
Unstable: May Change Without Warning
Version 5.92

January 25, 2014

This manual documents some of the libraries available in the unstable collection. See also
the unstable GUI libraries documentation.

The name unstable is intended as a warning that the interfaces in particular are unsta-
ble. Developers of planet packages and external projects should avoid using modules in the
unstable collection. Contracts may change, names may change or disappear, even entire
modules may move or disappear without warning to the outside world.

Developers of unstable libraries must follow the guidelines in §1 “Guidelines for Developing
unstable Libraries”.

1

1 Guidelines for Developing unstable Libraries

Any collection developer may add modules to the unstable collection.

Every module needs an owner to be responsible for it.

• If you add a module, you are its owner. Add a comment with your name at the top of
the module.

• If you add code to someone else’s module, tag your additions with your name. The
module’s owner may ask you to move your code to a separate module if they don’t
wish to accept responsibility for it.

When changing a library, check all uses of the library in the collections tree and update them
if necessary. Notify users of major changes.

Place new modules according to the following rules. (These rules are necessary for main-
taining PLT’s separate text, gui, and drracket distributions.)

• Non-GUI modules go under unstable (or subcollections thereof). Put the docu-
mentation in unstable/scribblings and include with include-section from
unstable/scribblings/unstable.scrbl.

• GUI modules go under unstable/gui. Put the documentation in un-

stable/scribblings/gui and include them with include-section from
unstable/scribblings/gui.scrbl.

• Do not add modules depending on DrRacket to the unstable collection.

• Put tests in tests/unstable.

Keep documentation and tests up to date.

2

2 Automata: Compiling State Machines

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/automata) package: base

This package provides macros and functions for writing state machines over racket/match
patterns (as opposed to concrete characters.)

2.1 Machines

(require unstable/automata/machine)

package: unstable-lib

Each of the subsequent macros compile to instances of the machines provided by this mod-
ule. This is a documented feature of the modules, so these functions should be used to, for
example, determine if the machine is currently accepting.

(struct machine (next))
next : (any/c . -> . machine?)

An applicable structure for machines. When the structure is applied, the next field is used
as the procedure.

(struct machine-accepting machine (next))

next : (any/c . -> . machine?)

A sub-structure of machine that is accepting.

(machine-accepts? m i) → boolean?

m : machine?

i : (listof any/c)

Returns #t if m ends in an accepting state after consuming every element of i .

(machine-accepts?/prefix-closed m i) → boolean?

m : machine?

i : (listof any/c)

Returns #t if m stays in an accepting state during the consumption of every element of i .

machine-null : machine?

3

A machine that is never accepting.

machine-epsilon : machine?

A machine that is initially accepting and never accepting afterwards.

machine-sigma* : machine?

A machine that is always accepting.

(machine-complement m) → machine?

m : machine?

A machine that inverts the acception criteria of m .

(machine-star m) → machine?
m : machine?

A machine that simulates the Kleene star of m . m may be invoked many times.

(machine-union m0 m1) → machine?
m0 : machine?

m1 : machine?

A machine that simulates the union of m0 and m1 .

(machine-intersect m0 m1) → machine?
m0 : machine?

m1 : machine?

A machine that simulates the intersection of m0 and m1 .

(machine-seq m0 m1) → machine?

m0 : machine?

m1 : machine?

A machine that simulates the sequencing of m0 and m1 . m1 may be invoked many times.

(machine-seq* m0 make-m1) → machine?

m0 : machine?

make-m1 : (-> machine?)

A machine that simulates the sequencing of m0 and (make-m1). (make-m1) may be in-
voked many times.

4

2.2 Deterministic Finite Automata

(require unstable/automata/dfa) package: unstable-lib

This module provides a macro for deterministic finite automata.

(dfa start

(end ...)

[state ([evt next-state]

...)]

...)

start : identifier?

end : identifier?

state : identifier?

next-state : identifier?

A machine that starts in state start where each state behaves as specified in the rules. If
a state is in (end ...), then it is constructed with machine-accepting. next-state
need not be a state from this DFA.

Examples:

(define M

(dfa s1 (s1)

[s1 ([0 s2]

[(? even?) s1])]

[s2 ([0 s1]

[(? even?) s2])]))

> (machine-accepts? M (list 2 0 4 0 2))

#t

> (machine-accepts? M (list 0 4 0 2 0))

#f

> (machine-accepts? M (list 2 0 2 2 0 8))

#t

> (machine-accepts? M (list 0 2 0 0 10 0))

#t

> (machine-accepts? M (list))

#t

> (machine-accepts? M (list 4 0))

#f

5

2.3 Non-Deterministic Finite Automata

(require unstable/automata/nfa) package: unstable-lib

This module provides a macro for non-deterministic finite automata.

(nfa (start:id ...)

(end:id ...)

[state:id ([evt:expr (next-state:id ...)]

...)]

...)

start : identifier?

end : identifier?

state : identifier?

next-state : identifier?

A machine that starts in state (set start ...) where each state behaves as specified in
the rules. If a state is in (end ...), then the machine is accepting. next-state must be a
state from this NFA.

These machines are efficiently compiled to use the smallest possible bit-string as a set repre-
sentation and unsafe numeric operations where appropriate for inspection and adjusting the
sets.

Examples:

(define M

(nfa (s1 s3) (s1 s3)

[s1 ([0 (s2)]

[1 (s1)])]

[s2 ([0 (s1)]

[1 (s2)])]

[s3 ([0 (s3)]

[1 (s4)])]

[s4 ([0 (s4)]

[1 (s3)])]))

> (machine-accepts? M (list 1 0 1 0 1))

#t

> (machine-accepts? M (list 0 1 0 1 0))

#t

> (machine-accepts? M (list 1 0 1 1 0 1))

#t

> (machine-accepts? M (list 0 1 0 0 1 0))

6

#t

> (machine-accepts? M (list))

#t

> (machine-accepts? M (list 1 0))

#f

2.4 Non-Deterministic Finite Automata (with epsilon transitions)

(require unstable/automata/nfa-ep)

package: unstable-lib

This module provides a macro for non-deterministic finite automata with epsilon transitions.

epsilon

A binding for use in epsilon transitions.

(nfa/ep (start:id ...)

(end:id ...)

[state:id ([epsilon (epsilon-state:id ...)]

...

[evt:expr (next-state:id ...)]

...)]

...)

start : identifier?

end : identifier?

state : identifier?

epsilon-state : identifier?

next-state : identifier?

Extends nfa with epsilon transitions, which must be listed first for each state.

Examples:

(define M

(nfa/ep (s0) (s1 s3)

[s0 ([epsilon (s1)]

[epsilon (s3)])]

[s1 ([0 (s2)]

[1 (s1)])]

[s2 ([0 (s1)]

[1 (s2)])]

7

[s3 ([0 (s3)]

[1 (s4)])]

[s4 ([0 (s4)]

[1 (s3)])]))

> (machine-accepts? M (list 1 0 1 0 1))

#t

> (machine-accepts? M (list 0 1 0 1 0))

#t

> (machine-accepts? M (list 1 0 1 1 0 1))

#t

> (machine-accepts? M (list 0 1 0 0 1 0))

#t

> (machine-accepts? M (list))

#t

> (machine-accepts? M (list 1 0))

#f

2.5 Regular Expressions

(require unstable/automata/re) package: unstable-lib

This module provides a macro for regular expression compilation.

(re re-pat)

re-pat = (rec id re-pat)

| ,expr

| (complement re-pat)

| (seq re-pat ...)

| (union re-pat ...)

| (star re-pat)

| epsilon

| nullset

| re-transformer

| (re-transformer . datum)

| (dseq pat re-pat)

| pat

Compiles a regular expression over match patterns to a machine.

The interpretation of the pattern language is mostly intuitive. The pattern language may be
extended with define-re-transformer. dseq allows bindings of the match pattern to be
used in the rest of the regular expression. (Thus, they are not really regular expressions.)
unquote escapes to Racket to evaluate an expression that evaluates to a regular expression

8

(this happens once, at compile time.) rec binds a Racket identifier to a delayed version
of the inner expression; even if the expression is initially accepting, this delayed version is
never accepting.

The compiler will use an NFA, provided complement and dseq are not used. Oth-
erwise, many NFAs connected with the machine simulation functions from unsta-

ble/automata/machine are used.

complement
seq

union

star
epsilon

nullset
dseq

rec

Bindings for use in re.

(define-re-transformer id expr)

Binds id as an regular expression transformer used by the re macro. The expression should
evaluate to a function that accepts a syntax object and returns a syntax object that uses the
regular expression pattern language.

2.5.1 Extensions

(require unstable/automata/re-ext)

package: unstable-lib

This module provides a few transformers that extend the syntax of regular expression pat-
terns.

(opt re-pat)

Optionally matches re-pat .

(plus re-pat)

Matches one or more re-pat in sequence.

(rep re-pat num)

9

Matches re-pat in sequence num times, where num must be syntactically a number.

(difference re-pat_0 re-pat_1)

Matches everything that re-pat_0 does, except what re-pat_1 matches.

(intersection re-pat_0 re-pat_1)

Matches the intersection of re-pat_0 and re-pat_1 .

(seq/close re-pat ...)

Matches the prefix closure of the sequence (seq re-pat ...).

2.5.2 Examples

Examples:

> (define-syntax-rule (test-re R (succ ...) (fail ...))

(let ([r (re R)])

(printf "Success: ∼v => ∼v\n" succ (machine-

accepts? r succ))

...

(printf "Failure: ∼v => ∼v\n" fail (machine-

accepts? r fail))

...))

