The Racket Graphical Interface Toolkit

Version 6.1

Matthew Flatt,
Robert Bruce Findler,
and John Clements

August 1, 2014

(require racket/gui/base) package: gui-1lib

The racket/gui/base library provides all of the class, interface, and procedure bindings
defined in this manual, in addition to the bindings of racket/draw and file/resource.

#lang racket/gui package: gui-1ib

The racket/gui language combines all bindings of the racket language and the
racket/gui/base and racket/draw modules.

The racket/gui toolbox is roughly organized into two parts:
* The windowing toolbox, for implementing windows, buttons, menus, text fields, and
other controls.

* The editor toolbox, for developing traditional text editors, editors that mix text and
graphics, or free-form layout editors (such as a word processor, HTML editor, or
icon-based file browser).

Both parts of the toolbox rely extensively on the racket/draw drawing library.

Contents

Wind o
1.1 Creating Windows|. Lo
[[2 Drawing in Canvases| v v v i vt it
I1.3 Core Windowing Classes|
[1.4 Geometry Management|

[CATContainees] - - -« « v v v vt e e
[CAZ7CONM@INErS - - -« v v o v et e e
|1.4.3 Defining New Types of Containers|.
|I1.5 Mouse and Keyboard Events|0,

[1.6 Event Dispatching and Eventspaces|
m’m
@:
[T.6.3 Creating and Setting the Eventspace|

2 Widget Gallery]|

|3__Windowing Classes|
3.1 _area<l>]. e

3.2 area-container</>|.
3.3 area-container-window<}%>|.
....................................
3.5 canvas<U>|
....................................
3.7 check-bOoX/l. v i e e e e
3.8 checkable-menu-item/f.
....................................
[3.10 clipboard-client’|.
@ CLipboard<A]| . . . v o
B2 combo—FieldZ] v v v i
313 control<i>|. e e e
3.14 column-control-event#|
3.15 control-eventy|.
....................................
....................................
....................................
3.19 framel|

B20 gauge?]

[B2T group-box-panell]

EZZ EroW-DOX-SPACET—PANEN| . - + « + « o o e e e
[B23 horizontal-panel] v v v v e

o N &

el

13
14
16
17
18
19
20
20
21
21
22

23

3.24 horizontal-panell|. e 77

.................................. 79
3.26 labelled-menu-item</> 88
.................................. 90
3.28 list-control<y>| 97
3.29 menull 99
.................................. 100
331 menu-item<y>| 101
332 menu-item/l. 102
3.33 menu-item-container<®%> 103
................................... 104
................................ 106
..................................... 12
.................................... 113
................................. 115
................................. 116
B40 radio-boxW. . . . o o 117
3.41 selectable-menu-item<p> 120
3.42 separator-menu-itemsl. e 122
BA43 scroll-event@] o o v v 123
.................................... 125
3.45 subarea<lk>|. 127
3.46 subwindow<%>| e 127
3.47 tab-panelsl.o e e e e e 128
B8 Text-Taeldl] - -« - v o v e oo e e e e 131
.................................... 134
[3.50 top-level-window<V>| 135
............................... 141
.............................. 142
3.53 window<%>| 143
Windowing Functions| 152
x D OS] L e e e 152

42 Eventspaces| o 163
B3 SystemMenus|. 167

4. obal Graphics|. Lo o 169
BSTTONM. - o v o o e e e 171
4.6 Miscellaneousl 172

5 Editorsl 180
[5.1 Editor Structure and Terminology| 182
Q.11 Admimistrators] oL oL L 183
.................................. 184
.................................. 185

B2T Encoding Snips|. 185

.22 Global Data: Headersand Footers 187

5.5 CaretOwnership|
[5:6 CutandPaste Time Stamps|

|6 Snip and Style Classes|
61 add=—color<Z>| . . o o o o

[6.2 image-snip/|
[63 mult-coloT<l] . . v v v
6.4 readable-snip<z>|
6.5 SDIDPA - - o o e
6.6 snip-adminf|o

BT SRID-CTassl . - - o o e
B Smip-class-TEstal] . - -« o oo
B9 SEEIRESniDl] - - - - o o o
BI0 SEyTe<ls] - - o o
6.11 style-deltakl o e
BIZ SEyToTiotl. . o o o oo e e
B3 Tabsnipl . . . - o o o

[7__Editor Classes|

7.1 editor<i>|
[7.2 editor-adminf|
[7.3 editor-canvash|. i e
[74 editor-datall|
[7.5 editor-data-classh o v i i i i e
[7.6 _editor-data-class-1list</>
[/.7 _editor-snip-editor-admin<y>.

B editor-sniphl . . . o . e e e e e e e e e e e

[79 editor-stream- inZ]

[7.10_editor-stream-in-basef
[/.11 editor-stream-in-bytes-basel|
............................
[7.13 editor-stream-out-basesf
[/.14 editor-stream-out-bytes-base/|
[7.15 editor-wordbreak-map/
|7.16 KeYMADA| . « v v v o v e e e
7.17 pasteboardslo
718 texthl e

8 Editor Functions

[WXME Iiecoamg 381

9.1 SnipClass Mapping|. 385
9.1.1 Nested Editors| 387
................................. 387

9.2 DrRacket CommentBoxes| 388

9.3 DrRacket XML Boxesl 388

9.4 DrRacket RacketBoxes|. 389

0.5 DrRacket TextBoxes| 390

9.6 _DrRacket Fractions|, 390

9.7 _DrRacket Teachpack Images| 391

392
[I0_Preferences| 393
[11_Dynamic Loading] 394
|12 Startup Actions| 395
[T3 Platform Dependencies| 396
[Indexl 397
[Indexi 397

1 Windowing

The windowing toolbox provides the basic building blocks of GUI programs, including
frames (top-level windows), modal dialogs, menus, buttons, check boxes, text fields, and
radio buttons—all as classes.

1.1 Creating Windows

To create a new top-level window, instantiate the frame} class:

; Make a frame by instantiating the framej, class
(define frame (new frame), [label "Example'"]))

; Show the frame by calling its show method
(send frame show #t)

The built-in classes provide various mechanisms for handling GUI events. For example,
when instantiating the button, class, supply an event callback procedure to be invoked
when the user clicks the button. The following example program creates a frame with a text
message and a button; when the user clicks the button, the message changes:

; Make a frame by instantiating the frame), class
(define frame (new frame), [label "Example']))

; Make a static text message in the frame
(define msg (new message), [parent frame]
[label "No events so far..."]))

; Make a button in the frame
(new button) [parent frame]
[label "Click Me"]
; Callback procedure for a button click:
[callback (lambda (button event)
(send msg set-label "Button click"))])

; Show the frame by calling its show method
(send frame show #t)

Programmers never implement the GUI event loop directly. Instead, the windowing system
automatically pulls each event from an internal queue and dispatches the event to an appro-
priate window. The dispatch invokes the window’s callback procedure or calls one of the
window’s methods. In the above program, the windowing system automatically invokes the
button’s callback procedure whenever the user clicks Click Me.

See §13 “Classes
and Objects” for an
introduction to
classes and
interfaces in
Racket.

If a window receives multiple kinds of events, the events are dispatched to methods of the
window’s class instead of to a callback procedure. For example, a drawing canvas receives
update events, mouse events, keyboard events, and sizing events; to handle them, derive a
new class from the built-in canvas, class and override the event-handling methods. The
following expression extends the frame created above with a canvas that handles mouse and
keyboard events:

; Derive a new canvas (a drawing window) class to handle events
(define my-canvas}
(class canvas’, ; The base class is canvasl
; Define overriding method to handle mouse events
(define/override (on-event event)
(send msg set-label "Canvas mouse"))
; Define overriding method to handle keyboard events
(define/override (on-char event)
(send msg set-label "Canvas keyboard"))
; Call the superclass init, passing on all init args
(super-new)))

; Make a canvas that handles events in the frame
(new my-canvasy [parent frame])

After running the above code, manually resize the frame to see the new canvas. Moving the
cursor over the canvas calls the canvas’s on-event method with an object representing a
motion event. Clicking on the canvas calls on-event. While the canvas has the keyboard
focus, typing on the keyboard invokes the canvas’s on-char method.

The windowing system dispatches GUI events sequentially; that is, after invoking an event-
handling callback or method, the windowing system waits until the handler returns before
dispatching the next event. To illustrate the sequential nature of events, extend the frame
again, adding a Pause button:

(new button) [parent frame]
[label "Pause"]
[callback (lambda (button event) (sleep 5))1)

After the user clicks Pause, the entire frame becomes unresponsive for five seconds; the
windowing system cannot dispatch more events until the call to sleep returns. For more
information about event dispatching, see[§1.6 “Event Dispatching and Eventspaces’}

In addition to dispatching events, the GUI classes also handle the graphical layout of win-
dows. Our example frame demonstrates a simple layout; the frame’s elements are lined up
top-to-bottom. In general, a programmer specifies the layout of a window by assigning each
GUI element to a parent container. A vertical container, such as a frame, arranges its chil-
dren in a column, and a horizontal container arranges its children in a row. A container can

be a child of another container; for example, to place two buttons side-by-side in our frame,
create a horizontal panel for the new buttons:

(define panel (new horizontal-panel), [parent frame]))
(new button) [parent panell
[label "Left"]
[callback (lambda (button event)
(send msg set-label "Left click"))])
(new button) [parent panell
[label "Right"]
[callback (lambda (button event)
(send msg set-label "Right click"))])

For more information about window layout and containers, see [§1.4 “Geometry Manage-|

[ment™

1.2 Drawing in Canvases

The content of a canvas is determined by its on-paint method, where the default on-paint
calls the paint-callback function that is supplied when the canvas is created. The on-
paint method receives no arguments and uses the canvas’s get-dc method to obtain a
drawing context (DC) for drawing; the default on-paint method passes the canvas and this
DC on to the paint-callback function. Drawing operations of the racket/draw toolbox
on the DC are reflected in the content of the canvas onscreen.

For example, the following program creates a canvas that displays large, friendly letters:

(define frame (new frameY
[label "Example']
[width 300]
[height 3001))
(new canvas), [parent frame]
[paint-callback
(lambda (canvas dc)
(send dc set-scale 3 3)
(send dc set-text-foreground "blue')
(send dc draw-text "Don’t Panic!" 0 0))])
(send frame show #t)

The background color of a canvas can be set through the set-canvas-background method.
To make the canvas transparent (so that it takes on its parent’s color and texture as its initial
content), supply ’transparent in the style argument when creating the canvas.

See §1 “Overview” in The Racket Drawing Toolkit for an overview of drawing with the

racket/draw library. For more advanced information on canvas drawing, see|§1.7 “Anima-

1.3 Core Windowing Classes

The fundamental graphical element in the windowing toolbox is an area. The following
classes implement the different types of areas in the windowing toolbox:

e Containers — areas that can contain other areas:

— frame}, — a frame is a top-level window that the user can move and resize.

— dialog} — adialog is a modal top-level window; when a dialog is shown, other
top-level windows are disabled until the dialog is dismissed.

— panely, — a panel is a subcontainer within a container. The toolbox provides
three subclasses of panely,: vertical-panel, horizontal-panel, and
tab-panell,.

— pane}, — a pane is a lightweight panel. It has no graphical representation or
event-handling capabilities. The pane?, class has three subclasses: vertical-
panel, horizontal-pane, and grow-box-spacer-panel.

¢ Containees — areas that must be contained within other areas:

— panely, — a panel is a containee as well as a container.
— panej, — a pane is a containee as well as a container.
— canvas’ — a canvas is a subwindow for drawing on the screen.

— editor-canvas} — an editor canvas is a subwindow for displaying a text ed-
itor or pasteboard editor. The editor-canvas} class is documented with the

editor classes in

— Controls — containees that the user can manipulate:
* messagel, — a message is a static text field or bitmap with no user interac-
tion.
button’, — a button is a clickable control.

* check-box% — a check box is a clickable control; the user clicks the control
to set or remove its check mark.

% radio-box}, — a radio box is a collection of mutually exclusive radio but-
tons; when the user clicks a radio button, it is selected and the radio box’s
previously selected radio button is deselected.

* choice, — a choice item is a pop-up menu of text choices; the user selects
one item in the control.

* list-box% — a list box is a scrollable lists of text choices; the user selects
one or more items in the list (depending on the style of the list box).

% text-field), — a rext field is a box for simple text entry.

% combo-field) — a combo field combines a text field with a pop-up menu
of choices.

slider’, — aslider is a dragable control that selects an integer value within
a fixed range.

% gauge), — a gauge is an output-only control (the user cannot change the
value) for reporting an integer value within a fixed range.

As suggested by the above listing, certain areas, called containers, manage certain other
areas, called containees. Some areas, such as panels, are both containers and containees.

Most areas are windows, but some are non-windows. A window, such as a panel, has a
graphical representation, receives keyboard and mouse events, and can be disabled or hidden.
In contrast, a non-window, such as a pane, is useful only for geometry management; a non-
window does not receive mouse events, and it cannot be disabled or hidden.

Every area is an instance of the area<%> interface. Each container is also an instance of
the area-container<’> interface, whereas each containee is an instance of subarea<’>.
Windows are instances of window<%>. The area-container<)>, subarea<y>, and win-
dow<Y%> interfaces are subinterfaces of area<y>.

The following diagram shows more of the type hierarchy under area<’>:

area<’>
______________________ | __
I I I
subarea<y> window<%> area-container<y%>
l____ _______ | ___ I
I I I
subwindow<%> area-container-window<%>
________ o ___ I
I I I
control<y> canvas<y%> top-level-window<}>

The diagram below extends the one above to show the complete type hierarchy under
area<’>. (Some of the types are represented by interfaces, and some types are represented
by classes. In principle, every area type should be represented by an interface, but whenever
the windowing toolbox provides a concrete implementation, the corresponding interface is
omitted from the toolbox.) To avoid intersecting lines, the hierarchy is drawn for a cylin-
drical surface; lines from subarea<’> and subwindow<7> wrap from the left edge of the
diagram to the right edge.

area<%>
_____________________ | __
I I I

subarea<y,> window<%> area-container<y%>

10

| |
subwindow<%> | | |
<K e | | [<<
| | | | pane’, |
control<y> | | | |- horizontal-pane’ |
|- message, | | | |- vertical-pane), |
|- button I | | |
| - check-box} | area-container-window<}>
|- slider | | |
|- gauge’ I I . I
[- text-field% | | |
|- combo-field’, | [--——--—- panel,
|- radio-box} | | |- horizontal-panel,
[- list-control<y> | | |- vertical-panel},
|- choiceY | | |- tab-panely
[- list-box% | | |- group-box-
panel,

| |
| |- top-level-window<%>
| |- frame,
canvas<%> - dialoghk
| - canvasY,
| - editor-canvasy,

Menu bars, menus, and menu items are graphical elements, but not areas (i.e., they do not
have all of the properties that are common to areas, such as an adjustable graphical size).
Instead, the menu classes form a separate container—containee hierarchy:

* Menu Item Containers
— menu-bar?’, — a menu bar is a top-level collection of menus that are associated
with a frame.

— menu}, — a menu contains a set of menu items. The menu can appear in a menu
bar, in a popup menu, or as a submenu in another menu.

— popup-menuj — a popup menu is a top-level menu that is dynamically displayed
in a canvas or editor canvas.
* Menu ltems
— separator-menu-itemy), — a separator is an unselectable line in a menu or
popup menu.

— menu-itemy, — a plain menu item is a selectable text item in a menu. When the
item is selected, its callback procedure is invoked.

— checkable-menu-item} — a checkable menu item is a text item in a menu; the
user selects a checkable menu item to toggle a check mark next to the item.

11

— menu’ — a menu is a menu item as well as a menu item container.

The following diagram shows the complete type hierarchy for the menu system:

menu-item<%> menu-item-container<y>
I I
| - separator—menu—item% _____ [___
|- labelled-menu-item<%> | | - menu-bar’,
_________ [__ I | - popup-menu’
I

menu’

- selectable-menu-item<¥%>
| - menu-itemy,
| - checkable-menu-item},

1.4 Geometry Management

The windowing toolbox’s geometry management makes it easy to design windows that look
right on all platforms, despite different graphical representations of GUI elements. Geometry
management is based on containers; each container arranges its children based on simple
constraints, such as the current size of a frame and the natural size of a button.

The built-in container classes include horizontal panels (and panes), which align their chil-
dren in a row, and vertical panels (and panes), which align their children in a column. By
nesting horizontal and vertical containers, a programmer can achieve most any layout. For
example, to construct a dialog with the shape

with the following program:

; Create a dialog
(define dialog (instantiate dialog), ("Example")))

; Add a text field to the dialog
(new text-field), [parent dialog] [label "Your name'"])

12

; Add a horizontal panel to the dialog, with centering for buttons
(define panel (new horizontal-panel), [parent dialog]
[alignment ’(center center)]))

; Add Cancel and Ok buttons to the horizontal panel
(new button) [parent panel] [label "Cancel"])
(new button), [parent panel] [label "0k"])
(when (system-position-ok-before-cancel?)
(send panel change-children reverse))

; Show the dialog
(send dialog show #t)

Each container arranges its children using the natural size of each child, which usually de-
pends on instantiation parameters of the child, such as the label on a button or the number of
choices in a radio box. In the above example, the dialog stretches horizontally to match the
minimum width of the text field, and it stretches vertically to match the total height of the
field and the buttons. The dialog then stretches the horizontal panel to fill the bottom half
of the dialog. Finally, the horizontal panel uses the sum of the buttons’ minimum widths to
center them horizontally.

As the example demonstrates, a stretchable container grows to fill its environment, and it
distributes extra space among its stretchable children. By default, panels are stretchable in
both directions, whereas buttons are not stretchable in either direction. The programmer can
change whether an individual GUI element is stretchable.

The following subsections describe the container system in detail, first discussing the at-
tributes of a containee in [§1.4.1 *"Containees’| and then describing the attributes of a con-
tainer in [§1.4.2 “Containers’| In addition to the built-in vertical and horizontal containers,
programmers can define new types of containers as discussed in the final subsection, [§1.4.3]
[*Defining New Types of Containers’|

1.4.1 Containees

Each containee, or child, has the following properties:

* a graphical minimum width and a graphical minimum height;
* a requested minimum width and a requested minimum height,
¢ horizontal and vertical stretchability (on or off); and

* horizontal and vertical margins.

13

A container arranges its children based on these four properties of each containee. A con-
tainee’s parent container is specified when the containee is created. A window containee can
be hidden or deleted within its parent, and its parent can be changed by reparenting.

The graphical minimum size of a particular containee, as reported by get-graphical-min-
size, depends on the platform, the label of the containee (for a control), and style attributes
specified when creating the containee. For example, a button’s minimum graphical size
ensures that the entire text of the label is visible. The graphical minimum size of a control
(such as a button) cannot be changed; it is fixed at creation time. (A control’s minimum size
is not recalculated when its label is changed.) The graphical minimum size of a panel or
pane depends on the total minimum size of its children and the way that they are arranged.

To select a size for a containee, its parent container considers the containee’s requested
minimum size rather than its graphical minimum size (assuming the requested minimum is
larger than the graphical minimum). Unlike the graphical minimum, the requested minimum
size of a containee can be changed by a programmer at any time using the min-width and
min-height methods.

Unless a containee is stretchable (in a particular direction), it always shrinks to its minimum
size (in the corresponding direction). Otherwise, containees are stretched to fill all available
space in a container. Each containee begins with a default stretchability. For example,
buttons are not initially stretchable, whereas a one-line text field is initially stretchable in the
horizontal direction. A programmer can change the stretchability of a containee at any time
using the stretchable-width and stretchable-height methods.

A margin is space surrounding a containee. Each containee’s margin is independent of
its minimum size, but from the container’s point of view, a margin effectively increases
the minimum size of the containee. For example, if a button has a vertical margin of 2,
then the container must allocate enough room to leave two pixels of space above and below
the button, in addition to the space that is allocated for the button’s minimum height. A
programmer can adjust a containee’s margin with horiz-margin and vert-margin. The
default margin is 2 for a control, and O for any other type of containee.

In practice, the requested minimum size and margin of a control are rarely changed, although
they are often changed for a canvas. Stretchability is commonly adjusted for any type of
containee, depending on the visual effect desired by the programmer.

1.4.2 Containers

A container has the following properties:

* a list of (non-deleted) children containees;
¢ arequested minimum width and a requested minimum height;

* aspacing used between the children;

14

* a border margin used around the total set of children;
* horizontal and vertical stretchability (on or off); and

* an alignment setting for positioning leftover space.

These properties are factored into the container’s calculation of its own size and the arrange-
ment of its children. For a container that is also a containee (e.g., a panel), the container’s
requested minimum size and stretchability are the same as for its containee aspect.

A containee’s parent container is specified when the containee is created. A containee win-
dow can be hidden or deleted within its parent container, and its parent can be changed by
reparenting (but a non-window containee cannot be hidden, deleted, or reparented):

* A hidden child is invisible to the user, but space is still allocated for each hidden child
within a container. To hide or show a child, call the child’s show method.

* A deleted child is hidden and ignored by container as it arranges its other children, so
no space is reserved in the container for a deleted child. To make a child deleted or
non-deleted, call the container’s delete-child or add-child method (which calls
the child’s show method).

* To reparent a window containee, use the reparent method. The window retains its
hidden or deleted status within its new parent.

When a child is created, it is initially shown and non-deleted. A deleted child is subject
to garbage collection when no external reference to the child exists. A list of non-deleted
children (hidden or not) is available from a container through its get-children method.

The order of the children in a container’s non-deleted list is significant. For example, a
vertical panel puts the first child in its list at the top of the panel, and so on. When a new child
is created, it is put at the end of its container’s list of children. The order of a container’s list
can be changed dynamically via the change-children method. (The change-children
method can also be used to activate or deactivate children.)

The graphical minimum size of a container, as reported by get-graphical-min-size, is
calculated by combining the minimum sizes of its children (summing them or taking the
maximum, as appropriate to the layout strategy of the container) along with the spacing and
border margins of the container. A larger minimum may be specified by the programmer
using min-width and min-height methods; when the computed minimum for a container
is larger than the programmer-specified minimum, then the programmer-specified minimum
is ignored.

A container’s spacing determines the amount of space left between adjacent children in the
container, in addition to any space required by the children’s margins. A container’s border
margin determines the amount of space to add around the collection of children; it effectively

15

decreases the area within the container where children can be placed. A programmer can
adjust a container’s border and spacing dynamically via the border and spacing methods.
The default border and spacing are 0 for all container types.

Because a panel or pane is a containee as well as a container, it has a containee margin in
addition to its border margin. For a panel, these margins are not redundant because the panel
can have a graphical border; the border is drawn inside the panel’s containee margin, but
outside the panel’s border margin.

For a top-level-window container, such as a frame or dialog, the container’s stretchability
determines whether the user can resize the window to something larger than its minimum
size. Thus, the user cannot resize a frame that is not stretchable. For other types of containers
(i.e., panels and panes), the container’s stretchability is its stretchability as a containee in
some other container. All types of containers are initially stretchable in both directions—
except instances of grow-box-spacer-pane, which is intended as a lightweight spacer
class rather than a useful container class—but a programmer can change the stretchability of
an area at any time via the stretchable-width and stretchable-height methods.

The alignment specification for a container determines how it positions its children when
the container has leftover space. (A container can only have leftover space in a particular
direction when none of its children are stretchable in that direction.) For example, when
the container’s horizontal alignment is ’ left, the children are left-aligned in the container
and leftover space is accumulated to the right. When the container’s horizontal alignment
is ’center, each child is horizontally centered in the container. A container’s alignment is
changed with the set-alignment method.

1.4.3 Defining New Types of Containers

Although nested horizontal and vertical containers can express most layout patterns, a pro-
grammer can define a new type of container with an explicit layout procedure. A program-
mer defines a new type of container by deriving a class from panel9, or pane} and overriding
the container-size and place-children methods. The container-size method takes
a list of size specifications for each child and returns two values: the minimum width and
height of the container. The place-children method takes the container’s size and a list
of size specifications for each child, and returns a list of sizes and placements (in parallel to
the original list).

An input size specification is a list of four values:

e the child’s minimum width;
e the child’s minimum height;

* the child’s horizontal stretchability (#t means stretchable, #f means not stretchable);
and

16

* the child’s vertical stretchability.

For place-children, an output position and size specification is a list of four values:

* the child’s new horizontal position (relative to the parent);

* the child’s new vertical position;

the child’s new actual width;

* the child’s new actual height.

The widths and heights for both the input and output include the children’s margins. The re-
turned position for each child is automatically incremented to account for the child’s margin

in placing the control.

1.5 Mouse and Keyboard Events

Whenever the user moves the mouse, clicks or releases a mouse button, or presses a key on
the keyboard, an event is generated for some window. The window that receives the event

depends on the current state of the graphic display:

* The receiving window of a mouse event is usually the window under the cursor when
the mouse is moved or clicked. If the mouse is over a child window, the child window
receives the event rather than its parent.

When the user clicks in a window, the window “grabs” the mouse, so that al/l mouse
events go to that window until the mouse button is released (regardless of the location
of the cursor). As a result, a user can click on a scrollbar thumb and drag it without
keeping the cursor strictly inside the scrollbar control.

A mouse button-release event is normally generated for each mouse button-down
event, but a button-release event might get dropped. For example, a modal dialog
might appear and take over the mouse. More generally, any kind of mouse event can
get dropped in principle, so avoid algorithms that depend on precise mouse-event se-
quences. For example, a mouse tracking handler should reset the tracking state when
it receives an event other than a dragging event.

The receiving window of a keyboard event is the window that owns the keyboard
focus at the time of the event. Only one window owns the focus at any time, and focus
ownership is typically displayed by a window in some manner. For example, a text
field control shows focus ownership by displaying a blinking caret.

Within a top-level window, only certain kinds of subwindows can have the focus, de-
pending on the conventions of the platform. Furthermore, the subwindow that initially

17

owns the focus is platform-specific. A user can moves the focus in various ways, usu-
ally by clicking the target window. A program can use the focus method to move the
focus to a subwindow or to set the initial focus.

A ’wheel-up or ’wheel-down event may be sent to a window other than the one with
the keyboard focus, depending on how the operating system handles wheel events.

A key-press event may correspond to either an actual key press or an auto-key repeat.
Multiple key-press events without intervening key-release events normally indicate an
auto-key. Like any input event, however, key-release events sometimes get dropped
(e.g., due to the appearance of a modal dialog).

Controls, such as buttons and list boxes, handle keyboard and mouse events automatically,
eventually invoking the callback procedure that was provided when the control was created.
A canvas propagates mouse and keyboard events to its on-event and on-char methods,
respectively.

A mouse and keyboard event is delivered in a special way to its window. Each ancestor of the
receiving window gets a chance to intercept the event through the on-subwindow-event
and on-subwindow-char methods. See the method descriptions for more information.

The default on-subwindow-char method for a top-level window intercepts keyboard events
to detect menu-shortcut events and focus-navigation events. See on-subwindow-char in
framey, and on-subwindow-char in dialog} for details. Certain OS-specific key combi-
nations are captured at a low level, and cannot be overridden. For example, on Windows and
Unix, pressing and releasing Alt always moves the keyboard focus to the menu bar. Simi-
larly, Alt-Tab switches to a different application on Windows. (Alt-Space invokes the system
menu on Windows, but this shortcut is implemented by on-system-menu-char, which is
called by on-subwindow-char in framey, and on-subwindow-char in dialogj.)

1.6 Event Dispatching and Eventspaces

A graphical user interface is an inherently multi-threaded system: one thread is the program
managing windows on the screen, and the other thread is the user moving the mouse and
typing at the keyboard. GUI programs typically use an event queue to translate this multi-
threaded system into a sequential one, at least from the programmer’s point of view. Each
user action is handled one at a time, ignoring further user actions until the previous one is
completely handled. The conversion from a multi-threaded process to a single-threaded one
greatly simplifies the implementation of GUI programs.

Despite the programming convenience provided by a purely sequential event queue, certain
situations require a less rigid dialog with the user:

* Nested event handling: In the process of handling an event, it may be necessary to
obtain further information from the user. Usually, such information is obtained via

18

a modal dialog; in whatever fashion the input is obtained, more user events must be
received and handled before the original event is completely handled. To allow the
further processing of events, the handler for the original event must explicitly yield to
the system. Yielding causes events to be handled in a nested manner, rather than in a
purely sequential manner.

* Asynchronous event handling: An application may consist of windows that represent
independent dialogs with the user. For example, a drawing program might support
multiple drawing windows, and a particularly time-consuming task in one window
(e.g., a special filter effect on an image) should not prevent the user from working
in a different window. Such an application needs sequential event handling for each
individual window, but asynchronous (potentially parallel) event handling across win-
dows. In other words, the application needs a separate event queue for each window,
and a separate event-handling thread for each event queue.

An eventspace is a context for processing GUI events. Each eventspace maintains its own
queue of events, and events in a single eventspace are dispatched sequentially by a designated
handler thread. An event-handling procedure running in this handler thread can yield to the
system by calling yield, in which case other event-handling procedures may be called in a
nested (but single-threaded) manner within the same handler thread. Events from different
eventspaces are dispatched asynchronously by separate handler threads.

When a frame or dialog is created without a parent, it is associated with the current
eventspace as described in[§1.6.3 “Creating and Setting the Eventspace™ Events for a top-
level window and its descendants are always dispatched in the window’s eventspace. Every
dialog is modal; a dialog’s show method implicitly calls yield to handle events while the
dialog is shown. (See also[§1.6.2 “Eventspaces and Threads”|for information about threads
and modal dialogs.) Furthermore, when a modal dialog is shown, the system disables key
and mouse press/release events to other top-level windows in the dialog’s eventspace, but
windows in other eventspaces are unaffected by the modal dialog. (Mouse motion, enter,
and leave events are still delivered to all windows when a modal dialog is shown.)

1.6.1 Event Types and Priorities

In addition to events corresponding to user and windowing actions, such as button clicks,
key presses, and updates, the system dispatches two kinds of internal events: timer events
and explicitly queued events.

Timer events are created by instances of timer%. When a timer is started and then expires,
the timer queues an event to call the timer’s notify method. Like a top-level window, each
timer is associated with a particular eventspace (the current eventspace as described in[§1.6.3]
[‘Creating and Setting the Eventspace™) when it is created, and the timer queues the event in
its eventspace.

Explicitly queued events are created with queue-callback, which accepts a callback pro-

19

cedure to handle the event. The event is enqueued in the current eventspace at the time of
the call to queue-callback, with either a high or low priority as specified by the (optional)
second argument to queue-callback.

An eventspace’s event queue is actually a priority queue with events sorted according to their
kind, from highest-priority (dispatched first) to lowest-priority (dispatched last):

* The highest-priority events are high-priority events installed with queue-callback.
* Timer events have the second-highest priority.

* Graphical events, such as mouse clicks or window updates, have the second-lowest
priority.

* The lowest-priority events are low-priority events installed with queue-callback.

Although a programmer has no direct control over the order in which events are dispatched,
a programmer can control the timing of dispatches by setting the event dispatch handler via
the event-dispatch-handler parameter. This parameter and other eventspace procedures
are described in more detail in[§4.2 “Eventspaces’]|

1.6.2 Eventspaces and Threads

When a new eventspace is created, a corresponding handler thread is created for the
eventspace. When the system dispatches an event for an eventspace, it always does so in
the eventspace’s handler thread. A handler procedure can create new threads that run indef-
initely, but as long as the handler thread is running a handler procedure, no new events can
be dispatched for the corresponding eventspace.

When a handler thread shows a dialog, the dialog’s show method implicitly calls yield for
as long as the dialog is shown. When a non-handler thread shows a dialog, the non-handler
thread simply blocks until the dialog is dismissed. Calling yield with no arguments from
a non-handler thread has no effect. Calling yield with a semaphore from a non-handler
thread is equivalent to calling semaphore-wait.

1.6.3 Creating and Setting the Eventspace

Whenever a frame, dialog, or timer is created, it is associated with the current eventspace as
determined by the current-eventspace parameter (see §11.3.2 “Parameters”).

The make-eventspace procedure creates a new eventspace. The following example creates
a new eventspace and a new frame in the eventspace (the parameterize syntactic form
temporary sets a parameter value):

20

(let ([new-es (make-eventspace)])
(parameterize ([current-eventspace new-es])
(new framey, [label "Example"])))

When an eventspace is created, it is placed under the management of the current custo-
dian. When a custodian shuts down an eventspace, all frames and dialogs associated with
the eventspace are destroyed (without calling can-close? or on-close in top-level-
window<Y%>), all timers in the eventspace are stopped, and all enqueued callbacks are re-
moved. Attempting to create a new window, timer, or explicitly queued event in a shut-down
eventspace raises the exn :misc exception.

An eventspace is a synchronizable event (not to be confused with a GUI event), so it can
be used with sync. As a synchronizable event, an eventspace is in a blocking state when a
frame is visible, a timer is active, a callback is queued, or a menu-bar is created with a
’root parent. (Note that the blocking state of an eventspace is unrelated to whether an event
is ready for dispatching.)

1.6.4 Continuations and Event Dispatch

Whenever the system dispatches an event, the call to the handler is wrapped with a contin-
uation prompt (see call-with-continuation-prompt) that delimits continuation aborts
(such as when an exception is raised) and continuations captured by the handler. The de-
limited continuation prompt is installed outside the call to the event dispatch handler, so any
captured continuation includes the invocation of the event dispatch handler.

