
MzScheme: Legacy Language
Version 6.2.1

August 10, 2015

(require mzscheme) package: compatibility-lib

The mzscheme language provides nearly the same bindings as the mzscheme module of PLT
Scheme version 372 and earlier.

Unlike version 372, the mzscheme language does not include set-car! or set-cdr!, and
cons makes immutable pairs, as in scheme/base; those changes make modules built on
mzscheme reasonably compatible with modules built on scheme/base.

Otherwise, the mzscheme language shares many bindings with scheme/base. It renames a
few bindings, such as syntax-object->datum instead of syntax->datum, and it provides
old versions of some syntactic forms, such as lambda without support for keyword and
optional arguments. In addition, mzscheme includes all of the exports of racket/tcp and
racket/udp.

1



Contents

1 Old Syntactic Forms 3

2 Old Functions 6

3 Extra Libraries 11

4 Omitted Forms and Functions 12

2



1 Old Syntactic Forms

(#%module-begin form ...)

Like #%plain-module-begin from scheme/base, but (require-for-syntax

mzscheme) is added to the beginning of the form sequence, thus importing mzscheme

into the transformer environment for the module body. (In contrast, scheme/base exports
for-syntax minimal transformer support, while scheme exports all of scheme/base

for-syntax.)

(#%plain-module-begin form ...)

The same binding as #%plain-module-begin from scheme/base.

(#%plain-lambda formals body ...+)

The same binding as #%plain-lambda in scheme/base. (This binding was not present in
version 372 and earlier.)

(lambda formals body ...+)

(λ formals body ...+)

The same bindings as #%plain-lambda.

(#%app proc-expr arg-expr ...)

(#%app)

The same binding as #%plain-app from scheme/base.

(#%plain-app proc-expr arg-expr ...)

(#%plain-app)

The same binding as #%app. (This binding was not present in version 372 and earlier.)

(define id expr)

(define (head args) body ...+)

head = id

| (head args)

args = arg-id ...

| arg-id ... . rest-id

Like define in scheme/base, but without support for keyword arguments or optional ar-
guments.

3



(define-syntax id expr)

(define-syntax (head args) body ...+)

(define-for-syntax id expr)

(define-for-syntax (head args) body ...+)

Like define-syntax and define-for-syntax in scheme/base, but without support for
keyword arguments or optional arguments (i.e., head is as for define).

(if test-expr then-expr else-expr)

(if test-expr then-expr)

Like if in scheme/base, but else-expr defaults to (void).

(cond cond-clause ...)
(case val-expr case-clause ...)

Like cond and case in scheme/base, but else and => are recognized as unbound identi-
fiers, instead of as the scheme/base bindings.

(fluid-let ([id expr] ...) body ...+)

Provides a kind of dynamic binding via mutation of the ids.

The fluid-let form first evaluates each expr to obtain an entry value for each id . As
evaluation moves into body , either though normal evaluation or a continuation jump, the
current value of each id is swapped with the entry value. On exit from body , then the
current value and entry value are swapped again.

(define-struct id-maybe-super (field-id ...) maybe-inspector-expr)

maybe-inspector-expr =
| expr

Like define-struct from scheme/base, but with fewer options. Each field is implicitly
mutable, and the optional expr is analogous to supplying an #:inspector expression.

(let-struct id-maybe-super (field-id ...) body ...+)

Expands to

(let ()

(define-struct id-maybe-super (field-id ...))

body ...+)

4



(require raw-require-spec)

(require-for-syntax raw-require-spec)

(require-for-template raw-require-spec)

(require-for-label raw-require-spec)

(provide raw-provide-spec)

(provide-for-syntax raw-provide-spec)

(provide-for-label raw-provide-spec)

Like #%require and #%provide. The -for-syntax, -for-template, and -for-label

forms are translated to #%require and #%provide using for-syntax, for-template,
and for-label sub-forms, respectively.

(#%datum . datum)

Expands to 'datum, even if datum is a keyword.

(#%top-interaction . form)

The same as #%top-interaction in scheme/base.

5



2 Old Functions

(apply proc v ... lst) Ñ any

proc : procedure?

v : any/c

lst : list?

