
XREPL: eXtended REPL
Version 6.2.1

Eli Barzilay ăeli@barzilay.orgą

August 10, 2015

(require xrepl) package: xrepl-lib

Loading the xrepl library enables XREPL, which extends the racket REPL significantly,
turning it into a more useful tool for interactive exploration and development. Additions
include “meta commands,” using readline, keeping past evaluation results, and more.

1

mailto:eli@barzilay.org

1 Installing XREPL

To use XREPL, start racket and enter (require xrepl). You will know that it works
when the prompt changes to a ->, and, if you’re working on a capable terminal, you will
now have readline editing. You can also start racket and ask for XREPL to be loaded using
command-line arguments:

racket -il xrepl

If you want to enable XREPL automatically, add this expression to your Racket initialization
file. An easy way to do the necessary editing is to enter ,install!, which will inspect To load XREPL

conditionally (e.g.,
not in older Racket
versions), you can
use
(dynamic-require

'xrepl #f). This
is a plain expression
that can be placed
inside when and
elsewhere.

and edit your initialization file (it will describe the change and ask for your permission).
Alternatively, you can edit the file directly: on Unix, it is "„/.racketrc", and for other
platforms evaluate (find-system-path 'init-file) to see where it is.

XREPL will set up a readline-based reader, so you do not need to load that yourself. If
your initialization file was previously set to load readline via install-readline!, the
,install! command will (notify you and) remove it. If you added it yourself, consider
removing it. (This is not strictly needed, but XREPL is slightly better at detecting when to
use readline.)

2

2 Meta REPL Commands

Most of the XREPL extensions are implemented as meta commands. These commands are
entered at the REPL, prefixed by a , and followed by the command name. Note that several
commands correspond directly to Racket functions (e.g., ,exit) — but since they work
outside of your REPL, they can be used even if the matching bindings are not available.

2.1 Generic Commands

,help [<command-name>]

display available commands
[Synonyms: ,h ,?]

Without an argument, displays a list of all known commands. Specify a command to get
help specific to that command.

,exit [<exit-code>]

exit racket
[Synonyms: ,quit ,ex]

Exits Racket, optionally with an error code (see exit).

,cd [<path>]

change the current directory

Sets the current-directory to the given path. If no path is specified, use your home
directory. Path arguments are passed through expand-user-path so you can use „. An
argument of - means “the previous path”.

,pwd

display the current directory

Reports the value of current-directory.

,shell <shell-command>

run a shell command
[Synonyms: ,sh ,ls ,cp ,mv ,rm ,md ,rd ,git ,svn]

Use ,shell (or ,sh) to run a generic shell command (via system). For convenience, a few
synonyms are provided — they run the specified executables (still using system).

When the REPL is in the context of a module with a known source file, the shell command
can use the F environment variable as the path to the file. Otherwise, F is set to an empty
string.

,edit <file> ...

3

edit files in your $EDITOR
[Synonyms: ,e]

Runs an editor, as specified by your EDITOR environment variable, with the given file/s
arguments. If no files are specified and the REPL is currently inside a module’s namespace,
then the file for that module is used. If the EDITOR environment variable is not set, use the
,drracket command instead.

,drracket [-flag] <file> ...

edit files in DrRacket
[Synonyms: ,dr ,drr]

Runs DrRacket with the specified file/s. If no files are given, and the REPL is currently
inside a module, the file for that module is used.

DrRacket is launched directly, without starting a new subprocess, and it is then kept running
in a hidden window so further invocations are immediate. (When this command is used for
the first time, you will see DrRacket start as usual, and then its window will disappear —
that window is keeping DrRacket ready for quick editing.)

In addition to file arguments, arguments can specify one of a few flags for additional opera-
tions:

• -new: opens a new editing window. This is the default when no files are given and the
REPL is not inside a module,

• -open: opens the specified file/s (or the current module’s file). This is the default
when files are given or when inside a module.

• -quit: exits the running DrRacket instance. Quitting DrRacket is usually not nec-
essary. Therefore, if you try to quit it from the DrRacket window, it will instead just
close the window but DrRacket will still be running in the background. Use this com-
mand in case there is some exceptional problem that requires actually quitting the IDE.
(Once you do so, future uses of this command will start a fresh instance.)

2.2 Binding Information

,apropos <search-for> ...

look for a binding
[Synonyms: ,ap]

Searches for known bindings in the current namespace. The arguments specify which bind-
ing to look for: use a symbol (without a ') to look for bindings that contain that name, and
use a regexp (e.g., #rx"...") to use a regexp for the search. Multiple arguments are and-ed
together.