> (test-re epsilon

[(list)]

[(list 0)])

Success: '() => #t

Failure: '(0) => #f

> (test-re nullset

[]

[(list) (list 1)])

Failure: '() => #f

Failure: '(1) => #f

> (test-re "A"

[(list "A")]

[(list)

(list "B")])

10

Success: '("A") => #t

Failure: '() => #f

Failure: '("B") => #f

> (test-re (complement "A")

[(list)

(list "B")

(list "A" "A")]

[(list "A")])

Success: '() => #t

Success: '("B") => #t

Success: '("A" "A") => #t

Failure: '("A") => #f

> (test-re (union 0 1)

[(list 1)

(list 0)]

[(list)

(list 0 1)

(list 0 1 1)])

Success: '(1) => #t

Success: '(0) => #t

Failure: '() => #f

Failure: '(0 1) => #f

Failure: '(0 1 1) => #f

> (test-re (seq 0 1)

[(list 0 1)]

[(list)

(list 0)

(list 0 1 1)])

Success: '(0 1) => #t

Failure: '() => #f

Failure: '(0) => #f

Failure: '(0 1 1) => #f

> (test-re (star 0)

[(list)

(list 0)

(list 0 0)]

[(list 1)])

Success: '() => #t

Success: '(0) => #t

Success: '(0 0) => #t

Failure: '(1) => #f

11

> (test-re (opt "A")

[(list)

(list "A")]

[(list "B")])

Success: '() => #t

Success: '("A") => #t

Failure: '("B") => #f

> (define-re-transformer my-opt

(syntax-rules ()

[(_ pat)

(union epsilon pat)]))

> (test-re (my-opt "A")

[(list)

(list "A")]

[(list "B")])

Success: '() => #t

Success: '("A") => #t

Failure: '("B") => #f

> (test-re (plus "A")

[(list "A")

(list "A" "A")]

[(list)])

Success: '("A") => #t

Success: '("A" "A") => #t

Failure: '() => #f

> (test-re (rep "A" 3)

[(list "A" "A" "A")]

[(list)

(list "A")

(list "A" "A")])

Success: '("A" "A" "A") => #t

Failure: '() => #f

Failure: '("A") => #f

Failure: '("A" "A") => #f

> (test-re (difference (? even?) 2)

[(list 4)

(list 6)]

[(list 3)

(list 2)])

Success: '(4) => #t

Success: '(6) => #t

12

Failure: '(3) => #f

Failure: '(2) => #f

> (test-re (intersection (? even?) 2)

[(list 2)]

[(list 1)

(list 4)])

Success: '(2) => #t

Failure: '(1) => #f

Failure: '(4) => #f

> (test-re (complement (seq "A" (opt "B")))

[(list "A" "B" "C")]

[(list "A")

(list "A" "B")])

Success: '("A" "B" "C") => #t

Failure: '("A") => #f

Failure: '("A" "B") => #f

> (test-re (seq epsilon 1)

[(list 1)]

[(list 0)

(list)])

Success: '(1) => #t

Failure: '(0) => #f

Failure: '() => #f

> (test-re (seq 1 epsilon)

[(list 1)]

[(list 0)

(list)])

Success: '(1) => #t

Failure: '(0) => #f

Failure: '() => #f

> (test-re (seq epsilon

(union (seq (star 1) (star (seq 0 (star 1) 0 (star 1))))

(seq (star 0) (star (seq 1 (star 0) 1 (star 0)))))

epsilon)

[(list 1 0 1 0 1)

(list 0 1 0 1 0)

(list 1 0 1 1 0 1)

(list 0 1 0 0 1 0)

(list)]

[(list 1 0)])

Success: '(1 0 1 0 1) => #t

13

Success: '(0 1 0 1 0) => #t

Success: '(1 0 1 1 0 1) => #t

Success: '(0 1 0 0 1 0) => #t

Success: '() => #t

Failure: '(1 0) => #f

> (test-re (star (complement 1))

[(list 0 2 3 4)

(list)

(list 2)

(list 234 5 9 1 9 0)

(list 1 0)

(list 0 1)]

[(list 1)])

Success: '(0 2 3 4) => #t

Success: '() => #t

Success: '(2) => #t

Success: '(234 5 9 1 9 0) => #t

Success: '(1 0) => #t

Success: '(0 1) => #t

Failure: '(1) => #f

> (test-re (dseq x (? (curry equal? x)))

[(list 0 0)

(list 1 1)]

[(list)

(list 1)

(list 1 0)])

Success: '(0 0) => #t

Success: '(1 1) => #t

Failure: '() => #f

Failure: '(1) => #f

Failure: '(1 0) => #f

14

3 Bytes

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/bytes) package: unstable-list-lib

(read/bytes b) → printable/c

b : bytes?

reads a value from b and returns it.

(write/bytes v) → bytes?

v : printable/c

writes v to a bytes and returns it.

15

4 Contracts

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/contract)

package: unstable-contract-lib

(non-empty-string? x) → boolean?

x : any/c

Returns #t if x is a string and is not empty; returns #f otherwise.

port-number? : contract?

Equivalent to (between/c 1 65535).

tcp-listen-port? : contract?

Equivalent to (between/c 0 65535).

path-piece? : contract?

Equivalent to (or/c path-string? (symbols 'up 'same)). The subsequent
bindings were
added by Ryan
Culpepper.

(if/c predicate then-contract else-contract) → contract?

predicate : (-> any/c any/c)

then-contract : contract?

else-contract : contract?

Produces a contract that, when applied to a value, first tests the value with predicate ; if
predicate returns true, the then-contract is applied; otherwise, the else-contract

is applied. The resulting contract is a flat contract if both then-contract and else-

contract are flat contracts.

For example, the following contract enforces that if a value is a procedure, it is a thunk;
otherwise it can be any (non-procedure) value:

(if/c procedure? (-> any) any/c)

Note that the following contract is not equivalent:

16

(or/c (-> any) any/c) ; wrong!

The last contract is the same as any/c because or/c tries flat contracts before higher-order
contracts.

failure-result/c : contract?

A contract that describes the failure result arguments of procedures such as hash-ref.

Equivalent to (if/c procedure? (-> any) any/c).

(rename-contract contract name) → contract?
contract : contract?

name : any/c

Produces a contract that acts like contract but with the name name .

The resulting contract is a flat contract if contract is a flat contract. The subsequent
bindings were
added by Asumu
Takikawa.

(maybe/c contract) → contract?

contract : contract?

Creates a contract that acts like contract but will also accept #f. Intended to describe
situations where a failure or default value may be used. The subsequent

bindings were
added by Carl
Eastlund
<cce@racket-
lang.org>.

truth/c : flat-contract?

This contract recognizes Racket truth values, i.e., any value, but with a more informative
name and description. Use it in negative positions for arguments that accept arbitrary truth
values that may not be booleans.

(sequence/c [#:min-count min-count]
elem/c ...) → contract?

min-count : (or/c #f exact-nonnegative-integer?) = #f

elem/c : contract?

Wraps a sequence, obligating it to produce as many values as there are elem/c contracts,
and obligating each value to satisfy the corresponding elem/c . The result is not guaranteed
to be the same kind of sequence as the original value; for instance, a wrapped list is not
guaranteed to satisfy list?.

If min-count is a number, the stream is required to have at least that many elements in it.

Examples:

17

mailto:cce@racket-lang.org
mailto:cce@racket-lang.org

> (define/contract predicates

(sequence/c (-> any/c boolean?))

(in-list (list integer?

string->symbol)))

> (for ([P predicates])

(printf "∼s\n" (P "cat")))

#f

predicates: broke its contract
promised: boolean?
produced: ’cat
in: the range of

...
an element of
(sequence/c predicate/c)

contract from: (definition predicates)
blaming: (definition predicates)
at: eval:2.0

> (define/contract numbers&strings

(sequence/c number? string?)

(in-dict (list (cons 1 "one")

(cons 2 "two")

(cons 3 'three))))

> (for ([(N S) numbers&strings])

(printf "∼s: ∼a\n" N S))

1: one

2: two

numbers&strings: broke its contract
promised: string?
produced: ’three
in: an element of

(sequence/c number? string?)
contract from: (definition numbers&strings)
blaming: (definition numbers&strings)
at: eval:4.0

> (define/contract a-sequence

(sequence/c #:min-count 2 char?)

"x")

> (for ([x a-sequence]

[i (in-naturals)])

(printf "∼a is ∼a\n" i x))

0 is x

a-sequence: broke its contract
promised: a sequence that contains at least 2 values

18

produced: "x"
in: (sequence/c #:min-count 2 char?)
contract from: (definition a-sequence)
blaming: (definition a-sequence)
at: eval:6.0 The subsequent

bindings were
added by Neil
Toronto
<neil.toronto@gmail.com>.

(treeof elem-contract) → contract?
elem-contract : contract?

Identifies values that meet the contract elem-contract , lists of such values, lists of lists,
and so on.

Examples:

> (define number-tree/c (treeof number?))

> (flat-contract? number-tree/c)

#t

> (define number-tree? (flat-contract-predicate number-tree/c))

> (number-tree? 4)

#t

> (number-tree? '(4 5))

#t

> (number-tree? '((4 5) 6))

#t

> (number-tree? '(4 . 5))

#f

19

mailto:neil.toronto@gmail.com

5 Contracts for Macro Subexpressions

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/wrapc) package: base

This library provides a procedure wrap-expr/c for applying contracts to macro subexpres-
sions.

(wrap-expr/c contract-expr

expr

[#:positive pos-blame

#:negative neg-blame

#:name expr-name

#:macro macro-name

#:context context]) → syntax?

contract-expr : syntax?

expr : syntax?

pos-blame :
(or/c syntax? string? module-path-index?

'from-macro 'use-site 'unknown)

= 'use-site

neg-blame :
(or/c syntax? string? module-path-index?

'from-macro 'use-site 'unknown)

= 'from-macro

expr-name : (or/c identifier? symbol? string? #f) = #f

macro-name : (or/c identifier? symbol? string? #f) = #f

context : (or/c syntax? #f) = (current-syntax-context)

Returns a syntax object representing an expression that applies the contract represented by
contract-expr to the value produced by expr .

The other arguments have the same meaning as for expr/c.

Examples:

> (define-syntax (myparameterize1 stx)

(syntax-case stx ()

[(_ ([p v]) body)

(with-syntax ([cp (wrap-expr/c

#'parameter? #'p

#:name "the parameter argument"

#:context stx)])

#'(parameterize ([cp v]) body))]))

> (myparameterize1 ([current-input-port

20

(open-input-string "(1 2 3)")])

(read))

'(1 2 3)

> (myparameterize1 (['whoops 'something])

'whatever)

the parameter argument of myparameterize1: broke its
contract

promised: parameter?
produced: ’whoops
in: parameter?
contract from: top-level
blaming: top-level
at: eval:4.0

> (module mod racket

(require (for-syntax unstable/wrapc))

(define-syntax (app stx)

(syntax-case stx ()

[(app f arg)

(with-syntax ([cf (wrap-expr/c

#'(-> number? number?)

#'f

#:name "the function argument"

#:context stx)])

#'(cf arg))]))

(provide app))

> (require 'mod)

> (app add1 5)

6

> (app add1 'apple)

the function argument of app: contract violation
expected: number?
given: ’apple
in: the 1st argument of

(-> number? number?)
contract from: top-level
blaming: (quote mod)
at: eval:8.0

> (app (lambda (x) 'pear) 5)

the function argument of app: broke its contract
promised: number?
produced: ’pear
in: the range of

(-> number? number?)
contract from: top-level

21

blaming: top-level
at: eval:9.0

22

6 Debugging

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/debug) package: unstable-debug-lib

This module provides macros and functions for printing out debugging information.

(debug options ... expr)

options = #:name name-expr

| #:source srcloc-expr

Writes debugging information about the evaluation of expr to the current error port. The
name and source location of the expression may be overridden by keyword options; their de-
faults are the syntactic form of the expression and its syntactic source location, respectively.