Like apply from scheme/base, but without support for keyword arguments.

prop:procedure : struct-type-property?

Like prop:procedure from scheme/base, but even if the property’s value for a structure
type is a procedure that accepts keyword arguments, then instances of the structure type still
do not accept keyword arguments. (In contrast, if the property’s value is an integer for a field
index, then a keyword-accepting procedure in the field for an instance causes the instance to
accept keyword arguments.)

(open-input-file file [mode module-mode ]) Ñ input-port?

file : path-string?

mode : (one-of/c 'text 'binary) = 'binary

module-mode : (or-of/c 'module 'none) = 'none

(open-output-file file [mode exists ]) Ñ input-port?

file : path-string?

mode : (one-of/c 'text 'binary) = 'binary

exists : (one-of/c 'error 'append 'update

'replace 'truncate 'truncate/replace)

= 'error

(open-input-output-file file [mode exists ])
Ñ input-port? output-port?

file : path-string?

mode : (one-of/c 'text 'binary) = 'binary

exists : (one-of/c 'error 'append 'update

'replace 'truncate 'truncate/replace)

= 'error

(with-input-from-file file thunk [mode ]) Ñ any

file : path-string?

thunk : (-> any)

mode : (one-of/c 'text 'binary) = 'binary

(with-output-to-file file thunk [mode exists ]) Ñ any

file : path-string?

thunk : (-> any)

mode : (one-of/c 'text 'binary) = 'binary

exists : (one-of/c 'error 'append 'update

'replace 'truncate 'truncate/replace)

= 'error

6



(call-with-input-file file proc [mode ]) Ñ any

file : path-string?

proc : (input-port? -> any)

mode : (one-of/c 'text 'binary) = 'binary

(call-with-output-file file proc [mode exists ]) Ñ any

file : path-string?

proc : (output-port? -> any)

mode : (one-of/c 'text 'binary) = 'binary

exists : (one-of/c 'error 'append 'update

'replace 'truncate 'truncate/replace)

= 'error

Like open-input-file, etc. from scheme/base, but the mode , exists , and module-

mode (corresponds to #:for-module?) arguments are not keyword arguments. When both
mode and exists or module-mode are accepted, they are accepted in either order.

Changed in version 6.0.1.6 of package compatibility-lib: Added the module-mode argument to
open-input-file.

(syntax-object->datum stx) Ñ any

stx : syntax?

(datum->syntax-object ctxt v srcloc [prop cert ]) Ñ syntax?

ctxt : (or/c syntax? false/c)

v : any/c

srcloc : (or/c syntax? false/c

(list/c any/c

(or/c exact-positive-integer? false/c)

(or/c exact-nonnegative-integer? false/c)

(or/c exact-nonnegative-integer? false/c)

(or/c exact-positive-integer? false/c))

(vector/c any/c

(or/c exact-positive-integer? false/c)

(or/c exact-nonnegative-integer? false/c)

(or/c exact-nonnegative-integer? false/c)

(or/c exact-positive-integer? false/c)))

prop : (or/c syntax? false/c) = #f

cert : (or/c syntax? false/c) = #f

The same as syntax->datum and datum->syntax.

(module-identifier=? a-id b-id) Ñ boolean?
a-id : syntax?

b-id : syntax?

(module-transformer-identifier=? a-id b-id) Ñ boolean?
a-id : syntax?

b-id : syntax?

7



(module-template-identifier=? a-id b-id) Ñ boolean?

a-id : syntax?

b-id : syntax?

(module-label-identifier=? a-id b-id) Ñ boolean?
a-id : syntax?

b-id : syntax?

(free-identifier=? a-id b-id) Ñ boolean?
a-id : syntax?

b-id : syntax?

The module-identifier=?, etc. functions are the same as free-identifier=?, etc. in
scheme/base.

The free-identifier=? procedure returns

(and (eq? (syntax-e a) (syntax-e b))

(module-identifier=? a b))

(make-namespace [mode ]) Ñ namespace?

mode : (one-of/c 'initial 'empty) = 'initial

Creates a namespace with mzscheme attached. If the mode is empty, the namespace’s top-
level environment is left empty. If mode is 'initial, then the namespace’s top-level en-
vironment is initialized with (namespace-require/copy 'mzscheme). See also make-

base-empty-namespace.