4

If no arguments are given, all bindings are listed.

,describe [<phase-number>] <identifier-or-module> ...

describe a (bound) identifier
[Synonyms: ,desc ,id]

For each of the specified names, describe where where it is coming from and how it was
defined if it names a known binding. In addition, describe the module (list its imports and
exports) that is named by arguments that are known module names.

By default, bindings are searched for at the runtime level (phase 0). You can add a different
phase level for identifier lookups as a first argument. In this case, only a binding can be
described, even if the same name is a known module.

,doc <any> ...

browse the racket documentation

Uses Racket’s help to browse the documentation, look for a binding, etc. Note that this can
be used even in languages that don’t have the help binding.

2.3 Requiring and Loading Files

,require <require-spec> ...+

require a module
[Synonyms: ,req ,r]

Most arguments are passed to require as is. As a convenience, if a symbolic argument
specifies an existing file name, then use its string form to specify the require, or use a file
in case of an absolute path. In addition, an argument that names a known symbolic module
name (e.g., one that was defined on the REPL, or a builtin module like #%network), then its
quoted form is used. (Note that these shorthands do not work inside require subforms like
only-in.)

,require-reloadable <module> ...

require a module, make it reloadable
[Synonyms: ,reqr ,rr]

Same as ,require, but arranges to load the code in a way that makes it possible to reload it
later, or if a module was already loaded (using this command) then reload it. Note that the
arguments should be simple module names, without any require macros. If no arguments are
given, use arguments from the last use of this command (if any).

Module reloading is enabled by turning off the compile-enforce-module-constants

parameter — note that this prohibits some optimizations, since the compiler assumes that all
bindings may change.

5

,enter [<module>] [noisy?]

require a module and go into its namespace
[Synonyms: ,en]

Uses enter! to have the REPL go “inside” a given module’s namespace. A module name
can specify an existing file as with the ,require-reloadable command. If no module is
given, and the REPL is already in some module’s namespace, then ‘enter!’ is used with that
module, causing it to reload if needed. Using #f makes it go back to the toplevel namespace.

Note that this can be used even in languages that don’t have the enter! binding. In addition,
enter! is used in a way that does not make it require itself into the target namespace.

,toplevel

go back to the toplevel
[Synonyms: ,top]

Makes the REPL go back to the toplevel namespace. Same as using the ,enter command
with a #f argument.

,load <filename> ...

load a file
[Synonyms: ,ld]

Uses load to load the specified file(s).

2.4 Debugging

,backtrace

see a backtrace of the last exception
[Synonyms: ,bt]

Whenever an error is displayed, XREPL will not show its context printout. Instead, use the
,backtrace command to display the backtrace for the last error.

,time [<count>] <expr> ...

time an expression

Times execution of an expression (or expressions). This is similar to "time" but the infor-
mation that is displayed is a bit easier to read.

In addition, you can provide an initial number to specify repeating the evaluation a number
of times. In this case, each iteration is preceded by two garbage collections, and when the
iteration is done its timing information and evaluation result(s) are displayed. When the
requested number of repetitions is done, some extreme results are removed (top and bottom
2/7ths), and the remaining results are be averaged. Finally, the resulting value(s) are from
the last run are returned (and can be accessed via the bindings for the last few results, see §3

6

“Past Evaluation Results”).

,trace <function> ...

trace a function
[Synonyms: ,tr]

Traces the named function (or functions), using trace.

,untrace <function> ...

untrace a function
[Synonyms: ,untr]

Untraces the named function (or functions), using untrace.

,errortrace [<flag>]

errortrace instrumentation control
[Synonyms: ,errt ,inst]

errortrace is a useful Racket library which can provide a number of useful services like
precise profiling, test coverage, and accurate error information. However, using it can be a
little tricky. ,errortrace and a few related commands fill this gap, making errortrace

easier to use.

,errortrace controls global use of errortrace. With a flag argument of + errortrace
instrumentation is turned on, with - it is turned off, and with no arguments it is toggled. In
addition, a ? flag displays instrumentation state.

Remember that errortrace instrumentation hooks into the Racket compiler, and applies
only to source code that gets loaded from source and therefore compiled. Therefore, you
should use it before loading the code that you want to instrument.

,profile [<expr> | <flag> ...]

profiler control
[Synonyms: ,prof]

This command can perform profiling of code in one of two very different ways: either sta-
tistical profiling via the profile library, or using the exact profiler feature of errortrace.

