symbol? any/c))

Analogous to gracket-launcher-up-to-date?, but for a Racket launcher.

(build-aux-from-path path) → (listof (cons/c symbol? any/c))

path : path-string?

Creates an association list suitable for use with make-gracket-launcher or create-

embedding-executable. It builds associations by adding to path suffixes, such as
".icns", checking whether such a file exists, and calling extract-aux-from-path if so.
The results from all recognized suffixes are appended together.

(extract-aux-from-path path) → (listof (cons/c symbol? any/c))

path : path-string?

Creates an association list suitable for use with make-gracket-launcher or create-

embedding-executable. It builds associations by recognizing the suffix of path , where
the recognized suffixes are as follows:

• ".icns"→ 'icns file for use on Mac OS X

• ".ico"→ 'ico file for use on Windows

• ".lch"→ 'independent? as #t (the file content is ignored) for use on Windows

• ".creator"→ 'creator as the initial four characters in the file for use on Mac OS
X

• ".filetypes" → 'file-types as read content (a single S-expression), and
'resource-files as a list constructed by finding "CFBundleTypeIconFile" en-
tries in 'file-types (and filtering duplicates); for use on Mac OS X

• ".utiexports"→ 'uti-exports as read content (a single S-expression); for use
on Mac OS X

• ".wmclass"→ 'wm-class as the literal content, removing a trailing newline if any;
for use on Unix

(current-launcher-variant) → symbol?

(current-launcher-variant variant) → void?

variant : symbol?

35

A parameter that indicates a variant of Racket or GRacket to use for launcher creation and
for generating launcher names. The default is the result of (system-type 'gc). On Unix
and Windows, the possibilities are 'cgc and '3m. On Mac OS X, the 'script-3m and
'script-cgc variants are also available for GRacket launchers.

(available-gracket-variants) → (listof symbol?)

Returns a list of symbols corresponding to available variants of GRacket in the current
Racket installation. The list normally includes at least one of '3m or 'cgc— whichever
is the result of (system-type 'gc)—and may include the other, as well as 'script-3m
and/or 'script-cgc on Mac OS X.

(available-racket-variants) → (listof symbol?)

Returns a list of symbols corresponding to available variants of Racket in the current Racket
installation. The list normally includes at least one of '3m or 'cgc—whichever is the result
of (system-type 'gc)—and may include the other.

(mred-launcher-up-to-date? dest aux) → boolean?

dest : path-string?

aux : (listof (cons/c symbol? any/c))

(mzscheme-launcher-up-to-date? dest aux) → boolean?

dest : path-string?

aux : (listof (cons/c symbol? any/c))

(available-mred-variants) → (listof symbol?)

(available-mzscheme-variants) → (listof symbol?)

Backward-compatible aliases for gracket-launcher-up-to-date?, etc.

3.2.4 Launcher Creation Signature

(require launcher/launcher-sig)

launcher^ : signature

Includes the identifiers provided by launcher/launcher.

3.2.5 Launcher Creation Unit

(require launcher/launcher-unit)

launcher@ : unit?

A unit that imports nothing and exports launcher^.

36

4 raco distribute: Sharing Stand-Alone Executables

The raco distribute command combines a stand-alone executable created by raco exe

with all of the shared libraries that are needed to run it, along with any run-time files declared
via define-runtime-path. The resulting package can be moved to other machines that
run the same operating system.

After the raco distribute command, supply a directory to contain the combined files for
a distribution. Each command-line argument is an executable to include in the distribution,
so multiple executables can be packaged together. For example, on Windows,

raco distribute greetings hello.exe goodbye.exe

creates a directory "greetings" (if the directory doesn’t exist already), and it copies the
executables "hello.exe" and "goodbye.exe" into "greetings". It also creates a "lib"
sub-directory in "greetings" to contain DLLs, and it adjusts the copied "hello.exe" and
"goodbye.exe" to use the DLLs in "lib".

The layout of files within a distribution directory is platform-specific:

• On Windows, executables are put directly into the distribution directory, and DLLs
and other run-time files go into a "lib" sub-directory.

• On Mac OS X, GUI executables go into the distribution directory, other executables
go into a "bin" subdirectory, and frameworks (i.e., shared libraries) go into a "lib"
sub-directory along with other run-time files. As a special case, if the distribution
has a single --gui-exe executable, then the "lib" directory is hidden inside the
application bundle.

• On Unix, executables go into a "bin" subdirectory, shared libraries (if any) go into
a "lib" subdirectory along with other run-time files, and wrapped executables are
placed into a "lib/plt" subdirectory with version-specific names. This layout is
consistent with Unix installation conventions; the version-specific names for shared
libraries and wrapped executables means that distributions can be safely unpacked
into a standard place on target machines without colliding with an existing Racket
installation or other executables created by raco exe.

A distribution also has a "collects" directory that is used as the main library collec-
tion directory for the packaged executables. By default, the directory is empty. Use the
++copy-collects flag of raco distribute to supply a directory whose content is copied
into the distribution’s "collects" directory. The ++copy-collects flag can be used mul-
tiple times to supply multiple directories.

When multiple executables are distributed together, then separately creating the executables
with raco exe can generate multiple copies of collection-based libraries that are used by
multiple executables. To share the library code, instead, specify a target directory for library

37

copies using the --collects-dest flag with raco exe, and specify the same directory for
each executable (so that the set of libraries used by all executables are pooled together). Fi-
nally, when packaging the distribution with raco distribute, use the ++copy-collects
flag to include the copied libraries in the distribution.

4.1 API for Distributing Executables

(require compiler/distribute)

The compiler/distribute library provides a function to perform the same work as raco
distribute.

(assemble-distribution dest-dir

exec-files

[#:collects-path path

#:copy-collects dirs]) → void?

dest-dir : path-string?

exec-files : (listof path-string?)

path : (or/c false/c (and/c path-string? relative-path?)) = #f

dirs : (listof path-string?) = null

Copies the executables in exec-files to the directory dest-dir , along with DLLs, frame-
works, and/or shared libraries that the executables need to run a different machine.

The arrangement of the executables and support files in dest-dir depends on the platform.
In general assemble-distribution tries to do the Right Thing.

If a #:collects-path argument is given, it overrides the default location of the main "col-
lects" directory for the packaged executables. It should be relative to the dest-dir direc-
tory (typically inside it).

The content of each directory in the #:copy-collects argument is copied into the main
"collects" directory for the packaged executables.

4.2 API for Bundling Distributions

(require compiler/bundle-dist)

The compiler/bundle-dist library provides a function to pack a directory (usually as-
sembled by assemble-distribution) into a distribution file. On Windows, the result is a
".zip" archive; on Mac OS X, it’s a ".dmg" disk image; on Unix, it’s a ".tgz" archive.

(bundle-directory dist-file dir [for-exe?]) → void?

dist-file : file-path?

38

dir : file-path?

for-exe? : any/c = #f

Packages dir into dist-file . If dist-file has no extension, a file extension is added
automatcially (using the first result of bundle-put-file-extension+style+filters).

The created archive contains a directory with the same name as dir—except on Mac OS X
when for-exe? is true and dir contains a single a single file or directory, in which case the
created disk image contains just the file or directory. The default for for-exe? is #f.

Archive creation fails if dist-file exists.

(bundle-put-file-extension+style+filters)

→
(or/c string? false/c)

(listof (one-of/c 'packages 'enter-packages))

(listof (list/c string? string?))

Returns three values suitable for use as the extension, style, and filters arguments to
put-file, respectively to select a distribution-file name.

39

5 raco pack: Packing Library Collections
Before creating a
".plt" archive to
distribute, consider
instead posting your
package on PLaneT.

The raco pack command creates an archive for distributing library files to Racket users.
A distribution archive usually has the suffix ".plt", which DrRacket recognizes as an
archive to provide automatic unpacking facilities. The raco setup command (see §8 “raco
setup: Installation Management”) also supports ".plt" unpacking with installation, while
the raco unpack command (see §6 “raco unpack: Unpacking Library Collections”) un-
packs an archive locally without attempting to install it.

An archive contains the following elements:

• A set of files and directories to be unpacked, and flags indicating whether they are
to be unpacked relative to the Racket add-ons directory (which is user-specific), the
Racket installation directory, or a user-selected directory.

The files and directories for an archive are provided on the command line to raco

pack, either directly or in the form of collection names when the --collect flag is
used.

The --at-plt flag indicates that the files and directories should be unpacked rela-
tive to the user’s add-ons directory, unless the user specifies the Racket installation
directory when unpacking. The --collection-plt flag implies --at-plt. The
--all-users flag overrides --at-plt, and it indicates that the files and directories
should be unpacked relative to the Racket installation directory, always.

• A flag for each file indicating whether it overwrites an existing file when the archive is
unpacked; the default is to leave the old file in place, but the --replace flag enables
replacing for all files in the archive.

• A list of collections to be set-up (via raco setup) after the archive is unpacked;
the ++setup flag adds a collection name to the archive’s list, but each collection for
--collection-plt is added automatically.

• A name for the archive, which is reported to the user by the unpacking interface; the
--plt-name flag sets the archive’s name, but a default name is determined automati-
cally when using --collect.

• A list of required collections (with associated version numbers) and a list of conflict-
ing collections; the raco pack command always names the "racket" collection in
the required list (using the collection’s pack-time version), raco pack names each
packed collection in the conflict list (so that a collection is not unpacked on top of a
different version of the same collection), and raco pack extracts other requirements
and conflicts from the "info.rkt" files of collections when using --collect.

Specify individual directories and files for the archive when not using --collect. Each file
and directory must be specified with a relative path. By default, if the archive is unpacked
with DrRacket, the user will be prompted for a target directory, and if raco setup is used to

40

http://planet.racket-lang.org/

unpack the archive, the files and directories will be unpacked relative to the current directory.
If the --at-plt flag is provided, the files and directories will be unpacked relative to the
user’s Racket add-ons directory, instead. Finally, if the --all-users flag is provided, the
files and directories will be unpacked relative to the Racket installation directory, instead.

Use the --collect flag to pack one or more collections; sub-collections can be desig-
nated by using a / as a path separator on all platforms. In this mode, raco pack auto-
matically uses paths relative to the Racket installation or add-ons directory for the archived
files, and the collections will be set-up after unpacking. In addition, raco pack consults
each collection’s "info.rkt" file, as described below, to determine the set of required and
conflicting collections. Finally, raco pack consults the first collection’s "info.rkt" file
to obtain a default name for the archive. For example, the following command creates a
"sirmail.plt" archive for distributing a "sirmail" collection:

raco pack --collect sirmail.plt sirmail

When packing collections, raco pack checks the following fields of each collection’s
"info.rkt" file (see §8.2 “"info.rkt" File Format”):

• requires — A list of the form (list (list coll vers) ...) where each coll
is a non-empty list of relative-path strings, and each vers is a (possibly empty) list
of exact integers. The indicated collections must be installed at unpacking time, with
version sequences that match as much of the version sequence specified in the corre-
sponding vers.

A collection’s version is indicated by a version field in its "info.rkt" file, and the
default version is the empty list. The version sequence generalized major and minor
version numbers. For example, version '(2 5 4 7) of a collection can be used when
any of '(), '(2), '(2 5), '(2 5 4), or '(2 5 4 7) is required.

• conflicts — A list of the form (list coll ...) where each coll is a non-
empty list of relative-path strings. The indicated collections must not be installed at
unpacking time.

For example, the "info.rkt" file in the "sirmail" collection might contain the following
info declaration:

#lang setup/infotab

(define name "SirMail")

(define mred-launcher-libraries (list "sirmail.rkt"))

(define mred-launcher-names (list "SirMail"))

(define requires (list (list "mred")))

Then, the "sirmail.plt" file (created by the command-line example above) will contain
the name “SirMail.” When the archive is unpacked, the unpacker will check that the "mred"
collection is installed, and that "mred" has the same version as when "sirmail.plt" was
created.

41

5.1 Format of ".plt" Archives

The extension ".plt" is not required for a distribution archive, but the ".plt"-extension
convention helps users identify the purpose of a distribution file.

The raw format of a distribution file is described below. This format is uncompressed and
sensitive to communication modes (text vs. binary), so the distribution format is derived
from the raw format by first compressing the file using gzip, then encoding the gzipped file
with the MIME base64 standard (which relies only the characters A-Z, a-z, 0-9, +, /, and =;
all other characters are ignored when a base64-encoded file is decoded).

The raw format is

• PLT are the first three characters.

• A procedure that takes a symbol and a failure thunk and returns information about
archive for recognized symbols and calls the failure thunk for unrecognized symbols.
The information symbols are:

– 'name — a human-readable string describing the archive’s contents. This name
is used only for printing messages to the user during unpacking.

– 'unpacker — a symbol indicating the expected unpacking environment. Cur-
rently, the only allowed value is 'mzscheme.

– 'requires — collections required to be installed before unpacking the archive,
which associated versions; see the documentation of pack for details.

– 'conflicts — collections required not to be installed before unpacking the
archive.

