raco: Racket Command-Line Tools

Version 5.92

January 25, 2014

The raco program supports various Racket tasks from a command line. The first argument to raco is always a specific command name. For example, raco make starts a command to compile a Racket source module to bytecode format.

The set of commands available through raco is extensible. Use raco help to get a complete list of available commands for your installation. This manual covers the commands that are available in a typical Racket installation.

Contents

1	rac	make: Compiling Source to Bytecode
	1.1	Bytecode Files
	1.2	Dependency Files
	1.3	API for Making Bytecode
	1.4	API for Parallel Builds
	1.5	Compilation Manager Hook for Syntax Transformers
	1.6	API for Simple Bytecode Creation
	1.7	Compiling to Raw Bytecode
2	rac	exe: Creating Stand-Alone Executables
	2.1	API for Creating Executables
		2.1.1 Executable Creation Signature
		2.1.2 Executable Creation Unit
		2.1.3 Finding the Racket Executable
	2.2	Installation-Specific Launchers
		2.2.1 Creating Launchers
		2.2.2 Launcher Path and Platform Conventions
		2.2.3 Launcher Configuration
		2.2.4 Launcher Creation Signature
		2.2.5 Launcher Creation Unit
3	race	o distribute: Sharing Stand-Alone Executables 35
	3.1	API for Distributing Executables
	3.2	API for Bundling Distributions
4	rac	planet: Automatic Package Distribution 40
5	rac	pkg: Package Management 41
6	race	setup: Installation Management 42
Ů	6.1	Running raco setup
	6.2	Installing ".plt" Archives
	6.3	Controlling raco setup with "info.rkt" Files
	6.4	"info.rkt" File Format
	6.5	API for Setup
	0.0	6.5.1 raco setup Unit
		6.5.2 Options Unit
		6.5.3 Options Signature
	6.6	API for Installing ".plt" Archives
	0.0	6.6.1 Non-GUI Installer
	6.7	API for Finding Installation Directories
	6.8	API for Reading "inforrkt" Files
	6.9	API for Relative Paths
	0.7	6.9.1 Representing Collection-Based Paths 6.

	6.9.2 Representing Paths Relative to "collects"	68
	6.9.3 Displaying Paths Relative to a Common Root	69
	6.10 API for Collection Names	70
	6.11 API for Cross-References for Installed Manuals	70
7	raco decompile: Decompiling Bytecode	71
	7.1 API for Decompiling	72
	7.2 API for Parsing Bytecode	73
	7.3 API for Marshaling Bytecode	74
	7.4 Bytecode Representation	74
	7.4.1 Prefix	75
	7.4.2 Forms	77
	7.4.3 Expressions	81
	7.4.4 Syntax Objects	87
8	raco demod: Demodularizing Programs	92
9	raco link: Library Collection Links	93
	9.1 API for Collection Links	94
10	raco pack: Packing Library Collections	96
	10.1 Format of ".plt" Archives	98
	10.2 API for Packing	100
11	raco unpack: Unpacking Library Collections	105
	11.1 Unpacking API	105
12	raco ctool: Working with C Code	108
	12.1 Compiling and Linking C Extensions	108
	12.1.1 API for 3m Transformation	108
	12.2 Embedding Modules via C	109
	12.3 API for Raw Compilation	109
	12.3.1 Bytecode Compilation	109
	12.3.2 Loading Compiler Support	112
	12.3.3 Options for the Compiler	112
	12.3.4 The Compiler as a Unit	113
13	raco test: Run tests	115
14	raco docs: Documentation Search	116
15	raco expand: Macro Expansion	117
16	raco scribble: Building Documentation	118
17	Adding a raco Command	119
	17.1 Command Argument Parsing	120
	17.1 Commune angument ausing	•

1 raco make: Compiling Source to Bytecode

The raco make command accept filenames for Racket modules to be compiled to bytecode format. Modules are re-compiled only if the source Racket file is newer than the bytecode file and has a different SHA-1 hash, or if any imported module is recompiled or has a different SHA-1 hash for its compiled form plus dependencies.

The raco make command accepts a few flags:

- -j $\langle n \rangle$ Compiles argument modules in parallel, using up to $\langle n \rangle$ parallel tasks.
- --disable-inline Disables function inlining while compiling (but does not recompile files that are already up-to-date). This flag is often useful to simplify generated code before decompiling, and it corresponds to setting compile-context-preservation-enabled to #t.
- --disable-constant Disables inference of definitions within a module as constant (but does not re-compile files that are already up-to-date). The value associated with a non-constant definition is never inlined or constant-propagated, either within its own module or an importing module. This flag corresponds to setting compile-enforce-module-constants to #f.
- --no-deps Compiles a non-module file (i.e., one that is run via load instead of require). See §1.7 "Compiling to Raw Bytecode" for more information.
- -p \(\file\)\) or --prefix \(\file\)\)— For use with --no-deps; see \(\file\)1.7 "Compiling to Raw Bytecode".
- -no-prim For use with --no-deps; see §1.7 "Compiling to Raw Bytecode".
- -v Verbose mode, which shows which files are compiled.
- --vv Very verbose mode, which implies -v and also shows every dependency that is checked.

1.1 Bytecode Files

A file " $\langle name \rangle$. $\langle ext \rangle$ " is compiled to bytecode that is saved as "compiled/ $\langle name \rangle$ _ $\langle ext \rangle$. zo" relative to the file. As a result, the bytecode file is normally used automatically when " $\langle name \rangle$. $\langle ext \rangle$ " is required as a module, since the underlying load/use-compiled operation detects such a bytecode file.

For example, in a directory that contains the following files:

• "a.rkt":

```
#lang racket
       (require "b.rkt" "c.rkt")
       (+ b c)
   • "b.rkt":
       #lang racket
       (provide b)
       (define b 1)
   • "c.rkt":
       #lang racket
       (provide c)
       (define c 1)
then
  raco make a.rkt
triggers the creation of "compiled/a_rkt.zo", "compiled/b_rkt.zo",
"compiled/c_rkt.zo". A subsequent
  racket a.rkt
loads bytecode from the generated ".zo" files, paying attention to the ".rkt" sources only
to confirm that each ".zo" file has a later timestamp.
In contrast,
  raco make b.rkt c.rkt
```

1.2 Dependency Files

"b.rkt" nor "c.rkt" imports "a.rkt".

In addition to a bytecode file, raco make creates a file "compiled/ $\langle name \rangle_{_}\langle ext \rangle$.dep" that records dependencies of the compiled module on other module files and the source file's SHA-1 hash. Using this dependency information, a re-compilation request via raco make can consult both the source file's timestamp/hash and the timestamps/hashes for the bytecode of imported modules. Furthermore, imported modules are themselves compiled as necessary, including updating the bytecode and dependency files for the imported modules, transitively.

would create only "compiled/b_rkt.zo" and "compiled/c_rkt.zo", since neither

Continuing the raco make a.rkt example from the previous section, the raco make command creates "compiled/a_rkt.dep", "compiled/b_rkt.dep", and "compiled/c_rkt.dep" at the same time as the ".zo" files. The "compiled/a_rkt.dep" file records the dependency of "a.rkt" on "b.rkt", "c.rkt" and the racket library. If the "b.rkt" file is modified (so that its timestamp and SHA-1 hash changes), then running

```
raco make a.rkt
again rebuilds "compiled/a_rkt.zo" and "compiled/b_rkt.zo".
```

For module files that are within library collections, raco setup uses the same ".zo" and ".dep" conventions and files as raco make, so the two tools can be used together.

1.3 API for Making Bytecode

```
(require compiler/cm) package: base
```

The compiler/cm module implements the compilation and dependency management used by raco make and raco setup.

```
(make-compilation-manager-load/use-compiled-handler
  [delete-zos-when-rkt-file-does-not-exist?
  #:security-guard security-guard])
  → (path? (or/c symbol? false/c) . -> . any)
  delete-zos-when-rkt-file-does-not-exist? : any/c = #f
  security-guard : (or/c security-guard? #f) = #f
```

Returns a procedure suitable as a value for the current-load/use-compiled parameter. The returned procedure passes it arguments on to the current-load/use-compiled procedure that is installed when make-compilation-manager-load/use-compiled-handler is called, but first it automatically compiles a source file to a ".zo" file if

- the file is expected to contain a module (i.e., the second argument to the handler is a symbol);
- the value of each of (current-eval), (current-load), and (namespace-module-registry (current-namespace)) is the same as when make-compilation-manager-load/use-compiled-handler was called;
- the value of use-compiled-file-paths contains the first path that was present when make-compilation-manager-load/use-compiled-handler was called;
- the value of current-load/use-compiled is the result of this procedure; and
- one of the following holds:

- the source file is newer than the ".zo" file in the first sub-directory listed in use-compiled-file-paths (at the time that make-compilation-manager-load/use-compiled-handler was called), and either no ".dep" file exists or it records a source-file SHA-1 hash that differs from the current version and source-file SHA-1 hash:
- no ".dep" file exists next to the ".zo" file;
- the version recorded in the ".dep" file does not match the result of (version);
- one of the files listed in the ".dep" file has a ".zo" timestamp newer than the target ".zo", and the combined hashes of the dependencies recorded in the ".dep" file does not match the combined hash recorded in the ".dep" file.

If SHA-1 hashes override a timestamp-based decision to recompile the file, then the target ".zo" file's timestamp is updated to the current time.

After the handler procedure compiles a ".zo" file, it creates a corresponding ".dep" file that lists the current version and the identification of every file that is directly required by the module in the compiled file. Additional dependencies can be installed during compilation via compiler/cm-accomplice. The ".dep" file also records the SHA-1 hash of the module's source, and it records a combined SHA-1 hash of all of the dependencies that includes their recursive dependencies.

The handler caches timestamps when it checks ".dep" files, and the cache is maintained across calls to the same handler. The cache is not consulted to compare the immediate source file to its ".zo" file, which means that the caching behavior is consistent with the caching of the default module name resolver (see current-module-name-resolver).

If use-compiled-file-paths contains an empty list when make-compilation-manager-load/use-compiled-handler is called, then exn:fail:contract exception is raised.

If the delete-zos-when-rkt-file-does-not-exist? argument is a true value, then the returned handler will delete ".zo" files when there is no corresponding original source file.

If the <code>security-guard</code> argument is supplied, it is used when creating ".zo" files, ".dep" files, and "compiled/" directories, and when it adjusts the timestamps for existing files. If it is <code>#f</code>, then the security guard in the <code>current-security-guard</code> when the files are created is used (not the security guard at the point <code>make-compilation-manager-load/use-compiled-handler</code> is called).

Do not install the result of make-compilation-manager-load/use-compiled-handler when the current namespace contains already-loaded versions of modules that may need to be recompiled—unless the already-loaded modules are never referenced by not-yet-loaded modules. References to already-loaded modules may produce compiled files with inconsistent timestamps and/or ".dep" files with incorrect information.

Compiles the given module source file to a ".zo", installing a compilation-manager handler while the file is compiled (so that required modules are also compiled), and creating a ".dep" file to record the timestamps of immediate files used to compile the source (i.e., files required in the source).

If file is compiled from source, then read-src-syntax is used in the same way as read-syntax to read the source module. The normal read-syntax is used for any required files, however.

If <code>security-guard</code> is not <code>#f</code>, then the provided security guard is used when creating the <code>"compiled/"</code> directories, <code>".dep"</code> and <code>".zo"</code> files, and when it adjusts the timestamps of existing files. If it is <code>#f</code>, then the security guard in the <code>current-security-guard</code> when the files are created is used (not the security guard at the point <code>managed-compile-zo</code> is called).

```
(trust-existing-zos) → boolean?
(trust-existing-zos trust?) → void?
  trust? : any/c
```

A parameter that is intended for use by setup-plt when installing with pre-built ".zo" files. It causes a compilation-manager load/use-compiled handler to "touch" out-of-date ".zo" files instead of re-compiling from source.

```
(make-caching-managed-compile-zo
  read-src-syntax
[#:security-guard security-guard])
  → (path-string? . -> . void?)
  read-src-syntax : (any/c input-port? . -> . syntax?)
  security-guard : (or/c security-guard? #f) = #f
```

Returns a procedure that behaves like managed-compile-zo (providing the same read-src-syntax each time), but a cache of timestamp information is preserved across calls to the procedure.

```
(manager-compile-notify-handler) → (path? . -> . any)
(manager-compile-notify-handler notify) → void?
  notify : (path? . -> . any)
```

A parameter for a procedure of one argument that is called whenever a compilation starts. The argument to the procedure is the file's path.

```
(manager-trace-handler) → (string? . -> . any)
(manager-trace-handler notify) → void?
  notify : (string? . -> . any)
```

A parameter for a procedure of one argument that is called to report compilation-manager actions, such as checking a file. The argument to the procedure is a string.

The default value of the parameter logs the argument, along with current-inexact-milliseconds to, a logger named 'compiler/cm at the 'debug level.

```
(manager-skip-file-handler)
    → (-> path? (or/c (cons/c number? promise?) #f))
(manager-skip-file-handler proc) → void?
    proc : (-> path? (or/c (cons/c number? promise?) #f))
```

A parameter whose value is called for each file that is loaded and needs recompilation. If the procedure returns a pair, then the file is skipped (i.e., not compiled); the number in the pair is used as the timestamp for the file's bytecode, and the promise may be forced to obtain a string that is used as hash of the compiled file plus its dependencies. If the procedure returns #f, then the file is compiled as usual. The default is (lambda (x) #f).

```
(file-stamp-in-collection p)
  → (or/c (cons/c number? promise?) #f)
  p : path?
```

Calls file-stamp-in-paths with p and (current-library-collection-paths).

```
(file-stamp-in-paths p paths)
  → (or/c (cons/c number? promise?) #f)
  p : path?
  paths : (listof path?)
```

Returns the file-modification date and delayed hash of p or its bytecode form (i.e., ".zo" file), whichever exists and is newer, if p is an extension of any path in paths (i.e., exists in the directory, a subdirectory, etc.). Otherwise, the result is #f.

This function is intended for use with manager-skip-file-handler.

```
(\text{get-file-sha1 }p) \rightarrow (\text{or/c string? }\#f)
p: \text{path?}
```

Computes a SHA-1 hash for the file p; the result is #f if p cannot be opened.

```
(get-compiled-file-shal p) \rightarrow (or/c string? #f) p: path?
```

Computes a SHA-1 hash for the bytecode file p, appending any dependency-describing hash available from a ".dep" file when available (i.e., the suffix on p is replaced by ".dep" to locate dependency information). The result is #f if p cannot be opened.

```
(with-compile-output p proc) → any
  p : path-string?
  proc : ([port input-port?] [tmp-path path?] . -> . any)
```

A wrapper on call-with-atomic-output-file that passes along any security guard put in place by make-compilation-manager-load/use-compiled-handler, etc.

Holds the parallel compilation lock client, which is used by the result of make-compilation-manager-load/use-compiled-handler to prevent compilation races between parallel builders.

When proc is #f (the default), no checking for parallel compilation is done (and thus multiple threads or places running compilations via make-compilation-manager-load/use-compiled-handler will potentially corrupt each other's ".zo" files).

When *proc* is a function, its first argument is a command, indicating if it wants to lock or unlock the path specified in the second argument.

When the proc 'lock command returns #t, the current builder has obtained the lock for zo-path. Once compilation of zo-path is complete, the builder process must release the lock by calling proc 'unlock with the exact same zo-path.

When the proc 'lock command returns #f, another parallel builder obtained the lock first and has already compiled the zo. The parallel builder should continue without compiling

zo-path. (In this case, make-compilation-manager-load/use-compiled-handler's result will not call proc with 'unlock.)

Example:

```
> (let* ([lc (parallel-lock-client)]
          [zo-name #"collects/racket/compiled/draw_rkt.zo"]
          [locked? (and lc (lc 'lock zo-name))]
          [ok-to-compile? (or (not lc) locked?)])
    (dynamic-wind
       (lambda () (void))
       (lambda ()
         (when ok-to-compile?
           (printf "Do compile here ...\n")))
      (lambda ()
         (when locked?
           (lc 'unlock zo-name)))))
Do compile here ...
(compile-lock->parallel-lock-client pc
→ (-> (or/c 'lock 'unlock) bytes? boolean?)
pc : place-channel?
 cust : (or/c #f custodian?) = #f
```

Returns a function that follows the parallel-lock-client by communicating over pc. The argument must have be the result of make-compile-lock.

This communication protocol implementation is not kill safe. To make it kill safe, it needs a sufficiently powerful custodian, i.e., one that is not subject to termination (unless all of the participants in the compilation are also terminated). It uses this custodian to create a thread that monitors the threads that are doing the compilation. If one of them is terminated, the presence of the custodian lets another one continue. (The custodian is also used to create a thread that manages a thread safe table.)

```
(make-compile-lock) \rightarrow place-channel?
```

Creates a place-channel? that can be used with compile-lock->parallel-lock-client to avoid concurrent compilations of the same racket source files in multiple places.

1.4 API for Parallel Builds

```
(require setup/parallel-build) package: base
```

The setup/parallel-build library provides the parallel-compilation functionality of raco setup and raco make.

The parallel-compile utility function is used by raco make to compile a list of paths in parallel. The optional #:worker-count argument specifies the number of compile workers to spawn during parallel compilation. The callback, <code>handler</code>, is called with the symbol 'done as the <code>handler-type</code> argument for each successfully compiled file, 'output when a successful compilation produces stdout/stderr output, 'error when a compilation error has occured, or 'fatal-error when a unrecoverable error occurs. The other arguments give more information for each status update.

```
(parallel-compile-files
  source-files
  #:worker-count 4
  #:handler (lambda (type work msg out err)
    (match type
      ['done (when (verbose) (printf " Made ~a\n" work))]
      ['output (printf " Output from: \sim a n \sim a \sim a" work out err)]
      [else (printf " Error compiling ~a\n~a\n~a~a"
                     work
                     msg
                     out
                     err)])))
(parallel-compile worker-count
                  setup-fprintf
                  append-error
                  collects-tree) \rightarrow (void)
 worker-count : non-negative-integer?
                  (->* ([stage string?] [format string?])
 setup-fprintf :
                       #:rest (listof any/c) void)
```

The parallel-compile internal utility function is used by rack setup to compile collects in parallel. The worker-count argument specifies the number of compile workers to spawn during parallel compilation. The setup-fprintf and append-error functions are internal callback mechanisms that raco setup uses to communicate intermediate compilation results. The collects-tree argument is a compound datastructure containing an in-memory tree representation of the collects directory.

1.5 Compilation Manager Hook for Syntax Transformers

```
(require compiler/cm-accomplice) package: base
(register-external-file file) → void?
  file: (and path? complete-path?)
```

Logs a message (see log-message) at level 'info to a logger named 'cm-accomplice. The message data is a file-dependency prefab structure type with two fields; the first field's value is file and the second field's value is #f (to indicate a non-module dependency).

A compilation manager implemented by compiler/cm looks for such messages to register an external dependency. The compilation manager records (in a ".dep" file) the path as contributing to the implementation of the module currently being compiled. Afterward, if the registered file is modified, the compilation manager will know to recompile the module.

The include macro, for example, calls this procedure with the path of an included file as it expands an include form.

Like register-external-file, but logs a message with a file-dependency prefab structure type whose second field is #t.

A compilation manager implemented by compiler/cm recognizes the message to register a dependency on a module (which implies a dependency on all of that module's dependencies, etc.).

1.6 API for Simple Bytecode Creation

Compiles the Racket file *src* and saves the compiled code to *dest*. If *dest* is not provided and the "compiled" subdirectory does not already exist, the subdirectory is created. The result of compile-file is the destination file's path.

If the *filter* procedure is provided, it is applied to each source expression, and the result is compiled.

The compile-file procedure is designed for compiling modules files, in that each expression in src is compiled independently. If src does not contain a single module expression, then earlier expressions can affect the compilation of later expressions when src is loaded directly. An appropriate filter can make compilation behave like evaluation, but the problem is also solved (as much as possible) by the compile-zos procedure.

See also managed-compile-zo.

1.7 Compiling to Raw Bytecode

The --no-deps mode for raco make is an improverished form of the compilation, because it does not track import dependencies. It does, however, support compilation of non-module source in an namespace that initially imports scheme.

Outside of a module, top-level define-syntaxes, module, #%require, define-values-for-syntax, and begin expressions are handled specially by raco make --no-deps: the compile-time portion of the expression is evaluated, because it might affect later expressions.

For example, when compiling the file containing

```
(require racket/class)
(define f (class object% (super-new)))
```

the class form from the racket/class library must be bound in the compilation namespace at compile time. Thus, the require expression is both compiled (to appear in the output code) and evaluated (for further computation).

Many definition forms expand to define-syntaxes. For example, define-signature expands to define-syntaxes. In --no-deps mode, raco make --no-deps detects define-syntaxes and other expressions after expansion, so top-level define-signature expressions affect the compilation of later expressions, as a programmer would expect.

In contrast, a load or eval expression in a source file is compiled—but not evaluated!—as the source file is compiled. Even if the load expression loads syntax or signature definitions, these will not be loaded as the file is compiled. The same is true of application expressions that affect the reader, such as (read-case-sensitive #t). The -p or --prefix flag for raco make takes a file and loads it before compiling the source files specified on the command line.

