The Typed Racket Guide

Version 6.4

Sam Tobin-Hochstadt <samth @racket-lang . org>,
Vincent St-Amour <stamourv@racket-lang . org>,
Eric Dobson <endobson@racket-lang . org>,

and Asumu Takikawa <asumu@racket-lang . org>

February 8, 2016

Typed Racket is a family of languages, each of which enforce that programs written in the
language obey a type system that ensures the absence of many common errors. This guide
is intended for programmers familiar with Racket. For an introduction to Racket, see The
Racket Guide.

For the precise details, also see The Typed Racket Reference.

mailto:samth@racket-lang.org
mailto:stamourv@racket-lang.org
mailto:endobson@racket-lang.org
mailto:asumu@racket-lang.org

1 Quick Start

Given a module written in the racket language, using Typed Racket requires the following
steps:

1. Change the language to typed/racket.

2. Change the uses of (require mod) to (require typed/mod).

3. Annotate structure definitions and top-level definitions with their types.

Then, when the program is run, it will automatically be typechecked before any execution,
and any type errors will be reported. If there are any type errors, the program will not run.

Here is an example program, written in the racket language:

#lang racket
(struct pt (x y))

; distance : pt pt -> real
(define (distance pl p2)

(sqrt (+ (sqr (- (pt-x p2) (pt-x pl)))
(sqr (- (pt-y p2) (pt-y p1))))))

Here is the same program, in typed/racket:

#lang typed/racket
(struct pt ([x : Reall [y : Reall))

(: distance (-> pt pt Real))
(define (distance pl p2)

(sqrt (+ (sqr (- (pt-x p2) (pt-x pl)))
(sqr (- (pt-y p2) (pt-y p1))))))

1.1 Using Typed Racket from the Racket REPL

It is possible to use Typed Racket from the Racket REPL. To do so, start Racket with the
following command line:

racket -I typed/racket

2 Beginning Typed Racket

Recall the typed module from [§T “Quick Start’}

#lang typed/racket
(struct pt ([x : Real] [y : Reall))
(: distance (-> pt pt Real))
(define (distance pl p2)
(sqrt (+ (sqr (- (pt-x p2) (pt-x pl)))
(sqr (- (pt-y p2) (pt-y pL))))))

Let us consider each element of this program in turn.

#lang typed/racket

This specifies that the module is written in the typed/racket language, which is a typed
version of the racket language. Typed versions of other languages are provided as well; for
example, the typed/racket/base language corresponds to racket/base.

(struct pt ([x : Real] [y : Reall))

This defines a new structure, named pt, with two fields, x and y. Both fields are specified
to have the type Real, which corresponds to the real numbers. The struct form corre-
sponds to its untyped counterpart from racket—when porting a program from racket to
typed/racket, simply add type annotations to existing field declarations.

(: distance (-> pt pt Real))

This declares that distance has the type (-> pt pt Real).

The type (-> pt pt Real) is a function type, that is, the type of a procedure. The input
type, or domain, is two arguments of type pt, which refers to an instance of the pt structure.
The -> indicates that this is a function type. The range type, or output type, is the last
element in the function type, in this case Real.

If you are familiar with contracts, the notation for function types is similar to function con-
tract combinators.

(define (distance pl p2)
(sqrt (+ (sqr (- (pt-x p2) (pt-x pl)))
(sqr (- (pt-y p2) (pt-y p1))))))

This definition is unchanged from the untyped version of the code. The goal of Typed Racket
is to allow almost all definitions to be typechecked without change. The typechecker verifies

Typed Racket
provides modified
versions of core
Racket forms,
which permit type
annotations.
Previous versions of
Typed Racket
provided these with
a : suffix, but these
are now only
included as legacy
forms for
backwards
compatibility.

that the body of the function has the type Real, under the assumption that p1 and p2 have
type pt, taking these types from the earlier type declaration. Since the body does have this
type, the program is accepted.

