
Inside: Racket C API
Version 6.1.1

Matthew Flatt

November 4, 2014

This manual describes the C interface of Racket’s run-time system. The C interface is rel-
evant primarily when interacting with foreign libraries as described in The Racket Foreign
Interface; even though interactions with foreign code are constructed in pure Racket using
the ffi/unsafe module, many details of representations, memory management, and con-
currency are described here. This manual also describes embedding the Racket run-time
system in larger programs and extending Racket directly with C-implemented libraries.

1

Contents

1 Overview 4
1.1 “Scheme” versus “Racket” . 4
1.2 Building Racket from Source . 4
1.3 CGC versus 3m . 4
1.4 Embedding and Extending Racket . 5
1.5 Racket and Places . 5
1.6 Racket and Threads . 6
1.7 Racket, Unicode, Characters, and Strings 6
1.8 Integers . 6

2 Embedding into a Program 7
2.1 CGC Embedding . 7
2.2 3m Embedding . 10
2.3 Flags and Hooks . 12

3 Writing Racket Extensions 15
3.1 CGC Extensions . 15
3.2 3m Extensions . 17
3.3 Declaring a Module in an Extension . 18

4 Values and Types 20
4.1 Standard Types . 21
4.2 Global Constants . 24
4.3 Strings . 24
4.4 Value Functions . 25

5 Memory Allocation 33
5.1 Cooperating with 3m . 35

5.1.1 Tagged Objects . 35
5.1.2 Local Pointers . 36
5.1.3 Local Pointers and raco ctool --xform 40
5.1.4 Guiding raco ctool --xform 42
5.1.5 Places and Garbage Collector Instances 43

5.2 Memory Functions . 44

6 Namespaces and Modules 53

7 Procedures 56

8 Evaluation 59
8.1 Top-level Evaluation Functions . 59
8.2 Tail Evaluation . 59
8.3 Multiple Values . 60
8.4 Evaluation Functions . 61

2

9 Exceptions and Escape Continuations 65
9.1 Temporarily Catching Error Escapes . 66
9.2 Enabling and Disabling Breaks . 69
9.3 Exception Functions . 69

10 Threads 75
10.1 Integration with Threads . 75
10.2 Allowing Thread Switches . 76
10.3 Blocking the Current Thread . 76
10.4 Threads in Embedded Racket with Event Loops 77

10.4.1 Callbacks for Blocked Threads . 78
10.5 Sleeping by Embedded Racket . 80
10.6 Thread Functions . 81

11 Parameterizations 88

12 Continuation Marks 92

13 String Encodings 93

14 Bignums, Rationals, and Complex Numbers 98

15 Ports and the Filesystem 101

16 Structures 119

17 Security Guards 122

18 Custodians 123

19 Subprocesses 126

20 Miscellaneous Utilities 127

Index 134

Index 134

3

1 Overview

The Racket run-time system is responsible for the implementation of primitive datatypes
such as numbers and strings, the evaluation and/or JIT compilation of Racket bytecode, the
macro expansion and compilation of Racket from source to bytecode, the allocation and
reclamation of memory used during evaluation, and the scheduling of concurrent threads
and parallel tasks.

Much of the language provided by racket/base is implemented in a more primitive dialect
of Racket that is provided by the run-time system. Future versions of Racket are likely
to move macro expansion, compilation, and many “primitive” functions into such Racket-
implemented libraries, instead of having them built into the run-time system.

1.1 “Scheme” versus “Racket”

The old name for Racket was “PLT Scheme,” and the core compiler and run-time system
used to be called “MzScheme.” The old names are entrenched in Racket internals, to the
point that most C bindings defined in this manual start with scheme_. In principle, they all
should be renamed to start racket_.

1.2 Building Racket from Source

The normal Racket distribution includes ".rkt" sources for collection-based libraries. After
modifying library files, run raco setup (see §6 “raco setup: Installation Management”)
to rebuild installed libraries.

The normal Racket distribution does not include the C sources for Racket’s run-time system.
To build Racket from scratch, download a source distribution from http://download.

racket-lang.org; detailed build instructions are in the "README" file in the top-level
"src" directory. You can also get the latest sources from the git repository at https:
//github.com/plt/racket, but beware that the repository is one step away from a normal
source distribution, and it provides build modes that are more suitable for developing Racket
itself; see "INSTALL.txt" in the git repository for more information.

1.3 CGC versus 3m

Before mixing any C code with Racket, first decide whether to use the 3m variant of Racket,
the CGC variant of Racket, or both:

• 3m : the main variant of Racket, which uses precise garbage collection and requires

4

http://download.racket-lang.org
http://download.racket-lang.org
https://github.com/plt/racket
https://github.com/plt/racket

explicit registration of pointer roots and allocation shapes. The precise garbage col-
lector may move its objects in memory during a collection.

• CGC : the original variant of Racket, where memory management depends on a con-
servative garbage collector. The conservative garbage collector can automatically find
references to managed values from C local variables and (on some platforms) static
variables, and it does not move allocated objects.

At the C level, working with CGC can be much easier than working with 3m, but overall
system performance is typically better with 3m.

1.4 Embedding and Extending Racket

The Racket run-time system can be embedded into a larger program; see §2 “Embedding into
a Program” for more information. As an alternative to embedding, the racket executable
can also be run in a subprocess, and that choice may be better for many purposes. On
Windows, MzCom provides another option.

The Racket run-time system can be extended with new C-implemented functions. Histori-
cally, writing an extension could provide performance benefits relative to writing pure Racket
code, but Racket performance has improved to the point that performance benefits of writing
C code (if any) are usually too small to justify the maintenance effort. For calling func-
tions that are provided by a C-implemented library, meanwhile, using with foreign-function
interface within Racket is a better choice than writing an extension of Racket to call the
library.

1.5 Racket and Places

Each Racket place corresponds to a separate OS-implemented thread. Each place has its
own memory manager. Pointers to GC-managed memory cannot be communicated from one
place to another, because such pointers in one place are invisible to the memory manager of
another place.

When place support is enabled, static variables at the C level generally cannot hold pointers
to GC-managed memory, since the static variable may be used from multiple places. For
some OSes, a static variable can be made thread-local, in which case it has a different address
in each OS thread, and each different address can be registered with the GC for a given place.

In an embedding application, the OS thread that originally calls scheme_basic_env is the
OS thread of the original place. When scheme_basic_env is called a second time to reset
the interpreter, it can be called in an OS thread that is different from the original call to
scheme_basic_env. Thereafter, the new thread is the OS thread for the original place.

5

1.6 Racket and Threads

Racket implements threads for Racket programs without aid from the operating system, so
that Racket threads are cooperative from the perspective of C code. On Unix, stand-alone
Racket uses a single OS-implemented thread. On Windows and Mac OS X, stand-alone
Racket uses a few private OS-implemented threads for background tasks, but these OS-
implemented threads are never exposed by the Racket API.

Racket can co-exist with additional OS-implemented threads, but the additional OS threads
must not call any scheme_ function. Only the OS thread representing a particular place can
call scheme_ functions. (This restriction is stronger than saying all calls for a given place
must be serialized across threads. Racket relies on properties of specific threads to avoid
stack overflow and garbage collection.) In an embedding application, for the original place,
only the OS thread used to call scheme_basic_env can call scheme_ functions. For any
other place, only the OS thread that is created by Racket for the place can be used to call
scheme_ functions.

See §10 “Threads” for more information about threads, including the possible effects of
Racket’s thread implementation on extension and embedding C code.

1.7 Racket, Unicode, Characters, and Strings

A character in Racket is a Unicode code point. In C, a character value has type mzchar,
which is an alias for unsigned — which is, in turn, 4 bytes for a properly compiled Racket.
Thus, a mzchar* string is effectively a UCS-4 string.

Only a few Racket functions use mzchar*. Instead, most functions accept char* strings.
When such byte strings are to be used as a character strings, they are interpreted as UTF-
8 encodings. A plain ASCII string is always acceptable in such cases, since the UTF-8
encoding of an ASCII string is itself.

See also §4.3 “Strings” and §13 “String Encodings”.

1.8 Integers

Racket expects to be compiled in a mode where short is a 16-bit integer, int is a 32-bit
integer, and intptr_t has the same number of bits as void*. The long type can match
either int or intptr_t, depending on the platform. The mzlonglong type has 64 bits for
compilers that support a 64-bit integer type, otherwise it is the same as intptr_t; thus,
mzlonglong tends to match long long. The umzlonglong type is the unsigned version of
mzlonglong.

6

2 Embedding into a Program

The Racket run-time system can be embedded into a larger program. The embedding process
for Racket CGC or Racket 3m (see §1.3 “CGC versus 3m”) is essentially the same, but the
process for Racket 3m is most easily understood as a variant of the process for Racket CGC.

2.1 CGC Embedding

To embed Racket CGC in a program, follow these steps:

• Locate or build the Racket CGC libraries. Since the standard distribution provides 3m
libraries, only, you will most likely have to build from source.

On Unix, the libraries are "libracket.a" and "libmzgc.a" (or "libracket.so"
and "libmzgc.so" for a dynamic-library build, with "libracket.la" and
"libmzgc.la" files for use with libtool). Building from source and installing
places the libraries into the installation’s "lib" directory. Be sure to build the CGC
variant, since the default is 3m.

On Windows, stub libraries for use with Microsoft tools are "libracketx .lib"

and "libmzgcx .lib" (where x represents the version number) are in a compiler-
specific directory in "racket\lib". These libraries identify the bindings that are
provided by "libracketx .dll" and "libmzgcx .dll" — which are typically in-
stalled in "racket\lib". When linking with Cygwin, link to "libracketx .dll"

and "libmzgcx .dll" directly. At run time, either "libracketx .dll" and "lib-

mzgcx .dll" must be moved to a location in the standard DLL search path, or your
embedding application must “delayload” link the DLLs and explicitly load them be-
fore use. ("Racket.exe" and "GRacket.exe" use the latter strategy.)

On Mac OS X, dynamic libraries are provided by the "Racket" framework, which
is typically installed in "lib" sub-directory of the installation. Supply -framework

Racket to gcc when linking, along with -F and a path to the "lib" directory. Be-
ware that CGC and 3m libraries are installed as different versions within a single
framework, and installation marks one version or the other as the default (by setting
symbolic links); install only CGC to simplify accessing the CGC version within the
framework. At run time, either "Racket.framework" must be moved to a location
in the standard framework search path, or your embedding executable must provide a
specific path to the framework (possibly an executable-relative path using the Mach-O
@executable_path prefix).

• For each C/C++ file that uses Racket library functions, #include the file
"scheme.h".

The C preprocessor symbol SCHEME_DIRECT_EMBEDDED is defined as 1 when
"scheme.h" is #included, or as 0 when "escheme.h" is #included.

7

The "scheme.h" file is distributed with the Racket software in the installation’s "in-
clude" directory. Building and installing from source also places this file in the in-
stallation’s "include" directory.

• Start your main program through the scheme_main_setup (or
scheme_main_stack_setup) trampoline, and put all uses of Racket functions
inside the function passed to scheme_main_setup. The scheme_main_setup

function registers the current C stack location with the memory manager. It
also creates the initial namespace Scheme_Env* by calling scheme_basic_env

and passing the result to the function provided to scheme_main_setup. (The
scheme_main_stack_setup trampoline registers the C stack with the memory
manager without creating a namespace.)

On 32-bit Windows, when support for parallelism is enabled in the Racket build (as
is the default), then before calling scheme_main_setup, your embedding application
must first call scheme_register_tls_space:

scheme_register_tls_space(&tls_space, 0);

where tls_space is declared as a thread-local pointer variable in the main executable
(i.e., not in a dynamically linked DLL):

static __declspec(thread) void *tls_space;

• Configure the namespace by adding module declarations. The initial namespace con-
tains declarations only for a few primitive modules, such as '#%kernel, and no bind-
ings are imported into the top-level environment.

To embed a module like racket/base (along with all its dependencies), use raco

ctool --c-mods, which generates a C file that contains modules in bytecode form
as encapsulated in a static array. The generated C file defines a declare_modules

function that takes a Scheme_Env*, installs the modules into the environment, and
adjusts the module name resolver to access the embedded declarations.

Alternately, use scheme_set_collects_path and
scheme_init_collection_paths to configure and install a path for finding
modules at run time.

• Access Racket through scheme_dynamic_require, scheme_load, scheme_eval,
and/or other functions described in this manual.

If the embedding program configures built-in parameters in a way that should be con-
sidered part of the default configuration, then call scheme_seal_parameters after-
ward. The snapshot of parameter values taken by scheme_seal_parameters is used
for certain privileged operations, such as installing a PLaneT package.

• Compile the program and link it with the Racket libraries.

With Racket CGC, Racket values are garbage collected using a conservative garbage col-
lector, so pointers to Racket objects can be kept in registers, stack variables, or structures

8

allocated with scheme_malloc. In an embedding application on some platforms, static vari-
ables are also automatically registered as roots for garbage collection (but see notes below
specific to Mac OS X and Windows).

For example, the following is a simple embedding program which evaluates all expressions
provided on the command line and displays the results, then runs a read-eval-print loop.
Run

raco ctool --c-mods base.c ++lib racket/base

to generate "base.c", which encapsulates racket/base and all of its transitive imports (so
that they need not be found separately a run time).

#include "scheme.h"

#include "base.c"

static int run(Scheme_Env *e, int argc, char *argv[])

{

Scheme_Object *curout;

int i;

mz_jmp_buf * volatile save, fresh;

/* Declare embedded modules in "base.c": */

declare_modules(e);

scheme_namespace_require(scheme_intern_symbol("racket/base"));

curout = scheme_get_param(scheme_current_config(),

MZCONFIG_OUTPUT_PORT);

for (i = 1; i < argc; i++) {

save = scheme_current_thread->error_buf;

scheme_current_thread->error_buf = &fresh;

if (scheme_setjmp(scheme_error_buf)) {

scheme_current_thread->error_buf = save;

return -1; /* There was an error */

} else {

Scheme_Object *v, *a[2];

v = scheme_eval_string(argv[i], e);

scheme_display(v, curout);

scheme_display(scheme_make_char('\n'), curout);

/* read-eval-print loop, uses initial Scheme_Env: */

a[0] = scheme_intern_symbol("racket/base");

a[1] = scheme_intern_symbol("read-eval-print-loop");

scheme_apply(scheme_dynamic_require(2, a), 0, NULL);

9

scheme_current_thread->error_buf = save;

}

}

return 0;

}

int main(int argc, char *argv[])

{

return scheme_main_setup(1, run, argc, argv);

}

On Mac OS X, or on Windows when Racket is compiled to a DLL using Cygwin, the garbage
collector cannot find static variables automatically. In that case, scheme_main_setup must
be called with a non-zero first argument.

On Windows (for any other build mode), the garbage collector finds static variables in
an embedding program by examining all memory pages. This strategy fails if a program
contains multiple Windows threads; a page may get unmapped by a thread while the col-
lector is examining the page, causing the collector to crash. To avoid this problem, call
scheme_main_setup with a non-zero first argument.

When an embedding application calls scheme_main_setup with a non-zero first argu-
ment, it must register each of its static variables with MZ_REGISTER_STATIC if the vari-
able can contain a GCable pointer. For example, if curout above is made static, then
MZ_REGISTER_STATIC(curout) should be inserted before the call to scheme_get_param.

When building an embedded Racket CGC to use SenoraGC (SGC) instead of the default col-
lector, scheme_main_setup must be called with a non-zero first argument. See §5 “Mem-
ory Allocation” for more information.

2.2 3m Embedding

Racket 3m can be embedded mostly the same as Racket, as long as the embedding program
cooperates with the precise garbage collector as described in §5.1 “Cooperating with 3m”.

In either your source in the in compiler command line, #define MZ_PRECISE_GC be-
fore including "scheme.h". When using raco ctool with the --cc and --3m flags,
MZ_PRECISE_GC is automatically defined.

In addition, some library details are different:

• On Unix, the library is just "libracket3m.a" (or "libracket3m.so" for a
dynamic-library build, with "libracket3m.la" for use with libtool). There is
no separate library for 3m analogous to CGC’s "libmzgc.a".

10

• On Windows, the stub library for use with Microsoft tools is "libracket3mx .lib"
(where x represents the version number). This library identifies the bindings that are
provided by "libracket3mx .dll". There is no separate library for 3m analogous
to CGC’s "libmzgcx .lib".

• On Mac OS X, 3m dynamic libraries are provided by the "Racket" framework, just
as for CGC, but as a version suffixed with "_3m".

For Racket 3m, an embedding application must call scheme_main_setup with a non-zero
first argument.

The simple embedding program from the previous section can be processed by raco ctool

--xform, then compiled and linked with Racket 3m. Alternately, the source code can be
extended to work with either CGC or 3m depending on whether MZ_PRECISE_GC is defined
on the compiler’s command line:

#include "scheme.h"

#include "base.c"

static int run(Scheme_Env *e, int argc, char *argv[])

{

Scheme_Object *curout = NULL, *v = NULL, *a[2] = {NULL, NULL};

Scheme_Config *config = NULL;

int i;

mz_jmp_buf * volatile save = NULL, fresh;

MZ_GC_DECL_REG(8);

MZ_GC_VAR_IN_REG(0, e);

MZ_GC_VAR_IN_REG(1, curout);

MZ_GC_VAR_IN_REG(2, save);

MZ_GC_VAR_IN_REG(3, config);

MZ_GC_VAR_IN_REG(4, v);

MZ_GC_ARRAY_VAR_IN_REG(5, a, 2);

MZ_GC_REG();

declare_modules(e);

v = scheme_intern_symbol("racket/base");

scheme_namespace_require(v);

config = scheme_current_config();

curout = scheme_get_param(config, MZCONFIG_OUTPUT_PORT);

for (i = 1; i < argc; i++) {

11

save = scheme_current_thread->error_buf;

scheme_current_thread->error_buf = &fresh;

if (scheme_setjmp(scheme_error_buf)) {

scheme_current_thread->error_buf = save;

return -1; /* There was an error */

} else {

v = scheme_eval_string(argv[i], e);

scheme_display(v, curout);

v = scheme_make_char('\n');

scheme_display(v, curout);

/* read-eval-print loop, uses initial Scheme_Env: */

a[0] = scheme_intern_symbol("racket/base");

a[1] = scheme_intern_symbol("read-eval-print-loop");

v = scheme_dynamic_require(2, a);

scheme_apply(v, 0, NULL);

scheme_current_thread->error_buf = save;

}

}

MZ_GC_UNREG();

return 0;

}

int main(int argc, char *argv[])

{

return scheme_main_setup(1, run, argc, argv);

}

Strictly speaking, the config and v variables above need not be registered with the garbage
collector, since their values are not needed across function calls that allocate. The code
is much easier to maintain, however, when all local variables are registered and when all
temporary values are put into variables.

2.3 Flags and Hooks

The following flags and hooks are available when Racket is embedded:

• scheme_exit — This pointer can be set to a function that takes an integer argument
and returns void; the function will be used as the default exit handler. The default is
NULL.

• scheme_make_stdin, scheme_make_stdout, scheme_make_stderr, — These
pointers can be set to a function that takes no arguments and returns a Racket port

12

Scheme_Object * to be used as the starting standard input, output, and/or error port.
The defaults are NULL. Setting the initial error port is particularly important for seeing
unexpected error messages if stderr output goes nowhere.

• scheme_console_output — This pointer can be set to a function that takes a string
and a intptr_t string length; the function will be called to display internal Racket
warnings and messages that possibly contain non-terminating nuls. The default is
NULL.

• scheme_check_for_break — This points to a function of no arguments that returns
an integer. It is used as the default user-break polling procedure in the main thread. A
non-zero return value indicates a user break, and each time the function returns a non-
zero value, it counts as a new break signal (though the break signal may be ignored if
a previous signal is still pending). The default is NULL.

• scheme_case_sensitive — If this flag is set to a non-zero value before
scheme_basic_env is called, then Racket will not ignore capitalization for symbols
and global variable names. The value of this flag should not change once it is set. The
default is zero.

• scheme_allow_set_undefined — This flag determines the initial value of
compile-allow-set!-undefined. The default is zero.

• scheme_console_printf — This function pointer was left for backward compati-
bility. The default builds a string and calls scheme_console_output.

void scheme_set_collects_path(Scheme_Object* path)

Sets the path to be returned by (find-system-path 'collects-dir).

void scheme_set_addon_path(Scheme_Object* path)

Sets the path to be returned by (find-system-path 'addon-dir).

void

scheme_init_collection_paths_post(Scheme_Env* env,
Scheme_Object* pre_extra_paths,
Scheme_Object* post_extra_paths)

Initializes the current-library-collection-paths parameter using find-library-

collection-paths. The pre_extra_paths and post_extra-paths arguments are propagated
to find-library-collection-paths.

The function calls scheme_seal_parameters automatically.

void scheme_init_collection_paths(Scheme_Env* env,
Scheme_Object* pre_extra_paths)

Like scheme_init_collection_paths_post, but with null as the last argument.

13

void scheme_seal_parameters()

Takes a snapshot of the current values of built-in parameters. These values are used for
privileged actions, such as installing a PLaneT package.

14

3 Writing Racket Extensions

As noted in §1.4 “Embedding and Extending Racket”, writing Racket code and using the
foreign-function interface is usually a better option than writing an extension to Racket, but
Racket also supports C-implemented extensions that plug more directly into the run-time
system.

The process of creating an extension for Racket 3m or Racket CGC (see §1.3 “CGC versus
3m”) is essentially the same, but the process for 3m is most easily understood as a variant of
the process for CGC.

3.1 CGC Extensions

To write a C/C++-based extension for Racket CGC, follow these steps:

• For each C/C++ file that uses Racket library functions, #include the file
"escheme.h".

This file is distributed with the Racket software in an "include" directory, but if
raco ctool is used to compile, this path is found automatically.

• Define the C function scheme_initialize, which takes a Scheme_Env* namespace
(see §6 “Namespaces and Modules”) and returns a Scheme_Object* Racket value.

This initialization function can install new global primitive procedures or other values
into the namespace, or it can simply return a Racket value. The initialization func-
tion is called when the extension is loaded with load-extension the first time in a
given place; the return value from scheme_initialize is used as the return value for
load-extension. The namespace provided to scheme_initialize is the current
namespace when load-extension is called.

• Define the C function scheme_reload, which has the same arguments and return type
as scheme_initialize.

This function is called if load-extension is called a second time (or more times) for
an extension in a given place. Like scheme_initialize, the return value from this
function is the return value for load-extension.

• Define the C function scheme_module_name, which takes no arguments and returns
a Scheme_Object* value, either a symbol or scheme_false.

The function should return a symbol when the effect of calling scheme_initialize

and scheme_reload is only to declare a module with the returned name. This func-
tion is called when the extension is loaded to satisfy a require declaration.

The scheme_module_name function may be called before scheme_initialize and
scheme_reload, after those functions, or both before and after, depending on how
the extension is loaded and re-loaded.

15

• Compile the extension C/C++ files to create platform-specific object files.

The raco ctool compiler, which is distributed with Racket, compiles plain C files
when the --cc flag is specified. More precisely, raco ctool does not compile the
files itself, but it locates a C compiler on the system and launches it with the appropri-
ate compilation flags. If the platform is a relatively standard Unix system, a Windows
system with either Microsoft’s C compiler or gcc in the path, or a Mac OS X system
with Apple’s developer tools installed, then using raco ctool is typically easier than
working with the C compiler directly. Use the --cgc flag to indicate that the build is
for use with Racket CGC.

• Link the extension C/C++ files with "mzdyn.o" (Unix, Mac OS X) or "mzdyn.obj"
(Windows) to create a shared object. The resulting shared object should use the exten-
sion ".so" (Unix), ".dll" (Windows), or ".dylib" (Mac OS X).

The "mzdyn" object file is distributed in the installation’s "lib" directory. For Win-
dows, the object file is in a compiler-specific sub-directory of "racket\lib".

The raco ctool compiler links object files into an extension when the --ld flag
is specified, automatically locating "mzdyn". Again, use the --cgc flag with raco

ctool.

• Load the shared object within Racket using (load-extension path), where path
is the name of the extension file generated in the previous step.

Alternately, if the extension defines a module (i.e., scheme_module_name returns a
symbol), then place the shared object in a special directory with a special name, so that
it is detected by the module loader when require is used. The special directory is a
platform-specific path that can be obtained by evaluating (build-path "compiled"

"native" (system-library-subpath)); see load/use-compiled for more in-
formation. For example, if the shared object’s name is "example_rkt.dll", then
(require "example.rkt") will be redirected to "example_rkt.dll" if the lat-
ter is placed in the sub-directory (build-path "compiled" "native" (system-

library-subpath)) and if "example.rkt" does not exist or has an earlier times-
tamp.

Note that (load-extension path) within a module does not introduce the exten-
sion’s definitions into the module, because load-extension is a run-time operation.
To introduce an extension’s bindings into a module, make sure that the extension de-
fines a module, put the extension in the platform-specific location as described above,
and use require.

IMPORTANT: With Racket CGC, Racket values are garbage collected using a conservative
garbage collector, so pointers to Racket objects can be kept in registers, stack variables, or
structures allocated with scheme_malloc. However, static variables that contain pointers
to collectable memory must be registered using scheme_register_extension_global

(see §5 “Memory Allocation”); even then, such static variables must be thread-local (in the
OS-thread sense) to work with multiple places (see §1.5 “Racket and Places”).

16

As an example, the following C code defines an extension that returns "hello world"

when it is loaded:

#include "escheme.h"

Scheme_Object *scheme_initialize(Scheme_Env *env) {

return scheme_make_utf8_string("hello world");

}

Scheme_Object *scheme_reload(Scheme_Env *env) {

return scheme_initialize(env); /* Nothing special for reload */

}

Scheme_Object *scheme_module_name() {

return scheme_false;

}

Assuming that this code is in the file "hw.c", the extension is compiled on Unix with the
following two commands:

raco ctool --cgc --cc hw.c

raco ctool --cgc --ld hw.so hw.o

(Note that the --cgc, --cc, and --ld flags are each prefixed by two dashes, not one.)

The "collects/mzscheme/examples" directory in the Racket distribution contains addi-
tional examples.

3.2 3m Extensions

To build an extension to work with Racket 3m, the CGC instructions must be extended as
follows:

• Adjust code to cooperate with the garbage collector as described in §5.1 “Cooperating
with 3m”. Using raco ctool with the --xform might convert your code to imple-
ment part of the conversion, as described in §5.1.3 “Local Pointers and raco ctool

--xform”.

• In either your source in the in compiler command line, #define MZ_PRECISE_GC

before including "escheme.h". When using raco ctool with the --cc and --3m

flags, MZ_PRECISE_GC is automatically defined.

• Link with "mzdyn3m.o" (Unix, Mac OS X) or "mzdyn3m.obj" (Windows) to create
a shared object. When using raco ctool, use the --ld and --3m flags to link to
these libraries.