By default, the namespace for compilation is initialized by a require of scheme. If the --no-prim flag is specified, the namespace is instead initialized with namespace-require/copy, which allows mutation and redefinition of all initial bindings (other than syntactic forms, in the case of mutation).

In general, a better solution is to put all code to compile into a module and use raco make in its default mode.

2 raco exe: Creating Stand-Alone Executables

Compiled code produced by raco make relies on Racket executables to provide run-time support to the compiled code. However, raco exe can package code together with its run-time support to form an executable, and raco distribute can package the executable into a distribution that works on other machines. Running an executable produced by raco exe will not improve performance over raco make.

Use a smaller base language to achieve a faster startup time such as #lang racket/base instead of #lang racket rather than relying on raco exe.

The raco exe command embeds a module, from source or byte code, into a copy of the racket executable. (On Unix, the embedding executable is actually a copy of a wrapper executable.) The created executable invokes the embedded module on startup. The --gui flag causes the program to be embedded in a copy of the gracket executable. If the embedded module refers to other modules via require, then the other modules are also included in the embedding executable.

For example, the command

```
raco exe --gui hello.rkt
```

produces either "hello.exe" (Windows), "hello.app" (Mac OS X), or "hello" (Unix), which runs the same as running the "hello.rkt" module in gracket.

Library modules or other files that are referenced dynamically—through eval, load, or dynamic-require—are not automatically embedded into the created executable. Such modules can be explicitly included using the ++lib flag to raco exe. Alternately, use define-runtime-path to embed references to the run-time files in the executable; the files are then copied and packaged together with the executable when creating a distribution (as described in §3 "raco distribute: Sharing Stand-Alone Executables").

Modules that are implemented directly by extensions—i.e., extensions that are automatically loaded from (build-path "compiled" "native" (system-library-subpath)) to satisfy a require—are treated like other run-time files: a generated executable uses them from their original location, and they are copied and packaged together when creating a distribution.

The raco exe command works only with module-based programs. The compiler/embed library provides a more general interface to the embedding mechanism.

A stand-alone executable is "stand-alone" in the sense that you can run it without starting racket, gracket, or DrRacket. However, the executable depends on Racket shared libraries, and possibly other run-time files declared via define-runtime-path. The executable can be packaged with support libraries to create a distribution using raco distribute, as described in §3 "raco distribute: Sharing Stand-Alone Executables".

The --ico (Windows) or --icns (Mac OS X) flag sets the icon for the generated executable. For generally, ++aux attaches information to the executable based on the auxilliary file's

suffix; see extract-aux-from-path for a list of recognized suffixes and meanings.

The -1 or --launcher flag creates a launcher instead of a stand-alone executable. See §2.2 "Installation-Specific Launchers" for more information on launchers. The --lib has no effect in that case.

2.1 API for Creating Executables

```
(require compiler/embed) package: base
```

The compiler/embed library provides a function to embed Racket code into a copy of Racket or GRacket, thus creating a stand-alone Racket executable. To package the executable into a distribution that is independent of your Racket installation, use assemble-distribution from compiler/distribute.

Embedding walks the module dependency graph to find all modules needed by some initial set of top-level modules, compiling them if needed, and combining them into a "module bundle." In addition to the module code, the bundle extends the module name resolver, so that modules can be required with their original names, and they will be retrieved from the bundle instead of the filesystem.

The create-embedding-executable function combines the bundle with an executable (Racket or GRacket). The write-module-bundle function prints the bundle to the current output port, instead; this stream can be loaded directly by a running program, as long as the read-accept-compiled parameter is true.

```
(create-embedding-executable
 dest
 #:modules mod-list
[#:early-literal-expressions early-literal-sexps
 #:configure-via-first-module? config-via-first?
 #:literal-files literal-files
 #:literal-expression literal-sexp
 #:literal-expressions literal-sexps
 #:cmdline cmdline
 #:gracket? gracket?
 #:mred? mred?
 #:variant variant
 #:aux aux
 #:collects-path collects-path
 #:collects-dest collects-dest
 #:launcher? launcher?
 #:verbose? verbose?
 #:expand-namespace expand-namespace
 #:compiler compile-proc
 #:src-filter src-filter
 #:on-extension ext-proc
 #:get-extra-imports extras-proc])
\rightarrow void?
 dest : path-string?
            (listof (or/c (list/c (or/c symbol? (one-of/c #t #f))
                                  (or/c module-path? path?))
mod-list :
                          (list/c (or/c symbol? (one-of/c #t #f))
                                  (or/c module-path? path?)
                                  (listof symbol?))))
 early-literal-sexps : list? = null
 config-via-first? : any/c = #f
 literal-files : (listof path-string?) = null
 literal-sexp : any/c = #f
                         (if literal-sexp
 literal-sexps : list? =
                             (list literal-sexp)
                             null)
cmdline : (listof string?) = null
gracket? : any/c = #f
mred? : any/c = #f
 variant : (or/c 'cgc '3m) = (system-type 'gc)
 aux : (listof (cons/c symbol? any/c)) = null
                 (or/c #f
 collects-path :
                       path-string?
                                              = #f
                       (listof path-string?))
 collects-dest : (or/c #f path-string?) = #f
 launcher? : any/c = #f
```

Copies the Racket (if <code>gracket?</code> and <code>mred?</code> are <code>#f)</code> or GRacket (otherwise) binary, embedding code into the copied executable to be loaded on startup. On Unix, the binary is actually a wrapper executable that execs the original; see also the <code>'original-exe?</code> tag for <code>aux</code>.

The embedding executable is written to dest, which is overwritten if it exists already (as a file or directory).

The embedded code consists of module declarations followed by additional (arbitrary) code. When a module is embedded, every module that it imports is also embedded. Library modules are embedded so that they are accessible via their lib paths in the initial namespace except as specified in mod-list, other modules (accessed via local paths and absolute paths) are embedded with a generated prefix, so that they are not directly accessible.

The #:modules argument mod-list designates modules to be embedded, as described below. The #:early-literal-expressions, #:literal-files, and #:literal-expressions arguments specify literal code to be copied into the executable: each element of early-literal-sexps is copied in order, then the content of each file in literal-files in order (with no intervening spaces), and then each element of literal-sexps. The literal-files files or early-literal-sexps or literal-sexps lists can contain compiled bytecode, and it's possible that the content of the literal-files files only parse when concatenated; the files and expression are not compiled or inspected in any way during the embedding process. Beware that the initial namespace contains no bindings; use compiled expressions to bootstrap the namespace. The #:literal-expression (singular) argument is for backward compatibility.

If the #:configure-via-first-module? argument is specified as true, then the language of the first module in mod-list is used to configure the run-time environment before the expressions added by #:literal-files and #:literal-expressions are evaluated, but after the expressions of #:early-literal-expressions. See also §18.1.5 "Language Run-Time Configuration".

The #:cmdline argument cmdline contains command-line strings that are prefixed onto any actual command-line arguments that are provided to the embedding executable. A

command-line argument that evaluates an expression or loads a file will be executed after the embedded code is loaded.

Each element of the #:modules argument mod-list is a two- or three-item list, where the first item is a prefix for the module name, and the second item is a module path datum (that's in the format understood by the default module name resolver), and the third is a list of submodule names to be included if they are available. The prefix can be a symbol, #f to indicate no prefix, or #t to indicate an auto-generated prefix. For example,

```
'((#f "m.rkt"))
```

embeds the module m from the file "m.rkt", without prefixing the name of the module; the literal-sexpr argument to go with the above might be '(require m). When submodules are available and included, the submodule is given a name by symbol-appending the write form of submodule path to the enclosing module's name.

Modules are normally compiled before they are embedded into the target executable; see also #:compiler and #:src-filter below. When a module declares run-time paths via define-runtime-path, the generated executable records the path (for use both by immediate execution and for creating a distribution that contains the executable).

If *collects-dest* is a path instead of #f, then instead of embedding collection-based modules into the executable, the modules (in compiled form, only) are copied into collections in the *collects-dest* directory.

The optional #:aux argument is an association list for platform-specific options (i.e., it is a list of pairs where the first element of the pair is a key symbol and the second element is the value for that key). See also build-aux-from-path. The currently supported keys are as follows:

- 'icns (Mac OS X): An icon file path (suffix ".icns") to use for the executable's desktop icon.
- 'ico (Windows): An icon file path (suffix ".ico") to use for the executable's desktop icon; the executable will have 16x16, 32x32, and 48x48 icons at 4-bit, 8-bit, and 32-bit (RGBA) depths; the icons are copied and generated from any 16x16, 32x32, and 48x48 icons in the ".ico" file.
- 'creator (Mac OS X): Provides a 4-character string to use as the application signature.
- 'file-types (Mac OS X): Provides a list of association lists, one for each type of file handled by the application; each association is a two-element list, where the first (key) element is a string recognized by Finder, and the second element is a plist value (see xml/plist). See "drracket.filetypes" in the "drracket" collection for an example.

- 'uti-exports (Mac OS X): Provides a list of association lists, one for each Uniform Type Identifier (UTI) exported by the executable; each association is a two-element list, where the first (key) element is a string recognized in a UTI declaration, and the second element is a plist value (see xml/plist). See "drracket.utiexports" in the "drracket" collection for an example.
- 'resource-files (Mac OS X): extra files to copy into the "Resources" directory of the generated executable.
- 'config-dir: A string/path to a directory that contains configuration information, such as "config.rtkd" (see §18 "Installation Configuration and Search Paths"). If no value is supplied, the path is left as-is and converted to absolute form as needed. If #f is supplied, the path is left as-is (in potentially relative form). Note that if collects-path is provided as an empty list, then the configuration-directory path is not used by Racket's start up process (in contrast to a normal Racket start-up, where the configuration directory is consulted for information about collection link files).
- 'framework-root (Mac OS X): A string to prefix the executable's path to the Racket and GRacket frameworks (including a separating slash); note that when the prefix starts "@executable_path/" works for a Racket-based application, the corresponding prefix start for a GRacket-based application is "@executable_path/../../"; if #f is supplied, the executable's framework path is left as-is, otherwise the original executable's path to a framework is converted to an absolute path if it was relative.
- 'dll-dir (Windows): A string/path to a directory that contains Racket DLLs needed by the executable, such as "racket(version).dll", or a boolean; a path can be relative to the executable; if #f is supplied, the path is left as-is; if #t is supplied, the path is dropped (so that the DLLs must be in the system directory or the user's PATH); if no value is supplied the original executable's path to DLLs is converted to an absolute path if it was relative.
- 'subsystem (Windows): A symbol, either 'console for a console application or 'windows for a consoleless application; the default is 'console for a Racket-based application and 'windows for a GRacket-based application; see also 'single-instance?, below.
- 'single-instance? (Windows): A boolean for GRacket-based apps; the default is #t, which means that the app looks for instances of itself on startup and merely brings the other instance to the front; #f means that multiple instances are expected.
- 'forget-exe? (Windows, Mac OS X): A boolean; #t for a launcher (see launcher? below) does not preserve the original executable name for (find-system-path 'exec-file); the main consequence is that library collections will be found relative to the launcher instead of the original executable.
- 'original-exe? (Unix): A boolean; #t means that the embedding uses the original Racket or GRacket executable, instead of a wrapper binary that execs the original; the default is #f.

- 'relative? (Unix, Windows, Mac OS X): A boolean; #t means that, to the degree that the generated executable must refer to another, it can use a relative path (so the executables can be moved together, but not separately), and it implies #f for 'configdir, 'framework-dir, and 'dll-dir, unless those are explicitly provided; a #f value (the default) means that absolute paths should be used (so the generated executable can be moved).
- 'wm-class (Unix): A string; used as the default WM_CLASS program class for the program's windows.

If the #:collects-path argument is #f, then the created executable maintains its builtin (relative) path to the main "collects" directory—which will be the result of (findsystem-path 'collects-dir) when the executable is run—plus a potential list of
other directories for finding library collections—which are used to initialize the currentlibrary-collection-paths list in combination with PLTCOLLECTS environment variable. Otherwise, the argument specifies a replacement; it must be either a path, string, or
list of paths and strings. In the last case, the first path or string specifies the main collection directory, and the rest are additional directories for the collection search path (placed,
in order, after the user-specific "collects" directory, but before the main "collects"
directory; then the search list is combined with PLTCOLLECTS, if it is defined). If the list
is empty, then (find-system-path 'collects-dir) will return the directory of the executable, but current-library-collection-paths is initialized to an empty list, and
use-collection-link-paths is set to false to disable the use of collection links files.

If the #:launcher? argument is #t, then lid-list should be null, literal-files should be null, literal-sexp should be #f, and the platform should be Windows or Mac OS X. The embedding executable is created in such a way that (find-system-path 'execfile) produces the source Racket or GRacket path instead of the embedding executable (but the result of (find-system-path 'run-file) is still the embedding executable).

The #:variant argument indicates which variant of the original binary to use for embedding. The default is (system-type 'gc); see also current-launcher-variant.

The #:compiler argument is used to compile the source of modules to be included in the executable (when a compiled form is not already available). It should accept a single argument that is a syntax object for a module form. The default procedure uses compile parameterized to set the current namespace to expand-namespace.

The #: expand-namespace argument selects a namespace for expanding extra modules (and for compiling using the default <code>compile-proc</code>). Extra-module expansion is needed to detect run-time path declarations in included modules, so that the path resolutions can be directed to the current locations (and, ultimately, redirected to copies in a distribution).

The #:src-filter src-filter argument takes a path and returns true if the corresponding file source should be included in the embedding executable in source form (instead of compiled form), #f otherwise. The default returns #f for all paths. Beware that the current output port may be redirected to the result executable when the filter procedure is called.

Each path given to *src-filter* corresponds to the actual file name (e.g., ".ss"/".rkt" conversions have been applied as needed to refer to the existing file).

If the #:on-extension argument is a procedure, the procedure is called when the traversal of module dependencies arrives at an extension (i.e., a DLL or shared object). The default, #f, causes a reference to a single-module extension (in its current location) to be embedded into the executable. The procedure is called with two arguments: a path for the extension, and a #f (for historical reasons).

The #:get-extra-imports extras-proc argument takes a source pathname and compiled module for each module to be included in the executable. It returns a list of quoted module paths (absolute, as opposed to relative to the module) for extra modules to be included in the executable in addition to the modules that the source module requires. For example, these modules might correspond to reader extensions needed to parse a module that will be included as source, as long as the reader is referenced through an absolute module path. Each path given to extras-proc corresponds to the actual file name (e.g., ".ss"/".rkt" conversions have been applied as needed to refer to the existing file).

```
(make-embedding-executable dest
                            mred?
                            verbose?
                            mod-list
                            literal-files
                            literal-sexp
                            cmdline
                            aux
                            launcher?
                            variant
                            collects-path) \rightarrow void?
 dest : path-string?
 mred? : any/c
 verbose? : any/c
             (listof (or/c (list/c (or/c symbol? (one-of/c #t #f))
                                    (or/c module-path? path?))
 mod-list :
                            (list/c (or/c symbol? (one-of/c #t #f))
                                    (or/c module-path? path?)
                                    (listof symbol?))))
 literal-files : (listof path-string?)
 literal-sexp : any/c
 cmdline : (listof string?)
 aux : (listof (cons/c symbol? any/c)) = null
 launcher? : any/c = #f
 variant : (one-of/c 'cgc '3m) = (system-type 'gc)
                  (or/c #f
 collects-path :
                        path-string?
                                                = #f
                        (listof path-string?))
```

Old (keywordless) interface to create-embedding-executable.

Like make-embedding-executable, but the module bundle is written to the current output port instead of being embedded into an executable. The output of this function can be read to load and instantiate mod-list and its dependencies, adjust the module name resolver to find the newly loaded modules, evaluate the forms included from literal-files, and finally evaluate literal-sexpr. The read-accept-compiled parameter must be true to read the stream.

```
(embedding-executable-is-directory? mred?) \rightarrow boolean mred?: any/c
```

Indicates whether Racket/GRacket executables for the current platform correspond to directories from the user's perspective. The result is currently #f for all platforms.

```
(embedding-executable-is-actually-directory? mred?) \rightarrow boolean? mred?: any/c
```

Indicates whether Racket/GRacket executables for the current platform actually correspond to directories. The result is #t on Mac OS X when mred? is #t, #f otherwise.

```
(embedding-executable-put-file-extension+style+filters mred?)
    (or/c string? false/c)
    → (listof (one-of/c 'packages 'enter-packages))
    (listof (list/c string? string?))
    mred? : any/c
```

Returns three values suitable for use as the extension, style, and filters arguments to put-file, respectively.

If Racket/GRacket launchers for the current platform were directories form the user's perspective, the style result is suitable for use with get-directory, and the extension result may be a string indicating a required extension for the directory name.

Adds a suitable executable suffix, if it's not present already.

2.1.1 Executable Creation Signature

```
(require compiler/embed-sig) package: compiler-lib
compiler:embed^ : signature
```

Includes the identifiers provided by compiler/embed.

2.1.2 Executable Creation Unit

```
(require compiler/embed-unit) package: compiler-lib
compiler:embed@ : unit?
```

A unit that imports nothing and exports compiler: embed^.

2.1.3 Finding the Racket Executable

```
(require compiler/find-exe) package: base

(find-exe [gracket? variant]) → path?
  gracket?: any/c = #f
  variant : (or/c 'cgc '3m) = (system-type 'gc)
```

Finds the path to the racket or gracket (when gracket? is true) executable.

2.2 Installation-Specific Launchers

A *launcher* is similar to a stand-alone executable, but a launcher is usually smaller and can be created more quickly, because it depends permanently on the local Racket installation and the program's sources. In the case of Unix, a launcher is simply a shell script that

runs racket or gracket. Launchers *cannot* be packaged into a distribution using raco distribute. The raco exe command creates a launcher when the -1 or --launcher flag is specified.

```
(require launcher/launcher) package: base
```

The launcher/launcher library provides functions for creating launchers.

2.2.1 Creating Launchers

```
(make-gracket-launcher args dest [aux]) → void?
  args : (listof string?)
  dest : path-string?
  aux : (listof (cons/c symbol? any/c)) = null
```

Creates the launcher dest, which starts GRacket with the command-line arguments specified as strings in args. Extra arguments passed to the launcher at run-time are appended (modulo special Unix/X flag handling, as described below) to this list and passed on to GRacket. If dest exists already, as either a file or directory, it is replaced.

The optional aux argument is an association list for platform-specific options (i.e., it is a list of pairs where the first element of the pair is a key symbol and the second element is the value for that key). See also build-aux-from-path. See create-embedding-executable for a list that applies to both stand-alone executables and launchers on Windows and Mac OS X GRacket; the following additional associations apply to launchers:

- 'independent? (Windows) a boolean; #t creates an old-style launcher that work with any Racket or GRacket binary, like setup-plt.exe. No other aux associations are used for an old-style launcher.
- 'exe-name (Mac OS X, 'script-3m or 'script-cgc variant) provides the base name for a '3m-/'cgc-variant launcher, which the script will call ignoring args. If this name is not provided, the script will go through the GRacket executable as usual.
- 'exe-is-gracket (when 'exe-name is used) indicates that 'exe-name refers to the GRacket executable, which is potentially in a "lib" subdirectory instead of with other GUI applications.
- 'relative? (all platforms) a boolean, where #t means that the generated launcher should find the base GRacket executable through a relative path.
- 'install-mode (Windows, Unix) either 'user or 'main, indicates that the launcher is being installed to a user-specific place or to an installation-wide place, which in turn determines where to record 'start-menu, 'extension-registry, and/or 'desktop information.

- 'start-menu (Windows) a boolean or real number; #t indicates that the launcher should be in the Start menu by an installer that includes the launcher. A number value is treated like #t, but also requests that the installer automatically start the application, where the number determines a precedence relative to other launchers that may request starting. A 'start-menu value is used only when 'install-mode is also specified.
- 'extension-register (Windows) a list of document types for file-extension registrations to be performed by an installer. Each document type is described by a list of six items:
 - a human-readable string describing the document type, such as "Racket Document";
 - a string to use as a key for the document type, such as "Racket. Document";
 - a list of strings, where each string is a file extension without the dot, such as'("rkt" "rktl" "rktd"):
 - a path to a file that supplies the icon, such as "doc.ico";
 - a string to represent the command line to handle a document with a matching extension, such as "\"%1\"", where the string will be prefixed with a path to the launcher, and where %1 will be replaced with the document path

An 'extension-registry value is used only when 'install-mode is also specified.

- 'desktop (Unix) a string containing the content of a ".desktop" file for the launcher, where Exec and Icon entries are added automatically. If an Exec entry exists in the string, and if its value starts with a non-empty sequence of alpha-numeric ASCII characters followed by a space, then the space and remainder of the value is appended to the automatically generated value. The ".desktop" file is written to the directory produced by (find-apps-dir) or (find-user-apps-dir). A 'desktop value is used only when 'install-mode is also specified.
- 'png (Unix): An icon file path (suffix ".png") to be referenced by a ".desktop" file (if any); a 'png value takes precedence over a 'ico value, but neither is used unless a 'desktop value is also present.
- 'ico (Unix, in addition to more general Windows use): An icon file path (suffix ".ico") that is used in the same way as 'png if no 'png value is available.