In the Typed Racket REPL, calling distance will show the result as usual and will also
print the result’s type:

> (distance (pt 0 0) (pt 3.1415 2.7172))
- : Real
4.153576541969583

Just evaluating the function name will print the function value and its type, which can be use-
ful for discovering the types that Typed Racket ascribes to Racket functions. Alternatively,
the :print-type command will just print the type:

> distance

- ¢ (-> pt pt Real)
#<procedure:distance>

> string-length

- : (-> String Index)
#<procedure:string-length>
> (:print-type string-ref)
(-> String Integer Char)

2.1 Datatypes and Unions

Many data structures involve multiple variants. In Typed Racket, we represent these using
union types, written (U t1 t2 ...).

#lang typed/racket

(define-type Tree (U leaf node))

(struct leaf ([val : Number]))

(struct node ([left : Tree] [right : Treel))

(: tree-height (-> Tree Integer))
(define (tree-height t)
(cond [(leaf? t) 1]
[else (max (+ 1 (tree-height (node-left t)))
(+ 1 (tree-height (node-right t))))]))

(: tree-sum (-> Tree Number))
(define (tree-sum t)
(cond [(leaf? t) (leaf-val t)]
[else (+ (tree-sum (node-left t))

(tree-sum (node-right t)))]1))

In this module, we have defined two new datatypes: leaf and node. We’ve also defined
the type name Tree to be (U node leaf), which represents a binary tree of numbers. In
essence, we are saying that the tree-height function accepts a Tree, which is either a
node or a leaf, and produces a number.

In order to calculate interesting facts about trees, we have to take them apart and get at their
contents. But since accessors such as node-left require a node as input, not a Tree, we
have to determine which kind of input we were passed.

For this purpose, we use the predicates that come with each defined structure. For example,
the leaf? predicate distinguishes leafs from all other Typed Racket values. Therefore, in
the first branch of the cond clause in tree-sum, we know that t is a 1eaf, and therefore we
can get its value with the leaf-val function.

In the else clauses of both functions, we know that t is not a leaf, and since the type of t
was Tree by process of elimination we can determine that t must be a node. Therefore, we
can use accessors such as node-left and node-right with t as input.

The process by which Typed Racket type-checks the bodies of the cond clauses, using in-
formation from the predicate checks, is called occurrence typing and is described in detail in
[$5 “*Occurrence Typing}

2.2 Type Errors

When Typed Racket detects a type error in the module, it raises an error before running the
program.

Example:

> (addl "not a number")
eval:9:0: Type Checker: type mismatch
expected: Number
given: String
in: "not a number"

3 Specifying Types

The previous section introduced the basics of the Typed Racket type system. In this section,
we will see several new features of the language, allowing types to be specified and used.

3.1 Type Annotation and Binding Forms

In general, variables in Typed Racket must be annotated with their type. A later subsection
($3.2.1 “When do you need type annotations?”)) introduces a heuristic which more precisely
details when type annotations are needed.

3.1.1 Annotating Definitions

We have already seen the : type annotation form. This is useful for definitions, at both the
top level of a module

(: x Number)
(define x 7)

and in an internal definition

(let Q)
(: x Number)
(define x 7)
(add1 x))

In addition to the : form, almost all binding forms from racket are replaced with coun-
terparts which allow the specification of types. Typed Racket’s define form allows the
definition of variables in both top-level and internal contexts.

(define x : Number 7)
(define (id [z : Number]) : Number z)

Here, x has the type Number, and id has the type (-> Number Number). In the body of
id, z has the type Number.

3.1.2 Annotating Local Binding

(let ([x : Number 7])
(addl x))

The 1let form is exactly like let from racket, but type annotations may be provided for
each variable bound. Here, x is given the type Number. The let* and letrec are similar.
Annotations are optional with let and variants.

(let-values ([([x : Number] [y : String]) (values 7 "hello")])
(+ x (string-length y)))

The let*-values and letrec-values forms are similar.