For example, if a button callback raises an exception, than the abort performed by the default
exception handler returns to the event-dispatch point, rather than terminating the program or
escaping past an enclosing (yield). If with-handlers wraps a (yield) that leads to
an exception raised by a button callback, however, the exception can be captured by the
with-handlers.

Along similar lines, if a button callback captures a continuation (using the default continua-
tion prompt tag), then applying the continuation re-installs only the work to be done by the
handler up until the point that it returns; the dispatch machinery to invoke the button call-
back is not included in the continuation. A continuation captured during a button callback is
therefore potentially useful outside of the same callback.

1.6.5 Logging

The GUI system logs the timing of when events are handled and how long they take to be
handled. Each event that involves a callback into Racket code has two events logged, both
of which use the gui-event struct:

21

(struct gui-event (start end name) #:prefab)

The start field is the result of (current-inexact-milliseconds) when the event han-
dling starts. The end field is #£ for the log message when the event handling starts, and the
result of (current-inexact-milliseconds) when it finishes for the log message when
an event finishes. The name field is the name of the function that handled the event; in
the case of a queue-callback-based event, it is the name of the thunk passed to queue-
callback.

1.7 Animation in Canvases

The content of a canvas is buffered, so if a canvas must be redrawn, the on-paint method
or paint-callback function usually does not need to be called again. To further reduce
flicker, while the on-paint method or paint-callback function is called, the windowing
system avoids flushing the canvas-content buffer to the screen.

Canvas content can be updated at any time by drawing with the result of the canvas’s get-dc
method, and drawing is thread-safe. Changes to the canvas’s content are flushed to the screen
periodically (not necessarily on an event-handling boundary), but the f1ush method imme-
diately flushes to the screen—as long as flushing has not been suspended. The suspend-
flush and resume-f1lush methods suspend and resume both automatic and explicit flushes,
although on some platforms, automatic flushes are forced in rare cases.

For most animation purposes, suspend-flush, resume-flush, and f1lush can be used to
avoid flicker and the need for an additional drawing buffer for animations. During an anima-
tion, bracket the construction of each animation frame with suspend-flush and resume-
flush to ensure that partially drawn frames are not flushed to the screen. Use flush to
ensure that canvas content is flushed when it is ready if a suspend-f1lush will soon follow,
because the process of flushing to the screen can be starved if flushing is frequently suspend.
The method refresh-now in canvasj, conveniently encapsulates this sequence.

22

2 Widget Gallery

This section shows the main widgets available in the Racket Graphical User Interface
Toolkit. Each image is a link to the documentation of the relevant widget.

IE»uttn:-nI

(define button (new buttonj,
(parent panel)
(label "Button")))

[Check Box

(define check-box (new check-box},
(parent panel)
(label "Check Box'")
(value #t)))

Ehoicel ltem0 2

(define choice (new choice}
(label "Choice")
(parent panel)
(choices (1list "Item 0"))))

23

Combo Field

(define combo-field (new combo-field),
(label "Combo")
(parent panel)
(choices (list "Field"))
(init-value "Field")))

Editor Canvas

(define editor-canvas (new editor-canvas),
(parent panel)

(label "Editor Canvas")))
(define text (new text%))

(send text insert "Editor Canvas')
(send editor-canvas set-editor text)

Gauge G

(define gauge (new gaugel,
(label "Gauge")

24

(parent panel)
(range 100)))
(send gauge set-value 42)

Group Box Panel

(define group-box-panel (new group-box-panely,
(parent panel)
(label "Group Box Panel")))

List BoX First Column

ltem 1

Item 2

(define list-box (new list-box
(label "List Box")
(parent (new horizontal-panel,
(parent panel)
(style (list ’border))))
(choices (list "Item Q"
"Item 1"
"Ttem 2"))
(style (list ’single
’column-headers))
(columns (list "First Column"))))

25

(define menu-bar (new menu-bar’
(parent frame)))

(new menu’,
(label "&File")
(parent menu-bar))
(new menu’,
(label "&Edit")
(parent menu-bar))
(new menu’,
(label "&Help")
(parent menu-bar))

Message

(define message (new messagel,
(parent panel)
(label "Message")))

Panel

(define a-panel (new panel}
(parent panel)

(style (1list ’border))))
(new messageY

(parent a-panel)
(label "Panel"))

® Button0
Radio Box () Button1

) Button 2

(define radio-box (new radio-boxJ,
(1label "Radio Box")
(parent panel)
(choices (1list "Button Q"
"Button 1"
"Button 2"))))

Slider

(define slider (new slider’,

(label "Slider")
(parent panel)
(min-value 0)
(max-value 100)
(init-value 42)))

27

TabO|| Tab1 | Tab 2

(define tab-panel (new tab-panel,
(parent panel)
(choices (list "Tab 0"
"Tab 1"
"Tab 2"))))

Text|Field

(define text-field (new text-field)

(label "Text'")
(parent panel)
(init-value "Field")))

28

3 Windowing Classes

Windows and controls:

area<y>
_____________________ |~
| | |
subarea<y,> window<%> area-container<y>
<<l o)
| | | | (I
subwindow<%> | | |
< | __ | | (.
| | | | pane’,
control<y> | | | |- horizontal-pane}
|- message, | | | |- vertical-pane,
|- buttony | |
|- check-box} | area-container-window<}%>
|- slider | I
|- gaugel I I .
[- text-field), | | |
|- combo-field’, | [--——--—- panel,
|- radio-box} | | |- horizontal-panel,
[- list-control<y> | | |- vertical-panell,
|- choiceY | | |- tab-panely
[- list-box% | | |- group-box-
panel,
| |
| |- top-level-window<%>
| |- frame,
canvas<y,> |- dialogh
|- canvasY
|- editor-canvasy
Menus:

menu-item<%>

| - separator-menu-item),
|- labelled-menu-item<%>

| - menu-itemy,

menu-item-container<y>

menu’,

- selectable-menu-item<¥%>

29

| - menu-bar’,
| - popup-menu’,

<L

| - checkable-menu-item},

Events and other:

event, timery
|- key-event} cursor’,
| - mouse-event/,
- scroll-event clipboard<%>
|- control-eventy clipboard-client},
Alphabetical:

3.1 area<¥y>

area<’%> : interface?

An area<’,> object is either a window or a windowless container for managing the position
and size of other areas. An area<%> can be a container, a containee, or both. The only areas
without a parent are top-level windows.

All area<> classes accept the following named instantiation arguments:

* min-width — default is the initial graphical minimum width; passed to min-width

e min-height — default is the initial graphical minimum height; passed to min-
height

* stretchable-width — default is class-specific; passed to stretchable-width
* stretchable-height — default is class-specific; passed to stretchable-height

(send an-area get-graphical-min-size)
— dimension-integer? dimension-integer?

Returns the area’s graphical minimum size as two values: the minimum width and the mini-
mum height (in pixels).

See [§1.4 “Geometry Management’| for more information. Note that the return value does
not depend on the area’s min-width and min-height settings.

(send an-area get-parent)
— (or/c (is-a?/c area-container<%>) #f)

Returns the area’s parent. A top-level window may have no parent (in which case #f is
returned), or it may have another top-level window as its parent.

30

(send an-area get-top-level-window)
— (or/c (is-a?/c framel,) (is-a?/c dialogi))

Returns the area’s closest frame or dialog ancestor. For a frame or dialog area, the frame or
dialog itself is returned.

(send an-area min-width) — dimension-integer?
(send an-area min-width w) — void?
w : dimension-integer?

Gets or sets the area’s minimum width (in pixels) for geometry management.

The minimum width is ignored when it is smaller than the area’s graphical minimum width,
or when it is smaller than the width reported by container-size if the area is a container.
See[§1.4 “Geometry Management’| for more information.

An area’s initial minimum width is its graphical minimum width. See also get-graphical-
min-size.

When setting the minimum width, if w is smaller than the internal hard minimum, an
exn:fail:contract exception is raised.

(send an-area min-height) — dimension-integer?
(send an-area min-height h) — void?
h : dimension-integer?

Gets or sets the area’s minimum height for geometry management.

The minimum height is ignored when it is smaller than the area’s graphical minimum height,
or when it is smaller than the height reported by container-size if the area is a container.
Seel§1.4 “Geometry Management’| for more information.

An area’s initial minimum height is its graphical minimum height. See also get-
graphical-min-size.

When setting the minimum height (in pixels); if h is smaller than the internal hard minimum,
an exn:fail:contract exception is raised.

(send an-area stretchable-height) — boolean?
(send an-area stretchable-height stretch?) — void?
stretch? : any/c

Gets or sets the area’s vertical stretchability for geometry management. See[§1.4 “Geometry|
for more information.

31

(send an-area stretchable-width) — boolean?
(send an-area stretchable-width stretch?) — void?
stretch? : any/c

Gets or sets the area’s horizontal stretchability for geometry management. See[§1.4 “Geom
letry Management”|for more information.

3.2 area-container<%>

area-container<’> : interface?
implements: area<>

An area-container<Y> is a container area<%>.

All area-container<y> classes accept the following named instantiation arguments:

* border — default is O; passed to border
* spacing — default is 0; passed to spacing
e alignment — default is class-specific, such as ’ (center top) for vertical-

panely; the list elements are passed to set-alignment

(send an-area-container add-child child) — void?
child : (is-a?/c subwindow<%>)

Add the given subwindow to the set of non-deleted children. See also change-children.

(send an-area-container after-new-child child) — void?
child : (is-a?/c subarea<’>)

Specification: This method is called after a new containee area is created with this area as
its container. The new child is provided as an argument to the method.

Default implementation: Does nothing.

(send an-area-container begin-container-sequence) — void?

Suspends geometry management in the container’s top-level window until end-
container-sequence is called. The begin-container-sequence and end-
container-sequence methods are used to bracket a set of container modifications so that
the resulting geometry is computed only once. A container sequence also delays show and
hide actions by change-children, as well as the on-screen part of showing via show un-
til the sequence is complete. Sequence begin and end commands may be nested arbitrarily
deeply.

32

(send an-area-container border) — spacing-integer?
(send an-area-container border margin) — void?
margin : spacing-integer?

Gets or sets the border margin for the container in pixels. This margin is used as an inset
into the panel’s client area before the locations and sizes of the subareas are computed.

(send an-area-container change-children filter) — void?
((listof (is-a?/c subarea<’>))

filt :
1iter -> . (listof (is-a?%/c subarea<¥%>)))

Takes a filter procedure and changes the container’s list of non-deleted children. The filter
procedure takes a list of children areas and returns a new list of children areas. The new list
must consist of children that were created as subareas of this area (i.e., change-children
cannot be used to change the parent of a subarea).

After the set of non-deleted children is changed, the container computes the sets of newly
deleted and newly non-deleted children. Newly deleted windows are hidden. Newly non-
deleted windows are shown.

Since non-window areas cannot be hidden, non-window areas cannot be deleted. If the filter
procedure removes non-window subareas, an exception is raised and the set of non-deleted
children is not changed.

(send an-area-container container-flow-modified) — void?

Call this method when the result changes for an overridden flow-defining method, such as
place-children. The call notifies the geometry manager that the placement of the con-
tainer’s children needs to be recomputed.

The reflow-containermethod only recomputes child positions when the geometry man-
ager thinks that the placement has changed since the last computation.

(send an-area-container container-size info)
— dimension-integer? dimension-integer?
(listof (list/c dimension-integer?
dimension-integer?
any/c
any/c))

info :

Called to determine the minimum size of a container. See[§1.4 “Geometry Management”|for
more information.

(send an-area-container delete-child child) — void?
child : (is-a?/c subwindow<%>)

33

Removes the given subwindow from the list of non-deleted children. See also change-
children.

(send an-area-container end-container-sequence) — void?

See begin-container-sequence

(send an-area-container get-alignment)
(symbols ’right ’center ’left)
(symbols ’bottom ’center ’top)

Returns the container’s current alignment specification. See set-alignment for more in-
formation.

(send an-area-container get-children)
— (listof (is-a?/c subarea<>))

Returns a list of the container’s non-deleted children. (The non-deleted children are the ones
currently managed by the container; deleted children are generally hidden.) The order of the
children in the list is significant. For example, in a vertical panel, the first child in the list is
placed at the top of the panel.

(send an-area-container place-children info
width
height)
(listof (list/c dimension-integer?
dimension-integer?
dimension-integer?
dimension-integer?))
(listof (list/c dimension-integer?
dimension-integer?
any/c
any/c))

width : dimension-integer?

height : dimension-integer?

info

Called to place the children of a container. See [§1.4 “Geometry Management”| for more
information.

(send an-area-container reflow-container) — void?

When a container window is not shown, changes to the container’s set of children do not nec-
essarily trigger the immediate re-computation of the container’s size and its children’s sizes
and positions. Instead, the recalculation is delayed until the container is shown, which avoids
redundant computations between a series of changes. The reflow-container method
forces the immediate recalculation of the container’s and its children’s sizes and locations.

34

Immediately after calling the reflow-container method, get-size, get-client-size,
get-width, get-height, get-x, and get-y report the manager-applied sizes and loca-
tions for the container and its children, even when the container is hidden. A container
implementation can call functions such as get-size at any time to obtain the current state
of a window (because the functions do not trigger geometry management).

See also container-flow-modified.

(send an-area-container set-alignment horiz-align
vert-align) — void?
horiz-align : (symbols ’right ’center ’left)
vert-align : (symbols ’bottom ’center ’top)

Sets the alignment specification for a container, which determines how it positions its chil-
dren when the container has leftover space (when a child was not stretchable in a particular
dimension).

When the container’s horizontal alignment is ’ 1eft, the children are left-aligned in the con-
tainer and whitespace is inserted to the right. When the container’s horizontal alignment is
’center, each child is horizontally centered in the container. When the container’s hori-
zontal alignment is *right, leftover whitespace is inserted to the left.

Similarly, a container’s vertical alignment can be ’top, ’center, or >bottom.

(send an-area-container spacing) — spacing-integer?
(send an-area-container spacing spacing) — void?
spacing : spacing-integer?

Gets or sets the spacing, in pixels, used between subareas in the container. For example, a
vertical panel inserts this spacing between each pair of vertically aligned subareas (with no
extra space at the top or bottom).

3.3 area-container-window<¥>

area-container-window<%> : interface?
implements: area-container<j>
window<%>

Combines two interfaces.

35

3.4 Dbutton

button?, : class?
superclass: object’

extends: control<’>

Whenever a button is clicked by the user, the button’s callback procedure is invoked. A
callback procedure is provided as an initialization argument when each button is created.

(new button’,

[label Iabell

[parent parent]

[[callback callback]

[style stylel

[font font]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
— (is-a?/c buttoni)

(or/c label-string?
(is-a?/c bitmaph)
label : (1list/c (is-a?/c bitmap%)
label-string?
(or/c ’left ’top ’right ’bottom)))
(or/c (is-a?/c frame),) (is-a?/c dialogh)
(is-a?/c panel’) (is-a?/c pane%))
callback : ((is-a?/c button},) (is-a?/c control-event’,) . -> . any)
= (lambda (b e) (void))

style : (listof (or/c ’border ’deleted)) = null
font : (is-a?/c font),) = normal-control-font
enabled : any/c = #t
vert-margin :@ spacing-integer? = 2
horiz-margin : spacing-integer? = 2
min-width : (or/c dimension-integer? #f) = #f

parent

36

min-height : (or/c dimension-integer? #f) = #f
stretchable-width : any/c = #f
stretchable-height : any/c = #f

Creates a button with a string label, bitmap label, or both. If 1abel is a bitmap, and if the
bitmap has a mask (see get-loaded-mask in bitmapy) that is the same size as the bitmap,
then the mask is used for the label. Modifying a bitmap while it is used as a label has an
unspecified effect on the displayed label. If 1abel is a list, then the button has both a bitmap
and string label, and the symbol ’1left, ’top, ’right, or *bottom specifies the location of
the image relative to the text on the button.

If & occurs in 1abel (when label includes a string), it is specially parsed; on Windows and
Unix, the character following & is underlined in the displayed control to indicate a keyboard
mnemonic. (On Mac OS X, mnemonic underlines are not shown.) The underlined mnemonic
character must be a letter or a digit. The user can effectively click the button by typing the
mnemonic when the control’s top-level-window contains the keyboard focus. The user must
also hold down the Meta or Alt key if the keyboard focus is currently in a control that handles
normal alphanumeric input. The & itself is removed from 1abel before it is displayed for the
control; a && in 1abel is converted to & (with no mnemonic underlining). On Mac OS X, a
parenthesized mnemonic character is removed (along with any surrounding space) before the
label is displayed, since a parenthesized mnemonic is often used for non-Roman languages.
Finally, for historical reasons, any text after a tab character is removed on all platforms. All
of these rules are consistent with label handling in menu items (see set-label). Mnemonic
keyboard events are handled by on-traverse-char (but not on Mac OS X).

The callback procedure is called (with the event type ’button) whenever the user clicks
the button.

If style includes ’border, the button is drawn with a special border that indicates to
the user that it is the default action button (see on-traverse-char). If style includes
’deleted, then the button is created as hidden, and it does not affect its parent’s geometry;
the button can be made active later by calling parent’s add-child method.

The font argument determines the font for the control. For information about the en-
abled argument, see window<}>. For information about the horiz-margin and vert-
margin arguments, see subarea<>. For information about the min-width, min-height,
stretchable-width, and stretchable-height arguments, see area<},>.

(send a-button set-label label) — void?
(or/c label-string?

label (is-a?/c bitmap%))

Overrides set-label in window<},>.
The same as set-1label in window<%> when label is a string.

Otherwise, sets the bitmap label for a bitmap button. Since label is a bitmap, if the bitmap

37

has a mask (see get-loaded-mask in bitmap) that is the same size as the bitmap, then the
mask is used for the label. Modifying a bitmap while it is used as a label has an unspecified
effect on the displayed label. The bitmap label is installed only if the control was originally
created with a bitmap label.

If the button has both a string and a bitmap label, then either can be set using set-label.

3.5

canvas<y>

canvas<%> : interface?

implements: subwindow<%>

A canvas is a subwindow onto which graphics and text can be drawn. Canvases also receive
mouse and keyboard events.

The canvas<’> interface is implemented by two classes:

e canvas, — a canvas for arbitrary drawing and event handling; and

e editor-canvasy — a canvas for displaying editor<%> objects.

To draw onto a canvas, get its device context via get-dc. There are two basic approaches to
updating a canvas:

¢ Drawing normally occurs during the canvas’s on-paint callback. The canvas?, class

supports a paint-callback initialization argument to be called from the default on-
paint method.

A canvas’s on-paint method is called automatically as an event when the windowing
system determines that the canvas must be updated, such as when the canvas is first
shown or when it is resized. Use the refresh method to explicitly trigger an on-
paint call from the windowing system. (Multiple refresh requests before on-paint
can be called are coaleced into a single on-paint call.)

Before the windowing system calls on-paint, it may erase the canvas’s background
(see erase), depending on the style of the canvas (e.g., as determined by the style
initialization argument for canvas’%). Even when the canvas’s style suppresses ex-
plicit clearing of the canvas, a canvas may be erased by the windowing system due to
window-moving and -resizing operations. For a transparent canvas, “erased” means
that the canvas’s parent window shows through.

Drawing can also occur at any time outside an on-paint call form the windowing sys-
tem, including from threads other than the handler thread of the canvas’s eventspace.
Drawing outside an on-paint callback from the system is transient in the sense that
windowing activity can erase the canvas, but the drawing is persistent as long as no
windowing refresh is needed.

38

Calling an on-paint method directly is the same as drawing outside an on-paint
callback from the windowing system. For a canvas?, use refresh-now to force an
immediate update of the canvas’s content that is otherwise analogous to queueing an
update with refresh.

Drawing to a canvas’s drawing context actually renders into an offscreen buffer. The buffer
is automatically flushed to the screen asynchronously, explicitly via the flush method,
or explicitly via flush-display—unless flushing has been disabled for the canvas. The
suspend-flush method suspends flushing for a canvas until a matching resume-flush
calls; calls to suspend-flush and resume-flush can be nested, in which case flushing
is suspended until the outermost suspend-flush is balanced by a resume-flush. An
on-paint call from the windowing system is implicitly wrapped with suspend-flush and
resume-flush calls, as is a call to a paint procedure by refresh-now.

In the case of a transparent canvas, line and text smoothing can depend on the window that
serves as the canvas’s background. For example, smoothing may color pixels differently
depending on whether the target context is white or gray. Background-sensitive smoothing
is supported only if a relatively small number of drawing commands are recorded in the
canvas’s offscreen buffer, however.

(send a-canvas accept-tab-focus) — boolean?
(send a-canvas accept-tab-focus on?) — void?
on? : any/c

Gets or sets whether tab-focus is enabled for the canvas (assuming that the canvas is not
created with the "no-focus style for canvasy,). When tab-focus is enabled, the canvas can
receive the keyboard focus when the user navigates among a frame or dialog’s controls with
the Tab and arrow keys. By default, tab-focus is disabled.

When tab-focus is enabled for a canvas?, object, Tab, arrow, Enter, and Escape keyboard
events are consumed by a frame’s default on-traverse-char method. (In addition, a dia-
log’s default method consumes Escape key events.) Otherwise, on-traverse-char allows
the keyboard events to be propagated to the canvas.

For an editor-canvas, object, handling of Tab, arrow, Enter, and Escape keyboard events
is determined by the allow-tab-exit method.

(send a-canvas flush) — void?

Like f1lush-display, but constrained if possible to the canvas.

(send a-canvas get-canvas-background)
— (or/c (is-a?/c colory) #f)

Returns the color currently used to “erase” the canvas content before on-paint is called.
See also set-canvas-background.

39

The result is #f if the canvas was created with the ’transparent style, otherwise it is
always a color}, object.

(send a-canvas get-dc) — (is-a?/c dc<%>)

Gets the canvas’s device context. See dc<%> for more information about drawing.

(send a-canvas min-client-height) — dimension-integer?
(send a-canvas min-client-height h) — void?
h : dimension-integer?

Gets or sets the canvas’s minimum height for geometry management, based on the client
size rather than the full size. The client height is obtained or changed via min-height in
area<’>, adding or subtracting border and scrollbar sizes as appropriate.

The minimum height is ignored when it is smaller than the canvas’s graphical minimum
height. See|§1.4 “Geometry Management”|for more information.

(send a-canvas min-client-width) — dimension-integer?
(send a-canvas min-client-width w) — void?
w : dimension-integer?

Gets or sets the canvas’s minimum width for geometry management, based on the canvas’s
client size rather than its full size. The client width is obtained or changed via min-width
in area<’>, adding or subtracting border and scrollbar sizes as appropriate.

The minimum width is ignored when it is smaller than the canvas’s graphical minimum
width. See[§1.4 “Geometry Management”| for more information.

(send a-canvas on-char ch) — void?
ch : (is-a?/c key-event})

Specification: Called when the canvas receives a keyboard event. See also
[Keyboard Events”|

Default implementation: Does nothing.

(send a-canvas on-event event) — void?
event : (is-a?/c mouse-event?,)

Specification: Called when the canvas receives a mouse event. See also

[Keyboard Events™] noting in particular that certain mouse events can get dropped.

Default implementation: Does nothing.

(send a-canvas on-paint) — void?

40

Specification: Called when the canvas is exposed or resized so that the image in the canvas
can be repainted.

When on-paint is called in response to a system expose event and only a portion of the
canvas is newly exposed, any drawing operations performed by on-paint are clipped to the
newly-exposed region; however, the clipping region as reported by get-clipping-region
does not change.

Default implementation: Does nothing.

(send a-canvas on-tab-in) — void?

Specification: Called when the keyboard focus enters the canvas via keyboard navigation
events. The on-focus method is also called, as usual for a focus change. When the keyboard
focus leaves a canvas due to a navigation event, only on-focus is called.

See also accept-tab-focus and on-traverse-char in top-level-window<}> .

Default implementation: Does nothing.

(send a-canvas resume-flush) — void?

See canvas<> for information on canvas flushing.

(send a-canvas set-canvas-background color) — void?
color : (is-a?/c colork)

Sets the color used to “erase” the canvas content before on-paint is called. (This color is
typically associated with the canvas at a low level, so that it is used even when a complete
refresh of the canvas is delayed by other activity.)

If the canvas was created with the > transparent style, an exn:fail:contract exception
is raised.

(send a-canvas set-resize-corner on?) — void?
on? : any/c

On Mac OS X, enables or disables space for a resize tab at the canvas’s lower-right corner
when only one scrollbar is visible. This method has no effect on Windows or Unix, and it
has no effect when both or no scrollbars are visible. The resize corner is disabled by default,
but it can be enabled when a canvas is created with the ’resize-corner style.

(send a-canvas suspend-flush) — void?

See canvas<’> for information on canvas flushing.

Beware that suspending flushing for a canvas can discourage refreshes for other windows in
the same frame on some platforms.

41

3.6 canvasY,

canvas) : class?
superclass: object’

extends: canvas<%>

A canvasy, object is a general-purpose window for drawing and handling events. See can-
vas<Y> for information about drawing onto a canvas.

(new canvas/,

[parent parent]

[[style style]

[paint-callback paint-callback]

[label Iabell

[gl-config gl-config]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
— (is-a?/c canvas,)
(or/c (is-a?/c frame}),) (is-a?/c dialogh)

(is-a?/c panel’) (is-a?/c pane’))
(listof (or/c ’border ’control-border ’combo
’vscroll ’hscroll ’resize-cormner
style : , , , = null
gl ’no-autoclear ’transparent
’no-focus ’deleted))
paint-callback : ((is-a?/c canvas})) (is-a?/c dc<¥%>) . -> . any)
= void

label : (or/c label-string? #f) = #f
gl-config : (or/c (is-a?/c gl-configy)) #f) = #f
enabled : any/c = #t
vert-margin : spacing-integer? = 0O
horiz-margin : spacing-integer? = 0
min-width : (or/c dimension-integer? #f) = #f
min-height : (or/c dimension-integer? #f) = #f
stretchable-width : any/c = #t
stretchable-height : any/c = #t

parent

The style argument indicates one or more of the following styles:

* ’border — gives the canvas a thin border

e ’control-border — gives the canvas a border that is like a text-field/, control

42

* ’combo — gives the canvas a combo button that is like a combo-field} control; this
style is intended for use with > control-border and not with *hscroll or vscroll

e ’hscroll — enables horizontal scrolling (initially visible but inactive)
e ’vscroll — enables vertical scrolling (initially visible but inactive)

* ’resize-corner — leaves room for a resize control at the canvas’s bottom right
when only one scrollbar is visible

e ’gl — creates a canvas for OpenGL drawing instead of normal dc<%> drawing; call
the get-gl-context method on the result of get-dc; this style is usually combined
with "no-autoclear

* ’no-autoclear — prevents automatic erasing of the canvas by the windowing sys-
tem; see canvas<Y%> for information on canvas refresh

e ’transparent — the canvas is “erased” by the windowing system by letting its par-
ent show through; see canvas<> for information on window refresh and on the in-
teraction of ’transparent and offscreen buffering; the result is undefined if this flag
is combined with *no-autoclear

e ’no-focus — prevents the canvas from accepting the keyboard focus when the canvas
is clicked or when the focus method is called

* ’deleted — creates the canvas as initially hidden and without affecting parent’s ge-
ometry; the canvas can be made active later by calling parent’s add-child method

The ’hscroll and ’vscroll styles create a canvas with an initially inactive scroll-
bar. The scrollbars are activated with either init-manual-scrollbars or init-auto-
scrollbars, and they can be hidden and re-shown with show-scrollbars.

The paint-callback argument is called by the default on-paint method, using the canvas
and the DC returned by get-dc as the argument.

The label argument names the canvas for get-label, but it is not displayed with the
canvas.

The gl-config argument determines properties of an OpenGL context for this canvas, as
obtained through the canvas’s drawing context. See also get-dc and get-gl-context in
dc<%>.

For information about the enabled argument, see window<%>. For information about the
horiz-margin and vert-margin arguments, see subarea<y>. For information about the
min-width, min-height, stretchable-width, and stretchable-height arguments,
see area<’,>.

(send a-canvas get-scroll-page which)
— positive-dimension-integer?
which : (or/c ’horizontal ’vertical)

43

Get the current page step size of a manual scrollbar. The result is O if the scrollbar is not
active or it is automatic.

The which argument is either *horizontal or ’vertical, indicating whether to get the
page step size of the horizontal or vertical scrollbar, respectively.

See also init-manual-scrollbars.

(send a-canvas get-scroll-pos which) — dimension-integer?
which : (or/c ’horizontal ’vertical)

Gets the current value of a manual scrollbar. The result is always 0 if the scrollbar is not
active or it is automatic.

The which argument is either *horizontal or ’vertical, indicating that the value of the
horizontal or vertical scrollbar should be returned, respectively.

See also init-manual-scrollbars.

(send a-canvas get-scroll-range which) — dimension-integer?
which : (or/c ’horizontal ’vertical)

Gets the current maximum value of a manual scrollbar. The result is always 0 if the scrollbar
is not active or it is automatic.

The which argument is either *horizontal or ’vertical, indicating whether to get the
maximum value of the horizontal or vertical scrollbar, respectively.

See also init-manual-scrollbars.

(send a-canvas get-view-start)
— dimension-integer? dimension-integer?

Get the location at which the visible portion of the canvas starts, based on the current values
of the horizontal and vertical scrollbars if they are initialized as automatic (see init-auto-
scrollbars). Combined with get-client-size, an application can efficiently redraw
only the visible portion of the canvas. The values are in pixels.

If the scrollbars are disabled or initialized as manual (see init-manual-scrollbars), the
resultis (values 0 0).

(send a-canvas get-virtual-size)
— (value dimension-integer? dimension-integer?)

Gets the size in device units of the scrollable canvas area (as opposed to the client size,
which is the area of the canvas currently visible). This is the same size as the client size (as
returned by get-client-size) unless scrollbars are initialized as automatic (see init-
auto-scrollbars).

44

(send a-canvas init-auto-scrollbars horiz-pixels
vert-pixels
h-value
v-value) — void?
horiz-pixels : (or/c positive-dimension-integer? #f)
vert-pixels : (or/c positive-dimension-integer? #f)
h-value : (real-in 0.0 1.0)
v-value : (real-in 0.0 1.0)

Enables and initializes automatic scrollbars for the canvas. A horizontal or vertical scrollbar
can be activated only in a canvas that was created with the hscroll or ’vscroll style
flag, respectively.

With automatic scrollbars, the programmer specifies the desired virtual size of the canvas,
and the scrollbars are automatically handled to allow the user to scroll around the virtual area.
The scrollbars are not automatically hidden if they are unneeded; see show-scrollbars.

The coordinates for mouse events (passed to on-event) are not adjusted to account for the
position of the scrollbar; use the get-view-start method to find suitable offsets.

See also init-manual-scrollbars for information about manual scrollbars. The hori-
zontal and vertical scrollbars are always either both manual or both automatic, but they are
independently enabled. Automatic scrollbars can be re-initialized as manual, and vice versa.

If either horiz-pixels or vert-pixels is #f, the scrollbar is not enabled in the corre-
sponding direction, and the canvas’s virtual size in that direction is the same as its client
size.

The h-value and v-value arguments specify the initial values of the scrollbars as a frac-
tion of the scrollbar’s range. A 0.0 value initializes the scrollbar to its left/top, whilea 1.0
value initializes the scrollbar to its right/bottom.

It is possible to adjust the virtual sizes by calling this function again.
See also on-scroll and get-virtual-size.

(send a-canvas init-manual-scrollbars h-length
v-length
h-page
v-page
h-value
v-value) — void?
h-length : (or/c dimension-integer? #f)
v-length : (or/c dimension-integer? #f)
h-page : positive-dimension-integer?
v-page : positive-dimension-integer?

45

h-value : dimension-integer?
v-value : dimension-integer?

Enables and initializes manual scrollbars for the canvas. A horizontal or vertical scrollbar
can be activated only in a canvas that was created with the *hscroll or ’vscroll style
flag, respectively.

With manual scrollbars, the programmer is responsible for managing all details of the scroll-
bars, and the scrollbar state has no effect on the canvas’s virtual size. Instead, the canvas’s
virtual size is the same as its client size.

See also init-auto-scrollbars for information about automatic scrollbars. The hori-
zontal and vertical scrollbars are always either both manual or both automatic, but they are
independently enabled. Automatic scrollbars can be re-initialized as manual, and vice versa.

The h-length and v-length arguments specify the length of each scrollbar in scroll steps
(i.e., the maximum value of each scrollbar). If either is #f, the scrollbar is disabled in the
corresponding direction.

The h-page and v-page arguments set the number of scrollbar steps in a page, i.e., the
amount moved when pressing above or below the value indicator in the scrollbar control.

The h-value and v-value arguments specify the initial values of the scrollbars.

If h-value is greater than h-length or v-value is greater than v-length, an
exn:fail:contract exception is raised. (The page step may be larger than the total size
of a scrollbar.)

See also on-scroll and get-virtual-size.

(send a-canvas make-bitmap width height) — (is-a/c? bitmap)
width : exact-positive-integer?
height : exact-positive-integer?

Creates a bitmap that draws in a way that is the same as drawing to the canvas. See also

make-screen-bitmap and §1.8 “Portability and Bitmap Variants”.

(send a-canvas on-paint) — void?

Overrides on-paint in canvas<%>.

Calls the procedure supplied as the paint-callback argument when the canvas’, was
created.

(send a-canvas on-scroll event) — void?
event : (is-a?/c scroll-event?)

46

Called when the user changes one of the canvas’s scrollbars. A scroll-event} argument
provides information about the scroll action.