– 'plt-relative? — a boolean; if true, then the archive’s content should be
unpacked relative to the plt add-ons directory.

– 'plt-home-relative? — a boolean; if true and if 'plt-relative? is true,
then the archive’s content should be unpacked relative to the Racket installation.

– 'test-plt-dirs — #f or a list of path strings; in the latter case, a true value of
'plt-home-relative? is cancelled if any of the directories in the list (relative
to the Racket installation) is unwritable by the user.

The procedure is extracted from the archive using the read and eval procedures in a
fresh namespace.

• An old-style, unsigned unit using (lib mzlib/unit200) that drives the unpacking
process. The unit accepts two imports: a path string for the parent of the main "col-

lects" directory and an unmztar procedure. The remainder of the unpacking process
consists of invoking this unit. It is expected that the unit will call unmztar procedure
to unpack directories and files that are defined in the input archive after this unit. The
result of invoking the unit must be a list of collection paths (where each collection

42

path is a list of strings); once the archive is unpacked, raco setup will compile and
setup the specified collections.

The unmztar procedure takes one argument: a filter procedure. The filter procedure
is called for each directory and file to be unpacked. It is called with three arguments:

– 'dir, 'file, 'file-replace — indicates whether the item to be unpacked is
a directory, a file, or a file to be replaced,

– a relative path string — the pathname of the directory or file to be unpacked,
relative to the unpack directory, and

– a path string for the unpack directory (which can vary for a Racket-relative install
when elements of the archive start with "collects", "lib", etc.).

If the filter procedure returns #f for a directory or file, the directory or file is not
unpacked. If the filter procedure returns #t and the directory or file for 'dir or 'file
already exists, it is not created. (The file for file-replace need not exist already.)

When a directory is unpacked, intermediate directories are created as necessary to
create the specified directory. When a file is unpacked, the directory must already
exist.

The unit is extracted from the archive using read and eval.

Assuming that the unpacking unit calls the unmztar procedure, the archive should continue
with unpackables. Unpackables are extracted until the end-of-file is found (as indicated by
an = in the base64-encoded input archive).

An unpackable is one of the following:

• The symbol 'dir followed by a list. The build-path procedure will be applied to
the list to obtain a relative path for the directory (and the relative path is combined
with the target directory path to get a complete path).

The 'dir symbol and list are extracted from the archive using read (and the result is
not evaluated).

• The symbol 'file, a list, a number, an asterisk, and the file data. The list specifies the
file’s relative path, just as for directories. The number indicates the size of the file to
be unpacked in bytes. The asterisk indicates the start of the file data; the next n bytes
are written to the file, where n is the specified size of the file.

The symbol, list, and number are all extracted from the archive using read (and the
result is not evaluated). After the number is read, input characters are discarded until
an asterisk is found. The file data must follow this asterisk immediately.

• The symbol 'file-replace is treated like 'file, but if the file exists on disk al-
ready, the file in the archive replaces the file on disk.

43

5.2 API for Packing

(require setup/pack)

Although the raco pack command can be used to create most ".plt" files, the
setup/pack library provides a more general API for making ".plt" archives.

(pack-collections-plt

dest

name

collections

[#:replace? replace?

#:at-plt-home? at-home?

#:test-plt-collects? test?

#:extra-setup-collections collection-list

#:file-filter filter-proc])
→ void?

dest : path-string?

name : string?

collections : (listof (listof path-string?))

replace? : boolean? = #f

at-home? : boolean? = #f

test? : boolean? = #t

collection-list : (listof path-string?) = null

filter-proc : (path-string? . -> . boolean?) = std-filter

Creates the ".plt" file specified by the pathname dest , using the name as the name re-
ported to raco setup as the archive’s description.

The archive contains the collections listed in collections , which should be a list of col-
lection paths; each collection path is, in turn, a list of relative-path strings.

If the #:replace? argument is #f, then attempting to unpack the archive will report an error
when any of the collections exist already, otherwise unpacking the archive will overwrite an
existing collection.

If the #:at-plt-home? argument is #t, then the archived collections will be installed into
the Racket installation directory instead of the user’s directory if the main "collects" di-
rectory is writable by the user. If the #:test-plt-collects? argument is #f (the default
is #t) and the #:at-plt-home? argument is #t, then installation fails if the main "col-

lects" directory is not writable.

The optional #:extra-setup-collections argument is a list of collection paths that are
not included in the archive, but are set-up when the archive is unpacked.

The optional #:file-filter argument is the same as for pack-plt.

44

(pack-collections dest

name

collections

replace?

extra-setup-collections

[filter
at-plt-home?]) → void?

dest : path-string?

name : string?

collections : (listof (listof path-string?))

replace? : boolean?

extra-setup-collections : (listof path-string?)

filter : (path-string? . -> . boolean?) = std-filter

at-plt-home? : boolean? = #f

Old, keywordless variant of pack-collections-plt for backward compatibility.

(pack-plt dest

name

paths

[#:as-paths as-paths

#:file-filter filter-proc

#:encode? encode?

#:file-mode file-mode-sym

#:unpack-unit unit200-expr

#:collections collection-list

#:plt-relative? plt-relative?

#:at-plt-home? at-plt-home?

#:test-plt-dirs dirs

#:requires mod-and-version-list

#:conflicts mod-list]) → void?

dest : path-string?

name : string?

paths : (listof path-string?)

as-paths : (listof path-string?) = paths

filter-proc : (path-string? . -> . boolean?) = std-filter

encode? : boolean? = #t

file-mode-sym : symbol? = 'file

unit200-expr : any/c = #f

collection-list : (listof path-string?) = null

plt-relative? : any/c = #f

at-plt-home? : any/c = #f

dirs : (or/c (listof path-string?) false/c) = #f

mod-and-version-list :
(listof (listof path-string?)

(listof exact-integer?))
= null

45

mod-list : (listof (listof path-string?)) = null

Creates the ".plt" file specified by the pathname dest , using the string name as the name
reported to raco setup as the archive’s description. The paths argument must be a list
of relative paths for directories and files; the contents of these files and directories will be
packed into the archive. The optional as-paths list provides the path to be recorded in the
archive for each element of paths (so that the unpacked paths can be different from the
packed paths).

The #:file-filter procedure is called with the relative path of each candidate for packing.
If it returns #f for some path, then that file or directory is omitted from the archive. If it
returns 'file or 'file-replace for a file, the file is packed with that mode, rather than
the default mode. The default is std-filter.

If the #:encode? argument is #f, then the output archive is in raw form, and still must be
gzipped and mime-encoded (in that order). The default value is #t.

The #:file-mode argument must be 'file or 'file-replace, indicating the default
mode for a file in the archive. The default is 'file.

The #:unpack-unit argument is usually #f. Otherwise, it must be an S-expression for
a mzlib/unit200-style unit that performs the work of unpacking; see §5.1 “Format of
".plt" Archives” more information about the unit. If the #:unpack-unit argument is #f,
an appropriate unpacking unit is generated.

The #:collections argument is a list of collection paths to be compiled after the archive
is unpacked. The default is the null.

If the #:plt-relative? argument is true (the default is #f), the archive’s files and direc-
tories are to be unpacked relative to the user’s add-ons directory or the Racket installation
directories, depending on whether the #:at-plt-home? argument is true and whether di-
rectories specified by #:test-plt-dirs are writable by the user.

If the #:at-plt-home? argument is true (the default is #f), then #:plt-relative? must
be true, and the archive is unpacked relative to the Racket installation directory. In that case,
a relative path that starts with "collects" is mapped to the installation’s main "collects"
directory, and so on, for the following the initial directory names:

• "collects"

• "doc"

• "lib"

• "include"

If #:test-plt-dirs is a list, then #:at-plt-home? must be #t. In that case, when
the archive is unpacked, if any of the relative directories in the #:test-plt-dirs list is

46

unwritable by the current user, then the archive is unpacked in the user’s add-ons directory
after all.

The #:requires argument should have the shape (list (list coll-path version)

...) where each coll-path is a non-empty list of relative-path strings, and each version

is a (possibly empty) list of exact integers. The indicated collections must be installed at
unpacking time, with version sequences that match as much of the version sequence specified
in the corresponding version . A collection’s version is indicated by the version field of
its "info.rkt" file.

The #:conflicts argument should have the shape (list coll-path ...) where each
coll-path is a non-empty list of relative-path strings. The indicated collections must not
be installed at unpacking time.

(pack dest

name

paths

collections

[filter
encode?

file-mode

unpack-unit

plt-relative?

requires

conflicts

at-plt-home?]) → void?

dest : path-string?

name : string?

paths : (listof path-string?)

collections : (listof path-string?)

filter : (path-string? . -> . boolean?) = std-filter

encode? : boolean? = #t

file-mode : symbol? = 'file

unpack-unit : boolean? = #f

plt-relative? : boolean? = #t

requires :
(listof (listof path-string?)

(listof exact-integer?))
= null

conflicts : (listof (listof path-string?)) = null

at-plt-home? : boolean? = #f

Old, keywordless variant of pack-plt for backward compatibility.

(std-filter p) → boolean?

p : path-string?

Returns #t unless p , after stripping its directory path and converting to a byte string, matches

47

one of the following regular expressions: ^[.]git, ^[.]svn$, ^CVS$, ^[.]cvsignore,
^compiled$, ^doc, ∼$, ^#.*#$, ^[.]#, or [.]plt$.

(mztar path

[#:as-path as-path]
output

filter

file-mode) → void?

path : path-string?

as-path : path-string? = path

output : output-port?

filter : (path-string? . -> . boolean?)

file-mode : (symbols 'file 'file-replace)

Called by pack to write one directory/file path to the output port output using the filter
procedure filter (see pack for a description of filter). The path is recorded in the
output as as-path , in case the unpacked path should be different from the original path.
The file-mode argument specifies the default mode for packing a file, either 'file or
'file-replace.

48

6 raco unpack: Unpacking Library Collections

The raco unpack command unpacks a ".plt" archive (see §5 “raco pack: Packing Li-
brary Collections”) to the current directory without attempting to install any collections. Use
raco setup -A (see §8 “raco setup: Installation Management”) to unpack and install
collections from a ".plt" archive.

Command-line flags:

• -l or --list — lists the content of the archive without unpacking it.

• -c or --config — shows the archive configuration before unpacking or listing the
archive content.

• -f or --force — replace files that exist already; fails that the archive says should be
replaced will be replaced without this flag.

6.1 Unpacking API

(require setup/unpack)

The setup/unpack library provides raw support for unpacking a ".plt" file.

(unpack archive

[main-collects-parent-dir
print-status

get-target-directory

force?

get-target-plt-directory]) → void?

archive : path-string?

main-collects-parent-dir : path-string? = (current-directory)

print-status : (string? . -> . any)

= (lambda (x) (printf "∼a\n" x))

get-target-directory : (-> path-string?)

= (lambda () (current-directory))

force? : any/c = #f

get-target-plt-directory :

(path-string?

path-string?

(listof path-string?)

. -> . path-string?)

=
(lambda (preferred-dir main-dir options)

preferred-dir)

Unpacks archive .

49

The main-collects-parent-dir argument is passed along to get-target-plt-

directory .

The print-status argument is used to report unpacking progress.

The get-target-directory argument is used to get the destination directory for unpack-
ing an archive whose content is relative to an arbitrary directory.

If force? is true, then version and required-collection mismatches (comparing information
in the archive to the current installation) are ignored.

The get-target-plt-directory function is called to select a target for installation for
an archive whose is relative to the installation. The function should normally return one if
its first two arguments; the third argument merely contains the first two, but has only one
element if the first two are the same. If the archive does not request installation for all uses,
then the first two arguments will be different, and the former will be a user-specific location,
while the second will refer to the main installation.

(fold-plt-archive archive

on-config-fn

on-setup-unit

on-directory

on-file

initial-value) → any/c

archive : path-string?

on-config-fn : (any/c any/c . -> . any/c)

on-setup-unit : (any/c input-port? any/c . -> . any/c)

on-directory : (path-string? any/c . -> . any/c)

on-file :
(or/c (path-string? input-port? any/c . -> . any/c)

(path-string? input-port? (one-of/c 'file 'file-replace) any/c

. -> . any/c))

initial-value : any/c

Traverses the content of archive , which must be a ".plt" archive that is created with the
default unpacking unit and configuration expression. The configuration expression is not
evaluated, the unpacking unit is not invoked, and not files are unpacked to the filesystem.
Instead, the information in the archive is reported back through on-config, on-setup-
unit , on-directory , and on-file , each of which can build on an accumulated value that
starts with initial-value and whose final value is returned.

The on-config-fn function is called once with an S-expression that represents a function
to implement configuration information. The second argument to on-config is initial-
value , and the function’s result is passes on as the last argument to on-setup-unit .

The on-setup-unit function is called with the S-expression representation of the instal-
lation unit, an input port that points to the rest of the file, and the accumulated value. This
input port is the same port that will be used in the rest of processing, so if on-setup-unit

50

consumes any data from the port, then that data will not be consumed by the remaining func-
tions. (This means that on-setup-unit can leave processing in an inconsistent state, which is
not checked by anything, and therefore could cause an error.) The result of on-setup-unit
becomes the new accumulated value.