For a relatively simple extension "hw.c", the extension is compiled on Unix for 3m with the
following three commands:

17

raco ctool --xform hw.c

raco ctool --3m --cc hw.3m.c

raco ctool --3m --ld hw.so hw_3m.o

Some examples in "collects/mzscheme/examples" work with Racket 3m in this way. A
few examples are manually instrumented, in which case the --xform step should be skipped.

3.3 Declaring a Module in an Extension

To create an extension that behaves as a module, return a symbol from
scheme_module_name, and have scheme_initialize and scheme_rename declare
a module using scheme_primitive_module.

For example, the following extension implements a module named hello that exports a
binding greeting:

#include "escheme.h"

Scheme_Object *scheme_initialize(Scheme_Env *env) {

Scheme_Env *mod_env;

mod_env = scheme_primitive_module(scheme_intern_symbol("hi"),

env);

scheme_add_global("greeting",

scheme_make_utf8_string("hello"),

mod_env);

scheme_finish_primitive_module(mod_env);

return scheme_void;

}

Scheme_Object *scheme_reload(Scheme_Env *env) {

return scheme_initialize(env); /* Nothing special for reload */

}

Scheme_Object *scheme_module_name() {

return scheme_intern_symbol("hi");

}

This extension could be compiled for 3m on i386 Linux, for example, using the following
sequence of mzc commands:

raco ctool --xform hi.c

raco ctool --3m --cc hi.3m.c

18

mkdir -p compiled/native/i386-linux/3m

raco ctool --3m --ld compiled/native/i386-linux/3m/hi_rkt.so

hi_3m.o

The resulting module can be loaded with

(require "hi.rkt")

19

4 Values and Types

A Racket value is represented by a pointer-sized value. The low bit is a mark bit: a 1 in the
low bit indicates an immediate integer, a 0 indicates a (word-aligned) pointer.

A pointer Racket value references a structure that begins with a Scheme_Object sub-
structure, which in turn starts with a tag that has the C type Scheme_Type. The rest of
the structure, following the Scheme_Object header, is type-dependent. Racket’s C inter-
face gives Racket values the type Scheme_Object*. (The “object” here does not refer to
objects in the sense of the racket/class library.)

Examples of Scheme_Type values include scheme_pair_type and
scheme_symbol_type. Some of these are implemented as instances of
Scheme_Simple_Object, which is defined in "scheme.h", but extension or embed-
ding code should never access this structure directly. Instead, the code should use macros,
such as SCHEME_CAR, that provide access to the data of common Racket types.

For most Racket types, a constructor is provided for creating values of the type. For example,
scheme_make_pair takes two Scheme_Object* values and returns the cons of the values.

The macro SCHEME_TYPE takes a Scheme_Object * and returns the type of the object. This
macro performs the tag-bit check, and returns scheme_integer_type when the value is an
immediate integer; otherwise, SCHEME_TYPE follows the pointer to get the type tag. Macros
are provided to test for common Racket types; for example, SCHEME_PAIRP returns 1 if the
value is a cons cell, 0 otherwise.

In addition to providing constructors, Racket defines six global constant Racket val-
ues: scheme_true, scheme_false, scheme_null, scheme_eof, scheme_void, and
scheme_undefined. Each of these has a type tag, but each is normally recognized via
its constant address.

An extension or embedding application can create new a primitive data type by calling
scheme_make_type, which returns a fresh Scheme_Type value. To create a collectable in-
stance of this type, allocate memory for the instance with scheme_malloc_atomic. From
Racket’s perspective, the main constraint on the data format of such an instance is that
the first sizeof(Scheme_Object) bytes must correspond to a Scheme_Object record;
furthermore, the first sizeof(Scheme_Type) bytes must contain the value returned by
scheme_make_type. Extensions with modest needs can use scheme_make_cptr, instead
of creating an entirely new type.

Racket values should never be allocated on the stack, and they should never contain pointers
to values on the stack. Besides the problem of restricting the value’s lifetime to that of the
stack frame, allocating values on the stack creates problems for continuations and threads,
both of which copy into and out of the stack.

20

4.1 Standard Types

The following are the Scheme_Type values for the standard types:

• scheme_bool_type — the constants scheme_true and scheme_false are the
only values of this type; use SCHEME_FALSEP to recognize scheme_false and use
SCHEME_TRUEP to recognize anything except scheme_false; test for this type with
SCHEME_BOOLP

• scheme_char_type — SCHEME_CHAR_VAL extracts the character (of type mzchar);
test for this type with SCHEME_CHARP

• scheme_integer_type — fixnum integers, which are identified via the tag bit rather
than following a pointer to this Scheme_Type value; SCHEME_INT_VAL extracts the
integer to an intptr_t; test for this type with SCHEME_INTP

• scheme_double_type — flonum inexact numbers; SCHEME_FLOAT_VAL or
SCHEME_DBL_VAL extracts the floating-point value; test for this type with
SCHEME_DBLP

• scheme_float_type — single-precision flonum inexact numbers, when specifically
enabled when compiling Racket; SCHEME_FLOAT_VAL or SCHEME_FLT_VAL extracts
the floating-point value; test for this type with SCHEME_FLTP

• scheme_bignum_type — test for this type with SCHEME_BIGNUMP

• scheme_rational_type — test for this type with SCHEME_RATIONALP

• scheme_complex_type — test for this type or scheme_complex_izi_type with
SCHEME_COMPLEXP

• scheme_complex_izi_type — complex number with an inexact zero imagi-
nary part (so it counts as a real number); test for this type specifically with
SCHEME_COMPLEX_IZIP

• scheme_char_string_type — SCHEME_CHAR_STR_VAL extracts the string as
a mzchar*; the string is always nul-terminated, but may also contain embed-
ded nul characters, and the Racket string is modified if this string is modified;
SCHEME_CHAR_STRLEN_VAL extracts the string length (in characters, not counting the
nul terminator); test for this type with SCHEME_CHAR_STRINGP

• scheme_byte_string_type — SCHEME_BYTE_STR_VAL extracts the string as
a char*; the string is always nul-terminated, but may also contain embed-
ded nul characters, and the Racket string is modified if this string is modified;
SCHEME_BYTE_STRLEN_VAL extracts the string length (in bytes, not counting the nul
terminator); test for this type with SCHEME_BYTE_STRINGP

• scheme_path_type — SCHEME_PATH_VAL extracts the path as a char*; the string
is always nul-terminated; SCHEME_PATH_LEN extracts the path length (in bytes, not
counting the nul terminator); test for this type with SCHEME_PATHP

21

• scheme_symbol_type — SCHEME_SYM_VAL extracts the symbol’s string as a char*
UTF-8 encoding (do not modify this string); SCHEME_SYM_LEN extracts the number
of bytes in the symbol name (not counting the nul terminator); test for this type
with SCHEME_SYMBOLP; 3m: see §5.1 “Cooperating with 3m” for a caution about
SCHEME_SYM_VAL

• scheme_keyword_type — SCHEME_KEYWORD_VAL extracts the keyword’s string
(without the leading hash colon) as a char* UTF-8 encoding (do not modify this
string); SCHEME_KEYWORD_LEN extracts the number of bytes in the keyword name
(not counting the nul terminator); test for this type with SCHEME_KEYWORDP; 3m: see
§5.1 “Cooperating with 3m” for a caution about SCHEME_KEYWORD_VAL

• scheme_box_type — SCHEME_BOX_VAL extracts/sets the boxed value; test for this
type with SCHEME_BOXP

• scheme_pair_type — SCHEME_CAR extracts/sets the car and SCHEME_CDR ex-
tracts/sets the cdr; test for this type with SCHEME_PAIRP

• scheme_mutable_pair_type — SCHEME_MCAR extracts/sets the mcar and
SCHEME_MCDR extracts/sets the mcdr; test for this type with SCHEME_MPAIRP

• scheme_vector_type — SCHEME_VEC_SIZE extracts the length and
SCHEME_VEC_ELS extracts the array of Racket values (the Racket vector is
modified when this array is modified); test for this type with SCHEME_VECTORP; 3m:
see §5.1 “Cooperating with 3m” for a caution about SCHEME_VEC_ELS

• scheme_flvector_type — SCHEME_FLVEC_SIZE extracts the length and
SCHEME_FLVEC_ELS extracts the array of doubles; test for this type with
SCHEME_FLVECTORP; 3m: see §5.1 “Cooperating with 3m” for a caution about
SCHEME_FLVEC_ELS

• scheme_fxvector_type — uses the same representation as scheme_vector_type,
so use SCHEME_VEC_SIZE for the length and SCHEME_VEC_ELS for the array of Racket
fixnum values; test for this type with SCHEME_FXVECTORP; 3m: see §5.1 “Cooperating
with 3m” for a caution about SCHEME_VEC_ELS

• scheme_structure_type — structure instances; test for this type with
SCHEME_STRUCTP

• scheme_struct_type_type — structure types; test for this type with
SCHEME_STRUCT_TYPEP

• scheme_struct_property_type — structure type properties

• scheme_input_port_type — SCHEME_INPORT_VAL extracts/sets the user data
pointer; test for just this type with SCHEME_INPORTP, but use SCHEME_INPUT_PORTP
to recognize all input ports (including structures with the prop:input-port prop-
erty)

22

• scheme_output_port_type — SCHEME_OUTPORT_VAL extracts/sets the
user data pointer; test for just this type with SCHEME_OUTPORTP, but use
SCHEME_OUTPUT_PORTP to recognize all output ports (including structures with
the prop:output-port property)

• scheme_thread_type — thread descriptors; test for this type with
SCHEME_THREADP

• scheme_sema_type — semaphores; test for this type with SCHEME_SEMAP

• scheme_hash_table_type — test for this type with SCHEME_HASHTP

• scheme_bucket_table_type — test for this type with SCHEME_BUCKTP

• scheme_weak_box_type — test for this type with SCHEME_WEAKP;
SCHEME_WEAK_PTR extracts the contained object, or NULL after the content is
collected; do not set the content of a weak box

• scheme_namespace_type — namespaces; test for this type with
SCHEME_NAMESPACEP

• scheme_cpointer_type — #<void> pointer with a type-describing
Scheme_Object; SCHEME_CPTR_VAL extracts the pointer and SCHEME_CPTR_TYPE

extracts the type tag object; test for this type with SCHEME_CPTRP. The tag is used
when printing such objects when it’s a symbol, a byte string, a string, or a pair holding
one of these in its car.

The following are the procedure types:

• scheme_prim_type — a primitive procedure, possibly with data elements

• scheme_closed_prim_type — an old-style primitive procedure with a data pointer

• scheme_compiled_closure_type — a Racket procedure

• scheme_cont_type — a continuation

• scheme_escaping_cont_type — an escape continuation

• scheme_case_closure_type — a case-lambda procedure

• scheme_native_closure_type — a procedure with native code generated by the
just-in-time compiler

The predicate SCHEME_PROCP returns 1 for all procedure types and 0 for anything else.

The following are additional number predicates:

• SCHEME_NUMBERP — all numerical types

23

• SCHEME_REALP — all non-complex numerical types, plus
scheme_complex_izi_type

• SCHEME_EXACT_INTEGERP — fixnums and bignums

• SCHEME_EXACT_REALP — fixnums, bignums, and rationals

• SCHEME_FLOATP — both single-precision (when enabled) and double-precision flon-
ums

4.2 Global Constants

There are six global constants:

• scheme_null — test for this value with SCHEME_NULLP

• scheme_eof — test for this value with SCHEME_EOFP

• scheme_true

• scheme_false — test for this value with SCHEME_FALSEP; test against it with
SCHEME_TRUEP

• scheme_void — test for this value with SCHEME_VOIDP

• scheme_undefined

4.3 Strings

As noted in §1.7 “Racket, Unicode, Characters, and Strings”, a Racket character is a Unicode
code point represented by a mzchar value, and character strings are mzchar arrays. Racket
also supplies byte strings, which are char arrays.

For a character string s, SCHEME_CHAR_STR_VAL(s) produces a pointer to
mzchars, not chars. Convert a character string to its UTF-8 encoding as
byte string with scheme_char_string_to_byte_string. For a byte string
bs, SCHEME_BYTE_STR_VAL(bs) produces a pointer to chars. The function
scheme_byte_string_to_char_string decodes a byte string as UTF-8 and pro-
duces a character string. The functions scheme_char_string_to_byte_string_locale
and scheme_byte_string_to_char_string_locale are similar, but they use the
current locale’s encoding instead of UTF-8.

For more fine-grained control over UTF-8 encoding, use the scheme_utf8_decode and
scheme_utf8_encode functions, which are described in §13 “String Encodings”.

24

4.4 Value Functions

Scheme_Object* scheme_make_char(mzchar ch)

Returns the character value. The ch value must be a legal Unicode code point (and not a
surrogate, for example). The first 256 characters are represented by constant Racket values,
and others are allocated.

Scheme_Object* scheme_make_char_or_null(mzchar ch)

Like scheme_make_char, but the result is NULL if ch is not a legal Unicode code point.

Scheme_Object* scheme_make_character(mzchar ch)

Returns the character value. This is a macro that directly accesses the array of constant
characters when ch is less than 256.

Scheme_Object* scheme_make_ascii_character(mzchar ch)

Returns the character value, assuming that ch is less than 256. (This is a macro.)

Scheme_Object* scheme_make_integer(intptr_t i)

Returns the integer value; i must fit in a fixnum. (This is a macro.)

Scheme_Object* scheme_make_integer_value(intptr_t i)

Returns the integer value. If i does not fit in a fixnum, a bignum is returned.

Scheme_Object*

scheme_make_integer_value_from_unsigned(uintptr_t i)

Like scheme_make_integer_value, but for unsigned integers.

Scheme_Object*

scheme_make_integer_value_from_long_long(mzlonglong i)

Like scheme_make_integer_value, but for mzlonglong values (see §1.8 “Integers”).

Scheme_Object*

scheme_make_integer_value_from_unsigned_long_long(umzlonglong i)

Like scheme_make_integer_value_from_long_long, but for unsigned integers.

Scheme_Object*

scheme_make_integer_value_from_long_halves(uintptr_t hi,
uintptr_t lo)

Creates an integer given the high and low intptr_ts of a signed integer. Note that on 64-
bit platforms where long long is the same as intptr_t, the resulting integer has 128 bits.

25

(See also §1.8 “Integers”.)

Scheme_Object*

scheme_make_integer_value_from_unsigned_long_halves(uintptr_t hi,
uintptr_t lo)

Creates an integer given the high and low intptr_ts of an unsigned integer. Note that on
64-bit platforms where long long is the same as intptr_t, the resulting integer has 128
bits.

int scheme_get_int_val(Scheme_Object* o,
intptr_t* i)

Extracts the integer value. Unlike the SCHEME_INT_VAL macro, this procedure will extract
an integer that fits in a intptr_t from a Racket bignum. If o fits in a intptr_t, the ex-
tracted integer is placed in *i and 1 is returned; otherwise, 0 is returned and *i is unmodified.

int scheme_get_unsigned_int_val(Scheme_Object* o,
uintptr_t* i)

Like scheme_get_int_val, but for unsigned integers.

int scheme_get_long_long_val(Scheme_Object* o,
mzlonglong* i)

Like scheme_get_int_val, but for mzlonglong values (see §1.8 “Integers”).

int scheme_get_unsigned_long_long_val(Scheme_Object* o,
umzlonglong* i)

Like scheme_get_int_val, but for unsigned mzlonglong values (see §1.8 “Integers”).

Scheme_Object* scheme_make_double(double d)

Creates a new floating-point value.

Scheme_Object* scheme_make_float(float d)

Creates a new single-precision floating-point value. The procedure is available only when
Racket is compiled with single-precision numbers enabled.

double scheme_real_to_double(Scheme_Object* o)

Converts a Racket real number to a double-precision floating-point value.

Scheme_Object* scheme_make_pair(Scheme_Object* carv,
Scheme_Object* cdrv)

Makes a cons pair.

26

Scheme_Object* scheme_make_byte_string(char* bytes)

Makes a Racket byte string from a nul-terminated C string. The bytes string is copied.

Scheme_Object*

scheme_make_byte_string_without_copying(char* bytes)

Like scheme_make_byte_string, but the string is not copied.

Scheme_Object* scheme_make_sized_byte_string(char* bytes,
intptr_t len,
int copy)

Makes a byte string value with size len. A copy of bytes is made if copy is not 0. The string
bytes should contain len bytes; bytes can contain the nul byte at any position, and need not
be nul-terminated if copy is non-zero. However, if len is negative, then the nul-terminated
length of bytes is used for the length, and if copy is zero, then bytes must be nul-terminated.

Scheme_Object* scheme_make_sized_offset_byte_string(char* bytes,
intptr_t d,
intptr_t len,
int copy)

Like scheme_make_sized_byte_string, except the len characters start from position d
in bytes. If d is non-zero, then copy must be non-zero.

Scheme_Object* scheme_alloc_byte_string(intptr_t size,
char fill)

Allocates a new Racket byte string.

Scheme_Object* scheme_append_byte_string(Scheme_Object* a,
Scheme_Object* b)

Creates a new byte string by appending the two given byte strings.

Scheme_Object* scheme_make_locale_string(char* bytes)

Makes a Racket string from a nul-terminated byte string that is a locale-specific encoding
of a character string; a new string is allocated during decoding. The “locale in the name of
this function thus refers to bytes, and not the resulting string (which is internally stored as
UCS-4).

Scheme_Object* scheme_make_utf8_string(char* bytes)

Makes a Racket string from a nul-terminated byte string that is a UTF-8 encoding. A new
string is allocated during decoding. The “utf8” in the name of this function thus refers to
bytes, and not the resulting string (which is internally stored as UCS-4).

27

Scheme_Object* scheme_make_sized_utf8_string(char* bytes,
intptr_t len)

Makes a string value, based on len UTF-8-encoding bytes (so the resulting string is len
characters or less). The string bytes should contain at least len bytes; bytes can contain the
nul byte at any position, and need not be null-terminated. However, if len is negative, then
the nul-terminated length of bytes is used for the length.

Scheme_Object* scheme_make_sized_offset_utf8_string(char* bytes,
intptr_t d,
intptr_t len)

Like scheme_make_sized_char_string, except the len characters start from position d
in bytes.

Scheme_Object* scheme_make_char_string(mzchar* chars)

Makes a Racket string from a nul-terminated UCS-4 string. The chars string is copied.

Scheme_Object*

scheme_make_char_string_without_copying(mzchar* chars)

Like scheme_make_char_string, but the string is not copied.

Scheme_Object* scheme_make_sized_char_string(mzchar* chars,
intptr_t len,
int copy)

Makes a string value with size len. A copy of chars is made if copy is not 0. The string
chars should contain len characters; chars can contain the nul character at any position, and
need not be nul-terminated if copy is non-zero. However, if len is negative, then the nul-
terminated length of chars is used for the length, and if copy is zero, then the chars must be
nul-terminated.

Scheme_Object*

scheme_make_sized_offset_char_string(mzchar* chars,
intptr_t d,
intptr_t len,
int copy)

Like scheme_make_sized_char_string, except the len characters start from position d
in chars. If d is non-zero, then copy must be non-zero.

Scheme_Object* scheme_alloc_char_string(intptr_t size,
mzchar fill)

Allocates a new Racket string.

28

Scheme_Object* scheme_append_char_string(Scheme_Object* a,
Scheme_Object* b)

Creates a new string by appending the two given strings.

Scheme_Object*

scheme_char_string_to_byte_string(Scheme_Object* s)

Converts a Racket character string into a Racket byte string via UTF-8.

Scheme_Object*

scheme_byte_string_to_char_string(Scheme_Object* s)

Converts a Racket byte string into a Racket character string via UTF-8.

Scheme_Object*

scheme_char_string_to_byte_string_locale(Scheme_Object* s)

Converts a Racket character string into a Racket byte string via the locale’s encoding.

Scheme_Object*

scheme_byte_string_to_char_string_locale(Scheme_Object* s)

Converts a Racket byte string into a Racket character string via the locale’s encoding.

Scheme_Object* scheme_intern_symbol(char* name)

Finds (or creates) the symbol matching the given nul-terminated, ASCII string (not
UTF-8). The case of name is (non-destructively) normalized before interning if
scheme_case_sensitive is 0.

Scheme_Object* scheme_intern_exact_symbol(char* name,
int len)

Creates or finds a symbol given the symbol’s length in UTF-8-encoding bytes. The case of
name is not normalized.

Scheme_Object* scheme_intern_exact_char_symbol(mzchar* name,
int len)

Like scheme_intern_exact_symbol, but given a character array instead of a UTF-8-
encoding byte array.

Scheme_Object* scheme_make_symbol(char* name)

Creates an uninterned symbol from a nul-terminated, UTF-8-encoding string. The case is
not normalized.

Scheme_Object* scheme_make_exact_symbol(char* name,
int len)

29

Creates an uninterned symbol given the symbol’s length in UTF-8-encoded bytes.

Scheme_Object* scheme_intern_exact_keyword(char* name,
int len)

Creates or finds a keyword given the keywords length in UTF-8-encoding bytes. The case
of name is not normalized, and it should not include the leading hash and colon of the
keyword’s printed form.

Scheme_Object* scheme_intern_exact_char_keyword(mzchar* name,
int len)

Like scheme_intern_exact_keyword, but given a character array instead of a UTF-8-
encoding byte array.

Scheme_Object* scheme_make_vector(intptr_t size,
Scheme_Object* fill)

Allocates a new vector.

Scheme_Double_Vector* scheme_alloc_flvector(intptr_t size)

Allocates an uninitialized flvector. The result type is effectively an alias for
Scheme_Object*.

Scheme_Vector* scheme_alloc_fxvector(intptr_t size)

Allocates an uninitialized fxvector. The result type is effectively an alias for
Scheme_Object*.

Scheme_Object* scheme_box(Scheme_Object* v)

Creates a new box containing the value v.

Scheme_Object* scheme_make_weak_box(Scheme_Object* v)

Creates a new weak box containing the value v.

Scheme_Type scheme_make_type(char* name)

Creates a new type (not a Racket value). The type tag is valid across all places.

Scheme_Object* scheme_make_cptr(void* ptr,
const Scheme_Object* typetag)

Creates a C-pointer object that encapsulates ptr and uses typetag to identify the type of
the pointer. The SCHEME_CPTRP macro recognizes objects created by scheme_make_cptr.
The SCHEME_CPTR_VAL macro extracts the original ptr from the Racket object, and
SCHEME_CPTR_TYPE extracts the type tag. The SCHEME_CPTR_OFFSETVAL macro returns
0 for the result Racket object.

30

The ptr can refer to either memory managed by the garbage collector or by some other
memory manager. Beware, however, of retaining a ptr that refers to memory released by
another memory manager, since the enclosing memory range might later become managed
by the garbage collector (in which case ptr might become an invalid pointer that can crash
the garbage collector).

Scheme_Object*

scheme_make_external_cptr(void* ptr,
const Scheme_Object* typetag)

Like scheme_make_cptr, but ptr is never treated as referencing memory managed by the
garbage collector.

Scheme_Object*

scheme_make_offset_cptr(void* ptr,
intptr_t offset,
const Scheme_Object* typetag)

Creates a C-pointer object that encapsulates both ptr and offset. The
SCHEME_CPTR_OFFSETVAL macro returns offset for the result Racket object (and the
macro be used to change the offset, since it also works on objects with no offset).

The ptr can refer to either memory managed by the garbage collector or by some other
memory manager; see also scheme_make_cptr.

Scheme_Object*

scheme_make_offset_external_cptr(void* ptr,
intptr_t offset,
const Scheme_Object* typetag)

Like scheme_make_offset_cptr, but ptr is never treated as referencing memory managed
by the garbage collector.

void scheme_set_type_printer(Scheme_Type type,
Scheme_Type_Printer printer)

Installs a printer to be used for printing (or writing or displaying) values that have the type
tag type.

The type of printer is defined as follows:

typedef void (*Scheme_Type_Printer)(Scheme_Object *v, int dis,

Scheme_Print_Params *pp);

Such a printer must print a representation of the value using scheme_print_bytes and
scheme_print_string. The first argument to the printer, v, is the value to be printed.
The second argument indicates whether v is printed via write or display. The last argu-
ment is to be passed on to scheme_print_bytes or scheme_print_string to identify

31

the printing context.

void scheme_print_bytes(Scheme_Print_Params* pp,
const char* str,
int offset,
int len)

Writes the content of str — starting from offset and running len bytes — into a print-
ing context determined by pp. This function is for use by a printer that is installed with
scheme_set_type_printer.

void scheme_print_string(Scheme_Print_Params* pp,
const mzchar* str,
int offset,
int len)

Writes the content of str — starting from offset and running len characters — into a print-
ing context determined by pp. This function is for use by a printer that is installed with
scheme_set_type_printer.

void scheme_set_type_equality(Scheme_Type type,
Scheme_Equal_Proc equalp,
Scheme_Primary_Hash_Proc hash1,
Scheme_Secondary_Hash_Proc hash2)

Installs an equality predicate and associated hash functions for values that have the type tag
type. The equalp predicate is only applied to values that both have tag type.

The type of equalp, hash1, and hash2 are defined as follows:

typedef int (*Scheme_Equal_Proc)(Scheme_Object* obj1,

Scheme_Object* obj2,

void* cycle_data);

typedef intptr_t (*Scheme_Primary_Hash_Proc)(Scheme_Object* obj,

intptr_t base,

void* cycle_data);

typedef intptr_t (*Scheme_Secondary_Hash_Proc)(Scheme_Object* obj,

void* cycle_data);

The two hash functions are use to generate primary and secondary keys for double hashing
in an equal?-based hash table. The result of the primary-key function should depend on
both obj and base.

The cycle_data argument in each case allows checking and hashing on cyclic val-
ues. It is intended for use in recursive checking or hashing via scheme_recur_equal,
scheme_recur_equal_hash_key, and scheme_recur_equal_hash_key. That is, do not
call plain scheme_equal, scheme_equal_hash_key, or scheme_equal_hash_key for
recursive checking or hashing on sub-elements of the given value(s).

32

5 Memory Allocation

Racket uses both malloc and allocation functions provided by a garbage collector. Foreign-
function and embedding/extension C code may use either allocation method, keeping in
mind that pointers to garbage-collectable blocks in malloced memory are invisible (i.e.,
such pointers will not prevent the block from being garbage-collected).

Racket CGC uses a conservative garbage collector. This garbage collector normally only
recognizes pointers to the beginning of allocated objects. Thus, a pointer into the middle of
a GC-allocated string will normally not keep the string from being collected. The exception
to this rule is that pointers saved on the stack or in registers may point to the middle of a
collectable object. Thus, it is safe to loop over an array by incrementing a local pointer
variable.

Racket 3m uses a precise garbage collector that moves objects during collection, in which
case the C code must be instrumented to expose local pointer bindings to the collector, and
to provide tracing procedures for (tagged) records containing pointers. This instrumentation
is described further in §5.1 “Cooperating with 3m”.