Examples:

> (debug 0)

>> eval:2.0: 0
result: 0

<< eval:2.0: 0
0

> (debug #:name "one, two, three" (values 1 2 3))

>> eval:3.0: "one, two, three"
results: (values 1 2 3)

<< eval:3.0: "one, two, three"
1

2

3

> (debug #:source (make-srcloc 'here 1 2 3 4)

(error 'function "something went wrong"))

>> here:1.2: (error ’function "something went wrong")
raised exception: function: something went wrong

<< here:1.2: (error ’function "something went wrong")
function: something went wrong

(dprintf fmt arg ...) → void?

fmt : string?

arg : any/c

Constructs a message in the same manner as format and writes it to (current-error-

port), with indentation reflecting the number of nested debug forms.

23

Examples:

> (dprintf "level: ∼a" 0)

level: 0

> (debug (dprintf "level: ∼a" 1))

>> eval:6.0: (dprintf "level: ∼a" 1)
level: 1
result: #<void>

<< eval:6.0: (dprintf "level: ∼a" 1)

> (debug (debug (dprintf "level: ∼a" 2)))

>> eval:7.0: (debug (dprintf "level: ∼a" 2))
>> eval:7.0: (dprintf "level: ∼a" 2)

level: 2
result: #<void>

<< eval:7.0: (dprintf "level: ∼a" 2)
result: #<void>

<< eval:7.0: (debug (dprintf "level: ∼a" 2))

(debugf function-expr argument ...)

argument = argument-expr

| argument-keyword argument-expr

Logs debugging information for (#%app function-expr argument ...), including the
evaluation and results of the function and each argument.

Example:

> (debugf + 1 2 3)

>> eval:8.0: debugf
>> eval:8.0: +

result: #<procedure:+>
<< eval:8.0: +
>> eval:8.0: 1

result: 1
<< eval:8.0: 1
>> eval:8.0: 2

result: 2
<< eval:8.0: 2
>> eval:8.0: 3

result: 3
<< eval:8.0: 3
result: 6

<< eval:8.0: debugf

24

6

(begin/debug expr ...)

(define/debug id expr)

(define/debug (head args) body ...+)

(define/private/debug id expr)

(define/private/debug (head args) body ...+)

(define/public/debug id expr)

(define/public/debug (head args) body ...+)

(define/override/debug id expr)

(define/override/debug (head args) body ...+)

(define/augment/debug id expr)

(define/augment/debug (head args) body ...+)

(let/debug ([lhs-id rhs-expr] ...) body ...+)

(let/debug loop-id ([lhs-id rhs-expr] ...) body ...+)

(let*/debug ([lhs-id rhs-expr] ...) body ...+)

(letrec/debug ([lhs-id rhs-expr] ...) body ...+)

(let-values/debug ([(lhs-id ...) rhs-expr] ...) body ...+)

(let*-values/debug ([(lhs-id ...) rhs-expr] ...) body ...+)

(letrec-values/debug ([(lhs-id ...) rhs-expr] ...) body ...+)

(with-syntax/debug ([pattern stx-expr] ...) body ...+)

(with-syntax*/debug ([pattern stx-expr] ...) body ...+)

(parameterize/debug ([param-expr value-expr] ...) body ...+)

These macros add logging based on debug to the evaluation of expressions in begin, de-
fine, define/private, define/public, define/override, define/augment, let,
let*, letrec, let-values, let*-values, letrec-values, with-syntax, with-

syntax*, and parameterize.

25

7 Definitions

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/define) package: unstable-lib

Provides macros for creating and manipulating definitions.

(at-end expr)

When used at the top level of a module, evaluates expr at the end of the module. This can
be useful for calling functions before their definitions.

Examples:

> (module Failure scheme

(f 5)

(define (f x) x))

> (require 'Failure)

f: undefined;
cannot reference an identifier before its definition

in module: ’Failure
> (module Success scheme

(require unstable/define)

(at-end (f 5))

(define (f x) x))

> (require 'Success)

(in-phase1 e)

Executes e during phase 1 (the syntax transformation phase) relative to its context, during
pass 1 if it occurs in a head expansion position.

(in-phase1/pass2 e)

Executes e during phase 1 (the syntax transformation phase) relative to its context, during
pass 2 (after head expansion).

26

8 Errors

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/error) package: base

(error* name

message

field

value ...

...

[#:continued continued-message]) → any

name : symbol?

message : string?

field :
(let ([option/c (or/c 'value 'multi 'maybe)])

(or/c string? (cons/c string? (listof option/c))))

value : any/c

continued-message : (or/c string? (listof string?)) = null

Raises an exception with a message composed according to the Racket error message con-
vention. The raised exception is an instance of exn:fail.

The composed error message includes details consisting of the alternating field and value
arguments. By default, value is formatted as if by display unless it is #f, in which case
the detail line is omitted. The following options affect the formatting of the detail line:

• 'multi formats each element in the corresponding value , which must be a list, as
a separate line; if 'maybe is also provided, then the detail line is omitted if the list is
empty

• 'value formats the value using error-value->string-handler; the detail line is
not omittable unless 'maybe or 'multi is also provided

Examples:

> (error* 'mcbean "too many stars upon thars"

'("given" value) 'star-bellied-sneetch

'("stars" value) 3)

mcbean: too many stars upon thars
given: ’star-bellied-sneetch
stars: 3

> (error* 'hal "unable to open pod bay doors"

#:continued "this mission is too important to let you

jeopardize it"

"threat" "David Bowman"

27

"detection" "lip reading")

hal: unable to open pod bay doors;
this mission is too important to let you jeopardize it

threat: David Bowman
detection: lip reading

> (error* 'car "missing car keys"

'("searched" multi)

(list "dresser" "desk" "kitchen table" "under sofa"

"behind microwave" "in washing machine")

"last seen"

#f)

car: missing car keys
searched:

dresser
desk
kitchen table
under sofa
behind microwave
in washing machine

(raise-syntax-error* message

expr

sub-expr

field

value ...

...

[#:continued continued-message]) → any

message : string?

expr : (or/c syntax? #f)

sub-expr : (or/c syntax? #f)

field :
(let ([option/c (or/c 'value 'multi 'maybe)])

(or/c string? (cons/c string? (listof option/c))))

value : any/c

continued-message : (or/c string? (listof string?)) = null

Like raise-syntax-error but with the formatting of error*. The raised exception is
an instance of exn:fail:syntax. Like raise-syntax-error, the inclusion of expr and
sub-expr in the details of the error message is controlled by the error-print-source-

location paramter; if they included, they are included before the other details specified by
field and value . Unlike raise-syntax-error, both expr and sub-expr are manda-
tory arguments.

28

(compose-error-message name

message

field

value ...

...

[#:continued continued-message]) → string?

name : (or/c symbol? #f)

message : string?

field :
(let ([option/c (or/c 'value 'multi 'maybe)])

(or/c string? (cons/c string? (listof option/c))))

value : any/c

continued-message : (or/c string? (listof string?)) = null

Like error*, but produces a string conforming to the Racket error message convention.

(compose-error-detail field options value) → string?

field : string?

options : (listof (or/c 'value 'multi 'maybe))

value : any/c

Formats a single detail for an error message. The options behave as described in error*.

The resulting string begins with a newline unless it is empty, so it can be appended to the
end of a base error message.

29

9 Futures

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/future) package: unstable-lib

(for/async (for-clause ...) body ...+)

(for*/async (for-clause ...) body ...+)

Like for and for*, but each iteration of the body is executed in a separate future, and the
futures may be touched in any order.

30

10 Functions

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/function) package: unstable-list-lib

This module provides tools for higher-order programming and creating functions.

10.1 Higher Order Predicates

((conjoin f ...) x ...) → boolean?

f : (-> A ... boolean?)

x : A

Combines calls to each function with and. Equivalent to (and (f x ...) ...)

Examples:

(define f (conjoin exact? integer?))

> (f 1)

#t

> (f 1.0)

#f

> (f 1/2)

#f

> (f 0.5)

#f

((disjoin f ...) x ...) → boolean?

f : (-> A ... boolean?)

x : A

Combines calls to each function with or. Equivalent to (or (f x ...) ...)

Examples:

(define f (disjoin exact? integer?))

> (f 1)

#t

> (f 1.0)

#t

31

> (f 1/2)

#t

> (f 0.5)

#f

32

11 Hash Tables

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/hash) package: unstable-list-lib

This module provides tools for manipulating hash tables.

(hash-union h0

h ...

[#:combine combine

#:combine/key combine/key])
→ (and/c hash? hash-can-functional-set?)

h0 : (and/c hash? hash-can-functional-set?)

h : hash?

combine : (-> any/c any/c any/c)

= (lambda _ (error 'hash-union))

combine/key : (-> any/c any/c any/c any/c)

= (lambda (k a b) (combine a b))

Computes the union of h0 with each hash table h by functional update, adding each element
of each h to h0 in turn. For each key k and value v, if a mapping from k to some value v0

already exists, it is replaced with a mapping from k to (combine/key k v0 v).

Examples:

> (hash-union (make-immutable-hash '([1 . one]))

(make-immutable-hash '([2 . two]))

(make-immutable-hash '([3 . three])))

'#hash((1 . one) (2 . two) (3 . three))

> (hash-union (make-immutable-hash '([1 one uno] [2 two dos]))

(make-immutable-hash '([1 ein une] [2 zwei deux]))

#:combine/key (lambda (k v1 v2) (append v1 v2)))

'#hash((1 . (one uno ein une)) (2 . (two dos zwei deux)))

(hash-union! h0

h ...

[#:combine combine

#:combine/key combine/key]) → void?

h0 : (and/c hash? hash-mutable?)

h : hash?

combine : (-> any/c any/c any/c)

= (lambda _ (error 'hash-union))

combine/key : (-> any/c any/c any/c any/c)

= (lambda (k a b) (combine a b))

33

Computes the union of h0 with each hash table h by mutable update, adding each element
of each h to h0 in turn. For each key k and value v, if a mapping from k to some value v0

already exists, it is replaced with a mapping from k to (combine/key k v0 v).

Examples:

(define h (make-hash))

> h

'#hash()

> (hash-union! h (make-immutable-hash '([1 one uno] [2 two dos])))

> h

'#hash((2 . (two dos)) (1 . (one uno)))

> (hash-union! h

(make-immutable-hash '([1 ein une] [2 zwei deux]))

#:combine/key (lambda (k v1 v2) (append v1 v2)))

> h

'#hash((2 . (two dos zwei deux)) (1 . (one uno ein une)))

34

12 Interface-Oriented Programming for Classes

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/class-iop) package: unstable-list-lib

(define-interface name-id (super-ifc-id ...) (method-id ...))

Defines name-id as a static interface extending the interfaces named by the super-ifc-

ids and containing the methods specified by the method-ids.