For each directory that would be created by the archive when unpacking normally, on-
directory is called with the directory path and the accumulated value up to that point, and
its result is the new accumulated value.

For each file that would be created by the archive when unpacking normally, on-file is
called with the file path, an input port containing the contents of the file, an optional mode
symbol indicating whether the file should be replaced, and the accumulated value up to that
point; its result is the new accumulated value. The input port can be used or ignored, and
parsing of the rest of the file continues the same either way. After on-file returns control,
however, the input port is drained of its content.

51

7 raco planet: Automatic Package Distribution

See PLaneT: Automatic Package Distribution for information on the raco planet com-
mand, which is used for managing packages that can be automatically downloaded and in-
stalled from the PLaneT server.

52

8 raco setup: Installation Management

The raco setup command finds, compiles, configures, and installs documentation for all
collections in a Racket installation. It can also install single ".plt" files.

8.1 Running raco setup

The raco setup command performs two main services:

• Compiling and setting up all (or some of the) collections: When raco setup is
run without any arguments, it finds all of the current collections (see §17.2 “Libraries
and Collections”) and compiles libraries in each collection.

An optional "info.rkt" within the collection can indicate specifically how the col-
lection’s files are to be compiled and other actions to take in setting up a collection,
such as creating executables or building documentation. See §8.1.1 “Controlling raco
setup with "info.rkt" Files” for more information.

The --clean (or -c) flag to raco setup causes it to delete existing ".zo" files,
thus ensuring a clean build from the source files. The exact set of deleted files can be
controlled by "info.rkt"; see clean for more information.

The --workers (or -j) flag to raco setup takes an argument n to make compilation
use up to n parallel processes. The default value of n is (processor-count), which
typically uses all the machine’s processing cores.

The -l flag takes one or more collection names and restricts raco setup’s action to
those collections.

The --mode 〈mode〉 flag causes raco setup to use a ".zo" compiler other than the
default compiler, and to put the resulting ".zo" files in a subdirectory (of the usual
place) named by 〈mode〉. The compiler is obtained by using 〈mode〉 as a collection
name, finding a "zo-compile.rkt" module in that collection, and extracting its zo-
compile export. The zo-compile export should be a function like compile; see the
"errortrace" collection for an example.

When building racket, flags can be provided to raco setup as run by make in-

stall by setting the PLT_SETUP_OPTIONS environment variable. For example, the
following command line uses a single process to build collections during an install:

env PLT_SETUP_OPTIONS="-j 1" make install

• Unpacking ".plt" files: A ".plt" file is a platform-independent distribution
archive for software based on Racket. When one or more file names are provided
as the command line arguments to raco setup, the files contained in the ".plt"

archive are unpacked (according to specifications embedded in the ".plt" file) and
only collections specified by the ".plt" file are compiled and setup.

Run raco help setup to see a list of all options accepted by the raco setup command.

53

8.1.1 Controlling raco setup with "info.rkt" Files

To compile a collection’s files to bytecode, raco setup uses the compile-collection-

zos procedure. That procedure, in turn, consults the collection’s "info.rkt" file, if it ex-
ists, for specific instructions on compiling the collection. See compile-collection-zos

for more information on the fields of "info.rkt" that it uses, and see §8.2 “"info.rkt"
File Format” for information on the format of an "info.rkt" file.

Optional "info.rkt" fields trigger additional actions by raco setup:

• scribblings : (listof (cons/c string? list?)) — A list of documents to
build. Each document in the list is itself represented as a list, where each document’s
list starts with a string that is a collection-relative path to the document’s source file.

More precisely a scribblings entry must be a value that can be generated from an
expression matching the following entry grammar:

entry = (list doc ...)

doc = (list src-string)

| (list src-string flags)

| (list src-string flags category)

| (list src-string flags category name-string)

flags = (list mode-symbol ...)

category = (list category-symbol)

| (list category-symbol sort-number)

A document’s list optionally continues with information on how to build the docu-
ment. If a document’s list contains a second item, it must be a list of mode symbols
(described below). If a document’s list contains a third item, it must be a list that cate-
gorizes the document (described further below). If a document’s list contains a fourth
item, it is a name to use for the generated documentation, instead of defaulting to the
source file’s name (sans extension).

Each mode symbol in flags can be one of the following, where only 'multi-page

is commonly used:

– 'multi-page : Generates multi-page HTML output, instead of the default
single-page format.

– 'main-doc : Indicates that the generated documentation should be written into
the main installation directory, instead of to a user-specific directory. This mode
is the default for a collection that is itself located in the main installation.

– 'user-doc : Indicates that the generated documentation should be written a
user-specific directory. This mode is the default for a collection that is not itself
located in the main installation.

54

– 'depends-all : Indicates that the document should be re-built if any other doc-
ument is rebuilt—except for documents that have the 'no-depends-on mode.

– 'depends-all-main : Indicates that the document should be re-built if any
other document is rebuilt that is installed into the main installation—except for
documents that have the 'no-depends-on mode.

– 'always-run : Build the document every time that raco setup is run, even if
none of its dependencies change.

– 'no-depend-on : Removes the document for consideration for other depen-
dencies. This mode is typically used with 'always-run to avoid unnecessary
dependencies that prevent reaching a stable point in building documentation.

– 'main-doc-root : Designates the root document for the main installation. The
document that currently has this mode should be the only one with the mode.

– 'user-doc-root : Designates the root document for the user-specific docu-
mentation directory. The document that currently has this mode should be the
only one with the mode.

The category list specifies how to show the document in the root table of contents.
The list must start with a symbol, usually one of the following categories, which are
ordered as below in the root documentation page:

– 'getting-started : High-level, introductory documentation.

– 'language : Documentation for a prominent programming language.

– 'tool : Documentation for an executable.

– 'gui-library : Documentation for GUI and graphics libraries.

– 'net-library : Documentation for networking libraries.

– 'parsing-library : Documentation for parsing libraries.

– 'tool-library : Documentation for programming-tool libraries (i.e., not im-
portant enough for the more prominent 'tool category).

– 'interop : Documentation for interoperability tools and libraries.

– 'library : Documentation for libraries; this category is the default and used
for unrecognized category symbols.

– 'legacy : Documentation for deprecated libraries, languages, and tools.

– 'experimental : Documentation for an experimental language or library.

– 'other : Other documentation.

– 'omit : Documentation that should not be listed on the root page.

If the category list has a second element, it must be a real number that designates
the manual’s sorting position with the category; manuals with the same sorting po-
sition are ordered alphabetically. For a pair of manuals with sorting numbers n and
m , the groups for the manuals are separated by space if (truncate (/ n 10))and
(truncate (/ m 10)) are different.

55

• racket-launcher-names : (listof string?) — A list of executable names to
be generated in the installation’s executable directory to run Racket-based programs
implemented by the collection. A parallel list of library names must be provided by
racket-launcher-libraries or racket-launcher-flags.

For each name, a launching executable is set up using make-racket-launcher. The
arguments are -l- and 〈colls〉/.../〈file〉, where 〈file〉 is the file named by racket-

launcher-libraries and 〈colls〉/... are the collections (and subcollections) of the
"info.rkt" file.

In addition,

(build-aux-from-path

(build-path (collection-path 〈colls〉 ...) 〈suffixless-file〉))

is provided for the optional aux argument (for icons, etc.) to make-racket-

launcher, where 〈suffixless-file〉 is 〈file〉 without its suffix.

If racket-launcher-flags is provided, it is used as a list of command-line argu-
ments passed to racket instead of the above default, allowing arbitrary command-
line arguments. If racket-launcher-flags is specified together with racket-

launcher-libraries, then the flags will override the libraries, but the libraries can
still be used to specify a name for build-aux-from-path (to find related information
like icon files etc).

• racket-launcher-libraries : (listof path-string?) — A list of library
names in parallel to racket-launcher-names.

• racket-launcher-flags : (listof string?) — A list of command-line flag
lists, in parallel to racket-launcher-names.

• mzscheme-launcher-names, mzscheme-launcher-libraries, and mzscheme-

launcher-flags — Backward-compatible variant of racket-launcher-names,
etc.

• gracket-launcher-names : (listof string?) — Like racket-launcher-

names, but for GRacket-based executables. The launcher-name list is treated in paral-
lel to gracket-launcher-libraries and gracket-launcher-flags.

• gracket-launcher-libraries : (listof path-string?) — A list of library
names in parallel to gracket-launcher-names.

• gracket-launcher-flags : (listof string?) — A list of command-line flag
lists, in parallel to gracket-launcher-names.

• mred-launcher-names, mred-launcher-libraries, and mred-launcher-

flags — Backward-compatible variant of gracket-launcher-names, etc.

• install-collection : path-string? — A library module relative to the collec-
tion that provides installer. The installer procedure accepts either one or two

56

arguments. The first argument is a directory path to the parent of the Racket instal-
lation’s "collects" directory; the second argument, if accepted, is a path to the
collection’s own directory. The procedure should perform collection-specific installa-
tion work, and it should avoid unnecessary work in the case that it is called multiple
times for the same installation.

• pre-install-collection : path-string? — Like install-collection, ex-
cept that the corresponding installer is called before the normal ".zo" build, instead
of after. The provided procedure should be named pre-installer in this case, so it
can be provided by the same file that provides an installer.

• post-install-collection : path-string? — Like install-collection. It is
called right after the install-collection procedure is executed. The only differ-
ence between these is that the --no-install flag can be used to disable the previous
two installers, but not this one. It is therefore expected to perform operations that
are always needed, even after an installation that contains pre-compiled files. The pro-
vided procedure should be named post-installer in this case, so it can be provided
by the same file that provides the previous two.

• clean : (listof path-string?) — A list of pathnames to be deleted when the
--clean or -c flag is passed to raco setup. The pathnames must be relative to the
collection. If any path names a directory, each of the files in the directory are deleted,
but none of the subdirectories of the directory are checked. If the path names a file,
the file is deleted. The default, if this flag is not specified, is to delete all files in the
"compiled" subdirectory, and all of the files in the platform-specific subdirectory of
the compiled directory for the current platform.

Just as compiling ".zo" files will compile each module used by a compiled module,
deleting a module’s compiled image will delete the ".zo" of each module that is
used by the module. More specifically, used modules are determined when deleting
a ".dep" file, which would have been created to accompany a ".zo" file when the
".zo" was built by raco setup. If the ".dep" file indicates another module, that
module’s ".zo" is deleted only if it also has an accompanying ".dep" file. In that
case, the ".dep" file is deleted, and additional used modules are deleted based on
the used module’s ".dep" file, etc. Supplying a specific list of collections to raco

setup disables this dependency-based deletion of compiled files.

8.2 "info.rkt" File Format

#lang setup/infotab

In each collection, a special module file "info.rkt" provides general information about a
collection for use by various tools. For example, an "info.rkt" file specifies how to build
the documentation for a collection, and it lists plug-in tools for DrRacket or commands for
raco that the collection provides.

57

Although an "info.rkt" file contains a module declaration, the declaration has a highly
constrained form. It must match the following grammar of info-module :

info-module = (module info intotab-mod-path

decl

...)

intotab-mod-path = setup/infotab

| (lib "setup/infotab.ss")

| (lib "setup/infotab.rkt")

| (lib "infotab.rkt" "setup")

| (lib "infotab.ss" "setup")

decl = (define id info-expr)

| (require allowed-path)

info-expr = 'datum

| `datum

| (info-primitive info-expr ...)

| id

| string

| number

| boolean

| (string-constant identifier)

info-primitive = cons

| car

| cdr

| list

| list*

| reverse

| append

| string-append

| path->string

| build-path

| collection-path

| system-library-subpath

allowed-path = (lib "string-constant.ss" "string-constants")

| (lib "string-constants/string-constant.ss")

| string-constants/string-constant

| string-constants

For example, the following declaration could be the "info.rkt" library of the "games" col-
lection. It contains definitions for three info tags, name, gracket-launcher-libraries,
and gracket-launcher-names.

58

#lang setup/infotab

(define name "Games")

(define gracket-launcher-libraries '("main.rkt"))

(define gracket-launcher-names '("PLT Games"))

As illustrated in this example, an "info.rkt" file can use #lang notation, but only with the
setup/infotab language.

See also get-info from setup/getinfo.

(require module-path)

Like require, but constrained to allowed-path as shown in the grammar above.

8.3 API for Installation

The setup/setup-unit library provides raco setup in unit form. The associated
setup/option-sig and setup/option-unit libraries provides the interface for setting
options for the run of raco setup.

For example, to unpack a single ".plt" archive "x.plt", set the archives parameter to
(list "x.plt") and leave specific-collections as null.

Link the options and setup units so that your option-setting code is initialized between them,
e.g.:

(compound-unit

...

(link ...

[((OPTIONS : setup-option^)) setup:option@]

[() my-init-options@ OPTIONS]

[() setup@ OPTIONS ...])

...)