The basic collector allocation functions are:

• scheme_malloc — Allocates collectable memory that may contain pointers to col-
lectable objects; for 3m, the memory must be an array of pointers (though not neces-
sarily to collectable objects). The newly allocated memory is initially zeroed.

• scheme_malloc_atomic — Allocates collectable memory that does not contain
pointers to collectable objects. If the memory does contain pointers, they are invisible
to the collector and will not prevent an object from being collected. Newly allocated
atomic memory is not necessarily zeroed.

Atomic memory is used for strings or other blocks of memory which do not contain
pointers. Atomic memory can also be used to store intentionally-hidden pointers.

• scheme_malloc_tagged — Allocates collectable memory that contains a mixture of
pointers and atomic data. With the conservative collector, this function is the same
as scheme_malloc, but on 3m, the type tag stored at the start of the block is used to
determine the size and shape of the object for future garbage collection (as described
in §5.1 “Cooperating with 3m”).

• scheme_malloc_allow_interior — Allocates an array of pointers with special
treatment by 3m: the array is never moved by the garbage collector, references are
allowed into the middle of the block, and even-valued pointers to the middle of the
block prevent the block from being collected. (Beware that the memory manager
treats any odd-valued pointer as a fixnum, even if it refers to the middle of a block that
allows interior pointers.) Use this procedure sparingly, because small, non-moving
objects are handled less efficiently than movable objects by the 3m collector. This
procedure is the same as scheme_malloc with the conservative collector, but in the

33

that case, having only a pointer into the interior will not prevent the array from being
collected.

• scheme_malloc_atomic_allow_interior — Like
scheme_malloc_allow_interior for memory that does not contain pointers.

• scheme_malloc_uncollectable — Allocates uncollectable memory that may con-
tain pointers to collectable objects. There is no way to free the memory. The newly
allocated memory is initially zeroed. This function is not available in 3m.

If a Racket extension stores Racket pointers in a global or static variable, then that variable
must be registered with scheme_register_extension_global; this makes the pointer
visible to the garbage collector. Registered variables need not contain a collectable pointer at
all times (even with 3m, but the variable must contain some pointer, possibly uncollectable,
at all times). Beware that static or global variables that are not thread-specific (in the OS
sense of “thread”) generally do not work with multiple places.

Registration is needed for the global and static variables of an embedding pro-
gram on most platforms, and registration is needed on all platforms if the program
calls scheme_main_setup or scheme_set_stack_base with a non-zero first or sec-
ond (respectively) argument. Global and static variables containing collectable point-
ers must be registered with scheme_register_static. The MZ_REGISTER_STATIC

macro takes any variable name and registers it with scheme_register_static. The
scheme_register_static function can be safely called even when it’s not needed,
but it must not be called multiple times for a single memory address. When using
scheme_set_stack_base and when places are enabled, then scheme_register_static

or MZ_REGISTER_STATIC normally should be used only after scheme_basic_env, since
scheme_basic_env changes the allocation space as explained in §5.1.5 “Places and
Garbage Collector Instances”.

Collectable memory can be temporarily locked from collection by using the reference-
counting function scheme_dont_gc_ptr. On 3m, such locking does not prevent the object
from being moved.

Garbage collection can occur during any call into Racket or its allocator, on anytime that
Racket has control, except during functions that are documented otherwise. The predicate
and accessor macros listed in §4.1 “Standard Types” never trigger a collection.

As described in §5.1.5 “Places and Garbage Collector Instances”, different places manage
allocation separately. Movable memory should not be communicated from one place to
another, since the source place might move the memory before it is used in the destination
place. Furthermore, allocated memory that contains pointers must not be written in a place
other than the one where it is allocated, due to the place-specific implementation of a write
barrier for generational garbage collection. No write barrier is used for memory that is
allocated by scheme_malloc_atomic_allow_interior to contain no pointers.

34

5.1 Cooperating with 3m

To allow 3m’s precise collector to detect and update pointers during garbage collection,
all pointer values must be registered with the collector, at least during the times that a
collection may occur. The content of a word registered as a pointer must contain either
NULL, a pointer to the start of a collectable object, a pointer into an object allocated by
scheme_malloc_allow_interior, a pointer to an object currently allocated by another
memory manager (and therefore not into a block that is currently managed by the collector),
or a pointer to an odd-numbered address (e.g., a Racket fixnum).

Pointers are registered in three different ways:

• Pointers in static variables should be registered with scheme_register_static or
MZ_REGISTER_STATIC.

• Pointers in allocated memory are registered automatically when they are in an array
allocated with scheme_malloc, etc. When a pointer resides in an object allocated
with scheme_malloc_tagged, etc.∼the tag at the start of the object identifiers the
object’s size and shape. Handling of tags is described in §5.1.1 “Tagged Objects”.

• Local pointers (i.e., pointers on the stack or in registers) must be registered through
the MZ_GC_DECL_REG, etc. macros that are described in §5.1.2 “Local Pointers”.

A pointer must never refer to the interior of an allocated object (when a garbage collection is
possible), unless the object was allocated with scheme_malloc_allow_interior. For this
reason, pointer arithmetic must usually be avoided, unless the variable holding the generated
pointer is NULLed before a collection.

IMPORTANT: The SCHEME_SYM_VAL, SCHEME_KEYWORD_VAL, SCHEME_VEC_ELS, and
SCHEME_PRIM_CLOSURE_ELS macros produce pointers into the middle of their respective
objects, so the results of these macros must not be held during the time that a collection can
occur. Incorrectly retaining such a pointer can lead to a crash.

5.1.1 Tagged Objects

As explained in §4 “Values and Types”, the scheme_make_type function can be used to
obtain a new tag for a new type of object. These new types are in relatively short supply for
3m; the maximum tag is 512, and Racket itself uses nearly 300.

After allocating a new tag in 3m (and before creating instances of the tag), a size pro-
cedure, a mark procedure, and a fixup procedure must be installed for the tag using
GC_register_traversers. A type tag and its associated GC procedures apply to all
places, even though specific allocated objects are confined to a particular place.

35

A size procedure simply takes a pointer to an object with the tag and returns its size in words
(not bytes). The gcBYTES_TO_WORDS macro converts a byte count to a word count.

A mark procedure is used to trace references among objects without moving any objects.
The procedure takes a pointer to an object, and it should apply the gcMARK macro to every
pointer within the object. The mark procedure should return the same result as the size
procedure.

A fixup procedure is used to update references to objects after or while they are moved.
The procedure takes a pointer to an object, and it should apply the gcFIXUP macro to every
pointer within the object; the expansion of this macro takes the address of its argument. The
fixup procedure should return the same result as the size procedure.

Depending on the collector’s implementation, the mark or fixup procedure might not be
used. For example, the collector may only use the mark procedure and not actually move
the object. Or it may use the fixup procedure to mark and move objects at the same time.
To dereference an object pointer during a fixup procedure, use GC_fixup_self to con-
vert the address passed to the procedure to refer to the potentially moved object, and use
GC_resolve to convert an address that is not yet fixed up to determine the object’s current
location.

When allocating a tagged object in 3m, the tag must be installed immediately after the object
is allocated—or, at least, before the next possible collection.

5.1.2 Local Pointers

The 3m collector needs to know the address of every local or temporary pointer within a
function call at any point when a collection can be triggered. Beware that nested function
calls can hide temporary pointers; for example, in

scheme_make_pair(scheme_make_pair(scheme_true, scheme_false),

scheme_make_pair(scheme_false, scheme_true))

the result from one scheme_make_pair call is on the stack or in a register during the other
call to scheme_make_pair; this pointer must be exposed to the garbage collection and made
subject to update. Simply changing the code to

tmp = scheme_make_pair(scheme_true, scheme_false);

scheme_make_pair(tmp,

scheme_make_pair(scheme_false, scheme_true))

does not expose all pointers, since tmp must be evaluated before the second call to
scheme_make_pair. In general, the above code must be converted to the form

tmp1 = scheme_make_pair(scheme_true, scheme_false);

tmp2 = scheme_make_pair(scheme_true, scheme_false);

36

scheme_make_pair(tmp1, tmp2);

and this is converted form must be instrumented to register tmp1 and tmp2. The final result
might be

{

Scheme_Object *tmp1 = NULL, *tmp2 = NULL, *result;

MZ_GC_DECL_REG(2);

MZ_GC_VAR_IN_REG(0, tmp1);

MZ_GC_VAR_IN_REG(1, tmp2);

MZ_GC_REG();

tmp1 = scheme_make_pair(scheme_true, scheme_false);

tmp2 = scheme_make_pair(scheme_true, scheme_false);

result = scheme_make_pair(tmp1, tmp2);

MZ_GC_UNREG();

return result;

}

Notice that result is not registered above. The MZ_GC_UNREG macro cannot trigger a
garbage collection, so the result variable is never live during a potential collection. Note
also that tmp1 and tmp2 are initialized with NULL, so that they always contain a pointer
whenever a collection is possible.

The MZ_GC_DECL_REG macro expands to a local-variable declaration to hold information
for the garbage collector. The argument is the number of slots to provide for registration.
Registering a simple pointer requires a single slot, whereas registering an array of pointers
requires three slots. For example, to register a pointer tmp and an array of 10 char*s:

{

Scheme_Object *tmp1 = NULL;

char *a[10];

int i;

MZ_GC_DECL_REG(4);

MZ_GC_ARRAY_VAR_IN_REG(0, a, 10);

MZ_GC_VAR_IN_REG(3, tmp1);

/* Clear a before a potential GC: */

for (i = 0; i < 10; i++) a[i] = NULL;

...

f(a);

...

}

37

The MZ_GC_ARRAY_VAR_IN_REG macro registers a local array given a starting slot, the array
variable, and an array size. The MZ_GC_VAR_IN_REG macro takes a slot and simple pointer
variable. A local variable or array must not be registered multiple times.

In the above example, the first argument to MZ_GC_VAR_IN_REG is 3 because the information
for a uses the first three slots. Even if a is not used after the call to f, a must be registered
with the collector during the entire call to f, because f presumably uses a until it returns.

The name used for a variable need not be immediate. Structure members can be supplied as
well:

{

struct { void *s; int v; void *t; } x = {NULL, 0, NULL};

MZ_GC_DECL_REG(2);

MZ_GC_VAR_IN_REG(0, x.s);

MZ_GC_VAR_IN_REG(0, x.t);

...

}

In general, the only constraint on the second argument to MZ_GC_VAR_IN_REG or
MZ_GC_ARRAY_VAR_IN_REG is that & must produce the relevant address, and that address
must be on the stack.

Pointer information is not actually registered with the collector until the MZ_GC_REG macro
is used. The MZ_GC_UNREG macro de-registers the information. Each call to MZ_GC_REG

must be balanced by one call to MZ_GC_UNREG.

Pointer information need not be initialized with MZ_GC_VAR_IN_REG and
MZ_GC_ARRAY_VAR_IN_REG before calling MZ_GC_REG, and the set of registered pointers
can change at any time—as long as all relevant pointers are registered when a collection
might occur. The following example recycles slots and completely de-registers information
when no pointers are relevant. The example also illustrates how MZ_GC_UNREG is not needed
when control escapes from the function, such as when scheme_signal_error escapes.

{

Scheme_Object *tmp1 = NULL, *tmp2 = NULL;

mzchar *a, *b;

MZ_GC_DECL_REG(2);

MZ_GC_VAR_IN_REG(0, tmp1);

MZ_GC_VAR_IN_REG(1, tmp2);

tmp1 = scheme_make_utf8_string("foo");

MZ_GC_REG();

tmp2 = scheme_make_utf8_string("bar");

tmp1 = scheme_append_char_string(tmp1, tmp2);

38

if (SCHEME_FALSEP(tmp1))

scheme_signal_error("shouldn't happen!");

a = SCHEME_CHAR_VAL(tmp1);

MZ_GC_VAR_IN_REG(0, a);

tmp2 = scheme_make_pair(scheme_read_bignum(a, 0, 10), tmp2);

MZ_GC_UNREG();

if (SCHEME_INTP(tmp2)) {

return 0;

}

MZ_GC_REG();

tmp1 = scheme_make_pair(scheme_read_bignum(a, 0, 8), tmp2);

MZ_GC_UNREG();

return tmp1;

}

A MZ_GC_DECL_REG can be used in a nested block to hold declarations for the block’s
variables. In that case, the nested MZ_GC_DECL_REG must have its own MZ_GC_REG and
MZ_GC_UNREG calls.

{

Scheme_Object *accum = NULL;

MZ_GC_DECL_REG(1);

MZ_GC_VAR_IN_REG(0, accum);

MZ_GC_REG();

accum = scheme_make_pair(scheme_true, scheme_null);

{

Scheme_Object *tmp = NULL;

MZ_GC_DECL_REG(1);

MZ_GC_VAR_IN_REG(0, tmp);

MZ_GC_REG();

tmp = scheme_make_pair(scheme_true, scheme_false);

accum = scheme_make_pair(tmp, accum);

MZ_GC_UNREG();

}

accum = scheme_make_pair(scheme_true, accum);

39

MZ_GC_UNREG();

return accum;

}

Variables declared in a local block can also be registered together with variables from an
enclosing block, but the local-block variable must be unregistered before it goes out of scope.
The MZ_GC_NO_VAR_IN_REG macro can be used to unregister a variable or to initialize a slot
as having no variable.

{

Scheme_Object *accum = NULL;

MZ_GC_DECL_REG(2);

MZ_GC_VAR_IN_REG(0, accum);

MZ_GC_NO_VAR_IN_REG(1);

MZ_GC_REG();

accum = scheme_make_pair(scheme_true, scheme_null);

{

Scheme_Object *tmp = NULL;

MZ_GC_VAR_IN_REG(1, tmp);

tmp = scheme_make_pair(scheme_true, scheme_false);

accum = scheme_make_pair(tmp, accum);

MZ_GC_NO_VAR_IN_REG(1);

}

accum = scheme_make_pair(scheme_true, accum);

MZ_GC_UNREG();

return accum;

}

The MZ_GC_ macros all expand to nothing when MZ_PRECISE_GC is not defined, so the
macros can be placed into code to be compiled for both conservative and precise collection.

The MZ_GC_REG and MZ_GC_UNREG macros must never be used in an OS thread other than
Racket’s thread.

5.1.3 Local Pointers and raco ctool --xform

When raco ctool is run with the --xform flag and a source C program, it produces a
C program that is instrumented in the way described in the previous section (but with a
slightly different set of macros). For each input file "name .c", the transformed output is
"name .3m.c".

40

The --xform mode for raco ctool does not change allocation calls, nor does it generate
size, mark, or fixup procedures. It merely converts the code to register local pointers.

Furthermore, the --xform mode for raco ctool does not handle all of C. It’s ability to
rearrange compound expressions is particularly limited, because --xform merely converts
expression text heuristically instead of parsing C. A future version of the tool will correct
such problems. For now, raco ctool in --xform mode attempts to provide reasonable
error messages when it is unable to convert a program, but beware that it can miss cases.
To an even more limited degree, --xform can work on C++ code. Inspect the output of
--xform mode to ensure that your code is correctly instrumented.

Some specific limitations:

• The body of a for, while, or do loop must be surrounded with curly braces. (A
conversion error is normally reported, otherwise.)

• Function calls may not appear on the right-hand side of an assignment within a dec-
laration block. (A conversion error is normally reported if such an assignment is
discovered.)

• Multiple function calls in ... ? ... : ... cannot be lifted. (A conversion error is
normally reported, otherwise.)

• In an assignment, the left-hand side must be a local or static variable, not a field selec-
tion, pointer dereference, etc. (A conversion error is normally reported, otherwise.)

• The conversion assumes that all function calls use an immediate name for a function,
as opposed to a compound expression as in s->f(). The function name need not
be a top-level function name, but it must be bound either as an argument or local
variable with the form type id; the syntax ret_type (*id)(...) is not recognized,
so bind the function type to a simple name with typedef, first: typedef ret_type
(*type)(...); type id.

• Arrays and structs must be passed by address, only.

• GC-triggering code must not appear in system headers.

• Pointer-comparison expressions are not handled correctly when either of the compared
expressions includes a function call. For example, a() == b() is not converted cor-
rectly when a and b produce pointer values.

• Passing the address of a local pointer to a function works only when the pointer vari-
able remains live after the function call.

• A return; form can get converted to { stmt; return; };, which can break an if

(...) return; else ... pattern.

• Local instances of union types are generally not supported.

• Pointer arithmetic cannot be converted away, and is instead reported as an error.

41

5.1.4 Guiding raco ctool --xform

The following macros can be used (with care!) to navigate --xform around code that it
cannot handle:

• XFORM_START_SKIP and XFORM_END_SKIP: code between these two statements is
ignored by the transform tool, except to tokenize it.

Example:

int foo(int c, ...) {

int r = 0;

XFORM_START_SKIP;

{

/* va plays strange tricks that confuse xform */

va_list args;

va_start(args, c);

while (c--) {

r += va_arg(args, int);

}

}

XFORM_END_SKIP;

return r;

}

These macros can also be used at the top level, outside of any function. Since they have
to be terminated by a semi-colon, however, top-level uses usually must be wrapped
with #ifdef MZ_PRECISE_GC and #endif; a semi-colon by itself at the top level is
not legal in C.

• XFORM_SKIP_PROC: annotate a function so that its body is skipped in the same way as
bracketing it with XFORM_START_SKIP and XFORM_END_SKIP.

Example:

int foo(int c, ...) XFORM_END_SKIP {

}

• XFORM_HIDE_EXPR: a macro that takes wraps an expression to disable processing of
the expression.

Example:

int foo(int c, ...) {

int r = 0;

{

/* va plays strange tricks that confuse xform */

XFORM_CAN_IGNORE va_list args; /* See below */

XFORM_HIDE_EXPR(va_start(args, c));

while (c--) {

42

r += XFORM_HIDE_EXPR(va_arg(args, int));

}

}

return r;

}

• XFORM_CAN_IGNORE: a macro that acts like a type modifier (must appear first) to in-
dicate that a declared variable can be treated as atomic. See above for an example.

• XFORM_START_SUSPEND and XFORM_END_SUSPEND: for use at the top level (outside
of any function definition), and similar to XFORM_START_SKIP and XFORM_END_SKIP
in that function and class bodies are not transformed. Type and prototype information
is still collected for use by later transformations, however. These forms must be ter-
minated by a semi-colon.

• XFORM_START_TRUST_ARITH and XFORM_END_TRUST_ARITH: for use at the top level
(outside of any function definition) to disable warnings about pointer arithmetic. Use
only when you’re absolutely certain that the garbage collector cannot be pointers offset
into the middle of a collectable object. These forms must be terminated by a semi-
colon.

• XFORM_TRUST_PLUS: a replacement for + that does not trigger pointer-arithmetic
warnings. Use with care.

• XFORM_TRUST_MINUS: a replacement for - that does not trigger pointer-arithmetic
warnings. Use with care.

5.1.5 Places and Garbage Collector Instances

When places are enabled, then a single process can have multiple instances of the garbage
collector in the same process. Each place allocates using its own collector, and no place
is allowed to hold a reference to memory that is allocated by another place. In addition,
a master garbage collector instance holds values that are shared among places; different
places can refer to memory that is allocated by the master garbage collector, but the master
still cannot reference memory allocated by place-specific garbage collectors.

Calling scheme_main_stack_setup creates the master garbage collector, and allo-
cation uses that collector until scheme_basic_env returns, at which point the ini-
tial place’s garbage collector is in effect. Using scheme_register_static or
MZ_REGISTER_STATIC before calling scheme_basic_env registers an address that should
be used to hold only values allocated before scheme_basic_env is called. More
typically, scheme_register_static and MZ_REGISTER_STATIC are used only after
scheme_basic_env returns. Using scheme_main_setup calls scheme_basic_env au-
tomatically, in which case there is no opportunity to use scheme_register_static or
MZ_REGISTER_STATIC too early.

43

5.2 Memory Functions

void* scheme_malloc(size_t n)

Allocates n bytes of collectable memory, initially filled with zeros. In 3m, the allocated
object is treated as an array of pointers.

void* scheme_malloc_atomic(size_t n)

Allocates n bytes of collectable memory containing no pointers visible to the garbage col-
lector. The object is not initialized to zeros.

void* scheme_malloc_uncollectable(size_t n)

Non-3m, only. Allocates n bytes of uncollectable memory.

void* scheme_malloc_eternal(size_t n)

Allocates uncollectable atomic memory. This function is equivalent to malloc, except that
the memory cannot be freed.

void* scheme_calloc(size_t num,

size_t size)

Allocates num * size bytes of memory using scheme_malloc.

void* scheme_malloc_tagged(size_t n)

Like scheme_malloc, but in 3m, the type tag determines how the garbage collector traverses
the object; see §5 “Memory Allocation”.

void* scheme_malloc_allow_interior(size_t n)

Like scheme_malloc, but in 3m, the object never moves, and pointers are allowed to refer-
ence the middle of the object; see §5 “Memory Allocation”.

void* scheme_malloc_atomic_allow_interior(size_t n)

Like scheme_malloc_atomic, but in 3m, the object never moves, and pointers are allowed
to reference the middle of the object; see §5 “Memory Allocation”.

void* scheme_malloc_stubborn(size_t n)

An obsolete variant of scheme_malloc, where scheme_end_stubborn_change can be
called on the allocated pointer when no further changes will be made to the allocated mem-
ory. Stubborn allocation is potentially useful as a hint for generational collection, but the
hint is normally ignored and unlikely to be used more in future version.

void* scheme_end_stubborn_change(void* p)

44

Declares the end of changes to the memory at p as allocated via
scheme_malloc_stubborn.

char* scheme_strdup(char* str)

Copies the null-terminated string str; the copy is collectable.

char* scheme_strdup_eternal(char* str)

Copies the null-terminated string str; the copy will never be freed.

void* scheme_malloc_fail_ok(void *(*)(size_t) mallocf,
size_t size)

Attempts to allocate size bytes using mallocf. If the allocation fails, the exn:misc:out-

of-memory exception is raised.

void** scheme_malloc_immobile_box(void* p)

Allocates memory that is not garbage-collected and that does not move (even with 3m), but
whose first word contains a pointer to a collectable object. The box is initialized with p,
but the value can be changed at any time. An immobile box must be explicitly freed using
scheme_free_immobile_box.

void scheme_free_immobile_box(void** b)

Frees an immobile box allocated with scheme_malloc_immobile_box.

void* scheme_malloc_code(intptr_t size)

Allocates non-collectable memory to hold executable machine code. Use this function
instead of malloc to ensure that the allocated memory has “execute” permissions. Use
scheme_free_code to free memory allocated by this function.

void scheme_free_code(void* p)

Frees memory allocated with scheme_malloc_code.

void scheme_register_extension_global(void* ptr,
intptr_t size)

Registers an extension’s global variable that can contain Racket pointers (for the current
place). The address of the global is given in ptr, and its size in bytes in size.

In addition to global variables, this function can be used to register any permanent memory
that the collector would otherwise treat as atomic. A garbage collection can occur during the
registration.

45

int scheme_main_setup(int no_auto_statics,
Scheme_Env_Main main,
int argc,
char** argv)

Initializes the GC stack base, creates the initial namespace by calling scheme_basic_env,
and then calls main with the namespace, argc, and argv. (The argc and argv are just passed
on to main, and are not inspected in any way.)

The Scheme_Env_Main type is defined as follows:

typedef int (*Scheme_Env_Main)(Scheme_Env *env,

int argc, char **argv);

The result of main is the result of scheme_main_setup.

If no_auto_statics is non-zero, then static variables must be explicitly registered with the
garbage collector; see §5 “Memory Allocation” for more information.

int scheme_main_stack_setup(int no_auto_statics,
Scheme_Nested_Main main,
void* data)

A more primitive variant of scheme_main_setup that initializes the GC stack base but does
not create the initial namespace (so an embedding application can perform other operations
that involve garbage-collected data before creating a namespace).

The data argument is passed through to main, where the Scheme_Nested_Main type is
defined as follows:

typedef int (*Scheme_Nested_Main)(void *data);

void scheme_set_stack_base(void* stack_addr,
int no_auto_statics)

Overrides the GC’s auto-determined stack base, and/or disables the GC’s automatic traversal
of global and static variables. If stack_addr is NULL, the stack base determined by the GC is
used. Otherwise, it should be the “deepest” memory address on the stack where a collectable
pointer might be stored. This function should be called only once, and before any other
scheme_ function is called, but only with CGC and when future and places are disabled.
The function never triggers a garbage collection.

Example:

int main(int argc, char **argv) {

int dummy;

scheme_set_stack_base(&dummy, 0);

real_main(argc, argv); /* calls scheme_basic_env(), etc. */

46

}

On 3m, the above code does not quite work, because stack_addr must be the begin-
ning or end of a local-frame registration. Worse, in CGC or 3m, if real_main is de-
clared static, the compiler may inline it and place variables containing collectable val-
ues deeper in the stack than dummy. To avoid these problems, use scheme_main_setup or
scheme_main_stack_setup, instead.

The above code also may not work when future and/or places are enabled in Racket, because
scheme_set_stack_base does not initialize Racket’s thread-local variables. Again, use
scheme_main_setup or scheme_main_stack_setup to avoid the problem.

void scheme_set_stack_bounds(void* stack_addr,
void* stack_end,
int no_auto_statics)

Like scheme_set_stack_base, except for the extra stack_end argument. If stack_end is
non-NULL, then it corresponds to a point of C-stack growth after which Racket should attempt
to handle stack overflow. The stack_end argument should not correspond to the actual stack
end, since detecting stack overflow may take a few frames, and since handling stack overflow
requires a few frames.

If stack_end is NULL, then the stack end is computed automatically: the stack size assumed
to be the limit reported by getrlimit on Unix and Mac OS X, or it is assumed to be the
stack reservation of the executable (or 1 MB if parsing the executable fails) on Windows; if
this size is greater than 8 MB, then 8 MB is assumed, instead; the size is decremented by
50000 bytes (64-bit Windows: 100000 bytes) to cover a large margin of error; finally, the
size is subtracted from (for stacks that grow down) or added to (for stacks that grow up) the
stack base in stack_addr or the automatically computed stack base. Note that the 50000-
byte margin of error is assumed to cover the difference between the actual stack start and
the reported stack base, in addition to the margin needed for detecting and handling stack
overflow.

void scheme_register_tls_space(void* ptr,
int tls_index)

Only available on 32-bit Windows; registers ptr as the address of a thread-local pointer vari-
able that is declared in the main executable. The variable’s storage will be used to implement
thread-local storage within the Racket run-time. See §2 “Embedding into a Program”.

The tls_index argument must be 0. It is currently ignored, but a future version may use the
argument to allow declaration of the thread-local variable in a dynamically linked DLL.

void scheme_register_static(void* ptr,
intptr_t size)

Like scheme_register_extension_global, for use in embedding applications in sit-
uations where the collector does not automatically find static variables (i.e., when

47

scheme_set_stack_base has been called with a non-zero second argument).