A static interface name is used by the checked method call variants (send/i, send*/i,
and send/apply/i). When used as an expression, a static interface name evaluates to an
interface value.

Examples:

> (define-interface stack<%> () (empty? push pop))

> stack<%>

#<interface:stack<%>>

> (define stack%

(class* object% (stack<%>)

(define items null)

(define/public (empty?) (null? items))

(define/public (push x) (set! items (cons x items)))

(define/public (pop) (begin (car items) (set! items (cdr items))))

(super-new)))

(define-interface/dynamic name-id ifc-expr (method-id ...))

Defines name-id as a static interface with dynamic counterpart ifc-expr , which must
evaluate to an interface value. The static interface contains the methods named by the
method-ids. A run-time error is raised if any method-id is not a member of the dynamic
interface ifc-expr .

Use define-interface/dynamic to wrap interfaces from other sources.

Examples:

> (define-interface/dynamic object<%> (class-

>interface object%) ())

> object<%>

#<interface:object%>

35

(send/i obj-exp static-ifc-id method-id arg-expr ...)

Checked variant of send.

The argument static-ifc-id must be defined as a static interface. The method method-

id must be a member of the static interface static-ifc-id ; otherwise a compile-time
error is raised.

The value of obj-expr must be an instance of the interface static-ifc-id ; otherwise, a
run-time error is raised.

Examples:

> (define s (new stack%))

> (send/i s stack<%> push 1)

> (send/i s stack<%> popp)

eval:9:0: send/i: method not in static interface
in: popp

> (send/i (new object%) stack<%> push 2)

send/i: interface check failed on: (object)

(send*/i obj-expr static-ifc-id (method-id arg-expr ...) ...)

Checked variant of send*.

Example:

> (send*/i s stack<%>

(push 2)

(pop))

(send/apply/i obj-expr static-ifc-id method-id arg-expr ... list-

arg-expr)

Checked variant of send/apply.

Example:

> (send/apply/i s stack<%> push (list 5))

(define/i id static-ifc-id expr)

36

Checks that expr evaluates to an instance of static-ifc-id before binding it to id . If
id is subsequently changed (with set!), the check is performed again.

No dynamic object check is performed when calling a method (using send/i, etc) on a name
defined via define/i.

(init/i (id static-ifc-id maybe-default-expr) ...)

(init-field/i (id static-ifc-id maybe-default-expr) ...)

(init-private/i (id static-ifc-id maybe-default-expr) ...)

maybe-default-expr = ()

| default-expr

Checked versions of init and init-field. The value attached to each id is checked
against the given interface.

No dynamic object check is performed when calling a method (using send/i, etc) on a name
bound via one of these forms. Note that in the case of init-field/i this check omission
is unsound in the presence of mutation from outside the class. This should be fixed.

(define-interface-expander id transformer-expr)

Defines id as a macro that can be used within define-interface forms.

Examples:

> (define-interface-expander stack-methods

(lambda (stx) #'[empty? push pop]))

> (define-interface stack<%> ()

((stack-methods)))

> (interface->method-names stack<%>)

'(empty? pop push)

37

13 Lazy Require

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/lazy-require) package: unstable-lib

(begin-on-demand #:export (fun-id ...)

body ...+)

Defines each fun-id as a function that, when called, dynamically loads and executes the
body forms. The body forms must contain definitions for each fun-id , and the value of
each fun-id must be a function.

A body form may be any module-level form except provide. In particular, require forms
are allowed.

The body forms are placed within a submodule that extends the scope of the enclosing
module (ie, module* with #f in the language position). Consequently, any references to
sibling submodules must include a with ".." module path element.

38

14 Lists

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/list) package: unstable-list-lib

(list-prefix? l r) → boolean?

l : list?

r : list?

True if l is a prefix of r .

Example:

> (list-prefix? '(1 2) '(1 2 3 4 5))

#t

(take-common-prefix l r #:same? same?) → list?

l : list?

r : list?

same? : equal?

Returns the longest common prefix of l and r .

Example:

> (take-common-prefix '(a b c d) '(a b x y z))

'(a b)

(drop-common-prefix l r #:same same?) → list? list?

l : list?

r : list?

same? : equal?

Returns the tails of l and r with the common prefix removed.

Example:

> (drop-common-prefix '(a b c d) '(a b x y z))

'(c d)

'(x y z)

(split-common-prefix l r #:same? same?) → list? list? list?

l : list?

r : list?

same? : equal?

39

Returns the longest common prefix together with the tails of l and r with the common prefix
removed.

Example:

> (split-common-prefix '(a b c d) '(a b x y z))

'(a b)

'(c d)

'(x y z) The subsequent
bindings were
added by Sam
Tobin-Hochstadt.

(filter-multiple l f ...) → list? ...

l : list?

f : procedure?

Produces (values (filter f l) ...).

Example:

> (filter-multiple (list 1 2 3 4 5) even? odd?)

'(2 4)

'(1 3 5)

(extend l1 l2 v) → list?
l1 : list?

l2 : list?

v : any/c

Extends l2 to be as long as l1 by adding (- (length l1) (length l2)) copies of v
to the end of l2 .

Example:

> (extend '(1 2 3) '(a) 'b)

'(a b b) The subsequent
bindings were
added by Ryan
Culpepper.

(check-duplicate lst

[#:key extract-key

#:same? same?]) → (or/c any/c #f)

lst : list?

extract-key : (-> any/c any/c) = (lambda (x) x)

same? :
(or/c (any/c any/c . -> . any/c)

dict?)
= equal?

Returns the first duplicate item in lst . More precisely, it returns the first x such that there
was a previous y where (same? (extract-key x) (extract-key y)).

The same? argument can either be an equivalence predicate such as equal? or eqv? or a
dictionary. In the latter case, the elements of the list are mapped to #t in the dictionary until
an element is discovered that is already mapped to a true value. The procedures equal?,
eqv?, and eq? automatically use a dictionary for speed.

40

Examples:

> (check-duplicate '(1 2 3 4))

#f

> (check-duplicate '(1 2 3 2 1))

2

> (check-duplicate '((a 1) (b 2) (a 3)) #:key car)

'(a 3)

> (define id-t (make-free-id-table))

> (check-duplicate (syntax->list #'(a b c d a b))

#:same? id-t)

#<syntax:13:0 a>

> (dict-map id-t list)

'((#<syntax:13:0 b> #t)

(#<syntax:13:0 a> #t)

(#<syntax:13:0 d> #t)

(#<syntax:13:0 c> #t)) The subsequent
bindings were
added by Carl
Eastlund.

(map/values n f lst ...) → (listof B_1) ... (listof B_n)

n : natural-number/c

f : (-> A ... (values B_1 ... B_n))

lst : (listof A)

Produces lists of the respective values of f applied to the elements in lst ... sequentially.

Example:

> (map/values

3

(lambda (x)

(values (+ x 1) x (- x 1)))

(list 1 2 3))

'(2 3 4)

'(1 2 3)

'(0 1 2)

(map2 f lst ...) → (listof B) (listof C)

f : (-> A ... (values B C))

lst : (listof A)

Produces a pair of lists of the respective values of f applied to the elements in lst ...

sequentially.

Example:

> (map2 (lambda (x) (values (+ x 1) (- x 1))) (list 1 2 3))

41

'(2 3 4)

'(0 1 2) The subsequent
bindings were
added by David Van
Horn.

(remf pred lst) → list?

pred : procedure?

lst : list?

Returns a list that is like lst , omitting the first element of lst for which pred produces a
true value.

Example:

> (remf negative? '(1 -2 3 4 -5))

'(1 3 4 -5) The subsequent
bindings were
added by Vincent
St-Amour.

(group-by extract-key lst [=?]) → (listof (listof A))

extract-key : (-> A B)

lst : (listof A)

=? : (-> B B any/c) = equal?

Groups the given list into equivalence classes, with equivalence being determined by =?.

Example:

> (group-by (lambda (x) (modulo x 3)) '(1 2 1 2 54 2 5 43 7 2 643 1 2 0))

'((0 54) (2 2 5 2 2 2) (1 643 7 43 1 1)) The subsequent
bindings were
added by Eric
Dobson.

(list-update lst index updater) → list?

lst : list?

index : (and/c (>=/c 0) (</c (length lst)))

updater : (-> any/c any/c)

Returns a list that is the same as lst except at the specified index. The element at the
specified index is (updater (list-ref lst index)).

Example:

> (list-update '(zero one two) 1 symbol->string)

'(zero "one" two)
(list-set lst index value) → list?

lst : list?

index : (and/c (>=/c 0) (</c (length lst)))

value : any/c

Returns a list that is the same as lst except at the specified index. The element at the
specified index is value .

Example:

> (list-set '(zero one two) 2 "two")

'(zero one "two")

42

15 Logging

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/logging) package: typed-racket-lib

This module provides tools for logging.

(with-logging-to-port port proc log-spec ...) → any

port : output-port?

proc : (-> any)

log-spec : (or/c 'fatal 'error 'warning 'info 'debug symbol? #f)

Runs proc , outputting any logging that would be received by (make-log-receiver

(current-logger) log-spec ...) to port . Returns whatever proc returns.

Example:

> (let ([my-log (open-output-string)])

(with-logging-to-port my-log

(lambda ()

(log-warning "Warning World!")

(+ 2 2))

'warning)

(get-output-string my-log))

"Warning World!\n"

(with-intercepted-logging interceptor

proc

log-spec ...) → any

interceptor :

(-> (vector/c

(or/c 'fatal 'error 'warning 'info 'debug)

string?

any/c

(or/c symbol? #f))

any)

proc : (-> any)

log-spec : (or/c 'fatal 'error 'warning 'info 'debug symbol? #f)

Runs proc , calling interceptor on any log message that would be received by (make-

log-receiver (current-logger) log-spec ...). interceptor receives the entire
log vectors (see §15.5.3 “Receiving Logged Events”) as arguments. Returns whatever proc
returns.

Example:

43

> (let ([warning-counter 0])

(with-intercepted-logging

(lambda (l)

(when (eq? (vector-ref l 0)

'warning)

(set! warning-counter (add1 warning-counter))))

(lambda ()

(log-warning "Warning!")

(log-warning "Warning again!")

(+ 2 2))

'warning)

warning-counter)

2

A lower-level interface to logging is also available.

(start-recording log-spec ...) → listener?

log-spec : (or/c 'fatal 'error 'warning 'info 'debug symbol? #f)

(stop-recording listener)

→

(listof (vector/c (or/c 'fatal 'error 'warning 'info 'debug)

string?

any/c

(or/c symbol? #f)))

listener : listener?

start-recording starts recording log messages matching the given log-spec (see make-
log-receiver for how log-spec is interpreted). Messages will be recorded until stopped
by passing the returned listener object to stop-recording. stop-recording will then
return a list of the log messages that have been reported.