8.3.1 raco setup Unit

(require setup/setup-unit)

setup@ : unit?

Imports

• setup-option^

59

• compiler^

• compiler:option^

• launcher^

• dynext:file^

and exports nothing. Invoking setup@ starts the setup process.

8.3.2 Options Unit

(require setup/option-unit)

setup:option@ : unit?

Imports nothing and exports setup-option^.

8.3.3 Options Signature

(require setup/option-sig)

setup-option^ : signature

Provides parameters used to control raco setup in unit form.

(setup-program-name) → string?

(setup-program-name name) → void?

name : string?

The prefix used when printing status messages. The default is "raco setup".

(verbose) → boolean?
(verbose on?) → void?

on? : any/c

If on, prints message from make to stderr. The default is #f.

(make-verbose) → boolean?
(make-verbose on?) → void?

on? : any/c

60

If on, verbose make. The default is #f.

(compiler-verbose) → boolean?

(compiler-verbose on?) → void?

on? : any/c

If on, verbose compiler. The default is #f.

(clean) → boolean?
(clean on?) → void?

on? : any/c

If on, delete ".zo" and ".so"/".dll"/".dylib" files in the specified collec-
tions. The default is #f.

(compile-mode) → (or/c path? false/c)

(compile-mode path) → void?

path : (or/c path? false/c)

If a path is given, use a ".zo" compiler other than plain compile, and build
to (build-path "compiled" (compile-mode)). The default is #f.

(make-zo) → boolean?
(make-zo on?) → void?

on? : any/c

If on, compile ".zo". The default is #t.

(make-info-domain) → boolean?
(make-info-domain on?) → void?

on? : any/c

If on, update "info-domain/compiled/cache.rkt" for each collection path.
The default is #t.

(make-launchers) → boolean?
(make-launchers on?) → void?

on? : any/c

If on, make collection "info.rkt"-specified launchers. The default is #t.

(make-docs) → boolean?
(make-docs on?) → void?

on? : any/c

If on, build documentation. The default is #t.

61

(make-user) → boolean?
(make-user on?) → void?

on? : any/c

If on, build the user-specific collection tree. The default is #t.

(make-planet) → boolean?

(make-planet on?) → void?

on? : any/c

If on, build the planet cache. The default is #t.

(avoid-main-installation) → boolean?
(avoid-main-installation on?) → void?

on? : any/c

If on, avoid building bytecode in the main installation tree when building other
bytecode (e.g., in a user-specific collection). The default is #f.

(call-install) → boolean?
(call-install on?) → void?

on? : any/c

If on, call collection "info.rkt"-specified setup code. The default is #t.

(call-post-install) → boolean?

(call-post-install on?) → void?

on? : any/c

If on, call collection "info.rkt"-specified post-install code. The default is #t.

(pause-on-errors) → boolean?

(pause-on-errors on?) → void?

on? : any/c

If on, in the event of an error, prints a summary error and waits for stdin input
before terminating. The default is #f.

(parallel-workers) → exact-nonnegative-integer?

(parallel-workers num) → void?

num : exact-nonnegative-integer?

Determines the number of places to use for compiling bytecode and for building
the documentation. The default is (min (processor-count) 8).

(force-unpacks) → boolean?

(force-unpacks on?) → void?

on? : any/c

62

If on, ignore version and already-installed errors when unpacking a ".plt"

archive. The default is #f.

(specific-collections) → (listof (listof path-string?))

(specific-collections colls) → void?

colls : (listof (listof path-string?))

A list of collections to set up; the empty list means set-up all collections if the
archives list and specific-planet-dirs is also '(). The default is '().

(specific-planet-dirs)

→

(listof (list/c string?

string?

exact-nonnegative-integer?

exact-nonnegative-integer?))

(specific-planet-dirs dir) → void?

dir :

(listof (list/c string?

string?

exact-nonnegative-integer?

exact-nonnegative-integer?))

A list of planet package version specs to set up; the empty list means to set-up
all planet collections if the archives list and specific-collections is also
'(). The default is '().

(archives) → (listof path-string?)

(archives arch) → void?

arch : (listof path-string?)

A list of ".plt" archives to unpack; any collections specified by the archives
are set-up in addition to the collections listed in specific-collections. The default
is null.

(archive-implies-reindex) → boolean?

(archive-implies-reindex on?) → void?

on? : any/c

If on, when archives has a non-empty list of packages, if any documentation
is built, then suitable documentation start pages, search pages, and master index
pages are re-built. The default is #t.

(current-target-directory-getter) → (-> . path-string?)

(current-target-directory-getter thunk) → void?

thunk : (-> . path-string?)

A thunk that returns the target directory for unpacking a relative ".plt"

archive; when unpacking an archive, either this or the procedure in current-

target-plt-directory-getter will be called. The default is current-

directory.

63

(current-target-plt-directory-getter)

→
(path-string?

path-string?

(listof path-string?) . -> . path-string?)

(current-target-plt-directory-getter proc) → void?

proc :
(path-string?

path-string?

(listof path-string?) . -> . path-string?)

A procedure that takes a preferred path, a path to the parent of the main "col-

lects" directory, and a list of path choices; it returns a path for a "plt-relative"
install; when unpacking an archive, either this or the procedure in current-

target-directory-getter will be called, and in the former case, this pro-
cedure may be called multiple times. The default is (lambda (preferred

main-parent-dir choices) preferred).

8.4 API for Installing ".plt" Archives

The setup/plt-single-installer module provides a function for installing a single
".plt" file, and setup/plt-installer wraps it with a GUI interface.

8.4.1 Non-GUI Installer

(require setup/plt-single-installer)

(run-single-installer file get-dir-proc) → void?

file : path-string?

get-dir-proc : (-> (or/c path-string? false/c))

Creates a separate thread and namespace, runs the installer in that thread with the new names-
pace, and returns when the thread completes or dies. It also creates a custodian (see §13.7
“Custodians”) to manage the created thread, sets the exit handler for the thread to shut down
the custodian, and explicitly shuts down the custodian when the created thread terminates or
dies.

The get-dir-proc procedure is called if the installer needs a target directory for installa-
tion, and a #f result means that the user canceled the installation. Typically, get-dir-proc
is current-directory. v

(install-planet-package file directory spec) → void?

file : path-string?

64

directory : path-string?

spec :

(list/c string? string?

(listof string?)

exact-nonnegative-integer?

exact-nonnegative-integer?)

Similar to run-single-installer, but runs the setup process to install the archive file

into directory as the PLaneT package described by spec . The user-specific documen-
tation index is not rebuilt, so reindex-user-documentation should be run after a set of
PLaneT packages are installed.

(reindex-user-documentation) → void?

Similar to run-single-installer, but runs only the part of the setup process that rebuilds
the user-specific documentation start page, search page, and master index.

(clean-planet-package directory spec) → void?

directory : path-string?

spec :

(list/c string? string?

(listof string?)

exact-nonnegative-integer?

exact-nonnegative-integer?)

Undoes the work of install-planet-package. The user-specific documentation index is
not rebuilt, so reindex-user-documentation should be run after a set of PLaneT pack-
ages are removed.

8.4.2 GUI Installer

(require setup/plt-installer)

The setup/plt-installer library in the setup collection defines procedures for installing
a ".plt" archive with a GUI (using the facilities of racket/gui/base).

(run-installer filename) → void?
filename : path-string?

Run the installer on the ".plt" file in filename and show the output in a window. This
is a composition of with-installer-window and run-single-installer with a get-

dir-proc that prompts the user for a directory (turning off the busy cursor while the dialog
is active).

(on-installer-run) → (-> any)

(on-installer-run thunk) → void?

thunk : (-> any)

65

A thunk that is run after a ".plt" file is installed.

(with-installer-window do-install

cleanup-thunk) → void?

do-install :
((or/c (is-a?/c dialog%) (is-a?/c frame%))

. -> . void?)

cleanup-thunk : (-> any)

Creates a frame, sets up the current error and output ports, and turns on the busy cursor
before calling do-install in a separate thread.

Returns before the installation process is complete; cleanup-thunk is called on a queued
callback to the eventspace active when with-installer-window is invoked.

(run-single-installer file get-dir-proc) → void?

file : path-string?

get-dir-proc : (-> (or/c path-string? false/c))

The same as the export from setup/plt-single-installer, but with a GUI.

8.4.3 GUI Unpacking Signature

(require setup/plt-installer-sig)

setup:plt-installer^ : signature

Provides two names: run-installer and on-installer-run.

8.4.4 GUI Unpacking Unit

(require setup/plt-installer-unit)

Imports mred^ and exports setup:plt-installer^.

8.5 API for Finding Installation Directories

(require setup/dirs)

The setup/dirs library provides several procedures for locating installation directories:

66

(find-collects-dir) → (or/c path? false/c)

Returns a path to the installation’s main "collects" directory, or #f if none can be found.
A #f result is likely only in a stand-alone executable that is distributed without libraries.

(find-user-collects-dir) → path?

Returns a path to the user-specific "collects" directory; the directory indicated by the
returned path may or may not exist.

(get-collects-search-dirs) → (listof path?)

Returns the same result as (current-library-collection-paths), which means that
this result is not sensitive to the value of the use-user-specific-search-paths param-
eter.

(find-doc-dir) → (or/c path? false/c)

Returns a path to the installation’s "doc" directory. The result is #f if no such directory is
available.

(find-user-doc-dir) → path?

Returns a path to a user-specific "doc" directory. The directory indicated by the returned
path may or may not exist.

(get-doc-search-dirs) → (listof path?)

Returns a list of paths to search for documentation, not including documentation stored in
individual collections. Unless it is configured otherwise, the result includes any non-#f
result of (find-doc-dir) and (find-user-doc-dir)—but the latter is included only if
the value of the use-user-specific-search-paths parameter is #t.

(find-lib-dir) → (or/c path? false/c)

Returns a path to the installation’s "lib" directory, which contains libraries and other build
information. The result is #f if no such directory is available.

(find-dll-dir) → (or/c path? false/c)

Returns a path to the directory that contains DLLs for use with the current executable (e.g.,
"libmzsch.dll" on Windows). The result is #f if no such directory is available, or if no
specific directory is available (i.e., other than the platform’s normal search path).

67

(find-user-lib-dir) → path?

Returns a path to a user-specific "lib" directory; the directory indicated by the returned
path may or may not exist.

(get-lib-search-dirs) → (listof path?)

Returns a list of paths to search for libraries. Unless it is configured otherwise, the re-
sult includes any non-#f result of (find-lib-dir), (find-dll-dir), and (find-user-

lib-dir)—but the last is included only if the value of the use-user-specific-search-
paths parameter is #t.

(find-include-dir) → (or/c path? false/c)

Returns a path to the installation’s "include" directory, which contains ".h" files for build-
ing Racket extensions and embedding programs. The result is #f if no such directory is
available.

(find-user-include-dir) → path?

Returns a path to a user-specific "include" directory; the directory indicated by the re-
turned path may or may not exist.

(get-include-search-dirs) → (listof path?)

Returns a list of paths to search for ".h" files. Unless it is configured otherwise, the result in-
cludes any non-#f result of (find-include-dir) and (find-user-include-dir)—but
the latter is included only if the value of the use-user-specific-search-paths param-
eter is #t.

(find-console-bin-dir) → (or/c path? false/c)

Returns a path to the installation’s executable directory, where the stand-alone Racket exe-
cutable resides. The result is #f if no such directory is available.

(find-gui-bin-dir) → (or/c path? false/c)

Returns a path to the installation’s executable directory, where the stand-alone GRacket
executable resides. The result is #f if no such directory is available.

absolute-installation? : boolean?

A binary boolean flag that is true if this installation is using absolute path names.

68

8.6 API for Reading "info.rkt" Files

(require setup/getinfo)

The setup/getinfo library provides functions for accessing fields in "info.rkt" files.

(get-info collection-names

[#:namespace namespace])

→
(or/c

(symbol? [(-> any)] . -> . any)

false/c)

collection-names : (listof string?)

namespace : (or/c namespace? #f) = #f

Accepts a list of strings naming a collection or sub-collection, and calls get-info/full

with the full path corresponding to the named collection and the namespace argument.

(get-info/full path [#:namespace namespace])

→
(or/c

(symbol? [(-> any)] . -> . any)

false/c)

path : path?

namespace : (or/c namespace? #f) = #f

Accepts a path to a directory. If it finds either a well-formed an "info.rkt" file or an
"info.rkt" file (with preference for the "info.rkt" file), it returns an info procedure that
accepts either one or two arguments. The first argument to the info procedure is always a
symbolic name, and the result is the value of the name in the "info.rkt" file, if the name
is defined. The optional second argument, thunk , is a procedure that takes no arguments to
be called when the name is not defined; the result of the info procedure is the result of the
thunk in that case. If the name is not defined and no thunk is provided, then an exception
is raised.

