
MzCOM: Racket as a Windows COM Object
Version 6.4

Paul Steckler

February 8, 2016

MzCOM.exe is a Windows COM (i.e., Component Object Model) class wrapper for Racket.

During normal installation of MzCOM, the executable is registered as a COM object au-
tomatically. If that registration fails or if you move the Racket installation, re-register
MzCOM.exe with

xinstallationy\lib\MzCOM.exe /RegServer /v

The MzCOM.exe executable will find DLLs and library collections relative to its own path.

1

1 Loading MzCOM

To load a COM object, COM hosts require a COM class name or a ProgID. MzCOM has the
class name "MzObj Class" and the ProgID "MzCOM.MzObj.xversiony", where xversiony

is 6.4.

In the Visual BASIC 6 environment, from the Project|References (VB6), check MzCOM
1.0 Type Library. In Visual BASIC .NET, choose Project|Add Reference, and from the
COM tab, select MzCOM 1.0 Type Library. In your code, declare a variable, then assign to
it:

DIM schemeObject AS MzObj

SET schemeObject = NEW MzObj

From Visual C++:

#include "mzcom.h"

CLSID clsid;

IMzObj *pIMzObj;

CoInitialize(NULL);

CLSIDFromProgID(L"MzCOM.MzObj.<version>",&clsid);

CoCreateInstance(clsid,NULL,CLSCTX_SERVER,IID_IMzObj, (void

**)&pIMzObj);

where <version> is the version number. You’ll need the definition of IID_IMzObj (see
§2 “GUIDs”). The header file "mzcom.h" is generated as "src\worksp\mzcom\" when
building from the Racket source distribution. The above C/C++ code is for illustration; your
actual code should check return values, of course.

Using mysterx to manipulate COM objects within Racket, you can load MzCOM with
either

(cci/coclass "MzObj Class")

or

(cci/progid "MzCOM.MzObj.<version>")

Consult your documentation for loading MzCOM into other COM environments. MzCOM
is compiled as a “dual-mode” class, meaning its methods may be called directly or by using
OLE Automation.

2

2 GUIDs

When compiled from the Racket source distibrution, the directory "src\worksp\mzcom\"

contains the file "MzCOM_i.c" that contains GUIDs for MzCOM. Those GUIDs are as fol-
lows:

const IID IID_IMzObj =

{0xA604CBA8,0x2AB5,0x11D4,{0xB6,0xD3,0x00,0x60,0x08,0x90,0x02,0xFE}};

const IID LIBID_MZCOMLib =

{0xA604CB9C,0x2AB5,0x11D4,{0xB6,0xD3,0x00,0x60,0x08,0x90,0x02,0xFE}};

const IID DIID__IMzObjEvents =

{0xA604CBA9,0x2AB5,0x11D4,{0xB6,0xD3,0x00,0x60,0x08,0x90,0x02,0xFE}};

const CLSID CLSID_MzObj =

{0xA3B0AF9E,0x2AB0,0x11D4,{0xB6,0xD2,0x00,0x60,0x08,0x90,0x02,0xFE}};

which represent the IMzObj interface, the MzCOM type library, the IMzObjEvents inter-
face, and the MzObj class, respectively.

3

3 Methods

MzCOM support three COM methods:

• void About()

Takes no arguments and displays an informational dialog.

• BSTR Eval(BSTR input)

Takes and returns strings (specifically, BSTRs). The returned value is the result of eval-
uating the input expression, formatted as a string. The input string may contain several
S-expressions. The embedded Racket updates its environment with each evaluation.
Therefore, it is possible to define procedures in a call to Eval, and use the procedures
in subsequent calls.

• void Reset()

Resets the Racket environment to the initial environment. Also, the custodian for the
primary Racket thread is invoked, shutting all its managed values.

4

4 Events

MzCOM supports a single event.

• SchemeError()

Passed a string (specifically, a BSTR) that explains the error.

5

5 Errors

When an error occurs in MzCOM, it creates a COM error object. C and C++ clients can
use GetErrorInfo to retrieve error information. Clients implemented in other languages
typically have some equivalent means to obtain COM error information.

6

6 Evaluation thread

The Racket evaluator runs in a Win32 thread created when MzCOM is loaded. If an expres-
sion kills the primary Racket thread, as in

(kill-thread (current-thread))

then the evaluator Win32 thread is also killed. When that happens, subsequent calls to Eval

will fail.

7

7 Acknowledgments

MzCOM was developed in response to a query by Andre Van Meulebrouck. Andre also did
extensive testing with Visual BASIC.

8

	1 Loading MzCOM
	2 GUIDs
	3 Methods
	4 Events
	5 Errors
	6 Evaluation thread
	7 Acknowledgments