This method is called only when manual scrollbars are changed (see init-manual-
scrollbars), not automatic scrollbars; for automatic scrollbars, the on-paint method is
called, instead.

(send a-canvas refresh-now [paint-proc
#:flush? flush?]) — void?
paint-proc : ((is-a?/c dc<}>) . -> . any)
= (lambda (dc) (send a-canvas on-paint))
flush? : any/c = #t

Calls paint-proc with the canvas’s drawing context to immediately update the canvas (in
contrast to refresh, which merely queues an update request to be handled at the windowing
system’s discretion).

Before paint-proc is called, flushing is disabled for the canvas. Also, the canvas is erased,
unless the canvas has the 'no-autoclear style. After paint-proc returns, flushing is
enabled, and if f1ush? is true, then f1lush is called immediately.

(send a-canvas scroll h-value v-value) — void?
h-value : (or/c (real-in 0.0 1.0) #f)
v-value : (or/c (real-in 0.0 1.0) #f)

Sets the values of automatic scrollbars. (This method has no effect on manual scrollbars.)
If either argument is #f, the scrollbar value is not changed in the corresponding direction.

The h-value and v-value arguments each specify a fraction of the scrollbar’s movement.
A 0.0 value sets the scrollbar to its left/top, while a 1.0 value sets the scrollbar to its
right/bottom. A 0.5 value sets the scrollbar to its middle. In general, if the canvas’s virtual
size is v, its client size is ¢, and (> v c¢), then scrolling to p sets the view start to (floor

(xp (- v ec).

See also init-auto-scrollbars and get-view-start.

(send a-canvas set-scroll-page which value) — void?
which : (or/c ’horizontal ’vertical)
value : positive-dimension-integer?

Set the current page step size of a manual scrollbar. (This method has no effect on automatic
scrollbars.)

The which argument is either *horizontal or ’vertical, indicating whether to set the
page step size of the horizontal or vertical scrollbar, respectively.

See also init-manual-scrollbars.

47

(send a-canvas set-scroll-pos which value) — void?
which : (or/c ’horizontal ’vertical)
value : dimension-integer?

Sets the current value of a manual scrollbar. (This method has no effect on automatic scroll-
bars.)

The which argument is either *horizontal or ’vertical, indicating whether to set the
value of the horizontal or vertical scrollbar set, respectively.

The value of the canvas’s scrollbar can be changed by the user scrolling, and such changes
do not go through this method; use on-scroll to monitor scrollbar value changes.

See also init-manual-scrollbars and scroll.

(send a-canvas set-scroll-range which
value) — void?
which : (or/c ’horizontal ’vertical)
value : dimension-integer?

Sets the current maximum value of a manual scrollbar. (This method has no effect on auto-
matic scrollbars.)

The which argument is either *horizontal or ’vertical, indicating whether to set the
maximum value of the horizontal or vertical scrollbar, respectively.

See also init-manual-scrollbars.

(send a-canvas show-scrollbars show-horiz?
show-vert?) — void?
show-horiz? : any/c
show-vert? : any/c

Shows or hides the scrollbars as indicated by show-horiz? and show-vert? If
show-horiz? is true and the canvas was not created with the ’hscroll style, an
exn:fail:contract exception is raised. Similarly, if show-vert? is true and the can-
vas was not created with the ’vscroll style, an exn:fail:contract exception is raised.

The horizontal scrollbar can be shown only if the canvas was created with the *hscroll
style, and the vertical scrollbar can be shown only if the canvas was created with the
’vscroll style. See also init-auto-scrollbars and init-manual-scrollbars.

(send a-canvas swap-gl-buffers) — void?

Calls swap-buffers on the result of get-gl-context for this canvas’s DC as returned by
get-dc.

48

The swap-buffers in gl-context<y> method acquires a re-entrant lock, so nested calls
to swap-gl-buffers or with-gl-context on different threads or OpenGL contexts can
block or deadlock.

(send a-canvas with-gl-context thunk
[#:fail fail]) — any
thunk : (-> any)
fail : (-> any) = (lambda () (error))

Passes the given thunk to call-as-current of the result of get-gl-context for this
canvas’s DC as returned by get-dc. If get-gl-context returns #f, then fail is called,
instead.

The call-as-current in gl-context<y> method acquires a re-entrant lock, so nested
calls to with-gl-context or swap-gl-buffers on different threads or OpenGL contexts
can block or deadlock.

3.7 check-box}

& Check Box

check-box), : class?
superclass: object

extends: control<y>

A check box is a labeled box which is either checked or unchecked.

Whenever a check box is clicked by the user, the check box’s value is toggled and its callback
procedure is invoked. A callback procedure is provided as an initialization argument when
each check box is created.

49

(new check-box}
[label labell
[parent parent]
[[callback callback]
[style style]
[value valuel]
[font font]
[enabled enabled]
[vert-margin vert-margin]
[horiz-margin horiz-margin]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])
— (is-a?/c check-box})
label : (or/c label-string? (is-a?/c bitmapi))
(or/c (is-a?/c frame),) (is-a?/c dialogh)
(is-a?/c panel’) (is-a?/c pane’))
((is-a?/c check-box’%) (is-a?/c control-event)
-> . any)
= (lambda (c e) (void))
style : (listof (or/c ’deleted)) = null
value : any/c = #f
font : (is-a?/c font}%) = normal-control-font
enabled : any/c = #t
vert-margin : spacing-integer? = 2

parent :

callback :

horiz-margin : spacing-integer? = 2

min-width : (or/c dimension-integer? #f) = #f
min-height : (or/c dimension-integer? #f) = #f
stretchable-width : any/c = #f
stretchable-height : any/c = #f

Creates a check box with a string or bitmap label. If 1abel is a bitmap, and if the bitmap
has a mask (see get-loaded-mask in bitmap?) that is the same size as the bitmap, then the
mask is used for the label. Modifying a bitmap while it is used as a label has an unspecified
effect on the displayed label.

If & occurs in label (when label is a string), it is specially parsed as for buttoni.

The callback procedure is called (with the event type ’check-box) whenever the user
clicks the check box.

If style includes ’deleted, then the check box is created as hidden, and it does not affect

its parent’s geometry; the check box can be made active later by calling parent’s add-
child method.

50

If value is true, it is passed to set-value so that the box is initially checked.

The font argument determines the font for the control. For information about the en-
abled argument, see window<%>. For information about the horiz-margin and vert-
margin arguments, see subarea<>. For information about the min-width, min-height,
stretchable-width, and stretchable-height arguments, see area<y>.

(send a-check-box get-value) — boolean?

Gets the state of the check box: #t if it is checked, #f otherwise.
(send a-check-box set-label label) — void?
label : (or/c label-string? (is-a?/c bitmap¥))

Overrides set-1label in window<7>.
The same as set-1label in window<%> when label is a string.

Otherwise, sets the bitmap label for a bitmap check box. Since label is a bitmap, if the
bitmap has a mask (see get-loaded-mask in bitmap¥) that is the same size as the bitmap,
then the mask is used for the label. Modifying a bitmap while it is used as a label has an
unspecified effect on the displayed label. The bitmap label is installed only if the control
was originally created with a bitmap label.

(send a-check-box set-value state) — void?
state : any/c
Sets the check box’s state. (The control’s callback procedure is not invoked.)

The check box’s state can be changed by the user clicking the control, and such changes do
not go through this method; use the control callback procedure (provided as an initialization
argument) to monitor state changes.

If state is #f, the box is unchecked, otherwise it is checked.

3.8 checkable-menu-item}

checkable-menu-item), : class?
superclass: object’

extends: selectable-menu-item<)>

A checkable-menu-itemy is a string-labelled menu item that maintains a check mark. Its
parent must be a menuy or popup-menu’. When the user selects the menu item, the item’s
check mark is toggled and its callback procedure is called.

51

(new checkable-menu-itemy
[label labell]
[parent parent]
[[callback callback]
[shortcut shortcut]
[help-string help-string]
[demand-callback demand-callback]
[checked checked]
[shortcut-prefix shortcut-prefix]])
— (is-a?/c checkable-menu-item},)
label : label-string?
parent : (or/c (is-a?/c menu}%) (is-a?/c popup-menu))
((is-a?/c checkable-menu-item},) (is-a?/c control-event,)
-> . any)
= (lambda (i e) (void))
shortcut : (or/c char? symbol? #f) = #f
help-string : (or/c label-string? #f) = #f
demand-callback : ((is-a?/c menu-item)) . -> . any)
= (lambda (i) (void))
checked : any/c = #f
(and/c (listof (or/c ’alt ’cmd ’meta ’ctl
’shift ’option))
(A (x) (implies (equal? ’unix (system-type))
(not (and (member ’alt x)
(member ’meta x)))))
(A (x) (equal? x (remove-duplicates x))))
= (get-default-shortcut-prefix)

callback :

shortcut-prefix :

Creates a new menu item in parent. The item is initially shown, appended to the end of
its parent, and unchecked. The callback procedure is called (with the event type ’menu)
when the menu item is selected (either via a menu bar, popup-menu in window<%>, or
popup-menu in editor-admin).

See set-label for information about mnemonic &s in 1abel.

If shortcut is not #£, the item has a shortcut. See get-shortcut for more information.
The shortcut-prefix argument determines the set of modifier keys for the shortcut; see
get-shortcut-prefix.

If help is not #£, the item has a help string. See get-help-string for more information.

The demand-callback procedure is called by the default on-demand method with the
object itself.

By default, the menu item is initially unchecked. If checked is true, then check is called

52

so that the menu item is initially checked.
(send a-checkable-menu-item check check?) — void?
check? : any/c
Checks or unchecks the menu item.

A menu item’s check state can be changed by the user selecting the item, and such changes
do not go through this method; use the menu item callback procedure (provided as an ini-
tialization argument) to monitor check state changes.

(send a-checkable-menu-item is-checked?) — boolean?

Returns #t if the item is checked, #f otherwise.

3.9 choice,

-

Eh{:ice. Iltem0 |

choicey, : class?
superclass: object

extends: list-control<y>

A choice item allows the user to select one string item from a pop-up list of items. Unlike a
list box, only the currently selection is visible until the user pops-up the menu of choices.

Whenever the selection of a choice item is changed by the user, the choice item’s callback
procedure is invoked. A callback procedure is provided as an initialization argument when
each choice item is created.

See also 1ist-box¥%.

53

(new choicel,
[label labell
[choices choices]
[parent parent]
[[callback callback]
[style stylel
[selection selection]
[font font]
[enabled enabled]
[vert-margin vert-margin]
[horiz-margin horiz-margin]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])
— (is-a?/c choicel,)
label : (or/c label-string? #f)
choices : (listof label-string?)
(or/c (is-a?/c frame),) (is-a?/c dialogh)
(is-a?/c panel’) (is-a?/c pane%))
callback : ((is-a?/c choice)) (is-a?/c control-event%) . -> . any)
= (lambda (c e) (void))
style (listof (or/c ’horizontal-label ’vertical-label ~ pull
' ’deleted))
selection : exact-nonnegative-integer? = 0
font : (is-a?/c font),) = normal-control-font
enabled : any/c = #t
vert-margin :@ spacing-integer? = 2
horiz-margin : spacing-integer? = 2
min-width : (or/c dimension-integer? #f) = #f
min-height : (or/c dimension-integer? #f) = #f
stretchable-width : any/c = #f
stretchable-height : any/c = #f

parent :

Creates a choice item. If 1abel is a string, it is used as the label for the choice item.
If & occurs in label, it is specially parsed as for button.

The choices list specifies the initial list of user-selectable items for the control. The ini-
tial set of choices determines the control’s minimum graphical width (see
for more information).

The callback procedure is called (with the event type ’choice) when the user selects a
choice item (or re-selects the currently selected item).

If style includes ’vertical-label, then the choice item is created with a label

54

above the control; if style does not include ’vertical-label (and optionally includes
’horizontal-label), then the label is created to the left of the choice item. If style
includes >deleted, then the choice item is created as hidden, and it does not affect its par-
ent’s geometry; the choice item can be made active later by calling parent’s add-child
method.

By default, the first choice (if any) is initially selected. If selection is positive, it is passed
to set-selection to set the initial choice selection. Although selection normally must
be less than the length of choices, it can be 0 when choices is empty.

The font argument determines the font for the control. For information about the en-
abled argument, see window<%>. For information about the horiz-margin and vert-
margin arguments, see subarea<y,>. For information about the min-width, min-height,
stretchable-width, and stretchable-height arguments, see area<y>.

3.10 clipboard-client%

clipboard-client’, : class?
superclass: object’

A clipboard-client object allows a program to take over the clipboard and service
requests for clipboard data. See clipboard<y> for more information.

A clipboard-client? object is associated to an eventspace when it becomes the current
client; see set-clipboard-client for more information.

(new clipboard-client’%) — (is-a?/c clipboard-client)

Creates a clipboard client that supports no data formats.

(send a-clipboard-client add-type format) — void?
format : string?

Adds a new data format name to the list supported by the clipboard client.

The format string is typically four capital letters. (On Mac OS X, only four characters
for format are ever used.) For example, "TEXT" is the name of the UTF-8-encoded string
format. New format names can be used to communicate application- and platform-specific
data formats.

(send a-clipboard-client get-data format)
— (or/c bytes? string? #f)
format : string?

Called when a process requests clipboard data while this client is the current one for the

55

clipboard. The requested format is passed to the method, and the result should be a byte
string matching the requested format, or #£ if the request cannot be fulfilled.

Only data format names in the client’s list will be passed to this method; see add-type.

When this method is called by the clipboard, the current eventspace is the same as the
client’s eventspace. If, at the point of the clipboard request, the current eventspace is not
the client’s eventspace, then current thread is guaranteed to be the handler thread of the
client’s eventspace.

(send a-clipboard-client get-types) — (listof string?)

Returns a list of names that are the data formats supported by the clipboard client.

(send a-clipboard-client on-replaced) — void?

Called when a clipboard client is dismissed as the clipboard owner (because the clipboard
has be taken by another client or by an external application).

3.11 clipboard<y>

clipboard<’> : interface?

A single clipboard<y> object, the-clipboard, manages the content of the system-wide
clipboard for cut and paste.

On Unix, a second clipboard<’> object, the-x-selection-clipboard, manages the
content of the system-wide X11 selection. If the >GRacket :selectionAsClipboard pref-
erence preference (see [§10 “Preferences’) is set to a non-zero true value, however, then
the-clipboard is always the same as the-x-selection-clipboard, and the system-
wide X11 clipboard is not used.

On Windows and Mac OS X, the-x-selection-clipboard is always the same as the-
clipboard.

Data can be entered into a clipboard in one of two ways: by setting the current clipboard
string or byte string, or by installing a clipboard-client object. When a client is in-
stalled, requests for clipboard data are directed to the client.

Generic data is always retrieved from the clipboard as a byte string. When retrieving clip-
board data, a data type string specifies the format of the data string. The availability of
different clipboard formats is determined by the current clipboard owner.

(send a-clipboard get-clipboard-bitmap time)
— (or/c (is-a?/c bitmapl) #f)
time : exact-integer?

56

Gets the current clipboard contents as a bitmap (Windows, Mac OS X), returning #f if the
clipboard does not contain a bitmap.

See get-clipboard-data for information on eventspaces and the current clipboard client.

See |35.6 “Cut and Paste Time Stamps”| for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

(send a-clipboard get-clipboard-data format
time)
— (or/c bytes? string? #f)
format : string?
time : exact-integer?

Gets the current clipboard contents in a specific format, returning #£ if the clipboard does
not contain data in the requested format.

If the clipboard client is associated to an eventspace that is not the current one, the data is
retrieved through a callback event in the client’s eventspace. If no result is available within
one second, the request is abandoned and #f is returned.

See add-type in clipboard-client?y for information on format.

See [§5.6 “Cut and Paste Time Stamps”| for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

(send a-clipboard get-clipboard-string time) — string?
time : exact-integer?

Gets the current clipboard contents as simple text, returning "" if the clipboard does not
contain any text.

See get-clipboard-data for information on eventspaces and the current clipboard client.

See |35.6 “Cut and Paste Time Stamps”| for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

(send a-clipboard same-clipboard-client? owner) — boolean?
owner : (is-a?/c clipboard-client’)

Returns #t if owner currently owns the clipboard, #f otherwise.

(send a-clipboard set-clipboard-bitmap new-bitmap
time) — void?
new-bitmap : (is-a%?/c bitmap%)
time : exact-integer?

57

Changes the current clipboard contents to new-bitmap (Windows, Mac OS X) and releases
the current clipboard client (if any).

See [§5.6 “Cut and Paste Time Stamps”| for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

(send a-clipboard set-clipboard-client new-owner
time) — void?
new-owner : (is-a?/c clipboard-client?,)
time : exact-integer?

Changes the clipboard-owning client: sets the client to new-owner and associates new-
owner with the current eventspace (as determined by current-eventspace). The
eventspace association is removed when the client is no longer the current one.

See [§5.6 “Cut and Paste Time Stamps”| for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

(send a-clipboard set-clipboard-string new-text
time) — void?
new-text : string?
time : exact-integer?

Changes the current clipboard contents to new-text, and releases the current clipboard
client (if any).

See [§5.6 “Cut and Paste Time Stamps”| for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

3.12 combo-field¥

Combo Field v

combo-field% : class?
superclass: text-fieldy

A combo-fieldy object is a text-field, object that also resembles a choice}, object,
because it has a small popup button to the right of the text field. Clicking the button pops up
a menu, and selecting a menu item typically copies the item into the text field.

58

(new combo-fieldy,
[label labell]
[choices choices]
[parent parent]
[[callback callback]
[init-value init-valuel]
[style style]
[font font]
[enabled enabled]
[vert-margin vert-margin]
[horiz-margin horiz-margin]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])
— (is-a?/c combo-field%)
label : (or/c label-string? #f)
choices : (listof label-string?)
(or/c (is-a?/c frame},) (is-a?/c dialogh)
(is-a?/c panel’) (is-a?/c pane%))
((is-a?/c combo-field}) (is-a?/c control-eventy)
-> . any)
= (lambda (c e) (void))
init-value : string = ""
style (1istof (or/c ’horizontal-label ’vertical-label — pull
' ’deleted))
font : (is-a?/c font%) = normal-control-font
enabled : any/c = #t
vert-margin : spacing-integer? = 2
horiz-margin : spacing-integer? = 2
min-width : (or/c dimension-integer? #f) = #f
min-height : (or/c dimension-integer? #f) = #f
stretchable-width : any/c = #t
stretchable-height : any/c = #f

parent

callback :

If 1abel is not #£, it is used as the combo label. Otherwise, the combo does not display its

label.

If & occurs in label, it is specially parsed as for button.

The choices list specifies the initial list of items for the combo’s popup menu. The append
method adds a new item to the menu with a callback to install the appended item into the
combo’s text field. The get-menu method returns a menu that can be changed to adjust the

content and actions of the combo’s menu.

59

The callback procedure is called when the user changes the text in the combo or presses
the Enter key (and Enter is not handled by the combo’s frame or dialog; see on-traverse-
char in top-level-window<Y>). If the user presses Enter, the type of event passed to the
callback is *text-field-enter, otherwise it is *text-field.

If init-value is not "", the minimum width of the text item is made wide enough to show
init-value. Otherwise, a built-in default width is selected.

If style includes ’vertical-label, then the combo is created with a label above the con-
trol; if style does notinclude ’vertical-label (and optionally includes horizontal-
label), then the label is created to the left of the combo. If style includes ’deleted, then
the combo is created as hidden, and it does not affect its parent’s geometry; the combo can
be made active later by calling parent’s add-child method..

The font argument determines the font for the control. For information about the en-
abled argument, see window<%>. For information about the horiz-margin and vert-
margin arguments, see subarea<y,>. For information about the min-width, min-height,
stretchable-width, and stretchable-height arguments, see area<y>.

(send a-combo-field append 1) — void?
1 : label-string?

Adds a new item to the combo’s popup menu. The given label is used for the item’s name,
and the item’s callback installs the label into the combo’s text field.

(send a-combo-field get-menu) — (is-a?/c popup-menu)

Returns a popup-menuy that is effectively copied into the combo’s popup menu when the
combo is clicked. Only the labels and callbacks of the menu’s items are used; the enable
state, submenus, or separators are ignored.

(send a-combo-field on-popup event) — void?
event : (is-a?/c control-event},)

Specification: Called when the user clicks the combo’s popup button. Override this method
to adjust the content of the combo menu on demand.

Default implementation: Does nothing.

3.13 control<)>

control<y> : interface?
implements: subwindow<%>

The control<y> interface is implemented by the built-in control window classes:

60

* message

* button,

¢ check-box
e slider’

* gaugel,

e text-fieldy
e radio-box},
e choice,

e list-box}

(send a-control command event) — void?
event : (is-a?/c control-event’)

Calls the control’s callback function, passing on the given control-event?, object.

3.14 column-control-event?,

column-control-event), : class?
superclass: control-eventy

A column-control-event object contains information about a event on an 1ist-box¥
column header.

(new column-control-eventy
[column column]
[event-type event-typel

[[time-stamp time-stamp]])

— (is-a?/c column-control-event)
column : exact-nonnegative-integer?
event-type : (or/c ’list-box-column)
time-stamp : exact-integer? = 0

The column argument indicates the column that was clicked.
(send a-column-control-event get-column)
— exact-nonnegative-integer?

Returns the column number (counting from 0) of the clicked column.

61

(send a-column-control-event set-column column) — void?
column : exact-nonnegative-integer?

Sets the column number (counting from 0) of the clicked column.

3.15 control-eventY

control-eventy, : class?
superclass: event?,

A control-event, object contains information about a control event. An instance of
control-eventy is always provided to a control or menu item callback procedure.

(new control-eventy
[event-type event-typel
[[time-stamp time-stamp]])
— (is-a?/c control-event)
(or/c ’button ’check-box ’choice
’list-box ’list-box-dclick ’list-box-column
event-type : ’text-field ’text-field-enter
’menu ’slider ’radio-box ’tab-panel
’menu-popdown ’menu-popdown-none)
time-stamp : exact-integer? = 0

The event-type argument is one of the following:

¢ ’button — for button} clicks

e ’check-box — for check-box} toggles

¢ ’choice — for choicel, item selections

e ’1ist-box — for 1ist-box selections and deselections
e ’list-box-dclick — for 1ist-box double-clicks

e ’]ist-box-column — for list-box’ column clicks in a column-control-
event? instance

e ’text-field — for text-field changes
e ’text-field-enter — for single-line text-fieldy, Enter event
¢ ’menu — for selectable-menu-item<y> callbacks

e ’slider — for slider? changes

62

* ’radio-box — for radio-box} selection changes
* ’tab-panel — for tab-panely tab changes
¢ ’menu-popdown — for popup-menuy, callbacks (item selected)

* ’menu-popdown-none — for popup-menuj callbacks (no item selected)

This value is extracted out of a control-event?, object with the get-event-type method.

See get-time-stamp for information about time-stamp.

(send a-control-event get-event-type)
(or/c ’button ’check-box ’choice
’list-box ’list-box-dclick ’text-field
’text-field-enter ’menu ’slider ’radio-box
’menu-popdown ’menu-popdown-none ’tab-panel)

Returns the type of the control event. See control-event for information about each
event type symbol.

(send a-control-event set-event-type type) — void?

(or/c ’button ’check-box ’choice
’list-box ’list-box-dclick ’text-field
’text-field-enter ’menu ’slider ’radio-box
’menu-popdown ’menu-popdown-none ’tab-panel)

type :

Sets the type of the event. See control-event for information about each event type
symbol.

3.16 cursor’,

cursory : class?
superclass: object’

A cursor is a small icon that indicates the location of the mouse pointer. The bitmap image
typically indicates the current mode or meaning of a mouse click at its current location.

A cursor is assigned to each window (or the window may use its parent’s cursor; see set-
cursor for more information), and the pointer image is changed to match the window’s
cursor when the pointer is moved over the window. Each cursor object may be assigned to
many windows.

(make-object cursory, image
mask
[hot-spot-x
hot-spot-y]) — (is-a?/c cursor’)

63

image : (is-a?/c bitmap)

mask : (is-a?/c bitmap%)

hot-spot-x : (integer-in 0 15) = 0

hot-spot-y : (integer-in 0 15) = 0
(make-object cursor), id) — (is-a?/c cursor?)
~ (or/c ’arrow ’bullseye ’cross ’hand ’ibeam ’watch ’blank
’ ’size-n/s ’size-e/w ’size-ne/sw ’size-nw/se)

id

The first case creates a cursor using an image bitmap and a mask bitmap. Both bitmaps
must have depth 1 and size 16 by 16 pixels. The hot-spot-x and hot-spot-y arguments
determine the focus point of the cursor within the cursor image, relative to its top-left corner.

The second case creates a cursor using a stock cursor, specified as one of the following:

e ’arrow — the default cursor

* ’bullseye — concentric circles

* ’cross — a crosshair

* ’hand — an open hand

e ’ibeam — a vertical line, indicating that clicks control a text-selection caret

e ’watch — a watch or hourglass, indicating that the user must wait for a computation
to complete

e ’arrow+watch — the default cursor with a watch or hourglass, indicating that some
computation is in progress, but the cursor can still be used

* ’blank — invisible

e ’size-e/w — arrows left and right

e ’size-n/s — arrows up and down

e ’size-ne/sw — arrows up-right and down-left

e ’size-nw/se — arrows up-left and down-right
If the cursor is created successfully, ok? returns #t, otherwise the cursor object cannot be
assigned to a window.

(send a-cursor ok?) — boolean?

Returns #t if the cursor is can be assigned to a window, #f otherwise.

64

3.17 dialogy

dialog} : class?
superclass: object’
extends: top-level-window<%>

A dialog is a top-level window that is modal: while the dialog is shown, key and mouse
press/release events are disabled for all other top-level windows in the dialog’s eventspace.

(new dialog
[label Iabell
[[parent parent]
[width width]
[height height]
[x x]
ly]
[style stylel
[enabled enabled]
[border border]
[spacing spacing]
[alignment alignment]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])
— (is-a?/c dialogi)
label : label-string?
parent : (or/c (is-a?/c frame}) (is-a?/c dialog}) #f) = #f
width : (or/c dimension-integer? #f) = #f
height : (or/c dimension-integer? #f) = #f
x : (or/c dimension-integer? #f) = #f
y @ (or/c dimension-integer? #f) = #f
style : (1istof (or/c ’no-caption ’resize-border = null
' ’no-sheet ’close-button))
enabled : any/c = #t
border : spacing-integer? = 0
spacing : spacing-integer? = 0
(list/c (or/c ’left ’center ’right)
(or/c ’top ’center ’bottom))
= ’(center top)
min-width : (or/c dimension-integer? #f) = #f
min-height : (or/c dimension-integer? #f) = #f
stretchable-width : any/c = #t
stretchable-height : any/c = #t

alignment :

The label string is used as the dialog’s title in its title bar. If the dialog’s label is changed

65

(see set-label), the title bar is updated.

The parent argument can be #£ or an existing frame. On Windows, if parent is an existing
frame, the new dialog is always on top of its parent. On Windows and Unix, a dialog is
iconized when its parent is iconized.

If parent is #£, then the eventspace for the new dialog is the current eventspace, as de-
termined by current-eventspace. Otherwise, parent’s eventspace is the new dialog’s
eventspace.

If the width or height argument is not #f, it specifies an initial size for the dialog (in
pixels) assuming that it is larger than the minimum size, otherwise the minimum size is
used. On Windows and Mac OS X (and with some Unix window managers) dialogs are not
resizeable.

If the x or y argument is not #£, it specifies an initial location for the dialog. Otherwise, if
no location is set before the dialog is shown, it is centered (with respect parent if not #f,
the screen otherwise).

The style flags adjust the appearance of the dialog on some platforms:

* ’no-caption — omits the title bar for the dialog (Windows)

* ’resize-border — adds a resizeable border around the window (Windows), ability
to resize the window (Mac OS X), or grow box in the bottom right corner (older Mac
0S X)

* ’no-sheet — uses a movable window for the dialog, even if a parent window is
provided (Mac OS X)

e ’close-button — include a close button in the dialog’s title bar, which would not
normally be included (Mac OS X)

Even if the dialog is not shown, a few notification events may be queued for the dialog on
creation. Consequently, the new dialog’s resources (e.g., memory) cannot be reclaimed until
some events are handled, or the dialog’s eventspace is shut down.

For information about the enabled argument, see window<%>. For information about the
border, spacing, and alignment arguments, see area-container<y>. For information
about the min-width, min-height, stretchable-width, and stretchable-height
arguments, see area<’>.

(send a-dialog on-subwindow-char receiver
event) — boolean?
receiver : (is-a?/c window<%>)
event : (is-a?/c key-event?)

66

Overrides on-subwindow-char in window<%>.

Returns the result of
(or (send this on-system-menu-char event)

(send this on-traverse-char event))

(send a-dialog show show?) — void?
show? : any/c

Overrides show in top-level-window<%>.

If show? is true, the dialog is shown and all frames (and other dialogs) in the eventspace
become disabled until the dialog is closed. If show? is false, the dialog is hidden and other
frames and dialogs are re-enabled (unless a different, pre-existing dialog is still shown).

If show? is true, the method does not immediately return. Instead, it loops with yield until
the dialog is found to be hidden between calls to yield. An internal semaphore is used with
yield to avoid a busy-wait, and to ensure that the show method returns as soon as possible
after the dialog is hidden.

(send a-dialog show-without-yield) — void?

Like (send a-dialog show #t), but returns immediately instead of yielding.

3.18 event’

event), : class?
superclass: object

An eventY object contains information about a control, keyboard, mouse, or scroll event.
See also control-event’, key-event, mouse-event, and scroll-eventy.

(new event), [[time-stamp time-stamp]]) — (is-a?/c event)
time-stamp : exact-integer? = 0

See get-time-stamp for information about time-stamp.

(send an-event get-time-stamp) — exact-integer?

Returns the time, in milliseconds, when the event occurred. This time is compatible with
times reported by Racket’s current-milliseconds procedure.

(send an-event set-time-stamp time) — void?
time : exact-integer?

67

Set the time, in milliseconds, when the event occurred. See also Racket’s current-
milliseconds.

If the supplied value is outside the platform-specific range of time values, an
exn:fail:contract exception is raised.

3.19 frameY

framey, : class?
superclass: object,

extends: top-level-window<%>

A frame is a top-level container window. It has a title bar (which displays the frame’s label),
an optional menu bar, and an optional status line.

(new frame,
[label labell
[[parent parent]
[width width]
[height height]
[x x]
[y y1
[style stylel
[enabled enabled]
[border border]
[spacing spacing]
[alignment alignment]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])
— (is-a?/c frame})
Jabel : label-string?
parent : (or/c (is-a?/c framey,) #f) = #f
width : (or/c dimension-integer? #f) = #f
height : (or/c dimension-integer? #f) = #f
x : (or/c position-integer? #f) = #f
y : (or/c position-integer? #f) = #f
(listof (or/c ’no-resize-border ’no-caption
’no-system-menu ’hide-menu-bar
’toolbar-button ’float ’metal
>fullscreen-button ’fullscreen-aux))

style :

= null
enabled : any/c = #t
border : spacing-integer? = 0

68

spacing : spacing-integer? = 0

(list/c (or/c ’left ’center ’right)
(or/c ’top ’center ’bottom))

= ’(center top)

min-width : (or/c dimension-integer? #f) = #f

min-height : (or/c dimension-integer? #f) = #f

stretchable-width : any/c = #t

stretchable-height : any/c = #t

alignment :

The label string is displayed in the frame’s title bar. If the frame’s label is changed (see
set-label), the title bar is updated.

The parent argument can be #£ or an existing frame. On Windows, if parent is an existing
frame, the new frame is always on top of its parent. On Windows and Unix (for many
window managers), a frame is iconized when its parent is iconized.

If parent is #£f, then the eventspace for the new frame is the current eventspace, as de-
termined by current-eventspace. Otherwise, parent’s eventspace is the new frame’s
eventspace.

If the width or height argument is not #£, it specifies an initial size for the frame (in pixels)
assuming that it is larger than the minimum size, otherwise the minimum size is used.

If the x or y argument is not #£, it specifies an initial location for the frame. Otherwise, a
location is selected automatically (tiling frames and dialogs as they are created).

The style flags adjust the appearance of the frame on some platforms:

* 'no-resize-border — omits the resizeable border around the window (Windows,
Unix), ability to resize the window (Mac OS X), or grow box in the bottom right
corner (older Mac OS X)

* ’no-caption — omits the title bar for the frame (Windows, Mac OS X, Unix)
* ’no-system-menu — omits the system menu (Windows)

* ’toolbar-button — includes a toolbar button on the frame’s title bar (Mac OS X
10.6 and earlier); a click on the toolbar button triggers a call to on-toolbar-button-
click

¢ ’hide-menu-bar — hides the menu bar and dock when the frame is active (Mac OS
X) or asks the window manager to make the frame fullscreen (Unix)

e ’float — causes the frame to stay in front of all other non-floating windows (Win-
dows, Mac OS X, Unix); on Mac OS X, a floating frame shares the focus with an active
non-floating frame; when this style is combined with ’no-caption, then showing the

69

frame does not cause the keyboard focus to shift to the window, and on Unix, click-
ing the frame does not move the focus; on Windows, a floating frame has no taskbar
button

¢ ’metal — ignored (formerly supported for Mac OS X)

e ’fullscreen-button — includes a button on the frame’s title bar to put the frame
in fullscreen mode (Mac OS X 10.7 and later)

e ’fullscreen-aux — allows the frame to accompany another that is in fullscreen
mode (Mac OS X 10.7 and later)

Even if the frame is not shown, a few notification events may be queued for the frame on
creation. Consequently, the new frame’s resources (e.g., memory) cannot be reclaimed until
some events are handled, or the frame’s eventspace is shut down.