The get-info/full function returns #f if there is no "info.rkt" (or "info.ss") file
in the directory. If there is a "info.rkt" (or "info.ss") file that has the wrong shape
(i.e., not a module using setup/infotab or (lib "infotab.rkt" "setup")), or if the
"info.rkt" file fails to load, then an exception is raised. If the "info.rkt" file loaded,
get-info/full returns the get-info file. If the "info.rkt" file does not exist, then
get-info/full does the same checks for the "info.rkt" file, either raising an exception
or returning the get-info function from the "info.rkt" file.

The "info.rkt" (or "info.ss") module is loaded into namespace if it is not #f, or a
private, weakly-held namespace otherwise.

(find-relevant-directories syms [mode]) → (listof path?)

syms : (listof symbol?)

69

mode : (or/c 'preferred 'all-available 'no-planet)

= 'preferred

Returns a list of paths identifying installed directories (i.e., collections and installed PLaneT
packages) whose "info.rkt" file defines one or more of the given symbols. The result is
based on a cache that is computed by raco setup. Note that the cache may be out of date
by the time you call get-info/full, so do not assume that it won’t return #f.

The result is in a canonical order (sorted lexicographically by directory name), and the paths
it returns are suitable for providing to get-info/full.

If mode is specified, it must be either 'preferred (the default), 'all-available, or no-
planet. If mode is 'all-available, find-relevant-collections returns all installed
directories whose info files contain the specified symbols—for instance, all installed PLaneT
packages will be searched if 'all-available is specified. If mode is 'preferred, then
only a subset of “preferred” packages will be searched: only the directory containing the
most recent version of any PLaneT package will be returned. If mode is 'no-planet, then
only PLaneT packages are not included in the search.

No matter what mode is specified, if more than one collection has the same name,
find-relevant-directories will only search the one that occurs first in a search that
through the directories of current-library-collection-paths. Collection links from
the installation-wide collection links file are cached with the installation’s main "col-

lects" directory, and links from the user-specific collection links file are cached with the
user-specific directory (build-path (find-system-path 'addon-dir) (version)

"collects").

(find-relevant-directory-records syms key)

→ (listof directory-record?)

syms : (listof symbol?)

key : (or/c 'preferred 'all-available)

Like find-relevant-directories, but returns directory-record structs instead of
path?s.

(struct directory-record (maj min spec path syms)

#:extra-constructor-name make-directory-record)

maj : integer?

min : integer?

spec : any/c

path : path?

syms : (listof symbol?)

A struct that records information about a collection or a PLaneT package that has been
installed. Collections will have the major version being 1 and the minor version being 0.
The spec field is a quoted module spec; the path field is where the info.rkt file for this

70

collection or PLaneT package exists on the filesystem the syms field holds the identifiers
defined in that file.

(reset-relevant-directories-state!) → void?

Resets the cache used by find-relevant-directories.

8.7 API for Relative Paths

The Racket installation tree can usually be moved around the filesystem. To support this,
care must be taken to avoid absolute paths. The following two APIs cover two aspects of
this: a way to convert a path to a value that is relative to the "collets" tree, and a way to
display such paths (e.g., in error messages).

8.7.1 Representing paths relative to "collects"

(require setup/main-collects)

(path->main-collects-relative path)

→ (or/c path? (cons/c 'collects (listof bytes?)))

path : (or/c bytes? path-string?)

Checks whether path has a prefix that matches the prefix to the main "collects" directory
as determined by (find-collects-dir). If so, the result is a list starting with 'collects

and containing the remaining path elements as byte strings. If not, the path is returned as-is.

The path argument should be a complete path. Applying simplify-path before path-

>main-collects-relative is usually a good idea.

For historical reasons, path can be a byte string, which is converted to a path using bytes-

>path.

(main-collects-relative->path rel) → path?

rel :
(or/c bytes? path-string?

(cons/c 'collects (listof bytes?)))

The inverse of path->main-collects-relative: if rel is a pair that starts with 'col-

lects, then it is converted back to a path relative to (find-collects-dir).

For historical reasons, if rel is any kind of value other than specified in the contract above,
it is returned as-is.

71

8.7.2 Displaying paths relative to a common root

(require setup/path-to-relative)

(path->relative-string/library path

[default]) → any/c

path : path-string?

default : (or/c (-> path-string? any/c) any/c)

= (lambda (x) (if (path? x) (path->string x) x))

Produces a string suitable for display in error messages. If the path is an absolute one that
is inside the "collects" tree, the result will be a string that begins with "<collects>/".
Similarly, a path in the user-specific collects results in a prefix of "<user-collects>/",
and a PLaneT path results in "<planet>/".

If the path is not absolute, or if it is not in any of these, it is returned as-is (converted to
a string if needed). If default is given, it specifies the return value instead: it can be a
procedure which is applied onto the path to get the result, or the result itself.

Note that this function can be a non-string only if default is given, and it does not return a
string.

(path->relative-string/setup path [default]) → any

path : path-string?

default : (or/c (-> path-string? any/c) any/c)

= (lambda (x) (if (path? x) (path->string x) x))

Similar to path->relative-string/library, but more suited for output during compi-
lation: "collects" paths are shown with no prefix, and in the user-specific collects with
just a "<user>" prefix.

If the path is not absolute, or if it is not in any of these, it is returned as-is (converted to
a string if needed). If default is given, it specifies the return value instead: it can be a
procedure which is applied onto the path to get the result, or the result itself.

Note that this function can be a non-string only if default is given, and it does not return a
string.

(make-path->relative-string dirs [default])
→ (path-string? any/c . -> . any)

dirs : (listof (cons (-> path?) string?))

default : (or/c (-> path-string? any/c) any/c)

= (lambda (x) (if (path? x) (path->string x) x))

This function produces functions like path->relative-string/library and path-

>relative-string/setup.

72

dirs determines the prefix substitutions. It should be an association list mapping a path-
producing thunk to a prefix string for paths in the specified path.

default determines the default for the resulting function (which can always be overridden
by an additional argument to this function).

8.8 API for Cross-References for Installed Manuals

(require setup/xref)

(load-collections-xref [on-load]) → xref?

on-load : (-> any/c) = (lambda () (void))

Like load-xref, but automatically find all cross-reference files for manuals that have been
installed with setup-plt.

73

9 raco decompile: Decompiling Bytecode

The raco decompile command takes a bytecode file (which usually has the file extension
".zo") or a source file with an associated bytecode file (usually created with raco make)
and converts it back to an approximation of Racket code. Decompiled bytecode is mostly
useful for checking the compiler’s transformation and optimization of the source program.

Many forms in the decompiled code, such as module, define, and lambda, have the same
meanings as always. Other forms and transformations are specific to the rendering of byte-
code, and they reflect a specific execution model:

• Top-level variables, variables defined within the module, and variables imported from
other modules are prefixed with _, which helps expose the difference between uses of
local variables versus other variables. Variables imported from other modules, more-
over, have a suffix that indicates the source module.

Non-local variables are always accessed indirectly though an implicit #%globals or
#%modvars variable that resides on the value stack (which otherwise contains local
variables). Variable accesses are further wrapped with #%checked when the compiler
cannot prove that the variable will be defined before the access.

Uses of core primitives are shown without a leading _, and they are never wrapped
with #%checked.

• Local-variable access may be wrapped with #%sfs-clear, which indicates that the
variable-stack location holding the variable will be cleared to prevent the variable’s
value from being retained by the garbage collector. Variables whose name starts with
unused are never actually stored on the stack, and so they never have #%sfs-clear

annotations. (The bytecode compiler normally eliminates such bindings, but some-
times it cannot, either because it cannot prove that the right-hand side produces the
right number of values, or the discovery that the variable is unused happens too late
with the compiler.)

Mutable variables are converted to explicitly boxed values using #%box, #%unbox,
and #%set-boxes! (which works on multiple boxes at once). A set!-rec-values

operation constructs mutually-recursive closures and simultaneously updates the cor-
responding variable-stack locations that bind the closures. A set!, set!-values, or
set!-rec-values form is always used on a local variable before it is captured by a
closure; that ordering reflects how closures capture values in variable-stack locations,
as opposed to stack locations.

• In a lambda form, if the procedure produced by the lambda has a name (accessible
via object-name) and/or source-location information, then it is shown as a quoted
constant at the start of the procedure’s body. Afterward, if the lambda form captures
any bindings from its context, those bindings are also shown in a quoted constant.
Neither constant corresponds to a computation when the closure is called, though the
list of captured bindings corresponds to a closure allocation when the lambda form
itself is evaluated.

74

A lambda form that closes over no bindings is wrapped with #%closed plus an iden-
tifier that is bound to the closure. The binding’s scope covers the entire decompiled
output, and it may be referenced directly in other parts of the program; the binding
corresponds to a constant closure value that is shared, and it may even contain cyclic
references to itself or other constant closures.

• A form (#%apply-values proc expr) is equivalent to (call-with-values

(lambda () expr) proc), but the run-time system avoids allocating a closure for
expr .

• A define-values form may have (begin '%%inline-variant%% expr1

expr2) for its expression, in which case expr2 is the normal result, but expr1 may
be inlined for calls to the definition from other modules. Definitions of functions
without an '%%inline-variant%% are never inlined across modules.

• Some applications of core primitives are annotated with #%in, which indicates that
the JIT compiler will inline the operation. (Inlining information is not part of the
bytecode, but is instead based on an enumeration of primitives that the JIT is known
to handle specially.) Operations from racket/flonum and racket/unsafe/ops are
always inlined, so #%in is not shown for them.

• Some applications of flonum operations from racket/flonum and
racket/unsafe/ops are annotated with #%flonum, indicating a place where
the JIT compiler might avoid allocation for intermediate flonum results. A single
#%flonum by itself is not useful, but a #%flonum operation that consumes a #%flonum
or #%from-flonum argument indicates a potential performance improvement. A
#%from-flonum wraps an identifier that is bound by let with a #%as-flonum

around its value, which indicates a local binding that can avoid boxing (when used as
an argument to an operation that can work with unboxed values).

• A #%decode-syntax form corresponds to a syntax object.

9.1 API for Decompiling

(require compiler/decompile)

(decompile top) → any/c

top : compilation-top?

Consumes the result of parsing bytecode and returns an S-expression (as described above)
that represents the compiled code.

9.2 API for Parsing Bytecode

(require compiler/zo-parse)

75

The compiler/zo-parse module re-exports compiler/zo-structs in addition to zo-

parse.

(zo-parse [in]) → compilation-top?

in : input-port? = (current-input-port)

Parses a port (typically the result of opening a ".zo" file) containing bytecode. Beware
that the structure types used to represent the bytecode are subject to frequent changes across
Racket versons.

The parsed bytecode is returned in a compilation-top structure. For a compiled module,
the compilation-top structure will contain a mod structure. For a top-level sequence, it
will normally contain a seq or splice structure with a list of top-level declarations and
expressions.

The bytecode representation of an expression is closer to an S-expression than a traditional,
flat control string. For example, an if form is represented by a branch structure that has
three fields: a test expression, a “then” expression, and an “else” expression. Similarly, a
function call is represented by an application structure that has a list of argument expres-
sions.

Storage for local variables or intermediate values (such as the arguments for a function call)
is explicitly specified in terms of a stack. For example, execution of an application struc-
ture reserves space on the stack for each argument result. Similarly, when a let-one struc-
ture (for a simple let) is executed, the value obtained by evaluating the right-hand side
expression is pushed onto the stack, and then the body is evaluated. Local variables are
always accessed as offsets from the current stack position. When a function is called, its
arguments are passed on the stack. A closure is created by transferring values from the stack
to a flat closure record, and when a closure is applied, the saved values are restored on the
stack (though possibly in a different order and likely in a more compact layout than when
they were captured).

When a sub-expression produces a value, then the stack pointer is restored to its location
from before evaluating the sub-expression. For example, evaluating the right-hand size for
a let-one structure may temporarily push values onto the stack, but the stack is restored to
its pre-let-one position before pushing the resulting value and continuing with the body.
In addition, a tail call resets the stack pointer to the position that follows the enclosing
function’s arguments, and then the tail call continues by pushing onto the stack the arguments
for the tail-called function.

Values for global and module-level variables are not put directly on the stack, but instead
stored in “buckets,” and an array of accessible buckets is kept on the stack. When a closure
body needs to access a global variable, the closure captures and later restores the bucket
array in the same way that it captured and restores a local variable. Mutable local variables
are boxed similarly to global variables, but individual boxes are referenced from the stack
and closures.

76

Quoted syntax (in the sense of quote-syntax) is treated like a global variable, because it
must be instantiated for an appropriate phase. A prefix structure within a compilation-
top or mod structure indicates the list of global variables and quoted syntax that need to be
instantiated (and put into an array on the stack) before evaluating expressions that might use
them.

9.3 API for Marshaling Bytecode

(require compiler/zo-marshal)

(zo-marshal-to top out) → void?

top : compilation-top?

out : output-port?

Consumes a representation of bytecode and writes it to out .

(zo-marshal top) → bytes?

top : compilation-top?

Consumes a representation of bytecode and generates a byte string for the marshaled byte-
code.

9.4 Bytecode Representation

(require compiler/zo-structs)

The compiler/zo-structs library defines the bytecode structures that are produced by
zo-parse and consumed by decompile and zo-marshal.