Examples:

(define l (start-recording 'warning))

> (log-warning "1")

> (log-warning "2")

> (stop-recording l)

'(#(warning "1" #<continuation-mark-set> #f)

#(warning "2" #<continuation-mark-set> #f))

44

16 Macro Testing

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/macro-testing)

package: unstable-macro-testing-lib

(phase1-eval ct-expr maybe-quote maybe-catch?)

maybe-quote =
| #:quote quote-id

maybe-catch? =
| #:catch? catch?

Evaluates ct-expr at compile time and quotes the result using quote-id , which defaults
to quote. Another suitable argument for quote-id is quote-syntax.

If catch? is #t, then if the evaluation of ct-expr raises a compile-time exception, it is
caught and converted to a run-time exception.

Examples:

> (struct point (x y))

> (phase1-eval (extract-struct-info (syntax-local-value #'point)))

'(struct:point point point? (point-y point-x) (#f #f) #t)

> (phase1-eval (extract-struct-info (syntax-local-value #'point))

#:quote quote-syntax)

#<syntax (struct:point point point? (p...>

(convert-compile-time-error expr)

Equivalent to (#%expression expr) except if expansion of expr causes a compile-time
exception to be raised; in that case, the compile-time exception is converted to a run-time
exception raised when the expression is evaluated.

Use convert-compile-time-error to write tests for compile-time error checking like
syntax errors:

Examples:

> (check-exn #rx"missing an \"else\" expression"

(lambda () (convert-compile-time-error (if 1 2))))

45

> (check-exn #rx"missing formals and body"

(lambda () (convert-compile-time-error (lambda))))

FAILURE
message: "Wrong exception raised"
exn-message:"eval:6:0: lambda: bad syntax\n in: (lambda)"
exn: #(struct:exn:fail:syntax "eval:6:0: lambda: bad syntax\n in:
(lambda)" #<continuation-mark-set> (#<syntax:6:0 (lambda)>))
name: check-exn
location: (eval 6 0 6 1)
expression: (check-exn #rx"missing formals and body" (lambda () (convert-compile-
time-error (lambda))))
params: (#rx"missing formals and body" #<procedure:temp10>)

Check failure

Without the use of convert-compile-time-error, the checks above would not be exe-
cuted because the test program would not compile.

(convert-syntax-error expr)

Like convert-compile-time-error, but only catches compile-time exn:fail:syntax?
exceptions and sets error-print-source-location to #f around the expansion of expr
to make the message easier to match exactly.

Example:

> (check-exn #rx"^lambda: bad syntax$"

(lambda () (convert-syntax-error (lambda))))

46

17 Mark Parameters

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/markparam) package: base

This library provides a simplified version of parameters that are backed by continuation
marks, rather than parameterizations. This means they are slightly slower, are not inherited
by child threads, do not have initial values, and cannot be imperatively mutated.

(struct mark-parameter ())

The struct for mark parameters. It is guaranteed to be serializable and transparent. If used as
a procedure, it calls mark-parameter-first on itself.

(mark-parameter-first mp [tag]) → any/c

mp : mark-parameter?

tag : continuation-prompt-tag?

= default-continuation-prompt-tag

Returns the first value of mp up to tag .

(mark-parameter-all mp [tag]) → list?

mp : mark-parameter?

tag : continuation-prompt-tag?

= default-continuation-prompt-tag

Returns the values of mp up to tag .

(mark-parameters-all mps none-v [tag]) → (listof vector?)

mps : (listof mark-parameter?)

none-v : [any/c #f]

tag : continuation-prompt-tag?

= default-continuation-prompt-tag

Returns the values of the mps up to tag . The length of each vector in the result list is
the same as the length of mps , and a value in a particular vector position is the value for
the corresponding mark parameter in mps . Values for multiple mark parameter appear in
a single vector only when the mark parameters are for the same continuation frame in the
current continuation. The none-v argument is used for vector elements to indicate the lack
of a value.
(mark-parameterize ([mp expr] ...) body-expr ...)

Parameterizes (begin body-expr ...) by associating each mp with the evaluation of
expr in the parameterization of the entire expression.

47

18 Match

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/match) package: typed-racket-lib The subsequent
bindings were
added by Carl
Eastlund
<cce@racket-
lang.org>.

(match? val-expr pat ...)

Returns #t if the result of val-expr matches any of pat , and returns #f otherwise.

Examples:

> (match? (list 1 2 3)

(list a b c)

(vector x y z))

#t

> (match? (vector 1 2 3)

(list a b c)

(vector x y z))

#t

> (match? (+ 1 2 3)

(list a b c)

(vector x y z))

#f

(as ([lhs-id rhs-expr] ...) pat ...)

As a match expander, binds each lhs-id as a pattern variable with the result value of rhs-
expr , and continues matching each subsequent pat .

Example:

> (match (list 1 2 3)

[(as ([a 0]) (list b c d)) (list a b c d)])

'(0 1 2 3) The subsequent
bindings were
added by Asumu
Takikawa
<asumu@racket-
lang.org>.

(match*? (val-expr ...) (pat ...) ...)

Similar to match?, but uses match* and accepts multiple val-expr and corresponding pat
in each clause to match on.

Examples:

> (match*? (1 2 3)

(a b c)

(x #f z))

#t

48

mailto:cce@racket-lang.org
mailto:cce@racket-lang.org
mailto:asumu@racket-lang.org
mailto:asumu@racket-lang.org

> (match*? (1 2 3)

(a (? odd?) c)

(x y z))

#t

> (match*? (#f #f #f)

(1 2 3)

(4 5 6))

#f

(object maybe-class field-clause ...)

maybe-class =
| class-expr

field-clause = (field field-id maybe-pat)

maybe-pat =
| pat

A match expander that checks if the matched value is an object and contains the fields named
by the field-ids. If pats are provided, the value in each field is matched to its correspond-
ing pat . If a pat is not provided, it defaults to the name of the field.

If class-expr is provided, the match expander will also check that the supplied object is
an instance of the class that the given expression evaluates to.

Examples:

(define point%

(class object%

(super-new)

(init-field x y)))

> (match (make-object point% 3 5)

[(object point% (field x) (field y))

(sqrt (+ (* x x) (* y y)))])

5.830951894845301

> (match (make-object point% 0 0)

[(object (field x (? zero?))

(field y (? zero?)))

'origin])

'origin

> (match (make-object object%)

[(object (field x) (field y))

'ok]

[_ 'fail])

'fail

49

19 Open place expressions

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/open-place) package: unstable-lib The subsequent
bindings were
added by Sam
Tobin-Hochstadt
<samth@racket-
lang.org>.

(open-place id body ...+)

Like (place id body ...), but body ... may have free lexical variables, which are
automatically sent to the newly-created place. Note that these variables must have values
accepted by place-message-allowed?, otherwise an exn:fail:contract exception is
raised.

50

mailto:samth@racket-lang.org
mailto:samth@racket-lang.org

20 Options

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/options)

package: unstable-options-lib

(option/c c

[#:with-contract with

#:tester tester

#:invariant invariant

#:immutable immutable

#:flat? flat?

#:struct struct-id]) → contract?

c : contract?

with : boolean? = #f

tester : (or/c (-> any boolean?) 'dont-care) = 'dont-care

invariant : (or/c (-> any boolean?) 'dont-care) = 'dont-care

immutable : (or/c #t #f 'dont-care) = 'dont-care

flat? : boolean? = #f

struct-id : (or/c identifier? 'none) = 'none

Returns a contract that recognizes vectors or hashes or instances of struct struct-id . The
data structure must match c and pass the tester .

When an option/c contract is attached to a value, the value is checked against the tester ,
if tester is a predicate. After that, contract checking is disabled for the value, if with is
#f. If with is #t contract checking for the value remains enabled for c .

If waive-option is applied to a value guarded by an option/c contract, then waive-

option returns the value after removing the option/c guard. If exercise-option is
applied to a value guarded by an option/c contract, then exercise-option returns the
value with contract checking enabled for c . If the invariant argument is a predicate, then
exercise-option returns the value with contract checking enabled for (invariant/c c

invariant #:immutable immutable #:flat? flat? #:struct struct-id).

The arguments flat? and immutable should be provided only if invariant is a predicate.
In any other case, the result is a contract error.

Examples:

> (module server0 racket

(require unstable/options)

(provide

(contract-out

51

[vec (option/c (vectorof number?))]))

(define vec (vector 1 2 3 4)))

> (require 'server0)

> (vector-set! vec 1 'foo)

> (vector-ref vec 1)

'foo

> (module server1 racket

(require unstable/options)

(provide

(contract-out

[vec (option/c (vectorof number?) #:with-contract #t)]))

(define vec (vector 1 2 3 4)))

> (require 'server1)

> (vector-set! vec 1 'foo)

vec: contract violation
expected: number?
given: ’foo
in: an element of

the option of
(option/c

(vectorof number?)
#:with-contract
#t)

contract from: server1
blaming: top-level
at: eval:6.0

> (module server2 racket

(require unstable/options)

(provide

(contract-out

[vec (option/c (vectorof number?) #:tester sorted?)]))

(define vec (vector 1 42 3 4))

(define (sorted? vec)

(for/and ([el vec]

[cel (vector-drop vec 1)])

(<= el cel))))

> (require 'server2)

vec: broke its contract

in: option contract tester #<procedure:sorted?> of

52

(option/c
(vectorof number?)
#:tester
#<procedure:sorted?>)

contract from: server2
blaming: server2
at: eval:9.0

(exercise-option x) → any/c

x : any/c

Returns x with contract ckecking enabled if an option/c guards x . In any other case it
returns x . The result of exercise-option loses the guard related to option/c, if it has
one to begin with, and thus its contract checking status cannot change further.

Examples:

> (module server3 racket

(require unstable/options)

(provide (contract-out [foo (option/c (-> number? symbol?))]))

(define foo (λ (x) x)))

> (require 'server3 unstable/options)

(define e-foo (exercise-option foo))

> (foo 42)

42

> (e-foo 'wrong)

foo: contract violation
expected: number?
given: ’wrong
in: the 1st argument of

the option of
(option/c (-> number? symbol?))

contract from: server3
blaming: top-level
at: eval:11.0

> ((exercise-option e-foo) 'wrong)

foo: contract violation
expected: number?
given: ’wrong
in: the 1st argument of

the option of
(option/c (-> number? symbol?))

contract from: server3

53

blaming: top-level
at: eval:11.0

transfer/c : contract?

A contract that accepts any value. If the value is guarded with an option/c contract, trans-
fer/c modifies the blame information for the option/c contract by adding the providing
module and its client to the positive and negative blame parties respectively. If the value is
not a value guarded with an option/c contract, then transfer/c is equivalent to any/c.

Examples:

> (module server4 racket

(require unstable/options)

(provide (contract-out [foo (option/c (-> number? symbol?))]))