(namespace-transformer-require req) Ñ void?

req : any/c

Equivalent to (namespace-require `(for-syntax ,req)).

(transcript-on filename) Ñ any

filename : any/c

(transcript-off) Ñ any

Raises exn:fail, because the operations are not supported.

(hash-table? v) Ñ hash-table?
v : any/c

(hash-table? v flag) Ñ hash-table?

v : any/c

flag : (one-of/c 'weak 'equal 'eqv)

(hash-table? v flag flag2) Ñ hash-table?

v : any/c

flag : (one-of/c 'weak 'equal 'eqv)

flag2 : (one-of/c 'weak 'equal 'eqv)

8



Returns #t if v is a hash table created by make-hash-table or make-immutable-hash-
table with the given flags (or more), #f otherwise. If flag2 is provided, it must be dis-
tinct from flag and 'equal cannot be used with 'eqv, otherwise the exn:fail:contract
exception is raised.

(make-hash-table) Ñ hash-table?
(make-hash-table flag) Ñ hash-table?

flag : (one-of/c 'weak 'equal 'eqv)

(make-hash-table flag flag2) Ñ hash-table?

flag : (one-of/c 'weak 'equal 'eqv)

flag2 : (one-of/c 'weak 'equal 'eqv)

Creates and returns a new hash table. If provided, each flag must one of the following:

• 'weak — creates a hash table with weakly-held keys via make-weak-hash, make-
weak-hasheq, or make-weak-hasheqv.

• 'equal — creates a hash table that compares keys using equal? instead of eq? using
make-hash or make-weak-hash.

• 'eqv — creates a hash table that compares keys using eqv? instead of eq? using
make-hasheqv or make-weak-hasheqv.

By default, key comparisons use eq? (i.e., the hash table is created with make-hasheq). If
flag2 is redundant or 'equal is provided with 'eqv, the exn:fail:contract exception
is raised.

(make-immutable-hash-table assocs)
Ñ (and/c hash-table? immutable?)

assocs : (listof pair?)

(make-immutable-hash-table assocs flag)

Ñ (and/c hash-table? immutable?)

assocs : (listof pair?)

flag : (one-of/c 'equal 'eqv)

Like make-immutable-hash, make-immutable-hasheq, or make-immutable-

hasheqv, depending on whether an 'equal or 'eqv flag is provided.

hash-table-get : procedure?

hash-table-put! : procedure?

hash-table-remove! : procedure?

hash-table-count : procedure?

hash-table-copy : procedure?

hash-table-map : procedure?

hash-table-for-each : procedure?

9



hash-table-iterate-first : procedure?

hash-table-iterate-next : procedure?

hash-table-iterate-value : procedure?

hash-table-iterate-key : procedure?

The same as hash-ref, hash-set!, hash-remove!, hash-count,hash-copy, hash-

map, hash-for-each, hash-iterate-first, hash-iterate-next, hash-iterate-

value, and hash-iterate-key, respectively.

expand-path : procedure?

The same as cleanse-path.

list-immutable : procedure?

The same as list.

(collection-file-path file collection ...+) Ñ path?

file : path-string?

collection : path-string?

(collection-path collection ...+) Ñ path?

collection : path-string?

Like collection-file-path and collection-path, but without the #:fail option.

10



3 Extra Libraries

The mzscheme library re-exports racket/promise, racket/tcp, and racket/udp.

11



4 Omitted Forms and Functions

In addition to forms and functions that have replacements listed in §1 “Old Syntactic Forms”
and §2 “Old Functions”, the following forms and functions are exported by racket/base

but not mzscheme:

compose filter sort foldl foldr

remv remq remove remv* remq* remove* memf assf findf

build-vector build-string build-list

hash-keys hash-values hash->list hash-set* hash-set*!

hash-update hash-update!

vector-copy!

thread-send thread-receive thread-try-receive thread-receive-evt

log-fatal log-error log-warning log-info log-debug

log-message log-level? make-logger logger?

current-logger logger-name make-log-receiver log-receiver?

12


	1 Old Syntactic Forms
	2 Old Functions
	3 Extra Libraries
	4 Omitted Forms and Functions