The macro MZ_REGISTER_STATIC can be used directly on a static variable. It expands to a
comment if statics need not be registered, and a call to scheme_register_static (with
the address of the static variable) otherwise.

void scheme_weak_reference(void** p)

Registers the pointer *p as a weak pointer; when no other (non-weak) pointers reference the
same memory as *p references, then *p will be set to NULL by the garbage collector. The
value in *p may change, but the pointer remains weak with respect to the value of *p at the
time p was registered.

This function is not available in 3m.

void scheme_weak_reference_indirect(void** p,
void* v)

Like scheme_weak_reference, but *p is set to NULL (regardless of its prior value) when
there are no references to v.

This function is not available in 3m.

void scheme_register_finalizer(void* p,
fnl_proc f,
void* data,
fnl_proc* oldf,
void** olddata)

Registers a callback function to be invoked when the memory p would otherwise be garbage-
collected, and when no “will”-like finalizers are registered for p.

The fnl_proc type is not actually defined, but it is equivalent to

typedef void (*fnl_proc)(void *p, void *data)

The f argument is the callback function; when it is called, it will be passed the value p and
the data pointer data; data can be anything — it is only passed on to the callback function.
If oldf and olddata are not NULL, then *oldf and *olddata are filled with the old callback
information (f and data will override this old callback).

To remove a registered finalizer, pass NULL for f and data.

Note: registering a callback not only keeps p from collection until the callback is invoked,
but it also keeps data reachable until the callback is invoked.

void scheme_add_finalizer(void* p,
fnl_proc f,
void* data)

48

Adds a finalizer to a chain of primitive finalizers. This chain is separate from the single
finalizer installed with scheme_register_finalizer; all finalizers in the chain are called
immediately after a finalizer that is installed with scheme_register_finalizer.

See scheme_register_finalizer, above, for information about the arguments.

To remove an added finalizer, use scheme_subtract_finalizer.

void scheme_add_scheme_finalizer(void* p,
fnl_proc f,
void* data)

Installs a “will”-like finalizer, similar to will-register. Will-like finalizers are
called one at a time, requiring the collector to prove that a value has become in-
accessible again before calling the next will-like finalizer. Finalizers registered with
scheme_register_finalizer or scheme_add_finalizer are not called until all will-
like finalizers have been exhausted.

See scheme_register_finalizer, above, for information about the arguments.

There is currently no facility to remove a will-like finalizer.

void scheme_add_finalizer_once(void* p,
fnl_proc f,
void* data)

Like scheme_add_finalizer, but if the combination f and data is already registered as a
(non-“will”-like) finalizer for p, it is not added a second time.

void scheme_add_scheme_finalizer_once(void* p,
fnl_proc f,
void* data)

Like scheme_add_scheme_finalizer, but if the combination of f and data is already
registered as a “will”-like finalizer for p, it is not added a second time.

void scheme_subtract_finalizer(void* p,
fnl_proc f,
void* data)

Removes a finalizer that was installed with scheme_add_finalizer.

void scheme_remove_all_finalization(void* p)

Removes all finalization (“will”-like or not) for p, including wills added in Scheme with
will-register and finalizers used by custodians.

void scheme_dont_gc_ptr(void* p)

49

Keeps the collectable block p from garbage collection. Use this procedure when a reference
to p is be stored somewhere inaccessible to the collector. Once the reference is no longer
used from the inaccessible region, de-register the lock with scheme_gc_ptr_ok. A garbage
collection can occur during the registration.

This function keeps a reference count on the pointers it registers, so two calls
to scheme_dont_gc_ptr for the same p should be balanced with two calls to
scheme_gc_ptr_ok.

void scheme_gc_ptr_ok(void* p)

See scheme_dont_gc_ptr.

void scheme_collect_garbage()

Forces an immediate garbage-collection.

void scheme_enable_garbage_collection(int on)

Garbage collection is enabled only when an internal counter is 0. Calling
scheme_enable_garbage_collection with a false value increments the counter, and
calling scheme_enable_garbage_collection with a true value decrements the counter.

When the PLTDISABLEGC environment variable is set, then racket initializes the internal
counter to 1 to initially disable garbage collection.

void GC_register_traversers(short tag,
Size_Proc s,
Mark_Proc m,

Fixup_Proc f,
int is_const_size,
int is_atomic)

3m only. Registers a size, mark, and fixup procedure for a given type tag; see §5.1.1 “Tagged
Objects” for more information.

Each of the three procedures takes a pointer and returns an integer:

typedef int (*Size_Proc)(void *obj);

typedef int (*Mark_Proc)(void *obj);

typedef int (*Fixup_Proc)(void *obj);

If the result of the size procedure is a constant, then pass a non-zero value for is_const_size.
If the mark and fixup procedures are no-ops, then pass a non-zero value for is_atomic.

void* GC_resolve(void* p)

3m only. Can be called by a size, mark, or fixup procedure that is registered with
GC_register_traversers. It returns the current address of an object p that might have

50

been moved already, where p corresponds to an object that is referenced directly by the ob-
ject being sized, marked, or fixed. This translation is necessary, for example, if the size or
structure of an object depends on the content of an object it references. For example, the
size of a class instance usually depends on a field count that is stored in the class. A fixup
procedure should call this function on a reference before fixing it.

void* GC_fixup_self(void* p)

3m only. Can be called by a fixup procedure that is registered with
GC_register_traversers. It returns the final address of p, which must be the
pointer passed to the fixup procedure. For some implementations of the memory manager,
the result is the same as p, either because objects are not moved or because the object is
moved before it is fixed. With other implementations, an object might be moved after the
fixup process, and the result is the location that the object will have after garbage collection
finished.

Scheme_Object* scheme_add_gc_callback(Scheme_Object* pre_desc,
Scheme_Object* post_desc)

Registers descriptions of foreign functions to be called just before and just after a garbage
collection. The foreign functions must not allocate garbage-collected memory, and they are
called in a way that does not allocate, which is why pre_desc and post_desc are function
descriptions instead of thunks.

A description is a vector of vectors, where each of the inner vectors describes a single call,
and the calls are performed in sequence. Each call vector starts with a symbol that indicates
the protocol of the foreign function to be called. The following protocols are supported:

• 'ptr_ptr_ptr->void corresponds to void (*)(void*, void*, void*).

• 'ptr_ptr_ptr_int->void corresponds to void (*)(void*, void*, void*,

int).

• 'ptr_ptr_float->void corresponds to void (*)(void*, void*, float).

• 'ptr_ptr_double->void corresponds to void (*)(void*, void*, double).

• 'ptr_ptr_ptr_int_int_int_int_int_int_int_int_int->void corresponds
to void (*)(void*, void*, void*, int, int, int, int, int, int,

int, int, int).

• 'osapi_ptr_int->void corresponds to void (*)(void*, int), but using the
stdcall calling convention on Windows.

• 'osapi_ptr_ptr->void corresponds to void (*)(void*, void*), but using the
stdcall calling convention on Windows.

• 'osapi_ptr_int_int_int_int_ptr_int_int_long->void corresponds to void

(*)(void*, int, int, int, int, void*, int, int, long), but using the
stdcall calling convention on Windows.

51

After the protocol symbol, the vector should contain a pointer to a foreign function and then
an element for each of the function’s arguments. Pointer values are represented as for the
_pointer representation defined by ffi/unsafe.

The result is a key for use with scheme_remove_gc_callback. If the key becomes inac-
cessible, then the callback will be removed automatically (but beware that the pre-callback
will have executed and the post-callback will not have executed).

void scheme_remove_gc_callback(Scheme_Object* key)

Removes a garbage-collection callback installed with scheme_add_gc_callback.

52

6 Namespaces and Modules

A Racket namespace (a top-level environment) is represented by a value of type
Scheme_Env* — which is also a Racket value, castable to Scheme_Object*. Calling
scheme_basic_env returns a namespace that includes all of Racket’s standard global pro-
cedures and syntax.

The scheme_basic_env function must be called once by an embedding pro-
gram, before any other Racket function is called (except scheme_make_param), but
scheme_main_setup automatically calls scheme_basic_env. The returned namespace
is the initial current namespace for the main Racket thread. Racket extensions cannot call
scheme_basic_env.

The current thread’s current namespace is available from scheme_get_env, given the cur-
rent parameterization (see §11 “Parameterizations”): scheme_get_env(scheme_config).

New values can be added as globals in a namespace using scheme_add_global. The
scheme_lookup_global function takes a Racket symbol and returns the global value for
that name, or NULL if the symbol is undefined.

A module’s set of top-level bindings is implemented using the same machinery as a names-
pace. Use scheme_primitive_module to create a new Scheme_Env* that represents a
primitive module. The name provided to scheme_primitive_module is subject to change
through the current-module-declare-name parameter (which is normally set by the
module name resolver when auto-loading module files). After installing variables into the
module with scheme_add_global, etc., call scheme_finish_primitive_module on the
Scheme_Env* value to make the module declaration available. All defined variables are
exported from the primitive module.

The Racket #%variable-reference form produces a value that is opaque to Racket code.
Use SCHEME_PTR_VAL on the result of #%variable-reference to obtain the same kind
of value as returned by scheme_global_bucket (i.e., a bucket containing the variable’s
value, or NULL if the variable is not yet defined).

void scheme_add_global(char* name,
Scheme_Object* val,
Scheme_Env* env)

Adds a value to the table of globals for the namespace env, where name is a null-terminated
string. (The string’s case will be normalized in the same way as for interning a symbol.)

void scheme_add_global_symbol(Scheme_Object* name,
Scheme_Object* val,
Scheme_Env* env)

Adds a value to the table of globals by symbol name instead of string name.

53

Scheme_Object* scheme_lookup_global(Scheme_Object* symbol,
Scheme_Env* env)

Given a global variable name (as a symbol) in sym, returns the current value.

Scheme_Bucket* scheme_global_bucket(Scheme_Object* symbol,
Scheme_Env* env)

Given a global variable name (as a symbol) in sym, returns the bucket where the value is
stored. When the value in this bucket is NULL, then the global variable is undefined.

The Scheme_Bucket structure is defined as:

typedef struct Scheme_Bucket {

Scheme_Object so; /* so.type = scheme_variable_type */

void *key;

void *val;

} Scheme_Bucket;

Scheme_Bucket* scheme_module_bucket(Scheme_Object* mod,
Scheme_Object* symbol,
int pos,
Scheme_Env* env)

Like scheme_global_bucket, but finds a variable in a module. The mod and symbol
arguments are as for dynamic-require in Racket. The pos argument should be -1 always.
The env argument represents the namespace in which the module is declared.

void scheme_set_global_bucket(char* procname,
Scheme_Bucket* var,
Scheme_Object* val,
int set_undef)

Changes the value of a global variable. The procname argument is used to report errors
(in case the global variable is constant, not yet bound, or bound as syntax). If set_undef is
not 1, then the global variable must already have a binding. (For example, set! cannot set
unbound variables, while define can.)

Scheme_Object* scheme_builtin_value(const char* name)

Gets the binding of a name as it would be defined in the initial namespace.

Scheme_Env* scheme_get_env(Scheme_Config* config)

Returns the current namespace for the given parameterization (see §11 “Parameterizations”).
The current thread’s current parameterization is available as scheme_config.

Scheme_Env* scheme_primitive_module(Scheme_Object* name,
Scheme_Env* for_env)

54

Prepares a new primitive module whose name is the symbol name (or an alternative that
is active via current-module-declare-name). The module will be declared within
the namespace for_env. The result is a Scheme_Env * value that can be used with
scheme_add_global, etc., but it represents a module instead of a namespace. The module
is not fully declared until scheme_finish_primitive_module is called, at which point
all variables defined in the module become exported.

void scheme_finish_primitive_module(Scheme_Env* env)

Finalizes a primitive module and makes it available for use within the module’s namespace.

55

7 Procedures

A primitive procedure is a Racket-callable procedure that is implemented in C. Primitive
procedures are created in Racket with the function scheme_make_prim_w_arity, which
takes a C function pointer, the name of the primitive, and information about the number of
Racket arguments that it takes; it returns a Racket procedure value.

The C function implementing the procedure must take two arguments: an integer that spec-
ifies the number of arguments passed to the procedure, and an array of Scheme_Object*
arguments. The number of arguments passed to the function will be checked using the arity
information. (The arity information provided to scheme_make_prim_w_arity is also used
for the Racket arity procedure.) The procedure implementation is not allowed to mutate
the input array of arguments; as an exception, the procedure can mutate the array if it is the
same as the result of scheme_current_argument_stack. The procedure may mutate the
arguments themselves when appropriate (e.g., a fill in a vector argument).

The function scheme_make_prim_closure_w_arity is similar to
scheme_make_prim_w_arity, but it takes an additional count and Scheme_Object*

array that is copied into the created procedure; the procedure is passed back to the C
function when the closure is invoked. In this way, closure-like data from the C world can be
associated with the primitive procedure.

The function scheme_make_closed_prim_w_arity is similar to
scheme_make_prim_closure_w_arity, but it uses an older calling convention for
passing closure data.

To work well with Scheme threads, a C function that performs substantial or unbounded
work should occasionally call SCHEME_USE_FUEL; see §10.2 “Allowing Thread Switches”
for details.

Scheme_Object* scheme_make_prim_w_arity(Scheme_Prim* prim,

char* name,
int mina,
int maxa)

Creates a primitive procedure value, given the C function pointer prim. The form of prim is
defined by:

typedef Scheme_Object *(Scheme_Prim)(int argc,

Scheme_Object **argv);

The value mina should be the minimum number of arguments that must be supplied to the
procedure. The value maxa should be the maximum number of arguments that can be sup-
plied to the procedure, or -1 if the procedure can take arbitrarily many arguments. The mina
and maxa values are used for automatically checking the argument count before the prim-
itive is invoked, and also for the Racket arity procedure. The name argument is used to

56

report application arity errors at run-time.

Scheme_Object* scheme_make_folding_prim(Scheme_Prim* prim,

char* name,
int mina,
int maxa,
short folding)

Like scheme_make_prim_w_arity, but if folding is non-zero, the compiler assumes that
an application of the procedure to constant values can be folded to a constant. For example,
+, zero?, and string-length are folding primitives, but display and cons are not.

Scheme_Object* scheme_make_prim(Scheme_Prim* prim)

Same as scheme_make_prim_w_arity, but the arity is (0, -1) and the name “UNKNOWN”
is assumed. This function is provided for backward compatibility only.

Scheme_Object*

scheme_make_prim_closure_w_arity(Scheme_Prim_Closure_Proc* prim,

int c,
Scheme_Object** vals,
char* name,
int mina,
int maxa)

Creates a primitive procedure value that includes the c values in vals; when the C function
prim is invoked, the generated primitive is passed as the last parameter. The form of prim is
defined by:

typedef

Scheme_Object *(Scheme_Prim_Closure_Proc)(int argc,

Scheme_Object **argv,

Scheme_Object *prim);

The macro SCHEME_PRIM_CLOSURE_ELS takes a primitive-closure object and returns an
array with the same length and content as vals. (3m: see §5.1 “Cooperating with 3m” for a
caution about SCHEME_PRIM_CLOSURE_ELS.)

Scheme_Object*

scheme_make_closed_prim_w_arity(Scheme_Closed_Prim* prim,

void* data,
char* name,
int mina,
int maxa)

Creates an old-style primitive procedure value; when the C function prim is invoked, data is
passed as the first parameter. The form of prim is defined by:

57

typedef

Scheme_Object *(Scheme_Closed_Prim)(void *data, int argc,

Scheme_Object **argv);

Scheme_Object* scheme_make_closed_prim(Scheme_Closed_Prim* prim,

void* data)

Creates a closed primitive procedure value without arity information. This function is pro-
vided for backward compatibility only.

Scheme_Object** scheme_current_argument_stack()

Returns a pointer to an internal stack for argument passing. When the argument array passed
to a procedure corresponds to the current argument stack address, the procedure is allowed
to modify the array. In particular, it might clear out pointers in the argument array to allow
the arguments to be reclaimed by the memory manager (if they are not otherwise accessible).

58

8 Evaluation

A Racket S-expression is evaluated by calling scheme_eval. This function takes an S-
expression (as a Scheme_Object*) and a namespace and returns the value of the expression
in that namespace.

The function scheme_apply takes a Scheme_Object* that is a procedure, the number of
arguments to pass to the procedure, and an array of Scheme_Object * arguments. The re-
turn value is the result of the application. There is also a function scheme_apply_to_list,
which takes a procedure and a list (constructed with scheme_make_pair) and performs the
Racket apply operation.

The scheme_eval function actually calls scheme_compile followed by
scheme_eval_compiled.

8.1 Top-level Evaluation Functions

The functions scheme_eval, scheme_apply, etc., are top-level evaluation functions. Con-
tinuation invocations are confined to jumps within a top-level evaluation (i.e., a continuation
barrier is installed by these functions).

The functions _scheme_eval_compiled, _scheme_apply, etc. (with a leading under-
score) provide the same functionality without starting a new top-level evaluation; these func-
tions should only be used within new primitive procedures. Since these functions allow full
continuation hops, calls to non-top-level evaluation functions can return zero or multiple
times.

Currently, escape continuations and primitive error escapes can jump out of all evaluation
and application functions. For more information, see §9 “Exceptions and Escape Continua-
tions”.

8.2 Tail Evaluation

All of Racket’s built-in functions and syntax support proper tail-recursion. When a new
primitive procedure or syntax is added to Racket, special care must be taken to ensure that tail
recursion is handled properly. Specifically, when the final return value of a function is the re-
sult of an application, then scheme_tail_apply should be used instead of scheme_apply.
When scheme_tail_apply is called, it postpones the procedure application until control
returns to the Racket evaluation loop.

For example, consider the following implementation of a thunk-or primitive, which takes
any number of thunks and performs or on the results of the thunks, evaluating only as many
thunks as necessary.

59

static Scheme_Object *

thunk_or (int argc, Scheme_Object **argv)

{

int i;

Scheme_Object *v;

if (!argc)

return scheme_false;

for (i = 0; i < argc - 1; i++)

if (SCHEME_FALSEP((v = _scheme_apply(argv[i], 0, NULL))))

return v;

return scheme_tail_apply(argv[argc - 1], 0, NULL);

}

This thunk-or properly implements tail-recursion: if the final thunk is applied, then the
result of thunk-or is the result of that application, so scheme_tail_apply is used for the
final application.

8.3 Multiple Values

A primitive procedure can return multiple values by returning the result of
calling scheme_values. The functions scheme_eval_compiled_multi,
scheme_apply_multi, _scheme_eval_compiled_multi, and _scheme_apply_multi

potentially return multiple values; all other evaluation and applications procedures return a
single value or raise an exception.

Multiple return values are represented by the scheme_multiple_values “value.” This
quasi-value has the type Scheme_Object*, but it is not a pointer or a fixnum. When the
result of an evaluation or application is scheme_multiple_values, the number of actual
values can be obtained as scheme_multiple_count, and the array of Scheme_Object*
values as scheme_multiple_array. (Both of those identifiers are actually macros.)

A garbage collection must not occur between the return of a scheme_multiple_values

“value” and the receipt of the values through scheme_multiple_count

scheme_multiple_array. Furthermore, if scheme_multiple_array is to be used
across a potential garbage collection, then it must be specifically received by calling
scheme_detach_multiple_array; otherwise, a garbage collection or further evaluation
may change the content of the array. Otherwise, if any application or evaluation procedure
is called, the scheme_multiple_count and scheme_multiple_array variables may
be modified (but the array previously referenced by scheme_multiple_array is never
re-used if scheme_detach_multiple_array is called).

The scheme_multiple_count and scheme_multiple_array variables only contain

60

meaningful values when scheme_multiple_values is returned.

8.4 Evaluation Functions

Scheme_Object* scheme_eval(Scheme_Object* expr,
Scheme_Env* env)

Evaluates the (uncompiled) S-expression expr in the namespace env.

Scheme_Object* scheme_eval_compiled(Scheme_Object* obj,
Scheme_Env* env)

Evaluates the compiled expression obj, which was previously returned from
scheme_compile, first linking to the namespace env.

Scheme_Object* scheme_eval_compiled_multi(Scheme_Object* obj,
Scheme_Env* env)

Evaluates the compiled expression obj, possibly returning multiple values (see §8.3 “Multi-
ple Values”).

Scheme_Object* _scheme_eval_compiled(Scheme_Object* obj,
Scheme_Env* env)

Non-top-level version of scheme_eval_compiled. (See §8.1 “Top-level Evaluation Func-
tions”.)

Scheme_Object* _scheme_eval_compiled_multi(Scheme_Object* obj,
Scheme_Env* env)

Non-top-level version of scheme_eval_compiled_multi. (See §8.1 “Top-level Evalua-
tion Functions”.)

Scheme_Env* scheme_basic_env()

Creates the main namespace for an embedded Racket. This procedure must be called before
other Racket library function (except scheme_make_param). Extensions to Racket cannot
call this function.

If it is called more than once, this function resets all threads (replacing the main thread),
parameters, ports, namespaces, and finalizations.

Scheme_Object* scheme_make_namespace(int argc,
Scheme_Object** argv)

Creates and returns a new namespace. This values can be cast to Scheme_Env *. It can also
be installed in a parameterization using scheme_set_param with MZCONFIG_ENV.

61

When Racket is embedded in an application, create the initial namespace with
scheme_basic_env before calling this procedure to create new namespaces.

Scheme_Object* scheme_apply(Scheme_Object* f,
int c,
Scheme_Object** args)

Applies the procedure f to the given arguments.

Beware that the procedure can mutate args if it is the same as the result of
scheme_current_argument_stack.

Scheme_Object* scheme_apply_multi(Scheme_Object* f,
int c,
Scheme_Object** args)

Applies the procedure f to the given arguments, possibly returning multiple values (see §8.3
“Multiple Values”).

Scheme_Object* _scheme_apply(Scheme_Object* f,
int c,
Scheme_Object** args)

Non-top-level version of scheme_apply. (See §8.1 “Top-level Evaluation Functions”.)

Scheme_Object* _scheme_apply_multi(Scheme_Object* f,
int c,
Scheme_Object** args)

Non-top-level version of scheme_apply_multi. (See §8.1 “Top-level Evaluation Func-
tions”.)

Scheme_Object* scheme_apply_to_list(Scheme_Object* f,
Scheme_Object* args)

Applies the procedure f to the list of arguments in args.

Scheme_Object* scheme_eval_string(char* str,
Scheme_Env* env)

Reads a single S-expression from str and evaluates it in the given namespace; the expression
must return a single value, otherwise an exception is raised. The str argument is parsed as a
UTF-8-encoded string of Unicode characters (so plain ASCII is fine).

Scheme_Object* scheme_eval_string_multi(char* str,
Scheme_Env* env)

Like scheme_eval_string, but returns scheme_multiple_values when the expression
returns multiple values.

62

Scheme_Object* scheme_eval_string_all(char* str,
Scheme_Env* env,
int all)

Like scheme_eval_string, but if all is not 0, then expressions are read and evaluated from
str until the end of the string is reached.

Scheme_Object* scheme_tail_apply(Scheme_Object* f,
int n,
Scheme_Object** args)

Applies the procedure as a tail-call. Actually, this function just registers the given application
to be invoked when control returns to the evaluation loop. (Hence, this function is only useful
within a primitive procedure that is returning to its caller.)

Scheme_Object* scheme_tail_apply_no_copy(Scheme_Object* f,
int n,
Scheme_Object** args)

Like scheme_tail_apply, but the array args is not copied. Use this only when args has
infinite extent and will not be used again, or when args will certainly not be used again until
the called procedure has returned.

Scheme_Object* scheme_tail_apply_to_list(Scheme_Object* f,
Scheme_Object* l)

Applies the procedure as a tail-call.

Scheme_Object* scheme_compile(Scheme_Object* form,

Scheme_Env* env,
int writable)

Compiles the S-expression form in the given namespace. The returned value can be used
with scheme_eval_compiled et al. Provide a non-zero value for writable if the resulting
compiled object will be marshalled via write instead of evaluated.

Scheme_Object* scheme_expand(Scheme_Object* form,

Scheme_Env* env)

Expands all macros in the S-expression form using the given namespace.

Scheme_Object* scheme_values(int n,
Scheme_Object** args)

Returns the given values together as multiple return values. Unless n is 1, the result will
always be scheme_multiple_values.

void scheme_detach_multiple_array(Scheme_Object** args)

63

Called to receive multiple-value results; see §8.3 “Multiple Values”.

64

9 Exceptions and Escape Continuations

When Racket encounters an error, it raises an exception. The default exception han-
dler invokes the error display handler and then the error escape handler. The default er-
ror escape handler escapes via a primitive error escape, which is implemented by calling
scheme_longjmp(*scheme_current_thread->error_buf).

An embedding program should install a fresh buffer into scheme_current_thread-

>error_buf and call scheme_setjmp(*scheme_current_thread->error_buf) before
any top-level entry into Racket evaluation to catch primitive error escapes. When the new
buffer goes out of scope, restore the original in scheme_current_thread->error_buf.
The macro scheme_error_buf is a shorthand for *scheme_current_thread-

>error_buf.

mz_jmp_buf * volatile save, fresh;

...

save = scheme_current_thread->error_buf;

scheme_current_thread->error_buf = &fresh;

if (scheme_setjmp(scheme_error_buf)) {

/* There was an error */

...

} else {

v = scheme_eval_string(s, env);

}

scheme_current_thread->error_buf = save;

...

3m: when scheme_setjmp is used, the enclosing context must provide a local-variable
registration record via MZ_GC_DECL_REG. Use MZ_GC_DECL_REG(0) if the context has no
local variables to register. Unfortunately, when using --xform with raco ctool instead
of MZ_GC_DECL_REG, etc., you may need to declare a dummy pointer and use it after
scheme_setjmp to ensure that a local-variable registration is generated.

New primitive procedures can raise a generic exception by calling scheme_signal_error.
The arguments for scheme_signal_error are roughly the same as for the standard C func-
tion printf. A specific primitive exception can be raised by calling scheme_raise_exn.

Full continuations are implemented in Racket by copying the C stack and using
scheme_setjmp and scheme_longjmp. As long a C/C++ application invokes Racket eval-
uation through the top-level evaluation functions (scheme_eval, scheme_apply, etc., as
opposed to _scheme_apply, _scheme_eval_compiled, etc.), the code is protected against
any unusual behavior from Racket evaluations (such as returning twice from a function) be-
cause continuation invocations are confined to jumps within a single top-level evaluation.
However, escape continuation jumps are still allowed; as explained in the following sub-
section, special care must be taken in extension that is sensitive to escapes.