For Unix/X, the script created by make-mred-launcher detects and handles X Windows flags specially when they appear as the initial arguments to the script. Instead of appending these arguments to the end of args, they are spliced in after any X Windows flags already listed in args. The remaining arguments (i.e., all script flags and arguments after the last X Windows flag or argument) are then appended after the spliced args.

```
(make-racket-launcher args dest [aux]) → void?
  args : (listof string?)
  dest : path-string?
  aux : (listof (cons/c symbol? any/c)) = null
```

Like make-gracket-launcher, but for starting Racket. On Mac OS X, the 'exe-name aux association is ignored.

Calls make-gracket-launcher with arguments that start the GRacket program implemented by file in collection: (list "-l-" (string-append collection "/" file)). The aux argument to make-gracket-launcher is generated by stripping the suffix (if any) from file, adding it to the path of collection, and passing the result to build-aux-from-path.

Like make-gracket-program-launcher, but for make-racket-launcher.

Same as

collection : string?

name : string?

Same as

```
(make-racket-program-launcher
 file collection
 (racket-program-launcher-path name))
(make-mred-launcher args dest [aux]) \rightarrow void?
 args : (listof string?)
 dest : path-string?
 aux : (listof (cons/c symbol? any/c)) = null
(make-mred-program-launcher file
                             collection
                             dest) \rightarrow void?
 file : string?
 collection : string?
 dest : path-string?
(install-mred-program-launcher file
                                collection
                                name) \rightarrow void?
 file : string?
 collection : string?
 name : string?
```

Backward-compatible version of make-gracket-launcher, etc., that adds "-I" "scheme/gui/init" to the start of the command-line arguments.

```
(make-mzscheme-launcher args dest [aux]) → void?
 args : (listof string?)
 dest : path-string?
 aux : (listof (cons/c symbol? any/c)) = null
(make-mzscheme-program-launcher file
                                collection
                                 dest) \rightarrow void?
 file : string?
 collection : string?
 dest : path-string?
(install-mzscheme-program-launcher file
                                   collection
                                   name) \rightarrow void?
 file : string?
 collection : string?
 name : string?
```

Backward-compatible version of make-racket-launcher, etc., that adds "-I" "scheme/init" to the start of the command-line arguments.

2.2.2 Launcher Path and Platform Conventions

Returns a pathname for an executable called something like name in the Racket installation (if user? is #f) or the user's Racket executable directory (if user? is #t). For Windows, the ".exe" suffix is automatically appended to name. For Unix, name is changed to lowercase, whitespace is changed to =, and the path includes the "bin" subdirectory of the Racket installation. For Mac OS X, the ".app" suffix is appended to name.

Returns the same path as (gracket-program-launcher-path name #:user? user?) for Unix and Windows. For Mac OS X, the result is the same as for Unix.

```
(gracket-launcher-is-directory?) \rightarrow boolean?
```

Returns #t if GRacket launchers for the current platform are directories from the user's perspective. For all currently supported platforms, the result is #f.

```
(racket-launcher-is-directory?) \rightarrow boolean?
```

Like gracket-launcher-is-directory?, but for Racket launchers.

```
| (gracket-launcher-is-actually-directory?) \rightarrow boolean?
```

Returns #t if GRacket launchers for the current platform are implemented as directories from the filesystem's perspective. The result is #t for Mac OS X, #f for all other platforms.

```
(racket-launcher-is-actually-directory?) \rightarrow boolean?
```

Like gracket-launcher-is-actuall-directory?, but for Racket launchers. The result is #f for all platforms.

```
(gracket-launcher-add-suffix path-string?) \rightarrow path?
path-string?: path
```

Returns a path with a suitable executable suffix added, if it's not present already.

```
(racket-launcher-add-suffix path-string?) → path?
path-string? : path
```

Like gracket-launcher-add-suffix, but for Racket launchers.

```
(gracket-launcher-put-file-extension+style+filters)
     (or/c string? false/c)
     → (listof (one-of/c 'packages 'enter-packages))
     (listof (list/c string? string?))
```

Returns three values suitable for use as the extension, style, and filters arguments to put-file, respectively.

If GRacket launchers for the current platform were directories form the user's perspective, the style result is suitable for use with get-directory, and the extension result may be a string indicating a required extension for the directory name.

```
(racket-launcher-put-file-extension+style+filters)
    (or/c string? false/c)
    → (listof (one-of/c 'packages 'enter-packages))
    (listof (list/c string? string?))
```

 $Like \ \ gracket\mbox{-launcher-get-file-extension+style+filters}, \ \ but \ \ for \ \ Racket \ \ launchers.$

Backward-compatible aliases for gracket-program-launcher-path, etc.

```
(mzscheme-launcher-is-actually-directory?) → boolean?
(mzscheme-launcher-add-suffix path-string?) → path?
  path-string?: path
(mzscheme-launcher-put-file-extension+style+filters)
        (or/c string? false/c)
  → (listof (one-of/c 'packages 'enter-packages))
        (listof (list/c string? string?))
```

Backward-compatible aliases for racket-program-launcher-path, etc.

Returns a path for a ".desktop" file to describe the installed executable at exec-path. Only the filename part of exec-path is used. The user? argument should be true if exec-path is installed in a user-specific location (in which case the result path will also be user-specific).

Returns a path for an icon file to be referenced by the "desktop" file at desktop-path. Only the filename part of desktop-path is used. The user? argument should be true if desktop-path is installed in a user-specific location (in which case the result path will also be user-specific). The suffix argument provides the icon-file suffix, normally either #"png" or #"ico".

2.2.3 Launcher Configuration

```
(gracket-launcher-up-to-date? dest aux) → boolean?
  dest : path-string?
  aux : (listof (cons/c symbol? any/c))
```

Returns #t if the GRacket launcher dest does not need to be updated, assuming that dest is a launcher and its arguments have not changed.

```
(racket-launcher-up-to-date? dest aux) → boolean?
  dest : path-string?
  aux : (listof (cons/c symbol? any/c))
```

Analogous to gracket-launcher-up-to-date?, but for a Racket launcher.

```
(build-aux-from-path path) \rightarrow (listof (cons/c symbol? any/c)) path : path-string?
```

Creates an association list suitable for use with make-gracket-launcher or create-embedding-executable. It builds associations by adding to path suffixes, such as ".icns", checking whether such a file exists, and calling extract-aux-from-path if so. The results from all recognized suffixes are appended together.

```
(extract-aux-from-path path) \rightarrow (listof (cons/c symbol? any/c)) path : path-string?
```

Creates an association list suitable for use with make-gracket-launcher or create-embedding-executable. It builds associations by recognizing the suffix of path, where the recognized suffixes are as follows:

- ".icns" \rightarrow 'icns file for use on Mac OS X
- ".ico" \rightarrow 'ico file for use on Windows or Unix
- ".png" \rightarrow 'png file for use on Unix
- ".lch" → 'independent? as #t (the file content is ignored) for use on Windows
- ".creator" \rightarrow 'creator as the initial four characters in the file for use on Mac OS X
- ".filetypes" \rightarrow 'file-types as read content (a single S-expression), and 'resource-files as a list constructed by finding "CFBundleTypeIconFile" entries in 'file-types (and filtering duplicates); for use on Mac OS X
- ".utiexports" \to 'uti-exports as read content (a single S-expression); for use on Mac OS X
- ".wmclass" → 'wm-class as the literal content, removing a trailing newline if any; for use on Unix
- ".desktop" \rightarrow 'desktop as the literal content; for use on Unix
- ".startmenu" \rightarrow 'start-menu as the file content if it reads as a real number, #t otherwise, for use on Windows

 ".extreg" → 'extension-register as read content (a single S-expression), but with relative (to the ".extreg" file) paths converted absolute; for use on Windows

```
(current-launcher-variant) → symbol?
(current-launcher-variant variant) → void?
variant : symbol?
```

A parameter that indicates a variant of Racket or GRacket to use for launcher creation and for generating launcher names. The default is the result of (system-type 'gc). On Unix and Windows, the possibilities are 'cgc and '3m. On Mac OS X, the 'script-3m and 'script-cgc variants are also available for GRacket launchers.

```
lacktriangle (available-gracket-variants) 
ightarrow (listof symbol?)
```

Returns a list of symbols corresponding to available variants of GRacket in the current Racket installation. The list normally includes at least one of '3m or 'cgc— whichever is the result of (system-type 'gc)—and may include the other, as well as 'script-3m and/or 'script-cgc on Mac OS X.

```
(available-racket-variants) \rightarrow (listof symbol?)
```

Returns a list of symbols corresponding to available variants of Racket in the current Racket installation. The list normally includes at least one of '3m or 'cgc—whichever is the result of (system-type 'gc)—and may include the other.

```
(mred-launcher-up-to-date? dest aux) → boolean?
  dest : path-string?
  aux : (listof (cons/c symbol? any/c))
(mzscheme-launcher-up-to-date? dest aux) → boolean?
  dest : path-string?
  aux : (listof (cons/c symbol? any/c))
(available-mred-variants) → (listof symbol?)
(available-mzscheme-variants) → (listof symbol?)
```

Backward-compatible aliases for gracket-launcher-up-to-date?, etc.

2.2.4 Launcher Creation Signature

```
(require launcher/launcher-sig) package: compiler-lib
launcher^ : signature
```

Includes the identifiers provided by launcher/launcher.

2.2.5 Launcher Creation Unit

```
(require launcher/launcher-unit) package: compiler-lib
launcher@ : unit?
```

A unit that imports nothing and exports launcher^.

3 raco distribute: Sharing Stand-Alone Executables

The raco distribute command combines a stand-alone executable created by raco exe with all of the shared libraries that are needed to run it, along with any run-time files declared via define-runtime-path. The resulting package can be moved to other machines that run the same operating system.

After the raco distribute command, supply a directory to contain the combined files for a distribution. Each command-line argument is an executable to include in the distribution, so multiple executables can be packaged together. For example, on Windows,

raco distribute greetings hello.exe goodbye.exe

creates a directory "greetings" (if the directory doesn't exist already), and it copies the executables "hello.exe" and "goodbye.exe" into "greetings". It also creates a "lib" sub-directory in "greetings" to contain DLLs, and it adjusts the copied "hello.exe" and "goodbye.exe" to use the DLLs in "lib".

The layout of files within a distribution directory is platform-specific:

- On Windows, executables are put directly into the distribution directory, and DLLs and other run-time files go into a "lib" sub-directory.
- On Mac OS X, GUI executables go into the distribution directory, other executables go into a "bin" subdirectory, and frameworks (i.e., shared libraries) go into a "lib" sub-directory along with other run-time files. As a special case, if the distribution has a single --gui-exe executable, then the "lib" directory is hidden inside the application bundle.
- On Unix, executables go into a "bin" subdirectory, shared libraries (if any) go into a "lib" subdirectory along with other run-time files, and wrapped executables are placed into a "lib/plt" subdirectory with version-specific names. This layout is consistent with Unix installation conventions; the version-specific names for shared libraries and wrapped executables means that distributions can be safely unpacked into a standard place on target machines without colliding with an existing Racket installation or other executables created by raco exe.

A distribution also has a "collects" directory that is used as the main library collection directory for the packaged executables. By default, the directory is empty. Use the ++collects-copy flag of raco distribute to supply a directory whose content is copied into the distribution's "collects" directory. The ++collects-copy flag can be used multiple times to supply multiple directories.

When multiple executables are distributed together, then separately creating the executables with raco exe can generate multiple copies of collection-based libraries that are used by multiple executables. To share the library code, instead, specify a target directory for library

copies using the --collects-dest flag with raco exe, and specify the same directory for each executable (so that the set of libraries used by all executables are pooled together). Finally, when packaging the distribution with raco distribute, use the ++collects-copy flag to include the copied libraries in the distribution.

3.1 API for Distributing Executables

```
(require compiler/distribute) package: base
```

The compiler/distribute library provides a function to perform the same work as raco distribute.

Copies the executables in exec-files to the directory dest-dir, along with DLLs, frameworks, and/or shared libraries that the executables need to run a different machine.

The arrangement of the executables and support files in dest-dir depends on the platform. In general assemble-distribution tries to do the Right Thing.

If a #:collects-path argument is given, it overrides the default location of the main "collects" directory for the packaged executables. It should be relative to the dest-dir directory (typically inside it).

The content of each directory in the #:copy-collects argument is copied into the main "collects" directory for the packaged executables.

3.2 API for Bundling Distributions

```
(require compiler/bundle-dist)
package: compiler-lib
```

The compiler/bundle-dist library provides a function to pack a directory (usually assembled by assemble-distribution) into a distribution file. On Windows, the result is a ".zip" archive; on Mac OS X, it's a ".dmg" disk image; on Unix, it's a ".tgz" archive.

```
(bundle-directory dist-file dir [for-exe?]) \rightarrow void? dist-file : file-path?
```

```
dir : file-path?
for-exe? : any/c = #f
```

Packages *dir* into *dist-file*. If *dist-file* has no extension, a file extension is added automatcially (using the first result of bundle-put-file-extension+style+filters).

The created archive contains a directory with the same name as dir—except on Mac OS X when for-exe? is true and dir contains a single a single file or directory, in which case the created disk image contains just the file or directory. The default for for-exe? is #f.

Archive creation fails if dist-file exists.

```
(bundle-put-file-extension+style+filters)
      (or/c string? false/c)
      → (listof (one-of/c 'packages 'enter-packages))
      (listof (list/c string? string?))
```

Returns three values suitable for use as the extension, style, and filters arguments to put-file, respectively to select a distribution-file name.

4 raco planet: Automatic Package Distribution

See *PLaneT: Automatic Package Distribution* for information on the raco planet command, which is used for managing packages that can be automatically downloaded and installed from the PLaneT server.

5 raco pkg: Package Management

See *Package Management in Racket* for information on the raco pkg command, which is used for managing external code packages.

6 raco setup: Installation Management

The raco setup command builds bytecode, documentation, executables, and metadata indexes for all installed collections.

The collections that are built by raco setup can be part of the original Racket distribution, installed via the package manager (see *Package Management in Racket*), installed via PLaneT (see *PLaneT: Automatic Package Distribution*), linked via raco link, in a directory that is listed in the PLTCOLLECTS environment variable, or placed into one of the default collection directories.

The raco setup tool itself does not directly support the installation of collections, except through the now-discouraged -A flag (see §6.2 "Installing ".plt" Archives"). The raco setup command is used by installation tools such as the package manager or PLaneT. Programmers who modify installed collections may find it useful to run raco setup as an alternative to un-installing and re-installing a set of collections.

6.1 Running raco setup

With no command-line arguments, raco setup finds all of the current collections—see §18.2 "Libraries and Collections"—and compiles libraries in each collection. (Directories that are named ".git" or ".svn" are not treated as collections.)

To restrict raco setup to a set of collections, provide the collection names as arguments. For example, raco setup scribblings/raco would only compile and render the documentation for raco, which is implemented in a "scribblings/raco" collection.

An optional "info.rkt" within the collection can indicate specifically how the collection's files are to be compiled and other actions to take in setting up a collection, such as creating executables or building documentation. See §6.3 "Controlling raco setup with "info.rkt" Files" for more information.

The raco setup command accepts the following command-line flags:

- --jobs $\langle n \rangle$, --workers $\langle n \rangle$, or -j $\langle n \rangle$ use up to $\langle n \rangle$ parallel processes. By default, raco setup uses (processor-count) jobs, which typically uses all of the machine's processing cores.
- --only restrict setup to specified collections and PLaneT packages, even if none
 are specified. This mode is the default if any collection is specified as a command-line
 argument, through the -1 flag, or through the -P flag.
- -P \(\langle owner \rangle \) \(\langle package-name \rangle \) \(\langle min \rangle \) constrain setup actions to the specified PLaneT package, in addition to any other specified PLaneT packages or \(\langle collections \rangle \).

- --tidy remove metadata cache information and documentation for non-existent collections (to clean up after removal) even when setup actions are otherwise confined to specified collections.
- --doc-index builds collections that implement documentation indexes (when documentation building is enabled), in addition to specified collections.
- --clean or -c delete existing ".zo" files, thus ensuring a clean build from the source files. The exact set of deleted files can be controlled by "info.rkt"; see clean for more information.
- --no-zo or -n refrain from compiling source files to ".zo" files.
- --trust-zos fix timestamps on ".zo" files on the assumption that they are already up-to-date.
- --no-launcher or -x refrain from creating executables or installing man pages (as specified in "info.rkt"; see §6.3 "Controlling raco setup with "info.rkt" Files".
- --no-foreign-libs refrain from installing foreign libraries (as specified in "info.rkt"; see §6.3 "Controlling raco setup with "info.rkt" Files").
- --no-install or -i refrain from running pre-install actions (as specified in "info.rkt" files; see §6.3 "Controlling raco setup with "info.rkt" Files").
- --no-post-install or -I refrain from running post-install actions (as specified in "info.rkt" files; see §6.3 "Controlling raco setup with "info.rkt" Files").
- --no-info-domain or -d refrain from building a cache of metadata information from "info.rkt" files. This cache is needed by other tools. For example, raco itself uses the cache to locate plug-in tools.
- --no-docs or -D refrain from building documentation.
- --doc-pdf $\langle dir \rangle$ in addition to building HTML documentation, render documentation to PDF and place files in $\langle dir \rangle$.
- --no-user or -U refrain from any user-specific (as opposed to installation-specific) setup actions.
- --no-planet refrain from any setup actions for PLaneT actions; this flags is implied by --no-user.
- --avoid-main refrain from any setup actions that affect the installation, as opposed to user-specific actions.
- --no-pkg-deps or -K refrain from checking whether dependencies among libraries are properly reflected by package-level dependency declarations. The check uses compiled bytecode and associated ".dep" files, and it checks only files are setup against only packages that include files that are setup.

- --fix-pkg-deps attempt to correct dependency mismatches by adjusting package "info.rkt" files (which makes sense only for packages that are installed as links).
- --unused-pkg-deps attempt to report dependencies that are declared but are unused. Beware that some package dependencies may be intentionally unused (e.g., declared to force installation of other packages as a convenience), and beware that package dependencies may be reported as unused only because compilation of relevant modules has been suppressed.
- --mode $\langle mode \rangle$ use a ".zo" compiler other than the default compiler, and put the resulting ".zo" files in a subdirectory (of the usual place) named by $\langle mode \rangle$. The compiler is obtained by using $\langle mode \rangle$ as a collection name, finding a "zo-compile.rkt" module in that collection, and extracting its zo-compile export. The zo-compile export should be a function like compile; see the "errortrace" collection for an example.
- --verbose or -v more verbose output about raco setup actions.
- --make-verbose or -m more verbose output about dependency checks.
- --compiler-verbose or -r even more verbose output about dependency checks and compilation.
- --pause or -p pause for user input if any errors are reported (so that a user has time to inspect output that might otherwise disappear when the raco setup process ends).
- -1 $\langle collection \rangle$... constrain setup actions to the specified $\langle collection \rangle$ s (i.e., the same as providing $\langle collections \rangle$ s without a flag, but with no possibility that a $\langle collection \rangle$ is interpreted as a flag.
- -A \(\archive\) \(\ldots\) Install each \(\archive\); see \(\frac{6}{2}\) "Installing ".plt" Archives".
- --force for use with -A, treat version mismatches for archives as mere warnings.
- --all-users or -a for use with -A, install archive into the installation instead of a user-specific location.

When building racket, flags can be provided to raco setup as run by make install by setting the PLT_SETUP_OPTIONS environment variable. For example, the following command line uses a single process to build collections during an install:

```
env PLT_SETUP_OPTIONS="-j 1" make install
```

6.2 Installing ".plt" Archives

A ".plt" file is a platform-independent distribution archive for software based on Racket. A typical ".plt" file can be installed as a package using raco pkg (see *Package Manage*-

ment in Racket), in which case raco pkg supplies facilities for uninstalling the package and managing dependencies.

An older approach is to supply a ".plt" file to raco setup with the -A flag, the files contained in the ".plt" archive are unpacked (according to specifications embedded in the ".plt" file) and only collections specified by the ".plt" file are compiled and setup. Archives processed in this way can include arbitrary code that is executed at install time, in addition to any actions triggered by the normal collection-setup part of raco setup.

Finally, the raco unpack (see §11 "raco unpack: Unpacking Library Collections") command can list the content of a ".plt" archive or unpack the archive without installing it as a package or collection.

6.3 Controlling raco setup with "info.rkt" Files

To compile a collection's files to bytecode, raco setup uses the compile-collection-zos procedure. That procedure, in turn, consults the collection's "info.rkt" file, if it exists, for specific instructions on compiling the collection. See compile-collection-zos for more information on the fields of "info.rkt" that it uses, and see §6.4 ""info.rkt" File Format" for information on the format of an "info.rkt" file.

Optional "info.rkt" fields trigger additional actions by raco setup:

• scribblings: (listof (cons/c string? list?)) — A list of documents to build. Each document in the list is itself represented as a list, where each document's list starts with a string that is a collection-relative path to the document's source file. A directory for pre-rendered documentation is computed from the source file name by starting with the directory of the "info.rkt" file, adding "doc", and then using the source file's name without a suffix; if such a directory exists and does not have a "synced.rktd" file, then it is treated as pre-rendered documentation and moved into place, in which case the documentation source file need not be present. (Moving documentation into place may require no movement at all, depending on the way that the enclosing collection is installed, but movement includes adding a "synced.rktd" file to represent the installation.)