For information about the enabled argument, see window<%>. For information about the
border, spacing, and alignment arguments, see area-container<y>. For information
about the min-width, min-height, stretchable-width, and stretchable-height
arguments, see area<s>.

Changed in version 6.0.0.6 of package gui-1ib: Added ’fullscreen-button and fullscreen-aux options
for style.

(send a-frame create-status-line) — void?
Creates a status line at the bottom of the frame. The width of the status line is the whole

width of the frame (adjusted automatically when resizing), and the height and text size are
platform-specific.

See also set-status-text.

(send a-frame fullscreen fullscreen?) — void?
fullscreen? : any/c
Puts the frame in fullscreen mode or restores the frame to non-fullscreen mode (Mac OS X).

A frame’s mode can be changed by the user, and such changes do not go through this method.
A program cannot detect when a frame has been put in fullscreen mode except by polling
is-fullscreened?.

Added in version 6.0.0.6 of package gui-1ib.

(send a-frame get-menu-bar) — (or/c (is-a?/c menu-bari) #f)

Returns the frame’s menu bar, or #f if none has been created for the frame.

70

(send a-frame has-status-line?) — boolean?

Returns #t if the frame’s status line has been created, #f otherwise. See also create-
status-line.

(send a-frame iconize iconize?) — void?
iconize? : any/c

Iconizes (minimizes) or deiconizes (restores) the frame. Deiconizing brings the frame to the
front.

A frame’s iconization can be changed by the user, and such changes do not go through
this method. A program cannot detect when a frame has been iconized except by polling
is-iconized?.

(send a-frame is-fullscreened?) — boolean?

Returns #t if the frame is in fullscreen mode (Mac OS X), #f otherwise.

Added in version 6.0.0.6 of package gui-1ib.

(send a-frame is-iconized?) — boolean?

Returns #t if the frame is iconized (minimized), #f otherwise.

(send a-frame is-maximized?) — boolean?

On Windows and Mac OS X, returns #t if the frame is maximized, #f otherwise. On Unix,
the result is always #£.

(send a-frame maximize maximize?) — void?
maximize? : any/c

Specification: Maximizes or restores the frame on Windows and Mac OS X; the frame’s
show state is not affected. On Windows, an iconized frame cannot be maximized or restored.

A window’s maximization can be changed by the user, and such changes do not go through
this method; use on-size to monitor size changes.

Default implementation: If maximize? is #£, the window is restored, otherwise it is maxi-
mized.

(send a-frame modified) — boolean?
(send a-frame modified modified?) — void?
modified? : any/c

71

Gets or sets the frame’s modification state as reflected to the user. On Mac OS X, the
modification state is reflected as a dot in the frame’s close button. On Windows and Unix,
the modification state is reflected by an asterisk at the end of the frame’s displayed title.

(send a-frame on-menu-char event) — boolean?
event : (is-a?/c key-event,)

If the frame has a menu bar with keyboard shortcuts, and if the key event includes a Control,
Alt, Option, Meta, Command, Shift, or Function key, then on-menu-char attempts to match
the given event to a menu item. If a match is found, #t is returned, otherwise #f is returned.

When the match corresponds to a complete shortcut combination, the menu item’s callback
is called (before on-menu-char returns).

If the event does not correspond to a complete shortcut combination, the event may be han-
dled anyway if it corresponds to a mnemonic in the menu bar (i.e., an underlined letter
in a menu’s title, which is installed by including an ampersand in the menu’s label). If a
mnemonic match is found, the keyboard focus is moved to the menu bar (selecting the menu
with the mnemonic), and #t is returned.

(send a-frame on-subwindow-char receiver
event) — boolean?
receiver : (is-a?/c window<%>)
event : (is-a?/c key-event?)
Overrides on-subwindow-char in window<%>.

Returns the result of

(or (send this on-menu-char event)
(send this on-system-menu-char event)
(send this on-traverse-char event))

(send a-frame on-toolbar-button-click) — void?

On Mac OS X, called when the user clicks the toolbar button on a frame created with the
’toolbar-button style.

(send a-frame set-status-text text) — void?

text : string?

Sets the frame’s status line text and redraws the status line. See also create-status-line.

72

3.20 gaugel,

Gauge CRED

gauge’, : class?
superclass: object
extends: control<y>

A gauge is a horizontal or vertical bar for displaying the output value of a bounded inte-
ger quantity. Each gauge has an adjustable range, and the gauge’s current value is always
between 0 and its range, inclusive. Use set-value to set the value of the gauge.

(new gaugel,
[label labell
[range rangel]
[parent parent]
[[style style]
[font font]
[enabled enabled]
[vert-margin vert-margin]
[horiz-margin horiz-margin]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])
— (is-a?/c gauge’)
label : (or/c label-string? #f)
range : positive-dimension-integer?
(or/c (is-a?/c frame},) (is-a?/c dialogh)

t:
paren (is-a?/c panel’) (is-a?/c pane’))
(listof (or/c ’horizontal ’vertical
style : ’vertical-label ’horizontal-label

’deleted))

= ’(horizontal)
font : (is-a?/c font),) = normal-control-font
enabled : any/c = #t
vert-margin :@ spacing-integer? = 2
horiz-margin : spacing-integer? = 2
min-width : (or/c dimension-integer? #f) = #f
min-height : (or/c dimension-integer? #f) = #f

73

stretchable-width : any/c = (memq ’horizontal style)
stretchable-height : any/c = (memq ’vertical style)

If 1abel is a string, it is used as the gauge label; otherwise the gauge does not display a
label.

If & occurs in 1abel, it is specially parsed; under Windows and X, the character following
& is underlined in the displayed control to indicate a keyboard mnemonic. (Under Mac OS
X, mnemonic underlines are not shown.) The mnemonic is meaningless for a gauge (as
far as on-traverse-char in top-level-window<%> is concerned), but it is supported for
consistency with other control types. A programmer may assign a meaning to the mnemonic
(e.g., by overriding on-traverse-char).

The range argument is an integer specifying the maximum value of the gauge (inclusive).
The minimum gauge value is always 0.

The style list must include either horizontal, specifying a horizontal gauge, or ’ver-
tical, specifying a vertical gauge. If style includes ’vertical-label, then the gauge
is created with a label above the control; if style does notinclude ’vertical-label (and
optionally includes ’horizontal-label), then the label is created to the left of the gauge.
If style includes ’deleted, then the gauge is created as hidden, and it does not affect
its parent’s geometry; the gauge can be made active later by calling parent’s add-child
method.

The font argument determines the font for the control. For information about the en-
abled argument, see window<%>. For information about the horiz-margin and vert-
margin arguments, see subarea<y,>. For information about the min-width, min-height,
stretchable-width, and stretchable-height arguments, see area<y>.

(send a-gauge get-range) — positive-dimension-integer?

Returns the range (maximum value) of the gauge.

(send a-gauge get-value) — dimension-integer?

Returns the gauge’s current value.

(send a-gauge set-range range) — void?
range : positive-dimension-integer?

Sets the range (maximum value) of the gauge.
(send a-gauge set-value pos) — void?

pos : dimension-integer?

Sets the gauge’s current value. If the specified value is larger than the gauge’s range, an
exn:fail:contract exception is raised.

74

3.21 group-box-panely,

Group Box Panel

group-box-panely, : class?
superclass: vertical-panel,

A group-box panel arranges its subwindows in a single column, but also draws an optional
label at the top of the panel and a border around the panel content.

Unlike most panel classes, a group-box panel’s horizontal and vertical margins default to 2.

(new group-box-panely,

[label labell

[parent parent]

[[style stylel

[font font]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[border border]

[spacing spacing]

[alignment alignment]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
— (is-a?/c group-box-panell,)
label : label-string?
(or/c (is-a?/c frame),) (is-a?/c dialogh)

(is-a?/c panel’) (is-a?/c pane’))

style : (listof (or/c ’deleted)) = null
font : (is-a?/c font),) = small-control-font
enabled : any/c = #t
vert-margin :@ spacing-integer? = 2

parent

75

horiz-margin : spacing-integer? = 2

border : spacing-integer? = 0

spacing : spacing-integer? = 0

(1ist/c (or/c ’left ’center ’right)
(or/c ’top ’center ’bottom))

= ’(center top)

min-width : (or/c dimension-integer? #f) = #f

min-height : (or/c dimension-integer? #f) = #f

stretchable-width : any/c = #t

stretchable-height : any/c = #t

alignment :

Creates a group pane whose title is Iabel.

If style includes ’deleted, then the group panel is created as hidden, and it does not
affect its parent’s geometry; the group panel can be made active later by calling parent’s
add-child method.

The font argument determines the font for the control. For information about the en-
abled argument, see window<%>. For information about the horiz-margin and vert-
margin arguments, see subarea<y,>. For information about the min-width, min-height,
stretchable-width, and stretchable-height arguments, see area<y>.

3.22 grow-box-spacer-panel

grow-box-spacer-panej, : class?
superclass: pane’,

A grow-box-spacer-panej, object is intended for use as a lightweight spacer in the
bottom-right corner of a frame, rather than as a container. On older version of Mac OS
X, a grow-box-spacer-pane}, has the same width and height as the grow box that is in-
set into the bottom-right corner of a frame. On Windows, Unix, and recent Mac OS X, a
grow-box-spacer-pane, has zero width and height. Unlike all other container types, a
grow-box-spacer-pane}, is unstretchable by default.

(new grow-box-spacer-panej, ...superclass-args...)
— (is-a?/c grow-box-spacer-pane)

See paney, for information on initialization arguments.

3.23 horizontal-pane,

horizontal-pane’, : class?

76

superclass: pane’,

A horizontal pane arranges its subwindows in a single row. See also pane.

(new horizontal-panel,
[parent parent]
[[vert-margin vert-margin]
[horiz-margin horiz-margin]
[border border]
[spacing spacing]
[alignment alignment]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])
— (is-a?/c horizontal-pane)
(or/c (is-a?/c frame}),) (is-a?/c dialoghk)
(is-a?/c panel’) (is-a?/c pane’))
vert-margin :@ spacing-integer? = 0O
horiz-margin : spacing-integer? = 0
border : spacing-integer? = 0
spacing : spacing-integer? = 0
(list/c (or/c ’left ’center ’right)
(or/c ’top ’center ’bottom))
= ’(left center)
min-width : (or/c dimension-integer? #f) = #f
min-height : (or/c dimension-integer? #f) = #f
stretchable-width : any/c = #t
stretchable-height : any/c = #t

parent :

alignment :

For information about the horiz-margin and vert-margin arguments, see subarea<y>
For information about the border, spacing, and alignment arguments, see area-
container<y>. For information about the min-width, min-height, stretchable-
width, and stretchable-height arguments, see area<y>

3.24 horizontal-panel,

horizontal-panely, : class?
superclass: panell,

A horizontal panel arranges its subwindows in a single row. See also panelY,.

71

(new horizontal-panely,
[parent parent]
[[style stylel]
[enabled enabled]
[vert-margin vert-margin]
[horiz-margin horiz-margin]
[border border]
[spacing spacing]
[alignment alignment]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])
— (is-a?/c horizontal-panel},)
(or/c (is-a?/c frame},) (is-a?/c dialogh)
(is-a?/c panel’) (is-a?/c pane%))
(listof (or/c ’border ’deleted

parent :

style : ’hscroll ’auto-hscroll = null

’vscroll ’auto-vscroll))

enabled : any/c = #t
vert-margin : spacing-integer? = 0
horiz-margin : spacing-integer? = 0
border : spacing-integer? = 0
spacing : spacing-integer? = 0
(list/c (or/c ’left ’center ’right)

(or/c ’top ’center ’bottom))

= ’(left center)

min-width : (or/c dimension-integer? #f) = #f
min-height : (or/c dimension-integer? #f) = #f
stretchable-width : any/c = #t
stretchable-height : any/c = #t

alignment :

The style flags are the same as for panell,.

For information about the enabled argument, see window<7>. For information about the
horiz-margin and vert-margin arguments, see subarea<y>. For information about the
border, spacing, and alignment arguments, see area-container<y>. For information
about the min-width, min-height, stretchable-width, and stretchable-height

arguments, see area<s>.

(send a-horizontal-panel set-orientation horizontal?) — void?

horizontal? : boolean?

Sets the orientation of the panel, switching it between the behavior of the vertical-panel/,

and that of the horizontal-panell,

78

(send a-horizontal-panel get-orientation) — boolean?

Initially returns #t, but if set-orientation is called, this method returns whatever the last
value passed to it was.

3.25 key-event),

key-event’, : class?
superclass: event?

A key-eventY, object contains information about a key press or release event. Key events
are primarily processed by on-subwindow-char in window<%> and on-char in can-
vas</>.

For a key-press event, a virtual key code is provided by get-key-code. For a key-release
event, get-key-code reports ’release, and a virtual key code is provided by get-key-
release-code.

See also[§1.5 “Mouse and Keyboard Events™]

(new key-event},

[[key-code key-code]
[shift-down shift-down]
[control-down control-down]
[meta-down meta-down]
[alt-down alt-down]

[x x]

ly]

[time-stamp time-stamp]
[caps-down caps-down]
[mod3-down mod3-down]
[mod4-down mod4-down]
[mod5-down mod5-down]])

— (is-a?/c key-event})
key-code : (or/c char? key-code-symbol?) = #\nul
shift-down : any/c = #f
control-down : any/c = #f
meta-down : any/c = #f
alt-down : any/c = #f
X : exact-integer? = 0
y : exact-integer? = 0
time-stamp : exact-integer? = 0
caps-down : any/c = #f
mod3-down : any/c = #f

79

#f
#f

mod4-down : any/c
mod5-down : any/c

See the corresponding get- and set- methods for information about key-code, shift-
down, control-down, meta-down, mod3-down, mod4-down, mod5-down, alt-down, x,
¥y, time-stamp, caps-down, mod3-down, mod4-down, and mod5-down.

The release key code, as returned by get-key-release-code, is initialized to ’press.

Changed in version 1.1 of package gui-1ib: Added mod3-down, mod4-down, and mod5-down.

(send a-key-event get-alt-down) — boolean?

Returns #t if the Option (Mac OS X) key was down for the event. When the Alt key is
pressed in Windows, it is reported as a Meta press (see get-meta-down).

(send a-key-event get-caps-down) — boolean?

Returns #t if the Caps Lock key was on for the event.

(send a-key-event get-control-down) — boolean?

Returns #t if the Control key was down for the event.

On Mac OS X, if a control-key press is combined with a mouse button click, the event is
reported as a right-button click and get-control-down for the event reports #£.

(send a-key-event get-key-code)
— (or/c char? key-code-symbol?)

Gets the virtual key code for the key event. The virtual key code is either a character or a
special key symbol, one of the following:

* ’start

* ’cancel

¢ ’clear

e ’shift — Shift key

e ’rshift — right Shift key
e ’control — Control key

e ’rcontrol — right Control key

80

’menu
’pause
’capital
’prior
’next
’end
’home
’left
up
’right
’down
’escape
’select
’print
’execute
’snapshot
’insert
’help
’numpadO
’numpadl
’numpad?2
’numpad3
’numpad4
’numpadb
’numpad6
’numpad?
’numpad8

’numpad9

81

’numpad-enter
‘multiply
’add
’separator
’subtract
’decimal
’divide
7f1

7£2

7£3

'£4

’£5

’£6

*£7

7£8

’£9

’£10

711

7£12

’£13

’£14

’£15

’£16

7£17

7£18

’£19

7£20

7£21

82

e 7£22

e 723

e 7f24

¢ ’numlock

* ’scroll

e ’wheel-up — mouse wheel up one notch

¢ ‘wheel-down — mouse wheel down one notch
e ’yheel-left — mouse wheel left one notch

e ’wyheel-right — mouse wheel right one notch
¢ ’release — indicates a key-release event

* ’press — indicates a key-press event; usually only from get-key-release-code

The special key symbols attempt to capture useful keys that have no standard ASCII repre-
sentation. A few keys have standard representations that are not obvious:

* #\space — the space bar

e #\return — the Enter or Return key (on all platforms), but not necessarily the Enter
key near the numpad (which is reported as ’numpad-enter if the platform distin-
guishes the two Enter keys)

e #\tab — the tab key
* #\backspace — the backspace key

e #\rubout — the delete key

If a suitable special key symbol or ASCII representation is not available, #\nul (the NUL
character) is reported.

A ’wheel-up, ’wheel-down, ’wheel-left, or ’wheel-right event may be sent to a
window other than the one with the keyboard focus, because some platforms generate wheel
events based on the location of the mouse pointer instead of the keyboard focus.

On Windows, when the Control key is pressed without Alt, the key code for ASCII characters
is downcased, roughly cancelling the effect of the Shift key. On Mac OS X, the key code is
computed without Caps Lock effects when the Control or Command key is pressed; in the
case of Control, Caps Lock is used normally if special handling is disabled for the Control
key via special-control-key. On Unix, the key code is computed with Caps Lock effects
when the Control key is pressed without Alt.

See also get-other-shift-key-code.

83

(send a-key-event get-key-release-code)
— (or/c char? key-code-symbol?)

Gets the virtual key code for a key-release event; the result is ’press for a key-press event.
See get-key-code for the list of virtual key codes.
(send a-key-event get-meta-down) — boolean?

Returns #t if the Meta (Unix), Alt (Windows), or Command (Mac OS X) key was down for
the event.

(send a-key-event get-mod3-down) — boolean?

Returns #t if the Mod3 (Unix) key was down for the event.

Added in version 1.1 of package gui-1ib.

(send a-key-event get-mod4-down) — boolean?

Returns #t if the Mod4 (Unix) key was down for the event.

Added in version 1.1 of package gui-1lib.

(send a-key-event get-mod5-down) — boolean?

Returns #t if the Mod5 (Unix) key was down for the event.

Added in version 1.1 of package gui-1ib.

(send a-key-event get-other-altgr-key-code)
— (or/c char? key-code-symbol? #f)

See get-other-shift-key-code.
(send a-key-event get-other-caps-key-code)
— (or/c char? key-code-symbol? #f)
See get-other-shift-key-code.
(send a-key-event get-other-shift-altgr-key-code)
— (or/c char? key-code-symbol? #f)

See get-other-shift-key-code.

84

(send a-key-event get-other-shift-key-code)
— (or/c char? key-code-symbol? #f)

Since keyboard mappings vary, it is sometimes useful in key mappings for a program to
know the result that the keyboard would have produced for an event if the Shift key had
been toggled differently. The get-other-shift-key-code produces that other mapping,
returning #£ if the alternate mapping is unavailable, otherwise returning the same kind of
result as get-key-code.

The get-other-altgr-key-code method provides the same information with respect to
the AltGr key (i.e., Alt combined with Control) on Windows and Unix, or the Option key
on Mac OS X. The get-other-shift-altgr-key-code method reports a mapping for in
tha case that both Shift and AltGr/Option were different from the actual event.

The get-other-shift-key-code, get-other-altgr-key-code, and get-other-
shift-altgr-key-code results all report key mappings where Caps Lock is off, indepen-
dent of whether Caps Lock was on for the actual event. The get-other-caps-key-code
method reports a mapping for in that case that the Caps Lock state was treated opposite as
for the get-key-code result. (Caps Lock normally has either no effect or the same effect
as Shift, so further combinations involving Caps Lock and other modifier keys would not
normally produce further alternatives.)

Alternate mappings are not available for all events. On Windows, alternate mappings are
reported when they produce ASCII letters, ASCII digits, and ASCII symbols. On Mac OS
X, alternate mappings are available only when the Command key is pressed. On Unix,
alternate mappings are usually available.

(send a-key-event get-shift-down) — boolean?

Returns #t if the Shift key was down for the event.

(send a-key-event get-x) — exact-integer?

Returns the x-position of the mouse at the time of the event, in the target’s window’s (client-
area) coordinate system.

(send a-key-event get-y) — exact-integer?

Returns the y-position of the mouse at the time of the event in the target’s window’s (client-
area) coordinate system.

(send a-key-event set-alt-down down?) — void?
down? : any/c

Sets whether the Option (Mac OS X) key was down for the event. When the Alt key is
pressed in Windows, it is reported as a Meta press (see set-meta-down).

85

(send a-key-event set-caps-down down?) — void?
down? : any/c

Sets whether the Caps Lock key was on for the event.

(send a-key-event set-control-down down?) — void?
down? : any/c

Sets whether the Control key was down for the event.

On Mac OS X, if a control-key press is combined with a mouse button click, the event is
reported as a right-button click and get-control-down for the event reports #f£.

(send a-key-event set-key-code code) — void?
code : (or/c char? key-code-symbol?)

Sets the virtual key code for the event, either a character or one of the special symbols listed
with get-key-code.

(send a-key-event set-key-release-code code) — void?
code : (or/c char? key-code-symbol?)

Sets the virtual key code for a release event, either a character or one of the special symbols
listed with get-key-code. See also get-key-release-code.

(send a-key-event set-meta-down down?) — void?
down? : any/c

Sets whether the Meta (Unix), Alt (Windows), or Command (Mac OS X) key was down for
the event.

(send a-key-event set-mod3-down down?) — void?
down? : any/c

Sets whether the Mod3 (Unix) key was down for the event.

Added in version 1.1 of package gui-1ib.

(send a-key-event set-mod4-down down?) — void?
down? : any/c

Sets whether the Mod4 (Unix) key was down for the event.

Added in version 1.1 of package gui-1ib.

86

(send a-key-event set-mod5-down down?) — void?
down? : any/c

Sets whether the Mod5 (Unix) key was down for the event.

Added in version 1.1 of package gui-1ib.

(send a-key-event set-other-altgr-key-code code) — void?
code : (or/c char? key-code-symbol? #f)

Sets the key code produced by get-other-altgr-key-code.

(send a-key-event set-other-caps-key-code code) — void?
code : (or/c char? key-code-symbol? #f)

Sets the key code produced by get-other-caps-key-code.

(send a-key-event set-other-shift-altgr-key-code code) — void?
code : (or/c char? key-code-symbol? #f)

Sets the key code produced by get-other-shift-altgr-key-code.

(send a-key-event set-other-shift-key-code code) — void?
code : (or/c char? key-code-symbol? #f)

Sets the key code produced by get-other-shift-key-code.

(send a-key-event set-shift-down down?) — void?
down? : any/c

Sets whether the Shift key was down for the event.

(send a-key-event set-x pos) — void?
pos : exact-integer?

Sets the x-position of the mouse at the time of the event in the target’s window’s (client-area)
coordinate system.

(send a-key-event set-y pos) — void?
pos : exact-integer?

Sets the y-position of the mouse at the time of the event in the target’s window’s (client-area)
coordinate system.

87

3.26 labelled-menu-item<%>

labelled-menu-item<%> : interface?
implements: menu-item<%>

A labelled-menu-item<%> object is a menu-item<%> with a string label (i.e., any menu
item other than a separator). More specifically, it is an instance of either menu-itemy (a
plain menu item), checkable-menu-item/, (a checkable menu item), or menu (a sub-
menu).

(send a-labelled-menu-item enable enabled?) — void?
enabled? : any/c

Enables or disables the menu item. If the item is a submenu (or menu in a menu bar), the
entire menu is disabled, but each submenu item’s is-enabled? method returns #f only if
the item is specifically disabled (in addition to the submenu).

(send a-labelled-menu-item get-help-string)
— (or/c label-string? #f)
Returns the help string for the menu item, or #£ if the item has no help string.

When an item has a help, the string may be used to display help information to the user.

(send a-labelled-menu-item get-label) — label-string?

Returns the item’s label.

See also set-label and get-plain-label.

(send a-labelled-menu-item get-plain-label) — label-string?

Like get-1abel, except that &s and tab characters in the label are stripped in the same way
as for set-label.

(send a-labelled-menu-item is-enabled?) — boolean?

Returns #t if the menu item is enabled, #f otherwise.

See also enable.

(send a-labelled-menu-item on-demand) — void?

Specification: Normally called when the user clicks on the menu bar containing the item
(before the user sees any menu items), just before the popup menu containing the item is

88

popped up, or just before inspecting the menu bar containing the item for a shortcut key
binding. See on-demand in menu-item-container<y> for further details.

A on-demand in menu-item-container<y> method can be overridden in such a way that
the container does not call the on-demand method of its items.

Default implementation: Calls the demand-callback procedure that was provided when
the object was created.

(send a-labelled-menu-item set-help-string help) — void?
help : (or/c label-string? #f)

Sets the help string for the menu item. Use #£ to remove the help string for an item.

(send a-labelled-menu-item set-label label) — void?
Jabel : label-string?

Sets the menu item’s label. If the item has a shortcut, the shortcut is not affected.

If the label contains & and the window is a control, the label is parsed specially; on Windows
and Unix, the character following a & is underlined in the displayed menu to indicate a
keyboard mnemonic. Pressing the Alt key with an underlined character from a menu’s name
in the menu bar causes the menu to be selected (via on-menu-char). When a menu has
the focus, the mnemonic characters are used for navigation without Alt. A && in the label
is replaced by a literal (non-navigation) & On Mac OS X, &s in the label are parsed in the
same way as for Unix and Windows, but no mnemonic underline is displayed. On Mac
OS X, a parenthesized mnemonic character is removed (along with any surrounding space)
before the label is displayed, since a parenthesized mnemonic is often used for non-Roman
languages. Finally, for historical reasons, if a label contains a tab character, then the tab and
all remaining characters are hidden in the displayed menu. All of these rules are consistent
with label handling in buttony and other windows.

A & is always preserved in the label returned by get-1label, but never preserved in the label
returned by get-plain-label.

&9

3.27 1list-boxY%

List BoX First Column

ltem 1

ltem 2

list-box% : class?
superclass: object

extends: list-control<y>

A list box allows the user to select one or more string items from a scrolling list. A list box
is either a single-selection control (if an item is selected, the previous selection is removed)
or a multiple-selection control (clicking an item toggles the item on or off independently of
other selections).

Whenever the user changes the selection in a list box, the list box’s callback procedure is
called. A callback procedure is provided as an initialization argument when each list box is
created.

A list box can have multiple columns with optional column headers. An item in the list cor-
responds to a row that spans all columns. When column headers are displayed, the column
widths can be changed by a user. In addition, columns can optionally support dragging by
the user to change the display order of columns, while the logical order remains fixed.

List box rows and columns are indexed from O.

See also choice.

90

(new list-box%
[label labell
[choices choices]
[parent parent]
[[callback callback]
[style stylel
[selection selection]
[font font]
[label-font label-font]
[enabled enabled]
[vert-margin vert-margin]
[horiz-margin horiz-margin]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]
[columns columns]
[column-order column-order]])

— (is-a?/c list-box%)

label : (or/c label-string? #f)

choices : (listof label-string?)

(or/c (is-a?/c frame),) (is-a?/c dialogh)

parent : (is-a?/c panel’) (is-a?/c pane%))
((is-a?/c list-box’%) (is-a?/c control-event)
callback :
-> . any)
= (lambda (c e) (void))
(listof (or/c ’single ’multiple ’extended
vertical-label ’horizontal-label
style : ’variable-columns ’column-headers
’clickable-headers ’reorderable-headers
’deleted))

= ’(single)
selection : (or/c exact-nonnegative-integer? #f) = #f
font : (is-a?/c font),) = view-control-font
label-font : (is-a?/c font%) = normal-control-font
enabled : any/c = #t
vert-margin : spacing-integer? = 2
horiz-margin : spacing-integer? = 2
min-width : (or/c dimension-integer? #f) = #f
min-height : (or/c dimension-integer? #f) = #f
stretchable-width : any/c = #t
stretchable-height : any/c = #t

columns : (cons/c label-string? (listof label-string?))
= ?("Column")
column-order : (or/c #f (listof exact-nonnegative-integer?))
= #f

91

If 1abel is not #£, it is used as the list box label. Otherwise, the list box will not display its
label.

If & occurs in label, it is specially parsed as for button.

The choices list specifies the initial list of items to appear in the list box. If the list box has
multiple columns, choices determines the content of the first column, and other columns
are initialized to the empty string.

The callback procedure is called when the user changes the list box selection, by either
selecting, re-selecting, deselecting, or double-clicking an item. The type of the event pro-
vided to the callback is ’1ist-box-dclick when the user double-clicks on an item, or
’1list-box otherwise.

The columns list determines the number of columns in the list box. The column titles
in columns are shown only if style includes ’column-headers. If style also includes
’clickable-headers, then a click on a header triggers a call to callback with a column-
control-event?, argument whose event type is ’1ist-box-column.

The style specification must include exactly one of the following:

* ’single — Creates a single-selection list.

* "multiple — Creates a multiple-selection list where a single click deselects other
items and selects a new item. Use this style for a list when single-selection is common,
but multiple selections are allowed.

* ’extended — Creates a multiple-selection list where a single click extends or con-
tracts the selection by toggling the clicked item. Use this style for a list when multiple
selections are the rule rather than the exception.

The *multiple and ’extended styles determine a platform-independent interpretation of
unmodified mouse clicks, but dragging, shift-clicking, control-clicking, etc. have platform-
standard interpretations. Whatever the platform-specific interface, the user can always select
disjoint sets of items or deselect items (and leave no items selected). On some platforms, the
user can deselect the (sole) selected item in a ’single list box.

If style includes ’vertical-label, then the list box is created with a label above the con-
trol; if style does notinclude ’vertical-label (and optionally includes horizontal-
label), then the label is created to the left of the list box. If style includes ’deleted,
then the list box is created as hidden, and it does not affect its parent’s geometry; the list box
can be made active later by calling parent’s add-child method.

If style includes ’variable-columns, then the number of columns in the list box can be
changed via append-column and delete-column.

If selection is an integer, it is passed to set-selection to set the initial selection. The
selection must be less than the length of choices.

92

The font argument determines the font for the control content, and label-font deter-
mines the font for the control label. For information about the enabled argument, see
window<%>. For information about the horiz-margin and vert-margin arguments, see
subarea<¥>. For information about the min-width, min-height, stretchable-width,
and stretchable-height arguments, see area<},>.

It the column-order argument is not #f, it determines the order in which logical columns
are initially displayed. See set-column-order for more information. If style includes
’column-headers and ’reorderable-headers, then a user can reorder columns as dis-
played (but the display order does not change the logical order of the columns).

(send a-list-box append item [data]) — void?
item : label-string?
data : any/c = #f

Overrides append in 1ist-control<y>.

Adds a new item to the list box with an associated “data” object. The data object is not
displayed in the list box; it is provided merely as a convenience for use with get-data, pos-
sibly allowing a programmer to avoid managing a separate item-to-data mapping in addition
to the list box control.

See also append in 1ist-control<%>.

(send a-list-box append-column label) — void?
Jabel : label-string?

Adds a new column with title 1abel to the list box, but only if the list box is created with the
’variable-columns style. The new column is logically the last column, and it is initially
displayed as the last column.

(send a-list-box delete-column n) — void?
n : exact-nonnegative-integer?

Deletes the column with logical position n, but only if the list box is created with the
’variable-columns style, and only if the list box currently has more than one column
(i.e., the number of columns can never be zero).

(send a-list-box get-column-labels)
— (cons/c label-string? (listof label-string?))

Returns the labels of the list box’s columns, and the number of returned strings indicates the
number of columns in the list box.

(send a-list-box get-column-order)
— (listof exact-nonnegative-integer?)

93

Returns the display order of logical columns. Each column is represented by its logical
position in the result list, and the order of the column positions indicates the display order.
See also set-column-order.

dimension-integer?
(send a-list-box get-column-width column) — dimension-integer?
dimension-integer?

column : exact-nonnegative-integer?

Gets the width of the column identified by column (in logical positions, as opposed to
display positions), which must be between 0 and one less than the number of columns.

The result includes the column’s current width as well as its minimum and maximum widths
to constrain the column size as adjusted by a user.
See also set-column-width.

(send a-list-box get-data n) — any/c
n : exact-nonnegative-integer?

Returns the data for the item indexed by n, or #f if there is no associated data. List
box rows are indexed from 0. If n is equal to or larger than the number of choices, an
exn:fail:contract exception is raised.

See also append and set-data.

(send a-list-box get-first-visible-item)
— exact-nonnegative-integer?

Reports the index of the item currently scrolled to the top of the list box. List box rows are
indexed from 0.

(send a-list-box get-label-font) — (is-a?/c font%)

Returns the font used for the control’s label, which is optionally supplied when a list box is
created.

(send a-list-box get-selections)
— (listof exact-nonnegative-integer?)
Returns a list of indices for all currently selected items. List box rows are indexed from O.

For single-selection lists, the result is always either null or a list containing one number.

(send a-list-box is-selected? n) — boolean?
n : exact-nonnegative-integer?

94

Returns #t if the items indexed by n is selected, #f otherwise. List box rows are indexed
from 0. If n is equal to or larger than the number of choices, an exn:fail:contract
exception is raised.

A list box’s selection can be changed by the user clicking the control, and such changes do
not go through this method; use the control callback procedure (provided as an initialization
argument) to monitor selection changes.

(send a-list-box number-of-visible-items)
— exact-positive-integer?

Returns the maximum number of items in the list box that are visible to the user with the
control’s current size (rounding down if the exact answer is fractional, but returning at least

1).