(struct zo ()

#:extra-constructor-name make-zo

#:prefab)

A supertype for all forms that can appear in compiled code.

9.4.1 Prefix

(struct compilation-top zo (max-let-depth prefix code)

#:extra-constructor-name make-compilation-top

#:prefab)

max-let-depth : exact-nonnegative-integer?

prefix : prefix?

code : (or/c form? any/c)

77

Wraps compiled code. The max-let-depth field indicates the maximum stack depth that
code creates (not counting the prefix array). The prefix field describes top-level vari-
ables, module-level variables, and quoted syntax-objects accessed by code. The code field
contains executable code; it is normally a form, but a literal value is represented as itself.

(struct prefix zo (num-lifts toplevels stxs)

#:extra-constructor-name make-prefix

#:prefab)

num-lifts : exact-nonnegative-integer?

toplevels :
(listof (or/c #f symbol? global-bucket?

module-variable?))

stxs : (listof stx?)

Represents a “prefix” that is pushed onto the stack to initiate evaluation. The prefix is an
array, where buckets holding the values for toplevels are first, then the buckets for the
stxs, then a bucket for another array if stxs is non-empty, then num-lifts extra buckets
for lifted local procedures.

In toplevels, each element is one of the following:

• a #f, which indicates a dummy variable that is used to access the enclosing mod-
ule/namespace at run time;

• a symbol, which is a reference to a variable defined in the enclosing module;

• a global-bucket, which is a top-level variable (appears only outside of modules); or

• a module-variable, which indicates a variable imported from another module.

The variable buckets and syntax objects that are recorded in a prefix are accessed by
toplevel and topsyntax expression forms.

(struct global-bucket zo (name)

#:extra-constructor-name make-global-bucket

#:prefab)

name : symbol?

Represents a top-level variable, and used only in a prefix.

(struct module-variable zo (modidx sym pos phase)

#:extra-constructor-name make-module-variable

#:prefab)

modidx : module-path-index?

sym : symbol?

pos : exact-integer?

phase : exact-nonnegative-integer?

78

Represents a top-level variable, and used only in a prefix. The pos may record the vari-
able’s offset within its module, or it can be -1 if the variable is always located by name. The
phase indicates the phase level of the definition within its module.

(struct stx zo (encoded)

#:extra-constructor-name make-stx

#:prefab)

encoded : wrapped?

Wraps a syntax object in a prefix.

9.4.2 Forms

(struct form zo ()

#:extra-constructor-name make-form

#:prefab)

A supertype for all forms that can appear in compiled code (including exprs), except for
literals that are represented as themselves.

(struct def-values form (ids rhs)

#:extra-constructor-name make-def-values

#:prefab)

ids : (listof toplevel?)

rhs : (or/c expr? seq? inline-variant? any/c)

Represents a define-values form. Each element of ids will reference via the prefix either
a top-level variable or a local module variable.

After rhs is evaluated, the stack is restored to its depth from before evaluating rhs.

(struct def-syntaxes form (ids rhs prefix max-let-depth dummy)

#:extra-constructor-name make-def-syntaxes

#:prefab)

ids : (listof symbol?)

rhs : (or/c expr? seq? any/c)

prefix : prefix?

max-let-depth : exact-nonnegative-integer?

dummy : (or/c toplevel? #f)

(struct seq-for-syntax form (forms prefix max-let-depth dummy)

#:extra-constructor-name make-seq-for-syntax

#:prefab)

forms : (listof (or/c form? any/c))

prefix : prefix?

max-let-depth : exact-nonnegative-integer?

dummy : (or/c toplevel? #f)

79

Represents a define-syntaxes or begin-for-syntax form. The rhs expression or set of
forms forms has its own prefix, which is pushed before evaluating rhs or the forms; the
stack is restored after obtaining the result values. The max-let-depth field indicates the
maximum size of the stack that will be created by rhs (not counting prefix). The dummy

variable is used to access the enclosing namespace.

(struct req form (reqs dummy)

#:extra-constructor-name make-req

#:prefab)

reqs : stx?

dummy : toplevel?

Represents a top-level #%require form (but not one in a module form) with a sequence of
specifications reqs. The dummy variable is used to access the top-level namespace.

(struct seq form (forms)

#:extra-constructor-name make-seq

#:prefab)

forms : (listof (or/c form? any/c))

Represents a begin form, either as an expression or at the top level (though the latter is more
commonly a splice form). When a seq appears in an expression position, its forms are
expressions.

After each form in forms is evaluated, the stack is restored to its depth from before evaluat-
ing the form.

(struct splice form (forms)

#:extra-constructor-name make-splice

#:prefab)

forms : (listof (or/c form? any/c))

Represents a top-level begin form where each evaluation is wrapped with a continuation
prompt.

After each form in forms is evaluated, the stack is restored to its depth from before evaluat-
ing the form.

(struct inline-variant form (direct inline)

#:extra-constructor-name make-inline-variant

#:prefab)

direct : expr?

inline : expr?

Represents a function that is bound by define-values, where the function has two variants.
The first variant is used for normal calls to the function. The second may be used for cross-
module inlining of the function.

80

(struct mod form (name

srcname

self-modidx

prefix

provides

requires

body

syntax-bodies

unexported

max-let-depth

dummy

lang-info

internal-context

pre-submodules

post-submodules)

#:extra-constructor-name make-mod

#:prefab)

name : (or/c symbol? (listof symbol?))

srcname : symbol?

self-modidx : module-path-index?

prefix : prefix?

provides :
(listof (list/c (or/c exact-integer? #f)

(listof provided?)

(listof provided?)))

requires :
(listof (cons/c (or/c exact-integer? #f)

(listof module-path-index?)))

body : (listof (or/c form? any/c))

syntax-bodies :
(listof (cons/c exact-positive-integer?

(listof (or/c def-syntaxes?

seq-for-syntax?))))

unexported :
(listof (list/c exact-nonnegative-integer?

(listof symbol?)

(listof symbol?)))

max-let-depth : exact-nonnegative-integer?

dummy : toplevel?

lang-info : (or/c #f (vector/c module-path? symbol? any/c))

internal-context : (or/c #f #t stx? (vectorof stx?))

pre-submodules : (listof mod?)

post-submodules : (listof mod?)

Represents a module declaration.

The provides and requires lists are each an association list from phases to exports or
imports. In the case of provides, each phase maps to two lists: one for exported variables,
and another for exported syntax. In the case of requires, each phase maps to a list of

81

imported module paths.

The body field contains the module’s run-time (i.e., phase 0) code. The syntax-bodies list
has a list of forms for each higher phase in the module body; the phases are in order starting
with phase 1. The body forms use prefix, rather than any prefix in place for the module
declaration itself, while members of lists in syntax-bodies have their own prefixes. After
each form in body or syntax-bodies is evaluated, the stack is restored to its depth from
before evaluating the form.

The unexported list contains lists of symbols for unexported definitions that can be ac-
cessed through macro expansion and that are implemented through the forms in body and
syntax-bodies. Each list in unexported starts with a phase level.

The max-let-depth field indicates the maximum stack depth created by body forms (not
counting the prefix array). The dummy variable is used to access to the top-level namespace.

The lang-info value specifies an optional module path that provides information about the
module’s implementation language.

The internal-module-context value describes the lexical context of the body of the
module. This value is used by module->namespace. A #f value means that the context
is unavailable or empty. A #t value means that the context is computed by re-importing all
required modules. A syntax-object value embeds an arbitrary lexical context.

(struct provided (name src src-name nom-src src-phase protected?)

#:extra-constructor-name make-provided

#:prefab)

name : symbol?

src : (or/c module-path-index? #f)

src-name : symbol?

nom-src : (or/c module-path-index? #f)

src-phase : exact-nonnegative-integer?

protected? : boolean?

Describes an individual provided identifier within a mod instance.

9.4.3 Expressions

(struct expr form ()

#:extra-constructor-name make-expr

#:prefab)

A supertype for all expression forms that can appear in compiled code, except for literals that
are represented as themselves and some seq structures (which can appear as an expression
as long as it contains only other things that can be expressions).

82

(struct lam expr (name

flags

num-params

param-types

rest?

closure-map

closure-types

toplevel-map

max-let-depth

body)

#:extra-constructor-name make-lam

#:prefab)

name : (or/c symbol? vector?)

flags :
(listof (or/c 'preserves-marks 'is-method 'single-result

'only-rest-arg-not-used 'sfs-clear-rest-args))

num-params : exact-nonnegative-integer?

param-types : (listof (or/c 'val 'ref 'flonum))

rest? : boolean?

closure-map : (vectorof exact-nonnegative-integer?)

closure-types : (listof (or/c 'val/ref 'flonum))

toplevel-map : (or/c #f (set/c exact-nonnegative-integer?))

max-let-depth : exact-nonnegative-integer?

body : (or/c expr? seq? any/c)

Represents a lambda form. The name field is a name for debugging purposes. The num-

params field indicates the number of arguments accepted by the procedure, not counting a
rest argument; the rest? field indicates whether extra arguments are accepted and collected
into a “rest” variable. The param-types list contains num-params symbols indicating the
type of each argumet, either 'val for a normal argument, 'ref for a boxed argument (rep-
resenting a mutable local variable), or 'flonum for a flonum argument.

The closure-map field is a vector of stack positions that are captured when evaluating
the lambda form to create a closure. The closure-types field provides a corresponding
list of types, but no distinction is made between normal values and boxed values; also,
this information is redundant, since it can be inferred by the bindings referenced though
closure-map.

Which a closure captures top-level or module-level variables, they are represented in the
closure by capturing a prefix (in the sense of prefix). The toplevel-map field indicates
which top-level and lifted variables are actually used by the closure (so that variables in a
prefix can be pruned by the run-time system if they become unused). A #f value indicates
either that no prefix is captured or all variables in the prefix should be considered used.
Otherwise, numbers in the set indicate which variables and lifted variables are used. Vari-
ables are numbered consecutively by position in the prefix starting from 0. Lifted variables
are numbered immediately afterward—which means that, if the prefix contains any syntax

83

objects, lifted-variable numbers are shifted down relative to a toplevel by the number of
syntax object in the prefix plus one (which makes the toplevel-map set more compact).

When the function is called, the rest-argument list (if any) is pushed onto the stack, then the
normal arguments in reverse order, then the closure-captured values in reverse order. Thus,
when body is run, the first value on the stack is the first value captured by the closure-map
array, and so on.

The max-let-depth field indicates the maximum stack depth created by body plus the ar-
guments and closure-captured values pushed onto the stack. The body field is the expression
for the closure’s body.

(struct closure expr (code gen-id)

#:extra-constructor-name make-closure

#:prefab)

code : lam?

gen-id : symbol?

A lambda form with an empty closure, which is a procedure constant. The procedure con-
stant can appear multiple times in the graph of expressions for bytecode, and the code field
can be a cycle for a recursive constant procedure; the gen-id is different for each such
constant.

(struct case-lam expr (name clauses)

#:extra-constructor-name make-case-lam

#:prefab)

name : (or/c symbol? vector?)

clauses : (listof lam?)

Represents a case-lambda form as a combination of lambda forms that are tried (in order)
based on the number of arguments given.

(struct let-one expr (rhs body flonum? unused?)

#:extra-constructor-name make-let-one

#:prefab)

rhs : (or/c expr? seq? any/c)

body : (or/c expr? seq? any/c)

flonum? : boolean?

unused? : boolean?

Pushes an uninitialized slot onto the stack, evaluates rhs and puts its value into the slot, and
then runs body. If flonum? is #t, then rhs must produce a flonum, and the slot must be
accessed by localrefs that expect a flonum. If unused? is #t, then the slot must not be
used, and the value of rhs is not actually pushed onto the stack (but rhs is constrained to
produce a single value).

84

After rhs is evaluated, the stack is restored to its depth from before evaluating rhs. Note
that the new slot is created before evaluating rhs.

(struct let-void expr (count boxes? body)

#:extra-constructor-name make-let-void

#:prefab)

count : exact-nonnegative-integer?

boxes? : boolean?

body : (or/c expr? seq? any/c)

Pushes count uninitialized slots onto the stack and then runs body. If boxes? is #t, then
the slots are filled with boxes that contain #<undefined>.

(struct install-value expr (count pos boxes? rhs body)

#:extra-constructor-name make-install-value

#:prefab)

count : exact-nonnegative-integer?

pos : exact-nonnegative-integer?

boxes? : boolean?

rhs : (or/c expr? seq? any/c)

body : (or/c expr? seq? any/c)

Runs rhs to obtain count results, and installs them into existing slots on the stack in order,
skipping the first pos stack positions. If boxes? is #t, then the values are put into existing
boxes in the stack slots.

After rhs is evaluated, the stack is restored to its depth from before evaluating rhs.