(define foo (λ (x) x)))

> (module middleman racket

(require unstable/options 'server4)

(provide (contract-out [foo transfer/c])))

> (require 'middleman unstable/options)

(define e-foo (exercise-option foo))

> (e-foo 1)

foo: broke its contract
promised: symbol?
produced: 1
in: the range of

the option of
(option/c (-> number? symbol?))

contract from: server4
blaming multiple parties:
middleman
server4
at: eval:17.0

> (module server5 racket

(require unstable/options)

(provide (contract-out [boo transfer/c]))

(define (boo x) x))

> (require 'server5)

> (boo 42)

42

54

(waive-option x) → any/c

x : any/c

If an option/c guards x , then waive-option returns x without the option/c guard. In
any other case it returns x . The result of waive-option loses the guard related to op-

tion/c, if it had one to begin with, and thus its contract checking status cannot change
further.

Examples:

> (module server6 racket

(require unstable/options)

(provide (contract-out [bar (option/c (-> number? symbol?))]))

(define bar (λ (x) x)))

> (require 'server6 unstable/options)

(define e-bar (waive-option bar))

> (e-bar 'wrong)

'wrong

> ((waive-option e-bar) 'wrong)

'wrong

(tweak-option x) → any/c

x : any/c

If an option/c guards x and contract checking for x is enabled, then tweak-option re-
turns x with contract checking for x disabled. If an option/c guards x and contract check-
ing for x is disabled, then tweak-option returns x with contract checking for x enabled.
In any other case it returns x . The result of tweak-option retains the guard related to op-

tion/c if it has one to begin with and thus its contract checking status can change further
using tweak-option, exercise-option or waive-option.

Examples:

> (module server7 racket

(require unstable/options)

(provide (contract-out [bar (option/c (-> number? symbol?))]))

(define bar (λ (x) x)))

> (require 'server7 unstable/options)

(define t-bar (tweak-option bar))

55

> (t-bar 'wrong)

bar: contract violation
expected: number?
given: ’wrong
in: the 1st argument of

the option of
(option/c (-> number? symbol?))

contract from: server7
blaming: top-level
at: eval:30.0

> ((tweak-option t-bar) 'wrong)

'wrong

> ((waive-option t-bar) 'wrong)

'wrong

> ((exercise-option t-bar) 'wrong)

bar: contract violation
expected: number?
given: ’wrong
in: the 1st argument of

the option of
(option/c (-> number? symbol?))

contract from: server7
blaming: top-level
at: eval:30.0

(has-option? v) → boolean?

v : any/c

Returns #t if v has an option contract.

(has-option-with-contract? v) → boolean?

v : any/c

Returns #t if v has an option contract with contract checking enabled.

(invariant/c c

invariant

[#:immutable immutable

#:flat? flat?

#:struct struct-id]) → contract?

c : contract?

invariant : (-> any boolean?)

immutable : (or/c #t #f 'dont-care) = 'dont-care

flat? : boolean? = #f

struct-id : (or/c identifier? 'none) = 'none

56

Returns a contract that recognizes vectors or hashes or instances of struct struct-id . The
data structure must match c and satisfy the invariant argument.

If the flat? argument is #t, then the resulting contract is a flat contract, and the c arguments
must also be flat contracts. Such flat contracts will be unsound if applied to a mutable data
structure, as they will not check future operations on the vector.

If the immutable argument is #t and the c arguments are flat contracts, the result will be a
flat contract. If the c arguments are chaperone contracts, then the result will be a chaperone
contract.

Examples:

> (module server8 racket

(require unstable/options)

(provide

change

(contract-out

[vec (invariant/c

any/c

sorted?)]))

(define vec (vector 1 2 3 4 5))

(define (change) (vector-set! vec 2 42))

(define (sorted? vec)

(for/and ([el vec]

[cel (vector-drop vec 1)])

(<= el cel))))

> (require 'server8)

> (vector-set! vec 2 42)

vec: contract violation
expected vector that satisfies #<procedure:sorted?> given:

’#(1 2 42 4 5)
in: (invariant/c any/c #<procedure:sorted?>)
contract from: server8
blaming: top-level
at: eval:37.0

> (change)

> (vector-ref vec 2)

vec: broke its contract
expected vector that satisfies #<procedure:sorted?> given:

’#(1 2 42 4 5)
in: (invariant/c any/c #<procedure:sorted?>)
contract from: server8
blaming: server8

57

at: eval:37.0

58

21 Parameter Groups

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/parameter-group)

package: unstable-parameter-group-lib

Parameter groups are parameter-like views that represent multiple parameters.

Examples:

> (require unstable/parameter-group)

> (define param1 (make-parameter 1))

> (define param2 (make-parameter 2))

> (define-parameter-group params (param1 param2))

> (params)

(params-value 1 2)

> (parameterize/group ([params (params-value 10 20)])

(list (param1) (param2)))

'(10 20)

> (params)

(params-value 1 2)

> (params (params-value 100 200))

> (list (param1) (param2))

'(100 200)

Use parameter groups to conveniently set multiple parameters. For example, the plot library
uses parameter groups to save and restore appearance-controlling parameters when it must
draw plots within a thunk.

(parameter-group? v) → boolean?

v : any/c

Returns #t when v is a parameter group.

(define-parameter-group name (param-or-group-expr ...) options)

options =
| #:struct struct-name

param-or-group-expr : (or/c parameter? parameter-group?)

59

Defines a new parameter group.

If struct-name is not given, define-parameter-group defines a new struct <name>-
value to hold the values of parameters.

If struct-name is given, it must have a constructor (struct-name param-or-group-

expr ...) that accepts as many arguments as there are parameters in the group, and a
struct-name match expander that accepts as many patterns as there are parameters.

Examples:

> (struct two-params (p1 p2) #:transparent)

> (define-parameter-group params* (param1 param2) #:struct two-

params)

> (params*)

(two-params 100 200)

(parameterize/group ([param-or-group-expr value-expr] ...)

body-expr ...+)

param-or-group-expr : (or/c parameter? parameter-group?)

Corresponds to parameterize, but can parameterize parameter groups as well as parame-
ters.

(parameterize*/group ([param-or-group-expr value-expr] ...)

body-expr ...+)

param-or-group-expr : (or/c parameter? parameter-group?)

Corresponds to parameterize*, but can parameterize parameter groups as well as param-
eters.

60

22 Pretty-Printing

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/pretty) package: unstable-pretty-lib

This module provides tools for pretty-printing.

(pretty-format/write x [columns]) → string?

x : any/c

columns : (or/c exact-nonnegative-integer? 'infinity)

= (pretty-print-columns)

This procedure behaves like pretty-format, but it formats values consistently with write

instead of print.

Examples:

> (struct both [a b] #:transparent)

> (pretty-format/write (list (both (list 'a 'b) (list "a" "b"))))

"(#(struct:both (a b) (\"a\" \"b\")))\n"

(pretty-format/display x [columns]) → string?

x : any/c

columns : (or/c exact-nonnegative-integer? 'infinity)

= (pretty-print-columns)

This procedure behaves like pretty-format, but it formats values consistently with dis-

play instead of print.

Examples:

> (struct both [a b] #:transparent)

> (pretty-format/display (list (both (list 'a 'b) (list "a" "b"))))

"(#(struct:both (a b) (a b)))\n"

(pretty-format/print x [columns]) → string?

x : any/c

columns : (or/c exact-nonnegative-integer? 'infinity)

= (pretty-print-columns)

This procedure behaves the same as pretty-format, but is named more explicitly to de-
scribe how it formats values. It is included for symmetry with pretty-format/write and
pretty-format/display.

61

Examples:

> (struct both [a b] #:transparent)

> (pretty-format/print (list (both (list 'a 'b) (list "a" "b"))))

"(list (both '(a b) '(\"a\" \"b\")))\n" The subsequent
bindings were
added by Vincent
St-Amour
<stamourv@racket-
lang.org>.

(break-lines s [columns]) → string?

s : string?

columns : exact-nonnegative-integer? = (pretty-print-columns)

Splits the string s into multiple lines, each of width at most columns , splitting only at
whitespace boundaries.

Example:

> (display (break-lines "This string is more than 80 characters

long. It is 98 characters long, nothing more, nothing less."))

This string is more than 80 characters long. It is 98 characters

long,

nothing more, nothing less.

62

mailto:stamourv@racket-lang.org
mailto:stamourv@racket-lang.org

23 Re-Contracting Identifiers

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/recontract) package: unstable-lib

(recontract-out id ...)

Provides each id with its existing contract, but changes the positive blame party of the
contract to the enclosing module, instead of the module that originally attached the contract
to id . Each id must be imported from a module that exports it via contract-out or
recontract-out; otherwise a syntax error is raised.

Use recontract-out when you want to use the same contracts both between different parts
of a library and between the library and its clients. The library should use recontract-out
in the public interface modules so that clients do not see references to private implementation
modules in contract errors.

Examples:

> (module private racket

(define (f x) (if (positive? x) x 'wrong))

(provide (contract-out [f (-> real? real?)])))

> (module public racket

(require 'private unstable/recontract)

(provide (recontract-out f)))

> (require 'public)

> (f 1)

1

> (f -2)

f: broke its contract
promised: real?
produced: ’wrong
in: the range of

(-> real? real?)
contract from: public
blaming: public
at: eval:2.0

> (f 'apple)

f: contract violation
expected: real?
given: ’apple

63

in: the 1st argument of
(-> real? real?)

contract from: public
blaming: top-level
at: eval:2.0

64

24 Sandbox

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/sandbox) package: racket-doc

(make-log-based-eval log-file mode) → (-> any/c any)

log-file : path-string?

mode : (or/c 'record 'replay)

Creates an evaluator (like make-base-eval) that uses a log file to either record or replay
evaluations.

If mode is 'record, the evaluator records every interaction to log-file , replacing log-

file if it already exists. The result of each interaction must be serializable.

If mode is 'replay, the evaluator uses the contents of log-file instead of actually per-
forming evaluatings. For each interaction, it compares the term to evaluate against the next
interaction recorded in log-file . If the term matches, the stored result is returned; if not,
the evaluator raises an error indicating that it is out of sync with log-file .

Use make-log-based-eval to document libraries when the embedded examples rely on
external features that may not be present or appropriately configured on all machines.

65

25 Sequences

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/sequence) package: base

(in-syntax stx) → sequence?

stx : syntax?

Produces a sequence equivalent to (syntax->list lst).

An in-syntax application can provide better performance for syntax iteration when it ap-
pears directly in a for clause.

Example:

> (for/list ([x (in-syntax #'(1 2 3))])

x)

'(#<syntax:2:0 1> #<syntax:2:0 2> #<syntax:2:0 3>)

(in-pairs seq) → sequence?

seq : sequence?

Produces a sequence equivalent to (in-parallel (sequence-lift car seq)

(sequence-lift cdr seq)).