More precisely a scribblings entry must be a value that can be generated from an expression matching the following entry grammar:

A document's list optionally continues with information on how to build the document. If a document's list contains a second item, <code>flags</code>, it must be a list of mode symbols (described below). If a document's list contains a third item, <code>category</code>, it must be a list that categorizes the document (described further below). If a document's list contains a fourth item, <code>name</code>, it is a name to use for the generated documentation, instead of defaulting to the source file's name (sans extension), where <code>#f</code> means to use the default. If a document's list contains a fifth item, <code>out-k</code>, it is used a hint for the number of files to use for the document's cross-reference information; see below. If a document's list contains a fourth item, <code>order-n</code>, it is used a hint for the order of rendering; see below.

Each mode symbol in flags can be one of the following, where only 'multi-page is commonly used:

- 'multi-page : Generates multi-page HTML output, instead of the default single-page format.
- 'main-doc: Indicates that the generated documentation should be written into the main installation directory, instead of to a user-specific directory. This mode is the default for a collection that is itself located in the main installation.
- 'user-doc: Indicates that the generated documentation should be written a
 user-specific directory. This mode is the default for a collection that is not itself
 located in the main installation.
- 'depends-all: Indicates that the document should be re-built if any other document is rebuilt—except for documents that have the 'no-depend-on mode.
- 'depends-all-main: Indicates that the document should be re-built if any
 other document is rebuilt that is installed into the main installation—except for
 documents that have the 'no-depend-on mode.
- 'depends-all-user: Indicates that the document should be re-built if any other document is rebuilt that is installed into the user's space—except for documents that have the 'no-depend-on mode.
- 'always-run: Build the document every time that raco setup is run, even if none of its dependencies change.
- 'no-depend-on: Removes the document for consideration for other dependencies. Furthermore, references from the document to other documents are always direct, instead of potentially indirect (i.e., resolved at document-viewing time and potentially redirected to a remote site).

- 'main-doc-root: Designates the root document for the main installation. The
 document that currently has this mode should be the only one with the mode.
- 'user-doc-root: Designates the root document for the user-specific documentation directory. The document that currently has this mode should be the only one with the mode.

The *category* list specifies how to show the document in the root table of contents. The list must start with a symbol, usually one of the following categories, which are ordered as below in the root documentation page:

- 'getting-started: High-level, introductory documentation.
- 'language: Documentation for a prominent programming language.
- 'tool: Documentation for an executable.
- 'gui-library: Documentation for GUI and graphics libraries.
- 'net-library: Documentation for networking libraries.
- 'parsing-library: Documentation for parsing libraries.
- 'tool-library: Documentation for programming-tool libraries (i.e., not important enough for the more prominent 'tool category).
- 'interop: Documentation for interoperability tools and libraries.
- 'library: Documentation for libraries; this category is the default and used for unrecognized category symbols.
- 'legacy: Documentation for deprecated libraries, languages, and tools.
- 'experimental: Documentation for an experimental language or library.
- 'other: Other documentation.
- 'omit: Documentation that should not be listed on the root page.

If the category list has a second element, it must be a real number that designates the manual's sorting position with the category; manuals with the same sorting position are ordered alphabetically. For a pair of manuals with sorting numbers n and m, the groups for the manuals are separated by space if (truncate (/ n 10)) and (truncate (/ m 10)) are different.

The out-k specification is a hint on whether to break the document's cross-reference information into multiple parts, which can reduce the time and memory use for resolving a cross-reference into the document. It must be a positive, exact integer, and the default is 1.

The order-n specification is a hint for ordering document builds, since documentation references can be mutually recursive. The order hint can be any real number. A value of -10 or less disables running the document in parallel to other documents. The main Racket reference is given a value of -11, the search page is given a value of 10, and the default is 0.

• release-note-files : (listof (cons/c string? (cons/c string? list?))) — A list of release-notes text files to link from the main documentation pages. Each note is itself represented as a list, and the list can specify auxiliary notes that are grouped with the main note.

A release-note-files entry must be a value that can be generated from an expression matching the following entry grammar:

The order-integer is used to order notes and defaults to 0.

• racket-launcher-names: (listof string?) — A list of executable names to be generated in the installation's executable directory to run Racket-based programs implemented by the collection. A parallel list of library names must be provided by racket-launcher-libraries or racket-launcher-flags.

For each name, a launching executable is set up using make-racket-launcher. The arguments are -1- and $\langle colls \rangle / \dots / \langle file \rangle$, where $\langle file \rangle$ is the file named by racket-launcher-libraries and $\langle colls \rangle / \dots$ are the collections (and subcollections) of the "info.rkt" file.

In addition,

```
(build-aux-from-path (build-path (collection-path \langle colls \rangle \dots \rangle \langle suffixless-file \rangle))
```

is provided for the optional aux argument (for icons, etc.) to make-racket-launcher, where $\langle suffixless-file \rangle$ is $\langle file \rangle$ without its suffix.

If racket-launcher-flags is provided, it is used as a list of command-line arguments passed to racket instead of the above default, allowing arbitrary command-line arguments. If racket-launcher-flags is specified together with racket-launcher-libraries, then the flags will override the libraries, but the libraries can still be used to specify a name for build-aux-from-path (to find related information like icon files etc).

- racket-launcher-libraries : (listof path-string?) A list of library names in parallel to racket-launcher-names.
- racket-launcher-flags: (listof string?) A list of command-line flag lists, in parallel to racket-launcher-names.
- mzscheme-launcher-names, mzscheme-launcher-libraries, and mzschemelauncher-flags — Backward-compatible variant of racket-launcher-names, etc.

- gracket-launcher-names: (listof string?) Like racket-launcher-names, but for GRacket-based executables. The launcher-name list is treated in parallel to gracket-launcher-libraries and gracket-launcher-flags.
- gracket-launcher-libraries: (listof path-string?) A list of library names in parallel to gracket-launcher-names.
- gracket-launcher-flags: (listof string?) A list of command-line flag lists, in parallel to gracket-launcher-names.
- mred-launcher-names, mred-launcher-libraries, and mred-launcher-flags Backward-compatible variant of gracket-launcher-names, etc.
- copy-foreign-libs: (listof (and/c path-string? relative-path?)) Files to copy into a directory where foreign libraries are found by ffi-lib. If install-platform is defined, then the files are copied only if the current platform matches the definition.
- move-foreign-libs: (listof (and/c path-string? relative-path?)) Like copy-foreign-libs, but the original file is removed after it is copied (which makes sense for precompiled packages).
- copy-shared-files: (listof (and/c path-string? relative-path?)) Files to copy into a directory where shared files are found. If install-platform is defined, then the files are copied only if the current platform matches the definition.
- move-shared-files: (listof (and/c path-string? relative-path?)) Like copy-shared-files, but the original file is removed after it is copied (which makes sense for precompiled packages).
- copy-man-pages : (listof (and/c path-string? relative-path? filename-extension)) Files to copy into a man directory. The file suffix determines its category; for example, 1 should be used for a man page describing an executable.
- move-man-pages : (listof (and/c path-string? relative-path? filename-extension)) Like copy-man-pages, but the original file is removed after it is copied (which makes sense for precompiled packages).
- install-platform : (or/c regexp? string? symbol?) Determines whether files are copied or moved for copy-foreign-libs, move-foreign-libs, copy-shared-files, or move-shared-files. If install-platform is defined as a regexp, then files are copied/moved only if the regexp matches the result of (system-library-subpath #f). If install-platform is defined as a string, then files are copied/moved only if the (path->string (system-library-subpath #f)) produces the same string. If install-platform is defined as a symbol, then files are copied/moved only if the (system-type) produces the same symbol.

- install-collection: path-string? A library module relative to the collection that provides installer. The installer procedure accepts one to three arguments. The first argument is a directory path to the parent of the Racket installation's "collects" directory; the second argument, if accepted, is a path to the collection's own directory; the third argument, if accepted, is a boolean indicating whether the collection is installed as user-specific (#f) or installation-wide (#f). The procedure should perform collection-specific installation work, and it should avoid unnecessary work in the case that it is called multiple times for the same installation.
- pre-install-collection: path-string? Like install-collection, except that the corresponding installer is called *before* the normal ".zo" build, instead of after. The provided procedure should be named pre-installer in this case, so it can be provided by the same file that provides an installer.
- post-install-collection: path-string? Like install-collection. It is called right after the install-collection procedure is executed. The only difference between these is that the --no-install flag can be used to disable the previous two installers, but not this one. It is therefore expected to perform operations that are always needed, even after an installation that contains pre-compiled files. The provided procedure should be named post-installer in this case, so it can be provided by the same file that provides the previous two.
- assume-virtual-sources: any/c A true value indicates that bytecode files without a corresponding source file should not be removed from "compiled" directories, and no files should not be removed when the --clean or -c flag is passed to raco setup.
- clean: (listof path-string?) A list of pathnames to be deleted when the --clean or -c flag is passed to raco setup. The pathnames must be relative to the collection. If any path names a directory, each of the files in the directory are deleted, but none of the subdirectories of the directory are checked. If the path names a file, the file is deleted. The default, if this flag is not specified, is to delete all files in the "compiled" subdirectory, and all of the files in the platform-specific subdirectory of the compiled directory for the current platform.

Just as compiling ".zo" files will compile each module used by a compiled module, deleting a module's compiled image will delete the ".zo" of each module that is used by the module. More specifically, used modules are determined when deleting a ".dep" file, which would have been created to accompany a ".zo" file when the ".zo" was built by raco setup. If the ".dep" file indicates another module, that module's ".zo" is deleted only if it also has an accompanying ".dep" file. In that case, the ".dep" file is deleted, and additional used modules are deleted based on the used module's ".dep" file, etc. Supplying a specific list of collections to raco setup disables this dependency-based deletion of compiled files.

6.4 "info.rkt" File Format

```
#lang info package: base
#lang setup/infotab
```

In each collection, a special module file "info.rkt" provides general information about a collection for use by various tools. For example, an "info.rkt" file specifies how to build the documentation for a collection, and it lists plug-in tools for DrRacket or commands for raco that the collection provides.

Although an "info.rkt" file contains a module declaration, the declaration has a highly constrained form. It must match the following grammar of info-module:

```
info-module = (module info info-mod-path
                   decl
                   ...)
 info-mod-path = info
               | setup/infotab
                (lib "info/main.rkt")
                 (lib "setup/infotab.ss")
                 (lib "setup/infotab.rkt")
                 (lib "main.rkt" "info")
                 (lib "infotab.rkt" "setup")
               (lib "infotab.ss" "setup")
          decl = (define id info-expr)
     info-expr = (quote datum)
                (quasiquote datum)
                 (info-primitive info-expr ...)
                 string
                 number
                 boolean
info-primitive = cons
                 car
                 cdr
                 list
                 list*
                 reverse
                 append
                 string-append
                 make-immutable-hash
                 hash
```

```
hash-set
hash-set*
hash-remove
hash-clear
hash-update
path->string
build-path
collection-path
system-library-subpath
```

For example, the following declaration could be the "info.rkt" library of the "games" collection. It contains definitions for three info tags, name, gracket-launcher-libraries, and gracket-launcher-names.

```
#lang info
(define name "Games")
(define gracket-launcher-libraries '("main.rkt"))
(define gracket-launcher-names '("PLT Games"))
```

As illustrated in this example, an "info.rkt" file can use #lang notation, but only with the info (or setup/infotab) language.

See also get-info from setup/getinfo.

6.5 API for Setup

Runs raco setup with various options:

- file if not #f, installs file as a ".plt" archive.
- collections if not #f, constrains setup to the named collections, along with planet-specs, if any
- planet-spec if not #f, constrains setup to the named PLaneT packages, along with collections, if any
- make-user? if #f, disables any user-specific setup actions
- avoid-main? if true, avoids setup actions that affect the main installation, as opposed to user directories
- make-docs? if #f, disables any documentation-specific setup actions
- make-doc-index? if #t, builds documentation index collections in addition to collections, assuming that documentation is built
- clean? if true, enables cleaning mode instead of setup mode
- tidy? if true, enables global tidying of documentation and metadata indexes even when collections or planet-specs is non-#f
- jobs if not #f, determines the maximum number of parallel tasks used for setup
- get-target-dir if not #f, treated as a value for current-target-directory-getter

The result is #t if raco setup completes without error, #f otherwise.

6.5.1 raco setup Unit

```
(require setup/setup-unit) package: compiler-lib
```

The setup/setup-unit library provides raco setup in unit form. The associated setup/option-sig and setup/option-unit libraries provides the interface for setting options for the run of raco setup.

For example, to unpack a single ".plt" archive "x.plt", set the archives parameter to (list "x.plt") and leave specific-collections as null.

Link the options and setup units so that your option-setting code is initialized between them, e.g.:

```
(compound-unit
    ...
    (link ...
      [((OPTIONS : setup-option^)) setup:option@]
      [() my-init-options@ OPTIONS]
      [() setup@ OPTIONS ...])
    ...)
setup@ : unit?
```

Imports

- setup-option^
- compiler[^]
- compiler:option^
- launcher^
- dynext:file^

and exports nothing. Invoking setup@ starts the setup process.

6.5.2 Options Unit

```
(require setup/option-unit) package: compiler-lib
setup:option@ : unit?
```

Imports nothing and exports setup-option^.

6.5.3 Options Signature

```
(require setup/option-sig) package: compiler-lib
setup-option^ : signature
```

Provides parameters used to control raco setup in unit form.

```
(setup-program-name) → string?
(setup-program-name name) → void?
  name : string?
```

The prefix used when printing status messages. The default is "raco setup".

```
(verbose) → boolean?
(verbose on?) → void?
on?: any/c
```

If on, prints message from make to stderr. The default is #f.

```
(make-verbose) → boolean?
(make-verbose on?) → void?
on?: any/c
```

If on, verbose make. The default is #f.

```
(compiler-verbose) → boolean?
(compiler-verbose on?) → void?
on? : any/c
```

If on, verbose compiler. The default is #f.

```
(clean) → boolean?
(clean on?) → void?
on?: any/c
```

If on, delete ".zo" and ".so"/".dll"/".dylib" files in the specified collections. The default is #f.

```
(compile-mode) → (or/c path? #f)
(compile-mode path) → void?
 path : (or/c path? #f)
```

If a path is given, use a ".zo" compiler other than plain compile, and build to (build-path "compiled" (compile-mode)). The default is #f.

```
(make-zo) → boolean?
(make-zo on?) → void?
on?: any/c
```

If on, compile ".zo". The default is #t.

```
(make-info-domain) → boolean?
(make-info-domain on?) → void?
on?: any/c
```

If on, update "info-domain/compiled/cache.rkt" for each collection path. The default is #t.

```
(make-launchers) → boolean?
(make-launchers on?) → void?
on?: any/c
```

If on, make collection "info.rkt"-specified launchers and man pages. The default is #t.

```
(make-foreign-lib) \rightarrow boolean?

(make-foreign-lib \ on?) \rightarrow void?

on?: any/c
```

If on, install collection "info.rkt"-specified libraries. The default is #t.

```
(make-docs) → boolean?
(make-docs on?) → void?
on?: any/c
```

If on, build documentation. The default is #t.

```
(make-user) → boolean?
(make-user on?) → void?
on?: any/c
```

If on, build the user-specific collection tree. The default is #t.

```
(make-planet) → boolean?
(make-planet on?) → void?
on?: any/c
```

If on, build the planet cache. The default is #t.

```
(avoid-main-installation) → boolean?
(avoid-main-installation on?) → void?
on?: any/c
```

If on, avoid building bytecode in the main installation tree when building other bytecode (e.g., in a user-specific collection). The default is #f.

```
(make-tidy) \rightarrow boolean?

(make-tidy on?) \rightarrow void?

on?: any/c
```

If on, remove metadata cache information and documentation for non-existent collections (to clean up after removal) even when specific-collections or specific-planet-dirs is non-'() or make-only is true. The default is #f.

```
(call-install) → boolean?
(call-install on?) → void?
on? : any/c
```

If on, call collection "info.rkt"-specified setup code. The default is #t.

```
(call-post-install) → boolean?
(call-post-install on?) → void?
on?: any/c
```

If on, call collection "info.rkt"-specified post-install code. The default is #t.

```
(pause-on-errors) → boolean?
(pause-on-errors on?) → void?
on? : any/c
```

If on, in the event of an error, prints a summary error and waits for stdin input before terminating. The default is #f.

```
(parallel-workers) → exact-nonnegative-integer?
(parallel-workers num) → void?
  num : exact-nonnegative-integer?
```

Determines the number of places to use for compiling bytecode and for building the documentation. The default is (min (processor-count) 8).

```
(force-unpacks) \rightarrow boolean?
(force-unpacks on?) \rightarrow void?
on?: any/c
```

If on, ignore version and already-installed errors when unpacking a ".plt" archive. The default is #f.

```
(specific-collections) → (listof (listof path-string?))
(specific-collections colls) → void?
  colls : (listof (listof path-string?))
```

A list of collections to set up; the empty list means set-up all collections if the archives list and specific-planet-dirs is also '(). The default is '().

A list of planet package version specs to set up; the empty list means to set-up all planet collections if the archives list and specific-collections is also '(). The default is '().

```
(make-only) → boolean?
(make-only on?) → void?
on?: any/c
```

If true, set up no collections if specific-collections and specific-planet-dirs are both $\dot{}$ ().

```
(archives) → (listof path-string?)
(archives arch) → void?
arch : (listof path-string?)
```

A list of ".plt" archives to unpack; any collections specified by the archives are set-up in addition to the collections listed in specific-collections. The default is null.

```
(archive-implies-reindex) → boolean?
(archive-implies-reindex on?) → void?
on?: any/c
```

If on, when archives has a non-empty list of packages, if any documentation is built, then suitable documentation start pages, search pages, and master index pages are re-built. The default is #t.

```
(current-target-directory-getter) → (-> path-string?)
(current-target-directory-getter thunk) → void?
thunk : (-> path-string?)
```

A thunk that returns the target directory for unpacking a relative ".plt" archive; when unpacking an archive, either this or the procedure in current-target-plt-directory-getter will be called. The default is current-directory.

A procedure that takes a preferred path, a path to the parent of the main "collects" directory, and a list of path choices; it returns a path for a "plt-relative" install; when unpacking an archive, either this or the procedure in current-target-directory-getter will be called, and in the former case, this procedure may be called multiple times. The default is (lambda (preferred main-parent-dir choices) preferred).

6.6 API for Installing ".plt" Archives

The setup/plt-single-installer module provides a function for installing a single ".plt" file.

6.6.1 Non-GUI Installer

```
(require setup/plt-single-installer) package: base

(run-single-installer file get-dir-proc) → void?
  file : path-string?
  get-dir-proc : (-> (or/c path-string? #f))
```

Creates a separate thread and namespace, runs the installer in that thread with the new namespace, and returns when the thread completes or dies. It also creates a custodian (see §14.7 "Custodians") to manage the created thread, sets the exit handler for the thread to shut down the custodian, and explicitly shuts down the custodian when the created thread terminates or dies.

The get-dir-proc procedure is called if the installer needs a target directory for installation, and a #f result means that the user canceled the installation. Typically, get-dir-proc is current-directory. v

```
(install-planet-package file directory spec) → void?
  file : path-string?
  directory : path-string?
```

```
(list/c string? string?
spec: (listof string?)
exact-nonnegative-integer?
exact-nonnegative-integer?)
```

Similar to run-single-installer, but runs the setup process to install the archive file into directory as the PLaneT package described by spec. The user-specific documentation index is not rebuilt, so reindex-user-documentation should be run after a set of PLaneT packages are installed.

```
(reindex-user-documentation) \rightarrow void?
```

Similar to run-single-installer, but runs only the part of the setup process that rebuilds the user-specific documentation start page, search page, and master index.

Undoes the work of install-planet-package. The user-specific documentation index is not rebuilt, so reindex-user-documentation should be run after a set of PLaneT packages are removed.