(struct let-rec expr (procs body)

#:extra-constructor-name make-let-rec

#:prefab)

procs : (listof lam?)

body : (or/c expr? seq? any/c)

Represents a letrec form with lambda bindings. It allocates a closure shell for each
lambda form in procs, installs each onto the stack in previously allocated slots in reverse
order (so that the closure shell for the last element of procs is installed at stack position
0), fills out each shell’s closure (where each closure normally references some other just-
created closures, which is possible because the shells have been installed on the stack), and
then evaluates body.

(struct boxenv expr (pos body)

#:extra-constructor-name make-boxenv

#:prefab)

pos : exact-nonnegative-integer?

body : (or/c expr? seq? any/c)

85

Skips pos elements of the stack, setting the slot afterward to a new box containing the slot’s
old value, and then runs body. This form appears when a lambda argument is mutated using
set! within its body; calling the function initially pushes the value directly on the stack, and
this form boxes the value so that it can be mutated later.

(struct localref expr (unbox? pos clear? other-clears? flonum?)

#:extra-constructor-name make-localref

#:prefab)

unbox? : boolean?

pos : exact-nonnegative-integer?

clear? : boolean?

other-clears? : boolean?

flonum? : boolean?

Represents a local-variable reference; it accesses the value in the stack slot after the first pos
slots. If unbox? is #t, the stack slot contains a box, and a value is extracted from the box.
If clear? is #t, then after the value is obtained, the stack slot is cleared (to avoid retaining
a reference that can prevent reclamation of the value as garbage). If other-clears? is #t,
then some later reference to the same stack slot may clear after reading. If flonum? is #t,
the slot holds to a flonum value.

(struct toplevel expr (depth pos const? ready?)

#:extra-constructor-name make-toplevel

#:prefab)

depth : exact-nonnegative-integer?

pos : exact-nonnegative-integer?

const? : boolean?

ready? : boolean?

Represents a reference to a top-level or imported variable via the prefix array. The depth
field indicates the number of stack slots to skip to reach the prefix array, and pos is the offset
into the array.

When the toplevel is an expression, if both const? and ready? are #t, then the variable
definitely will be defined, its value stays constant, and the constant is effectively the same
for every module instantiation. If only const? is #t, then the value is constant, but it may
vary across instantiations. If only ready? is #t, then the variable definitely will be defined,
but its value may change. If const? and ready? are both #f, then a check is needed to
determine whether the variable is defined.

When the toplevel is the right-hand side for def-values, then const? is #f. If ready?
is #t, the variable is marked as immutable after it is defined.

(struct topsyntax expr (depth pos midpt)

#:extra-constructor-name make-topsyntax

#:prefab)

depth : exact-nonnegative-integer?

86

pos : exact-nonnegative-integer?

midpt : exact-nonnegative-integer?

Represents a reference to a quoted syntax object via the prefix array. The depth field
indicates the number of stack slots to skip to reach the prefix array, and pos is the offset into
the array. The midpt value is used internally for lazy calculation of syntax information.

(struct application expr (rator rands)

#:extra-constructor-name make-application

#:prefab)

rator : (or/c expr? seq? any/c)

rands : (listof (or/c expr? seq? any/c))

Represents a function call. The rator field is the expression for the function, and rands are
the argument expressions. Before any of the expressions are evaluated, (length rands)

uninitialized stack slots are created (to be used as temporary space).

(struct branch expr (test then else)

#:extra-constructor-name make-branch

#:prefab)

test : (or/c expr? seq? any/c)

then : (or/c expr? seq? any/c)

else : (or/c expr? seq? any/c)

Represents an if form.

After test is evaluated, the stack is restored to its depth from before evaluating test.

(struct with-cont-mark expr (key val body)

#:extra-constructor-name make-with-cont-mark

#:prefab)

key : (or/c expr? seq? any/c)

val : (or/c expr? seq? any/c)

body : (or/c expr? seq? any/c)

Represents a with-continuation-mark expression.

After each of key and val is evaluated, the stack is restored to its depth from before evalu-
ating key or val.

(struct beg0 expr (seq)

#:extra-constructor-name make-beg0

#:prefab)

seq : (listof (or/c expr? seq? any/c))

87

Represents a begin0 expression.

After each expression in seq is evaluated, the stack is restored to its depth from before
evaluating the expression.

(struct varref expr (toplevel dummy)

#:extra-constructor-name make-varref

#:prefab)

toplevel : (or/c toplevel? #t)

dummy : (or/c toplevel? #f)

Represents a #%variable-reference form. The toplevel field is #t if the original refer-
ence was to a constant local binding. The dummy field accesses a variable bucket that strongly
references its namespace (as opposed to a normal variable bucket, which only weakly refer-
ences its namespace); it can be #f.

(struct assign expr (id rhs undef-ok?)

#:extra-constructor-name make-assign

#:prefab)

id : toplevel?

rhs : (or/c expr? seq? any/c)

undef-ok? : boolean?

Represents a set! expression that assigns to a top-level or module-level variable. (Assign-
ments to local variables are represented by install-value expressions.)

After rhs is evaluated, the stack is restored to its depth from before evaluating rhs.

(struct apply-values expr (proc args-expr)

#:extra-constructor-name make-apply-values

#:prefab)

proc : (or/c expr? seq? any/c)

args-expr : (or/c expr? seq? any/c)

Represents (call-with-values (lambda () args-expr) proc), which is handled
specially by the run-time system.

(struct primval expr (id)

#:extra-constructor-name make-primval

#:prefab)

id : exact-nonnegative-integer?

Represents a direct reference to a variable imported from the run-time kernel.

88

9.4.4 Syntax Objects

(struct wrapped zo (datum wraps tamper-status)

#:extra-constructor-name make-wrapped

#:prefab)

datum : any/c

wraps : (listof wrap?)

tamper-status : (or/c 'clean 'armed 'tainted)

Represents a syntax object, where wraps contain the lexical information and tamper-

status is taint information. When the datum part is itself compound, its pieces are wrapped,
too.

(struct wrap zo ()

#:extra-constructor-name make-wrap

#:prefab)

A supertype for lexical-information elements.

(struct top-level-rename wrap (flag)

#:extra-constructor-name make-top-level-rename

#:prefab)

flag : boolean?

A top-level renaming.

(struct mark-barrier wrap (value)

#:extra-constructor-name make-mark-barrier

#:prefab)

value : symbol?

A mark barrier.

(struct free-id-info zo (path0

symbol0

path1

symbol1

phase0

phase1

phase2

use-current-inspector?)

#:extra-constructor-name make-free-id-info

#:prefab)

path0 : module-path-index?

symbol0 : symbol?

89

path1 : module-path-index?

symbol1 : symbol?

phase0 : (or/c exact-integer? #f)

phase1 : (or/c exact-integer? #f)

phase2 : (or/c exact-integer? #f)

use-current-inspector? : boolean?

Information about a free identifier.

(struct lexical-rename wrap (has-free-id-info? bool2 alist)

#:extra-constructor-name make-lexical-rename

#:prefab)

has-free-id-info? : boolean?

bool2 : boolean?

alist :

(listof

(cons/c symbol?

(or/c symbol?

(cons/c symbol?

(or/c (cons/c symbol? (or/c symbol? #f))

free-id-info?)))))

A local-binding mapping from symbols to binding-set names.

(struct phase-shift wrap (amt src dest cancel-id)

#:extra-constructor-name make-phase-shift

#:prefab)

amt : (or/c exact-integer? #f)

src : module-path-index?

dest : module-path-index?

cancel-id : (or/c exact-integer? #f)

Shifts module bindings later in the wrap set.

(struct module-rename wrap (phase

kind

set-id

unmarshals

renames

mark-renames

plus-kern?)

#:extra-constructor-name make-module-rename

#:prefab)

phase : exact-integer?

kind : (or/c 'marked 'normal)

set-id : any/c

90

unmarshals : (listof make-all-from-module?)

renames : (listof module-binding?)

mark-renames : any/c

plus-kern? : boolean?

Represents a set of module and import bindings.

(struct all-from-module zo (path

phase

src-phase

exceptions

prefix

context)

#:extra-constructor-name make-all-from-module

#:prefab)

path : module-path-index?

phase : (or/c exact-integer? #f)

src-phase : (or/c exact-integer? #f)

exceptions : (listof symbol?)

prefix : (or/c symbol? #f)

context :
(or/c (listof exact-integer?)

(vector/c (listof exact-integer?) any/c)

#f)

Represents a set of simple imports from one module within a module-rename.

(struct module-binding zo ()

#:extra-constructor-name make-module-binding

#:prefab)

A supertype for module bindings.

(struct simple-module-binding module-binding (path)

#:extra-constructor-name make-simple-module-binding

#:prefab)

path : module-path-index?

Represents a single identifier import within a module-rename.

(struct phased-module-binding module-binding (path

phase

export-name

nominal-path

nominal-export-name)

#:extra-constructor-name make-phased-module-binding

#:prefab)

91

path : module-path-index?

phase : exact-integer?

export-name : any/c

nominal-path : nominal-path?

nominal-export-name : any/c

Represents a single identifier import within a module-rename.

(struct exported-nominal-module-binding module-binding (path

export-name

nominal-path

nominal-export-name)

#:extra-constructor-name

make-exported-nominal-module-binding

#:prefab)

path : module-path-index?

export-name : any/c

nominal-path : nominal-path?

nominal-export-name : any/c

Represents a single identifier import within a module-rename.

(struct nominal-module-binding module-binding (path nominal-path)

#:extra-constructor-name make-nominal-module-binding

#:prefab)

path : module-path-index?

nominal-path : nominal-path?

Represents a single identifier import within a module-rename.

(struct exported-module-binding module-binding (path export-name)

#:extra-constructor-name make-exported-module-binding

#:prefab)

path : module-path-index?

export-name : any/c

Represents a single identifier import within a module-rename.

(struct nominal-path zo ()

#:extra-constructor-name make-nominal-path

#:prefab)

A supertype for nominal paths.

92

(struct simple-nominal-path nominal-path (value)

#:extra-constructor-name make-simple-nominal-path

#:prefab)

value : module-path-index?

Represents a simple nominal path.

(struct imported-nominal-path nominal-path (value import-phase)

#:extra-constructor-name make-imported-nominal-path

#:prefab)

value : module-path-index?

import-phase : exact-integer?

Represents an imported nominal path.

(struct phased-nominal-path nominal-path (value import-phase phase)

#:extra-constructor-name make-phased-nominal-path

#:prefab)

value : module-path-index?

import-phase : (or/c false/c exact-integer?)

phase : exact-integer?

Represents a phased nominal path.

93

10 raco demod: Demodularizing Programs

The raco demod command takes a racket module and flattens all of its dependen-
cies into a single compiled module. A file "〈name 〉.rkt" is demodularized into
"〈name 〉_rkt_merged.zo".

The demodularized zo file can be run by passing it as an argument to the racket command-
line program.

94

11 raco ctool: Working with C Code

The raco ctool command works in various modes (as determined by command-line flags)
to support various tasks involving C code.

11.1 Compiling and Linking C Extensions

A dynamic extension is a shared library (a.k.a. DLL) that extends Racket using the C API.
An extension can be loaded explicitly via load-extension, or it can be loaded implicitly
through require or load/use-compiled in place of a source file when the extension is
located at

(build-path "compiled" "native" (system-library-subpath)

(path-add-suffix file (system-type 'so-suffix)))

relative to file .

For information on writing extensions, see Inside: Racket C API.

Three raco ctool modes help for building extensions:

• --cc : Runs the host system’s C compiler, automatically supplying flags to locate the
Racket header files and to compile for inclusion in a shared library.

• --ld : Runs the host system’s C linker, automatically supplying flags to locate and
link to the Racket libraries and to generate a shared library.

• --xform : Transforms C code that is written without explicit GC-cooperation hooks
to cooperate with Racket’s 3m garbage collector; see §1 “Overview” in Inside: Racket
C API.

Compilation and linking build on the dynext/compile and dynext/link libraries. The
following raco ctool flags correspond to setting or accessing parameters for those li-
braries: --tool, --compiler, --ccf, --ccf, --ccf-clear, --ccf-show, --linker,
++ldf, --ldf, --ldf-clear, --ldf-show, ++ldl, --ldl-show, ++cppf, ++cppf

++cppf-clear, and --cppf-show.

The --3m flag specifies that the extension is to be loaded into the 3m variant of Racket. The
--cgc flag specifies that the extension is to be used with the CGC. The default depends on
raco: --3m if raco itself is running in 3m, --cgc if raco itself is running in CGC.

95

11.1.1 API for 3m Transformation

(require compiler/xform)

(xform quiet?

input-file

output-file

include-dirs

[#:keep-lines? keep-lines?]) → any/c

quiet? : any/c

input-file : path-string?

output-file : path-string?

include-dirs : (listof path-string?)

keep-lines? : boolean? = #f

Transforms C code that is written without explicit GC-cooperation hooks to cooperate with
Racket’s 3m garbage collector; see §1 “Overview” in Inside: Racket C API.

The arguments are as for compile-extension; in addition keep-lines? can be #t to
generate GCC-style annotations to connect the generated C code with the original source
locations.

The file generated by xform can be compiled via compile-extension.