(in-sequence-forever seq val) → sequence?

seq : sequence?

val : any/c

Produces a sequence whose values are the elements of seq , followed by val repeated.

(sequence-lift f seq) → sequence?

f : procedure?

seq : sequence?

Produces the sequence of f applied to each element of seq .

Example:

> (for/list ([x (sequence-lift add1 (in-range 10))])

x)

'(1 2 3 4 5 6 7 8 9 10) The subsequent
bindings were
added by David
Vanderson.

66

(in-slice length seq) → sequence?

length : exact-positive-integer?

seq : sequence?

Returns a sequence where each element is a list with length elements from the given se-
quence.

Example:

> (for/list ([e (in-slice 3 (in-range 8))]) e)

'((0 1 2) (3 4 5) (6 7))

67

26 Strings

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/string) package: unstable-lib The subsequent
bindings were
added by Vincent
St-Amour.

(regexp-filter pattern lst)

→ (listof (or/c string? bytes? path? input-port?))

pattern : (or/c string? bytes? regexp? byte-regexp?)

lst : (listof (or/c string? bytes? path? input-port?))

Keeps only the elements of lst that match pattern .

68

27 Structs

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/struct) package: base

(make struct-id expr ...)

Creates an instance of struct-id , which must be bound as a struct name. The number of
exprs is statically checked against the number of fields associated with struct-id . If they
are different, or if the number of fields is not known, an error is raised at compile time.

Examples:

> (define-struct triple (a b c))

> (make triple 3 4 5)

#<triple>

> (make triple 2 4)

eval:4:0: make: wrong number of arguments for struct triple
(expected 3, got 2)

in: (make triple 2 4)

(struct->list v [#:on-opaque on-opaque]) → (or/c list? #f)

v : any/c

on-opaque : (or/c 'error 'return-false 'skip) = 'error

Returns a list containing the struct instance v ’s fields. Unlike struct->vector, the struct
name itself is not included.

If any fields of v are inaccessible via the current inspector the behavior of struct->list
is determined by on-opaque . If on-opaque is 'error (the default), an error is raised. If
it is 'return-false, struct->list returns #f. If it is 'skip, the inaccessible fields are
omitted from the list.

Examples:

> (define-struct open (u v) #:transparent)

> (struct->list (make-open 'a 'b))

'(a b)

> (struct->list #s(pre 1 2 3))

'(1 2 3)

> (define-struct (secret open) (x y))

69

> (struct->list (make-secret 0 1 17 22))

struct->list: expected argument of type <non-opaque struct>;
given: (secret 0 1 ...)
> (struct->list (make-secret 0 1 17 22) #:on-opaque 'return-false)

#f

> (struct->list (make-secret 0 1 17 22) #:on-opaque 'skip)

'(0 1)

> (struct->list 'not-a-struct #:on-opaque 'return-false)

#f

> (struct->list 'not-a-struct #:on-opaque 'skip)

'()

70

28 Struct Printing

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/custom-write) package: base

(make-constructor-style-printer get-constructor

get-contents)

→ (-> any/c output-port? (or/c #t #f 0 1) void?)

get-constructor : (-> any/c (or/c symbol? string?))

get-contents : (-> any/c sequence?)

Produces a function suitable as a value for prop:custom-write. The function prints values
in “constructor style.” When the value is printed as an expression, it is shown as an ap-
plication of the constructor (as returned by get-constructor) to the contents (as returned
by get-contents). When given to write, it is shown as an unreadable value with the
constructor separated from the contents by a colon.

Examples:

> (struct point (x y)

#:property prop:custom-write

(make-constructor-style-printer

(lambda (obj) 'point)

(lambda (obj) (list (point-x obj) (point-y obj)))))

> (print (point 1 2))

(point 1 2)

> (write (point 1 2))

#<point: 1 2>

The function also cooperates with pretty-print:

Examples:

> (parameterize ((pretty-print-columns 10))

(pretty-print (point 3000000 4000000)))

(point

3000000

4000000)

> (parameterize ((pretty-print-columns 10))

(pretty-write (point 3000000 4000000)))

71

#<point:

3000000

4000000>

prop:auto-custom-write : (struct-type-property/c 'constructor)

When attached to a struct type, automatically generates a printer using make-constructor-
style-printer and attaches it to the struct type’s prop:custom-write property. It also
sets the prop:custom-print-quotable property to 'never.

Examples:

> (struct point3 (x y z)

#:property prop:auto-custom-write 'constructor)

> (print (point3 3 4 5))

(point3 3 4 5)

> (write (point3 3 4 5))

#<point3: 3 4 5>

72

29 Syntax

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/syntax) package: base

(explode-module-path-index mpi)

→ (listof (or/c module-path? resolved-module-path? #f))

mpi : module-path-index?

Unfolds mpi using module-path-index-split, returning a list of the relative module
paths together with the terminal resolved module path or #f for the “self” module.

Examples:

> (explode-module-path-index (car (identifier-binding #'lambda)))

'("kw.rkt" "pre-base.rkt" "private/base.rkt" racket/base #f)

> (explode-module-path-index (caddr (identifier-

binding #'lambda)))

'(racket/base #f)

> (explode-module-path-index (car (identifier-binding #'define-

values)))

'('#%kernel #f)

(phase-of-enclosing-module)

Returns the phase level of the module in which the form occurs (and for the instantiation of
the module in which the form is executed). For example, if a module is required directly by
the “main” module (or the top level), its phase level is 0. If a module is required for-syntax
by the “main” module (or the top level), its phase level is 1.

Examples:

> (module helper racket

(require unstable/syntax)

(displayln (phase-of-enclosing-module)))

> (require 'helper)

0

> (require (for-meta 1 'helper))

1

(make-variable-like-transformer reference-stx

[setter-stx])

73

→ set!-transformer?

reference-stx : syntax?

setter-stx : (or/c syntax? #f) = #f

Creates a transformer that replaces references to the macro identifier with reference-stx .
Uses of the macro in operator position are interpreted as an application with reference-

stx as the function and the arguments as given.

If the macro identifier is used as the target of a set! form, then the set! form expands into
the application of setter-stx to the set! expression’s right-hand side, if setter-stx is
syntax; otherwise, the identifier is considered immutable and a syntax error is raised.

Examples:

> (define the-box (box add1))

> (define-syntax op

(make-variable-like-transformer

#'(unbox the-box)

#'(lambda (v) (set-box! the-box v))))

> (op 5)

6

> (set! op 0)

> op

0 The subsequent
bindings were
added by Vincent
St-Amour
<stamourv@racket-
lang.org>.

(format-unique-id lctx

fmt

v ...

[#:source src

#:props props

#:cert cert]) → identifier?

lctx : (or/c syntax? #f)

fmt : string?

v : (or/c string? symbol? identifier? keyword? char? number?)

src : (or/c syntax? #f) = #f

props : (or/c syntax? #f) = #f

cert : (or/c syntax? #f) = #f

Like format-id, but returned identifiers are guaranteed to be unique.

(syntax-within? a b) → boolean?

a : syntax?

b : syntax?

74

mailto:stamourv@racket-lang.org
mailto:stamourv@racket-lang.org

Returns true is syntax a is within syntax b in the source. Bounds are inclusive. The subsequent
bindings were
added by Eric
Dobson
<eric.n.dobson@gmail.com>.

(syntax-length stx) → exact-nonnegative-integer?

stx : syntax?

Performs (length (syntax->list stx)).

Example:

> (syntax-length #'(d e f))

3 The subsequent
bindings were
added by Carl
Eastlund
<cce@racket-
lang.org>.

29.1 Syntax Object Source Locations

(syntax-source-directory stx) → (or/c path? #f)

stx : syntax?

(syntax-source-file-name stx) → (or/c path? #f)

stx : syntax?

These produce the directory and file name, respectively, of the path with which stx is asso-
ciated, or #f if stx is not associated with a path.

Examples:

(define loc

(list (build-path "/tmp" "dir" "somewhere.rkt")

#f #f #f #f))

(define stx1 (datum->syntax #f 'somewhere loc))

> (syntax-source-directory stx1)

#<path:/tmp/dir/>

> (syntax-source-file-name stx1)

#<path:somewhere.rkt>

(define stx2 (datum->syntax #f 'nowhere #f))

> (syntax-source-directory stx2)

#f

> (syntax-source-directory stx2)

#f

75

mailto:eric.n.dobson@gmail.com
mailto:cce@racket-lang.org
mailto:cce@racket-lang.org

30 Temporal Contracts: Explicit Contract Monitors

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/temp-c) package: base

The contract system implies the presence of a "monitoring system" that ensures that con-
tracts are not violated. The racket/contract system compiles this monitoring system
into checks on values that cross a contracted boundary. This module provides a facility to
pass contract boundary crossing information to an explicit monitor for approval. This moni-
tor may, for example, use state to enforce temporal constraints, such as a resource is locked
before it is accessed.

30.1 Warning! Experimental!

This library is truly experimental and the interface is likely to drastically change as we get
more experience making use of temporal contracts. In particular, the library comes with
no advice about designing temporal contracts, which are much more subtle than standard
contracts. This subtlety is compounded because, while temporal contract violations have
accurate blame information, we cannot yet connect violations to sub-pieces of the temporal
formula.

For example, applying f to "three" when it is contracted to only accept numbers will error
by blaming the caller and providing the explanation "expected a <number?>, received:
"three"". In contrast, applying g to "even" and then to "odd" when g is contracted to
accept strings on every odd invocation, but numbers on every even invocation, will error
by blaming the second (odd) call, but will not provide any explanation except "the monitor
disallowed the call with arguments: "odd"". Translating non-acceptance of an event trace by
an automata into a palatable user explanation is an open problem.

30.2 Monitors

(require unstable/temp-c/monitor) package: unstable-lib

(struct monitor (label)

#:transparent)

label : symbol?

(struct monitor:proj monitor (label proj-label v)

#:transparent)

label : symbol?

proj-label : symbol?

v : any/c

76

(struct monitor:call monitor (label

proj-label

f

app-label

kws

kw-args

args)

#:transparent)

label : symbol?

proj-label : symbol?

f : procedure?

app-label : symbol?

kws : (listof keyword?)

kw-args : list?

args : list?

(struct monitor:return monitor (label

proj-label

f

app-label

kws

kw-args

args

rets)

#:transparent)

label : symbol?

proj-label : symbol?

f : procedure?

app-label : symbol?

kws : (listof keyword?)

kw-args : list?

args : list?

rets : list?

(monitor/c monitor-allows? label c) → contract?
monitor-allows? : (-> monitor? boolean?)

label : symbol?

c : contract?

monitor/c creates a new contract around c that uses monitor-allows? to approve con-
tract boundary crossings. (c approves positive crossings first.)