65

9.1 Temporarily Catching Error Escapes

When implementing new primitive procedure, it is sometimes useful to catch and
handle errors that occur in evaluating subexpressions. One way to do this is the
following: save scheme_current_thread->error_buf to a temporary variable, set
scheme_current_thread->error_buf to the address of a stack-allocated mz_jmp_buf,
invoke scheme_setjmp(scheme_error_buf), perform the function’s work, and then re-
store scheme_current_thread->error_buf before returning a value. (3m: A stack-
allocated mz_jmp_buf instance need not be registered with the garbage collector, and a
heap-allocated mz_jmp_buf should be allocated as atomic.)

However, beware that a prompt abort or the invocation of an escaping continua-
tion looks like a primitive error escape. In that case, the special indicator flag
scheme_jumping_to_continuation is non-zero (instead of its normal zero value);
this situation is only visible when implementing a new primitive procedure. When
scheme_jumping_to_continuation is non-zero, honor the escape request by chaining
to the previously saved error buffer; otherwise, call scheme_clear_escape.

mz_jmp_buf * volatile save, fresh;

save = scheme_current_thread->error_buf;

scheme_current_thread->error_buf = &fresh;

if (scheme_setjmp(scheme_error_buf)) {

/* There was an error or continuation invocation */

if (scheme_jumping_to_continuation) {

/* It was a continuation jump */

scheme_longjmp(*save, 1);

/* To block the jump, instead: scheme_clear_escape(); */

} else {

/* It was a primitive error escape */

}

} else {

scheme_eval_string("x", scheme_env);

}

scheme_current_thread->error_buf = save;

This solution works fine as long as the procedure implementation only calls top-level eval-
uation functions (scheme_eval, scheme_apply, etc., as opposed to _scheme_apply,
_scheme_eval_compiled, etc.). Otherwise, use scheme_dynamic_wind to protect your
code against full continuation jumps in the same way that dynamic-wind is used in Racket.

The above solution simply traps the escape; it doesn’t report the reason that the es-
cape occurred. To catch exceptions and obtain information about the exception, the sim-
plest route is to mix Racket code with C-implemented thunks. The code below can be
used to catch exceptions in a variety of situations. It implements the function _ap-

ply_catch_exceptions, which catches exceptions during the application of a thunk. (This
code is in "collects/mzscheme/examples/catch.c" in the distribution.)

66

static Scheme_Object *exn_catching_apply, *exn_p, *exn_message;

static void init_exn_catching_apply()

{

if (!exn_catching_apply) {

char *e =

"(lambda (thunk) "

"(with-handlers ([void (lambda (exn) (cons #f exn))]) "

"(cons #t (thunk))))";

/* make sure we have a namespace with the standard bindings: */

Scheme_Env *env = (Scheme_Env *)scheme_make_namespace(0, NULL);

scheme_register_extension_global(&exn_catching_apply,

sizeof(Scheme_Object *));

scheme_register_extension_global(&exn_p,

sizeof(Scheme_Object *));

scheme_register_extension_global(&exn_message,

sizeof(Scheme_Object *));

exn_catching_apply = scheme_eval_string(e, env);

exn_p = scheme_lookup_global(scheme_intern_symbol("exn?"),

env);

exn_message

= scheme_lookup_global(scheme_intern_symbol("exn-message"),

env);

}

}

/* This function applies a thunk, returning the Racket value if

there's no exception, otherwise returning NULL and setting *exn

to the raised value (usually an exn structure). */

Scheme_Object *_apply_thunk_catch_exceptions(Scheme_Object *f,

Scheme_Object **exn)

{

Scheme_Object *v;

init_exn_catching_apply();

v = _scheme_apply(exn_catching_apply, 1, &f);

/* v is a pair: (cons #t value) or (cons #f exn) */

if (SCHEME_TRUEP(SCHEME_CAR(v)))

return SCHEME_CDR(v);

else {

*exn = SCHEME_CDR(v);

return NULL;

67

}

}

Scheme_Object *extract_exn_message(Scheme_Object *v)

{

init_exn_catching_apply();

if (SCHEME_TRUEP(_scheme_apply(exn_p, 1, &v)))

return _scheme_apply(exn_message, 1, &v);

else

return NULL; /* Not an exn structure */

}

In the following example, the above code is used to catch exceptions that occur during while
evaluating source code from a string.

static Scheme_Object *do_eval(void *s, int noargc,

Scheme_Object **noargv)

{

return scheme_eval_string((char *)s,

scheme_get_env(scheme_config));

}

static Scheme_Object *eval_string_or_get_exn_message(char *s)

{

Scheme_Object *v, *exn;

v = scheme_make_closed_prim(do_eval, s);

v = _apply_thunk_catch_exceptions(v, &exn);

/* Got a value? */

if (v)

return v;

v = extract_exn_message(exn);

/* Got an exn? */

if (v)

return v;

/* `raise' was called on some arbitrary value */

return exn;

}

68

9.2 Enabling and Disabling Breaks

When embedding Racket, asynchronous break exceptions are disabled by default. Call
scheme_set_can_break (which is the same as calling the Racket function break-

enabled) to enable or disable breaks. To enable or disable breaks during the dynamic ex-
tent of another evaluation (where you would use call-with-break-parameterization

in Racket), use scheme_push_break_enable before and scheme_pop_break_enable af-
ter, instead.

9.3 Exception Functions

void scheme_signal_error(char* msg,
...)

Raises a generic primitive exception. The parameters are roughly as for printf, but with
the following format directives:

• %c : a Unicode character (of type mzchar)

• %d : an int

• %o : an int formatted in octal

• %gd : a long integer

• %gx : a long integer formatted in hexadecimal

• %ld : an intptr_t integer

• %lx : an intptr_t integer formatted in hexadecimal

• %f : a floating-point double

• %s : a nul-terminated char string

• %5 : a nul-terminated mzchar string

• %S : a Racket symbol (a Scheme_Object*)

• %t : a char string with a intptr_t size (two arguments), possibly containing a non-
terminating nul byte, and possibly without a nul-terminator

• %u : a mzchar string with a intptr_t size (two arguments), possibly containing a
non-terminating nul character, and possibly without a nul-terminator

• %T : a Racket string (a Scheme_Object*)

• %q : a string, truncated to 253 characters, with ellipses printed if the string is truncated

69

• %Q : a Racket string (a Scheme_Object*), truncated to 253 characters, with ellipses
printed if the string is truncated

• %V : a Racket value (a Scheme_Object*), truncated according to the current error
print width.

• %D : a Racket value (a Scheme_Object*), to display.

• %@ : a Racket value (a Scheme_Object*), that is a list whose printed elements are
spliced into the result.

• %e : an errno value, to be printed as a text message.

• %E : a platform-specific error value, to be printed as a text message.

• %Z : a potential platform-specific error value and a char string; if the string is non-
NULL, then the error value is ignored, otherwise the error value is used as for %E.

• %% : a percent sign

• %_ : a pointer to ignore

• %- : an int to ignore

The arguments following the format string must include no more than 25 strings and Racket
values, 25 integers, and 25 floating-point numbers. (This restriction simplifies the imple-
mentation with precise garbage collection.)

void scheme_raise_exn(int exnid,
...)

Raises a specific primitive exception. The exnid argument specifies the exception to be
raised. If an instance of that exception has n fields, then the next n-2 arguments are values
for those fields (skipping the message and debug-info fields). The remaining arguments
start with an error string and proceed roughly as for printf; see scheme_signal_error

above for more details.

Exception ids are #defined using the same names as in Racket, but prefixed with “MZ”,
all letters are capitalized, and all “:’s’, “-”s, and “/”s are replaced with underscores. For
example, MZEXN_FAIL_FILESYSTEM is the exception id for a filesystem exception.

void scheme_wrong_count(char* name,
int minc,
int maxc,
int argc,
Scheme_Object** argv)

This function is automatically invoked when the wrong number of arguments are given to
a primitive procedure. It signals that the wrong number of parameters was received and es-
capes (like scheme_signal_error). The name argument is the name of the procedure that

70

was given the wrong number of arguments; minc is the minimum number of expected argu-
ments; maxc is the maximum number of expected arguments, or -1 if there is no maximum;
argc and argv contain all of the received arguments.

void scheme_wrong_contract(char* name,
char* contract,
int which,
int argc,
Scheme_Object** argv)

Signals that an argument was received that does not satisfy a contract and escapes (like
scheme_signal_error). The name argument is the name of the procedure that was given
the wrong argument; expected is the contract; which is the offending argument in the argv
array; argc and argv contain all of the received arguments. If the original argc and argv are
not available, provide -1 for which and a pointer to the bad value in argv, in which case the
magnitude (but not sign) of argc is ignored. Negate argc if the exception corresponds to a
result contract instead of an argument contract.

void scheme_wrong_type(char* name,
char* expected,
int which,
int argc,
Scheme_Object** argv)

Signals that an argument of the wrong type was received and escapes. Use
scheme_wrong_contract, instead.

The arguments are the same as for scheme_wrong_contract, except that expected is the
name of the expected type.

void scheme_wrong_return_arity(char* name,
int expected,
int got,
Scheme_Object** argv,
const char* detail)

Signals that the wrong number of values were returned to a multiple-values context. The
expected argument indicates how many values were expected, got indicates the number re-
ceived, and argv are the received values. The detail string can be NULL or it can contain
a printf-style string (with additional arguments) to describe the context of the error; see
scheme_signal_error above for more details about the printf-style string.

void scheme_unbound_global(char* name)

Signals an unbound-variable error, where name is the name of the variable.

71

void scheme_contract_error(const char* name,
const char* msg,
...)

Raises a contract-violation exception. The msg string is static, instead of a format string.
After msg, any number of triples can be provided to add fields (each on its own line) to the
error message; each triple is a string for the field name, a 0 or 1 to indicate whether the field
value is a literal string or a Racket value, and either a literal string or a Racket value. The
sequence of field triples must be terminated with NULL.

char* scheme_make_provided_string(Scheme_Object* o,
int count,
int* len)

Converts a Racket value into a string for the purposes of reporting an error message. The
count argument specifies how many Racket values total will appear in the error message (so
the string for this value can be scaled appropriately). If len is not NULL, it is filled with the
length of the returned string.

char* scheme_make_arg_lines_string(char* s,
int which,
int argc,
Scheme_Object** argv,
intptr_t* len)

Converts an array of Racket values into a byte string, skipping the array element indicated
by which if which is not -1. This function is used to format the “other” arguments to a
function when one argument is bad (thus giving the user more information about the state of
the program when the error occurred). If len is not NULL, it is filled with the length of the
returned string.

If the arguments are shown on multiple lines, then the result string starts with a newline
character and each line is indented by three spaces. Otherwise, the result string starts with a
space. If the result would contain no arguments, it contains [none], instead.

char* scheme_make_args_string(char* s,
int which,
int argc,
Scheme_Object** argv,
intptr_t* len)

Like scheme_make_arg_lines_string, but for old-style messages where the arguments
are always shown within a single line. The result does not include a leading space.

72

void scheme_check_proc_arity(char* where,
int a,
int which,
int argc,
Scheme_Object** argv)

Checks the whichth argument in argv to make sure it is a procedure that can take a argu-
ments. If there is an error, the where, which, argc, and argv arguments are passed on to
scheme_wrong_type. As in scheme_wrong_type, which can be -1, in which case *argv
is checked.

Scheme_Object* scheme_dynamic_wind(Pre_Post_Proc pre,
Action_Proc action,
Pre_Post_Proc post,
Action_Proc jmp_handler,
void* data)

Evaluates calls the function action to get a value for the scheme_dynamic_wind call. The
Pre_Post_Proc and Action_Proc types are not actually defined; instead the types are
inlined as if they were defined as follows:

typedef void (*Pre_Post_Proc)(void *data);

typedef Scheme_Object* (*Action_Proc)(void *data);

The functions pre and post are invoked when jumping into and out of action, respectively.

The function jmp_handler is called when an error is signaled (or an escaping continuation
is invoked) during the call to action; if jmp_handler returns NULL, then the error is passed
on to the next error handler, otherwise the return value is used as the return value for the
scheme_dynamic_wind call.

The pointer data can be anything; it is passed along in calls to action, pre, post, and
jmp_handler.

void scheme_clear_escape()

Clears the “jumping to escape continuation” flag associated with a thread. Call this func-
tion when blocking escape continuation hops (see the first example in §9.1 “Temporarily
Catching Error Escapes”).

void scheme_set_can_break(int on)

Enables or disables breaks in the same way as calling break-enabled.

void scheme_push_break_enable(Scheme_Cont_Frame_Data* cframe,
int on,
int pre_check)

Use this function with scheme_pop_break_enable to enable or disable breaks in the same

73

way as call-with-break-parameterization; this function writes to cframe to initialize
it, and scheme_pop_break_enable reads from cframe. If pre_check is non-zero and breaks
are currently enabled, any pending break exception is raised.

void scheme_pop_break_enable(Scheme_Cont_Frame_Data* cframe,
int post_check)

Use this function with scheme_push_break_enable. If post_check is non-zero and breaks
are enabled after restoring the previous state, then any pending break exception is raised.

Scheme_Object*

scheme_current_continuation_marks(Scheme_Object* prompt_tag)

Like current-continuation-marks. Passing NULL as prompt_tag is the same as provid-
ing the default continuation prompt tag.

void scheme_warning(char* msg,
...)

Writes a warning message. The parameters are roughly as for printf; see
scheme_signal_error above for more details.

Normally, Racket’s logging facilities should be used instead of this function.

74

10 Threads

The initializer function scheme_basic_env creates the main Racket thread; all other
threads are created through calls to scheme_thread.

Information about each internal Racket thread is kept in a Scheme_Thread structure. A
pointer to the current thread’s structure is available as scheme_current_thread. A
Scheme_Thread structure includes the following fields:

• error_buf — the mz_jmp_buf value used to escape from errors. The error_buf

value of the current thread is available as scheme_error_buf.

• cjs.jumping_to_continuation — a flag that distinguishes escaping-continuation
invocations from error escapes. The cjs.jumping_to_continuation value of the
current thread is available as scheme_jumping_to_continuation.

• init_config — the thread’s initial parameterization. See also §11 “Parameteriza-
tions”.

• cell_values — The thread’s values for thread cells (see also §11 “Parameteriza-
tions”).

• next — The next thread in the linked list of threads; this is NULL for the main thread.

The list of all scheduled threads is kept in a linked list; scheme_first_thread points to
the first thread in the list. The last thread in the list is always the main thread.

10.1 Integration with Threads

Racket’s threads can break external C code under two circumstances:

• Pointers to stack-based values can be communicated between threads. For example,
if thread A stores a pointer to a stack-based variable in a global variable, if thread B
uses the pointer in the global variable, it may point to data that is not currently on the
stack.

• C functions that can invoke Racket (and also be invoked by Racket) depend on strict
function-call nesting. For example, suppose a function F uses an internal stack, push-
ing items on to the stack on entry and popping the same items on exit. Suppose also
that F invokes Racket to evaluate an expression. If the evaluation of this expression
invokes F again in a new thread, but then returns to the first thread before completing
the second F, then F’s internal stack will be corrupted.

If either of these circumstances occurs, Racket will probably crash.

75

10.2 Allowing Thread Switches

C code that performs substantial or unbounded work should occasionally call
SCHEME_USE_FUEL—actually a macro—which allows Racket to swap in another Racket
thread to run, and to check for breaks on the current thread. In particular, if breaks are
enabled, then SCHEME_USE_FUEL may trigger an exception.

The macro consumes an integer argument. On most platforms, where thread schedul-
ing is based on timer interrupts, the argument is ignored. On some platforms, however,
the integer represents the amount of “fuel” that has been consumed since the last call to
SCHEME_USE_FUEL. For example, the implementation of vector->list consumes a unit
of fuel for each created cons cell:

Scheme_Object *scheme_vector_to_list(Scheme_Object *vec)

{

int i;

Scheme_Object *pair = scheme_null;

i = SCHEME_VEC_SIZE(vec);

for (; i--;) {

SCHEME_USE_FUEL(1);

pair = scheme_make_pair(SCHEME_VEC_ELS(vec)[i], pair);

}

return pair;

}

The SCHEME_USE_FUEL macro expands to a C block, not an expression.

10.3 Blocking the Current Thread

Embedding or extension code sometimes needs to block, but blocking should al-
low other Racket threads to execute. To allow other threads to run, block using
scheme_block_until. This procedure takes two functions: a polling function that tests
whether the blocking operation can be completed, and a prepare-to-sleep function that sets
bits in fd_sets when Racket decides to sleep (because all Racket threads are blocked). On
Windows, an “fd_set” can also accommodate OS-level semaphores or other handles via
scheme_add_fd_handle.

Since the functions passed to scheme_block_until are called by the Racket thread sched-
uler, they must never raise exceptions, call scheme_apply, or trigger the evaluation of
Racket code in any way. The scheme_block_until function itself may call the current
exception handler, however, in reaction to a break (if breaks are enabled).

76

When a blocking operation is associated with an object, then the object might make sense
as an argument to sync. To extend the set of objects accepted by sync, either register
polling and sleeping functions with scheme_add_evt, or register a semaphore accessor
with scheme_add_evt_through_sema.

The scheme_signal_received function can be called to wake up Racket when it is sleep-
ing. In particular, calling scheme_signal_received ensures that Racket will poll all
blocking synchronizations soon afterward. Furthermore, scheme_signal_received can
be called from any OS-level thread. Thus, when no adequate prepare-to-sleep function can
be implemented for scheme_block_until in terms of file descriptors or Windows handles,
calling scheme_signal_received when the poll result changes will ensure that a poll is
issued.

10.4 Threads in Embedded Racket with Event Loops

When Racket is embedded in an application with an event-based model (i.e., the execution of
Racket code in the main thread is repeatedly triggered by external events until the application
exits) special hooks must be set to ensure that non-main threads execute correctly. For ex-
ample, during the execution in the main thread, a new thread may be created; the new thread
may still be running when the main thread returns to the event loop, and it may be arbitrarily
long before the main thread continues from the event loop. Under such circumstances, the
embedding program must explicitly allow Racket to execute the non-main threads; this can
be done by periodically calling the function scheme_check_threads.

Thread-checking only needs to be performed when non-main threads exist (or when there
are active callback triggers). The embedding application can set the global function pointer
scheme_notify_multithread to a function that takes an integer parameter and returns
void. This function is be called with 1 when thread-checking becomes necessary, and then
with 0 when thread checking is no longer necessary. An embedding program can use this
information to prevent unnecessary scheme_check_threads polling.

The below code illustrates how GRacket formerly set up scheme_check_threads polling
using the wxWindows wxTimer class. (Any regular event-loop-based callback is appro-
priate.) The scheme_notify_multithread pointer is set to MrEdInstallThreadTimer.
(GRacket no longer work this way, however.)

class MrEdThreadTimer : public wxTimer

{

public:

void Notify(void); /* callback when timer expires */

};

static int threads_go;

static MrEdThreadTimer *theThreadTimer;

#define THREAD_WAIT_TIME 40

77

void MrEdThreadTimer::Notify()

{

if (threads_go)

Start(THREAD_WAIT_TIME, TRUE);

scheme_check_threads();

}

static void MrEdInstallThreadTimer(int on)

{

if (!theThreadTimer)

theThreadTimer = new MrEdThreadTimer;

if (on)

theThreadTimer->Start(THREAD_WAIT_TIME, TRUE);

else

theThreadTimer->Stop();

threads_go = on;

if (on)

do_this_time = 1;

}

An alternate architecture, which GRacket now uses, is to send the main thread into a loop,
which blocks until an event is ready to handle. Racket automatically takes care of running
all threads, and it does so efficiently because the main thread blocks on a file descriptor, as
explained in §10.3 “Blocking the Current Thread”.

10.4.1 Callbacks for Blocked Threads

Racket threads are sometimes blocked on file descriptors, such as an input file or the X
event socket. Blocked non-main threads do not block the main thread, and therefore do
not affect the event loop, so scheme_check_threads is sufficient to implement this case
correctly. However, it is wasteful to poll these descriptors with scheme_check_threads

when nothing else is happening in the application and when a lower-level poll on the file
descriptors can be installed. If the global function pointer scheme_wakeup_on_input is
set, then this case is handled more efficiently by turning off thread checking and issuing a
“wakeup” request on the blocking file descriptors through scheme_wakeup_on_input.

A scheme_wakeup_on_input procedure takes a pointer to an array of three fd_sets (use
MZ_FD_SET instead of FD_SET, etc.) and returns void. The scheme_wakeup_on_input

function does not sleep immediately; it just sets up callbacks on the specified file descrip-
tors. When input is ready on any of those file descriptors, the callbacks are removed and

78

scheme_wake_up is called.

For example, the X Windows version of GRacket formerly set scheme_wakeup_on_input
to this MrEdNeedWakeup:

static XtInputId *scheme_cb_ids = NULL;

static int num_cbs;

static void MrEdNeedWakeup(void *fds)

{

int limit, count, i, p;

fd_set *rd, *wr, *ex;

rd = (fd_set *)fds;

wr = ((fd_set *)fds) + 1;

ex = ((fd_set *)fds) + 2;

limit = getdtablesize();

/* See if we need to do any work, really: */

count = 0;

for (i = 0; i < limit; i++) {

if (MZ_FD_ISSET(i, rd))

count++;

if (MZ_FD_ISSET(i, wr))

count++;

if (MZ_FD_ISSET(i, ex))

count++;

}

if (!count)

return;

/* Remove old callbacks: */

if (scheme_cb_ids)

for (i = 0; i < num_cbs; i++)

notify_set_input_func((Notify_client)NULL, (Notify_func)NULL,

scheme_cb_ids[i]);

num_cbs = count;

scheme_cb_ids = new int[num_cbs];

/* Install callbacks */

p = 0;

for (i = 0; i < limit; i++) {

if (MZ_FD_ISSET(i, rd))

79

scheme_cb_ids[p++] = XtAppAddInput(wxAPP_CONTEXT, i,

(XtPointer *)XtInputRead-

Mask,

(XtInputCallbackProc)MrEdWakeUp,

NULL);

if (MZ_FD_ISSET(i, wr))

scheme_cb_ids[p++] = XtAppAddInput(wxAPP_CONTEXT, i,

(XtPointer *)XtIn-

putWriteMask,

(XtInputCallbackProc)MrEdWakeUp,

NULL);

if (MZ_FD_ISSET(i, ex))

scheme_cb_ids[p++] = XtAppAddInput(wxAPP_CONTEXT, i,

(XtPointer *)XtInputEx-

ceptMask,

(XtInputCallbackProc)MrEdWakeUp,

NULL);

}

}

/* callback function when input/exception is detected: */

Bool MrEdWakeUp(XtPointer, int *, XtInputId *)

{

int i;

if (scheme_cb_ids) {

/* Remove all callbacks: */

for (i = 0; i < num_cbs; i++)

XtRemoveInput(scheme_cb_ids[i]);

scheme_cb_ids = NULL;

/* ``wake up'' */

scheme_wake_up();

}

return FALSE;

}

10.5 Sleeping by Embedded Racket

When all Racket threads are blocked, Racket must “sleep” for a certain number of seconds
or until external input appears on some file descriptor. Generally, sleeping should block the
main event loop of the entire application. However, the way in which sleeping is performed

80

may depend on the embedding application. The global function pointer scheme_sleep
can be set by an embedding application to implement a blocking sleep, although Racket
implements this function for you.

A scheme_sleep function takes two arguments: a float and a void*. The latter is re-
ally points to an array of three “fd_set” records (one for read, one for write, and one for
exceptions); these records are described further below. If the float argument is non-zero,
then the scheme_sleep function blocks for the specified number of seconds, at most. The
scheme_sleep function should block until there is input one of the file descriptors specified
in the “fd_set,” indefinitely if the float argument is zero.

The second argument to scheme_sleep is conceptually an array of three fd_set records,
but always use scheme_get_fdset to get anything other than the zeroth element of this
array, and manipulate each “fd_set” with MZ_FD_SET, MZ_FD_CLR, etc. instead of FD_SET,
FD_CLR, etc.

The following function mzsleep is an appropriate scheme_sleep function for most any
Unix or Windows application. (This is approximately the built-in sleep used by Racket.)

void mzsleep(float v, void *fds)

{

if (v) {

sleep(v);

} else {

int limit;

fd_set *rd, *wr, *ex;

ifdef WIN32

limit = 0;

else

limit = getdtablesize();

endif

rd = (fd_set *)fds;

wr = (fd_set *)scheme_get_fdset(fds, 1);

ex = (fd_set *)scheme_get_fdset(fds, 2);

select(limit, rd, wr, ex, NULL);

}

}

10.6 Thread Functions

Scheme_Object* scheme_thread(Scheme_Object* thunk)

81

Creates a new thread, just like thread.

Scheme_Object*

scheme_thread_w_details(Scheme_Object* thunk,
Scheme_Config* config,
Scheme_Thread_Cell_Table* cells,
Scheme_Custodian* cust,
int suspend_to_kill)

Like scheme_thread, except that the created thread belongs to cust instead of the current
custodian, it uses the given config for its initial configuration, it uses cells for its thread-cell
table, and if suspend_to_kill is non-zero, then the thread is merely suspended when it would
otherwise be killed (through either kill-thread or custodian-shutdown-all).

The config argument is typically obtained through scheme_current_config or
scheme_extend_config. A config is immutable, so different threads can safely use the
same value. The cells argument should be obtained from scheme_inherit_cells; it is
mutable, and a particular cell table should be used by only one thread.

Scheme_Object* scheme_make_sema(intptr_t v)

Creates a new semaphore.

void scheme_post_sema(Scheme_Object* sema)

Posts to sema.

int scheme_wait_sema(Scheme_Object* sema,
int try)

Waits on sema. If try is not 0, the wait can fail and 0 is returned for failure, otherwise 1 is
returned.

void scheme_thread_block(float sleep_time)

Allows the current thread to be swapped out in favor of other threads. If sleep_time positive,
then the current thread will sleep for at least sleep_time seconds.

After calling this function, a program should almost always call
scheme_making_progress next. The exception is when scheme_thread_block is
called in a polling loop that performs no work that affects the progress of other threads. In
that case, scheme_making_progress should be called immediately after exiting the loop.

See also scheme_block_until, and see also the SCHEME_USE_FUEL macro in §10.2 “Al-
lowing Thread Switches”.

void scheme_thread_block_enable_break(float sleep_time,
int break_on)

82

Like scheme_thread_block, but breaks are enabled while blocking if break_on is true.

void scheme_swap_thread(Scheme_Thread* thread)

Swaps out the current thread in favor of thread.

void scheme_break_thread(Scheme_Thread* thread)

Sends a break signal to the given thread.

int scheme_break_waiting(Scheme_Thread* thread)

Returns 1 if a break from break-thread or scheme_break_thread has occurred in the
specified thread but has not yet been handled.

int scheme_block_until(Scheme_Ready_Fun f,
Scheme_Needs_Wakeup_Fun fdf,
Scheme_Object* data,
float sleep)

The Scheme_Ready_Fun and Scheme_Needs_Wakeup_Fun types are defined as follows:

typedef int (*Scheme_Ready_Fun)(Scheme_Object *data);

typedef void (*Scheme_Needs_Wakeup_Fun)(Scheme_Object *data,

void *fds);

Blocks the current thread until f with data returns a true value. The f function is called
periodically—at least once per potential swap-in of the blocked thread—and it may be called
multiple times even after it returns a true value. If f with data ever returns a true value, it
must continue to return a true value until scheme_block_until returns. The argument to f
is the same data as provided to scheme_block_until, and data is ignored otherwise. (The
data argument is not actually required to be a Scheme_Object* value, because it is only
used by f and fdf.)