6.7 API for Finding Installation Directories

```
(require setup/dirs) package: base
```

The setup/dirs library provides several procedures for locating installation directories:

```
(find-collects-dir) \rightarrow (or/c path? #f)
```

Returns a path to the installation's main "collects" directory, or #f if none can be found. A #f result is likely only in a stand-alone executable that is distributed without libraries.

```
(find-user-collects-dir) \rightarrow path?
```

Returns a path to the user-specific "collects" directory; the directory indicated by the returned path may or may not exist.

```
(get-collects-search-dirs) \rightarrow (listof path?)
```

Returns the same result as (current-library-collection-paths), which means that this result is not sensitive to the value of the use-user-specific-search-paths parameter

```
\texttt{(get-main-collects-search-dirs)} \rightarrow \texttt{(listof path?)}
```

Returns a list of paths to installation "collects" directories, including the result of find-collects-dir. These directories are normally included in the result of (current-library-collection-paths), but a PLTCOLLECTS setting or change to the parameter may cause them to be omitted. Any other path in (current-library-collection-paths) is treated as user-specific. The dierctories indicated by the returned paths may or may not exist.

```
(find-config-dir) \rightarrow (or/c path? #f)
```

Returns a path to the installation's "etc" directory, which contains configuration and package information—including configuration of some of the other directories (see §18 "Installation Configuration and Search Paths"). A #f result indicates that no configuration directory is available.

```
(find-links-file) \rightarrow path?
```

Returns a path to the installation's collection links file. The file indicated by the returned path may or may not exist.

```
(find-user-links-file [vers]) → path?
  vers : string? = (get-installation-name)
```

Returns a path to the user's collection links file. The file indicated by the returned path may or may not exist.

```
(get-links-search-files) \rightarrow path?
```

Returns a list of paths to installation collection links files that are search in order. (Normally, the result includes the result of (find-links-file), which is where new installation-wide links are installed by raco link or links.) The files indicated by the returned paths may or may not exist.

```
(find-pkgs-dir) \rightarrow path?
```

Returns a path to the directory containing packages with installation scope; the directory indicated by the returned path may or may not exist.

```
(find-user-pkgs-dir [vers]) → path?
  vers : string? = (get-installation-name)
```

Returns a path to the directory containing packages with user-specific scope for installation name *vers*; the directory indicated by the returned path may or may not exist.

```
(get-pkgs-search-dirs) \rightarrow (listof path?)
```

Returns a list of paths to the directories containing packages in installation scope. (Normally, the result includes the result of (find-pkgs-dir), which is where new packages are installed by raco pkg install.) The directories indicated by the returned paths may or may not exist.

```
(find-doc-dir) \rightarrow (or/c path? #f)
```

Returns a path to the installation's "doc" directory. The result is #f if no such directory is available.

```
(find-user-doc-dir) \rightarrow path?
```

Returns a path to a user-specific "doc" directory. The directory indicated by the returned path may or may not exist.

```
(get-doc-search-dirs) \rightarrow (listof path?)
```

Returns a list of paths to search for documentation, not including documentation stored in individual collections. Unless it is configured otherwise, the result includes any non-#f result of (find-doc-dir) and (find-user-doc-dir)—but the latter is included only if the value of the use-user-specific-search-paths parameter is #t.

```
(find-lib-dir) \rightarrow (or/c path? #f)
```

Returns a path to the installation's "lib" directory, which contains libraries and other build information. The result is #f if no such directory is available.

```
| (find-user-lib-dir) \rightarrow path?
```

Returns a path to a user-specific "lib" directory; the directory indicated by the returned path may or may not exist.

```
(find-share-dir) \rightarrow (or/c path? #f)
```

Returns a path to the installation's "share" directory, which contains installed packages and other platform-independent files. The result is #f if no such directory is available.

```
(find-user-share-dir) \rightarrow path?
```

Returns a path to a user-specific "share" directory; the directory indicated by the returned path may or may not exist.

```
(find-dll-dir) \rightarrow (or/c path? #f)
```

Returns a path to the directory that contains DLLs for use with the current executable (e.g., "libmzsch.dll" on Windows). The result is #f if no such directory is available, or if no specific directory is available (i.e., other than the platform's normal search path).

```
(get-lib-search-dirs) \rightarrow (listof path?)
```

Returns a list of paths to search for foreign libraries. Unless it is configured otherwise, the result includes any non-#f result of (find-lib-dir), (find-dll-dir), and (find-user-lib-dir)—but the last is included only if the value of the use-user-specific-search-paths parameter is #t.

```
(find-include-dir) \rightarrow (or/c path? #f)
```

Returns a path to the installation's "include" directory, which contains ".h" files for building Racket extensions and embedding programs. The result is #f if no such directory is available.

```
(find-user-include-dir) \rightarrow path?
```

Returns a path to a user-specific "include" directory; the directory indicated by the returned path may or may not exist.

```
(get-include-search-dirs) \rightarrow (listof path?)
```

Returns a list of paths to search for ".h" files. Unless it is configured otherwise, the result includes any non-#f result of (find-include-dir) and (find-user-include-dir)—but the latter is included only if the value of the use-user-specific-search-paths parameter is #t.

```
(find-console-bin-dir) \rightarrow (or/c path? #f)
```

Returns a path to the installation's executable directory, where the stand-alone Racket executable resides. The result is #f if no such directory is available.

```
(find-gui-bin-dir) \rightarrow (or/c path? #f)
```

Returns a path to the installation's executable directory, where the stand-alone GRacket executable resides. The result is #f if no such directory is available.

```
(find-user-console-bin-dir) \rightarrow path?
```

Returns a path to the user's executable directory; the directory indicated by the returned path may or may not exist.

```
(find-user-gui-bin-dir) \rightarrow path?
```

Returns a path to the user's executable directory for graphical programs; the directory indicated by the returned path may or may not exist.

```
(find-apps-dir) \rightarrow (or/c path? #f)
```

Returns a path to the installation's directory ".desktop" files (for Unix). The result is #f if no such directory exists.

```
(find-user-apps-dir) \rightarrow path?
```

Returns a path to the user's directory for ".desktop" files (for Unix); the directory indicated by the returned path may or may not exist.

```
(find-man-dir) \rightarrow (or/c path? #f)
```

Returns a path to the installation's man-page directory. The result is #f if no such directory exists.

```
(find-user-man-dir) \rightarrow path?
```

Returns a path to the user's man-page directory; the directory indicated by the returned path may or may not exist.

```
(get-doc-search-url) \rightarrow string?
```

Returns a string that is used by the documentation system, augmented with a version and search-key query, for remote documentation links.

```
(get-installation-name) \rightarrow string?
```

Returns the current installation's name, which is often (version) but can be configured via 'installation-name in "config.rktd" (see §18 "Installation Configuration and Search Paths").

```
(get-build-stamp) \rightarrow (or/c #f string?)
```

Returns a string that identifies an installation build, which can be used to augment the Racket version number to more specifically identify the build. An empty string is normally produced for a release build. The result is #f if no build stamp is available.

```
(get-absolute-installation?) \rightarrow boolean?
```

Returns #t if this installation uses absolute path names for executable and library references, #f otherwise.

6.8 API for Reading "info.rkt" Files

```
(require setup/getinfo) package: base
```

The setup/getinfo library provides functions for accessing fields in "info.rkt" files.

Accepts a list of strings naming a collection or sub-collection, and calls get-info/full with the full path corresponding to the named collection and the namespace argument.

Accepts a path to a directory. If it finds either a well-formed an "info.rkt" file or an "info.ss" file (with preference for the "info.rkt" file), it returns an info procedure that accepts either one or two arguments. The first argument to the info procedure is always a symbolic name, and the result is the value of the name in the "info.rkt" file, if the name is defined. The optional second argument, thunk, is a procedure that takes no arguments to be called when the name is not defined; the result of the info procedure is the result of the thunk in that case. If the name is not defined and no thunk is provided, then an exception is raised.

The <code>get-info/full</code> function returns <code>#f</code> if there is no "info.rkt" (or "info.ss") file in the directory. If there is a "info.rkt" (or "info.ss") file that has the wrong shape (i.e., not a module using info or <code>setup/infotab</code>), or if the "info.rkt" file fails to load, then an exception is raised. If the "info.rkt" file loaded, <code>get-info/full</code> returns the <code>get-info</code> file. If the "info.rkt" file does not exist, then <code>get-info/full</code> does the same checks for the "info.rkt" file, either raising an exception or returning the <code>get-info</code> function from the "info.rkt" file.

The "info.rkt" (or "info.ss") module is loaded into namespace if it is not #f, or a private, weakly-held namespace otherwise.

If bootstrap? is true, then use-compiled-file-paths is set to '() while reading "info.rkt" (or "info.ss"), in case an existing compiled file is broken. Furthermore, the info and setup/infotab modules are attached to namespace from the namespace of get-info/full before attempting to load "info.rkt" (or "info.ss").

```
(find-relevant-directories syms [mode]) → (listof path?)
  syms : (listof symbol?)
  mode : (or/c 'preferred 'all-available 'no-planet 'no-user)
  = 'preferred
```

Returns a list of paths identifying collections and installed PLaneT packages whose "info.rkt" file defines one or more of the given symbols. The result is based on a cache that is computed by raco setup.

Note that the cache may be out of date by the time you call get-info/full, so do not assume that every returned directory's "info.rkt" file will supply one of the requested symbols.

The result is in a canonical order (sorted lexicographically by directory name), and the paths it returns are suitable for providing to get-info/full.

If mode is specified, it must be either 'preferred (the default), 'all-available, 'no-planet, or 'no-user. If mode is 'all-available, find-relevant-collections returns all installed directories whose info files contain the specified symbols—for instance, all versions of all installed PLaneT packages will be searched if 'all-available is specified. If mode is 'preferred, then only a subset of "preferred" packages will be searched: only the directory containing the most recent version of any PLaneT package will be returned. If mode is 'no-planet, then PLaneT packages are not included in the search. If mode is 'no-user, then only installation-wide directories are search, which means omitting PLane T package directories.

Collection links from the installation-wide collection links file or packages with installation scope are cached with the installation's main "lib" directory, and links from the user-specific collection links file and packages are cached with the user-specific directory (build-path (find-system-path 'addon-dir) "collects") for all-version cases, and in (build-path (find-system-path 'addon-dir) (version) "collects") for version-specific cases.

```
(find-relevant-directory-records syms key)
  → (listof directory-record?)
  syms : (listof symbol?)
  key : (or/c 'preferred 'all-available)
```

Like find-relevant-directories, but returns directory-record structs instead of

path?s.

A struct that records information about a collection or a PLaneT package that has been installed. Collections will have the major version being 1 and the minor version being 0. The spec field is a quoted module spec; the path field is where the inforkt file for this collection or PLaneT package exists on the filesystem the syms field holds the identifiers defined in that file.

```
(reset-relevant-directories-state!) \rightarrow void?
```

Resets the cache used by find-relevant-directories.

6.9 API for Relative Paths

The Racket installation tree can usually be moved around the filesystem. To support this, care must be taken to avoid absolute paths. The following two APIs cover two aspects of this: a way to convert a path to a value that is relative to the "collets" tree, and a way to display such paths (e.g., in error messages).

6.9.1 Representing Collection-Based Paths

Checks whether path (normalized by path->complete-path and simplify-path with #f as its second argument) matches the result of collection-file-path. If so, the result is a list starting with 'collects and containing the relevant path elements as byte strings. If not, the path is returned as-is.

The cache argument is used with path->pkg, if needed.

The inverse of path->collects-relative: if rel is a pair that starts with 'collects, then it is converted back to a path using collection-file-path.

```
(path->module-path path #:cache cache)
  → (or/c path-string? module-path?)
  path : path-string?
  cache : (or/c #f (and/c hash? (not/c imutable?)))
```

Like path->collects-relative, but the result is either path or a normalized (in the sense of collapse-module-path) module path.

6.9.2 Representing Paths Relative to "collects"

```
(require setup/main-collects) package: base

(path->main-collects-relative path)
  → (or/c path? (cons/c 'collects (listof bytes?)))
  path : (or/c bytes? path-string?)
```

Checks whether *path* has a prefix that matches the prefix to the main "collects" directory as determined by (find-collects-dir). If so, the result is a list starting with 'collects and containing the remaining path elements as byte strings. If not, the path is returned as-is.

The path argument should be a complete path. Applying simplify-path before path->main-collects-relative is usually a good idea.

For historical reasons, path can be a byte string, which is converted to a path using bytes>path.

See also collects-relative->path.

The inverse of path->main-collects-relative: if rel is a pair that starts with 'collects, then it is converted back to a path relative to (find-collects-dir).

For historical reasons, if rel is any kind of value other than specified in the contract above, it is returned as-is.

6.9.3 Displaying Paths Relative to a Common Root

Produces a string suitable for display in error messages. If the path is an absolute one that is inside a package, the result is a string that begins with "<pkgs>/". If the path is an absolute one that is inside the "collects" tree, the result is a string that begins with "<collects>/". Similarly, a path in the user-specific collects results in a prefix of "<user-collects>/", and a PLaneT path results in "<planet>/".

If cache is not #f, it is used as a cache argument for pkg->path to speed up detection and conversion of package paths.

If the path is not absolute, or if it is not in any of these, it is returned as-is (converted to a string if needed). If *default* is given, it specifies the return value instead: it can be a procedure that is applied onto the path to get the result, or the result itself.

Note that this function can return a non-string only if default is given and it does not return a string.

The same as path->relative-string/library, for backward compatibility.

This function produces functions like path->relative-string/library and path->relative-string/setup.

The *dirs* argument determines the prefix substitutions. It must be an association list mapping a path-producing thunk to a prefix string for paths in the specified path.

default determines the default for the resulting function (which can always be overridden by an additional argument to this function).

6.10 API for Collection Names

```
(\text{require setup/collection-name}) package: base (\text{collection-name}; v) \rightarrow \text{boolean}; v: \text{any/c}
```

Returns #t if v is a string that is syntactically valid as a collection name, which means that it is one or more V-separated strings for which collection-name-element? returns true.

```
(collection-name-element? v) \rightarrow boolean? v : any/c
```

Returns #t if v is a string that is syntactically valid as a top-level collection name or as a part of a collection name, which means that it is non-empty and contains only ASCII letters, ASCII digits, =, \pm , _, and %, where a % is allowed only when followed by two lowercase hexadecimal digits, and the digits must form a number that is not the ASCII value of a letter, digit, =, \pm , or _.

6.11 API for Cross-References for Installed Manuals

```
(require setup/xref) package: racket-index

(load-collections-xref [on-load]) → xref?
  on-load : (-> any/c) = (lambda () (void))
```

Like load-xref, but automatically find all cross-reference files for manuals that have been installed with raco setup.

7 raco decompile: Decompiling Bytecode

The raco decompile command takes a bytecode file (which usually has the file extension ".zo") or a source file with an associated bytecode file (usually created with raco make) and converts it back to an approximation of Racket code. Decompiled bytecode is mostly useful for checking the compiler's transformation and optimization of the source program.

Many forms in the decompiled code, such as module, define, and lambda, have the same meanings as always. Other forms and transformations are specific to the rendering of byte-code, and they reflect a specific execution model:

• Top-level variables, variables defined within the module, and variables imported from other modules are prefixed with _, which helps expose the difference between uses of local variables versus other variables. Variables imported from other modules, moreover, have a suffix starting with 0 that indicates the source module. Finally, imported variables with constantness have a midfix: :c to indicate constant shape across all instantiations, :f to indicate a fixed value after initialization, :p to indicate a procedure, :P to indicate a procedure that preserves continuation marks on return, :t to indicate a structure type, :mk to indicate a structure constructor, :? to indicate a structure predicate, :ref to indicate a structure accessor, or :set! to indicate a structure mutator.

Non-local variables are always accessed indirectly though an implicit #%globals or #%modvars variable that resides on the value stack (which otherwise contains local variables). Variable accesses are further wrapped with #%checked when the compiler cannot prove that the variable will be defined before the access.

Uses of core primitives are shown without a leading _, and they are never wrapped with #%checked.

• Local-variable access may be wrapped with #%sfs-clear, which indicates that the variable-stack location holding the variable will be cleared to prevent the variable's value from being retained by the garbage collector. Variables whose name starts with unused are never actually stored on the stack, and so they never have #%sfs-clear annotations. (The bytecode compiler normally eliminates such bindings, but sometimes it cannot, either because it cannot prove that the right-hand side produces the right number of values, or the discovery that the variable is unused happens too late with the compiler.)

Mutable variables are converted to explicitly boxed values using #%box, #%unbox, and #%set-boxes! (which works on multiple boxes at once). A set!-rec-values operation constructs mutually-recursive closures and simultaneously updates the corresponding variable-stack locations that bind the closures. A set!, set!-values, or set!-rec-values form is always used on a local variable before it is captured by a closure; that ordering reflects how closures capture values in variable-stack locations, as opposed to stack locations.

• In a lambda form, if the procedure produced by the lambda has a name (accessible via object-name) and/or source-location information, then it is shown as a quoted constant at the start of the procedure's body. Afterward, if the lambda form captures any bindings from its context, those bindings are also shown in a quoted constant. Neither constant corresponds to a computation when the closure is called, though the list of captured bindings corresponds to a closure allocation when the lambda form itself is evaluated.

A lambda form that closes over no bindings is wrapped with #%closed plus an identifier that is bound to the closure. The binding's scope covers the entire decompiled output, and it may be referenced directly in other parts of the program; the binding corresponds to a constant closure value that is shared, and it may even contain cyclic references to itself or other constant closures.

- A form (#%apply-values proc expr) is equivalent to (call-with-values (lambda () expr) proc), but the run-time system avoids allocating a closure for expr.
- A define-values form may have (begin '%%inline-variant%% expr1 expr2) for its expression, in which case expr2 is the normal result, but expr1 may be inlined for calls to the definition from other modules. Definitions of functions without an '%%inline-variant%% are never inlined across modules.
- Some applications of core primitives are annotated with #%in, which indicates that the JIT compiler will inline the operation. (Inlining information is not part of the bytecode, but is instead based on an enumeration of primitives that the JIT is known to handle specially.) Operations from racket/flonum and racket/unsafe/ops are always inlined, so #%in is not shown for them.
- Function arguments and local bindings that are known to have a particular type have names that embed the known type. For example, an argument might have a name that starts argflonum or a local binding might have a name that starts flonum to indicate a flonum value.
- A #%decode-syntax form corresponds to a syntax object.

Command-line flags:

- -n $\langle n \rangle$ or --columns $\langle n \rangle$ format output for a display with $\langle n \rangle$ columns
- -h or --help show help information for this command
- -- do not treat remaining arguments as switches

7.1 API for Decompiling

```
(require compiler/decompile) package: compiler-lib
```

```
(decompile top) \rightarrow any/c top : compilation-top?
```

Consumes the result of parsing bytecode and returns an S-expression (as described above) that represents the compiled code.

7.2 API for Parsing Bytecode

```
(require compiler/zo-parse) package: compiler-lib
```

The compiler/zo-parse module re-exports compiler/zo-structs in addition to zo-parse.

```
(zo-parse [in]) → compilation-top?
in : input-port? = (current-input-port)
```

Parses a port (typically the result of opening a ".zo" file) containing bytecode. Beware that the structure types used to represent the bytecode are subject to frequent changes across Racket versons.

The parsed bytecode is returned in a compilation-top structure. For a compiled module, the compilation-top structure will contain a mod structure. For a top-level sequence, it will normally contain a seq or splice structure with a list of top-level declarations and expressions.

The bytecode representation of an expression is closer to an S-expression than a traditional, flat control string. For example, an if form is represented by a branch structure that has three fields: a test expression, a "then" expression, and an "else" expression. Similarly, a function call is represented by an application structure that has a list of argument expressions.

Storage for local variables or intermediate values (such as the arguments for a function call) is explicitly specified in terms of a stack. For example, execution of an application structure reserves space on the stack for each argument result. Similarly, when a let-one structure (for a simple let) is executed, the value obtained by evaluating the right-hand side expression is pushed onto the stack, and then the body is evaluated. Local variables are always accessed as offsets from the current stack position. When a function is called, its arguments are passed on the stack. A closure is created by transferring values from the stack to a flat closure record, and when a closure is applied, the saved values are restored on the stack (though possibly in a different order and likely in a more compact layout than when they were captured).

When a sub-expression produces a value, then the stack pointer is restored to its location from before evaluating the sub-expression. For example, evaluating the right-hand size for

a let-one structure may temporarily push values onto the stack, but the stack is restored to its pre-let-one position before pushing the resulting value and continuing with the body. In addition, a tail call resets the stack pointer to the position that follows the enclosing function's arguments, and then the tail call continues by pushing onto the stack the arguments for the tail-called function.

Values for global and module-level variables are not put directly on the stack, but instead stored in "buckets," and an array of accessible buckets is kept on the stack. When a closure body needs to access a global variable, the closure captures and later restores the bucket array in the same way that it captured and restores a local variable. Mutable local variables are boxed similarly to global variables, but individual boxes are referenced from the stack and closures.

Quoted syntax (in the sense of quote-syntax) is treated like a global variable, because it must be instantiated for an appropriate phase. A prefix structure within a compilation-top or mod structure indicates the list of global variables and quoted syntax that need to be instantiated (and put into an array on the stack) before evaluating expressions that might use them.

7.3 API for Marshaling Bytecode

```
(require compiler/zo-marshal) package: compiler-lib

(zo-marshal-to top out) → void?
  top : compilation-top?
  out : output-port?
```

Consumes a representation of bytecode and writes it to out.

```
(zo-marshal\ top) \rightarrow bytes?
top: compilation-top?
```

Consumes a representation of bytecode and generates a byte string for the marshaled bytecode.

7.4 Bytecode Representation

```
(require compiler/zo-structs) package: compiler-lib
```

The compiler/zo-structs library defines the bytecode structures that are produced by zo-parse and consumed by decompile and zo-marshal.

```
(struct zo ()
    #:extra-constructor-name make-zo
#:prefab)
```

A supertype for all forms that can appear in compiled code.

7.4.1 Prefix

```
(struct compilation-top zo (max-let-depth prefix code)
         #:extra-constructor-name make-compilation-top
          #:prefab)
max-let-depth : exact-nonnegative-integer?
prefix : prefix?
code : (or/c form? any/c)
```

Wraps compiled code. The max-let-depth field indicates the maximum stack depth that code creates (not counting the prefix array). The prefix field describes top-level variables, module-level variables, and quoted syntax-objects accessed by code. The code field contains executable code; it is normally a form, but a literal value is represented as itself.