(send a-list-box select n [select?]) — void?
n : exact-nonnegative-integer?
select? : any/c = #t

Selects or deselects an item. For selection in a single-selection list box, if a different choice
is currently selected, it is automatically deselected. For selection in a multiple-selection list
box, other selections are preserved, unlike set-selection.

If select? is #f, the item indexed by n is deselected; otherwise it is selected. List
box rows are indexed from 0. If n is equal to or larger than the number of choices, an
exn:fail:contract exception is raised.

A list box’s selection can be changed by the user clicking the control, and such changes do
not go through this method; use the control callback procedure (provided as an initialization
argument) to monitor selection changes.

The control’s callback procedure is not invoked.

(send a-list-box set choicesO choices ...) — void?
choices0O : (listof label-string?)
choices : (listof label-string?)

Clears the list box and installs a new list of items. The number of choicesO plus choices
lists must match the number of columns, and all choices lists must have the same number
of items, otherwise an exn:fail:contract exception is raised.

(send a-list-box set-column-label column
label) — void?
column : exact-nonnegative-integer?
label : label-string?

95

Sets the label of the column identified by column (in logical positions, as opposed to display
positions), which must be between 0 and one less than the number of columns.

(send a-list-box set-column-order column-order) — void?
column-order : (listof exact-nonnegative-integer?)

Sets the order in which logical columns are displayed. Each element of column-order must
identify a unique column by its logical position, and all logical columns must be represented
in the list.

See also get-column-order.

(send a-list-box set-column-width column

width
min-width
max-width) — void?

column : exact-nonnegative-integer?

width : dimension-integer?

min-width : dimension-integer?

max-width : dimension-integer?

Sets the width of the column identified by column (in logical positions, as opposed to display
positions), which must be between 0 and one less than the number of columns.

The width argument sets the current display width, while min-width and max-width
constrain the width of the column when the user resizes it. The width argument must be no
less than min-width and no more than max-width.

The default width of a column is platform-specific, and the last column of a list box may
extend to the end of the control independent of its requested size.
See also get-column-width.

(send a-list-box set-data n data) — void?
n : exact-nonnegative-integer?
data : any/c

Sets the associated data for item indexed by n. List box rows are indexed from 0. If n is
equal to or larger than the number of choices, an exn:fail: contract exception is raised.
See also append.

(send a-list-box set-first-visible-item n) — void?
n : exact-nonnegative-integer?

Scrolls the list box so that the item indexed by n is at the top of the list box display. List
box rows are indexed from 0. If n is equal to or larger than the number of choices, an
exn:fail:contract exception is raised.

96

A list box’s scroll position can be changed by the user clicking the control, and such changes
do not go through this method. A program cannot detect when the scroll position changes
except by polling get-first-visible-item.

(send a-list-box set-string n label [column]) — void?
n : exact-nonnegative-integer?
label : label-string?
column : exact-nonnegative-integer? = 0

Sets the item indexed by n in logical column column. List box rows and columns are
indexed from 0. If n is equal to or larger than the number of choices, or if column is equal
to or larger than the number of columns, an exn:fail:contract exception is raised.

3.28 1list-control<y>

list-control<%> : interface?
implements: control<y>

A list control gives the user a list of string items to choose from. There are two built-in
classes that implement 1ist-control<y>:

* choicey, — presents the list in a popup menu (so the user can choose only one item
at a time)

¢ list-box}, — presents the list in a scrolling box, allowing the use to choose one item
(if the style includes ’single) or any number of items

In either case, the set of user-selectable items can be changed dynamically.

(send a-list-control append item) — void?
item : label-string?

Adds a new item to the list of user-selectable items. The current selection is unchanged
(unless the list control is an empty choice control, in which case the new item is selected).

(send a-list-control clear) — void?

Removes all user-selectable items from the control.

(send a-list-control delete n) — void?
n : exact-nonnegative-integer?

Deletes the item indexed by n (where items are indexed from 0). If n is equal to or larger
than the number of items in the control, an exn:fail:contract exception is raised.

Selected items that are not deleted remain selected, and no other items are selected.

97

(send a-list-control find-string s)
— (or/c exact-nonnegative-integer? #f)
s : string?

Finds a user-selectable item matching the given string. If no matching choice is found, #f
is returned, otherwise the index of the matching choice is returned (where items are indexed
from 0).

(send a-list-control get-number) — exact-nonnegative-integer?

Returns the number of user-selectable items in the control (which is also one more than the
greatest index in the list control).

(send a-list-control get-selection)
— (or/c exact-nonnegative-integer? #f)

Returns the index of the currently selected item (where items are indexed from 0). If the
choice item currently contains no choices or no selections, #£ is returned. If multiple selec-
tions are allowed and multiple items are selected, the index of the first selection is returned.

(send a-list-control get-string n)
— (and/c immutable? label-string?)
n : exact-nonnegative-integer?

Returns the item for the given index (where items are indexed from 0). If the provided index
is larger than the greatest index in the list control, an exn:fail:contract exception is
raised.

(send a-list-control get-string-selection)
— (or/c (and/c immutable? label-string?) #f)

Returns the currently selected item. If the control currently contains no choices, #f is re-
turned. If multiple selections are allowed and multiple items are selected, the first selection
is returned.

(send a-list-control set-selection n) — void?
n : exact-nonnegative-integer?

Selects the item specified by the given index (where items are indexed from 0). If the given
index larger than the greatest index in the list control, an exn:fail:contract exception is
raised.

In a list box control, all other items are deselected, even if multiple selections are allowed in
the control. See also select in 1ist-box¥%.

98

The control’s callback procedure is not invoked when this method is called.

The list control’s selection can be changed by the user clicking the control, and such changes
do not go through this method; use the control callback procedure (provided as an initializa-
tion argument) to monitor selection changes.

(send a-list-control set-string-selection s) — void?
s : string?

Selects the item that matches the given string. If no match is found in the list control, an
exn:fail:contract exception is raised.

In a list box control, all other items are deselected, even if multiple selections are allowed in
the control. See also select in 1ist-boxJ.

The control’s callback procedure is not invoked when this method is called.

The list control’s selection can be changed by the user clicking the control, and such changes
do not go through this method; use the control callback procedure (provided as an initializa-
tion argument) to monitor selection changes.

3.29 menu’

menuy : class?
superclass: object

extends: menu-item-container<y>
labelled-menu-item<%>

A menu?, object is a submenu within a menuy, or popup-menu¥, or as a top-level menu in a
menu-bar.

(new menul,

[label labell

[parent parent]

[[help-string help-string]

[demand-callback demand-callback]])
— (is-a?/c menu’,)
label : label-string?
(or/c (is-a?/c menu},) (is-a?/c popup-menu},)

(is-a?/c menu-bary))
help-string : (or/c label-string? #f) = #f
demand-callback : ((is-a?/c menu}%) . -> . any)
= (lambda (m) (void))

parent

Creates a new menu with the given label.

99

If 1abel contains a & or tab characters, they are handled specially in the same way as for
menu-item labels and buttons. See set-label and buttony.

If help-string is not #f, the menu has a help string. See get-help-string for more
information.

The demand-callback procedure is called by the default on-demand method with the
object itself.

3.30 menu-bar¥

File Edit Help

menu-bary, : class?
superclass: object

extends: menu-item-container<y>

A menu-bar? object is created for a particular frame, object. A frame can have at most
one menu bar; an exn:fail:contract exception is raised when a new menu bar is created
for a frame that already has a menu bar.

(new menu-bar?,
[parent parent]
[[demand-callback demand-callback]])
— (is-a?/c menu-bar?)
parent : (or/c (is-a?/c frame},) ’root)
demand-callback : ((is-a?/c menu-bar?) . -> . any)
= (lambda (m) (void))

Creates a menu bar in the specified frame. The menu bar is initially empty. If ’root is
supplied as parent, the menu bar becomes active only when no other frames are shown. A
’root parent is allowed only when current-eventspace-has-menu-root? returns #t,
and only if no such menu bar has been created before, otherwise an exn:fail:contract
exception is raised.

The demand-callback procedure is called by the default on-demand method with the
object itself.

(send a-menu-bar enable enable?) — void?
enable? : any/c

100

Enables or disables the menu bar (i.e., all of its menus). Each menu’s is-enabled? method
returns #£ only if the menu is specifically disabled (in addition to the menu bar).

(send a-menu-bar get-frame) — (or/c (is-a?/c frame}) ’root)

Returns the menu bar’s frame, or returns ’root if the menu bar is shown when no other
frames are shown.

(send a-menu-bar is-enabled?) — boolean?

Returns #t if the menu bar is enabled, #f otherwise.

3.31 menu-item<%>

menu-item<%> : interface?

A menu-item<%> object is an element within a menuY, popup-menuy, or menu-barj,. Op-
erations that affect the parent — such as renaming the item, deleting the item, or adding a
check beside the item — are accomplished via the menu-item<%> object.

A menu item is either a separator-menu-item) object (merely a separator), or a
labelled-menu-item<y> object; the latter is more specifically an instance of either menu-
itemy (a plain menu item), checkable-menu-itemy (a checkable menu item), or menu’,
(a submenu).

(send a-menu-item delete) — void?

Removes the item from its parent. If the menu item is already deleted, delete has no effect.

See also restore.

(send a-menu-item get-parent)
— (or/c (is-a?/c menu},) (is-a?/c popup-menu’) (is-a?/c menu-bary))

Returns the menu, popup menu, or menu bar containing the item. The parent for a menu
item is specified when the menu item is created, and it cannot be changed.

(send a-menu-item is-deleted?) — boolean?

Returns #t if the menu item is deleted from its parent, #f otherwise.

(send a-menu-item restore) — void?

Adds a deleted item back into its parent. The item is always restored to the end of the parent,
regardless of its original position. If the item is not currently deleted, restore has no effect.

101

3.32 menu-item

menu-itemy : class?
superclass: object’

extends: selectable-menu-item<%>

A menu-item, is a plain string-labelled menu item. Its parent must be a menu?, or popup-
menu’%. When the user selects the menu item, its callback procedure is called.

(new menu-itemy
[label labell]
[parent parent]
[callback callback]
[[shortcut shortcut]
[help-string help-string]
[demand-callback demand-callback]
[shortcut-prefix shortcut-prefix]])

— (is-a?/c menu-itemy)

Jabel : label-string?

parent : (or/c (is-a?/c menuj,) (is-a?/c popup-menul))

callback : ((is-a?/c menu-item},) (is-a?/c control-event’) . -> . any)

shortcut : (or/c char? symbol? #f) = #f

help-string : (or/c label-string? #f) = #f

demand-callback : ((is-a?/c menu-item},) . -> . any)

(lambda (i) (void))

(and/c (listof (or/c ’alt ’cmd ’meta ’ctl

’shift ’option))
(A (x) (implies (equal? ’unix (system-type))
(not (and (member ’alt x)
(member ’meta x)))))
(A (x) (equal? x (remove-duplicates x))))
= (get-default-shortcut-prefix)

shortcut-prefix :

Creates a new menu item in parent. The item is initially shown, appended to the end of
its parent. The callback procedure is called (with the event type ’menu) when the user
selects the menu item (either via a menu bar, popup-menu in window<%>, or popup-menu
in editor-adminj).

See set-label for information about mnemonic &s in label.

If shortcut is not #£, the item has a shortcut. See get-shortcut for more information.
The shortcut-prefix argument determines the set of modifier keys for the shortcut; see
get-shortcut-prefix.

If help is not #£, the item has a help string. See get-help-string for more information.

The demand-callback procedure is called by the default on-demand method with the

102

object itself.

3.33 menu-item-container<y>

menu-item-container<y> : interface?
A menu-item-container<y> object is a menu’, popup-menu, or menu-bary.

(send a-menu-item-container get-items)
— (listof (is-a?/c menu-item<%>))

Returns a list of the items in the menu, popup menu, or menu bar. The order of the items in
the returned list corresponds to the order as the user sees them in the menu or menu bar.

(send a-menu-item-container on-demand) — void?

Specification: Called when the user clicks on the container as a menu bar (before the user
sees any menu items, except with Unity’s global menu bar as noted below), just before the
container as a popup menu is popped up, or just before inspecting the menu bar containing
the item for a shortcut key binding.

If the container is not a menu bar or a popup menu, this method is normally called via the
on-demand method of the container’s owning menu bar or popup menu, because the default
implementation of the method chains to the on-demand method of its items. However, the
method can be overridden in a container such that it does not call the on-demand method of
its items.

On Unix with the Unity window manager using the global menu bar (which is the default on
Ubuntu), racket/gui/base receives no notification when the user clicks the menu bar. To
approximate on-demand triggered by user clicks of the menu bar, on-demand is called for
a menu bar whenever its frame, object loses the keyboard focus. Beware that if keyboard
focus was lost because a menu was clicked, then items added to the clicked menu during an
on-demand invocation may not appear for the user.

Default implementation: Calls the demand-callback procedure that was provided when
the object was created, then calls the on-demand method of the contained items.

103

3.34 message’

Message

message’, : class?
superclass: object
extends: control<y>

A message control is a static line of text or a static bitmap. The text or bitmap corresponds
to the message’s label (see set-label).

(new messagel,
[label Iabell
[parent parent]
[[style stylel]
[font font]
[enabled enabled]
[vert-margin vert-margin]
[horiz-margin horiz-margin]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]
[auto-resize auto-resize]l])
— (is-a?/c message’)
(or/c label-string? (is-a?/c bitmap%)
(or/c ’app ’caution ’stop))
(or/c (is-a?/c frame},) (is-a?/c dialoghk)
(is-a?/c panel’) (is-a?/c pane’))
style : (listof (or/c ’deleted)) = null
font : (is-a?/c font),) = normal-control-font
enabled : any/c = #t
vert-margin : spacing-integer? = 2

label

parent :

horiz-margin : spacing-integer? = 2

min-width : (or/c dimension-integer? #f) = #f
min-height : (or/c dimension-integer? #f) = #f
stretchable-width : any/c = #f
stretchable-height : any/c = #f

auto-resize : any/c = #f

104

Creates a string or bitmap message initially showing label. If l1abel is a bitmap, and if the
bitmap has a mask (see get-loaded-mask in bitmap¥) that is the same size as the bitmap,
then the mask is used for the label. Modifying a bitmap while it is used as a label has an
unspecified effect on the displayed label. An ’app, ’caution, or ’stop symbol for 1abel
indicates an icon; ’app is the application icon (Windows and Mac OS X) or a generic “info”
icon (X), ’caution is a caution-sign icon, and ’stop is a stop-sign icon.

If & occurs in 1abel, it is specially parsed; under Windows and X, the character following
& is underlined in the displayed control to indicate a keyboard mnemonic. (Under Mac OS
X, mnemonic underlines are not shown.) The mnemonic is meaningless for a message (as
far as on-traverse-char in top-level-window<%> is concerned), but it is supported for
consistency with other control types. A programmer may assign a meaning to the mnemonic
(e.g., by overriding on-traverse-char).

If style includes ’deleted, then the message is created as hidden, and it does not affect its
parent’s geometry; the message can be made active later by calling parent’s add-child
method.

The font argument determines the font for the control. For information about the en-
abled argument, see window<}>. For information about the horiz-margin and vert-
margin arguments, see subarea<y,>. For information about the min-width, min-height,
stretchable-width, and stretchable-height arguments, see area<},>.

If auto-resize is not #£, then automatic resizing is initially enanbled (see auto-resize),
and the message}, object’s graphical minimum size is as small as possible.

(send a-message auto-resize) — boolean?
(send a-message auto-resize on?) — void?
on? : any/c

Reports or sets whether the message’’s min-width and min-height are automatically set
when the label is changed via set-label.

(send a-message set-label label) — void?
label : (or/c label-string? (is-a?/c bitmap¥))

Overrides set-label in window<%>.

The same as set-1label in window<%> when label is a string.

Otherwise, sets the bitmap label for a bitmap message. Since label is a bitmap, if the
bitmap has a mask (see get-loaded-mask in bitmapy) that is the same size as the bitmap,
then the mask is used for the label. Modifying a bitmap while it is used as a label has an
unspecified effect on the displayed label. The bitmap label is installed only if the control
was originally created with a bitmap label.

105

3.35 mouse-eventY,

mouse-event), : class?
superclass: event?

A mouse-eventy, object encapsulates a mouse event. Mouse events are primarily processed
by on-subwindow-event in window<%> and on-event in canvas<%>.

See also[§1.5 “Mouse and Keyboard Events™|

(new mouse-event},
[event-type event-typel
[[left-down left-down]
[middle-down middle-down]
[right-down right-down]
[x x]
[y yl
[shift-down shift-down]
[control-down control-down]
[meta-down meta-down]
[alt-down alt-down]
[time-stamp time-stamp]
[caps-down caps-down]
[mod3-down mod3-down]
[mod4-down mod4-down]
[mod5-down mod5-down]])
— (is-a?/c mouse-event})
(or/c ’enter ’leave ’left-down ’left-up
event-type : ’middle-down ’middle-up
’right-down ’right-up ’motion)
left-down : any/c = #f
middle-down : any/c = #f

right-down : any/c = #f
X : exact-integer? = 0
y : exact-integer? = 0

shift-down : any/c = #f
control-down : any/c = #f
meta-down : any/c = #f

alt-down : any/c = #f
time-stamp : exact-integer? = 0
caps-down : any/c = #f
mod3-down : any/c = #f
mod4-down : any/c = #f
mod5-down : any/c = #f

Creates a mouse event for a particular type of event. The event types are:

106

* ’enter — mouse pointer entered the window

* ’leave — mouse pointer left the window

e ’left-down — left mouse button pressed

e ’left-up — left mouse button released

¢ ’middle-down — middle mouse button pressed
* ’middle-up — middle mouse button released

e ’right-down — right mouse button pressed (Mac OS X: click with control key
pressed)

e ’right-up — right mouse button released (Mac OS X: release with control key
pressed)

* ’motion — mouse moved, with or without button(s) pressed
See the corresponding get - and set- methods for information about left-down, middle-

down, right-down, x, y, shift-down, control-down, meta-down, alt-down, time-
stamp, caps-down, mod3-down, mod4-down, and mod5-down.

Changed in version 1.1 of package gui-1ib: Added mod3-down, mod4-down, and mod5-down.

(send a-mouse-event button-changed? [button]) — boolean?
button : (or/c ’left ’middle ’right ’any) = ’any

Returns #t if this was a mouse button press or release event, #f otherwise. See also button-
up? and button-down?.

If button is not ’any, then #t is only returned if it is a release event for a specific button.

(send a-mouse-event button-down? [button]) — boolean?
button : (or/c ’left ’middle ’right ’any) = ’any
Returns #t if the event is for a button press, #f otherwise.

If button is not ’any, then #t is only returned if it is a press event for a specific button.

(send a-mouse-event button-up? [button]) — boolean?
button : (or/c ’left ’middle ’right ’any) = ’any

Returns #t if the event is for a button release, #f otherwise. (As noted in[§1.5 “Mouse and|

|[Keyboard Events”] button release events are sometimes dropped.)

If button is not ’any, then #t is only returned if it is a release event for a specific button.

107

(send a-mouse-event dragging?) — boolean?

Returns #t if this was a dragging event (motion while a button is pressed), #f otherwise.

(send a-mouse-event entering?) — boolean?

Returns #t if this event is for the mouse entering a window, #f otherwise.

When the mouse button is up, an enter/leave event notifies a window that it will start/stop
receiving mouse events. When the mouse button is down, however, the window receiving the
mouse-down event receives all mouse events until the button is released; enter/leave events
are not sent to other windows, and are not reliably delivered to the click-handling window
(since the window can detect movement out of its region via get-x and get-y). See also
[S1.5 “Mouse and Keyboard Events|

(send a-mouse-event get-alt-down) — boolean?

Returns #t if the Option (Mac OS X) key was down for the event. When the Alt key is
pressed in Windows, it is reported as a Meta press (see get-meta-down).

(send a-mouse-event get-caps-down) — boolean?

Returns #t if the Caps Lock key was on for the event.

(send a-mouse-event get-control-down) — boolean?

Returns #t if the Control key was down for the event.

On Mac OS X, if a control-key press is combined with a mouse button click, the event is
reported as a right-button click and get-control-down for the event reports #f£.

(send a-mouse-event get-event-type)
(or/c ’enter ’leave ’left-down ’left-up
— ’middle-down ’middle-up
’right-down ’right-up ’motion)

Returns the type of the event; see mouse-event}, for information about each event type. See
also set-event-type.

(send a-mouse-event get-left-down) — boolean?

Returns #t if the left mouse button was down (but not pressed) during the event.

(send a-mouse-event get-meta-down) — boolean?

108

Returns #t if the Meta (Unix), Alt (Windows), or Command (Mac OS X) key was down for
the event.

(send a-mouse-event get-middle-down) — boolean?

Returns #t if the middle mouse button was down (but not pressed) for the event. On Mac
OS X, a middle-button click is impossible.

(send a-mouse-event get-mod3-down) — boolean?

Returns #t if the Mod3 (Unix) key was down for the event.

Added in version 1.1 of package gui-1lib.

(send a-mouse-event get-mod4-down) — boolean?

Returns #t if the Mod4 (Unix) key was down for the event.

Added in version 1.1 of package gui-1ib.

(send a-mouse-event get-mod5-down) — boolean?

Returns #t if the Mod5 (Unix) key was down for the event.

Added in version 1.1 of package gui-1ib.

(send a-mouse-event get-right-down) — boolean?

Returns #t if the right mouse button was down (but not pressed) for the event. On Mac OS
X, a control-click combination is treated as a right-button click.

(send a-mouse-event get-shift-down) — boolean?

Returns #t if the Shift key was down for the event.

(send a-mouse-event get-x) — exact-integer?
Returns the x-position of the mouse at the time of the event, in the target’s window’s (client-
area) coordinate system.

(send a-mouse-event get-y) — exact-integer?

Returns the y-position of the mouse at the time of the event in the target’s window’s (client-
area) coordinate system.

109

(send a-mouse-event leaving?) — boolean?

Returns #t if this event is for the mouse leaving a window, #f otherwise.

See entering? for information about enter and leave events while the mouse button is
clicked.

(send a-mouse-event moving?) — boolean?

Returns #t if this was a moving event (whether a button is pressed is not), #f otherwise.

(send a-mouse-event set-alt-down down?) — void?
down? : any/c

Sets whether the Option (Mac OS X) key was down for the event. When the Alt key is
pressed in Windows, it is reported as a Meta press (see set-meta-down).

(send a-mouse-event set-caps-down down?) — void?
down? : any/c

Sets whether the Caps Lock key was on for the event.

(send a-mouse-event set-control-down down?) — void?
down? : any/c

Sets whether the Control key was down for the event.

On Mac OS X, if a control-key press is combined with a mouse button click, the event is
reported as a right-button click and get-control-down for the event reports #f.

(send a-mouse-event set-event-type event-type) — void?
(or/c ’enter ’leave ’left-down ’left-up
event-type : ’middle-down ’middle-up
’right-down ’right-up ’motion)

Sets the type of the event; see mouse-event} for information about each event type. See
also get-event-type.
(send a-mouse-event set-left-down down?) — void?
down? : any/c
Sets whether the left mouse button was down (but not pressed) during the event.
(send a-mouse-event set-meta-down down?) — void?

down? : any/c

110

Sets whether the Meta (Unix), Alt (Windows), or Command (Mac OS X) key was down for
the event.

(send a-mouse-event set-middle-down down?) — void?
down? : any/c

Sets whether the middle mouse button was down (but not pressed) for the event. On Mac
OS X, a middle-button click is impossible.

(send a-mouse-event set-mod3-down down?) — void?
down? : any/c

Sets whether the Mod3 (Unix) key was down for the event.

Added in version 1.1 of package gui-1ib.

(send a-mouse-event set-mod4-down down?) — void?
down? : any/c

Sets whether the Mod4 (Unix) key was down for the event.

Added in version 1.1 of package gui-1ib.

(send a-mouse-event set-mod5-down down?) — void?
down? : any/c

Sets whether the Mod5 (Unix) key was down for the event.

Added in version 1.1 of package gui-1lib.

(send a-mouse-event set-right-down down?) — void?
down? : any/c

Sets whether the right mouse button was down (but not pressed) for the event. On Mac OS
X, a control-click combination by the user is treated as a right-button click.

(send a-mouse-event set-shift-down down?) — void?
down? : any/c

Sets whether the Shift key was down for the event.
(send a-mouse-event set-x pos) — void?

pos : exact-integer?

Sets the x-position of the mouse at the time of the event in the target’s window’s (client-area)
coordinate system.

111

(send a-mouse-event set-y pos) — void?
pos : exact-integer?

Sets the y-position of the mouse at the time of the event in the target’s window’s (client-area)
coordinate system.

3.36 pane’

pane’, : class?
superclass: object’
extends: area-container<y>
subarea<>

A pane is a both a container and a containee area. It serves only as a geometry management
device. A pane?, cannot be hidden or disabled like a panelY, object.

A pane, object has a degenerate placement strategy for managing its children; it places them
all in the upper left corner and does not stretch any of them. The horizontal-pane, and
vertical-paney classes provide useful geometry management.

See also grow-box-spacer-panej,.

(new panej,
[parent parent]
[[vert-margin vert-margin]
[horiz-margin horiz-margin]
[border border]
[spacing spacing]
[alignment alignment]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])
— (is-a?/c pane%)
(or/c (is-a?/c frame),) (is-a?/c dialogh)
(is-a?/c panel’) (is-a?/c pane%))
vert-margin : spacing-integer? = 0

parent :

horiz-margin : spacing-integer? = 0
border : spacing-integer? = 0
spacing : spacing-integer? = 0
(1ist/c (or/c ’left ’center ’right)
(or/c ’top ’center ’bottom))
= ’(center top)
min-width : (or/c dimension-integer? #f) = #f

alignment :

112

min-height : (or/c dimension-integer? #f) = #f
stretchable-width : any/c = #t
stretchable-height : any/c = #t

For information about the horiz-margin and vert-margin arguments, see subarea<’>.
For information about the border, spacing, and alignment arguments, see area-
container<y>. For information about the min-width, min-height, stretchable-
width, and stretchable-height arguments, see area<y>.

3.37 panelj

Panel

panely, : class?
superclass: object
extends: area-container-window<%>
subwindow<%>

A panel is a both a container and a containee window. It serves mainly as a geometry
management device, but the ’border creates a container with a border. Unlike a pane’,
object, a panel, object can be hidden or disabled.

A panely, object has a degenerate placement strategy for managing its children; it places

them all in the upper left corner and does not stretch any of them. The horizontal-panel’,
and vertical-panell, classes provide useful geometry management.

113

(new panell,
[parent parent]
[[style stylel]
[enabled enabled]
[vert-margin vert-margin]
[horiz-margin horiz-margin]
[border border]
[spacing spacing]
[alignment alignment]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])
— (is-a?/c panel},)
(or/c (is-a?/c frame},) (is-a?/c dialogh)
(is-a?/c panel’) (is-a?/c pane%))
(listof (or/c ’border ’deleted
style : ’hscroll ’auto-hscroll = null
’vscroll ’auto-vscroll))

parent :

enabled : any/c = #t

vert-margin : spacing-integer? = 0

horiz-margin : spacing-integer? = 0

border : spacing-integer? = 0

spacing : spacing-integer? = 0

(list/c (or/c ’left ’center ’right)
(or/c ’top ’center ’bottom))

= ’(center center)

min-width : (or/c dimension-integer? #f) = #f

min-height : (or/c dimension-integer? #f) = #f

stretchable-width : any/c = #t

stretchable-height : any/c = #t

alignment :

If the ’ border style is specified, the window is created with a thin border (in which case the
client size of the panel may be less than its total size). If style includes ’deleted, then
the panel is created as hidden, and it does not affect its parent’s geometry; the panel can be
made active later by calling parent’s add-child method.

If the *hscroll or ’vscroll style is specified, then the panel includes a scrollbar in the
corresponding direction, and the panel’s own size in the corresponding direction is not con-
strained by the size of its children subareas. The ’auto-hscroll and ’auto-vscroll
styles are like hscroll or ’vscroll, but they cause the corresponding scrollbar to disap-
pear when no scrolling is needed in the corresponding direction; the ’auto-vscroll and
’auto-hscroll modes assume that children subareas are placed using the default algorithm
for a panel, vertical-panel}, or horizontal-panely.

For information about the enabled argument, see window<%>. For information about the

114

horiz-margin and vert-margin arguments, see subarea<y>. For information about the
border, spacing, and alignment arguments, see area-container<y>. For information
about the min-width, min-height, stretchable-width, and stretchable-height
arguments, see area<s>.

3.38 popup-menu,

popup-menuj : class?
superclass: object’
extends: menu-item-container<y>

A popup-menu}, object is created without a parent. Dynamically display a popup-menu?,
with popup-menu in window<%> or popup-menu in editor-adminy.

A popup menu is not a control. A choicey, control, however, displays a single value that the
user selects from a popup menu. A choice} control’s popup menu is built into the control,
and it is not accessible to the programmer.

(new popup-menu’,
[[title title]
[popdown-callback popdown-callback]
[demand-callback demand-callback]
[font font]])
— (is-a?/c popup-menu},)
title : (or/c label-string? #f) = #f

popdown-callback : ((is-a?/c popup-menu’) (is-a?/c control-event,)

. -> . any)
= (lambda (p e) (void))
demand-callback : ((is-a?/c popup-menu},) . -> . any)

= (lambda (p) (void))
font : (is-a?/c font%) = normal-control-font

If title is not #f, it is used as a displayed title at the top of the popup menu.

If title contains &, it is handled specially, the same as for menuj, titles. A popup menu
mnemonic is not useful, but it is supported for consistency with other menu labels.

The popdown-callback procedure is invoked when a popup menu is dismissed. If the
popup menu is dismissed without an item being selected, popdown-callback is given a
control-event, object with the event type ’menu-popdown-none. If the popup menu
is dismissed via an item selection, the item’s callback is invoked first, and then popdown-
callback is given a control-event object with the event type ’menu-popdown.

The demand-callback procedure is called by the default on-demand method with the
object itself.

115

The font argument determines the font for the popup menu’s items.

(send a-popup-menu get-font) — (is-a?/c font%)

Returns the font used for the popup menu’s items, which is optionally supplied when a popup
menu is created.

(send a-popup-menu get-popup-target)
— (or/c (is-a?/c window<%>) (is-a?/c editor<%>) #f)

Returns the context in which the popup menu is currently displayed, or #f if it is not popped
up in any window.

The context is set before the on-demand method is called, and it is not removed until after
the popup-menu’s callback is invoked. (Consequently, it is also set while an item callback is
invoked, if the user selected an item.)

(send a-popup-menu set-min-width width) — void?
width : dimension-integer?

Sets the popup menu’s minimum width in pixels.

3.39 printer-dcy

printer-dc} : class?
superclass: object’
extends: dc<%>

A printer-dc, object is a printer device context. A newly created printer-dcY object
obtains orientation (portrait versus landscape) and scaling information from the current ps-
setup}, object, as determined by the current-ps-setup parameter. This information can
be configured by the user through a dialog shown by get-page-setup-from-user.

Be sure to use the following methods to start/end drawing:

¢ start-doc
* start-page
¢ end-page

* end-doc
Attempts to use a drawing method outside of an active page raises an exception.

116

See also post-script-dch.

When the end-doc method is called on a printer-dcY instance, the user may receive a
dialog to determine how the document is printed.

(new printer-dc) [[parent parent]]) — (is-a?/c printer-dc%)
parent : (or/c (is-a?/c frame)) (is-a?/c dialogl) #f) = #f

If parent is not #£, it is may be as the parent window of the dialog (if any) presented by
end-doc.

3.40 radio-boxY

(® Buttono
Radio Box () Button 1
Button 2

radio-box% : class?
superclass: object’

extends: control<’>

A radio-box control allows the user to select one of a number of mutually exclusive
items. The items are displayed as a vertical column or horizontal row of labelled radio
buttons. Unlike a 1ist-control<y>, the set of items in a radio-box} cannot be changed
dynamically.

Whenever the user changes the selected radio button, the radio box’s callback procedure is
invoked. A callback procedure is provided as an initialization argument when each radio box
is created.

117

(new radio-box
[label labell
[choices choices]
[parent parent]
[[callback callback]
[style stylel
[selection selection]
[font font]
[enabled enabled]
[vert-margin vert-margin]
[horiz-margin horiz-margin]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])

— (is-a?/c radio-box¥)

label : (or/c label-string? #f)

choices : (or/c (listof label-string?) (listof (is-a?/c bitmap%)))

(or/c (is-a?/c frame),) (is-a?/c dialogh)

parent : (is-a?/c panel’) (is-a?/c pane%))
((is-a?/c radio-box%) (is-a?/c control-event)
callback :
-> . any)
= (lambda (r e) (void))
(listof (or/c ’horizontal ’vertical
style : ’vertical-label ’horizontal-label

’deleted))

= ’(vertical)
selection : (or/c exact-nonnegative-integer? #f) = 0
font : (is-a?/c font),) = normal-control-font
enabled : any/c = #t
vert-margin : spacing-integer? = 2
horiz-margin : spacing-integer? = 2
min-width : (or/c dimension-integer? #f) = #f
min-height : (or/c dimension-integer? #f) = #f
stretchable-width : any/c = #f
stretchable-height : any/c = #f

Creates a radio button set with string or bitmap labels. The choices list specifies the radio
button labels; the list of choices must be homogeneous, either all strings or all bitmaps.
If & occurs in label, it is specially parsed as for button.