If Racket decides to sleep, then the fdf function is called to sets bits in fds, conceptu-
ally an array of three fd_sets: one or reading, one for writing, and one for exceptions.
Use scheme_get_fdset to get elements of this array, and manipulate an “fd_set” with
MZ_FD_SET instead of FD_SET, etc. On Windows, an “fd_set” can also accommodate OS-
level semaphores or other handles via scheme_add_fd_handle.

The fdf argument can be NULL, which implies that the thread becomes unblocked (i.e.,
ready changes its result to true) only through Racket actions, and never through exter-
nal processes (e.g., through a socket or OS-level semaphore)—with the exception that
scheme_signal_received may be called to indicate an external change.

If sleep is a positive number, then scheme_block_until polls f at least every sleep sec-
onds, but scheme_block_until does not return until f returns a true value. The call to
scheme_block_until can return before sleep seconds if f returns a true value.

83

The return value from scheme_block_until is the return value of its most recent call to f,
which enables f to return some information to the scheme_block_until caller.

See §10.3 “Blocking the Current Thread” for information about restrictions on the f and fdf
functions.

int scheme_block_until_enable_break(Scheme_Ready_Fun f,
Scheme_Needs_Wakeup_Fun fdf,
Scheme_Object* data,
float sleep,
int break_on)

Like scheme_block_until, but breaks are enabled while blocking if break_on is true.

int scheme_block_until_unless(Scheme_Ready_Fun f,
Scheme_Needs_Wakeup_Fun fdf,
Scheme_Object* data,
float sleep,
Scheme_Object* unless_evt,
int break_on)

Like scheme_block_until_enable_break, but the function returns if unless_evt
becomes ready, where unless_evt is a port progress event implemented by
scheme_progress_evt_via_get. See scheme_make_input_port for more infor-
mation.

void scheme_signal_received()

Indicates that an external event may have caused the result of a synchronization poll to have
a different result. Unlike most other Racket functions, this one can be called from any OS-
level thread, and it wakes up if the Racket thread if it is sleeping.

void scheme_check_threads()

This function is periodically called by the embedding program to give background processes
time to execute. See §10.4 “Threads in Embedded Racket with Event Loops” for more
information.

As long as some threads are ready, this functions returns only after one thread quantum, at
least.

void scheme_wake_up()

This function is called by the embedding program when there is input on an external file
descriptor. See §10.5 “Sleeping by Embedded Racket” for more information.

void* scheme_get_fdset(void* fds,
int pos)

84

Extracts an “fd_set” from an array passed to scheme_sleep, a callback for
scheme_block_until, or an input port callback for scheme_make_input_port.

void scheme_add_fd_handle(void* h,
void* fds,
int repost)

Adds an OS-level semaphore (Windows) or other waitable handle (Windows) to the
“fd_set” fds. When Racket performs a “select” to sleep on fds, it also waits on the given
semaphore or handle. This feature makes it possible for Racket to sleep until it is awakened
by an external process.

Racket does not attempt to deallocate the given semaphore or handle, and the “select” call
using fds may be unblocked due to some other file descriptor or handle in fds. If repost is
a true value, then h must be an OS-level semaphore, and if the “select” unblocks due to a
post on h, then h is reposted; this allows clients to treat fds-installed semaphores uniformly,
whether or not a post on the semaphore was consumed by “select”.

The scheme_add_fd_handle function is useful for implementing the second procedure
passed to scheme_wait_until, or for implementing a custom input port.

On Unix and Mac OS X, this function has no effect.

void scheme_add_fd_eventmask(void* fds,
int mask)

Adds an OS-level event type (Windows) to the set of types in the “fd_set” fds. When
Racket performs a “select” to sleep on fds, it also waits on events of them specified type.
This feature makes it possible for Racket to sleep until it is awakened by an external process.

The event mask is only used when some handle is installed with scheme_add_fd_handle.
This awkward restriction may force you to create a dummy semaphore that is never posted.

On Unix, and Mac OS X, this function has no effect.

void scheme_add_evt(Scheme_Type type,
Scheme_Ready_Fun ready,
Scheme_Needs_Wakeup_Fun wakeup,
Scheme_Wait_Filter_Fun filter,
int can_redirect)

The argument types are defined as follows:

typedef int (*Scheme_Ready_Fun)(Scheme_Object *data);

typedef void (*Scheme_Needs_Wakeup_Fun)(Scheme_Object *data,

void *fds);

typedef int (*Scheme_Wait_Filter_Fun)(Scheme_Object *data);

85

Extends the set of waitable objects for sync to those with the type tag type. If filter is non-
NULL, it constrains the new waitable set to those objects for which filter returns a non-zero
value.

The ready and wakeup functions are used in the same way was the arguments to
scheme_block_until.

The can_redirect argument should be 0.

void scheme_add_evt_through_sema(Scheme_Type type,
Scheme_Wait_Sema_Fun getsema,
Scheme_Wait_Filter_Fun filter)

Like scheme_add_evt, but for objects where waiting is based on a semaphore. Instead of
ready and wakeup functions, the getsema function extracts a semaphore for a given object:

typedef

Scheme_Object *(*Scheme_Wait_Sema_Fun)(Scheme_Object *data,

int *repost);

If a successful wait should leave the semaphore waited, then getsema should set *repost to
0. Otherwise, the given semaphore will be re-posted after a successful wait. A getsema
function should almost always set *repost to 1.

void scheme_making_progress()

Notifies the scheduler that the current thread is not simply calling scheme_thread_block

in a loop, but that it is actually making progress.

int scheme_tls_allocate()

Allocates a thread local storage index to be used with scheme_tls_set and
scheme_tls_get.

void scheme_tls_set(int index,
void* v)

Stores a thread-specific value using an index allocated with scheme_tls_allocate.

void* scheme_tls_get(int index)

Retrieves a thread-specific value installed with scheme_tls_set. If no thread-specific value
is available for the given index, NULL is returned.

Scheme_Object* scheme_call_enable_break(Scheme_Prim* prim,

int argc,
Scheme_Object** argv)

Calls prim with the given argc and argv with breaks enabled. The prim function can block,

86

in which case it might be interrupted by a break. The prim function should not block, yield,
or check for breaks after it succeeds, where “succeeds” depends on the operation. For ex-
ample, tcp-accept/enable-break is implemented by wrapping this function around the
implementation of tcp-accept; the tcp-accept implementation does not block or yield
after it accepts a connection.

Scheme_Object*

scheme_make_thread_cell(Scheme_Object* def_val,
int preserved,
Scheme_Object* cell,
Scheme_Thread_Cell_Table* cells,
Scheme_Object* cell,
Scheme_Thread_Cell_Table* cells,
Scheme_Object* v)

Prevents Racket thread swaps until scheme_end_atomic or
scheme_end_atomic_no_swap is called. Start-atomic and end-atomic pairs can be
nested.

void scheme_end_atomic()

Ends an atomic region with respect to Racket threads. The current thread may be swapped
out immediately (i.e., the call to scheme_end_atomic is assumed to be a safe point for
thread swaps).

void scheme_end_atomic_no_swap()

Ends an atomic region with respect to Racket threads, and also prevents an immediate thread
swap. (In other words, no Racket thread swaps will occur until a future safe point.)

void scheme_add_swap_callback(Scheme_Closure_Func f,
Scheme_Object* data)

Registers a callback to be invoked just after a Racket thread is swapped in. The data is
provided back to f when it is called, where Closure_Func is defined as follows:

typedef Scheme_Object *(*Scheme_Closure_Func)(Scheme_Object *);

void scheme_add_swap_out_callback(Scheme_Closure_Func f,
Scheme_Object* data)

Like scheme_add_swap_callback, but registers a callback to be invoked just before a
Racket thread is swapped out.

87

11 Parameterizations

A parameterization is a set of parameter values. Each thread has its own initial parameteri-
zation, which is extended functionally and superseded by parameterizations that are attached
to a particular continuation mark.

Parameterization information is stored in a Scheme_Config record. For the currently exe-
cuting thread, scheme_current_config returns the current parameterization.

To obtain parameter values, a Scheme_Config is combined with the current threads
Scheme_Thread_Cell_Table, as stored in the thread record’s cell_values field.

Parameter values for built-in parameters are obtained and modified (for the current thread)
using scheme_get_param and scheme_set_param. Each parameter is stored as a
Scheme_Object * value, and the built-in parameters are accessed through the following
indices:

• MZCONFIG_ENV — current-namespace (use scheme_get_env)

• MZCONFIG_INPUT_PORT — current-input-port

• MZCONFIG_OUTPUT_PORT — current-output-port

• MZCONFIG_ERROR_PORT — current-error-port

• MZCONFIG_ERROR_DISPLAY_HANDLER — error-display-handler

• MZCONFIG_ERROR_PRINT_VALUE_HANDLER — error-value->string-handler

• MZCONFIG_EXIT_HANDLER — exit-handler

• MZCONFIG_INIT_EXN_HANDLER — uncaught-exception-handler

• MZCONFIG_EVAL_HANDLER — current-eval

• MZCONFIG_LOAD_HANDLER — current-load

• MZCONFIG_PRINT_HANDLER — current-print

• MZCONFIG_PROMPT_READ_HANDLER — current-prompt-read

• MZCONFIG_CAN_READ_GRAPH — read-accept-graph

• MZCONFIG_CAN_READ_COMPILED — read-accept-compiled

• MZCONFIG_CAN_READ_BOX — read-accept-box

• MZCONFIG_CAN_READ_PIPE_QUOTE — read-accept-bar-quote

• MZCONFIG_PRINT_GRAPH — print-graph

88

• MZCONFIG_PRINT_STRUCT — print-struct

• MZCONFIG_PRINT_BOX — print-box

• MZCONFIG_CASE_SENS — read-case-sensitive

• MZCONFIG_SQUARE_BRACKETS_ARE_PARENS — read-square-brackets-as-

parens

• MZCONFIG_CURLY_BRACES_ARE_PARENS — read-curly-braces-as-parens

• MZCONFIG_ERROR_PRINT_WIDTH — error-print-width

• MZCONFIG_ALLOW_SET_UNDEFINED — allow-compile-set!-undefined

• MZCONFIG_CUSTODIAN — current-custodian

• MZCONFIG_USE_COMPILED_KIND — use-compiled-file-paths

• MZCONFIG_LOAD_DIRECTORY — current-load-relative-directory

• MZCONFIG_COLLECTION_PATHS — current-library-collection-paths

• MZCONFIG_PORT_PRINT_HANDLER — global-port-print-handler

• MZCONFIG_LOAD_EXTENSION_HANDLER — current-load-extension

To get or set a parameter value for a thread other than the current one, use
scheme_get_thread_param and scheme_set_thread_param, each of which takes a
Scheme_Thread_Cell_Table to use in resolving or setting a parameter value.

When installing a new parameter with scheme_set_param, no check is performed on the
supplied value to ensure that it is a legal value for the parameter; this is the responsibility of
the caller of scheme_set_param. Note that Boolean parameters should only be set to the
values #t and #f.

New primitive parameter indices are created with scheme_new_param and implemented
with scheme_make_parameter and scheme_param_config.

Scheme_Object* scheme_get_param(Scheme_Config* config,
int param_id)

Gets the current value (for the current thread) of the parameter specified by param_id.

Scheme_Object* scheme_set_param(Scheme_Config* config,
int param_id,
Scheme_Object* v)

Sets the current value (for the current thread) of the parameter specified by param_id.

89

Scheme_Object*

scheme_get_thread_param(Scheme_Config* config,
Scheme_Thread_Cell_Table* cells,
int param_id)

Like scheme_get_param, but using an arbitrary thread’s cell-value table.

Scheme_Object*

scheme_set_thread_param(Scheme_Config* config,
Scheme_Thread_Cell_Table* cells,
int param_id,
Scheme_Object* v)

Like scheme_set_param, but using an arbitrary thread’s cell-value table.

Scheme_Object* scheme_extend_config(Scheme_Config* base,
int param_id,
Scheme_Object* v)

Creates and returns a parameterization that extends base with a new value v (in all threads)
for the parameter param_id. Use scheme_install_config to make this configuration
active in the current thread.

void scheme_install_config(Scheme_Config* config)

Adjusts the current thread’s continuation marks to make config the current parameterization.
Typically, this function is called after scheme_push_continuation_frame to establish
a new continuation frame, and then scheme_pop_continuation_frame is called later to
remove the frame (and thus the parameterization).

Scheme_Thread_Cell_Table*

scheme_inherit_cells(Scheme_Thread_Cell_Table* cells)

Creates a new thread-cell-value table, copying values for preserved thread cells from cells.

int scheme_new_param()

Allocates a new primitive parameter index. This function must be called before
scheme_basic_env, so it is only available to embedding applications (i.e., not extensions).

Scheme_Object* scheme_register_parameter(Scheme_Prim* function,
char* name,
int exnid)

Use this function instead of the other primitive-constructing functions, like
scheme_make_prim, to create a primitive parameter procedure. See also
scheme_param_config, below. This function is only available to embedding appli-
cations (i.e., not extensions).

90

Scheme_Object* scheme_param_config(char* name,
Scheme_Object* param,

int argc,
Scheme_Object** argv,
int arity,
Scheme_Prim* check,
char* expected,
int isbool)

Call this procedure in a primitive parameter procedure to implement the work of getting or
setting the parameter. The name argument should be the parameter procedure name; it is
used to report errors. The param argument is a fixnum corresponding to the primitive pa-
rameter index returned by scheme_new_param. The argc and argv arguments should be the
un-touched and un-tested arguments that were passed to the primitive parameter. Argument-
checking is performed within scheme_param_config using arity, check, expected, and is-
bool:

• If arity is non-negative, potential parameter values must be able to accept the specified
number of arguments. The check and expected arguments should be NULL.

• If check is not NULL, it is called to check a potential parameter value. The arguments
passed to check are always 1 and an array that contains the potential parameter value.
If isbool is 0 and check returns scheme_false, then a type error is reported using
name and expected as a type description. If isbool is 1, then a type error is reported
only when check returns NULL and any non-NULL return value is used as the actual
value to be stored for the parameter.

• Otherwise, isbool should be 1. A potential procedure argument is then treated as a
Boolean value.

This function is only available to embedding applications (i.e., not extensions).

Scheme_Object* scheme_param_config2(char* name,
Scheme_Object* param,

int argc,
Scheme_Object** argv,
int arity,
Scheme_Prim* check,
char* expected_contract,
int isbool)

The same as scheme_param_config, but with expected_contract as a contract instead of
type description.

91

12 Continuation Marks

A mark can be attached to the current continuation frame using scheme_set_cont_mark.
To force the creation of a new frame (e.g., during a nested function call within your
function), use scheme_push_continuation_frame, and then remove the frame with
scheme_pop_continuation_frame.

void scheme_set_cont_mark(Scheme_Object* key,
Scheme_Object* val)

Add/sets a continuation mark in the current continuation.

void scheme_push_continuation_frame(Scheme_Cont_Frame_Data* data)

Creates a new continuation frame. The data record need not be initialized, and it can be
allocated on the C stack. Supply data to scheme_pop_continuation_frame to remove
the continuation frame.

void scheme_pop_continuation_frame(Scheme_Cont_Frame_Data* data)

Removes a continuation frame created by scheme_push_continuation_frame.

92

13 String Encodings

The scheme_utf8_decode function decodes a char array as UTF-8 into either a UCS-
4 mzchar array or a UTF-16 short array. The scheme_utf8_encode function encodes
either a UCS-4 mzchar array or a UTF-16 short array into a UTF-8 char array.

These functions can be used to check or measure an encoding or decoding without actually
producing the result decoding or encoding, and variations of the function provide control
over the handling of decoding errors.

int scheme_utf8_decode(const unsigned char* s,
int start,
int end,
mzchar* us,
int dstart,
int dend,
intptr_t* ipos,
char utf16,
int permissive)

Decodes a byte array as UTF-8 to produce either Unicode code points into us (when utf16
is zero) or UTF-16 code units into us cast to short* (when utf16 is non-zero). No nul
terminator is added to us.

The result is non-negative when all of the given bytes are decoded, and the result is the
length of the decoding (in mzchars or shorts). A -2 result indicates an invalid encoding
sequence in the given bytes (possibly because the range to decode ended mid-encoding), and
a -3 result indicates that decoding stopped because not enough room was available in the
result string.

The start and end arguments specify a range of s to be decoded. If end is negative,
strlen(s) is used as the end.

If us is NULL, then decoded bytes are not produced, but the result is valid as if decoded bytes
were written. The dstart and dend arguments specify a target range in us (in mzchar or
short units) for the decoding; a negative value for dend indicates that any number of bytes
can be written to us, which is normally sensible only when us is NULL for measuring the
length of the decoding.

If ipos is non-NULL, it is filled with the first undecoded index within s. If the function result
is non-negative, then *ipos is set to the ending index (with is end if non-negative, strlen(s)
otherwise). If the result is -1 or -2, then *ipos effectively indicates how many bytes were
decoded before decoding stopped.

If permissive is non-zero, it is used as the decoding of bytes that are not part of a valid UTF-8
encoding or if the input ends in the middle of an encoding. Thus, the function result can be

93

-1 or -2 only if permissive is 0.

This function does not allocate or trigger garbage collection.

int scheme_utf8_decode_offset_prefix(const unsigned char* s,
int start,
int end,
mzchar* us,
int dstart,
int dend,
intptr_t* ipos,
char utf16,
int permissive)

Like scheme_utf8_decode, but returns -1 if the input ends in the middle of a UTF-8
encoding even if permission is non-zero.

Added in version 6.0.1.13.

int scheme_utf8_decode_as_prefix(const unsigned char* s,
int start,
int end,
mzchar* us,
int dstart,
int dend,
intptr_t* ipos,
char utf16,
int permissive)

Like scheme_utf8_decode, but the result is always the number of the decoded mzchars or
shorts. If a decoding error is encountered, the result is still the size of the decoding up until
the error.

int scheme_utf8_decode_all(const unsigned char* s,
int len,
mzchar* us,
int permissive)

Like scheme_utf8_decode, but with fewer arguments. The decoding produces UCS-4
mzchars. If the buffer us is non-NULL, it is assumed to be long enough to hold the decoding
(which cannot be longer than the length of the input, though it may be shorter). If len is
negative, strlen(s) is used as the input length.

int scheme_utf8_decode_prefix(const unsigned char* s,
int len,
mzchar* us,
int permissive)

94

Like scheme_utf8_decode, but with fewer arguments. The decoding produces UCS-4
mzchars. The buffer us must be non-NULL, and it is assumed to be long enough to hold the
decoding (which cannot be longer than the length of the input, though it may be shorter). If
len is negative, strlen(s) is used as the input length.

In addition to the result of scheme_utf8_decode, the result can be -1 to indicate that the
input ended with a partial (valid) encoding. A -1 result is possible even when permissive is
non-zero.

mzchar* scheme_utf8_decode_to_buffer(const unsigned char* s,
int len,
mzchar* buf,
int blen)

Like scheme_utf8_decode_all with permissive as 0, but if buf is not large enough (as
indicated by blen) to hold the result, a new buffer is allocated. Unlike other functions, this
one adds a nul terminator to the decoding result. The function result is either buf (if it was
big enough) or a buffer allocated with scheme_malloc_atomic.

mzchar* scheme_utf8_decode_to_buffer_len(const unsigned char* s,
int len,
mzchar* buf,
int blen,
intptr_t* ulen)

Like scheme_utf8_decode_to_buffer, but the length of the result (not including the
terminator) is placed into ulen if ulen is non-NULL.

int scheme_utf8_decode_count(const unsigned char* s,
int start,
int end,
int* state,
int might_continue,
int permissive)

Like scheme_utf8_decode, but without producing the decoded mzchars, and always re-
turning the number of decoded mzchars up until a decoding error (if any). If might_continue
is non-zero, the a partial valid encoding at the end of the input is not decoded when permis-
sive is also non-zero.

If state is non-NULL, it holds information about partial encodings; it should be set to zero for
an initial call, and then passed back to scheme_utf8_decode along with bytes that extend
the given input (i.e., without any unused partial encodings). Typically, this mode makes
sense only when might_continue and permissive are non-zero.

95

int scheme_utf8_encode(const mzchar* us,
int start,
int end,
unsigned char* s,
int dstart,
char utf16)

Encodes the given UCS-4 array of mzchars (if utf16 is zero) or UTF-16 array of shorts (if
utf16 is non-zero) into s. The end argument must be no less than start.

The array s is assumed to be long enough to contain the encoding, but no encoding is written
if s is NULL. The dstart argument indicates a starting place in s to hold the encoding. No nul
terminator is added to s.

The result is the number of bytes produced for the encoding (or that would be produced if s
was non-NULL). Encoding never fails.

This function does not allocate or trigger garbage collection.

int scheme_utf8_encode_all(const mzchar* us,
int len,
unsigned char* s)

Like scheme_utf8_encode with 0 for start, len for end, 0 for dstart and 0 for utf16.

char* scheme_utf8_encode_to_buffer(const mzchar* s,
int len,
char* buf,
int blen)

Like scheme_utf8_encode_all, but the length of buf is given, and if it is not long enough
to hold the encoding, a buffer is allocated. A nul terminator is added to the encoded array.
The result is either buf or an array allocated with scheme_malloc_atomic.

char* scheme_utf8_encode_to_buffer_len(const mzchar* s,
int len,
char* buf,
int blen,
intptr_t* rlen)

Like scheme_utf8_encode_to_buffer, but the length of the resulting encoding (not in-
cluding a nul terminator) is reported in rlen if it is non-NULL.

96

unsigned-short* scheme_ucs4_to_utf16(const mzchar* text,
int start,
int end,
unsigned short* buf,
int bufsize,
intptr_t* ulen,
int term_size)

Converts a UCS-4 encoding (the indicated range of text) to a UTF-16 encoding. The end
argument must be no less than start.

A result buffer is allocated if buf is not long enough (as indicated by bufsize). If ulen is non-
NULL, it is filled with the length of the UTF-16 encoding. The term_size argument indicates a
number of shorts to reserve at the end of the result buffer for a terminator (but no terminator
is actually written).

mzchar* scheme_utf16_to_ucs4(const unsigned short* text,
int start,
int end,
mzchar* buf,
int bufsize,
intptr_t* ulen,
int term_size)

Converts a UTF-16 encoding (the indicated range of text) to a UCS-4 encoding. The end
argument must be no less than start.

A result buffer is allocated if buf is not long enough (as indicated by bufsize). If ulen is non-
NULL, it is filled with the length of the UCS-4 encoding. The term_size argument indicates
a number of mzchars to reserve at the end of the result buffer for a terminator (but no
terminator is actually written).

97

14 Bignums, Rationals, and Complex Numbers

Racket supports integers of an arbitrary magnitude; when an integer cannot be represented
as a fixnum (i.e., 30 or 62 bits plus a sign bit), then it is represented by the Racket type
scheme_bignum_type. There is no overlap in integer values represented by fixnums and
bignums.

Rationals are implemented by the type scheme_rational_type, composed of a numerator
and a denominator. The numerator and denominator fixnums or bignums (possibly mixed).

Complex numbers are implemented by the types scheme_complex_type and
scheme_complex_izi_type, composed of a real and imaginary part. The real and
imaginary parts will either be both flonums, both exact numbers (fixnums, bignums, and
rationals can be mixed in any way), or one part will be exact 0 and the other part will be a
flonum. If the inexact part is inexact 0, the type is scheme_complex_izi_type, otherwise
the type is scheme_complex_type; this distinction make it easy to test whether a complex
number should be treated as a real number.

int scheme_is_exact(Scheme_Object* n)

Returns 1 if n is an exact number, 0 otherwise (n need not be a number).

int scheme_is_inexact(Scheme_Object* n)

Returns 1 if n is an inexact number, 0 otherwise (n need not be a number).

Scheme_Object* scheme_make_bignum(intptr_t v)

Creates a bignum representing the integer v. This can create a bignum that otherwise fits into
a fixnum. This must only be used to create temporary values for use with the bignum func-
tions. Final results can be normalized with scheme_bignum_normalize. Only normalized
numbers can be used with procedures that are not specific to bignums.

Scheme_Object* scheme_make_bignum_from_unsigned(uintptr_t v)

Like scheme_make_bignum, but works on unsigned integers.

double scheme_bignum_to_double(Scheme_Object* n)

Converts a bignum to a floating-point number, with reasonable but unspecified accuracy.

float scheme_bignum_to_float(Scheme_Object* n)

If Racket is not compiled with single-precision floats, this procedure is actually a macro alias
for scheme_bignum_to_double.

Scheme_Object* scheme_bignum_from_double(double d)

98

Creates a bignum that is close in magnitude to the floating-point number d. The conversion
accuracy is reasonable but unspecified.

Scheme_Object* scheme_bignum_from_float(float f)

If Racket is not compiled with single-precision floats, this procedure is actually a macro alias
for scheme_bignum_from_double.

char* scheme_bignum_to_string(Scheme_Object* n,
int radix)

Writes a bignum into a newly allocated byte string.

Scheme_Object* scheme_read_bignum(mzchar* str,
int offset,
int radix)

Reads a bignum from a mzchar string, starting from position offset in str. If the string does
not represent an integer, then NULL will be returned. If the string represents a number that
fits in 31 bits, then a scheme_integer_type object will be returned.

Scheme_Object* scheme_read_bignum_bytes(char* str,
int offset,
int radix)

Like scheme_read_bignum, but from a UTF-8-encoding byte string.

Scheme_Object* scheme_bignum_normalize(Scheme_Object* n)

If n fits in 31 bits, then a scheme_integer_type object will be returned. Otherwise, n is
returned.

Scheme_Object* scheme_make_rational(Scheme_Object* n,
Scheme_Object* d)

Creates a rational from a numerator and denominator. The n and d parameters must be
fixnums or bignums (possibly mixed). The resulting will be normalized (thus, a bignum or
fixnum might be returned).

double scheme_rational_to_double(Scheme_Object* n)

Converts the rational n to a double.

float scheme_rational_to_float(Scheme_Object* n)

If Racket is not compiled with single-precision floats, this procedure is actually a macro alias
for scheme_rational_to_double.

Scheme_Object* scheme_rational_numerator(Scheme_Object* n)

99

Returns the numerator of the rational n.

Scheme_Object* scheme_rational_denominator(Scheme_Object* n)

Returns the denominator of the rational n.