11.2 Embedding Modules via C

The --c-mods mode for raco ctool takes a set of Racket modules and generates a C
source file that can be used as part of program that embeds the Racket run-time system. See
§1.4 “Embedding Racket into a Program” in Inside: Racket C API for an explanation of
embedding programs.

The generated source file embeds the specified modules, and it defines a declare_modules
function that puts the module declarations into a namespace. Thus, using the output of raco
ctool --c-mods, a program can embed Racket with a set of modules so that it does not
need a "collects" directory to load modules at run time.

11.3 API for Raw Compilation

(require compiler/compiler)

The compiler/compiler library provides the functionality of raco make for compilation
to bytecode, but through a Racket API.

96

11.3.1 Bytecode Compilation

((compile-zos expr

[#:module? module?

#:verbose? verbose?])
racket-files

dest-dir) → void?

expr : any/c

module? : any/c = #f

verbose? : any/c = #f

racket-files : (listof path-string?)

dest-dir : (or/c path-string? false/c (one-of/c 'auto))

Supplying just expr returns a compiler that is initialized with the expression expr , as de-
scribed below.

The compiler takes a list of Racket files and compiles each of them to bytecode, placing the
resulting bytecode in a ".zo" file within the directory specified by dest-dir . If dest-dir
is #f, each bytecode result is placed in the same directory as its source file. If dest-dir is
'auto, each bytecode file is placed in a "compiled" subdirectory relative to the source; the
directory is created if necessary.

If expr is anything other than #f, then a namespace is created for compiling the files that
are supplied later, and expr is evaluated to initialize the created namespace. For example,
expr might load a set of macros. In addition, the expansion-time part of each expression
later compiled is evaluated in the namespace before being compiled, so that the effects are
visible when compiling later expressions.

If expr is #f, then no compilation namespace is created (the current namespace is used),
and expressions in the files are assumed to compile independently (so there’s no need to
evaluate the expansion-time part of an expression to compile).

Typically, expr is #f for compiling module files, and it is (void) for compiling files with
top-level definitions and expressions.

If module? is #t, then the given files are read and compiled as modules (so there is no
dependency on the current namespace’s top-level environment).

If verbose? is #t, the output file for each given file is reported through the current output
port.

(compile-collection-zos

collection ...+

[#:skip-path skip-path

#:skip-doc-sources? skip-docs?

#:managed-compile-zo managed-compile-zo])
→ void?

97

collection : string?

skip-path : (or/c path-string? #f) = #f

skip-docs? : any/c = #f

managed-compile-zo : (path-string? . -> . void?)

= (make-caching-managed-compile-zo)

Compiles the specified collection’s files to ".zo" files by using managed-compile-zo on
each source file. The ".zo" files are placed into the collection’s "compiled" directory.

By default, all files with the extension ".rkt", ".ss", or ".scm" in a collection are com-
piled, as are all such files within subdirectories, execept that any file or directory whose path
starts with skip-path is skipped. (“Starts with” means that the simplified path p ’s byte-
string form after (simplify-path p #f)starts with the byte-string form of (simplify-
path skip-path #f).)

The collection compiler reads the collection’s "info.rkt" file (see §8.2 “"info.rkt" File
Format”) to obtain further instructions for compiling the collection. The following fields are
used:

• name : The name of the collection as a string, used only for status and error reporting.

• compile-omit-paths : A list of immediate file and directory paths that should not
be compiled. Alternatively, this field’s value 'all, which is equivalent to specifying
all files and directories in the collection (to effectively ignore the collection for com-
pilation). Automatically omitted files and directories are "compiled", "doc", and
those whose names start with ..

Files that are required by other files, however, are always compiled in the process of
compiling the requiring file—even when the required file is listed with this field or
when the field’s value is 'all.

• compile-omit-files : A list of filenames (without directory paths); that are not
compiled, in addition to the contents of compile-omit-paths. Do not use this field;
it is for backward compatibility.

• scribblings : A list of pairs, each of which starts with a path for documentation
source. The sources (and the files that they require) are compiled in the same way
as ".rkt", ".ss", and ".scm" files, unless the provided skip-docs? argument is a
true value.

(compile-directory-zos

path

info

[#:verbose verbose?

#:skip-path skip-path

#:skip-doc-sources? skip-docs?

#:managed-compile-zo managed-compile-zo])

98

→ void?

path : path-string?

info : ()

verbose? : any/c = #f

skip-path : (or/c path-string? #f) = #f

skip-docs? : any/c = #f

managed-compile-zo : (path-string? . -> . void?)

= (make-caching-managed-compile-zo)

Like compile-collection-zos, but compiles the given directory rather than a collection.
The info function behaves like the result of get-info to supply "info.rkt" fields, in-
stead of using an "info.rkt" file (if any) in the directory.

11.3.2 Loading Compiler Support

The compiler unit loads certain tools on demand via dynamic-require and get-info. If
the namespace used during compilation is different from the namespace used to load the
compiler, or if other load-related parameters are set, then the following parameter can be
used to restore settings for dynamic-require.

(current-compiler-dynamic-require-wrapper)

→ ((-> any) . -> . any)

(current-compiler-dynamic-require-wrapper proc) → void?

proc : ((-> any) . -> . any)

A parameter whose value is a procedure that takes a thunk to apply. The default wrapper sets
the current namespace (via parameterize) before calling the thunk, using the namespace
in which the compiler/compiler library was originally instantiated.

11.3.3 Options for the Compiler

(require compiler/option)

The compiler/option module provides options (in the form of parameters) that control
the compiler’s behaviors.

More options are defined by the dynext/compile and dynext/link libraries, which con-
trol the actual C compiler and linker that are used for compilation via C.

(somewhat-verbose) → boolean?
(somewhat-verbose on?) → void?

on? : any/c

99

A #t value for the parameter causes the compiler to print the files that it compiles and
produces. The default is #f.

(verbose) → boolean?
(verbose on?) → void?

on? : any/c

A #t value for the parameter causes the compiler to print verbose messages about its opera-
tions. The default is #f.

(compile-subcollections) → (one-of/c #t #f)

(compile-subcollections cols) → void?

cols : (one-of/c #t #f)

A parameter that specifies whether sub-collections are compiled by compile-collection-
zos. The default is #t.

11.3.4 The Compiler as a Unit

Signatures

(require compiler/sig)

compiler^ : signature

Includes all of the names exported by compiler/compiler.

compiler:option^ : signature

Includes all of the names exported by compiler/option.

Main Compiler Unit

(require compiler/compiler-unit)

compiler@ : unit?

Provides the exports of compiler/compiler in unit form, where C-compiler operations are
imports to the unit, although they are not used.

The unit imports compiler:option^, dynext:compile^, dynext:link^, and
dynext:file^. It exports compiler^.

100

Options Unit

(require compiler/option-unit)

compiler:option@ : unit?

Provides the exports of compiler/option in unit form. It imports no signatures, and ex-
ports compiler:option^.

101

12 raco test: Run tests

The raco test command requires and runs the test submodule (if any) associated with
each path given on the command line. When a path refers to a directory, the tool recursively
discovers all files that end in ".rkt" within the directory and runs their test submodules.

The raco test command accepts a few flags:

• -s 〈name〉 or --submodule 〈name〉 — Requires the submodule 〈name〉 rather than
test.

• -r or --run-if-absent — Requires the top-level module of a file if the relevant
submodule is not present. This is the default mode.

• -x or --no-run-if-absent — Ignores a file if the relevant submodule is not present.

102

13 Adding a raco Command

The set of commands supported by raco can be extended by installed collections and PLane
T packages. A command is added by defining raco-commands in the "info.rkt" library
of a collection or package (see §8.2 “"info.rkt" File Format”).

The value bound to raco-commands must be a list of command specifications, where each
specification is a list of four values:

(list command-string

implementation-module-path

description-string

prominence)

The command-string is the command name. Any unambiguous prefix of a command name
can be supplied to raco to invoke the command.

The implementation-module-path names the implementation though a module path
(in the sense of module-path?). The module is loaded and invoked through dynamic-

require to run the command. The module can access command-line arguments through
the current-command-line-arguments parameter, which is adjusted before loading the
command module to include only the arguments to the command. The current-command-
name parameter is also set to the command name used to load the command. When raco

help is used on a command, the command is launched with an initial --help argument in
current-command-line-arguments.

The description-string is a short string used to describe the command in response to
raco help. The description should not be capitalized or end with a period.

The prominence value should be a read number or #f. A #f value means that the command
should not be included in the short list of “frequently used commands.” A number indicates
the relative prominence of the command; the help command has a value of 110, and prob-
ably no command should be more prominent. The pack tool, which is currently ranked as
the least-prominent of the frequently used commands, has a value of 10.

As an example, the "info.rkt" of the "compiler" collection might contain the

(define raco-commands

'(("make" compiler/commands/make "compile source to byte-

code" 100)

("decompile" compiler/commands/decompile "decompile byte-

code" #f)))

so that make is treated as a frequently used command, while decompile is available as an
infrequently used command.

103

13.1 Command Argument Parsing

(require raco/command-name)

The raco/command-name library provides functions to help a raco command identify itself
to users.
(current-command-name) → (or/c string? #f)

(current-command-name name) → void?

name : (or/c string? #f)

The name of the command currently being loaded via dynamic-require, or #f if raco is
not loading any command.

A command implementation can use this parameter to determine whether it was invoked via
raco or through some other means.

(short-program+command-name) → string?

Returns a string that identifies the current command. When current-command-name is a
string, then the result is the short name of the raco executable followed by a space and the
command name. Otherwise, it is the short name of the current executable, as determined by
stripping the path from the result of (find-system-path 'run-file).

The result of this function is suitable for use with command-line. For example, the decom-
pile tool parses command-line arguments with

(define source-files

(command-line

#:program (short-program+command-name)

#:args source-or-bytecode-file

source-or-bytecode-file))

so that raco decompile --help prints

raco decompile [<option> ...] [<source-or-bytecode-file>] ...

where <option> is one of

--help, -h : Show this help

-- : Do not treat any remaining argument as a switch (at this

level)

Multiple single-letter switches can be combined after one `-'; for

example: `-h-' is the same as `-h --'

(program+command-name) → string?

Like short-program+command-name, but the path (if any) is not stripped from the current
executable’s name.

104

	1 raco make: Compiling Source to Bytecode
	1.1 Bytecode Files
	1.2 Dependency Files
	1.3 API for Making Bytecode
	1.4 API for Parallel Builds
	1.5 Compilation Manager Hook for Syntax Transformers
	1.6 Compiling to Raw Bytecode

	2 raco link: Library Collection Links
	2.1 API for Collection Links

	3 raco exe: Creating Stand-Alone Executables
	3.1 API for Creating Executables
	3.1.1 Executable Creation Signature
	3.1.2 Executable Creation Unit
	3.1.3 Finding the Racket Executable

	3.2 Installation-Specific Launchers
	3.2.1 Creating Launchers
	3.2.2 Launcher Path and Platform Conventions
	3.2.3 Launcher Configuration
	3.2.4 Launcher Creation Signature
	3.2.5 Launcher Creation Unit

	4 raco distribute: Sharing Stand-Alone Executables
	4.1 API for Distributing Executables
	4.2 API for Bundling Distributions

	5 raco pack: Packing Library Collections
	5.1 Format of ".plt" Archives
	5.2 API for Packing

	6 raco unpack: Unpacking Library Collections
	6.1 Unpacking API

	7 raco planet: Automatic Package Distribution
	8 raco setup: Installation Management
	8.1 Running raco setup
	8.1.1 Controlling raco setup with "info.rkt" Files

	8.2 "info.rkt" File Format
	8.3 API for Installation
	8.3.1 raco setup Unit
	8.3.2 Options Unit
	8.3.3 Options Signature

	8.4 API for Installing ".plt" Archives
	8.4.1 Non-GUI Installer
	8.4.2 GUI Installer
	8.4.3 GUI Unpacking Signature
	8.4.4 GUI Unpacking Unit

	8.5 API for Finding Installation Directories
	8.6 API for Reading "info.rkt" Files
	8.7 API for Relative Paths
	8.7.1 Representing paths relative to "collects"
	8.7.2 Displaying paths relative to a common root

	8.8 API for Cross-References for Installed Manuals

	9 raco decompile: Decompiling Bytecode
	9.1 API for Decompiling
	9.2 API for Parsing Bytecode
	9.3 API for Marshaling Bytecode
	9.4 Bytecode Representation
	9.4.1 Prefix
	9.4.2 Forms
	9.4.3 Expressions
	9.4.4 Syntax Objects

	10 raco demod: Demodularizing Programs
	11 raco ctool: Working with C Code
	11.1 Compiling and Linking C Extensions
	11.1.1 API for 3m Transformation

	11.2 Embedding Modules via C
	11.3 API for Raw Compilation
	11.3.1 Bytecode Compilation
	11.3.2 Loading Compiler Support
	11.3.3 Options for the Compiler
	11.3.4 The Compiler as a Unit

	12 raco test: Run tests
	13 Adding a raco Command
	13.1 Command Argument Parsing