Whenever a value v is projected by the result of monitor/c, monitor-allows? must
approve a (monitor:proj label proj-label v) structure, where proj-label is a
unique symbol for this projection.

If monitor-allows? approves and the value is not a function, then the value is returned.

77

If the value is a function, then a projection is returned, whenever it is called, monitor-
allows? must approve a (monitor:call label proj-label v app-label kws kw-

args args) structure, where app-label is a unique symbol for this application and kws,
kw-args, args are the arguments passed to the function.

Whenever it returns, monitor-allows? must approve a (monitor:return label

proj-label v app-label kws kw-args args rets) structure, where ret are the re-
turn values of the application.

The unique projection label allows explicitly monitored contracts to be useful when used in
a first-class way at different boundaries.

The unique application label allows explicitly monitored contracts to pair calls and returns
when functions return multiple times or never through the use of continuations.

Here is a short example that uses an explicit monitor to ensure that malloc and free are
used correctly.

(define allocated (make-weak-hasheq))

(define memmon

(match-lambda

[(monitor:return 'malloc _ _ _ _ _ _ (list addr))

(hash-set! allocated addr #t)

#t]

[(monitor:call 'free _ _ _ _ _ (list addr))

(hash-has-key? allocated addr)]

[(monitor:return 'free _ _ _ _ _ (list addr) _)

(hash-remove! allocated addr)

#t]

[_

#t]))

(provide/contract

[malloc (monitor/c memmon 'malloc (-> number?))]

[free (monitor/c memmon 'free (-> number? void))])

30.3 Domain Specific Language

(require unstable/temp-c/dsl) package: unstable-lib

Constructing explicit monitors using only monitor/c can be a bit onerous. This module
provides some helpful tools for making the definition easier. It provides everything from
unstable/temp-c/monitor, as well as all bindings from unstable/automata/re and
unstable/automata/re-ext. The latter provide a DSL for writing "dependent" regular
expression machines over arbitrary racket/match patterns.

78

First, a few match patterns are available to avoid specify all the details of monitored events
(since most of the time the detailed options are unnecessary.)

(call n a ...)

A match expander for call events to the labeled function n with arguments a .

(ret n a ...)

A match expander for return events to the labeled function n with return values a .

(with-monitor contract-expr re-pat)

Defines a monitored contract where the structural portion of the contract is the contract-

expr (which may included embedded label expressions) and where the temporal portion
of the contract is the regular expression given by re-pat . (Note: re-pat is not a Racket
expression that evaluates to a regular expression. It is a literal regular expression.) An
optional #:concurrent may be added between the contract and the regular expression to
ensure that the machine is safe against race-conditions.

(label id contract-expr)

Labels a portion of a structural contract inside of with-monitor with the label id .

Here is a short example for malloc and free :

(with-monitor

(cons/c (label 'malloc (-> addr?))

(label 'free (-> addr? void?)))

(complement

(seq (star _)

(dseq (call 'free addr)

(seq

(star (not (ret 'malloc (== addr))))

(call 'free (== addr)))))))

79

31 Unix Domain Sockets

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/socket) package: base

unix-socket-available? : boolean?

A boolean value that indicates whether unix domain sockets are available and supported
on the current platform. The supported platforms are Linux and Mac OS X; unix domain
sockets are not supported on Windows and other Unix variants.

(unix-socket-connect socket-path) → input-port? output-port?

socket-path : unix-socket-path?

Connects to the unix domain socket associated with socket-path and returns an input port
and output port for communicating with the socket.

(unix-socket-path? v) → boolean?

v : any/c

Returns #t if v is a valid unix domain socket path for the current system, according to the
following cases:

• If v is a path (path-string?), then the current platform must be either Linux or Mac
OS X, and the length of v ’s corresponding absolute path must be less than or equal to
the platform-specific length (108 bytes on Linux, 104 bytes on Mac OS X). Example:
"/tmp/mysocket".

• If v is a bytestring (bytes?), then the current platform must be Linux, v must
start with a 0 (NUL) byte, and its length must be less than or equal to 108 bytes.
Such a value refers to a socket in the Linux abstract socket namespace. Example:
#"\0mysocket".

Otherwise, returns #f.

80

32 2D Syntax

#lang unstable/2d package: base

The unstable/2d language installs #2d reader support in the readtable, and then chains to
the reader of another language that is specified immediately after unstable/2d.

The #2d syntax extension adds the ability use a two-dimensional grid syntax. That is, you
can draw an ASCII-art grid and then treat that as an expression. For example, here is a
simple equality function that operates on pairs and numbers, written using a #2d conditional
expression:

#lang unstable/2d racket

(require unstable/2d/cond)

(define (same? a b)

#2dcond

(pair? a) (number? a)

(pair? b) (and (same? (car a) #f

(car b))

(same? (cdr a)

(cdr b)))

(number? b) #f (= a b)

)

This notation works in two stages: reading, and parsing (just as in Racket in general). The
reading stage converts anything that begins with #2d into a parenthesized expression (possi-
bly signaling errors if the and and characters do not line up in the right places).

Since the first line contains #2dcond, the reader will produce a sequence whose first position
is the identifier 2dcond.

That macro will take over and then expand into ordinary conditional expressions, in this case
figuring out whether or not the inputs are pairs or numbers and evaluating the code in the
appropriate cell.

At the reader level, the syntax #2d notation checks the number of columns in the first row
and uses that as a guide for where subsequent rows may appear. Once that first row is set, it
serves as a guide to where the columns may appear in subsequent rows, although following
columns may be merged.

This merging can simplify some uses of #2d expressions. For example, consider this expres-

81

sion that captures subtyping relationships between a few of the Typed Racket numeric types,
this time using a #2d match expression:

#lang unstable/2d racket

(require unstable/2d/match)

(define (subtype? a b)

#2dmatch

a b 'Integer 'Real 'Complex

'Integer #t

'Real

'Complex #f

)

There are a number of cell walls missing here, but this is still a well-formed #2d expression.
In this case, the 2dmatch treats any of the situations that fall into the larger regions as the
same.

In general, a #2d expression, when read, turns into an expression with at least two sub-pieces
(not counting the initial name). The first is a sequence of numbers giving the widths of the
top row of cells; the second is also a sequence of numbers, this time giving the heights
of the leftmost column of cells. The remaining sequence describe the cells content. The
first element of each is itself a sequence of coordinates, one for each of the cells that are
connected together. The remaining elements are the subexpressions in the given cells.

For example, this:

#lang unstable/2d racket

'#2dex

0 1

2 3

evaluates to

'(2dex (10 10)

(2 2)

(((0 0)) 0)

82

(((0 1)) 2)

(((1 0)) 1)

(((1 1)) 3))

and this

#lang unstable/2d racket

'#2dex

0 1 2 3 4

5 6

evaluates to

'(2dex (10 10 10)

(2 2)

(((0 0)) 0)

(((0 1)) 5)

(((1 0)) 1 2)

(((1 1) (2 1)) 6)

(((2 0)) 3 4))

In addition, the cells coordinates pairs have source locations of the first character that is
inside the corresponding cell. (Currently the span is always 1, but that may change.)

32.1 Editing 2D

DrRacket provides a number of keybindings to help editing #2d expressions. See DrRacket’s
keyboard shortcuts.

32.2 2D Cond

(require unstable/2d/cond) package: unstable-2d

(2dcond cond-content)

83

cond-content = question-row

body-row
...

| question-row

body-row
...

else-row

question-row = empty-cell question-cell · · ·
| empty-cell question-cell · · · else-cell

body-row = question-cell exprs-cell · · ·

else-row = question-cell exprs-cell · · · else-cell

question-cell =
question-expr

empty-cell =

exprs-cell =
expr expr ...

else-cell =
else

Evaluates the first row of question expressions until one of them returns a true value (signal-
ing an error if none do), then evaluates the first column of question expressions until one of
them returns a true value (signaling an error if none do), and then evaluates the cell in the
middle where both point to, returning the result of the last expression in that cell.

32.3 2D Match

(require unstable/2d/match) package: unstable-2d

(2dmatch match-content)

84

match-content = match-first-row

match-row
...

match-first-row = two-expr-cell match-pat-cell · · ·

match-row = match-pat-cell exprs-cell · · ·

two-expr-cell =
col-expr row-expr

match-pat-cell =
pat

exprs-cell =
expr expr ...

Matches col-expr against each of patterns in the first column of the table and matches
row-expr against each of the patterns in the row row, and then evaluates the corresponding
exprs-cell , returning the value of the last expression in that cell.

32.4 2D Tabular

(require unstable/2d/tabular) package: unstable-2d

(2dmatch tabular-content)

85

tabular-content = tabular-row
...

| tabular-row
...

style-cell

tabular-row = tabular-cell · · ·

tabular-cell =
tabular-expr ...

style-cell =
style-content ...

style-content = #:style style-expr

| #:sep sep-expr

| #:ignore-first-row

style-expr : style?

sep-expr : (or/c block? content? #f)

tabular-expr : (or/c block? content?)

Constructs a tabular matching the given cells.

If a cell spans multiple columns, then the resulting tabular has 'cont in the corresponding
list element. No cells may span rows.

The #:style and #:sep arguments are just passed to tabular.

If the #:ignore-first-row keyword is provided, then the first row of the 2dtabular

expression is ignored. This can be used in case the first row of the rendered table should
not have all of the columns (as #2d syntax requires that the first row contain a cell for each
column that appears in the table).

86

	1 Guidelines for Developing IdentifierColorunstable Libraries
	2 Automata: Compiling State Machines
	2.1 Machines
	2.2 Deterministic Finite Automata
	2.3 Non-Deterministic Finite Automata
	2.4 Non-Deterministic Finite Automata (with epsilon transitions)
	2.5 Regular Expressions
	2.5.1 Extensions
	2.5.2 Examples

	3 Bytes
	4 Contracts
	5 Contracts for Macro Subexpressions
	6 Debugging
	7 Definitions
	8 Errors
	9 Futures
	10 Functions
	10.1 Higher Order Predicates

	11 Hash Tables
	12 Interface-Oriented Programming for Classes
	13 Lazy Require
	14 Lists
	15 Logging
	16 Macro Testing
	17 Mark Parameters
	18 Match
	19 Open IdentifierColorblackplace expressions
	20 Options
	21 Parameter Groups
	22 Pretty-Printing
	23 Re-Contracting Identifiers
	24 Sandbox
	25 Sequences
	26 Strings
	27 Structs
	28 Struct Printing
	29 Syntax
	29.1 Syntax Object Source Locations

	30 Temporal Contracts: Explicit Contract Monitors
	30.1 Warning! Experimental!
	30.2 Monitors
	30.3 Domain Specific Language

	31 Unix Domain Sockets
	32 2D Syntax
	32.1 Editing 2D
	32.2 2D Cond
	32.3 2D Match
	32.4 2D Tabular