Represents a "prefix" that is pushed onto the stack to initiate evaluation. The prefix is an array, where buckets holding the values for toplevels are first, then the buckets for the stxs, then a bucket for another array if stxs is non-empty, then num-lifts extra buckets for lifted local procedures.

In toplevels, each element is one of the following:

- a #f, which indicates a dummy variable that is used to access the enclosing module/namespace at run time;
- a symbol, which is a reference to a variable defined in the enclosing module;
- a global-bucket, which is a top-level variable (appears only outside of modules); or
- a module-variable, which indicates a variable imported from another module.

The variable buckets and syntax objects that are recorded in a prefix are accessed by toplevel and topsyntax expression forms.

```
(struct global-bucket zo (name)
    #:extra-constructor-name make-global-bucket
    #:prefab)
name : symbol?
```

Represents a top-level variable, and used only in a prefix.

Represents a top-level variable, and used only in a prefix. The pos may record the variable's offset within its module, or it can be -1 if the variable is always located by name. The phase indicates the phase level of the definition within its module. The constantness field is either 'constant, a function-shape value, or a struct-shape value to indicate that variable's value is always the same for every instantiation of its module; 'fixed to indicate that it doesn't change within a particular instantiation of the module; or #f to indicate that the variable's value can change even for one particular instantiation of its module.

```
(struct function-shape (arity preserves-marks?)
    #:extra-constructor-name make-function-shape
    #:prefab)
arity: procedure-arity?
preserves-marks?: boolean?
```

Represents the shape of an expected import, which should be a function having the arity specified by arity. The preserves-marks? field is true if calling the function is expected to leave continuation marks unchanged by the time it returns.

```
(struct struct-shape ()
    #:extra-constructor-name make-struct-shape
    #:prefab)
(struct struct-type-shape struct-shape (field-count)
    #:extra-constructor-name make-struct-type-shape
    #:prefab)
field-count : exact-nonnegative-integer?
```

```
(struct constructor-shape struct-shape (arity)
       #:extra-constructor-name make-constructor-shape
       #:prefab)
 arity : exact-nonnegative-integer?
(struct predicate-shape struct-shape ()
       #:extra-constructor-name make-predicate-shape
       #:prefab)
(struct accessor-shape struct-shape (field-count)
       #:extra-constructor-name make-accessor-shape
       #:prefab)
 field-count : exact-nonnegative-integer?
(struct mutator-shape struct-shape (field-count)
       #:extra-constructor-name make-mutator-shape
       #:prefab)
 field-count : exact-nonnegative-integer?
(struct struct-other-shape struct-shape ()
       #:extra-constructor-name make-struct-other-shape
       #:prefab)
```

Represents the shape of an expected import as a structure-type binding, constructor, etc.

```
(struct stx zo (encoded)
    #:extra-constructor-name make-stx
    #:prefab)
encoded : wrapped?
```

Wraps a syntax object in a prefix.

7.4.2 Forms

```
(struct form zo ()
    #:extra-constructor-name make-form
    #:prefab)
```

A supertype for all forms that can appear in compiled code (including exprs), except for literals that are represented as themselves.

```
(struct def-values form (ids rhs)
         #:extra-constructor-name make-def-values
         #:prefab)
ids: (listof toplevel?)
rhs: (or/c expr? seq? inline-variant? any/c)
```

Represents a define-values form. Each element of ids will reference via the prefix either a top-level variable or a local module variable.

After rhs is evaluated, the stack is restored to its depth from before evaluating rhs.

```
(struct def-syntaxes form (ids rhs prefix max-let-depth dummy)
    #:extra-constructor-name make-def-syntaxes
    #:prefab)
ids: (listof symbol?)
rhs: (or/c expr? seq? any/c)
prefix: prefix?
max-let-depth: exact-nonnegative-integer?
dummy: (or/c toplevel? #f)
(struct seq-for-syntax form (forms prefix max-let-depth dummy)
    #:extra-constructor-name make-seq-for-syntax
    #:prefab)
forms: (listof (or/c form? any/c))
prefix: prefix?
max-let-depth: exact-nonnegative-integer?
dummy: (or/c toplevel? #f)
```

Represents a define-syntaxes or begin-for-syntax form. The rhs expression or set of forms forms has its own prefix, which is pushed before evaluating rhs or the forms; the stack is restored after obtaining the result values. The max-let-depth field indicates the maximum size of the stack that will be created by rhs (not counting prefix). The dummy variable is used to access the enclosing namespace.

```
(struct req form (reqs dummy)
     #:extra-constructor-name make-req
     #:prefab)
  reqs : stx?
  dummy : toplevel?
```

Represents a top-level #%require form (but not one in a module form) with a sequence of specifications reqs. The dummy variable is used to access the top-level namespace.

```
(struct seq form (forms)
    #:extra-constructor-name make-seq
    #:prefab)
  forms : (listof (or/c form? any/c))
```

Represents a begin form, either as an expression or at the top level (though the latter is more commonly a splice form). When a seq appears in an expression position, its forms are expressions.

After each form in forms is evaluated, the stack is restored to its depth from before evaluating the form.

```
(struct splice form (forms)
    #:extra-constructor-name make-splice
    #:prefab)
  forms : (listof (or/c form? any/c))
```

Represents a top-level begin form where each evaluation is wrapped with a continuation prompt.

After each form in forms is evaluated, the stack is restored to its depth from before evaluating the form.

```
(struct inline-variant form (direct inline)
          #:extra-constructor-name make-inline-variant
          #:prefab)
    direct : expr?
    inline : expr?
```

Represents a function that is bound by define-values, where the function has two variants. The first variant is used for normal calls to the function. The second may be used for cross-module inlining of the function.

```
(struct mod form (name
                  srcname
                  self-modidx
                  prefix
                  provides
                  requires
                  body
                  syntax-bodies
                  unexported
                  max-let-depth
                  dummy
                  lang-info
                  internal-context
                  flags
                  pre-submodules
                  post-submodules)
         #:extra-constructor-name make-mod
         #:prefab)
 name : (or/c symbol? (listof symbol?))
  srcname : symbol?
  self-modidx : module-path-index?
 prefix : prefix?
            (listof (list/c (or/c exact-integer? #f)
                             (listof provided?)
  provides:
                             (listof provided?)))
```

```
requires: (listof (cons/c (or/c exact-integer? #f)
                           (listof module-path-index?)))
body : (listof (or/c form? any/c))
               (listof (cons/c exact-positive-integer?
                                (listof (or/c def-syntaxes?
syntax-bodies:
                                              seq-for-syntax?))))
            (listof (list/c exact-nonnegative-integer?
unexported:
                            (listof symbol?)
                             (listof symbol?)))
max-let-depth : exact-nonnegative-integer?
dummy : toplevel?
lang-info : (or/c #f (vector/c module-path? symbol? any/c))
internal-context : (or/c #f #t stx? (vectorof stx?))
flags : (listof (or/c 'cross-phase))
pre-submodules : (listof mod?)
post-submodules : (listof mod?)
```

Represents a module declaration.

The provides and requires lists are each an association list from phases to exports or imports. In the case of provides, each phase maps to two lists: one for exported variables, and another for exported syntax. In the case of requires, each phase maps to a list of imported module paths.

The body field contains the module's run-time (i.e., phase 0) code. The syntax-bodies list has a list of forms for each higher phase in the module body; the phases are in order starting with phase 1. The body forms use prefix, rather than any prefix in place for the module declaration itself, while members of lists in syntax-bodies have their own prefixes. After each form in body or syntax-bodies is evaluated, the stack is restored to its depth from before evaluating the form.

The unexported list contains lists of symbols for unexported definitions that can be accessed through macro expansion and that are implemented through the forms in body and syntax-bodies. Each list in unexported starts with a phase level.

The max-let-depth field indicates the maximum stack depth created by body forms (not counting the prefix array). The dummy variable is used to access to the top-level namespace.

The lang-info value specifies an optional module path that provides information about the module's implementation language.

The internal-module-context value describes the lexical context of the body of the module. This value is used by module->namespace. A #f value means that the context is unavailable or empty. A #t value means that the context is computed by re-importing all required modules. A syntax-object value embeds an arbitrary lexical context.

The flags field records certain properties of the module. The 'cross-phase flag indicates

that the module body is evaluated once and the results shared across instances for all phases; such a module contains only definitions of functions, structure types, and structure type properties.

The pre-submodules field records module-declared submodules, while the post-submodules field records module*-declared submodules.

```
(struct provided (name src src-name nom-src src-phase protected?)
    #:extra-constructor-name make-provided
    #:prefab)
name : symbol?
src : (or/c module-path-index? #f)
src-name : symbol?
nom-src : (or/c module-path-index? #f)
src-phase : exact-nonnegative-integer?
protected? : boolean?
```

Describes an individual provided identifier within a mod instance.

7.4.3 Expressions

```
(struct expr form ()
    #:extra-constructor-name make-expr
#:prefab)
```

A supertype for all expression forms that can appear in compiled code, except for literals that are represented as themselves and some seq structures (which can appear as an expression as long as it contains only other things that can be expressions).

```
(struct lam expr (name
                  flags
                  num-params
                  param-types
                  rest?
                  closure-map
                  closure-types
                  toplevel-map
                  max-let-depth
                  body)
         #:extra-constructor-name make-lam
         #:prefab)
 name : (or/c symbol? vector?)
         (listof (or/c 'preserves-marks 'is-method 'single-result
                        'only-rest-arg-not-used 'sfs-clear-rest-args')
 num-params : exact-nonnegative-integer?
```

```
param-types : (listof (or/c 'val 'ref 'flonum 'fixnum))
rest? : boolean?
closure-map : (vectorof exact-nonnegative-integer?)
closure-types : (listof (or/c 'val/ref 'flonum))
toplevel-map : (or/c #f (set/c exact-nonnegative-integer?))
max-let-depth : exact-nonnegative-integer?
body : (or/c expr? seq? any/c)
```

Represents a lambda form. The name field is a name for debugging purposes. The numparams field indicates the number of arguments accepted by the procedure, not counting a rest argument; the rest? field indicates whether extra arguments are accepted and collected into a "rest" variable. The param-types list contains num-params symbols indicating the type of each argument, either 'val for a normal argument, 'ref for a boxed argument (representing a mutable local variable), or 'flonum for a flonum argument.

The closure-map field is a vector of stack positions that are captured when evaluating the lambda form to create a closure. The closure-types field provides a corresponding list of types, but no distinction is made between normal values and boxed values; also, this information is redundant, since it can be inferred by the bindings referenced though closure-map.

Which a closure captures top-level or module-level variables, they are represented in the closure by capturing a prefix (in the sense of prefix). The toplevel-map field indicates which top-level and lifted variables are actually used by the closure (so that variables in a prefix can be pruned by the run-time system if they become unused). A #f value indicates either that no prefix is captured or all variables in the prefix should be considered used. Otherwise, numbers in the set indicate which variables and lifted variables are used. Variables are numbered consecutively by position in the prefix starting from 0. Lifted variables are numbered immediately afterward—which means that, if the prefix contains any syntax objects, lifted-variable numbers are shifted down relative to a toplevel by the number of syntax object in the prefix plus one (which makes the toplevel-map set more compact).

When the function is called, the rest-argument list (if any) is pushed onto the stack, then the normal arguments in reverse order, then the closure-captured values in reverse order. Thus, when body is run, the first value on the stack is the first value captured by the closure-map array, and so on.

The max-let-depth field indicates the maximum stack depth created by body plus the arguments and closure-captured values pushed onto the stack. The body field is the expression for the closure's body.

```
(struct closure expr (code gen-id)
    #:extra-constructor-name make-closure
    #:prefab)
  code : lam?
  gen-id : symbol?
```

A lambda form with an empty closure, which is a procedure constant. The procedure constant can appear multiple times in the graph of expressions for bytecode, and the code field can be a cycle for a recursive constant procedure; the gen-id is different for each such constant.

```
(struct case-lam expr (name clauses)
    #:extra-constructor-name make-case-lam
    #:prefab)
    name : (or/c symbol? vector?)
    clauses : (listof lam?)
```

Represents a case-lambda form as a combination of lambda forms that are tried (in order) based on the number of arguments given.

```
(struct let-one expr (rhs body type unused?)
          #:extra-constructor-name make-let-one
          #:prefab)
    rhs : (or/c expr? seq? any/c)
    body : (or/c expr? seq? any/c)
    type : (or/c #f 'flonum 'fixnum)
    unused? : boolean?
```

Pushes an uninitialized slot onto the stack, evaluates rhs and puts its value into the slot, and then runs body. If type is not #f, then rhs must produce a value of the corresponding type, and the slot must be accessed by localrefs that expect the type. If unused? is #t, then the slot must not be used, and the value of rhs is not actually pushed onto the stack (but rhs is constrained to produce a single value).

After rhs is evaluated, the stack is restored to its depth from before evaluating rhs. Note that the new slot is created before evaluating rhs.

Pushes count uninitialized slots onto the stack and then runs body. If boxes? is #t, then the slots are filled with boxes that contain #<undefined>.

```
(struct install-value expr (count pos boxes? rhs body)
         #:extra-constructor-name make-install-value
          #:prefab)
count : exact-nonnegative-integer?
pos : exact-nonnegative-integer?
```

```
boxes? : boolean?
rhs : (or/c expr? seq? any/c)
body : (or/c expr? seq? any/c)
```

Runs rhs to obtain count results, and installs them into existing slots on the stack in order, skipping the first pos stack positions. If boxes? is #t, then the values are put into existing boxes in the stack slots.

After rhs is evaluated, the stack is restored to its depth from before evaluating rhs.

```
(struct let-rec expr (procs body)
    #:extra-constructor-name make-let-rec
    #:prefab)
  procs : (listof lam?)
  body : (or/c expr? seq? any/c)
```

Represents a letrec form with lambda bindings. It allocates a closure shell for each lambda form in procs, installs each onto the stack in previously allocated slots in reverse order (so that the closure shell for the last element of procs is installed at stack position 0), fills out each shell's closure (where each closure normally references some other just-created closures, which is possible because the shells have been installed on the stack), and then evaluates body.

Skips pos elements of the stack, setting the slot afterward to a new box containing the slot's old value, and then runs body. This form appears when a lambda argument is mutated using set! within its body; calling the function initially pushes the value directly on the stack, and this form boxes the value so that it can be mutated later.

Represents a local-variable reference; it accesses the value in the stack slot after the first pos slots. If unbox? is #t, the stack slot contains a box, and a value is extracted from the box.

If clear? is #t, then after the value is obtained, the stack slot is cleared (to avoid retaining a reference that can prevent reclamation of the value as garbage). If other-clears? is #t, then some later reference to the same stack slot may clear after reading. If type is not #f, the slot is known to hold a specific type of value.

```
(struct toplevel expr (depth pos const? ready?)
    #:extra-constructor-name make-toplevel
    #:prefab)
depth : exact-nonnegative-integer?
pos : exact-nonnegative-integer?
const? : boolean?
ready? : boolean?
```

Represents a reference to a top-level or imported variable via the prefix array. The depth field indicates the number of stack slots to skip to reach the prefix array, and pos is the offset into the array.

When the toplevel is an expression, if both const? and ready? are #t, then the variable definitely will be defined, its value stays constant, and the constant is effectively the same for every module instantiation. If only const? is #t, then the value is constant, but it may vary across instantiations. If only ready? is #t, then the variable definitely will be defined, but its value may change. If const? and ready? are both #f, then a check is needed to determine whether the variable is defined.

When the toplevel is the right-hand side for def-values, then const? is #f. If ready? is #t, the variable is marked as immutable after it is defined.

```
(struct topsyntax expr (depth pos midpt)
          #:extra-constructor-name make-topsyntax
     #:prefab)
depth : exact-nonnegative-integer?
pos : exact-nonnegative-integer?
midpt : exact-nonnegative-integer?
```

Represents a reference to a quoted syntax object via the prefix array. The depth field indicates the number of stack slots to skip to reach the prefix array, and pos is the offset into the array. The midpt value is used internally for lazy calculation of syntax information.

```
(struct application expr (rator rands)
          #:extra-constructor-name make-application
          #:prefab)
   rator : (or/c expr? seq? any/c)
   rands : (listof (or/c expr? seq? any/c))
```

Represents a function call. The rator field is the expression for the function, and rands are the argument expressions. Before any of the expressions are evaluated, (length rands) uninitialized stack slots are created (to be used as temporary space).

```
(struct branch expr (test then else)
    #:extra-constructor-name make-branch
    #:prefab)
  test : (or/c expr? seq? any/c)
  then : (or/c expr? seq? any/c)
  else : (or/c expr? seq? any/c)
```

Represents an if form.

After test is evaluated, the stack is restored to its depth from before evaluating test.

```
(struct with-cont-mark expr (key val body)
          #:extra-constructor-name make-with-cont-mark
          #:prefab)
  key : (or/c expr? seq? any/c)
  val : (or/c expr? seq? any/c)
  body : (or/c expr? seq? any/c)
```

Represents a with-continuation-mark expression.

After each of key and val is evaluated, the stack is restored to its depth from before evaluating key or val.

```
(struct beg0 expr (seq)
    #:extra-constructor-name make-beg0
    #:prefab)
seq : (listof (or/c expr? seq? any/c))
```

Represents a begin0 expression.

After each expression in seq is evaluated, the stack is restored to its depth from before evaluating the expression.

```
(struct varref expr (toplevel dummy)
          #:extra-constructor-name make-varref
          #:prefab)
  toplevel : (or/c toplevel? #t)
  dummy : (or/c toplevel? #f)
```

Represents a #%variable-reference form. The toplevel field is #t if the original reference was to a constant local binding. The dummy field accesses a variable bucket that strongly references its namespace (as opposed to a normal variable bucket, which only weakly references its namespace); it can be #f.

```
(struct assign expr (id rhs undef-ok?)
    #:extra-constructor-name make-assign
    #:prefab)
id : toplevel?
rhs : (or/c expr? seq? any/c)
undef-ok? : boolean?
```

Represents a set! expression that assigns to a top-level or module-level variable. (Assignments to local variables are represented by install-value expressions.)

After rhs is evaluated, the stack is restored to its depth from before evaluating rhs.

```
(struct apply-values expr (proc args-expr)
         #:extra-constructor-name make-apply-values
         #:prefab)
proc : (or/c expr? seq? any/c)
args-expr : (or/c expr? seq? any/c)
```

Represents (call-with-values (lambda () args-expr) proc), which is handled specially by the run-time system.

```
(struct primval expr (id)
         #:extra-constructor-name make-primval
         #:prefab)
   id : exact-nonnegative-integer?
```

Represents a direct reference to a variable imported from the run-time kernel.

7.4.4 Syntax Objects

Represents a syntax object, where wraps contain the lexical information and tamperstatus is taint information. When the datum part is itself compound, its pieces are wrapped, too.

```
(struct wrap zo ()
     #:extra-constructor-name make-wrap
     #:prefab)
```

A supertype for lexical-information elements.

```
(struct top-level-rename wrap (flag)
         #:extra-constructor-name make-top-level-rename
         #:prefab)
   flag: boolean?
A top-level renaming.
 (struct mark-barrier wrap (value)
         #:extra-constructor-name make-mark-barrier
         #:prefab)
   value : symbol?
A mark barrier.
 (struct free-id-info zo (path0
                           symbol0
                           path1
                           symbol1
                           phase0
                           phase1
                           phase2
                           use-current-inspector?)
          #:extra-constructor-name make-free-id-info
          #:prefab)
   path0 : module-path-index?
   symbol0 : symbol?
   path1 : module-path-index?
   symbol1 : symbol?
   phase0 : (or/c exact-integer? #f)
   phase1 : (or/c exact-integer? #f)
   phase2 : (or/c exact-integer? #f)
   use-current-inspector? : boolean?
Information about a free identifier.
 (struct lexical-rename wrap (has-free-id-info? bool2 alist)
         #:extra-constructor-name make-lexical-rename
         #:prefab)
   has-free-id-info? : boolean?
   bool2 : boolean?
           (listof
            (cons/c symbol?
                    (or/c symbol?
   alist:
                           (cons/c symbol?
                                   (or/c (cons/c symbol? (or/c symbol? #f))
```

free-id-info?)))))

A local-binding mapping from symbols to binding-set names.

Shifts module bindings later in the wrap set.

```
(struct module-rename wrap (phase
                            kind
                            set-id
                            unmarshals
                            renames
                            mark-renames
                            plus-kern?)
         #:extra-constructor-name make-module-rename
         #:prefab)
 phase : exact-integer?
 kind : (or/c 'marked 'normal)
 set-id : any/c
 unmarshals : (listof make-all-from-module?)
 renames : (listof module-binding?)
 mark-renames : any/c
 plus-kern? : boolean?
```

Represents a set of module and import bindings.

```
(struct all-from-module zo (path
                            phase
                            src-phase
                            exceptions
                            prefix
                            context)
         #:extra-constructor-name make-all-from-module
         #:prefab)
 path : module-path-index?
 phase : (or/c exact-integer? #f)
 src-phase : (or/c exact-integer? #f)
 exceptions : (listof symbol?)
 prefix : (or/c symbol? #f)
           (or/c (listof exact-integer?)
                 (vector/c (listof exact-integer?) any/c)
 context :
                 #f)
```

Represents a set of simple imports from one module within a module-rename.

```
(struct module-binding zo ()
     #:extra-constructor-name make-module-binding
     #:prefab)
```

A supertype for module bindings.