Each string in choices can also contain a &, which creates a mnemonic for clicking the
corresponding radio button. As for 1abel, a && is converted to a &.

If choices is a list of bitmaps, and if a bitmap has a mask (see get-loaded-mask in

118

bitmap?%) that is the same size as the bitmap, then the mask is used for the label. Modifying
a bitmap while it is used as a label has an unspecified effect on the displayed label.

If 1abel is a string, it is used as the label for the radio box. Otherwise, the radio box does
not display its label.

The callback procedure is called (with the event type ’radio-box) when the user changes
the radio button selection.

The style argument must include either ’vertical for a collection of radio buttons
vertically arranged, or ’horizontal for a horizontal arrangement. If style includes
’vertical-label, then the radio box is created with a label above the control; if style
does not include ’vertical-label (and optionally includes *horizontal-label), then
the label is created to the left of the radio box. If style includes ’deleted, then the radio
box is created as hidden, and it does not affect its parent’s geometry; the radio box can be
made active later by calling parent’s add-child method.

By default, the first radio button is initially selected. If selection is positive or #f, it is
passed to set-selection to set the initial radio button selection.

The font argument determines the font for the control. For information about the en-
abled argument, see window<}>. For information about the horiz-margin and vert-
margin arguments, see subarea<y,>. For information about the min-width, min-height,
stretchable-width, and stretchable-height arguments, see area<},>.

(send a-radio-box enable enable?) — void?
enable? : any/c

(send a-radio-box enable n enable?) — void?
n : exact-nonnegative-integer?
enable? : any/c

Overrides enable in window<}>.
If a single argument is provided, the entire radio box is enabled or disabled.

If two arguments are provided, then if enable? is #£, the nth radio button is disabled, oth-
erwise it is enabled (assuming the entire radio box is enabled). Radio buttons are numbered
from O. If n is equal to or larger than the number of radio buttons in the radio box, an
exn:fail:contract exception is raised.

(send a-radio-box get-item-label n) — string?
n : exact-nonnegative-integer?

Gets the label of a radio button by position. Radio buttons are numbered from 0. If n is
equal to or larger than the number of radio buttons in the radio box, an exn:fail:contract
exception is raised.

119

(send a-radio-box get-item-plain-label n) — string?
n : exact-nonnegative-integer?

Like get-item-1label, except that the label must be a string and &s in the label are removed.

(send a-radio-box get-number) — exact-nonnegative-integer?

Returns the number of radio buttons in the radio box.

(send a-radio-box get-selection)
— (or/c exact-nonnegative-integer? #f)

Gets the position of the selected radio button, returning #f if no button is selected. Radio
buttons are numbered from O.

(send a-radio-box is-enabled?) — boolean?
(send a-radio-box is-enabled? n) — boolean?
n : exact-nonnegative-integer?

Overrides is-enabled? in window<%>.

If no arguments are provided, the enable state of the entire radio box is reported.

Otherwise, returns #f if nth radio button is disabled (independent of disabling the entire
radio box), #t otherwise. Radio buttons are numbered from 0. If n is equal to or larger than
the number of radio buttons in the radio box, an exn:fail:contract exception is raised.

(send a-radio-box set-selection n) — void?
n : (or/c exact-nonnegative-integer? #f)

Sets the selected radio button by position, or deselects all radio buttons if n is #f. (The
control’s callback procedure is not invoked.) Radio buttons are numbered from 0. If n is
equal to or larger than the number of radio buttons in the radio box, an exn:fail:contract
exception is raised.

A radio box’s selection can be changed by the user clicking the control, and such changes do
not go through this method; use the control callback procedure (provided as an initialization
argument) to monitor selection changes.

3.41 selectable-menu-item<%>

selectable-menu-item<%> : interface?
implements: labelled-menu-item<%>

120

A selectable-menu-item<y> object is a labelled-menu-item<%> that the user can
select. It may also have a keyboard shortcut; the shortcut is displayed in the menu, and
the default on-subwindow-char method in the menu’s frame dispatches to the menu item
when the shortcut key combination is pressed.

(send a-selectable-menu-item command event) — void?
event : (is-a?/c control-event,)

Invokes the menu item’s callback procedure, which is supplied when an instance of menu-
item, or checkable-menu-itemy is created.

(send a-selectable-menu-item get-shortcut)
— (or/c char? symbol? #f)

Gets the keyboard shortcut character or virtual key for the menu item. This character or key
is combined with the shortcut prefix, which is reported by get-shortcut-prefix.

If the menu item has no shortcut, #f is returned.
The shortcut part of a menu item name is not included in the label returned by get-1label.

For a list of allowed key symbols, see get-key-code in key-event?, except that the fol-
lowing are disallowed: ’shift, ’control, ’numlock, ’scroll, ’wheel-up, ’wheel-
down, ’release, and ’press.

(send a-selectable-menu-item get-shortcut-prefix)
(and/c (listof (or/c ’alt ’cmd ’meta ’ctl
’shift ’option))
(A (x) (implies (equal? ’unix (system-type))
(not (and (member ’alt x)
(member ’meta x)))))
(A (x) (equal? x (remove-duplicates x))))

Returns a list of symbols that indicates the keyboard prefix used for the menu item’s key-
board shortcut. The allowed symbols for the list are the following:

e ’alt — Meta (Windows and X only)
¢ ’cmd — Command (Mac OS X only)
¢ ‘meta — Meta (Unix only)

e ’ctl — Control

e ’shift — Shift

* ’option — Option (Mac OS X only)

121

On Unix, at most one of *alt and ’meta can be supplied; the only difference between *alt
and ’meta is the key combination’s display in a menu.

The default shortcut prefix is available from get-default-shortcut-prefix.

The shortcut key, as determined by get-shortcut, matches a key event using either the
normally reported key code or the other-Shift/AltGr key code (as produced by get-other-
shift-key-code in key-event}, etc.). When the shortcut key is a key-code symbol or an
ASCII letter or digit, then the shortcut matches only the exact combination of modifier keys
listed in the prefix. For character shortcuts other than ASCII letters and digits, however, then
the shortcut prefix merely determines a minimum set of modifier keys, because additional
modifiers may be needed to access the character; an exception is that, on Windows or Unix,
the Alt/Meta key press must match the prefix exactly (i.e., included or not). In all cases, the
most precise match takes precedence; see map-function in keymap¥ for more information
on match ranking.

An empty list can be used for a shortcut prefix. However, the default on-menu-char in
framey method checks for menu shortcuts only when the key event includes either a non-
Shift modifier or a Function key. Thus, an empty shortcut prefix is normally useful only if
the shortcut key is a Function key.

(send a-selectable-menu-item set-shortcut shortcut) — void?
shortcut : (or/c char? symbol? #f)

Sets the keyboard shortcut character for the menu item. See get-shortcut for more infor-
mation.

If the shortcut character is set to #£, then menu item has no keyboard shortcut.

(send a-selectable-menu-item set-shortcut-prefix prefix)
— void?
(and/c (listof (or/c ’alt ’cmd ’meta ’ctl
’shift ’option))
(A (x) (implies (equal? ’unix (system-type))
(not (and (member ’alt x)
(member ’meta x)))))
(A (x) (equal? x (remove-duplicates x))))

prefix :

Sets a list of symbols to indicates the keyboard prefix used for the menu item’s keyboard
shortcut.

See get-shortcut-prefix for more information.

342 separator-menu-itemj

separator-menu-itemy, : class?

122

superclass: object
extends: menu-item<%>

A separator is an unselectable line in a menu. Its parent must be a menu, or popup-menu’.

(new separator-menu-item), [parent parent])
— (is-a?/c separator-menu-item},)
parent : (or/c (is-a?/c menuj,) (is-a?/c popup-menu’))

Creates a new separator in the menu.

3.43 scroll-eventY

scroll-event), : class?
superclass: event?,

A scroll-event’, object contains information about a scroll event. An instance of
scroll-eventy is always provided to on-scroll.

See get-event-type for a list of the scroll event types.

(new scroll-eventy

[[event-type event-typel

[direction direction]

[position position]

[time-stamp time-stamp]])
— (is-a?/c scroll-event)
event-type : (or/c :top ’bot?om ’line-up ’line-down = thumb

page-up ’page-down ’thumb)

direction : (or/c ’horizontal ’vertical) = ’vertical
position : dimension-integer? = 0
time-stamp : exact-integer? = 0

See the corresponding get - and set- methods for information about event-type, direc-
tion, position, and time-stamp.

(send a-scroll-event get-direction)
— (or/c ’horizontal ’vertical)

Gets the identity of the scrollbar that was modified by the event, either the horizontal scroll-
bar or the vertical scrollbar, as horizontal or ’vertical, respectively. See also set-
direction.

(send a-scroll-event get-event-type)
(or/c ’top ’bottom ’line-up ’line-down
’page-up ’page-down ’thumb)

123

Returns the type of the event, one of the following:

* ’top — user clicked a scroll-to-top button

* ’bottom — user clicked a scroll-to-bottom button

e ’1line-up — user clicked an arrow to scroll up or left one step

* ’1line-down — user clicked an arrow to scroll down or right one step
* ’page-up — user clicked an arrow to scroll up or left one page

* ’page-down — user clicked an arrow to scroll down or right one page

* ’thumb — user dragged the scroll position indicator

(send a-scroll-event get-position) — dimension-integer?

Returns the position of the scrollbar after the action triggering the event. See also set-
position.

(send a-scroll-event set-direction direction) — void?
direction : (or/c ’horizontal ’vertical)

Sets the identity of the scrollbar that was modified by the event, either the horizontal scroll-
bar or the vertical scrollbar, as *horizontal or ’vertical, respectively. See also get-
direction.

(send a-scroll-event set-event-type type) — void?
(or/c ’top ’bottom ’line-up ’line-down

type : ,page_up ’page—down >thumb)

Sets the type of the event. See get-event-type for information about each event type.

(send a-scroll-event set-position position) — void?
position : dimension-integer?

Records the position of the scrollbar after the action triggering the event. (The scrollbar
itself is unaffected). See also get-position.

124

3.44 slider’

slider

slider’% : class?
superclass: object’

extends: control<’>

A slider object is a panel item with a handle that the user can drag to change the control’s
value. Each slider has a fixed minimum and maximum value.

Whenever the user changes the value of a slider, its callback procedure is invoked. A callback
procedure is provided as an initialization argument when each slider is created.

(new slider?,
[label Iabell
[min-value min-value]
[max-value max-value]
[parent parent]
[[callback callback]
[init-value init-value]
[style style]
[font font]
[enabled enabled]
[vert-margin vert-margin]
[horiz-margin horiz-margin]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])
— (is-a?/c slider’)
label : (or/c label-string? #f)
min-value : position-integer?
max-value : position-integer?
(or/c (is-a?/c frame),) (is-a?/c dialogh)
(is-a?/c panel’) (is-a?/c pane’))
callback : ((is-a?/c slider’,) (is-a?/c control-event’,) . -> . any)
= (lambda (b e) (void))
init-value : position-integer? = min-value

parent :

125

(listof (or/c ’horizontal ’vertical ’plain
style : ’vertical-label ’horizontal-label
’deleted))
= ’ (horizontal)
font : (is-a?/c font),) = normal-control-font
enabled : any/c = #t
vert-margin :@ spacing-integer? = 2
horiz-margin : spacing-integer? = 2
min-width : (or/c dimension-integer? #f) = #f
min-height : (or/c dimension-integer? #f) = #f
stretchable-width : any/c = (memq ’horizontal style)
stretchable-height : any/c = (memq ’vertical style)

If 1abel is a string, it is used as the label for the slider. Otherwise, the slider does not
display its label.

If & occurs in label, it is specially parsed as for button’.

The min-value and max-value arguments specify the range of the slider, inclusive. The
init-value argument optionally specifies the slider’s initial value. If the sequence [min-
value, initial-value, maximum-value] is not increasing, an exn:fail:contract ex-
ception is raised.

The callback procedure is called (with the event type ’slider) when the user changes the
slider’s value.

The style argument must include either ’vertical for a vertical slider, or *horizontal
for a horizontal slider. If style includes ’plain, the slider does not display numbers for its
range and current value to the user. If style includes ’vertical-label, then the slider is
created with a label above the control; if style does not include ’vertical-label (and
optionally includes *horizontal-label), then the label is created to the left of the slider.
If style includes ’deleted, then the slider is created as hidden, and it does not affect
its parent’s geometry; the slider can be made active later by calling parent’s add-child
method.

The font argument determines the font for the control. For information about the en-
abled argument, see window<%>. For information about the horiz-margin and vert-
margin arguments, see subarea<y,>. For information about the min-width, min-height,
stretchable-width, and stretchable-height arguments, see area<y>.

(send a-slider get-value) — position-integer?

Gets the current slider value.

(send a-slider set-value value) — void?
value : position-integer?

126

Sets the value (and displayed position) of the slider. (The control’s callback procedure
is not invoked.) If value is outside the slider’s minimum and maximum range, an
exn:fail:contract exception is raised.

A slider’s value can be changed by the user clicking the control, and such changes do not
go through this method; use the control callback procedure (provided as an initialization
argument) to monitor value changes.

3.45 subarea<¥>

subarea<y,> : interface?
implements: area<>

A subarea<> is a containee area<}>.

All subarea<’> classes accept the following named instantiation arguments:

* horiz-margin — default is 2 for control<’> classes and group-box-panely, 0
for others; passed to horiz-margin

e vert-margin — default is 2 for control<y> classes and group-box-panely, O for
others; passed to vert-margin

(send a-subarea horiz-margin) — spacing-integer?
(send a-subarea horiz-margin margin) — void?
margin : spacing-integer?

Gets or sets the area’s horizontal margin, which is added both to the right and left, for
geometry management. See(S1.4 “Geometry Management”|for more information.

(send a-subarea vert-margin) — spacing-integer?
(send a-subarea vert-margin margin) — void?
margin : spacing-integer?

Gets or sets the area’s vertical margin, which is added both to the top and bottom, for geom-
etry management. See(§1.4 “Geometry Management”|for more information.

3.46 subwindow<¥>

subwindow<%> : interface?
implements: subarea<},>
window<%>

A subwindow<%> is a containee window.

127

(send a-subwindow reparent new-parent) — void?
(or/c (is-a?/c frame},) (is-a?/c dialogh)

new-parent : (is-a?/c panel’) (is-a?/c pane’))

Removes the window from its current parent and makes it a child of new-parent. The

current and new parents must have the same eventspace, and new-parent cannot be a de-
scendant of a-subwindow.

If a-subwindow is deleted within its current parent, it remains deleted in new-parent.
Similarly, if a-subwindow is shown in its current parent, it is shown in new-parent.

3.47 tab-panell,

TabO|| Tab1 | Tab 2

tab-panel’, : class?
superclass: vertical-panel,

A tab panel arranges its subwindows in a single column, but also includes a horizontal row
of tabs at the top of the panel. See also panel.

The tab-panel’, class does not implement the virtual swapping of the panel content when

a new tab is selected. Instead, it merely invokes a callback procedure to indicate that a user
changed the tab selection.

128

(new tab-panel},
[choices choices]
[parent parent]
[[callback callback]
[style style]
[font font]
[enabled enabled]
[vert-margin vert-margin]
[horiz-margin horiz-margin]
[border border]
[spacing spacing]
[alignment alignment]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])
— (is-a?/c tab-panel},)
choices : (listof label-string?)
(or/c (is-a?/c frame),) (is-a?/c dialogh)
(is-a?/c panel’) (is-a?/c pane%))
((is-a?/c tab-panel),) (is-a?/c control-event,)
-> . any)
= (lambda (b e) (void))
style : (listof (or/c ’no-border ’deleted)) = null
font : (is-a?/c font),) = normal-control-font
enabled : any/c = #t
vert-margin : spacing-integer? = 0
horiz-margin : spacing-integer? = 0
border : spacing-integer? = 0
spacing : spacing-integer? = 0
(list/c (or/c ’left ’center ’right)
(or/c ’top ’center ’bottom))
= ’(center top)
min-width : (or/c dimension-integer? #f) = #f
min-height : (or/c dimension-integer? #f) = #f
stretchable-width : any/c = #t
stretchable-height : any/c = #t

parent :

callback :

alignment :

Creates a tab pane, where the choices list specifies the tab labels.

Each string in choices can contain an ampersand, which (in the future) may create a
mnemonic for clicking the corresponding tab. A double ampersand is converted to a sin-
gle ampersand.

The callback procedure is called (with the event type ’tab-panel) when the user changes
the tab selection.

129

If the style list includes ’no-border, no border is drawn around the panel content. If
style includes ’deleted, then the tab panel is created as hidden, and it does not affect its
parent’s geometry; the tab panel can be made active later by calling parent’s add-child
method.

The font argument determines the font for the control. For information about the en-
abled argument, see window<}>. For information about the horiz-margin and vert-
margin arguments, see subarea<y,>. For information about the min-width, min-height,
stretchable-width, and stretchable-height arguments, see area<},>.

(send a-tab-panel append choice) — void?
choice : label-string?

Adds a tab to the right end of panel’s top row of tabs.

The label string choice can contain &, which (in the future) may create a mnemonic for
clicking the new tab. A && is converted to &.

(send a-tab-panel delete n) — void?
n : exact-nonnegative-integer?
Deletes an existing tab. If n is equal to or larger than the number of tabs on the panel, an
exn:fail:contract exception is raised.
(send a-tab-panel get-item-label n) — string?
n : exact-nonnegative-integer?
Gets the label of a tab by position. Tabs are numbered from 0. If n is equal to or larger than
the number of tabs in the panel, an exn:fail:contract exception is raised.

(send a-tab-panel get-number) — exact-nonnegative-integer?

Returns the number of tabs on the panel.

(send a-tab-panel get-selection)
— (or/c exact-nonnegative-integer? #f)

Returns the index (counting from 0) of the currently selected tab. If the panel has no tabs,
the result is #£.
(send a-tab-panel set choices) — void?
choices : (listof label-string?)

Removes all tabs from the panel and installs tabs with the given labels.

130

(send a-tab-panel set-item-label n label) — void?
n : exact-nonnegative-integer?
Jabel : label-string?

Set the label for tab n to label. If n is equal to or larger than the number of tabs in the
panel, an exn:fail:contract exception is raised.

(send a-tab-panel set-selection n) — void?
n : exact-nonnegative-integer?

Sets the currently selected tab by index (counting from 0). If n is equal to or larger than the
number of tabs in the panel, an exn:fail:contract exception is raised.

3.48 text-fieldy,

Texk |Field

text-field), : class?
superclass: object

extends: control<’>

A text-fieldy object is an editable text field with an optional label displayed in front of
it. There are two text field styles:

* A single line of text is visible, and a special control event is generated when the
user presses Return or Enter (when the text field has the focus) and the event is not
handled by the text field’s frame or dialog (see on-traverse-char in top-level-
window<%>).

» Multiple lines of text are visible, and Enter is not handled specially.

Whenever the user changes the content of a text field, its callback procedure is invoked. A
callback procedure is provided as an initialization argument when each text field is created.

The text field is implemented using a text, editor (with an inaccessible display). Thus,
whereas text-fieldj, provides only get-value and set-value to manipulate the text in

131

a text field, the get-editor returns the field’s editor, which provides a vast collection of
methods for more sophisticated operations on the text.

The keymap for the text field’s editor is initialized by calling the current keymap initializer
procedure, which is determined by the current-text-keymap-initializer parameter.

(new text-field
[label labell
[parent parent]
[[callback callback]
[init-value init-value]
[style style]
[font font]
[enabled enabled]
[vert-margin vert-margin]
[horiz-margin horiz-margin]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])
— (is-a?/c text-field),)
label : (or/c label-string? #f)
(or/c (is-a?/c frame},) (is-a?/c dialogh)
(is-a?/c panel’) (is-a?/c pane’))
((is-a?/c text-field}) (is-a?/c control-event)
-> . any)
= (lambda (t e) (void))
init-value : string? = ""
(listof (or/c ’single ’multiple ’hscroll ’password
style : ’vertical-label ’horizontal-label
’deleted))

parent

callback :

= ’(single)
font : (is-a?/c font),) = normal-control-font
enabled : any/c = #t
vert-margin : spacing-integer? = 2
horiz-margin : spacing-integer? = 2
min-width : (or/c dimension-integer? #f) = #f
min-height : (or/c dimension-integer? #f) = #f
stretchable-width : any/c = #t
stretchable-height : any/c = (memq ’multiple style)

If I1abel is not #£, it is used as the text field label. Otherwise, the text field does not display
its label.

If & occurs in label, it is specially parsed as for button.

132

The callback procedure is called when the user changes the text in the text field or presses
the Enter key (and Enter is not handled by the text field’s frame or dialog; see on-traverse-
char in top-level-window<%>). If the user presses Enter, the type of event passed to the
callback is *text-field-enter, otherwise it is *text-field.

If init-value is not "", the graphical minimum size for the text item is made wide enough
to show init-value. Otherwise, a built-in default width is selected. For a text field in
single-line mode, the graphical minimum size is set to show one line, and only the control’s
width is stretchable by default. For a multiple-line text field, the graphical minimum size
shows three lines of text, and it is stretchable in both directions by default.

The style must contain exactly one of single or multiple; the former specifies a single-
line field and the latter specifies a multiple-line field. The ’hscroll style applies only to
multiple-line fields; when ’hscroll is specified, the field has a horizontal scrollbar and
autowrapping is disabled; otherwise, the field has no horizontal scrollbar and autowrapping
is enabled. A multiple-line text field always has a vertical scrollbar. The ’password style
indicates that the field should draw each character of its content using a generic symbol
instead of the actual character. If style includes ’vertical-label, then the text field is
created with a label above the control; if style does not include ’vertical-label (and
optionally includes ’horizontal-label), then the label is created to the left of the text
field. If style includes ’deleted, then the text field is created as hidden, and it does
not affect its parent’s geometry; the text field can be made active later by calling parent’s
add-child method..

The font argument determines the font for the control. For information about the en-
abled argument, see window<%>. For information about the horiz-margin and vert-
margin arguments, see subarea<y,>. For information about the min-width, min-height,
stretchable-width, and stretchable-height arguments, see area<}>.

(send a-text-field get-editor) — (is-a?/c textl)

Returns the editor used to implement the text field.

For a text field, the most useful methods of a text object are the following:

* (send a-text get-text) returns the current text of the editor.
* (send a-text erase) deletes all text from the editor.

* (send a-text insert str) inserts str into the editor at the current caret posi-
tion.

(send a-text-field get-field-background) — (is-a?/c color)

Gets the background color of the field’s editable area.

133

(send a-text-field get-value) — string?

Returns the text currently in the text field.

(send a-text-field set-field-background color) — void?
color : (is-a?/c colory)

Sets the background color of the field’s editable area.

(send a-text-field set-value val) — void?
val : string?

Sets the text currently in the text field. (The control’s callback procedure is not invoked.)

A text field’s value can be changed by the user typing into the control, and such changes do
not go through this method; use the control callback procedure (provided as an initialization
argument) to monitor value changes.

3.49 timerY

timery, : class?
superclass: object

A timer, object encapsulates an event-based alarm. To use a timer, either instantiate it
with a timer-callback thunk to perform the alarm-based action, or derive a new class and
override the notify method to perform the alarm-based action. Start a timer with start
and stop it with stop. Supplying an initial interval (in milliseconds) when creating a
timer also starts the timer.

Timers have a relatively high priority in the event queue. Thus, if the timer delay is set
low enough, repeated notification for a timer can preempt user activities (which might be
directed at stopping the timer). For timers with relatively short delays, call yield within the
notify procedure to allow guaranteed event processing.

See[§1.6 “Event Dispatching and Eventspaces”|for more information about event priorities.

(new timery,
[[notify-callback notify-callback]
[interval intervall
[just-once? just-once?]])

— (is-a?/c timer)

notify-callback : (-> any) = void

interval : (or/c (integer-in 0 1000000000) #f) = #f

just-once? : any/c = #f

134

The notify-callback thunk is called by the default notify method when the timer ex-
pires.

If interval is #f (the default), the timer is not started; in that case, start must be called
explicitly. If interval is a number (in milliseconds), then start is called with interval
and just-once?.

(send a-timer interval) — (integer-in 0 1000000000)

Returns the number of milliseconds between each timer expiration (when the timer is run-
ning).

(send a-timer notify) — void?

Specification: Called (on an event boundary) when the timer’s alarm expires.

Default implementation: Calls the notify-callback procedure that was provided when
the object was created.

(send a-timer start msec [just-once?]) — void?
msec : (integer-in O 1000000000)
just-once? : any/c = #f

Starts (or restarts) the timer. If the timer is already running, its alarm time is not changed.

The timer’s alarm expires after msec milliseconds, at which point notify is called (on an
event boundary). If just-once? is #f, the timer expires every msec milliseconds until
the timer is explicitly stopped. (More precisely, the timer expires msec milliseconds after
notify returns each time.) Otherwise, the timer expires only once.

(send a-timer stop) — void?

Stops the timer. A stopped timer never calls notify. If the timer has expired but the call to
notify has not yet been dispatched, the call is removed from the event queue.

3.50 top-level-window<}>

top-level-window<}> : interface?
implements: area-container-window<%>

A top-level window is either a frame, or dialog object.

(send a-top-level-window can-close?) — boolean?

135

Refine this method with augment.

Called just before the window might be closed (e.g., by the window manager). If #f is
returned, the window is not closed, otherwise on-close is called and the window is closed
(i.e., the window is hidden, like calling show with #f).

This method is not called by show.

(send a-top-level-window can-exit?) — boolean?

Specification: Called before on-exit to check whether an exit is allowed. See on-exit for
more information.

Default implementation: Calls can-close? and returns the result.

(send a-top-level-window center [direction]) — void?
direction : (or/c ’horizontal ’vertical ’both) = ’both

Centers the window on the screen if it has no parent. If it has a parent, the window is centered
with respect to its parent’s location.

If direction is *horizontal, the window is centered horizontally. If direction is
’vertical, the window is centered vertically. If direction is ’both, the window is
centered in both directions.

(send a-top-level-window get-edit-target-object)
— (or/c (or/c (is-a?/c window<%>) (is-a?/c editor<}%>)) #f)

Like get-edit-target-window, but if an editor canvas had the focus and it also displays
an editor, the editor is returned instead of the canvas. Further, if the editor’s focus is dele-
gated to an embedded editor, the embedded editor is returned.

See also get-focus-object.

(send a-top-level-window get-edit-target-window)
— (or/c (is-a?/c window<%>) #f)

Returns the window that most recently had the keyboard focus, either the top-level window
or one of its currently-shown children. If neither the window nor any of its currently-shown
children has even owned the keyboard focus, #f is returned.

See also get-focus-window and get-edit-target-object.

(send a-top-level-window get-eventspace) — eventspace?

Returns the window’s eventspace.

136

(send a-top-level-window get-focus-object)
— (or/c (or/c (is-a?/c window<}>) (is-a?/c editor<y>)) #f)

Like get-focus-window, but if an editor canvas has the focus and it also displays an editor,
the editor is returned instead of the canvas. Further, if the editor’s focus is delegated to an
embedded editor, the embedded editor is returned.

See also get-edit-target-object.

(send a-top-level-window get-focus-window)
— (or/c (is-a?/c window<¥%>) #f)

Returns the window that has the keyboard focus, either the top-level window or one of its
children. If neither the window nor any of its children has the focus, #f is returned.

See also get-edit-target-window and get-focus-object.

(send a-top-level-window move x y) — void?
X : position-integer?
y : position-integer?

Moves the window to the given position on the screen.

A window’s position can be changed by the user dragging the window, and such changes do
not go through this method; use on-move to monitor position changes.

(send a-top-level-window on-activate active?) — void?
active? : any/c

Called when a window is activated or deactivated. A top-level window is activated when
the keyboard focus moves from outside the window to the window or one of its children.
It is deactivated when the focus moves back out of the window. On Mac OS X, a child of
a floating frames can have the focus instead of a child of the active non-floating frame; in
other words, floating frames act as an extension of the active non-frame for keyboard focus.

The method’s argument is #t when the window is activated, #f when it is deactivated.

(send a-top-level-window on-close) — void?

Refine this method with augment.

Called just before the window is closed (e.g., by the window manager). This method is not
called by show.

See also can-close?.

137

(send a-top-level-window on-exit) — void?

Specification: Called by the default application quit handler (as determined by the
application-quit-handler parameter) when the operating system requests that the ap-
plication shut down (e.g., when the Quit menu item is selected in the main application menu
on Mac OS X). In that case, this method is called for the most recently active top-level
window in the initial eventspace, but only if the window’s can-exit? method first returns
true.

Default implementation: Calls on-close and then show to hide the window.

(send a-top-level-window on-message message) — any/c
message : any/c

Specification: A generic message method, usually called by send-message-to-window.

If the method is invoked by send-message-to-window, then it is invoked in the thread
where send-message-to-window was called (which is possibly not the handler thread of
the window’s eventspace).

Default implementation: Returns #<void>.

(send a-top-level-window display-changed) — any/c

Specification: Called when the displays configuration changes.

To determine the new monitor configuration, use get-display-count, get-display-
size, get-display-left-top-inset, and get-display-backing-scale.

Note that this method may be invoked multiple times for a single logical change to the
monitors.

Default implementation: Returns #<void>.

(send a-top-level-window on-traverse-char event) — boolean?
event : (is-a?/c key-event?)

Specification: Attempts to handle the given keyboard event as a navigation event, such as
a Tab key event that moves the keyboard focus. If the event is handled, #t is returned,
otherwise #f is returned.

Default implementation: The following rules determine, in order, whether and how event
is handled:

* If the window that currently owns the focus specifically handles the event, then #f is
returned. The following describes window types and the keyboard events they specif-
ically handle:

138

— editor-canvasy — tab-exit is disabled (see allow-tab-exit): all keyboard
events, except alphanumeric key events when the Meta (Unix) or Alt (Windows)
key is pressed; when tab-exit is enabled: all keyboard events except Tab, Enter,
Escape, and alphanumeric Meta/Alt events.

— canvas, — when tab-focus is disabled (see accept-tab-focus): all keyboard
events, except alphanumeric key events when the Meta (Unix) or Alt (Windows)
key is pressed; when tab-focus is enabled: no key events

— text-field), ’single style — arrow key events and alphanumeric key events
when the Meta (Unix) or Alt (Windows) key is not pressed (and all alphanumeric
events on Mac OS X)

— text-field, ’multiple style — all keyboard events, except alphanumeric
key events when the Meta (Unix) or Alt (Windows) key is pressed

— choicel, — arrow key events and alphanumeric key events when the Meta
(Unix) or Alt (Windows) key is not pressed

— list-box’, — arrow key events and alphanumeric key events when the Meta
(Unix) or Alt (Windows) key is not pressed

* If event is a Tab or arrow key event, the keyboard focus is moved within the window
and #t is returned. Across platforms, the types of windows that accept the keyboard
focus via navigation may vary, but text-field’, windows always accept the focus,
and message’, gauge’, and panely, windows never accept the focus.

» If event is a Space key event and the window that currently owns the focus is a
button%, check-box, or radio-box object, the event is handled in the same way
as a click on the control and #t is returned.

» If event is an Enter key event and the current top-level window contains a border
button, the button’s callback is invoked and #t is returned. (The ’border style for
a buttony object indicates to the user that pressing Enter is the same as clicking the
button.) If the window does not contain a border button, #t is returned if the window
with the current focus is not a text field or editor canvas.

* In a dialog, if event is an Escape key event, the event is handled the same as a click
on the dialog’s close box (i.e., the dialog’s can-close? and on-close methods are
called, and the dialog is hidden) and #t is returned.

» If event is an alphanumeric key event and the current top-level window contains a
control with a mnemonic matching the key (which is installed via a label that contains
&; see get-label for more information), then the keyboard focus is moved to the
matching control. Furthermore, if the matching control is a buttony, check-box¥,
or radio-boxY button, the keyboard event is handled in the same way as a click on
the control.

¢ Otherwise, #f is returned.

(send a-top-level-window on-system-menu-char event) — boolean?
event : (is-a?/c key-event},)

139

Checks whether the given event pops open the system menu in the top-left corner of the
window (Windows only). If the window’s system menu is opened, #t is returned, otherwise
#f is returned.

(send a-top-level-window resize width
height) — void?
width : dimension-integer?
height : dimension-integer?

Sets the size of the window (in pixels), but only if the given size is larger than the window’s
minimum size.

A window’s size can be changed by the user, and such changes do not go through this
method; use on-size to monitor size changes.

(send a-top-level-window set-icon icon
[mask
which]) — void?
icon : (is-a?/c bitmap%)
mask : (is-a?/c bitmap}) = #f
which : (or/c ’small ’large ’both) = ’both

Sets the large or small icon bitmap for the window. Future changes to the bitmap do not
affect the window’s icon.

The icon is used in a platform-specific way:
* Windows — the small icon is used for the window’s icon (in the top-left) and in the
task bar, and the large icon is used for the Alt-Tab task switcher.
* Mac OS X — both icons are ignored.
* Unix — many window managers use the small icon in the same way as Windows, and
others use the small icon when iconifying the frame; the large icon is ignored.
The bitmap for either icon can be any size, but most platforms scale the small bitmap to 16
by 16 pixels and the large bitmap to 32 by 32 pixels.

If a mask bitmap is not provided, then the entire (rectangular) bitmap is used as an icon.

If a mask bitmap is provided, the mask must be monochrome. In the mask bitmap, use black
pixels to indicate the icon’s region and use white pixels outside the icon’s region. In the icon
bitmap, use black pixels for the region outside the icon.