When given a parenthesized expression, ,profile will run it via the statistical profiler, as
with the profile form, reporting results as usual. This profiler adds almost no overhead,
and it requires no special setup. In particular, it does not require pre-compiling code in
a special way. However, there are some imprecise elements to this profiling: the profiler
samples stack snapshots periodically which can miss certain calls, and it is also sensitive to
some compiler optimizations like inlining procedures and thereby not showing them in the
displayed analysis. See Profile: Statistical Profiler for more information.

In the second mode of operation, ,profile uses the precise errortrace profiler. This
profiler produces precise results, but like other uses of the errortrace, it must be enabled

7

before loading the code that is to be profiled. It can add noticeable overhead (potentially
affecting the reported runtimes), but the results are accurate in the sense that no procedure is
skipped. (For additional details, see Errortrace: Debugging and Profiling.)

In this mode, the arguments are flags that control the profiler. A + flag turns the profiler on
— and as usual with errortrace functionality, this applies to code that is compiled from
now on. A - flag turns this instrumentation off, and without any flags it is toggled. Once
the profiler is enabled, you can run some code and then use this command to report profiling
results: use * to show profiling results by time, and # for the results by counts. Once you’ve
seen the results, you can evaluate additional code to collect more profiling information, or
you can reset the results with a ! flag. You can also combine several flags to perform the
associated operations, for example, ,prof *!- will show the accumulated results, clear
them, and turn profiler instrumentation off.

Note that using any of these flags turns errortrace instrumentation on, even ,prof - (or no
flags). Use the ,errortrace command to turn off instrumentation completely.

,execution-counts <file> ...

execution counts

This command makes it easy to use the execution counts functionality of errortrace.
Given a file name (or names), ,execution-counts will enable errortrace instrumentation
for coverage, require the file(s), display the results, disables coverage, and disables instru-
mentation (if it wasn’t previously turned on). This is useful as an indication of how well the
test coverage is for some file.

,coverage <file>

coverage information via a sandbox
[Synonyms: ,cover]

Runs a given file and displays coverage information for the run. This is somewhat similar
to the ,execution-counts command, but instead of using errortrace directly, it runs
the file in a (trusted) sandbox, using the racket/sandbox library and its ability to provide
coverage information.

2.5 Miscellaneous Commands

,switch-namespace [<name>] [? | - | ! [<init>]]

switch to a different repl namespace
[Synonyms: ,switch]

This powerful command controls the REPL’s namespace. While ,enter can be used to
make the REPL go into the namespace of a specific module, the ,switch-namespace

command can switch between toplevel namespaces, allowing you to get multiple separate
“workspaces”.

8

Namespaces are given names that are symbols or integers, where * is the name for the first
initial namespace, serving as the default one. These names are not bindings — they are only
used to label the known namespaces.

The most basic usage for this command is to simply specify a new name. A namespace that
corresponds to that name will be created and the REPL will switch to that namespace. The
prompt will now indicate this namespace’s name. The name is usually insignificant, except
when it is a require-able module: in this case, the new namespace is initialized to use that
module’s bindings. For example, ,switch racket/base creates a new namespace that
is called racket/base and initializes it with racket/base. For all other names, the new
namespace is initialized the same as the current one.

Additional ,switch uses:

• ,switch ! — reset the current namespace, recreating it using the same initial library.
Note that it is forbidden to reset the default initial namespace, the one named * — this
namespace corresponds to the one that Racket was started with, and where XREPL
was initialized. There is no technical reason for forbidding this, but doing so is not
useful as no resources will actually be freed.

• ,switch ! <module> — resets the current namespace with the explicitly given sim-
ple module spec.

• ,switch <name> ! — switch to a newly made namespace. If a namespace by that
name already existed, it is rest.

• ,switch <name> ! <module> — same, but reset to the given module instead of
what it previously used.

• ,switch - <name> — drop the specified namespace, making it possible to garbage-
collect away any associated resources. You cannot drop the current namespace or the
default one (*).

• ,switch ? — list all known namespaces.

Do not confuse namespaces with sandboxes or custodians. The ,switch command changes
only the current-namespace — it does not install a new custodian or restricts evaluation
in any way. Note that it is possible to pass around values from one namespace to another via
past result reference; see §3 “Past Evaluation Results”.

,syntax [<expr>] [<flag> ...]

set syntax object to inspect, and control it
[Synonyms: ,stx ,st]

Manipulate syntaxes and inspect their expansion.

Useful operations revolve around a “currently set syntax”. With no arguments, the currently
set syntax is displayed; an argument of ^ sets the current syntax from the last input to the
REPL; and an argument that holds any other s-expression will set it as the current syntax.