Represents a single identifier import within a module-rename.

Represents a single identifier import within a module-rename.

Represents a single identifier import within a module-rename.

```
(struct nominal-module-binding module-binding (path nominal-path)
    #:extra-constructor-name make-nominal-module-binding
    #:prefab)
path : module-path-index?
nominal-path : nominal-path?
```

Represents a single identifier import within a module-rename.

```
(struct exported-module-binding module-binding (path export-name)
          #:extra-constructor-name make-exported-module-binding
          #:prefab)
   path : module-path-index?
   export-name : any/c
```

Represents a single identifier import within a module-rename.

```
(struct nominal-path zo ()
    #:extra-constructor-name make-nominal-path
    #:prefab)
```

A supertype for nominal paths.

```
(struct simple-nominal-path nominal-path (value)
    #:extra-constructor-name make-simple-nominal-path
    #:prefab)
   value : module-path-index?
```

Represents a simple nominal path.

```
(struct imported-nominal-path nominal-path (value import-phase)
    #:extra-constructor-name make-imported-nominal-path
    #:prefab)
value : module-path-index?
import-phase : exact-integer?
```

Represents an imported nominal path.

```
(struct phased-nominal-path nominal-path (value import-phase phase)
          #:extra-constructor-name make-phased-nominal-path
          #:prefab)
value : module-path-index?
import-phase : (or/c false/c exact-integer?)
phase : exact-integer?
```

Represents a phased nominal path.

8 raco demod: Demodularizing Programs

The raco demod command takes a racket module and flattens all of its dependencies into a single compiled module. A file " $\langle name \rangle$.rkt" is demodularized into " $\langle name \rangle$ _rkt_merged.zo".

The demodularized zo file can be run by passing it as an argument to the racket command-line program.

9 raco link: Library Collection Links

The raco link command inspects and modifies a collection links file to display, add, or remove mappings from collection names to filesystem directories.

Managing links directly is somewhat discouraged. Instead, use the package manager (see *Package Management in Racket*), which installs and manages links (i.e., it builds on racolink) in a way that more gracefully leads to sharing collections with others. Nevertheless, racolink is available for direct use.

For example, the command

```
raco link maze
```

installs a user-specific and version-specific link for the "maze" collection, mapping it to the "maze" subdirectory of the current directory. Supply multiple directory paths to create multiple links at once, especially with a command-shell wildcard:

```
raco link *
```

By default, the linked collection name is the same as each directory's name, but the collection name can be set separately for a single directory with the --name flag.

To remove the link created by the first example above, use

```
raco link --remove maze
or
raco link -r maze
```

Like link-adding mode, removing mode accepts multiple directory paths to remove multiple links, and all links that match any directory are removed. If --name is used with --remove, then only links matching both the collection name and directory are removed.

Full command-line options:

- -1 or --list Shows the current link table. If any other command-line arguments are provided that modify the link table, the table is shown after modifications. If no directory arguments are provided, and if none of -u, --user, -i, --installation, -f, or --file are specified, then the link table is shown for all user-specific and installation-wide collection links files.
- -n $\langle name \rangle$ or --name $\langle name \rangle$ Sets the collection name for adding a single link or removing matching links. By default, the collection name for an added link is derived from the directory name. When the -r or --remove flag is also used, only links with a collection name matching $\langle name \rangle$ are removed, and if no directory arguments

are provided, all links with a match to $\langle name \rangle$ are removed. This flag is mutually exclusive with -d and --root.

- -d or --root Treats each directory as a collection root that contains collection directories, instead of a directory for a specific collection. When the -r or --remove flag is also used, only collection-root links that match a directory are removed. This flag is mutually exclusive with -n and --name.
- -D or --static-root Like -d or --root, but each directory is assumed to have a constant set of subdirectories (to improve the use of collection-search caches) as long as the links file itself does not change.
- -x $\langle regexp \rangle$ or --version-regexp $\langle regexp \rangle$ Sets a version regexp that limits the link to use only by Racket versions (as reported by version) matching $\langle regexp \rangle$. This flag is normally used with -u or --user with installations that have different versions but the same installation name. When the -r or --remove flag is also used, only links with a version regexp matching $\langle regexp \rangle$ are removed.
- -r or --remove Selects remove mode instead of add mode.
- -u or --user Limits listing and removal of links to the user-specific collection links file and not the installation-wide collection links file. This flag is mutually exclusive with -i, --installation, -f, and --file.
- -i or --installation Reads and writes links in installation-wide collection links file and not the user-specific collection links file. This flag is mutually exclusive with -u, --user, -f, and --file.
- -f $\langle file \rangle$ or --file $\langle file \rangle$ Reads and writes links in $\langle file \rangle$ instead of the user-specific collection links file. This flag is mutually exclusive with -u, --user, -s, --shared, -i, and --installation.
- -v (vers) or --version (vers) Selects (vers) as relevant installation name for operations on the user-specific collection links file.
- --repair Enables repairs to the existing file content when the content is erroneous. The file is repaired by deleting individual links when possible.

9.1 API for Collection Links

(require setup/link) package: base

```
(links dir
       [#:user? user?
       #:user-version user-version
       #:file file
       #:name name
       #:root? root?
       #:static-root? static-root?
       #:version-regexp version-regexp
       #:error error-proc
       #:remove? remove?
       #:show? show?
       #:repair? repair?
       #:with-path? with-path?])

ightarrow list?
 dir: path?
 user? : any/c = #t
 user-version : string? = (get-installation-name)
 file : (or/c path-string? #f) = #f
 name : (or/c string? #f) = #f
 root? : any/c = #f
 static-root? : any/c = #f
 version-regexp : (or/c regexp? #f) = #f
 error-proc : (symbol? string? any/c ... . -> . any) = error
 remove? : any/c = #f
 show? : any/c = #f
 repair? : any/c = #f
 with-path? : any/c = #f
```

A function version of the raco link command that always works on a single file—either file if it is a path string, the user-specific collection links file if user? is true, or the installation-wide collection links file otherwise. If user? is true, then user-version determines the relevant installation name (defaulting to the current installation's name).

The static-root? flag value is ignored unless root? is true and remove? is false, in which case each given dir is added as a static root if static-root? is true.

The error-proc argument is called to raise exceptions that would be fatal to the raco link command.

If remove? is true, the result is a list of entries that were removed from the file. If remove? is #f but root? is true, the result is a list of paths for collection roots. If remove? and root? are both #f, the result is a list for top-level collections that are mapped by file and that apply to the running version of Racket; the list is a list of strings for collection names if with-path? is #f, or it is a list of pairs of collection-name strings and complete paths if with-path? is true.

10 raco pack: Packing Library Collections

The raco pack command creates an archive of files and directories. Formerly, such archives were used directly to distribute library files to Racket users, but the package manager (see *Package Management in Racket*) is now the preferred mechanism for distribution.

A packed archive usually has the suffix ".plt". The raco pkg command recognizes a ".plt" archive for installation as a package. The raco setup command (see §6 "raco setup: Installation Management") also supports ".plt" unpacking and installation when using the -A flag, but such installations do not benefit from the more general management facilities of raco pkg, while the raco unpack command (see §11 "raco unpack: Unpacking Library Collections") unpacks an archive locally without attempting to install it. DrRacket recognizes the ".plt" and currently treats such an archive in the same way as raco setup -A.

An archive contains the following elements:

A set of files and directories to be unpacked, and flags indicating whether they are
to be unpacked relative to the Racket add-ons directory (which is user-specific), the
Racket installation directory, or a user-selected directory.

The files and directories for an archive are provided on the command line to raco pack, either directly or in the form of collection names when the --collect flag is used.

The --at-plt flag indicates that the files and directories should be unpacked relative to the user's add-ons directory, unless the user specifies the Racket installation directory when unpacking. The --collection-plt flag implies --at-plt. The --all-users flag overrides --at-plt, and it indicates that the files and directories should be unpacked relative to the Racket installation directory, always.

- A flag for each file indicating whether it overwrites an existing file when the archive is unpacked; the default is to leave the old file in place, but the --replace flag enables replacing for all files in the archive.
- A list of collections to be set-up (via raco setup) after the archive is unpacked;
 the ++setup flag adds a collection name to the archive's list, but each collection for --collection-plt is added automatically.
- A name for the archive, which is reported to the user by the unpacking interface; the
 --plt-name flag sets the archive's name, but a default name is determined automatically when using --collect.
- A list of required collections (with associated version numbers) and a list of conflicting collections; the raco pack command always names the "racket" collection in the required list (using the collection's pack-time version), raco pack names each packed collection in the conflict list (so that a collection is not unpacked on top of a

different version of the same collection), and raco pack extracts other requirements and conflicts from the "info.rkt" files of collections when using --collect.

Specify individual directories and files for the archive when not using --collect. Each file and directory must be specified with a relative path. By default, if the archive is unpacked with DrRacket, the user will be prompted for a target directory, and if raco setup is used to unpack the archive, the files and directories will be unpacked relative to the current directory. If the --at-plt flag is provided, the files and directories will be unpacked relative to the user's Racket add-ons directory, instead. Finally, if the --all-users flag is provided, the files and directories will be unpacked relative to the Racket installation directory, instead.

Use the --collect flag to pack one or more collections; sub-collections can be designated by using a

a a path separator on all platforms. In this mode, raco pack automatically uses paths relative to the Racket installation or add-ons directory for the archived files, and the collections will be set-up after unpacking. In addition, raco pack consults each collection's "info.rkt" file, as described below, to determine the set of required and conflicting collections. Finally, raco pack consults the first collection's "info.rkt" file to obtain a default name for the archive. For example, the following command creates a "sirmail.plt" archive for distributing a "sirmail" collection:

```
raco pack --collect sirmail.plt sirmail
```

When packing collections, raco pack checks the following fields of each collection's "info.rkt" file (see §6.4 ""info.rkt" File Format"):

• requires — A list of the form (list (list coll vers) ...) where each coll is a non-empty list of relative-path strings, and each vers is a (possibly empty) list of exact integers. The indicated collections must be installed at unpacking time, with version sequences that match as much of the version sequence specified in the corresponding vers.

A collection's version is indicated by a version field in its "info.rkt" file, and the default version is the empty list. The version sequence generalized major and minor version numbers. For example, version '(2 5 4 7) of a collection can be used when any of '(), '(2), '(2 5), '(2 5 4), or '(2 5 4 7) is required.

• conflicts — A list of the form (list coll ...) where each coll is a nonempty list of relative-path strings. The indicated collections must *not* be installed at unpacking time.

For example, the "info.rkt" file in the "sirmail" collection might contain the following info declaration:

```
#lang info
(define name "SirMail")
(define mred-launcher-libraries (list "sirmail.rkt"))
```

```
(define mred-launcher-names (list "SirMail"))
(define requires (list (list "mred")))
```

Then, the "sirmail.plt" file (created by the command-line example above) will contain the name "SirMail." When the archive is unpacked, the unpacker will check that the "mred" collection is installed, and that "mred" has the same version as when "sirmail.plt" was created.

10.1 Format of ".plt" Archives

The extension ".plt" is not required for a distribution archive, but the ".plt"-extension convention helps users identify the purpose of a distribution file.

The raw format of a distribution file is described below. This format is uncompressed and sensitive to communication modes (text vs. binary), so the distribution format is derived from the raw format by first compressing the file using gzip, then encoding the gzipped file with the MIME base64 standard (which relies only the characters A-Z, a-z, 0-9, +, //, and =; all other characters are ignored when a base64-encoded file is decoded).

The raw format is

- PLT are the first three characters.
- · An S-expression matching

```
(lambda (request failure)
  (case request
       [(name) name]
      [(unpacker) (quote mzscheme)]
      [(requires) (quote requires)]
      [(conflicts) (quote conflicts)]
      [(plt-relative?) plt-relative?]
      [(plt-home-relative?) plt-home-relative?]
      [(test-plt-dirs) test-dirs]
      [else (failure)]))
```

where the name, requires, etc., meta-variables stand for S-expressions as follows:

- name a human-readable string describing the archive's contents. This name
 is used only for printing messages to the user during unpacking.
- requires a list of collections required to be installed before unpacking the archive, which associated versions; see the documentation of pack for details.
- conflicts a list of collections required not to be installed before unpacking the archive.

- plt-relative? a boolean; if true, then the archive's content should be unpacked relative to the plt add-ons directory.
- plt-home-relative? a boolean; if true and if 'plt-relative? is true, then the archive's content should be unpacked relative to the Racket installation.
- test-plt-dirs #f or a 'paths where paths is a list of path strings; in the latter case, a true value of plt-home-relative? is cancelled if any of the directories in the list (relative to the Racket installation) is unwritable by the user.

The S-expression is extracted from the archive using read (and the result is *not* evaluated).

• An S-expression matching

where *collections* is a list of collection paths (where each collection path is a list of strings); once the archive is unpacked, raco setup will compile and setup the specified collections.

The S-expression is extracted from the archive using read (and the result is *not* evaluated).

The archive continues with unpackables. Unpackables are extracted until the end-of-file is found (as indicated by an = in the base64-encoded input archive).

An *unpackable* is one of the following:

- The symbol 'dir followed by a list S-expression. The build-path procedure will be applied to the list to obtain a relative path for the directory (and the relative path is combined with the target directory path to get a complete path).
 - The 'dir symbol and list are extracted from the archive using read (and the result is *not* evaluated).
- The symbol 'file, a list, a number, an asterisk, and the file data. The list specifies the file's relative path, just as for directories. The number indicates the size of the file to be unpacked in bytes. The asterisk indicates the start of the file data; the next n bytes are written to the file, where n is the specified size of the file.
 - The symbol, list, and number are all extracted from the archive using read (and the result is *not* evaluated). After the number is read, input characters are discarded until an asterisk is found. The file data must follow this asterisk immediately.
- The symbol 'file-replace is treated like 'file, but if the file exists on disk already, the file in the archive replaces the file on disk.

10.2 API for Packing

```
(require setup/pack) package: base
```

Although the raco pack command can be used to create most ".plt" files, the setup/pack library provides a more general API for making ".plt" archives.

```
(pack-collections-plt
 dest
 name
 collections
[#:replace? replace?
 #:at-plt-home? at-home?
 #:test-plt-collects? test?
 #:extra-setup-collections collection-list
 #:file-filter filter-proc])
\rightarrow void?
dest : path-string?
name : string?
collections : (listof (listof path-string?))
replace? : boolean? = #f
at-home? : boolean? = #f
test?: boolean? = #t
collection-list : (listof path-string?) = null
filter-proc : (path-string? . -> . boolean?) = std-filter
```

Creates the ".plt" file specified by the pathname dest, using the name as the name reported to raco setup as the archive's description.

The archive contains the collections listed in *collections*, which should be a list of collection paths; each collection path is, in turn, a list of relative-path strings.

If the #:replace? argument is #f, then attempting to unpack the archive will report an error when any of the collections exist already, otherwise unpacking the archive will overwrite an existing collection.

If the #:at-plt-home? argument is #t, then the archived collections will be installed into the Racket installation directory instead of the user's directory if the main "collects" directory is writable by the user. If the #:test-plt-collects? argument is #f (the default is #t) and the #:at-plt-home? argument is #t, then installation fails if the main "collects" directory is not writable.

The optional #:extra-setup-collections argument is a list of collection paths that are not included in the archive, but are set-up when the archive is unpacked.

The optional #:file-filter argument is the same as for pack-plt.

Old, keywordless variant of pack-collections-plt for backward compatibility.

```
(pack-plt dest
          name
          paths
         [#:as-paths as-paths
          #:file-filter filter-proc
          #:encode? encode?
          #:file-mode file-mode-sym
          #:unpack-unit unpack-spec
          #:collections collection-list
          #:plt-relative? plt-relative?
          #:at-plt-home? at-plt-home?
          #:test-plt-dirs dirs
          #:requires mod-and-version-list
          \#: conflicts mod-list]) \rightarrow void?
 dest : path-string?
 name : string?
 paths : (listof path-string?)
 as-paths : (listof path-string?) = paths
 filter-proc : (path-string? . -> . boolean?) = std-filter
 encode? : boolean? = #t
 file-mode-sym : symbol? = 'file
 unpack-spec : any/c = #f
 collection-list : (listof path-string?) = null
 plt-relative? : any/c = #f
 at-plt-home?: any/c = #f
 dirs : (or/c (listof path-string?) false/c) = #f
 mod-and-version-list : (listof (listof path-string?)
                                (listof exact-integer?)) = null
```

```
mod-list : (listof (listof path-string?)) = null
```

Creates the ".plt" file specified by the pathname dest, using the string name as the name reported to raco setup as the archive's description. The paths argument must be a list of relative paths for directories and files; the contents of these files and directories will be packed into the archive. The optional as-paths list provides the path to be recorded in the archive for each element of paths (so that the unpacked paths can be different from the packed paths).

The #:file-filter procedure is called with the relative path of each candidate for packing. If it returns #f for some path, then that file or directory is omitted from the archive. If it returns 'file or 'file-replace for a file, the file is packed with that mode, rather than the default mode. The default is std-filter.

If the #:encode? argument is #f, then the output archive is in raw form, and still must be gzipped and mime-encoded (in that order). The default value is #t.

The #:file-mode argument must be 'file or 'file-replace, indicating the default mode for a file in the archive. The default is 'file.

The #:unpack-unit argument is usually #f. Otherwise, it must be an S-expression for the S-expression that describes unpacking; see §10.1 "Format of ".plt" Archives" more information about the unit. If the #:unpack-unit argument is #f, an appropriate S-expression is generated.

The #:collections argument is a list of collection paths to be compiled after the archive is unpacked. The default is the null.

If the #:plt-relative? argument is true (the default is #f), the archive's files and directories are to be unpacked relative to the user's add-ons directory or the Racket installation directories, depending on whether the #:at-plt-home? argument is true and whether directories specified by #:test-plt-dirs are writable by the user.

If the #:at-plt-home? argument is true (the default is #f), then #:plt-relative? must be true, and the archive is unpacked relative to the Racket installation directory. In that case, a relative path that starts with "collects" is mapped to the installation's main "collects" directory, and so on, for the following the initial directory names:

- "collects"
- "doc"
- "lib"
- "include"

If #:test-plt-dirs is a list, then #:at-plt-home? must be #t. In that case, when the archive is unpacked, if any of the relative directories in the #:test-plt-dirs list is

unwritable by the current user, then the archive is unpacked in the user's add-ons directory after all.

The #:requires argument should have the shape (list coll-path version) ...) where each coll-path is a non-empty list of relative-path strings, and each version is a (possibly empty) list of exact integers. The indicated collections must be installed at unpacking time, with version sequences that match as much of the version sequence specified in the corresponding version. A collection's version is indicated by the version field of its "info.rkt" file.

The #:conflicts argument should have the shape (list coll-path ...) where each coll-path is a non-empty list of relative-path strings. The indicated collections must not be installed at unpacking time.

```
(pack dest
      name
      paths
      collections
     filter
      encode?
      file-mode
      unpack-unit
      plt-relative?
      requires
      conflicts
      at-plt-home? \rightarrow void?
 dest : path-string?
 name : string?
 paths : (listof path-string?)
 collections : (listof path-string?)
 filter : (path-string? . -> . boolean?) = std-filter
 encode? : boolean? = #t
 file-mode : symbol? = 'file
 unpack-unit : any/c = #f
 plt-relative? : boolean? = #t
 requires : (listof (listof path-string?)
                    (listof exact-integer?)) = null
 conflicts : (listof (listof path-string?)) = null
 at-plt-home? : boolean? = #f
```

Old, keywordless variant of pack-plt for backward compatibility.

```
(std-filter p) \rightarrow boolean?
p : path-string?
```

Returns #t unless p, after stripping its directory path and converting to a byte string, matches

one of the following regular expressions: $^[.]git, ^[.]svn\$, ^CVS\$, ^[.]cvsignore, ^compiled\$, ^doc, <math>\sim\$, ^*.*\#\$, ^[.]\#, or [.]plt\$.$

```
(mztar path
    [#:as-path as-path]
    output
    filter
    file-mode) → void?
path : path-string?
as-path : path-string? = path
output : output-port?
filter : (path-string? . -> . boolean?)
file-mode : (symbols 'file 'file-replace)
```

Called by pack to write one directory/file path to the output port output using the filter procedure filter (see pack for a description of filter). The path is recorded in the output as as-path, in case the unpacked path should be different from the original path. The file-mode argument specifies the default mode for packing a file, either 'file or 'file-replace.

11 raco unpack: Unpacking Library Collections

The raco unpack command unpacks a ".plt" archive (see §10 "raco pack: Packing Library Collections") to the current directory without attempting to install any collections. Use raco pkg (see *Package Management in Racket*) to install a ".plt" archive as a package, or use raco setup -A (see §6 "raco setup: Installation Management") to unpack and install collections from a ".plt" archive.