(send a-top-level-window show show) — void?
show : any/c

140

If the window is already shown, it is moved front of other top-level windows. If the window
is iconized (frames only), it is deiconized.

See also show in window<%>.

3.51 vertical-pane,

vertical-panel, : class?
superclass: pane’,

A vertical pane arranges its subwindows in a single column. See also pane’,.

(new vertical-panej,
[parent parent]
[[vert-margin vert-margin]
[horiz-margin horiz-margin]
[border border]
[spacing spacing]
[alignment alignment]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])
— (is-a?/c vertical-pane,)
(or/c (is-a?/c frame),) (is-a?/c dialogh)
(is-a?/c panel’) (is-a?/c pane%))
vert-margin : spacing-integer? = 0
horiz-margin : spacing-integer? = 0
border : spacing-integer? = 0
spacing : spacing-integer? = 0
(1ist/c (or/c ’left ’center ’right)
(or/c ’top ’center ’bottom))
= ’(center top)
min-width : (or/c dimension-integer? #f) = #f
min-height : (or/c dimension-integer? #f) = #f
stretchable-width : any/c = #t
stretchable-height : any/c = #t

parent :

alignment :

For information about the horiz-margin and vert-margin arguments, see subarea<y>
For information about the border, spacing, and alignment arguments, see area-
container<y%>. For information about the min-width, min-height, stretchable-
width, and stretchable-height arguments, see area<y,>

141

3.52 vertical-panel

vertical-panely, : class?
superclass: panel?,

A vertical panel arranges its subwindows in a single column. See also panely.

(new vertical-panell,
[parent parent]
[[style stylel]
[enabled enabled]
[vert-margin vert-margin]
[horiz-margin horiz-margin]
[border border]
[spacing spacing]
[alignment alignment]
[min-width min-width]
[min-height min-height]
[stretchable-width stretchable-width]
[stretchable-height stretchable-height]])
— (is-a?/c vertical-panel})
(or/c (is-a?/c frame),) (is-a?/c dialogh)
(is-a?/c panel’) (is-a?/c pane%))
(listof (or/c ’border ’deleted
style : ’hscroll ’auto-hscroll = null
’vscroll ’auto-vscroll))

parent :

enabled : any/c = #t

vert-margin :@ spacing-integer? = 0O

horiz-margin : spacing-integer? = 0

border : spacing-integer? = 0

spacing : spacing-integer? = 0

(1ist/c (or/c ’left ’center ’right)
(or/c ’top ’center ’bottom))

= ’(center top)

min-width : (or/c dimension-integer? #f) = #f

min-height : (or/c dimension-integer? #f) = #f

stretchable-width : any/c = #t

stretchable-height : any/c = #t

alignment :

The style flags are the same as for panel’,.

For information about the enabled argument, see window<%>. For information about the
horiz-margin and vert-margin arguments, see subarea<y>. For information about the
border, spacing, and alignment arguments, see area-container<y>. For information
about the min-width, min-height, stretchable-width, and stretchable-height
arguments, see area<’>.

142

(send a-vertical-panel set-orientation horizontal?) — void?
horizontal? : boolean?

Sets the orientation of the panel, switching it between the behavior of the vertical-panel/,
and that of the horizontal-panelJ,.

(send a-vertical-panel get-orientation) — boolean?

Initially returns #£, but if set-orientation is called, this method returns whatever the last
value passed to it was.

3.53 window<%>

window<%> : interface?
implements: area<>

A window<%> object is an area<’,> with a graphical representation that can respond to
events.

All window<’> classes accept the following named instantiation arguments:

* enabled — default is #t; passed to enable if #f

(send a-window accept-drop-files) — boolean?
(send a-window accept-drop-files accept-files?) — void?
accept-files? : any/c

Enables or disables drag-and-drop dropping for the window, or gets the enable state. Drop-
ping is initially disabled. See also on-drop-file.

(send a-window client->screen x y)

— position-integer? position-integer?
X : position-integer?
y : position-integer?

Converts local window coordinates to screen coordinates.

On Mac OS X, the screen coordinates start with (0, 0) at the upper left of the menu bar. In
contrast, move in top-level-window<%> considers (0, 0) to be below the menu bar. See
also get-display-left-top-inset.

(send a-window enable enable?) — void?
enable? : any/c

143

Enables or disables a window so that input events are ignored. (Input events include mouse
events, keyboard events, and close-box clicks, but not focus or update events.) When a
window is disabled, input events to its children are also ignored.

The enable state of a window can be changed by enabling a parent window, and such
changes do not go through this method; use on-superwindow-enable to monitor enable
state changes.

If enable? is true, the window is enabled, otherwise it is disabled.

(send a-window focus) — void?

Moves the keyboard focus to the window, relative to its top-level window, if the window ever
accepts the keyboard focus. If the focus is in the window’s top-level window, then the focus
is immediately moved to this window. Otherwise, the focus is not immediately moved, but
when the window’s top-level window gets the keyboard focus, the focus is delegated to this
window.

See also on-focus.

Note that on Unix, keyboard focus can move to the menu bar when the user is selecting a
menu item.

The current keyboard focus window can be changed by the user, and such changes do not go
through this method; use on-focus to monitor focus changes.

(send a-window get-client-handle) — cpointer?

Returns a handle to the “inside” of the window for the current platform’s GUI toolbox. The
value that the pointer represents depends on the platform:

* Windows: HWND

* Mac OS X: NSView

e Unix: GtkWidget

See also get-handle.
(send a-window get-client-size)

— dimension-integer? dimension-integer?

Gets the interior size of the window in pixels. For a container, the interior size is the size
available for placing subwindows (including the border margin). For a canvas, this is the
visible drawing area.

144

The client size is returned as two values: width and height (in pixels).

See also reflow-container.

(send a-window get-cursor) — (or/c (is-a?/c cursory) #f)

Returns the window’s cursor, or #f if this window’s cursor defaults to the parent’s cursor.
See set-cursor for more information.

(send a-window get-handle) — cpointer?

Returns a handle to the “outside” of the window for the current platform’s GUI toolbox. The
value that the pointer represents depends on the platform:

* Windows: HWND

e Mac OS X: NSWindow for a top-level-window<%> object, NSView for other win-
dows

e Unix: GtkWidget

See also get-client-handle.

(send a-window get-height) — dimension-integer?

Returns the window’s total height (in pixels).

See also reflow-container.

(send a-window get-label)
(or/c label-string?
(is-a?/c bitmap%)
(or/c ’app ’caution ’stop)
— (1ist/c (is-a?/c bitmap%)
label-string?
(or/c ’left ’top ’right ’bottom))
#£)

Gets a window’s label, if any. Control windows generally display their label in some way.
Frames and dialogs display their label as a window title. Panels do not display their label,
but the label can be used for identification purposes. Messages, buttons, and check boxes can
have bitmap labels (only when they are created with bitmap labels), but all other windows
have string labels. In addition, a message label can be an icon symbol ’app, ’caution, or
’stop, and a button can have both a bitmap label and a string label (along with a position
for the bitmap).

145

A label string may contain &s, which serve as keyboard navigation annotations for controls
on Windows and Unix. The ampersands are not part of the displayed label of a control;
instead, ampersands are removed in the displayed label (on all platforms), and any character
preceding an ampersand is underlined (Windows and Unix) indicating that the character is a
mnemonic for the control. Double ampersands are converted into a single ampersand (with
no displayed underline). See also on-traverse-char.

If the window does not have a label, #f is returned.

(send a-window get-plain-label) — (or/c string? #f)

Like get-1label, except that:

e If the label includes (&c) for any character c, then the sequenece and any surrounding
whitespace is removed.

« If the label contains &c for any character c, the & is removed.

« If the label contains a tab character, then the tab character and all following characters
are removed.

See also buttony,’s handling of labels.

If the window has no label or the window’s label is not a string, #f is returned.

(send a-window get-size)
— dimension-integer? dimension-integer?

Gets the current size of the entire window in pixels, not counting horizontal and vertical
margins. (On Unix, this size does not include a title bar or borders for a frame/dialog.) See
also get-client-size.

The geometry is returned as two values: width and height (in pixels).

See also reflow-container.

(send a-window get-width) — dimension-integer?

Returns the window’s current total width (in pixels).

See also reflow-container.

(send a-window get-x) — position-integer?

Returns the position of the window’s left edge in its parent’s coordinate system.

See also reflow-container.

146

(send a-window get-y) — position-integer?

Returns the position of the window’s top edge in its parent’s coordinate system.

See also reflow-container.

(send a-window has-focus?) — boolean?

Indicates whether the window currently has the keyboard focus. See also on-focus.

(send a-window is-enabled?) — boolean?

Indicates whether the window is currently enabled or not. The result is #t if this window
is enabled when its ancestors are enabled, or #f if this window remains disable when its
ancestors are enabled. (That is, the result of this method is affected only by calls to enable
for a-window, not by the enable state of parent windows.)

(send a-window is-shown?) — boolean?

Indicates whether the window is currently shown or not. The result is #t if this window is
shown when its ancestors are shown, or #f if this window remains hidden when its ancestors
are shown. (That is, the result of this method is affected only by calls to show for a-window,
not by the visibility of parent windows.)

(send a-window on-drop-file pathname) — void?
pathname : path?

Called when the user drags a file onto the window. (On Unix, drag-and-drop is supported via
the XDND protocol.) Drag-and-drop must first be enabled for the window with accept-
drop-files.

On Mac OS X, when the application is running and user double-clicks an application-
handled file or drags a file onto the application’s icon, the main thread’s application file
handler is called (see application-file-handler). The default handler calls the on-
drop-file method of the most-recently activated frame if drag-and-drop is enabled for
that frame, independent of the frame’s eventspace (but the method is called in the frame’s
eventspace’s handler thread). When the application is not running, the filenames are pro-
vided as command-line arguments.

(send a-window on-focus on?) — void?
on? : any/c

Specification: Called when a window receives or loses the keyboard focus. If the argument
is #t, the keyboard focus was received, otherwise it was lost.

147

Note that on Unix, keyboard focus can move to the menu bar when the user is selecting a
menu item.

Default implementation: Does nothing.

(send a-window on-move x y) — void?
x . position-integer?
y : position-integer?

Specification: Called when the window is moved. (For windows that are not top-level win-
dows, “moved” means moved relative to the parent’s top-left corner.) The new position is
provided to the method.

Default implementation: Does nothing.

(send a-window on-size width height) — void?
width : dimension-integer?
height : dimension-integer?

Specification: Called when the window is resized. The window’s new size (in pixels) is
provided to the method. The size values are for the entire window, not just the client area.

Default implementation: Does nothing.

(send a-window on-subwindow-char receiver
event) — boolean?
receiver : (is-a?/c window<%>)
event : (is-a?/c key-event?)

Specification: Called when this window or a child window receives a keyboard event. The
on-subwindow-char method of the receiver’s top-level window is called first (see get-
top-level-window); if the return value is #£f, then the on-subwindow-char method is
called for the next child in the path to the receiver, and so on. Finally, if the receiver’s
on-subwindow-char method returns #f, the event is passed on to the receiver’s normal
key-handling mechanism.

The event argument is the event that was generated for the receiver window.

The atomicity limitation on-subwindow-event applies to on-subwindow-char as well.
That is, an insufficiently cooperative on-subwindow-char method can effectively disable a
control’s handling of key events, even when it returns #f

BEWARE: The default on-subwindow-char in frame, and on-subwindow-char india-
log’ methods consume certain keyboard events (e.g., arrow keys, Enter) used for navigating
within the window. Because the top-level window gets the first chance to handle the key-
board event, some events never reach the “receiver” child unless the default frame or dialog
method is overridden.

148

Default implementation: Returns #f.

(send a-window on-subwindow-event receiver
event) — boolean?
receiver : (is-a?/c window<%>)
event : (is-a?/c mouse-event?,)

Specification: Called when this window or a child window receives a mouse event. The on-
subwindow-event method of the receiver’s top-level window is called first (see get-top-
level-window); if the return value is #f, the on-subwindow-event method is called for
the next child in the path to the receiver, and so on. Finally, if the receiver’s on-subwindow-
event method returns #£, the event is passed on to the receiver’s normal mouse-handling
mechanism.

The event argument is the event that was generated for the receiver window.

If the on-subwindow-event method chain does not complete atomically (i.e., without re-
quiring other threads to run) or does not complete fast enough, then the corresponding event
may not be delivered to a target control, such as a button. In other words, an insufficiently
cooperative on-subwindow-event method can effectively disable a control’s handling of
mouse events, even when it returns #f.

Default implementation: Returns #f.

(send a-window on-subwindow-focus receiver
on?) — void?
receiver : (is-a?/c window<%>)
on? : boolean?

Specification: Called when this window or a child window receives or loses the keyboard fo-
cus. This method is called after the on-focus method of receiver. The on-subwindow-
focus method of the receiver’s top-level window is called first (see get-top-level-
window), then the on-subwindow-focus method is called for the next child in the path
to the receiver, and so on.

Default implementation: Does nothing.

(send a-window on-superwindow-enable enabled?) — void?
enabled? : any/c

Specification: Called via the event queue whenever the enable state of a window has
changed, either through a call to the window’s enable method, or through the en-
abling/disabling of one of the window’s ancestors. The method’s argument indicates
whether the window is now enabled or not.

This method is not called when the window is initially created; it is called only after a
change from the window’s initial enable state. Furthermore, if an enable notification event

149

is queued for the window and it reverts its enabled state before the event is dispatched, then
the dispatch is canceled.

If the enable state of a window’s ancestor changes while the window is deleted (e.g., because
it was removed with delete-child), then no enable events are queued for the deleted
window. But if the window is later re-activated into an enable state that is different from the
window’s state when it was de-activated, then an enable event is immediately queued.

Default implementation: Does nothing.

(send a-window on-superwindow-show shown?) — void?
shown? : any/c

Specification: Called via the event queue whenever the visibility of a window has changed,
either through a call to the window’s show, through the showing/hiding of one of the win-
dow’s ancestors, or through the activating or deactivating of the window or its ancestor in a
container (e.g., via delete-child). The method’s argument indicates whether the window
is now visible or not.

This method is not called when the window is initially created; it is called only after a change
from the window’s initial visibility. Furthermore, if a show notification event is queued for
the window and it reverts its visibility before the event is dispatched, then the dispatch is
canceled.

Default implementation: Does nothing.

(send a-window popup-menu menu x y) — void?
menu : (is-a?/c popup-menul,)
X : position-integer?
y : position-integer?

Pops up the given popup-menuy object at the specified coordinates (in this window’s coor-
dinates), and returns after handling an unspecified number of events; the menu may still be
popped up when this method returns. If a menu item is selected from the popup-menu, the
callback for the menu item is called. (The eventspace for the menu item’s callback is the
window’s eventspace.)

While the menu is popped up, its target is set to the window. See get-popup-target for
more information.

The menu is popped up within the window at position (x, y).

(send a-window refresh) — void?

Enqueues an event to repaint the window.

150

(send a-window screen->client x y)

— position-integer? position-integer?
X : position-integer?
y : position-integer?

Converts global coordinates to window local coordinates. See also client->screen for
information on screen coordinates.

(send a-window set-cursor cursor) — void?
cursor : (or/c (is-a?/c cursory,) #f)

Sets the window’s cursor. Providing #f instead of a cursor value removes the window’s
CUTSOL.

If a window does not have a cursor, it uses the cursor of its parent. Frames and dialogs start
with the standard arrow cursor, and text fields start with an I-beam cursor. All other windows
are created without a cursor.

(send a-window set-label 1) — void?
1 : label-string?

Sets a window’s label. The window’s natural minimum size might be different after the label
is changed, but the window’s minimum size is not recomputed.

If the window was not created with a label, or if the window was created with a non-string
label, 1 is ignored.

See get-label for more information.
(send a-window show show?) — void?

show? : any/c

Shows or hides a window.

The visibility of a window can be changed by the user clicking the window’s close box, for
example, and such changes do not go through this method; use on-superwindow-show or
on-close to monitor visibility changes.

If show? is #f, the window is hidden. Otherwise, the window is shown.

(send a-window warp-pointer x y) — void?
X . position-integer?
y : position-integer?

Moves the cursor to the given location in the window’s local coordinates.

151

4 Windowing Functions

4.1 Dialogs

These functions get input from the user and/or display messages.

(get-file [message
parent
directory
filename
extension
style
filters
#:dialog-mixin dialog-mixin]) — (or/c path? #f)
message : (or/c label-string? #f) = #f
parent : (or/c (is-a?/c frame}) (is-a?/c dialog}) #f) = #f
directory : (or/c path-string? #f) = #f
filename : (or/c path-string? #f) = #f
extension : (or/c string? #f) = #f

style : (listof (or/c ’packages ’enter-packages ’common))

= null
filters : (listof (list/c string? string?)) = ’>(("Any" "*.x"))
dialog-mixin : (make-mixin-contract path-dialogl/) = (A (x) x)

Obtains a file pathname from the user via the platform-specific standard (modal) dialog,
using parent as the parent window if it is specified, and using message as a message at the
top of the dialog if it is not #£.

The result is #£ if the user cancels the dialog, the selected pathname otherwise. The returned
pathname may or may not exist, although the style of the dialog is directed towards selecting
existing files.

If directory is not #£, it is used as the starting directory for the file selector (otherwise the
starting directory is chosen automatically in a platform-specific manner, usually based on the
current directory and the user’s interactions in previous calls to get-file, put-file, etc.).
If filename is not #£, it is used as the default filename when appropriate, and it should not
contain a directory path prefix.

Under Windows, if extension is not #£, the returned path will use the extension if the user
does not supply one; the extension string should not contain a period. The extension is
ignored on other platforms.

The style list can contain ’ common, a platform-independent version of the dialog is used

instead of a native dialog. On Mac OS X, if the style list contains ’packages, a user is
allowed to select a package directory, which is a directory with a special suffix (e.g., “.app”)

152

that the Finder normally displays like a file. If the list contains ’enter-packages, a user is
allowed to select a file within a package directory. If the list contains both ’packages and
’enter-packages, the former is ignored.

On Windows and Unix, filters determines a set of filters from which the user can choose
in the dialog. Each element of the filters list contains two strings: a description of the
filter as seen by the user, and a filter pattern matched against file names. Pattern strings can
be a simple “glob” pattern, or a number of glob patterns separated by a ; character. On Unix,
a "x.x" pattern is implicitly replaced with "*". On Mac OS X, suffix names are extracted
from all globs that match a fixed suffix (e.g., two suffixes of "foo" and "bar" are extracted
from a "*.foo;*.bar;*.baz*" pattern), and files that have any of these suffixes in any
filter are selectable; a "*.*" glob makes all files available for selection.

The dialog-mixin is applied to path-dialogy, before creating an instance of the class for
this dialog.

See also path-dialogy for a richer interface.

(get-file-list [message
parent
directory
filename
extension
style
filters
#:dialog-mixin dialog-mixin])
— (or/c (listof path?) #f)
message : (or/c label-string? #f) = #f
parent : (or/c (is-a?/c frame}) (is-a?/c dialog}) #f) = #f
directory : (or/c path-string? #f) = #f
filename : (or/c path-string? #f) = #f
extension : (or/c string? #f) = #f

style : (listof (or/c ’packages ’enter-packages ’common))

= null
filters : (listof (list/c string? string?)) = ’>(("Any" "*.x"))
dialog-mixin : (make-mixin-contract path-dialogi) = (A (x) x)

Like get-file, except that the user can select multiple files, and the result is either a list of
file paths of #f.

153

(put-file [message
parent
directory
filename
extension
style
filters
#:dialog-mixin dialog-mixin]) — (or/c path? #f)
message : (or/c label-string? #f) = #f
parent : (or/c (is-a?/c frame)) (is-a?/c dialog}) #f) = #f
directory : (or/c path-string? #f) = #f
filename : (or/c path-string? #f) = #f
extension : (or/c string? #f) = #f

style : (listof (or/c ’packages ’enter-packages ’common))

= null
filters : (listof (list/c string? string?)) = ’>(("Any" "*.x"))
dialog-mixin : (make-mixin-contract path-dialogl/) = (A (x) x)

Obtains a file pathname from the user via the platform-specific standard (modal) dialog,
using parent as the parent window if it is specified, and using message as a message at the
top of the dialog if it is not #£.

The result is #£ if the user cancels the dialog, the selected pathname otherwise. The returned
pathname may or may not exist, although the style of the dialog is directed towards creating
a new file.

If directory is not #£, it is used as the starting directory for the file selector (otherwise the
starting directory is chosen automatically in a platform-specific manner, usually based on the
current directory and the user’s interactions in previous calls to get-file, put-file, etc.).
If filename is not #£, it is used as the default filename when appropriate, and it should not
contain a directory path prefix.

On Windows, if extension is not #f, the returned path will get a default extension if
the user does not supply one. If extension is the empty string, then the extension is de-
rived from the user’s filters choice if the corresponding pattern is of the form (string-
append "*." extension); if the pattern is "*.*", then no default extension is added.
Finally, if extension is any string other than the empty string, extension is used as the
default extension when the user’s filters choice has the pattern "*.*". Meanwhile, the
filters argument has the same format and auxiliary role as for get-file. In particular,
if the only pattern in filters is (string-append "*." extension), then the result
pathname is guaranteed to have an extension mapping extension.

On Mac OS X 10.5 and later, if extension is not #f or "", the returned path will get a
default extension if the user does not supply one. If filters contains as "*.*" pattern, then
the user can supply any extension that is recognized by the system; otherwise, the extension
on the returned path will be either extension or other-extension for any (string-

154

append "*." other-extension) patternin filters. In particular, if the only pattern in
filters is empty or contains only (string-append "*." extension), then the result
pathname is guaranteed to have an extension mapping extension.

On Mac OS X versions before 10.5, the returned path will get a default extension only if
extension is not #f, extension isnot """, and filters contains only (string-append
"x." extension).

On Unix, extension is ignored, and filters is used to filter the visible list of files as in
get-file.

The style list is treated as for get-file.

The dialog-mixin is applied to path-dialog before creating an instance of the class for
this dialog.

See also path-dialogy for a richer interface.

(get-directory [message

parent

directory

style

#:dialog-mixin dialog-mixin]) — (or/c path #f)
message : (or/c label-string? #f) = #f
parent : (or/c (is-a?/c frame),) (is-a?/c dialog}) #f) = #f
directory : (or/c path-string? #f) = #f
style : (listof (or/c ’enter-packages ’common)) = null
dialog-mixin : (make-mixin-contract path-dialogl) = (A (x) x)

Obtains a directory pathname from the user via the platform-specific standard (modal) dia-
log, using parent as the parent window if it is specified.

If directory is not #£, it is used on some platforms as the starting directory for the direc-
tory selector (otherwise the starting directory is chosen automatically in a platform-specific
manner, usually based on the current directory and the user’s interactions in previous calls
to get-file, put-file, etc.).

The style argument is treated as for get-file, except that only ’common or ’enter-
packages can be specified. The latter matters only on Mac OS X, where ’enter-packages
enables the user to select package directory or a directory within a package. A package is a
directory with a special suffix (e.g., “.app”) that the Finder normally displays like a file.

The dialog-mixin is applied to path-dialogy, before creating an instance of the class for
this dialog.

See also path-dialogy for a richer interface.

155

(message-box title
message
[parent
style
#:dialog-mixin dialog-mixin])
— (or/c ’ok ’cancel ’yes ’no)
title : label-string?
message : string?
parent : (or/c (is-a?/c frame}) (is-a?/c dialog}) #f) = #f
style : (1istof (or/c jok ’?k—cancel ’yesTno = 7 (ok)
caution ’stop ’no-icon))
dialog-mixin : (make-mixin-contract dialog}) = values

See also message-box/custom.

Displays a message to the user in a (modal) dialog, using parent as the parent window if
it is specified. The dialog’s title is title. The message string can be arbitrarily long, and
can contain explicit linefeeds or carriage returns for breaking lines.

The style must include exactly one of the following:

¢ 7ok — the dialog only has an OK button and always returns ’ ok.

¢ ’ok-cancel — the message dialog has Cancel and OK buttons. If the user clicks
Cancel, the result is ’ cancel, otherwise the result is ’ ok.

e ’yes-no — the message dialog has Yes and No buttons. If the user clicks Yes, the
result is ’yes, otherwise the result is no. Note: instead of a Yes/No dialog, best-
practice GUI design is to use message-box/custom and give the buttons meaningful
labels, so that the user does not have to read the message text carefully to make a
selection.

In addition, style can contain ’caution to make the dialog use a caution icon instead of
the application (or generic “info”) icon, ’stop to make the dialog use a stop icon, or *no-
icon to suppress the icon. If style contains multiple of >caution, ’stop, and *no-icon,
then ’no-icon takes precedence followed by ’stop.

The class that implements the dialog provides a get-message method that takes no argu-
ments and returns the text of the message as a string. (The dialog is accessible through the
get-top-level-windows function.)

The message-box function can be called in a thread other than the handler thread of the
relevant eventspace (i.e., the eventspace of parent, or the current eventspace if parent is
#£), in which case the current thread blocks while the dialog runs on the handler thread.

The dialog-mixin argument is applied to the class that implements the dialog before the
dialog is created.

156

(message-box/custom title
message
buttonl-label
button2-label
button3-label
[parent
style
close-result
#:dialog-mixin dialog-mixin])
— (or/c 1 2 3 close-result)
title : label-string?
message : string?
buttoni-label : (or/c label-string? (is-a?/c bitmapi) #f)
button2-label : (or/c label-string? (is-a?/c bitmapl) #f)
button3-label : (or/c label-string? (is-a?/c bitmap?) #f)
parent : (or/c (is-a?/c frame)) (is-a?/c dialogl) #f) = #f
(listof (or/c ’stop ’caution ’no-icon ’number-order
style : ’disallow-close ’no-default
’default=1 ’default=2 ’default=3))
= ’(no-default)
close-result : any/c = #f
dialog-mixin : (make-mixin-contract dialog)) = values

Displays a message to the user in a (modal) dialog, using parent as the parent window if
it is specified. The dialog’s title is title. The message string can be arbitrarily long, and
can contain explicit linefeeds or carriage returns for breaking lines.

The dialog contains up to three buttons for the user to click. The buttons have the labels
buttonl-label, button2-label, and button3-label, where #f for a label indicates
that the button should be hidden.

If the user clicks the button labelled buttoni-label, a 1 is returned, and so on for 2 and 3.
If the user closes the dialog some other way—which is only allowed when style does not
contain ’disallow-close—then the result is the value of close-result. For example,
the user can usually close a dialog by typing an Escape. Often, 2 is an appropriate value for
close-result, especially when Button 2 is a Cancel button.

If style does not include ’number-order, the order of the buttons is platform-specific,
and labels should be assigned to the buttons based on their role:

* Button 1 is the normal action, and it is usually the default button. For example, if the
dialog has an OK button, it is this one. On Windows, this button is leftmost; on Unix
and Mac OS X, it is rightmost. (See also system-position-ok-before-cancel?.)
Use this button for dialogs that contain only one button.

157

* Button 2 is next to Button 1, and it often plays the role of Cancel (even when the
default action is to cancel, such as when confirming a file replacement).

* Button 3 tends to be separated from the other two (on Mac OS X, it is left-aligned in
the dialog). Use this button only for three-button dialogs.

Despite the above guidelines, any combination of visible buttons is allowed in the dialog.

If style includes ’number-order, then the buttons are displayed in the dialog left-to-right
with equal spacing between all buttons, though aligned within the dialog (centered or right-
aligned) in a platform-specific manner. Use ’number-order sparingly.

The style list must contain exactly one of *default=1, *default=2, *default=3, and
’no-default to determine which button (if any) is the default. The default button is
“clicked” when the user types Return. If ’default=n is supplied but button n has no label,
then it is equivalent to 'no-default.

In addition, style can contain ’caution, ’stop, or ’no-icon to adjust the icon that
appears n the dialog, the same for message-box.

The class that implements the dialog provides a get-message method that takes no argu-
ments and returns the text of the message as a string. (The dialog is accessible through the
get-top-level-windows function.)

The message-box/custom function can be called in a thread other than the handler thread
of the relevant eventspace (i.e., the eventspace of parent, or the current eventspace if par-
ent is #f), in which case the current thread blocks while the dialog runs on the handler
thread.

The dialog-mixin argument is applied to the class that implements the dialog before the
dialog is created.

(message+check-box title
message
check-label
[parent
style
#:dialog-mixin dialog-mixin])
— (or/c ’ok ’cancel ’yes ’no) boolean?
title : label-string?
message : string?
check-label : label-string?
parent : (or/c (is-a?/c frame)) (is-a?/c dialogl) #f) = #f
style : (listof (or/c ’ok ’ok-cancel ’yes-no
' ’caution ’stop ’no-icon ’checked))
= 7 (ok)
dialog-mixin : (make-mixin-contract dialog}) = values

158

See also message+check-box/custom.

Like message-box, except that

* the dialog contains a check box whose label is check-1label;

e the result is two values: the message-box result, and a boolean indicating whether
the box was checked; and

e style can contain ’checked to indicate that the check box should be initially
checked.

(message+check-box/custom title
message
check-label
buttonl-label
button2-label
button3-label
[parent
style
close-result
#:dialog-mixin dialog-mixin])
— (or/c 1 2 3 (A (x) (eq? x close-result)))
title : label-string?
message . string?
check-label : label-string?
buttonl-label : (or/c label-string? (is-a?/c bitmapl) #f)
button2-label : (or/c label-string? (is-a?/c bitmap?) #f)
button3-label : (or/c label-string? (is-a?/c bitmapi) #f)
parent : (or/c (is-a?/c frame}) (is-a?/c dialog}) #f) = #f
(1istof (or/c ’stop ’caution ’no-icon ’number-order
style : ’disallow-close ’no-default
’default=1 ’default=2 ’default=3))
= ’(no-default)
close-result : any/c = #f
dialog-mixin : (make-mixin-contract dialog}) = values

Like message-box/custom, except that

* the dialog contains a check box whose label is check-label;

e the result is two values: the message-box result, and a boolean indicating whether
the box was checked; and

e style can contain ’checked to indicate that the check box should be initially
checked.

159

(get-text-from-user title
message
[parent
init-val
style]
#:validate validate
[#:dialog-mixin dialog-mixin])
— (or/c string? #f)
title : label-string?
message : (or/c label-string? #f)
parent : (or/c (is-a?/c frame)) (is-a?/c dialogl) #f) = #f
init-val : string? = ""
style : (listof (or/c ’password ’disallow-invalid)) = null
validate : (-> string? boolean?)
dialog-mixin : (make-mixin-contract dialog}) = values

Gets a text string from the user via a modal dialog, using parent as the parent window, if
it is specified. The dialog’s title is title. The dialog’s text field is labelled with message
and initialized to init-val (but init-val does not determine the size of the dialog).

The result is #f if the user cancels the dialog, the user-provided string otherwise.

If style includes ’password, the dialog’s text field draws each character of its content
using a generic symbol, instead of the actual character.

The validate function is called each time the text field changed, with the contents of the
text field. If it returns #£, the background of the text is colored pink. If ’disallow-invalid
is included in style, the Ok button is disabled whenever the text background is pink.

The dialog-mixin argument is applied to the class that implements the dialog before the
dialog is created.

(get-choices-from-user title
message
choices
[parent
init-choices
style])
— (or/c (listof exact-nonnegative-integer?) #f)
title : label-string?
message : (or/c label-string? #f)
choices : (listof label-string?)
parent : (or/c (is-a?/c frame}) (is-a?/c dialog}) #f) = #f
init-choices : (listof exact-nonnegative-integer?) = null
style : (listof (or/c ’single ’multiple ’extended))
= ’(single)

160

Gets a list box selection from the user via a modal dialog, using parent as the parent
window if it is specified. The dialog’s title is title. The dialog’s list box is labelled with
message and initialized by selecting the items in init-choices.

The style must contain exactly one of ’single, ‘multiple, or ’extended. The styles have
the same meaning as for creating a 1ist-boxJ object. (For the single-selection style, only
the last selection in init-choices matters.)

The result is #£ if the user cancels the dialog, the list of selections otherwise.

(get-color-from-user [message
parent
init-color
style]) — (or/c (is-a?/c colory) #f)
message : (or/c label-string? #f) = #f
parent : (or/c (is-a?/c frame)) (is-a?/c dialogl) #f) = #f
init-color : (or/c (is-a?/c colory) #f) = #f
style : (listof ’alpha) = null

Lets the user select a color though the platform-specific (modal) dialog, using parent as the
parent window if it is specified. The message string is displayed as a prompt in the dialog
if possible. If init-color is provided, the dialog is initialized to the given color.

The result is #f if the user cancels the dialog, the selected color otherwise.

If style contains ’alpha, then the user is present with a field for filling in the alpha field
of the resulting color, object. If it does not, then the alpha component of init-color is
ignored, and the result always has alpha of 1.0.

(get-font-from-user [message
parent
init-font
stylel]) — (or/c (is-a?/c font%) #f)
message : (or/c label-string? #f) = #f
parent : (or/c (is-a?/c frame)) (is-a?/c dialogl) #f) = #f
init-font : (or/c (is-a?/c font),) #f) = #f
style : null? = null

Lets the user select a font though the platform-specific (modal) dialog, using parent as the
parent window if it is specified. The message string is displayed as a prompt in the dialog
if possible. If init-font is provided, the dialog is initialized to the given font.

The style argument is provided for future extensions. Currently, style must be the empty
list.

The result is #f if the user cancels the dialog, the selected font otherwise.