9

Syntax operations are specified via flags:

• + uses expand-once on the current syntax and prints the resulting syntax. In addition,
the result becomes the new “current” syntax, so you can use this as a poor-man’s
syntax stepper. (Note that in some rare cases expansion via a sequence of expand-
once might differ from the actual expansion.)

• ! uses expand to completely expand the current syntax.

• * uses the macro debugger’s textual output to show expansion steps for the current
syntax, leaving macros from racket/base intact. Does not change the current syntax.
Uses expand/step-text, see Macro Debugger: Inspecting Macro Expansion for
details.

• ** uses the macro debugger similarly to *, but expands racket/base macros too,
showing the resulting full expansion process.

Several input flags and/or syntaxes can be specified in succession as arguments to ,syntax.
For example, ,stx (when 1 2) ** !.

,check-requires [<module>]

check the `require's of a module
[Synonyms: ,ckreq]

Uses show-requires to analyze the requires of the specified module, defaulting to the
currently entered module if we’re in one. See Macro Debugger: Inspecting Macro Expan-
sion for details.

,log <opt> ...

control log output

Starts (or stops) logging events at a specific level. The level can be:

• a known level name (currently one of fatal, error, warning, info, debug),

• #f for no logging,

• #t for maximum logging,

• an integer level specification, with 0 for no logging and bigger ones for additional
verbosity.

,install!

install xrepl in your Racket init file

Convenient utility command to install XREPL in your Racket initialization file. This is done
carefully, you will be notified of potential issues, and asked to authorize changes.

10

3 Past Evaluation Results

XREPL makes the last few interaction results available for evaluation via special toplevel
variables: ^, ^^, ..., ^^^^^. The first, ^, refers to the last result, ^^ to the previous one and
so on.

As with the usual REPL printouts, #<void> results are not kept. In case of multiple results,
they are spliced in reverse, so ^ refers to the last result of the last evaluation. For example:

-> 1

1

-> (values 2 3)

2

3

-> (values 4)

4

-> (list ^ ^^ ^^^ ^^^^)

'(4 3 2 1)

The rationale for this is that ^ always refers to the last printed result, ^^ to the one before
that, etc.

In addition to these names, XREPL also binds $1, $2, ..., $5 to the same references, so you
can choose the style that you like. All of these bindings are made available only if they are
not already defined. This means that if you have code that uses these names, it will continue
to work as usual (and it will shadow the saved value binding).

The bindings are identifier macros that expand to the literal saved values; so referring to a
saved value that is missing (because not enough values were shown) raises a syntax error.
In addition, the values are held in a weak reference, so they can disappear after a garbage-
collection.

Note that this facility can be used to “transfer” values from one namespace to another—but
beware of struct values that might come from a different instantiation of a module.

11

4 Hacking XREPL

XREPL is mainly a convenience tool, and as such you might want to hack it to better suit
your needs. Currently, there is no convenient way to customize and extend it, but this will
be added in the future.

Meanwhile, if you’re interested in tweaking XREPL, the ,enter command can be used as
usual to go into its implementation. For example — change an XREPL parameter:

-> ,en xrepl/xrepl

xrepl/xrepl> ,e

xrepl/xrepl> (saved-values-char #\„)

xrepl/xrepl> ,top

-> 123

123

-> „

123

or add a command:

-> ,en xrepl/xrepl

xrepl/xrepl> (defcommand eli "stuff" "eli says" ["Make eli say

stuff"]

(printf "Eli says: „a\n" (getarg 'line)))

xrepl/xrepl> ,top

-> ,eli moo

Eli says: moo

While this is not intended as the way to extend and customize XREPL, it is a useful debug-
ging tool should you want to do so.

If you have any useful tweaks and extensions, please mail the author or the Racket devel-
oper’s mailing list.

12

http://racket-lang.org/community.html

5 License Issues

Under most circumstances XREPL uses the readline library, and therefore a similar license
caveat applies: XREPL cannot be enabled by default because of the readline licensing, you
have to explicitly do so yourself to use it. (Note that XREPL is intended to be used only for
enhanced interaction, not as a library; so there are no additional issues.)

13

	1 Installing XREPL
	2 Meta REPL Commands
	2.1 Generic Commands
	2.2 Binding Information
	2.3 Requiring and Loading Files
	2.4 Debugging
	2.5 Miscellaneous Commands

	3 Past Evaluation Results
	4 Hacking XREPL
	5 License Issues