Command-line flags:

- -1 or --list lists the content of the archive without unpacking it.
- -c or --config shows the archive configuration before unpacking or listing the archive content.
- -f or --force replace files that exist already; fails that the archive says should be replaced will be replaced without this flag.

11.1 Unpacking API

```
(require setup/unpack) package: base
```

The setup/unpack library provides raw support for unpacking a ".plt" file.

```
(unpack archive
       [main-collects-parent-dir
        print-status
        get-target-directory
        force?
        get-target-plt-directory]) \rightarrow void?
 archive : path-string?
 main-collects-parent-dir : path-string? = (current-directory)
 print-status : (string? . -> . any)
               = (lambda (x) (printf "\siman" x))
 get-target-directory : (-> path-string?)
                       = (lambda () (current-directory))
 force? : any/c = #f
                              (path-string?
                              path-string?
 get-target-plt-directory :
                               (listof path-string?)
                              . -> . path-string?)
                             (lambda (preferred-dir main-dir options)
                                preferred-dir)
```

Unpacks archive.

The main-collects-parent-dir argument is passed along to get-target-plt-directory.

The print-status argument is used to report unpacking progress.

The get-target-directory argument is used to get the destination directory for unpacking an archive whose content is relative to an arbitrary directory.

If force? is true, then version and required-collection mismatches (comparing information in the archive to the current installation) are ignored.

The <code>get-target-plt-directory</code> function is called to select a target for installation for an archive whose is relative to the installation. The function should normally return one if its first two arguments; the third argument merely contains the first two, but has only one element if the first two are the same. If the archive does not request installation for all uses, then the first two arguments will be different, and the former will be a user-specific location, while the second will refer to the main installation.

```
(fold-plt-archive archive
                   on-config-fn
                   on-setup-unit
                   on-directory
                   on-file
                   initial-value) \rightarrow any/c
 archive : path-string?
 on-config-fn : (any/c any/c . -> . any/c)
 on-setup-unit : (any/c input-port? any/c . -> . any/c)
                  ((or/c path-string?
                          (list/c (or/c 'collects 'doc 'lib 'include)
                                   path-string?))
 on-directory :
                   any/c
                   . \rightarrow . any/c)
             (or/c ((or/c path-string?
                           (list/c (or/c 'collects 'doc 'lib 'include)
                                    path-string?))
                    input-port?
                    any/c
                    \cdot \rightarrow \cdot \operatorname{any/c}
 on-file :
                   ((or/c path-string?
                           (list/c (or/c 'collects 'doc 'lib 'include)
                                    path-string?))
                    input-port?
                    (one-of/c 'file 'file-replace)
                    any/c
                    . \rightarrow . any/c)
 initial-value : any/c
```

Traverses the content of archive, which must be a ".plt" archive that is created with the default unpacking unit and configuration expression. The configuration expression is not evaluated, the unpacking unit is not invoked, and not files are unpacked to the filesystem. Instead, the information in the archive is reported back through on-config, on-setup-unit, on-directory, and on-file, each of which can build on an accumulated value that starts with initial-value and whose final value is returned.

The on-config-fn function is called once with an S-expression that represents a function to implement configuration information. The second argument to on-config is initial-value, and the function's result is passes on as the last argument to on-setup-unit.

The *on-setup-unit* function is called with the S-expression representation of the installation unit, an input port that points to the rest of the file, and the accumulated value. This input port is the same port that will be used in the rest of processing, so if *on-setup-unit* consumes any data from the port, then that data will not be consumed by the remaining functions. (This means that on-setup-unit can leave processing in an inconsistent state, which is not checked by anything, and therefore could cause an error.) The result of *on-setup-unit* becomes the new accumulated value.

For each directory that would be created by the archive when unpacking normally, *on-directory* is called with the directory path (described more below) and the accumulated value up to that point, and its result is the new accumulated value.

For each file that would be created by the archive when unpacking normally, on-file is called with the file path (described more below), an input port containing the contents of the file, an optional mode symbol indicating whether the file should be replaced, and the accumulated value up to that point; its result is the new accumulated value. The input port can be used or ignored, and parsing of the rest of the file continues the same either way. After on-file returns control, however, the input port is drained of its content.

A directory or file path can be a plain path, or it can be a list containing 'collects, 'doc, 'lib, or 'include and a relative path. The latter case corresponds to a directory or file relative to a target installation's collection directory (in the sense of find-collects-dir), documentation directory (in the sense of find-doc-dir), library directory (in the sense of find-lib-dir), or "include" directory (in the sense of find-include-dir).

12 raco ctool: Working with C Code

The raco ctool command works in various modes (as determined by command-line flags) to support various tasks involving C code.

12.1 Compiling and Linking C Extensions

A dynamic extension is a shared library (a.k.a. DLL) that extends Racket using the C API. An extension can be loaded explicitly via load-extension, or it can be loaded implicitly through require or load/use-compiled in place of a source file when the extension is located at

relative to file.

For information on writing extensions, see *Inside: Racket C API*.

Three raco ctool modes help for building extensions:

- --cc: Runs the host system's C compiler, automatically supplying flags to locate the Racket header files and to compile for inclusion in a shared library.
- --ld: Runs the host system's C linker, automatically supplying flags to locate and link to the Racket libraries and to generate a shared library.
- --xform: Transforms C code that is written without explicit GC-cooperation hooks to cooperate with Racket's 3m garbage collector; see §1 "Overview" in *Inside: Racket* C API.

Compilation and linking build on the dynext/compile and dynext/link libraries. The following raco ctool flags correspond to setting or accessing parameters for those libraries: --tool, --compiler, --ccf, --ccf, --ccf-clear, --ccf-show, --linker, ++ldf, --ldf, --ldf-clear, --ldf-show, ++ldl, --ldl-show, ++cppf, ++cppf ++cppf-clear, and --cppf-show.

The --3m flag specifies that the extension is to be loaded into the 3m variant of Racket. The --cgc flag specifies that the extension is to be used with the CGC. The default depends on raco: --3m if raco itself is running in 3m, --cgc if raco itself is running in CGC.

12.1.1 API for 3m Transformation

```
(require compiler/xform) package: cext-lib
```

```
(xform quiet?
    input-file
    output-file
    include-dirs
    [#:keep-lines? keep-lines?]) → any/c
  quiet?: any/c
  input-file: path-string?
  output-file: path-string?
  include-dirs: (listof path-string?)
  keep-lines?: boolean? = #f
```

Transforms C code that is written without explicit GC-cooperation hooks to cooperate with Racket's 3m garbage collector; see §1 "Overview" in *Inside: Racket C API*.

The arguments are as for compile-extension; in addition keep-lines? can be #t to generate GCC-style annotations to connect the generated C code with the original source locations.

The file generated by xform can be compiled via compile-extension.

12.2 Embedding Modules via C

The --c-mods mode for raco ctool takes a set of Racket modules and generates a C source file that can be used as part of program that embeds the Racket run-time system. See §1.5 "Embedding Racket into a Program" in *Inside: Racket C API* for an explanation of embedding programs.

The generated source file embeds the specified modules, and it defines a declare_modules function that puts the module declarations into a namespace. Thus, using the output of raco ctool --c-mods, a program can embed Racket with a set of modules so that it does not need a "collects" directory to load modules at run time.

12.3 API for Raw Compilation

```
(require compiler/compiler) package: base
```

The compiler/compiler library provides the functionality of raco make for compilation to bytecode, but through a Racket API.

12.3.1 Bytecode Compilation

Supplying just expr returns a compiler that is initialized with the expression expr, as described below.

The compiler takes a list of Racket files and compiles each of them to bytecode, placing the resulting bytecode in a ".zo" file within the directory specified by dest-dir. If dest-dir is #f, each bytecode result is placed in the same directory as its source file. If dest-dir is 'auto, each bytecode file is placed in a "compiled" subdirectory relative to the source; the directory is created if necessary.

If expr is anything other than #f, then a namespace is created for compiling the files that are supplied later, and expr is evaluated to initialize the created namespace. For example, expr might load a set of macros. In addition, the expansion-time part of each expression later compiled is evaluated in the namespace before being compiled, so that the effects are visible when compiling later expressions.

If expr is #f, then no compilation namespace is created (the current namespace is used), and expressions in the files are assumed to compile independently (so there's no need to evaluate the expansion-time part of an expression to compile).

Typically, expr is #f for compiling module files, and it is (void) for compiling files with top-level definitions and expressions.

If module? is #t, then the given files are read and compiled as modules (so there is no dependency on the current namespace's top-level environment).

If *verbose?* is #t, the output file for each given file is reported through the current output port.

```
(compile-collection-zos
  collection ...+
[#:skip-path skip-path
  #:skip-doc-sources? skip-docs?
  #:managed-compile-zo managed-compile-zo])
  → void?
  collection : string?
  skip-path : (or/c path-string? #f) = #f
```

Compiles the specified collection's files to ".zo" files by using managed-compile-zo on each source file. The ".zo" files are placed into the collection's "compiled" directory.

By default, all files with the extension ".rkt", ".ss", or ".scm" in a collection are compiled, as are all such files within subdirectories, execept that any file or directory whose path starts with skip-path is skipped. ("Starts with" means that the simplified path p's bytestring form after (simplify-path p #f) starts with the byte-string form of (simplify-path skip-path #f).)

The collection compiler reads the collection's "info.rkt" file (see §6.4 ""info.rkt" File Format") to obtain further instructions for compiling the collection. The following fields are used:

- name: The name of the collection as a string, used only for status and error reporting.
- compile-omit-paths: A list of immediate file and directory paths that should not be compiled. Alternatively, this field's value 'all, which is equivalent to specifying all files and directories in the collection (to effectively ignore the collection for compilation). Automatically omitted files and directories are "compiled", "doc", and those whose names start with ...

Files that are required by other files, however, are always compiled in the process of compiling the requiring file—even when the required file is listed with this field or when the field's value is 'all.

- compile-omit-files: A list of filenames (without directory paths); that are not compiled, in addition to the contents of compile-omit-paths. Do not use this field; it is for backward compatibility.
- scribblings: A list of pairs, each of which starts with a path for documentation source. The sources (and the files that they require) are compiled in the same way as ".rkt", ".ss", and ".scm" files, unless the provided skip-docs? argument is a true value.

```
(compile-directory-zos
  path
  info
[#:verbose verbose?
  #:skip-path skip-path
  #:skip-doc-sources? skip-docs?
  #:managed-compile-zo managed-compile-zo])
  → void?
  path : path-string?
```

Like compile-collection-zos, but compiles the given directory rather than a collection. The *info* function behaves like the result of get-info to supply "info.rkt" fields, instead of using an "info.rkt" file (if any) in the directory.

12.3.2 Loading Compiler Support

The compiler unit loads certain tools on demand via dynamic-require and get-info. If the namespace used during compilation is different from the namespace used to load the compiler, or if other load-related parameters are set, then the following parameter can be used to restore settings for dynamic-require.

```
(current-compiler-dynamic-require-wrapper)
  → ((-> any) . -> . any)
(current-compiler-dynamic-require-wrapper proc) → void?
  proc : ((-> any) . -> . any)
```

A parameter whose value is a procedure that takes a thunk to apply. The default wrapper sets the current namespace (via parameterize) before calling the thunk, using the namespace in which the compiler/compiler library was originally instantiated.

12.3.3 Options for the Compiler

```
(require compiler/option) package: base
```

The compiler/option module provides options (in the form of parameters) that control the compiler's behaviors.

More options are defined by the dynext/compile and dynext/link libraries, which control the actual C compiler and linker that are used for compilation via C.

```
(somewhat-verbose) → boolean?
(somewhat-verbose on?) → void?
on?: any/c
```

A #t value for the parameter causes the compiler to print the files that it compiles and produces. The default is #f.

```
(verbose) → boolean?
(verbose on?) → void?
on?: any/c
```

A #t value for the parameter causes the compiler to print verbose messages about its operations. The default is #f.

```
(compile-subcollections) → (one-of/c #t #f)
(compile-subcollections cols) → void?
cols: (one-of/c #t #f)
```

A parameter that specifies whether sub-collections are compiled by compile-collection-zos. The default is #t.

12.3.4 The Compiler as a Unit

Signatures

```
(require compiler/sig) package: compiler-lib
compiler^ : signature
```

Includes all of the names exported by compiler/compiler.

```
compiler:option^ : signature
```

Includes all of the names exported by compiler/option.

Main Compiler Unit

```
(require compiler/compiler-unit) package: compiler-lib
compiler@ : unit?
```

Provides the exports of compiler/compiler in unit form, where C-compiler operations are imports to the unit, although they are not used.

The unit imports compiler:option, dynext:compile, dynext:link, and dynext:file. It exports compiler.

Options Unit

```
(require compiler/option-unit)
package: compiler-lib
```

compiler:option@ : unit?

Provides the exports of compiler/option in unit form. It imports no signatures, and exports compiler:option.

13 raco test: Run tests

The raco test command requires and runs the test submodule (if any) associated with each path given on the command line. When a path refers to a directory, the tool recursively discovers all files that end in ".rkt" within the directory and runs their test submodules.

The raco test command accepts a few flags:

- -s $\langle name \rangle$ or --submodule $\langle name \rangle$ Requires the submodule $\langle name \rangle$ rather than test.
- -r or --run-if-absent Requires the top-level module of a file if the relevant submodule is not present. This is the default mode.
- -x or --no-run-if-absent Ignores a file if the relevant submodule is not present.
- -c or --collection Intreprets the arguments as collections where all files should be tested.
- -p or --package Intreprets the arguments as packages where all files should be tested. (All package scopes are searched for the first, most specific package.)

14 raco docs: Documentation Search

The raco docs command searches the documentation for the given identifiers or search terms.

Command-line flags:

- -h or --help show help information for this command
- -- do not treat remaining arguments as switches

15 raco expand: Macro Expansion

The raco expand command macro expands the contents of the given source files. Also see expand.

Command-line flags:

- -n $\langle n \rangle$ or --columns $\langle n \rangle$ format output for a display with $\langle n \rangle$ columns
- -h or --help show help information for this command
- -- do not treat remaining arguments as switches

16 raco scribble: Building Documentation

See *Scribble: The Racket Documentation Tool* for information on the raco scribble command, which is used to run and render a Scribble document.

17 Adding a raco Command

The set of commands supported by raco can be extended by installed packages, PLaneT packages, and other collections. A command is added by defining raco-commands in the "info.rkt" library of a collection (see §6.4 ""info.rkt" File Format"), and then raco setup (as called directly or as part of a package or PLaneT installation) must index the "info.rkt" file.

The value bound to raco-commands must be a list of command specifications, where each specification is a list of four values:

```
(list command-string
    implementation-module-path
    description-string
    prominence)
```

The *command-string* is the command name. Any unambiguous prefix of a command name can be supplied to raco to invoke the command.

The *implementation-module-path* names the implementation though a module path (in the sense of module-path?). The module is loaded and invoked through dynamic-require to run the command. The module can access command-line arguments through the current-command-line-arguments parameter, which is adjusted before loading the command module to include only the arguments to the command. The current-command-name parameter is also set to the command name used to load the command. When raco help is used on a command, the command is launched with an initial --help argument in current-command-line-arguments.

The description-string is a short string used to describe the command in response to raco help. The description should not be capitalized or end with a period.

The *prominence* value should be a read number or #f. A #f value means that the command should not be included in the short list of "frequently used commands." A number indicates the relative prominence of the command; the help command has a value of 110, and probably no command should be more prominent. The pack tool, which is currently ranked as the least-prominent of the frequently used commands, has a value of 10.

As an example, the "info.rkt" of the "compiler" collection might contain the

```
(define raco-commands
  '(("make" compiler/commands/make "compile source to byte-
code" 100)
    ("decompile" compiler/commands/decompile "decompile byte-
code" #f)))
```

so that make is treated as a frequently used command, while decompile is available as an

infrequently used command.

17.1 Command Argument Parsing

```
(require raco/command-name) package: base
```

The raco/command-name library provides functions to help a raco command identify itself to users.

```
(current-command-name) → (or/c string? #f)
(current-command-name name) → void?
  name : (or/c string? #f)
```

The name of the command currently being loaded via dynamic-require, or #f if raco is not loading any command.

A command implementation can use this parameter to determine whether it was invoked via raco or through some other means.

```
(short-program+command-name) \rightarrow string?
```

Returns a string that identifies the current command. When current-command-name is a string, then the result is the short name of the raco executable followed by a space and the command name. Otherwise, it is the short name of the current executable, as determined by stripping the path from the result of (find-system-path 'run-file).

The result of this function is suitable for use with command-line. For example, the decompile tool parses command-line arguments with

```
(define source-files
   (command-line
    #:program (short-program+command-name)
   #:args source-or-bytecode-file
   source-or-bytecode-file))

so that raco decompile --help prints

raco decompile [ <option> ... ] [<source-or-bytecode-file>] ...
   where <option> is one of
   --help, -h : Show this help
   -- : Do not treat any remaining argument as a switch (at this level)

Multiple single-letter switches can be combined after one '-'; for example: '-h-' is the same as '-h --'
```

```
 | (program+command-name) \rightarrow string?
```

Like short-program+command-name, but the path (if any) is not stripped from the current executable's name.

18 Installation Configuration and Search Paths

A *configuration directory* path is built into the Racket executable as selected at install time, and its location can be changed via the PLTCONFIGDIR directory or --config/-G command-line flag. Use find-config-dir to locate the configuration directory.

Modify the "config.rktd" file in the configuration directory to configure other directories as described below. Use the setup/dirs library (which combines information from the configuration files and other sources) to locate configured directories, instead of reading "config.rktd" directly.

The path of the *main collection directory* is built into the Racket executable, and it can be changed via the --collects/-X flag, so it has no entry in "config.rktd". Most paths that are specified in "config.rktd" have default values that are relative to the main collection directory. The paths of the configuration directory and main collection directory thus work together to determine a Racket configuration.

A "config.rktd" file in the configuration directory should contain a readable hash table with any of the following symbolic keys, where a relative path is relative to the main collection directory:

- 'installation-name a string for the installation name, which is used to determine user- and version-specific paths, such as the initial path produced by find-library-collection-paths and the location of packages that are installed in user package scope. The default is (version).
- 'lib-dir a path, string, or byte string for the *main library directory*. It defaults to a "lib" sibling directory of the main collection directory.
- 'lib-search-dirs a list of paths, strings, byte strings, or #f representing the search path for directories containing foreign libraries. Each #f in the list, if any, is replaced with the default search path, which is the user- and version-specific "lib" directory followed by the main library directory.
- 'dll-dir a path, string, or byte string for a directory containing shared libraries for the main executable. It defaults to the main library directory.
- 'share-dir a path, string, or byte string for the *main shared-file directory*, which normally includes installed packages. It defaults to a "share" sibling directory of the main collection directory.
- 'links-file a path, string, or byte string for the collection links file. It defaults to a "links.rktd" file in the main shared-file directory.
- 'links-search-files like 'lib-search-dirs, but for collection links file.
- 'pkgs-dir a path, string, or byte string for packages that have installation package scope. It defaults to "pkgs" in the main shared-file directory.

- 'pkgs-search-dirs like 'lib-search-dirs, but for packages in installation package scope.
- 'bin-dir a path, string, or byte string for the installation's directory containing executables. It defaults to a "bin" sibling directory of the main collection directory.
- 'apps-dir a path, string, or byte string for the installation's directory for ".desktop" files. It defaults to a "applications" subdirectory of the main shared-file directory.
- 'man-dir a path, string, or byte string for the installation's man-page directory. It defaults to a "man" sibling directory of the main collection directory.
- 'doc-dir a path, string, or byte string for the main documentation directory. The value defaults to a "doc" sibling directory of the main collection directory.
- 'doc-search-dirs like 'lib-search-dirs, but for directories containing documentation.
- 'doc-search-url a URL string that is augmented with version and search-tag queries to form a remote documentation reference.
- 'include-dir a path, string, or byte string for the main directory containing C
 header files. It defaults to an "include" sibling directory of the main collection
 directory.
- 'include-search-dirs like doc-search-dirs, but for directories containing C header files.
- 'catalogs a list of URL strings used as the search path for resolving package names. An #f in the list is replaced with the default search path.
- 'default-scope either "user" or "installation", determining the default package scope for package-management operations.
- 'download-cache-dir a path string used as the location for storing downloaded package archives. When not specified, packages are cached in a "download-cache" directory in the user's add-on directory as reported by (find-system-path 'addon-dir).
- 'download-cache-max-files and 'download-cache-max-bytes real numbers that determine limits on the download cache. When not specified, the cache is allowed to hold up to 1024 files that total up to 64 MB.
- 'build-stamp a string that identifies a build, which can be used to augment the Racket version number to more specifically identify the build. An empty string is normally appropriate for a release build.
- 'absolute-installation? a boolean that is #t if the installation uses absolute path names, #f otherwise.

- 'cgc-suffix a string used as the suffix (before the actual suffix, such as ".exe") for a "CGC" executable. Use Windows-style casing, and the string will be downcased as appropriate (e.g., for a Unix binary name). A #f value means that if the racket binary identifies itself as CGC, then the suffix is "", otherwise it is "CGC".
- '3m-suffix analogous to 'cgc-suffix, but for 3m. A #f value means that if the "racket" binary identifies itself as CGC, then the suffix is "3m", otherwise it is "".