161

(get-ps-setup-from-user [message
parent
init-setup
style])
— (or/c (is-a?/c ps-setup%) #f)
message : (or/c label-string? #f) = #f
parent : (or/c (is-a?/c frame}) (is-a?/c dialog}) #f) = #f
init-setup : (or/c (is-a?/c ps-setup%) #f) = #f
style : null? = null

Lets the user select a PostScript configuration though a (modal) dialog, using parent as the
parent window if it is specified. The message string is displayed as a prompt in the dialog.
If init-setup is provided, the dialog is initialized to the given configuration, otherwise the
current configuration from current-ps-setup is used.

The style argument is provided for future extensions. Currently, style must be the empty
list.

The result is #£ if the user cancels the dialog, , a ps-setup/ object that encapsulates the
selected PostScript configuration otherwise.

(get-page-setup-from-user [message
parent
init-setup
style])
— (or/c (is-a?/c ps-setup%) #f)
message : (or/c label-string? #f) = #f
parent : (or/c (is-a?/c frame)) (is-a?/c dialogl) #f) = #f
init-setup : (or/c (is-a?/c ps-setupl) #f) = #f
style : null? = null

Like get-ps-setup-from-user, but the dialog configures page layout for native printing
with printer-dc. A dialog is shown only if can-get-page-setup-from-user? returns
#t, otherwise no dialog is shown and the result is #£.

The parent argument is used as the parent window for a dialog if it is specified. The
message string might be displayed as a prompt in the dialog. If init-setup is provided,
the dialog is initialized to the given configuration, otherwise the current configuration from
current-ps-setup is used.

The style argument is provided for future extensions. Currently, style must be the empty
list.

The result is #f if the user cancels the dialog, a ps-setup’, object that encapsulates the
selected configuration otherwise.

162

(can-get-page-setup-from-user?) — boolean?

Returns #t if the current platform supports a page-layout dialog for use with printer-dc’,
printing. Currently, all platforms support a page-layout dialog.
4.2 Eventspaces

(make-eventspace) — eventspace?

Creates and returns a new eventspace value. The new eventspace is created as a child of
the current eventspace. The eventspace is used by making it the current eventspace with the
current-eventspace parameter.

See[§1.6 “Event Dispatching and Eventspaces”|for more information about eventspaces.

(current-eventspace) — eventspace?
(current-eventspace e) — void?
e : eventspace?

A parameter (see §11.3.2 “Parameters”) that determines the current eventspace.

See[§1.6 “Event Dispatching and Eventspaces”|for more information about eventspaces.

(eventspace? v) — boolean?
v : any/c

Returns #t if v is an eventspace value or #f otherwise.

Seel§1.6 “Event Dispatching and Eventspaces”| for more information about eventspaces.

(event-dispatch-handler) — (eventspace? . -> . any)
(event-dispatch-handler handler) — void?
handler : (eventspace? . -> . any)

A parameter (see §11.3.2 “Parameters”) that determines the current event dispatch handler.
The event dispatch handler is called by an eventspace’s handler thread for every queue-based
event to be processed in the eventspace. The only argument to the handler is the eventspace
in which an event should be dispatched. The event dispatch handler gives the programmer
control over the timing of event dispatching, but not the order in which events are dispatched
within a single eventspace.

An event dispatch handler must ultimately call the primitive event dispatch handler. If an

event dispatch handler returns without calling the primitive handler, then the primitive han-
dler is called directly by the eventspace handler thread.

163

(eventspace-event-evt [e]) — evt?
e : eventspace? = (current-eventspace)

Produces a synchronizable event (see sync) that is ready when a GUI event (mouse or key-
board action, update event, timer, queued callback, etc.) is ready for dispatch in e. That is,
the result event is ready when (yield) for the eventspace e would dispatch a GUI event.
The synchronization result is the eventspace e itself.

(check-for-break) — boolean?

Inspects the event queue of the current eventspace, searching for a Shift-Ctl-C (Unix, Win-
dows) or Cmd-. (Mac OS X) key combination. Returns #t if such an event was found (and
the event is dequeued) or #£ otherwise.

(get-top-level-windows)
— (listof (or/c (is-a?/c frame’,) (is-a?/c dialogh)))

Returns a list of visible top-level frames and dialogs in the current eventspace.

(get-top-level-focus-window)
— (or/c (is-a?/c frame),) (is-a?/c dialogl) #f)

Returns the top level window in the current eventspace that has the keyboard focus (or con-
tains the window with the keyboard focus), or #f if no window in the current eventspace has
the focus.

(get-top-level-edit-target-window)
— (or/c (is-a?/c frame}) (is-a?/c dialogl) #f)

Returns the top level window in the current eventspace that is visible and most recently had
the keyboard focus (or contains the window that had the keyboard focus), or #£ if there is no
visible window in the current eventspace.

(special-control-key on?) — void?
on? : any/c
(special-control-key) — boolean?

Enables or disables special Control key handling (Mac OS X). When Control is treated as
a special key, the system’s key-mapper is called without Control for keyboard translations.
For some languages, Control key presses must be seen by the system translation, so this
mode should be turned off, but the default is on.

If on7is provided and #£, Control is passed to the system translation as normal. This setting
affects all windows and eventspaces.

164

If no argument is provided, the result is #t if Control is currently treated specially, #f other-
wise.

(special-option-key on?) — void?
on? : any/c
(special-option-key) — boolean?

Enables or disables special Option key handling (Mac OS X). When Option is treated as a
special key, the system’s key-mapper is called without Option for keyboard translations. By
default, Option is not special.

If on? is provided #£, Option is passed to the system translation as normal. This setting
affects all windows and eventspaces.

If no argument is provided, the result is #t if Option is currently treated specially, #f other-
wise.

(queue-callback callback [high-priority?]) — void?
callback : (-> any)
high-priority? : any/c = #t

Installs a procedure to be called via the current eventspace’s event queue. The procedure
is called once in the same way and under the same restrictions that a callback is invoked to
handle a method.

A second (optional) boolean argument indicates whether the callback has a high or low
priority in the event queue. See[§1.6 “Event Dispatching and Eventspaces”| for information
about the priority of events.

(yield) — boolean?
(yield v) — any/c
v : (or/c ’wait evt?)

Yields control to event dispatching. See [§1.6 “Event Dispatching and Eventspaces™| for
details.

A handler procedure invoked by the system during a call to yield can itself call yield,
creating an additional level of nested (but single-threaded) event handling.

See also sleep/yield.

If no argument is provided, yield dispatches an unspecified number of events, but only if
the current thread is the current eventspace’s handler thread (otherwise, there is no effect).
The result is #t if any events may have been handled, #£f otherwise.

If v is *wait, and yield is called in the handler thread of an eventspace, then yield starts
processing events in that eventspace until

165

* no top-level windows in the eventspace are visible;
* no timers in the eventspace are running;
* no callbacks are queued in the eventspace; and

¢ no menu-barY has been created for the eventspace with ’root (i.e., creating a >root
menu bar prevents an eventspace from ever unblocking).

When called in a non-handler thread, yield returns immediately. In either case, the result
is #t.

Evaluating (yield ’wait) is thus similar to (yield (current-eventspace)), except
that it is sensitive to whether the current thread is a handler thread, instead of the value of
the current-eventspace parameter.

If v is an event in Racket’s sense (not to be confused with a GUI event), yield blocks on
v in the same way as sync, except that it may start a sync on v multiple times (but it will
complete a sync on v at most one time). If the current thread is the current eventspace’s
handler thread, events are dispatched until a v sync succeeds on an event boundary. For
other threads, calling yield with a Racket event is equivalent to calling sync. In either
case, the result is the same that of sync; however, if a wrapper procedure is associated with
v via handle-evt, it is not called in tail position with respect to the yield.

Always use (yield v) instead of a busy-wait loop.

(sleep/yield secs) — void?
secs : (and/c real? (not/c negative?))

Blocks for at least the specified number of seconds, handling events meanwhile if the current
thread is the current eventspace’s handler thread (otherwise, sleep/yield is equivalent to
sleep).

(eventspace-shutdown? e) — boolean?
e : eventspace?

Returns #t if the given eventspace has been shut down by its custodian, #f otherwise. At-
tempting to create a new window, timer, or explicitly queued event in a shut-down eventspace
raises the exn:fail exception.

Attempting to use certain methods of windows and timers in a shut-down eventspace also
raises the exn:fail exception, but the get-top-level-window in area<’%> and get-
eventspace in top-level-window<%> methods work even after the area’s eventspace is
shut down.

(eventspace-handler-thread e) — (or/c thread? #f)
e . eventspace?

166

Returns the handler thread of the given eventspace. If the handler thread has terminated (e.g.,
because the eventspace was shut down), the result is #f.

4.3 System Menus

(current-eventspace-has-standard-menus?) — boolean?

Returns #t for Mac OS X when the current eventspace is the initial one, since that eventspace
is the target for the standard application menus. For any other system or eventspace, the
result is #f.

This procedure is intended for use in deciding whether to include a Quit, About, and Prefer-
ences menu item in a frame’s menu. On Mac OS X, the application Quit menu triggers a call
to a frame’s on-exit method, the About menu item is controlled by application-about-
handler, and the Preferences menu item is controlled by application-preferences-
handler.

(current-eventspace-has-menu-root?) — boolean?

Returns #t for Mac OS X when the current eventspace is the initial one, since that eventspace
can supply a menu bar to be active when no frame is visible. For any other system or
eventspace, the result is #£.

This procedure is intended for use in deciding whether to create a menu-bar?, instance with
’root as its parent.

(application-about-handler) — (-> any)
(application-about-handler handler-thunk) — void?
handler-thunk : (-> any)

When the current eventspace is the initial eventspace, this procedure retrieves or installs a
thunk that is called when the user selects the application About menu item on Mac OS X.
The thunk is always called in the initial eventspace’s handler thread (as a callback).

The default handler displays a generic Racket dialog.

If the current eventspace is not the initial eventspace, this procedure returns void (when
called with zero arguments) or has no effect (when called with a handler).

(application-file-handler) — (path? . -> . any)
(application-file-handler handler-proc) — void?
handler-proc : (path? . -> . any)

When the current eventspace is the initial eventspace, this procedure retrieves or installs a
procedure that is called on Mac OS X and Windows when the application is running and

167

user double-clicks an application-handled file or drags a file onto the application’s icon. The
procedure is always called in the initial eventspace’s handler thread (as a callback), and the
argument is a filename.

The default handler queues a callback to the on-drop-file method of the most-recently
activated frame in the main eventspace (see get-top-level-edit-target-window), if
any such frame exists and if drag-and-drop is enabled for that frame. Otherwise, it saves the
filename and re-queues the handler event when the application file handler is later changed
or when a frame becomes active.

On Windows, when the application is not running and user double-clicks an application-
handled file or drags a file onto the application’s icon, the filename is provided as a
command-line argument to the application.

On Mac OS X, if an application is started without files, then the application-start-
empty-handler procedure is called.

If the current eventspace is not the initial eventspace, this procedure returns void (when
called with zero arguments) or has no effect (when called with a handler).

(application-preferences-handler) — (or/c (-> any) #f)
(application-preferences-handler handler-thunk) — void?
handler-thunk : (or/c (-> any) #f)

When the current eventspace is the initial eventspace, this procedure retrieves or installs a
thunk that is called when the user selects the application Preferences menu item on Mac OS
X. The thunk is always called in the initial eventspace’s handler thread (as a callback). If the
handler is set to #£, the Preferences item is disabled.

The default handler is #f.

If the current eventspace is not the initial eventspace, this procedure returns void (when
called with zero arguments) or has no effect (when called with a handler).

(application-quit-handler) — (-> any)
(application-quit-handler handler-thunk) — void?
handler-thunk : (-> any)

When the current eventspace is the initial eventspace, this procedure retrieves or installs a
thunk that is called when the user requests that the application quit (e.g., through the Quit
menu item on Mac OS X, or when shutting down the machine in Windows). The thunk is
always called in the initial eventspace’s handler thread (as a callback). If the result of the
thunk is #f, then the operating system is explicitly notified that the application does not
intend to quit (on Windows).

The default handler queues a call to the can-exit? method of the most recently active frame
in the initial eventspace (and then calls the frame’s on-exit method if the result is true).

168

The result is #t if the eventspace is left with no open frames after on-exit returns, #f
otherwise.

If the current eventspace is not the initial eventspace, this procedure returns void (when
called with zero arguments) or has no effect (when called with a handler).

(application-start-empty-handler) — (-> any)
(application-start-empty-handler handler-thunk) — void?
handler-thunk : (-> any)

When the current eventspace is the initial eventspace, this procedure retrieves or installs a
thunk that is called when the user starts the application on Mac OS X without supplying any
initial files (e.g., by double-clicking the application icon instead of double-clicking files that
are handled by the application).

The default handler re-queues the handler event when the application start-empty handler
is later changed. As a result, if an application sets both application-start-empty-
handler and application-file-handler, then one or the other is eventually called.

If the current eventspace is not the initial eventspace, this procedure returns void (when
called with zero arguments) or has no effect (when called with a handler).

4.4 Global Graphics

(flush-display) — void?

Flushes canvas offscreen drawing and other updates onto the screen.

Normally, drawing is automatically flushed to the screen. Use flush-display sparingly to
force updates to the screen when other actions depend on updating the display.

(get-display-backing-scale [#:monitor monitor])
— (or/c (>/c 0.0) #f)
monitor : exact-nonnegative-integer? = 0

Returns the number of pixels that correspond to one drawing unit on a monitor. The result is
normally 1.0, butitis 2.0 on Mac OS X in Retina display mode.

On Mac OS X, the result can change at any time. See also display-changed in top-
level-window<’>.

If monitor is not less than the current number of available monitors (which can change at
any time), the is #f. See also display-changed in top-level-window<y>.

(get-display-count) — exact-positive-integer?

169

Returns the number of monitors currently active.

On Windows and Mac OS X, the result can change at any time. See also display-changed
in top-level-window<}>.

(get-display-depth) — exact-nonnegative-integer?

Returns the depth of the main display (a value of 1 denotes a monochrome display).

(get-display-left-top-inset [avoid-bars?
#:monitor monitor])
(if (= monitor 0)
exact-nonnegative-integer?
(or/c exact-nonnegative-integer? #f))
(if (= monitor 0)
exact-nonnegative-integer?
(or/c exact-nonnegative-integer? #f))
avoid-bars? : any/c = #f
monitor : exact-nonnegative-integer? = 0

%

When the optional argument is #£ (the default), this function returns the offset of monitor’s
origin from the top-left of the physical monitor. For monitor 0, on Unix and Windows, the
result is always 0 and 0; on Mac OS X, the result is 0 and the height of the menu bar. To
position a frame at a given monitor’s top-left corner, use the negated results from get-
display-left-top-inset as the frame’s position.

When the optional avoid-bars? argument is true, for monitor 0, get-display-left-
top-inset function returns the amount space at the left and top of the monitor that is
occupied by the task bar (Windows) or menu bar and dock (Mac OS X). On Unix, for monitor
0, the result is always 0 and 0. For monitors other than 0, avoid-bars? has no effect.

If monitor is not less than the current number of available monitors (which can change
at any time), the results are #f and #f. See also display-changed in top-level-
window<%>.

(get-display-size [full-screen?
#:monitor monitor])
(if (= monitor 0)
exact-nonnegative-integer?
(or/c exact-nonnegative-integer? #f))
(if (= monitor 0)
exact-nonnegative-integer?
(or/c exact-nonnegative-integer? #f))
full-screen? : any/c = #f
monitor : exact-nonnegative-integer? = 0

%

170

Gets the physical size of the specified monitor in pixels. On Windows, this size does not
include the task bar by default. On Mac OS X, this size does not include the menu bar or
dock area by default.

On Windows and Mac OS X, if the optional argument is true and monitor is O, then the
task bar, menu bar, and dock area are included in the result.

If monitor is not less than the current number of available monitors (which can change
at any time), the results are #f and #f. See also display-changed in top-level-
window<%>.

(is-color-display?) — boolean?

Returns #t if the main display has color, #f otherwise.

4.5 Fonts

menu-control-font : (is-a?/c font%)

This font is the default for popup-menuy objects.

On Mac OS X, this font is slightly larger than normal-control-font. On Windows and
Unix, it is the same size as normal-control-font.

normal-control-font : (is-a?/c font%)

This font is the default for most controls, except 1ist-box% and group-box-panely, ob-
jects.

small-control-font : (is-a?/c font%)

This font is the default for group-box-panely, objects, and it is a suitable for controls in a
floating window and other contexts that need smaller controls.

On Windows, this font is the same size as normal-control-font, since the Windows

control font is already relatively small. On Unix and Mac OS X, this font is slightly smaller
than normal-control-font.

tiny-control-font : (is-a?/c font%)

This font is for tiny controls, and it is smaller than small-control-font on all platforms.

view-control-font : (is-a?/c font%)

171

This font is the default for 1ist-box7 objects (but not list box labels, which use normal-
control-font).

On Mac OS X, this font is slightly smaller than normal-control-font, and slightly
larger than small-control-font. On Windows and Unix, it is the same size as normal-
control-font.

4.6 Miscellaneous

(begin-busy-cursor) — void?

Changes the cursor to a watch cursor for all windows in the current eventspace. Use end-
busy-cursor to revert the cursor back to its previous state. Calls to begin-busy-cursor
and end-busy-cursor can be nested arbitrarily.

The cursor installed by begin-busy-cursor overrides any window-specific cursors in-
stalled with set-cursor.

See also is-busy?.

(bell) — void?

Rings the system bell.

(dimension-integer? v) — boolean?
v : any/c

Equivalent to (integer-in 0 1000000).

Beware that certain kinds of windows behave badly when larger than 32,000 or so in ei-
ther dimension on some platforms. Redraw of the window may be disabled or clipped, for
example.

(end-busy-cursor) — void?

See begin-busy-cursor.

(file-creator-and-type filename
creator-string
type-bytes) — void?
filename : path?
(lambda (s) (and (bytes? s)
(= 4 (bytes-length s))))
type-bytes : (lambda (s) (and (bytes? s)
' (= 4 (bytes-length s))))

creator-string :

172

(file-creator-and-type filename)
(lambda (s) (and (bytes? s)
_ (= 4 (bytes-length s))))
(lambda (s) (and (bytes? s)
(= 4 (bytes-length s))))
filename : path?

Gets or sets the creator and type of a file in Mac OS X.

The get operation always returns #"7777" and #"7777" for Unix or Windows. The set
operation has no effect on Unix or Windows.

(find-graphical-system-path what) — (or/c path? #f)
what : (or/c ’init-file ’x-display)

Finds a platform-specific (and possibly user- or machine-specific) standard filename or di-
rectory. See also find-system-path.

The result depends on what, and a #£ result is only possible when what is ’x-display:

e ’init-file returns the ,path to the user-specific initialization file (containing Racket
code). The directory part of the path is the same path as returned for >init-dir by
Racket’s find-system-path. The file name is platform-specific:

— Unix and Mac OS X: ".gracketrc"
— Windows: "gracketrc.rktl"

e ’x-display returns a “path” whose string identifies the X11 display if specified by
either the -display flag or the DISPLAY environment variable when GRacket starts
on Unix. For other platforms, or when neither -display nor DISPLAY was specified,
the result is #f.

(get-default-shortcut-prefix)
(case (system-type)
[(windows) (list/c ’ctl)]
[(macosx) (list/c ’cmd)]
[(unix) (1ist/c (or/c ’alt ’cmd ’meta ’ctl ’shift ’option))])

Returns an immutable list specifying the default prefix for menu shortcuts. See also get-
shortcut-prefix in selectable-menu-item<%>.

On Windows, the default is ’(ctl). On Mac OS X, the default is ’(cmd). On
Unix, the default is normally ’(ctl), but the default can be changed through the
’GRacket :defaultMenuPrefix preference low-level preference (see|§10 “Preferences’”).

173

(get-panel-background) — (is-a?/c colory)

Returns a shade of gray.

Historically, the result matched the color of a panely, background, but panely, backgrounds
can vary on some platforms (e.g., when nested in a group-box-panel}), so the result is no
longer guaranteed to be related to a panel?’s color.

(get-highlight-background-color) — (is-a?/c color’)

Returns the color that is drawn behind selected text.

(get-highlight-text-color) — (or/c (is-a?/c colory) #f)

Returns the color that is used to draw selected text or #f if selected text is drawn with its
usual color.

(get-window-text-extent string
font
[combine?]) — exact—nonnegat%ve—?nteger?
exact-nonnegative-integer?
string : string?
font : (is-a?/c font})
combine? : any/c = #f

Returns the pixel size of a string drawn as a window’s label or value when drawn with the
given font. The optional combine? argument is as for get-text-extent in dc<y>.

See also get-text-extent in dc<>.

(graphical-read-eval-print-loop [eval-eventspace
redirect-ports?]) — void?
eval-eventspace : (or/c eventspace? #f) = #f
redirect-ports? : any/c = (not eval-eventspace)

Similar to read-eval-print-loop, except that none of read-eval-print-loop’s con-
figuration parameters are used (such as current-read) and the interaction occurs in a GUI
window instead of using the current input and output ports.

Expressions entered into the graphical read-eval-print loop can be evaluated in an eventspace
(and thread) that is distinct from the one implementing the graphical-read-eval-print-
loop window (i.e., the current eventspace when graphical-read-eval-print-loop is
called).

If no eventspace is provided, or if #f is provided, an evaluation eventspace is created using
(make-eventspace) with a new custodian; the eventspace and its threads are be shut down

174

when the user closes the graphical-read-eval-print-loop window. If an eventspace
is provided, closing the window performs no shut-down actions on eventspace.

When redirect-ports? is true, the following parameters are initialized in the created
eventspace’s handler thread:

* current-output-port — writes to the frame
* current-error-port — writes to the frame

e current-input-port — always returns eof

The keymap for the read-eval-print loop’s editor is initialized by calling the current keymap
initializer procedure, which is determined by the current-text-keymap-initializer
parameter.

(textual-read-eval-print-loop) — void?

Similar to read-eval-print-loop, except that evaluation uses a newly created eventspace
like graphical-read-eval-print-loop.

The current-prompt-read parameter is used in the current thread to read input. The result
is queued for evaluation and printing in the created eventspace’s handler thread, which uses
current-eval and current-print. After printing completes for an interaction result, the
next expression in read in the original thread, and so on.

If an exn: break exception is raised in the original thread during reading, it aborts the current
call to (current-read) and a new one is started. If an exn:break exception is raised in
the original thread while waiting for an interaction to complete, a break is sent (via break-
thread) to the created eventspace’s handler thread.

(get-current-mouse-state)
(is-a?/c point%)
— (listof (or/c ’left ’middle ’right
’shift ’control ’alt ’meta ’caps))

Returns the current location of the mouse in screen coordinates, and returns a list of symbols

for mouse buttons and modifier keys that are currently pressed.
(hide-cursor-until-moved) — void?

Hides the cursor until the user moves the mouse or clicks the mouse button. (For some plat-

forms, the cursor is not hidden if it is over a window in a different eventspace or application.)

(is-busy?) — boolean?

175

On Mac OS X 10.5
and earlier,
mouse-button
information is not
available, so the
second result
includes only
symbols for
modifier keys.

Returns #t if a busy cursor has been installed with begin-busy-cursor and not removed
with end-busy-cursor.

(label->plain-label label) — string?
label : string?

Strips shortcut ampersands from label, removes parenthesized ampersand—character com-
binations along with any surrounding space, and removes anything after a tab. Overall, it
returns the label as it would appear on a button on a platform without support for mnemon-
ics.

(make-gl-bitmap width height config) — (is-a?/c bitmapl)
width : exact-positive-integer?
height : exact-positive-integer?
config : (is-a?/c gl-configi)

Creates a bitmap that supports both normal dc<%> drawing an OpenGL drawing through a
context returned by get-gl-context in dc<%>.

For dc<%> drawing, an OpenGL-supporting bitmap draws like a bitmap from make-
screen-bitmap on some platforms, while it draws like a bitmap instantiated directly from
bitmap on other platforms.

(make-gui-empty-namespace) — namespace?

Like make-base-empty-namespace, but with racket/class and racket/gui/base
also attached to the result namespace.

(make-gui-namespace) — namespace?

Like make-base-namespace, but with racket/class and racket/gui/base also re-
quired into the top-level environment of the result namespace.

(make-screen-bitmap width height) — (is-a?/c bitmap’)
width : exact-positive-integer?
height : exact-positive-integer?

Creates a bitmap that draws in a way that is the same as drawing to a canvas in its default
configuration.

In particular, on Mac OS X when the main monitor is in Retina display mode, a drawing unit
corresponds to two pixels, and the bitmap internally contains four times as many pixels as
requested by width and height. See also get-display-backing-scale.

See also §1.8 “Portability and Bitmap Variants”.

176

(play-sound filename async?) — boolean?
filename : path-string?
async? : any/c

Plays a sound file. If async? is false, the function does not return until the sound com-
pletes. Otherwise, it returns immediately. The result is #t if the sound plays successfully,
#f otherwise.

On Windows, only " .wav" files are supported.

On Unix, the function invokes an external sound-playing program; looking for a few known
programs (aplay, play, esdplay, sndfile-play, audioplay). In addition, a play com-
mand can be defined through the ’ GRacket : playcmd preference preference (see[§10 “Pref]
erences”). The preference can hold a program name, or a format string containing a single
~a where the filename should be substituted—and used as a shell command. (Don’t use
~s, since the string that is used with the format string will be properly quoted and wrapped
in double quotes.) A plain command name is usually better since execution is faster. The
command’s output is discarded, unless it returns an error code—in this case the last part of
the error output is shown.

On Mac OS X, Quicktime is used to play sounds; most sound formats (.wav, .aiff, .mp3)
are supported in recent versions of Quicktime. In order to play .wav files, Quicktime 3.0
(compatible with OS 7.5 and up) is required.

(position-integer? v) — boolean?
v : any/c

Equivalent to (integer-in -1000000 1000000).

(positive-dimension-integer? v) — boolean?
v : any/c

Equivalent to (integer-in 1 1000000).

(register-collecting-blit canvas
X
y
W
h
on
off
[on-x
on-y
off-x
off-y]) — void?

177

canvas : (is-a?/c canvas%)
x : position-integer?
y : position-integer?
w : dimension-integer?
h : dimension-integer?
on : (is-a?/c bitmap%)
off : (is-a?/c bitmap%)
on-x : real? 0

on-y : real? = 0

off-x : real? = 0
off-y : real? =0

Registers a “blit” to occur when garbage collection starts and ends. When garbage collection
starts, on is drawn at location x and y within canvas, if canvas is shown. When garbage
collection ends, the drawing is reverted, possibly by drawing the off bitmap.

The background behind on is unspecified, so on should be a solid image, and the canvas’s
scale or scrolling is not applied to the drawing. Only the portion of on within w and h pixels
is used; if on-x and on-y are specified, they specify an offset within the bitmap that is used
for drawing, and off-x and off-y similarly specify an offset within off.

The blit is automatically unregistered if canvas becomes invisible and inaccessible. Multi-
ple registrations can be installed for the same canvas.

See also unregister-collecting-blit.

(unregister-collecting-blit canvas) — void?
canvas : (is-a?/c canvas’)

Unregisters all blit requests installed for canvas with register-collecting-blit.

(send-message-to-window x y message) — any/c
X . position-integer?
y : position-integer?
message : any/c

Finds the frontmost top-level window at (x, y) in global coordinates. If a window is there,
this function calls the window’s on-message method, providing message as the method’s
argument; the result of the function call is the result returned by the method. If no Racket
window is at the given coordinates, or if it is covered by a non-Racket window at (x, y), #f
is returned.

(spacing-integer? v) — boolean?
v : any/c

Equivalent to (integer-in 0 1000).

178

(system-position-ok-before-cancel?) — boolean?

Returns #t on Windows—indicating that a dialog with OK and Cancel buttons should place
the OK button on to left of the Cancel button—and returns #f on Mac OS X and Unix.

the-clipboard : (is-a?/c clipboard<%>)

See clipboard<%>.

the-x-selection-clipboard : (is-a?/c clipboard<’>)

See clipboard<%>.

(label-string? v) — boolean?
v : any/c

Returns #t if v is a string whose length is less than or equal to 200.

This predicate is typically used as the contract for strings that appear in GUI objects. In
some cases, such as the label in a buttony or menu-itemy object, the character & is treated
specially to indicate that the following character is used in keyboard navigation. See set-
label in labelled-menu-item<%> for one such example. In other cases, such as the label
on a framey, & is not treated specially.

(key-code-symbol? v) — boolean?
v : any/c

Returns #t if the argument is a symbol that can be returned by key-event’’s method get-
key-code.

179

5 Editors

The editor toolbox provides a foundation for two common kinds of applications:

* Programs that need a sophisticated text editor — The simple text field control is in-
adequate for text-intensive applications. Many programs need editors that can handle
multiple fonts and non-text items.

* Programs that need a canvas with dragable objects — The drawing toolbox provides
a generic drawing surface for plotting lines and boxes, but many applications need an
interactive canvas, where the user can drag and resize individual objects.

Both kinds of applications need an extensible editor that can handle text, images,
programmer-defined items, and even embedded editors. The difference between them is the
layout of items. The editor toolbox therefore provides two kinds of editors via two classes:

e texty — in a fext editor, items are automatically positioned in a paragraph flow.

* pasteboard} — in a pasteboard editor, items are explicitly positioned and dragable.

This editor architecture addresses the full range of real-world issues for an editor—including
cut-and-paste, extensible file formats, and layered text styles—while supporting a high level
of extensibility. Unfortunately, the system is fairly complex as a result, and using the editor
classes effectively requires a solid understanding of the structure and terminology of the
editor toolbox. Nevertheless, enough applications fit one (or both) of the descriptions above
to justify the depth and complexity of the toolbox and the learning investment required to
use it.

A brief example illustrates how editors work. To start, an editor needs an editor-canvasy,
to display its contents. Then, we can create a text editor and install it into the canvas:

(define f (new framej, [label "Simple Edit"]
[width 200]
[height 2001))
(define ¢ (new editor-canvas), [parent f]))
(define t (new text%))
(send c set-editor t)
(send f show #t)

At this point, the editor is fully functional: the user can type text into the editor, but no
cut-and-paste operations are available. We can support all of the standard operations on an
editor via the menu bar:

(define mb (new menu-bary [parent f]))

180

(define m-edit (new menu), [label "Edit"] [parent mb]))
(define m-font (new menuy, [label "Font'"] [parent mb]))
(append-editor-operation-menu-items m-edit #f)
(append-editor-font-menu-items m-font)

Now, the standard cut and paste operations work, and the user can even set font styles. The
user can also insert an embedded editor by selecting Insert Text from the Edit menu; after
selecting the menu item, a box appears in the editor with the caret inside. Typing with the
caret in the box stretches the box as text is added, and font operations apply wherever the
caret is active. Text on the outside of the box is rearranged as the box changes sizes. Note
that the box itself can be copied and pasted.

The content of an editor is made up of snips. An embedded editor is a single snip from
the embedding editor’s point-of-view. To encode immediate text, a snip can be a single
character, but more often a snip is a sequence of adjacent characters on the same line. The
find-snip method extracts a snip from a text editor:

(send t find-snip 0 ’after)
The above expression returns the first snip in the editor, which may be a string snip (for
immediate text) or an editor snip (for an embedded editor).

An editor is not permanently attached to any display. We can take the text editor out of our
canvas and put a pasteboard editor in the canvas, instead:

(define pb (new pasteboardy))
(send c set-editor pb)

With the pasteboard editor installed, the user can no longer type characters directly into the
editor (because a pasteboard does not support directly entered text). However, the user can
cut text from elsewhere and paste it into pasteboard, or select one of the Insert menu items
in the Edit menu. Snips are clearly identifiable in a pasteboard editor (unlike a text editor)
because each snip is separately dragable.

We can insert the old text editor (which we recently removed from the canvas) as an embed-
ded editor in the pasteboard by explicitly creating an editor snip:

(define s (make-object editor-snip) t)) ; t is the old text editor
(send pb insert s)
An individual snip cannot be inserted into different editors at the same time, or inserted

multiple times in the same editor:

(send pb insert s) ; no effect

181

However, we can make a deep copy of the snip and insert the copy into the pasteboard:

(send pb insert (send s copy))

Applications that use the editor classes typically derive new versions of the text’ and
pasteboardy classes. For example, to implement an append-only editor (which allows
insertions only at the end and never allows deletions), derive a new class from text? and
override the can-insert? and can-delete? methods:

(define append-only-text?
(class text}
(inherit last-position)
(define/augment (can-insert? s 1) (= s (last-position)))
(define/augment (can-delete? s 1) #f)
(super-new)))

5.1 Editor Structure and Terminology

The editor toolbox supports extensible and nestable editors by decomposing an editor as-
sembly into three functional parts:

* The editor itself stores the state of the text or pasteboard and handles most events and
editing operations. The editor<%> interface defines the core editor functionality, but
editors are created as instances of textY or pasteboardy.

* A snip is a segment of information within the editor. Each snip can contain a sequence
of characters, a picture, or an interactive object (such as an embedded editor). In a text
editor, snips are constrained to fit on a single line and generally contain data of a single
type. The snip class implements a basic snip. Other snip classes include string-
snip% for managing text, image-snip?y for managing pictures, and editor-snip
for managing embedded editors.

* A display presents the editor on the screen. The display lets the user scroll around an
editor or change editors. Most displays are instances of the editor-canvas/, cla