Scheme_Object* scheme_rational_from_double(double d)

Converts the given double into a maximally-precise rational.

Scheme_Object* scheme_rational_from_float(float d)

If Racket is not compiled with single-precision floats, this procedure is actually a macro alias
for scheme_rational_from_double.

Scheme_Object* scheme_make_complex(Scheme_Object* r,
Scheme_Object* i)

Creates a complex number from real and imaginary parts. The r and i arguments must be
fixnums, bignums, flonums, or rationals (possibly mixed). The resulting number will be
normalized (thus, a real number might be returned).

Scheme_Object* scheme_complex_real_part(Scheme_Object* n)

Returns the real part of the complex number n.

Scheme_Object* scheme_complex_imaginary_part(Scheme_Object* n)

Returns the imaginary part of the complex number n.

100

15 Ports and the Filesystem

Ports are represented as Racket values with the types scheme_input_port_type and
scheme_output_port_type. The function scheme_read takes an input port value and
returns the next S-expression from the port. The function scheme_write takes an output
port and a value and writes the value to the port. Other standard low-level port functions are
also provided, such as scheme_getc.

File ports are created with scheme_make_file_input_port and
scheme_make_file_output_port; these functions take a FILE * file pointer and return a
Scheme port. Strings are read or written with scheme_make_byte_string_input_port,
which takes a nul-terminated byte string, and scheme_make_byte_string_output_port,
which takes no arguments. The contents of a string output port are obtained with
scheme_get_byte_string_output.

Custom ports, with arbitrary read/write handlers, are created with
scheme_make_input_port and scheme_make_output_port.

When opening a file for any reason using a name provided from Racket, use
scheme_expand_filename to normalize the filename and resolve relative paths.

Scheme_Object* scheme_read(Scheme_Object* port)

reads the next S-expression from the given input port.

void scheme_write(Scheme_Object* obj,
Scheme_Object* port)

writes the Scheme value obj to the given output port.

void scheme_write_w_max(Scheme_Object* obj,
Scheme_Object* port,
int n)

Like scheme_write, but the printing is truncated to n bytes. (If printing is truncated, the
last bytes are printed as “.”.)

void scheme_display(Scheme_Object* obj,
Scheme_Object* port)

displays the Racket value obj to the given output port.

void scheme_display_w_max(Scheme_Object* obj,
Scheme_Object* port,
int n)

Like scheme_display, but the printing is truncated to n bytes. (If printing is truncated, the
last three bytes are printed as “.”.)

101

void scheme_write_byte_string(char* str,
intptr_t len,
Scheme_Object* port)

Writes len bytes of str to the given output port.

void scheme_write_char_string(mzchar* str,
intptr_t len,
Scheme_Object* port)

Writes len characters of str to the given output port.

intptr_t scheme_put_byte_string(const char* who,
Scheme_Object* port,
char* str,
intptr_t d,
intptr_t len,
int rarely_block)

Writes len bytes of str, starting with the dth character. Bytes are written to the given output
port, and errors are reported as from who.

If rarely_block is 0, the write blocks until all len bytes are written, possibly to an internal
buffer. If rarely_block is 2, the write never blocks, and written bytes are not buffered. If
rarely_block is 1, the write blocks only until at least one byte is written (without buffering)
or until part of an internal buffer is flushed.

Supplying 0 for len corresponds to a buffer-flush request. If rarely_block is 2, the flush
request is non-blocking, and if rarely_block is 0, it is blocking. (A rarely_block of 1 is the
same as 0 in this case.)

The result is -1 if no bytes are written from str and unflushed bytes remain in the internal
buffer. Otherwise, the return value is the number of written characters.

intptr_t scheme_put_char_string(const char* who,
Scheme_Object* port,
char* str,
intptr_t d,
intptr_t len)

Like scheme_put_byte_string, but for a mzchar string, and without the non-blocking
option.

char* scheme_write_to_string(Scheme_Object* obj,
intptr_t* len)

Prints the Racket value obj using write to a newly allocated string. If len is not NULL, *len
is set to the length of the bytes string.

102

void scheme_write_to_string_w_max(Scheme_Object* obj,
intptr_t* len,
int n)

Like scheme_write_to_string, but the string is truncated to n bytes. (If the string is
truncated, the last three bytes are “.”.)

char* scheme_display_to_string(Scheme_Object* obj,
intptr_t* len)

Prints the Racket value obj using display to a newly allocated string. If len is not NULL,
*len is set to the length of the string.

void scheme_display_to_string_w_max(Scheme_Object* obj,
intptr_t* len,
int n)

Like scheme_display_to_string, but the string is truncated to n bytes. (If the string is
truncated, the last three bytes are “.”.)

void scheme_debug_print(Scheme_Object* obj)

Prints the Racket value obj using write to the main thread’s output port.

void scheme_flush_output(Scheme_Object* port)

If port is a file port, a buffered data is written to the file. Otherwise, there is no effect. port
must be an output port.

int scheme_get_byte(Scheme_Object* port)

Get the next byte from the given input port. The result can be EOF.

int scheme_getc(Scheme_Object* port)

Get the next character from the given input port (by decoding bytes as UTF-8). The result
can be EOF.

int scheme_peek_byte(Scheme_Object* port)

Peeks the next byte from the given input port. The result can be EOF.

int scheme_peekc(Scheme_Object* port)

Peeks the next character from the given input port (by decoding bytes as UTF-8). The result
can be EOF.

int scheme_peek_byte_skip(Scheme_Object* port,
Scheme_Object* skip)

103

Like scheme_peek_byte, but with a skip count. The result can be EOF.

int scheme_peekc_skip(Scheme_Object* port,
Scheme_Object* skip)

Like scheme_peekc, but with a skip count. The result can be EOF.

intptr_t scheme_get_byte_string(const char* who,
Scheme_Object* port,
char* buffer,
int offset,
intptr_t size,
int only_avail,
int peek,
Scheme_Object* peek_skip)

Gets multiple bytes at once from a port, reporting errors with the name who. The size
argument indicates the number of requested bytes, to be put into the buffer array starting
at offset. The return value is the number of bytes actually read, or EOF if an end-of-file is
encountered without reading any bytes.

If only_avail is 0, then the function blocks until size bytes are read or an end-of-file is
reached. If only_avail is 1, the function blocks only until at least one byte is read. If
only_avail is 2, the function never blocks. If only_avail is -1, the function blocks only
until at least one byte is read but also allows breaks (with the guarantee that bytes are read
or a break is raised, but not both).

If peek is non-zero, then the port is peeked instead of read. The peek_skip argument indicates
a portion of the input stream to skip as a non-negative, exact integer (fixnum or bignum). In
this case, an only_avail value of 1 means to continue the skip until at least one byte can be
returned, even if it means multiple blocking reads to skip bytes.

If peek is zero, then peek_skip should be either NULL (which means zero) or the fixnum zero.

intptr_t scheme_get_char_string(const char* who,
Scheme_Object* port,
char* buffer,
int offset,
intptr_t size,
int peek,
Scheme_Object* peek_skip)

Like scheme_get_byte_string, but for characters (by decoding bytes as UTF-8), and
without the non-blocking option.

104

intptr_t scheme_get_bytes(Scheme_Object* port,
intptr_t size,
char* buffer,
int offset)

For backward compatibility: calls scheme_get_byte_string in essentially the obvious
way with only_avail as 0; if size is negative, then it reads -size bytes with only_avail as 1.

void scheme_ungetc(int ch,
Scheme_Object* port)

Puts the byte ch back as the next character to be read from the given input port. The character
need not have been read from port, and scheme_ungetc can be called to insert up to five
characters at the start of port.

Use scheme_get_byte followed by scheme_ungetc only when your program will
certainly call scheme_get_byte again to consume the byte. Otherwise, use
scheme_peek_byte, because some a port may implement peeking and getting differently.

int scheme_byte_ready(Scheme_Object* port)

Returns 1 if a call to scheme_get_byte is guaranteed not to block for the given input port.

int scheme_char_ready(Scheme_Object* port)

Returns 1 if a call to scheme_getc is guaranteed not to block for the given input port.

void scheme_need_wakeup(Scheme_Object* port,
void* fds)

Requests that appropriate bits are set in fds to specify which file descriptors(s) the given
input port reads from. (fds is sortof a pointer to an fd_set struct; see §10.4.1 “Callbacks for
Blocked Threads”.)

intptr_t scheme_tell(Scheme_Object* port)

Returns the current read position of the given input port, or the current file position of the
given output port.

intptr_t scheme_tell_line(Scheme_Object* port)

Returns the current read line of the given input port. If lines are not counted, -1 is returned.

void scheme_count_lines(Scheme_Object* port)

Turns on line-counting for the given input port. To get accurate line counts, call this function
immediately after creating a port.

intptr_t scheme_set_file_position(Scheme_Object* port,
intptr_t pos)

105

Sets the file position of the given input or output port (from the start of the file). If the port
does not support position setting, an exception is raised.

void scheme_close_input_port(Scheme_Object* port)

Closes the given input port.

void scheme_close_output_port(Scheme_Object* port)

Closes the given output port.

int scheme_get_port_file_descriptor(Scheme_Object* port,
intptr_t* fd)

Fills *fd with a file-descriptor value for port if one is available (i.e., the port is a file-stream
port and it is not closed). The result is non-zero if the file-descriptor value is available, zero
otherwise. On Windows, a “file dscriptor” is a file HANDLE.

intptr_t scheme_get_port_fd(Scheme_Object* port)

Like scheme_get_port_file_descriptor, but a file descriptor or HANDLE is returned
directly, and the result is -1 if no file descriptor or HANDLE is available.

intptr_t scheme_get_port_socket(Scheme_Object* port,
intptr_t* s)

Fills *s with a socket value for port if one is available (i.e., the port is a TCP port and it is not
closed). The result is non-zero if the socket value is available, zero otherwise. On Windows,
a socket value has type SOCKET.

Scheme_Object* scheme_make_port_type(char* name)

Creates a new port subtype.

Scheme_Input_Port*

scheme_make_input_port(Scheme_Object* subtype,
void* data,
Scheme_Object* name,
Scheme_Get_String_Fun get_bytes_fun,
Scheme_Peek_String_Fun peek_bytes_fun,
Scheme_Progress_Evt_Fun progress_evt_fun,
Scheme_Peeked_Read_Fun peeked_read_fun,
Scheme_In_Ready_Fun char_ready_fun,
Scheme_Close_Input_Fun close_fun,
Scheme_Need_Wakeup_Input_Fun need_wakeup_fun,
int must_close)

Creates a new input port with arbitrary control functions. The subtype is an arbitrary value to
distinguish the port’s class. The pointer data will be installed as the port’s user data, which

106

can be extracted/set with the SCHEME_INPORT_VAL macro. The name object is used as the
port’s name (for object-name and as the default source name for read-syntax).

If must_close is non-zero, the new port will be registered with the current custodian, and
close_fun is guaranteed to be called before the port is garbage-collected.

Although the return type of scheme_make_input_port is Scheme_Input_Port*, it can
be cast into a Scheme_Object*.

The functions are as follows.

intptr_t get_bytes_fun(Scheme_Input_Port* port,
char* buffer,
intptr_t offset,
intptr_t size,
int nonblock,
Scheme_Object* unless)

Reads bytes into buffer, starting from offset, up to size bytes (i.e., buffer is at
least offset plus size long). If nonblock is 0, then the function can block in-
definitely, but it should return when at least one byte of data is available. If
nonblock is 1, the function should never block. If nonblock is 2, a port in un-
buffered mode should return only bytes previously forced to be buffered; other
ports should treat a nonblock of 2 like 1. If nonblock is -1, the function can
block, but should enable breaks while blocking. The function should return 0 if
no bytes are ready in non-blocking mode. It should return EOF if an end-of-file
is reached (and no bytes were read into buffer). Otherwise, the function should
return the number of read bytes. The function can raise an exception to report
an error.

The unless argument will be non-NULL only when nonblocking is non-zero
(except as noted below), and only if the port supports progress events. If
unless is non-NULL and SCHEME_CDR(unless) is non-NULL, the latter is a
progress event specific to the port. The get_bytes_fun function should return
SCHEME_UNLESS_READY instead of reading bytes if the event in unless becomes
ready before bytes can be read. In particular, get_bytes_fun should check the
event in unless before taking any action, and it should check the event in unless
after any operation that may allow Racket thread swaps. If the read must block,
then it should unblock if the event in unless becomes ready.

If scheme_progress_evt_via_get is used for progress_evt_fun, then un-
less can be non-NULL even when nonblocking is 0. In all modes,
get_bytes_fun must call scheme_unless_ready to check unless_evt. Further-
more, after any potentially thread-swapping operation, get_bytes_fun must call
scheme_wait_input_allowed, because another thread may be attempting to
commit, and unless_evt must be checked after scheme_wait_input_allowed
returns. To block, the port should use scheme_block_until_unless instead
of scheme_block_until. Finally, in blocking mode, get_bytes_fun must re-

107

turn after immediately reading data, without allowing a Racket thread swap.

intptr_t peek_bytes_fun(Scheme_Input_Port* port,
char* buffer,
intptr_t offset,
intptr_t size,
Scheme_Object* skip,
int nonblock,
Scheme_Object* unless_evt)

Can be NULL to use a default implementation of peeking that uses get_bytes_fun.
Otherwise, the protocol is the same as for get_bytes_fun, except that an extra
skip argument indicates the number of input elements to skip (but skip does not
apply to buffer). The skip value will be a non-negative exact integer, either a
fixnum or a bignum.

Scheme_Object* progress_evt_fun(Scheme_Input_Port* port)

Called to obtain a progress event for the port, such as for port-progress-
evt. This function can be NULL if the port does not support progress events.
Use scheme_progress_evt_via_get to obtain a default implementation, in
which case peeked_read_fun should be scheme_peeked_read_via_get, and
get_bytes_fun and peek_bytes_fun should handle unless as described above.

int peeked_read_fun(Scheme_Input_Port* port,
intptr_t amount,
Scheme_Object* unless_evt,
Scheme_Object* target_ch)

Called to commit previously peeked bytes, just like the sixth ar-
gument to make-input-port. Use scheme_peeked_read_via_get

for the default implementation of commits when progress_evt_fun is
scheme_progress_evt_via_get.

The peeked_read_fun function must call scheme_port_count_lines on
a successful commit to adjust the port’s position. If line counting is
enabled for the port and if line counting uses the default implementa-
tion, peeked_read_fun should supply a non-NULL byte-string argument to
scheme_port_count_lines, so that character and line counts can be tracked
correctly.

int char_ready_fun(Scheme_Input_Port* port)

Returns 1 when a non-blocking get_bytes_fun will return bytes or an EOF.

void close_fun(Scheme_Input_Port* port)

Called to close the port. The port is not considered closed until the function
returns.

108

void need_wakeup_fun(Scheme_Input_Port* port,
void* fds)

Called when the port is blocked on a read; need_wakeup_fun should set appro-
priate bits in fds to specify which file descriptor(s) it is blocked on. The fds
argument is conceptually an array of three fd_set structs (one for read, one for
write, one for exceptions), but manipulate this array using scheme_get_fdset

to get a particular element of the array, and use MZ_FD_XXX instead of FD_XXX
to manipulate a single “fd_set”. On Windows, the first “fd_set” can also
contain OS-level semaphores or other handles via scheme_add_fd_handle.

Scheme_Output_Port*

scheme_make_output_port(Scheme_Object* subtype,
void* data,
Scheme_Object* name,
Scheme_Write_String_Evt_Fun write_bytes_evt_fun,
Scheme_Write_String_Fun write_bytes_fun,
Scheme_Out_Ready_Fun char_ready_fun,
Scheme_Close_Output_Fun close_fun,
Scheme_Need_Wakeup_Output_Fun need_wakeup_fun,
Scheme_Write_Special_Evt_Fun write_special_evt_fun,
Scheme_Write_Special_Fun write_special_fun,
int must_close)

Creates a new output port with arbitrary control functions. The subtype is an arbitrary value
to distinguish the port’s class. The pointer data will be installed as the port’s user data,
which can be extracted/set with the SCHEME_OUTPORT_VAL macro. The name object is used
as the port’s name.

If must_close is non-zero, the new port will be registered with the current custodian, and
close_fun is guaranteed to be called before the port is garbage-collected.

Although the return type of scheme_make_output_port is Scheme_Output_Port*, it can
be cast into a Scheme_Object*.

The functions are as follows.

intptr_t write_bytes_evt_fun(Scheme_Output_Port* port,
const char* buffer,
intptr_t offset,
intptr_t size)

Returns an event that writes up to size bytes atomically when event is chosen in
a synchronization. Supply NULL if bytes cannot be written atomically, or supply
scheme_write_evt_via_write to use the default implementation in terms of
write_bytes_fun (with rarely_block as 2).

109

intptr_t write_bytes_fun(Scheme_Output_Port* port,
const char* buffer,
intptr_t offset,
intptr_t size,
int rarely_block,
int enable_break)

Write bytes from buffer, starting from offset, up to size bytes (i.e., buffer is at
least offset plus size long). If rarely_block is 0, then the function can block
indefinitely, and it can buffer output. If rarely_block is 2, the function should
never block, and it should not buffer output. If rarely_block is 1, the function
should not buffer data, and it should block only until writing at least one byte,
either from buffer or an internal buffer. The function should return the number
of bytes from buffer that were written; when rarely_block is non-zero and bytes
remain in an internal buffer, it should return -1. The size argument can be 0

when rarely_block is 0 for a blocking flush, and it can be 0 if rarely_block is 2
for a non-blocking flush. If enable_break is true, then it should enable breaks
while blocking. The function can raise an exception to report an error.

int char_ready_fun(Scheme_Output_Port* port)

Returns 1 when a non-blocking write_bytes_fun will write at least one byte or
flush at least one byte from the port’s internal buffer.

void close_fun(Scheme_Output_Port* port)

Called to close the port. The port is not considered closed until the func-
tion returns. This function is allowed to block (usually to flush a buffer) un-
less scheme_close_should_force_port_closed returns a non-zero result,
in which case the function must return without blocking.

void need_wakeup_fun(Scheme_Output_Port* port,
void* fds)

Called when the port is blocked on a write; need_wakeup_fun should set ap-
propriate bits in fds to specify which file descriptor(s) it is blocked on. The fds
argument is conceptually an array of three fd_set structs (one for read, one for
write, one for exceptions), but manipulate this array using scheme_get_fdset

to get a particular element of the array, and use MZ_FD_XXX instead of FD_XXX
to manipulate a single “fd_set”. On Windows, the first “fd_set” can also
contain OS-level semaphores or other handles via scheme_add_fd_handle.

int write_special_evt_fun(Scheme_Output_Port* port,
Scheme_Object* v)

Returns an event that writes v atomically when event is chosen in a synchroniza-
tion. Supply NULL if specials cannot be written atomically (or at all), or supply
scheme_write_special_evt_via_write_special to use the default im-
plementation in terms of write_special_fun (with non_block as 1).

110

int write_special_fun(Scheme_Output_Port* port,
Scheme_Object* v,
int non_block)

Called to write the special value v for write-special (when non_block is 0)
or write-special-avail* (when non_block is 1). If NULL is supplied instead
of a function pointer, then write-special and write-special-avail* pro-
duce an error for this port.

void

scheme_set_port_location_fun(Scheme_Port* port,
Scheme_Location_Fun location_fun)

Sets the implementation of port-next-location for port, which is used when line count-
ing is enabled for port.

Scheme_Object* location_fun(Scheme_Port* port)

Returns three values: a positive exact integer or #f for a line number, a non-
negative exact integer or #f for a column (which must be #f if and only if the
line number is #f), and a positive exact integer or #f for a character position.

void

scheme_set_port_count_lines_fun(Scheme_Port* port,
Scheme_Count_Lines_Fun count_lines_fun)

Installs a notification callback that is invoked if line counting is subsequently enabled for
port.

void count_lines_fun(Scheme_Port* port)

void scheme_port_count_lines(Scheme_Port* port,
const char* buffer,
intptr_t offset,
intptr_t got)

Updates the position of port as reported by file-position as well as the locations reported
by port-next-location when the default implement of character and line counting is
used. This function is intended for use by a peek-commit implementation in an input port.

The got argument indicates the number of bytes read from or written to port. The buffer
argument is used only when line counting is enabled, and it represents specific bytes read or
written for the purposes of character and line coutning. The buffer argument can be NULL, in
which case got non-newline characters are assumed. The offset argument indicates a starting
offset into buffer, so "buffer" must be at least offset plus got bytes long.

111

Scheme_Object* scheme_make_file_input_port(FILE* fp)

Creates a Scheme input file port from an ANSI C file pointer. The file must never block on
reads.

Scheme_Object* scheme_open_input_file(const char* filename,
const char* who)

Opens filename for reading. In an exception is raised, the exception message uses who as the
name of procedure that raised the exception.

Scheme_Object*

scheme_make_named_file_input_port(FILE* fp,
Scheme_Object* name)

Creates a Racket input file port from an ANSI C file pointer. The file must never block on
reads. The name argument is used as the port’s name.

Scheme_Object* scheme_open_output_file(const char* filename,
const char* who)

Opens filename for writing in 'truncate/replace mode. If an exception is raised, the
exception message uses who as the name of procedure that raised the exception.

Scheme_Object* scheme_make_file_output_port(FILE* fp)

Creates a Racket output file port from an ANSI C file pointer. The file must never block on
writes.

Scheme_Object* scheme_make_fd_input_port(int fd,
Scheme_Object* name,
int regfile,
int win_textmode)

Creates a Racket input port for a file descriptor fd. On Windows, fd can be a HANDLE for a
stream, and it should never be a file descriptor from the C library or a WinSock socket.

The name object is used for the port’s name. Specify a non-zero value for regfile only if
the file descriptor corresponds to a regular file (which implies that reading never blocks, for
example).

On Windows, win_textmode can be non-zero to make trigger auto-conversion (at the byte
level) of CRLF combinations to LF.

Closing the resulting port closes the file descriptor.

Instead of calling both scheme_make_fd_input_port and
scheme_make_fd_output_port on the same file descriptor, call
scheme_make_fd_output_port with a non-zero last argument. Otherwise, closing

112

one of the ports causes the file descriptor used by the other to be closed as well.

Scheme_Object* scheme_make_fd_output_port(int fd,
Scheme_Object* name,
int regfile,
int win_textmode,
int read_too)

Creates a Racket output port for a file descriptor fd. On Windows, fd can be a HANDLE for a
stream, and it should never be a file descriptor from the C library or a WinSock socket.

The name object is used for the port’s name. Specify a non-zero value for regfile only if
the file descriptor corresponds to a regular file (which implies that reading never blocks, for
example).

On Windows, win_textmode can be non-zero to make trigger auto-conversion (at the byte
level) of CRLF combinations to LF.

Closing the resulting port closes the file descriptor.

If read_too is non-zero, the function produces multiple values (see §8.3 “Multiple Values”)
instead of a single port. The first result is an input port for fd, and the second is an output
port for fd. These ports are connected in that the file descriptor is closed only when both of
the ports are closed.

void scheme_socket_to_ports(intptr_t s,
const char* name,
int close,
Scheme_Object** inp,
Scheme_Object** outp)

Creates Racket input and output ports for a TCP socket s. The name argument supplies the
name for the ports. If close is non-zero, then the ports assume responsibility for closing the
socket. The resulting ports are written to inp and outp.

Scheme_Object* scheme_fd_to_semaphore(intptr_t fd,
int mode,
int is_socket)

Creates or finds a Racket semaphore that becomes ready when fd is ready. The semaphore re-
flects a registration with the operating system’s underlying mechanisms for efficient polling.
When a semaphore is created, it remains findable via scheme_fd_to_semaphore for a par-
ticular read/write mode as long as fd has not become ready in the read/write mode since the
creation of the semaphore, or unless MZFD_REMOVE has been used to remove the registered
semaphore. The is_socket argument indicates whether fd is a socket or a filesystem de-
scriptor; the difference matters for Windows, and it matters for BSD-based platforms where
sockets are always supported and other file descriptors are tested for whether they correspond
to a directory or regular file.

113

The mode argument is one of the following:

• MZFD_CREATE_READ (= 1) — creates or finds a semaphore to reflect whether fd is
ready for reading.

• MZFD_CREATE_WRITE (= 2) — creates or finds a semaphore to reflect whether fd is
ready for writing.

• MZFD_CHECK_READ (= 3) — finds a semaphore to reflect whether fd is ready for read-
ing; the result is NULL if no semaphore was previously created for fd in read mode or
if such a semaphore has been posted or removed.

• MZFD_CHECK_WRITE (= 4) — like MZFD_CREATE_READ, but for write mode.

• MZFD_REMOVE (= 5) — removes all recorded semaphores for fd (unregistering a poll
with the operating system) and returns NULL.

• MZFD_CREATE_VNODE (= 6) — creates or finds a semaphore to reflect
whether fd changes; on some platforms, MZFD_CREATE_VNODE is the same as
MZFD_CREATE_READ; on other platforms, only one or the other can be used on a given
file descriptor.

• MZFD_CHECK_VNODE (= 7) — like MZFD_CHECK_READ, but to find a semaphore
recorded via MZFD_CREATE_VNODE.

• MZFD_REMOVE_VNODE (= 8) — like MZFD_REMOVE, but to remove a semaphore
recorded via MZFD_CREATE_VNODE.

Scheme_Object* scheme_make_byte_string_input_port(char* str)

Creates a Racket input port from a byte string; successive read-chars on the port return
successive bytes in the string.

Scheme_Object* scheme_make_byte_string_output_port()

Creates a Racket output port; all writes to the port are kept in a byte string, which can be
obtained with scheme_get_byte_string_output.

char* scheme_get_byte_string_output(Scheme_Object* port)

Returns (in a newly allocated byte string) all data that has been written to the given string
output port so far. (The returned string is nul-terminated.)

char* scheme_get_sized_byte_string_output(Scheme_Object* port,
intptr_t* len)

Returns (in a newly allocated byte string) all data that has been written to the given string
output port so far and fills in *len with the length of the string in bytes (not including the
nul terminator).

114

void scheme_pipe(Scheme_Object** read,
Scheme_Object** write)

Creates a pair of ports, setting *read and *write; data written to *write can be read back out
of *read. The pipe can store arbitrarily many unread characters,

void scheme_pipe_with_limit(Scheme_Object** read,
Scheme_Object** write,
int limit)

Like scheme_pipe if limit is 0. If limit is positive, creates a pipe that stores at most limit
unread characters, blocking writes when the pipe is full.

Scheme_Input_Port* scheme_input_port_record(Scheme_Object* port)

Returns the input-port record for port, which may be either a raw-port object with type
scheme_input_port_type or a structure with the prop:input-port property.

Scheme_Output_Port*

scheme_output_port_record(Scheme_Object* port)

Returns the output-port record for port, which may be either a raw-port object with type
scheme_output_port_type or a structure with the prop:output-port property.

int scheme_file_exists(char* name)

Returns 1 if a file by the given name exists, 0 otherwise. If name specifies a directory, FALSE
is returned. The name should be already expanded.

int scheme_directory_exists(char* name)

Returns 1 if a directory by the given name exists, 0 otherwise. The name should be already
expanded.

char* scheme_expand_filename(const char* name,
int len,
const char* where,
int* expanded,
int checks)

Cleanses the pathname name (see cleanse-path) and resolves relative paths with respect
to the current directory parameter. The len argument is the length of the input string; if it
is -1, the string is assumed to be null-terminated. The where argument is used to raise an
exception if there is an error in the filename; if this is NULL, an error is not reported and NULL
is returned instead. If expanded is not NULL, *expanded is set to 1 if some expansion takes
place, or 0 if the input name is simply returned.

If guards is not 0, then scheme_security_check_file (see §17 “Security Guards”) is

115

called with name, where, and checks (which implies that where should never be NULL unless
guards is 0). Normally, guards should be SCHEME_GUARD_FILE_EXISTS at a minimum.
Note that a failed access check will result in an exception.

char* scheme_expand_string_filename(Scheme_Object* name,
const char* where,
int* expanded,
int checks)

Like scheme_expand_string, but given a name that can be a character string or a path
value.

Scheme_Object* scheme_char_string_to_path(Scheme_Object* s)

Converts a Racket character string into a Racket path value.

Scheme_Object* scheme_path_to_char_string(Scheme_Object* s)

Converts a Racket path value into a Racket character string.

Scheme_Object* scheme_make_path(char* bytes)

Makes a path value given a byte string. The bytes string is copied.

Scheme_Object* scheme_make_path_without_copying(char* bytes)

Like scheme_make_path, but the string is not copied.

Scheme_Object* scheme_make_sized_path(char* bytes,
intptr_t len,
int copy)

Makes a path whose byte form has size len. A copy of bytes is made if copy is not 0. The
string bytes should contain len bytes, and if copy is zero, bytes must have a nul terminator in
addition. If len is negative, then the nul-terminated length of bytes is used for the length.

Scheme_Object* scheme_make_sized_offset_path(char* bytes,
intptr_t d,
intptr_t len,
int copy)

Like scheme_make_sized_path, except the len bytes start from position d in bytes. If d is
non-zero, then copy must be non-zero.

char* scheme_build_mac_filename(FSSpec* spec,
int isdir)

Mac OS X only: Converts an FSSpec record (defined by Mac OS X) into a pathname string.
If spec contains only directory information (via the vRefNum and parID fields), isdir should

116

be 1, otherwise it should be 0.

int scheme_mac_path_to_spec(const char* filename,
FSSpec* spec,
intptr_t* type)

Mac OS X only: Converts a pathname into an FSSpec record (defined by Mac OS X),
returning 1 if successful and 0 otherwise. If type is not NULL and filename is a file that exists,
type is filled with the file’s four-character Mac OS X type. If type is not NULL and filename
is not a file that exists, type is filled with 0.

char* scheme_os_getcwd(char* buf,
int buflen,
int* actlen,
int noexn)

Gets the current working directory according to the operating system. This is separate from
Racket’s current directory parameter.

The directory path is written into buf, of length buflen, if it fits. Otherwise, a new (col-
lectable) string is allocated for the directory path. If actlen is not NULL, *actlen is set to
the length of the current directory path. If noexn is no 0, then an exception is raised if the
operation fails.

int scheme_os_setcwd(char* buf,
int noexn)

Sets the current working directory according to the operating system. This is separate from
Racket’s current directory parameter.

If noexn is not 0, then an exception is raised if the operation fails.

char* scheme_format(mzchar* format,
int flen,
int argc,
Scheme_Object** argv,
intptr_t* rlen)

Creates a string like Racket’s format procedure, using the format string format (of length
flen) and the extra arguments specified in argc and argv. If rlen is not NULL, *rlen is filled
with the length of the resulting string.

void scheme_printf(char* format,
int flen,
int argc,
Scheme_Object** argv)

Writes to the current output port like Racket’s printf procedure, using the format string

117

format (of length flen) and the extra arguments specified in argc and argv.

char* scheme_format_utf8(char* format,
int flen,
int argc,
Scheme_Object** argv,
intptr_t* rlen)

Like scheme_format, but takes a UTF-8-encoding byte string.

void scheme_printf_utf8(char* format,
int flen,
int argc,
Scheme_Object** argv)

Like scheme_printf, but takes a UTF-8-encoding byte string.

int scheme_close_should_force_port_closed()

This function must be called by the close function for a port created with
scheme_make_output_port.

118

16 Structures

A new Racket structure type is created with scheme_make_struct_type. This cre-
ates the structure type, but does not generate the constructor, etc. procedures. The
scheme_make_struct_values function takes a structure type and creates these proce-
dures. The scheme_make_struct_names function generates the standard structure pro-
cedures names given the structure type’s name. Instances of a structure type are created with
scheme_make_struct_instance and the function scheme_is_struct_instance tests
a structure’s type. The scheme_struct_ref and scheme_struct_set functions access or
modify a field of a structure.

The structure procedure values and names generated by scheme_make_struct_values

and scheme_make_struct_names can be restricted by passing any combination of these
flags:

• SCHEME_STRUCT_NO_TYPE — the structure type value/name is not returned.

• SCHEME_STRUCT_NO_CONSTR — the constructor procedure value/name is not re-
turned.

• SCHEME_STRUCT_NO_PRED— the predicate procedure value/name is not returned.

• SCHEME_STRUCT_NO_GET — the selector procedure values/names are not returned.

• SCHEME_STRUCT_NO_SET — the mutator procedure values/names are not returned.

• SCHEME_STRUCT_GEN_GET — the field-independent selector procedure value/name is
returned.

• SCHEME_STRUCT_GEN_SET — the field-independent mutator procedure value/name is
returned.

• SCHEME_STRUCT_NO_MAKE_PREFIX — the constructor name omits a make- prefix,
like struct instead of define-struct.

When all values or names are returned, they are returned as an array with the following order:
structure type, constructor, predicate, first selector, first mutator, second selector, etc., field-
independent select, field-independent mutator. When particular values/names are omitted,
the array is compressed accordingly.

Scheme_Object* scheme_make_struct_type(Scheme_Object* base_name,
Scheme_Object* super_type,
Scheme_Object* inspector,
int num_init_fields,
int num_auto_fields,
Scheme_Object* auto_val,
Scheme_Object* properties,
Scheme_Object* guard)

119

Creates and returns a new structure type. The base_name argument is used as the name of
the new structure type; it must be a symbol. The super_type argument should be NULL or
an existing structure type to use as the super-type. The inspector argument should be NULL
or an inspector to manage the type. The num_init_fields argument specifies the number of
fields for instances of this structure type that have corresponding constructor arguments. (If
a super-type is used, this is the number of additional fields, rather than the total number.) The
num_auto_fields argument specifies the number of additional fields that have no correspond-
ing constructor arguments, and they are initialized to auto_val. The properties argument is
a list of property-value pairs. The guard argument is either NULL or a procedure to use as a
constructor guard.

Scheme_Object**

scheme_make_struct_names(Scheme_Object* base_name,
Scheme_Object* field_names,
int flags,
int* count_out)

Creates and returns an array of standard structure value name symbols. The base_name
argument is used as the name of the structure type; it should be the same symbol passed to
the associated call to scheme_make_struct_type. The field_names argument is a (Racket)
list of field name symbols. The flags argument specifies which names should be generated,
and if count_out is not NULL, count_out is filled with the number of names returned in the
array.

Scheme_Object**

scheme_make_struct_values(Scheme_Object* struct_type,
Scheme_Object** names,
int count,
int flags)

Creates and returns an array of the standard structure value and procedure values
for struct_type. The struct_type argument must be a structure type value created by
scheme_make_struct_type. The names procedure must be an array of name symbols,
generally the array returned by scheme_make_struct_names. The count argument speci-
fies the length of the names array (and therefore the number of expected return values) and
the flags argument specifies which values should be generated.

Scheme_Object*

scheme_make_struct_instance(Scheme_Object* struct_type,
int argc,
Scheme_Object** argv)

Creates an instance of the structure type struct_type. The argc and argv arguments provide
the field values for the new instance.

int scheme_is_struct_instance(Scheme_Object* struct_type,
Scheme_Object* v)

120

Returns 1 if v is an instance of struct_type or 0 otherwise.

Scheme_Object* scheme_struct_ref(Scheme_Object* s,
int n)

Returns the nth field (counting from 0) in the structure s.

void scheme_struct_set(Scheme_Object* s,
int n,
Scheme_Object* v)

Sets the nth field (counting from 0) in the structure s to v.

121

17 Security Guards

Before a primitive procedure accesses the filesystem or creates a network connection, it
should first consult the current security guard to determine whether such access is allowed
for the current thread.

File access is normally preceded by a call to scheme_expand_filename, which accepts
flags to indicate the kind of filesystem access needed, so that the security guard is consulted
automatically.

An explicit filesystem-access check can be made by calling
scheme_security_check_file. Similarly, an explicit network-access check is per-
formed by calling scheme_security_check_network.

void scheme_security_check_file(const char* who,
char* filename,
int guards)

Consults the current security manager to determine whether access is allowed to filename.
The guards argument should be a bitwise combination of the following:

• SCHEME_GUARD_FILE_READ

• SCHEME_GUARD_FILE_WRITE

• SCHEME_GUARD_FILE_EXECUTE

• SCHEME_GUARD_FILE_DELETE

• SCHEME_GUARD_FILE_EXISTS (do not combine with other values)

The filename argument can be NULL (in which case #f is sent to the security manager’s
procedure), and guards should be SCHEME_GUARD_FILE_EXISTS in that case.

If access is denied, an exception is raised.

void scheme_security_check_network(const char* who,
char* host,
int portno)

Consults the current security manager to determine whether access is allowed for creating
a client connection to host on port number portno. If host is NULL, the security manager is
consulted for creating a server at port number portno.

If access is denied, an exception is raised.

122

18 Custodians

When an extension allocates resources that must be explicitly freed (in the same way that a
port must be explicitly closed), a Racket object associated with the resource should be placed
into the management of the current custodian with scheme_add_managed.

Before allocating the resource, call scheme_custodian_check_available

to ensure that the relevant custodian is not already shut down. If it is,
scheme_custodian_check_available will raise an exception. If the custodian
is shut down when scheme_add_managed is called, the close function provided to
scheme_add_managed will be called immediately, and no exception will be reported.

Scheme_Custodian* scheme_make_custodian(Scheme_Custodian* m)

Creates a new custodian as a subordinate of m. If m is NULL, then the main custodian is used
as the new custodian’s supervisor. Do not use NULL for m unless you intend to create an
especially privileged custodian.

Scheme_Custodian_Reference*

scheme_add_managed(Scheme_Custodian* m,

Scheme_Object* o,
Scheme_Close_Custodian_Client* f,
void* data,
int strong)

Places the value o into the management of the custodian m. If m is NULL, the current custo-
dian is used.

The f function is called by the custodian if it is ever asked to “shutdown” its values; o and
data are passed on to f, which has the type

typedef void (*Scheme_Close_Custodian_Client)(Scheme_Object *o,

void *data);

If strong is non-zero, then the newly managed value will be remembered until either the
custodian shuts it down or scheme_remove_managed is called. If strong is zero, the value
is allowed to be garbage collected (and automatically removed from the custodian).

Independent of whether strong is zero, the value o is initially weakly held. A value associated
with a custodian can therefore be finalized via will executors.

The return value from scheme_add_managed can be used to refer to the value’s custodian
later in a call to scheme_remove_managed. A value can be registered with at most one
custodian.

If m (or the current custodian if m is NULL)is shut down, then f is called immediately, and
the result is NULL.

123

Scheme_Custodian_Reference*

scheme_add_managed_close_on_exit(Scheme_Custodian* m,

Scheme_Object* o,
Scheme_Close_Custodian_Client* f,
void* data)

Like scheme_add_managed with a 1 final argument, but also causes f to be called when
Racket exists without an explicit custodian shutdown.

void scheme_custodian_check_available(Scheme_Custodian* m,

const char* name,
const char* resname)

Checks whether m is already shut down, and raises an error if so. If m is NULL, the current
custodian is used. The name argument is used for error reporting. The resname argument
will likely be used for checking pre-set limits in the future; pre-set limits will have symbolic
names, and the resname string will be compared to the symbols.

void scheme_remove_managed(Scheme_Custodian_Reference* mref,
Scheme_Object* o)

Removes o from the management of its custodian. The mref argument must be a value
returned by scheme_add_managed or NULL.

void scheme_close_managed(Scheme_Custodian* m)

Instructs the custodian m to shutdown all of its managed values.

void scheme_add_atexit_closer(Scheme_Exit_Closer_Func f)

Installs a function to be called on each custodian-registered item and its closer when Racket
is about to exit. The registered function has the type

typedef

void (*Scheme_Exit_Closer_Func)(Scheme_Object *o,

Scheme_Close_Custodian_Client *f,

void *d);

where d is the second argument for f.

At-exit functions are run in reverse of the order that they are added. An at-exit function is
initially registered (and therefore runs last) that flushes each file-stream output port and calls
every function registered with scheme_add_managed_close_on_exit.

An at-exit function should not necessarily apply the closer function for every object that it
is given. In particular, shutting down a file-stream output port would disable the flushing
action of the final at-exit function. Typically, an at-exit function ignores most objects while
handling a specific type of object that requires a specific clean-up action before the OS-level

124

process terminates.

125

19 Subprocesses

On Unix and Mac OS X, subprocess handling involves fork, waitpid, and SIGCHLD, which
creates a variety of issues within an embedding application. On Windows, subprocess han-
dling is more straightforward, since no fork is required, and since Windows provides an
abstraction that is a close fit to Racket’s subprocess values.

After Racket creates a subprocess via subprocess (or system, process, etc.), it periodi-
cally polls the process status using waitpid. If the process is created as its own group, then
the call to waitpid uses the created subprocess’s process ID; for all other subprocesses,
polling uses a single call to waitpid with the first argument as 0. Using 0, in particular,
can interfere with other libraries in an embedding context, so Racket refrains from calling
waitpid if no subprocesses are pending.

Racket may or may not rely on a SIGCHLD handler, and it may or may not block SIGCHLD.
Currently, when Racket is compiled to support places, Racket blocks SIGCHLD on start up
with the expectation that all created threads have SIGCHLD blocked. When Racket is not
compiled to support places, then a SIGCHLD handler is installed.

Using fork in an application that embeds Racket is problematic for several reasons: Racket
may install a SIGALRM handler and schedule alarms to implement context switches, it may
have file descriptors open that should be closed in a child process, and it may have changed
the disposition of signals such as SIGCHLD. Consequently, embedding Racket in a process
that forks is technically not supported; in the future, Racket may provide better support for
such applications.

126

20 Miscellaneous Utilities

The MZSCHEME_VERSION preprocessor macro is defined as a string describing the version
of Racket. The MZSCHEME_VERSION_MAJOR and MZSCHEME_VERSION_MINOR macros are
defined as the major and minor version numbers, respectively.

int scheme_eq(Scheme_Object* obj1,
Scheme_Object* obj2)

Returns 1 if the Scheme values are eq?.

int scheme_eqv(Scheme_Object* obj1,
Scheme_Object* obj2)

Returns 1 if the Scheme values are eqv?.

int scheme_equal(Scheme_Object* obj1,
Scheme_Object* obj2)

Returns 1 if the Scheme values are equal?.

int scheme_recur_equal(Scheme_Object* obj1,
Scheme_Object* obj2,
void* cycle_data)

Like scheme_equal, but accepts an extra value for cycle tracking. This procedure is meant
to be called by a procedure installed with scheme_set_type_equality.

intptr_t scheme_equal_hash_key(Scheme_Object* obj)

Returns the primary equal?-hash key for obj.

intptr_t scheme_equal_hash_key2(Scheme_Object* obj)

Returns the secondary equal?-hash key for obj.

intptr_t scheme_recur_equal_hash_key(Scheme_Object* obj,
void* cycle_data)

Like scheme_equal_hash_key, but accepts an extra value for cycle tracking.
This procedure is meant to be called by a hashing procedure installed with
scheme_set_type_equality.

intptr_t scheme_recur_equal_hash_key2(Scheme_Object* obj,
void* cycle_data)

Like scheme_equal_hash_key2, but accepts an extra value for cycle tracking. This
procedure is meant to be called by a secondary hashing procedure installed with
scheme_set_type_equality.

127

Scheme_Object* scheme_build_list(int c,
Scheme_Object** elems)

Creates and returns a list of length c with the elements elems.

int scheme_list_length(Scheme_Object* list)

Returns the length of the list. If list is not a proper list, then the last cdr counts as an item.
If there is a cycle in list (involving only cdrs), this procedure will not terminate.

int scheme_proper_list_length(Scheme_Object* list)

Returns the length of the list, or -1 if it is not a proper list. If there is a cycle in list (involving
only cdrs), this procedure returns -1.

Scheme_Object* scheme_car(Scheme_Object* pair)

Returns the car of the pair.

Scheme_Object* scheme_cdr(Scheme_Object* pair)

Returns the cdr of the pair.

Scheme_Object* scheme_cadr(Scheme_Object* pair)

Returns the cadr of the pair.

Scheme_Object* scheme_caddr(Scheme_Object* pair)

Returns the caddr of the pair.

Scheme_Object* scheme_vector_to_list(Scheme_Object* vec)

Creates a list with the same elements as the given vector.

Scheme_Object* scheme_list_to_vector(Scheme_Object* list)

Creates a vector with the same elements as the given list.

Scheme_Object* scheme_append(Scheme_Object* lstx,
Scheme_Object* lsty)

Non-destructively appends the given lists.

Scheme_Object* scheme_unbox(Scheme_Object* obj)

Returns the contents of the given box.

void scheme_set_box(Scheme_Object* b,
Scheme_Object* v)

128

Sets the contents of the given box.

Scheme_Object* scheme_dynamic_require(int argc,
Scheme_Object** argv)

The same as dynamic-require. The argc argument must be 2, and argv contains the
arguments.

Scheme_Object*

scheme_namespace_require(Scheme_Object* prim_req_spec)

The same as namespace-require.

Scheme_Object* scheme_load(char* file)

Loads the specified Racket file, returning the value of the last expression loaded, or NULL if
the load fails.

Scheme_Object* scheme_load_extension(char* filename)

Loads the specified Racket extension file, returning the value provided by the extension’s
initialization function.

Scheme_Hash_Table* scheme_make_hash_table(int type)

Creates a hash table. The type argument must be either SCHEME_hash_ptr or
SCHEME_hash_string, which determines how keys are compared (unless the hash and
compare functions are modified in the hash table record; see below). A SCHEME_hash_ptr

table hashes on a key’s pointer address, while SCHEME_hash_string uses a key as a
char* and hashes on the null-terminated string content. Since a hash table created with
SCHEME_hash_string (instead of SCHEME_hash_ptr) does not use a key as a Racket
value, it cannot be used from Racket code.

Although the hash table interface uses the type Scheme_Object* for both keys and
values, the table functions never inspect values, and they inspect keys only for
SCHEME_hash_string hashing. Thus, the actual types of the values (and keys, for
SCHEME_hash_ptr tables) can be anything.

The public portion of the Scheme_Hash_Table type is defined roughly as follows:

typedef struct Scheme_Hash_Table {

Scheme_Object so; /* so.type == scheme_hash_table_type */

/* ... */

int size; /* size of keys and vals arrays */

int count; /* number of mapped keys */

Scheme_Object **keys;

Scheme_Object **vals;

void (*make_hash_indices)(void *v, intptr_t *h1, intptr_t *h2);

int (*compare)(void *v1, void *v2);

129

/* ... */

} Scheme_Hash_Table;

The make_hash_indices and compare function pointers can be set to arbitrary hashing
and comparison functions (before any mapping is installed into the table). A hash function
should fill h1 with a primary hash value and h2 with a secondary hash value; the values are
for double-hashing, where the caller takes appropriate modulos. Either h1 or h2 can be NULL
if the corresponding hash code is not needed.

To traverse the hash table content, iterate over keys and vals in parallel from 0 to size-1,
and ignore keys where the corresponding vals entry is NULL. The count field indicates the
number of non-NULL values that will be encountered.

Scheme_Hash_Table* scheme_make_hash_table_equal()

Like scheme_make_hash_table, except that keys are treated as Racket values and hashed
based on equal? instead of eq?.

void scheme_hash_set(Scheme_Hash_Table* table,
Scheme_Object* key,
Scheme_Object* val)

Sets the current value for key in table to val. If val is NULL, the key is unmapped in table.

Scheme_Object* scheme_hash_get(Scheme_Hash_Table* table,
Scheme_Object* key)

Returns the current value for key in table, or NULL if key has no value.

Scheme_Bucket_Table* scheme_make_bucket_table(int size_hint,
int type)

Like make_hash_table, but bucket tables are somewhat more flexible, in that hash buckets
are accessible and weak keys are supported. (They also consume more space than hash
tables.)

The type argument must be either SCHEME_hash_ptr, SCHEME_hash_string, or
SCHEME_hash_weak_ptr. The first two are the same as for hash tables. The last is like
SCHEME_hash_ptr, but the keys are weakly held.

The public portion of the Scheme_Bucket_Table type is defined roughly as follows:

typedef struct Scheme_Bucket_Table {

Scheme_Object so; /* so.type == scheme_variable_type */

/* ... */

int size; /* size of buckets array */

int count; /* number of buckets, >= number of mapped keys */

Scheme_Bucket **buckets;

130

void (*make_hash_indices)(void *v, intptr_t *h1, intptr_t *h2);

int (*compare)(void *v1, void *v2);

/* ... */

} Scheme_Bucket_Table;

The make_hash_indices and compare functions are used as for hash tables. Note that
SCHEME_hash_weak_ptr supplied as the initial type makes keys weak even if the hash and
comparison functions are changed.

See scheme_bucket_from_table for information on buckets.

void scheme_add_to_table(Scheme_Bucket_Table* table,
const char* key,
void* val,
int const)

Sets the current value for key in table to val. If const is non-zero, the value for key must
never be changed.

void scheme_change_in_table(Scheme_Bucket_Table* table,
const char* key,
void* val)

Sets the current value for key in table to val, but only if key is already mapped in the table.

void* scheme_lookup_in_table(Scheme_Bucket_Table* table,
const char* key)

Returns the current value for key in table, or NULL if key has no value.

Scheme_Bucket*

scheme_bucket_from_table(Scheme_Bucket_Table* table,
const char* key)

Returns the bucket for key in table. The Scheme_Bucket structure is defined as:

typedef struct Scheme_Bucket {

Scheme_Object so; /* so.type == scheme_bucket_type */

/* ... */

void *key;

void *val;

} Scheme_Bucket;

Setting val to NULL unmaps the bucket’s key, and key can be NULL in that case as well. If the
table holds keys weakly, then key points to a (weak) pointer to the actual key, and the weak
pointer’s value can be NULL.

intptr_t scheme_double_to_int(char* where,
double d)

131

Returns a fixnum value for the given floating-point number d. If d is not an integer or if it is
too large, then an error message is reported; name is used for error-reporting.

intptr_t scheme_get_milliseconds()

Returns the current “time” in milliseconds, just like current-milliseconds.

intptr_t scheme_get_process_milliseconds()

Returns the current process “time” in milliseconds, just like current-process-

milliseconds.

char* scheme_banner()

Returns the string that is used as the Racket startup banner.

char* scheme_version()

Returns a string for the executing version of Racket.

Scheme_Hash_Table* scheme_get_place_table()

Returns an eq?-based hash table that is global to the current place.

A key generated by scheme_malloc_key can be useful as a common key across multiple
places.

Scheme_Object* scheme_malloc_key()

Generates an uncollectable Racket value that can be used across places. Free the value with
scheme_free_key.

void scheme_free_key(Scheme_Object* key)

Frees a key allocated with scheme_malloc_key. When a key is freed, it must not be acces-
sible from any GC-travsered reference in any place.

void* scheme_register_process_global(const char* key,
void* val)

Gets or sets a value in a process-global table (i.e., shared across multiple places, if any). If
val is NULL, the current mapping for key is given, otherwise val is installed as the value for
key and NULL is returned. The given val must not refer to garbage-collected memory.

This function is intended for infrequent use with a small number of keys.

void* scheme_jit_find_code_end(void* p)

Given the address of machine code generated by Racket’s compiler, attempts to infer and
return the address just after the end of the generated code (for a single source function,

132

typically). The result is #f if the address cannot be inferred, which may be because the
given p does not refer to generated machine code.

Added in version 6.0.1.9.

void scheme_jit_now(Scheme_Object* val)

If val is a procedure that can be JIT-compiled, JIT compilation is forced immediately if it
has not been forced already (usually through calling the function).

Added in version 6.0.1.10.

133

Index

134

135

136

137

138

139

140

141

	1 Overview
	1.1 ``Scheme'' versus ``Racket''
	1.2 Building Racket from Source
	1.3 CGC versus 3m
	1.4 Embedding and Extending Racket
	1.5 Racket and Places
	1.6 Racket and Threads
	1.7 Racket, Unicode, Characters, and Strings
	1.8 Integers

	2 Embedding into a Program
	2.1 CGC Embedding
	2.2 3m Embedding
	2.3 Flags and Hooks

	3 Writing Racket Extensions
	3.1 CGC Extensions
	3.2 3m Extensions
	3.3 Declaring a Module in an Extension

	4 Values and Types
	4.1 Standard Types
	4.2 Global Constants
	4.3 Strings
	4.4 Value Functions

	5 Memory Allocation
	5.1 Cooperating with 3m
	5.1.1 Tagged Objects
	5.1.2 Local Pointers
	5.1.3 Local Pointers and raco ctool --xform
	5.1.4 Guiding raco ctool --xform
	5.1.5 Places and Garbage Collector Instances

	5.2 Memory Functions

	6 Namespaces and Modules
	7 Procedures
	8 Evaluation
	8.1 Top-level Evaluation Functions
	8.2 Tail Evaluation
	8.3 Multiple Values
	8.4 Evaluation Functions

	9 Exceptions and Escape Continuations
	9.1 Temporarily Catching Error Escapes
	9.2 Enabling and Disabling Breaks
	9.3 Exception Functions

	10 Threads
	10.1 Integration with Threads
	10.2 Allowing Thread Switches
	10.3 Blocking the Current Thread
	10.4 Threads in Embedded Racket with Event Loops
	10.4.1 Callbacks for Blocked Threads

	10.5 Sleeping by Embedded Racket
	10.6 Thread Functions

	11 Parameterizations
	12 Continuation Marks
	13 String Encodings
	14 Bignums, Rationals, and Complex Numbers
	15 Ports and the Filesystem
	16 Structures
	17 Security Guards
	18 Custodians
	19 Subprocesses
	20 Miscellaneous Utilities
	Index
	Index