3.1.3 Annotating Functions

Function expressions also bind variables, which can be annotated with types. This function
expects two arguments, a Number and a String:

(lambda ([x : Number] [y : String]) (+ x 5))

This function accepts at least one String, followed by arbitrarily many Numbers. In the
body, y is a list of Numbers.

(lambda ([x : String] . [y : Number *]) (apply + y))

This function has the type (-> String Number * Number). Functions defined by cases
may also be annotated:

(case-lambda [() 0]
[([x : Numberl) xI1)

This function has the type (case-> (-> Number) (-> Number Number)).

3.14 Annotating Single Variables

When a single variable binding needs annotation, the annotation can be applied to a single
variable using a reader extension:

(let ([#{x : Number} 7]1) (addl x))

This is equivalent to the earlier use of let. This is mostly useful for binding forms which
do not have counterparts provided by Typed Racket, such as match:

(: assert-symbols! ((Listof Any) -> (Listof Symbol)))
(define (assert-symbols! 1st)
(match 1st
[(1ist (7 symbol? #{s : (Listof Symbol)}) ...) sl
[_ (error "expected only symbols, given" 1st)]))

3.1.5 Annotating Expressions

It is also possible to provide an expected type for a particular expression.

(ann (+ 7 1) Number)

This ensures that the expression, here (+ 7 1), has the desired type, here Number. Other-
wise, the type checker signals an error. For example:

> (ann "not a number" Number)
eval:2:0: Type Checker: type mismatch
expected: Number
given: String
in: Number

3.2 Type Inference

In many cases, type annotations can be avoided where Typed Racket can infer them. For
example, the types of all local bindings using let and let* can be inferred.

(let ([x 7]1) (addl x))

In this example, x has the type Exact-Positive-Integer.

Similarly, top-level constant definitions do not require annotation:

(define y '"foo")

In this examples, y has the type String.

Finally, the parameter types for loops are inferred from their initial values.

(let loop ([x 0] [y (list 1 2 3)1)
(if (null? y) x (loop (+ x (car y)) (cdr y))))

Here x has the inferred type Integer, and y has the inferred type (Listof Integer). The
loop variable has type (-> Integer (Listof Integer) Integer).

3.2.1 When do you need type annotations?

The last several subsections explained several ways to add type annotations and explained
that type inference allows some annotations to be left out. Since annotations can often be
omitted, it is helpful to know the situations in which they are actually required.

The following four rules of thumb will usually suffice to determine if a type annotation is
necessary.

An expression or definition needs a type annotation if it:

¢ is a define form for a function,
* is a lambda that is immediately bound to a variable,
* is a lambda that is an argument to a polymorphic function, or

¢ is defining a mutable variable.

Here are examples that correspond to each of the cases above:

Example 1:

(: fn (-> String Symbol))
(define (fn str) ...)

Example 2:

(: fn (-> String Symbol))
(define fn (lambda (str) ...))

Example 3:
(map (lambda ([n : Integer]) (addl n)) '(1 2 3))

Example 4:

(: maybe-animal (Option String))
(define maybe-animal #f)
(set! maybe-animal "Odontodactylus scyllarus")

In all four cases, if the type annotation is omitted then the inferred type will often be too
conservative (e.g., Any) and the code may not type-check.

3.3 New Type Names

Any type can be given a name with define-type.

(define-type NN (-> Number Number))

Anywhere the name NN is used, it is expanded to (-> Number Number). Type names may
be recursive or even mutually recursive.

4 Types in Typed Racket

Typed Racket provides a rich variety of types to describe data. This section introduces them.

4.1 Basic Types

The most basic types in Typed Racket are those for primitive data, such as True and False
for booleans, String for strings, and Char for characters.

> '"hello, world"
- : String
"hello, world"

> #\f

- : Char

#\f

> #t

- : Boolean [more precisely: Truel
#t

> #f

- : False

#£

Each symbol is given a unique type containing only that symbol. The Symbol type includes
all symbols.

> 'foo

- : Symbol [more precisely: 'foo]
'foo

> 'bar

- : Symbol [more precisely: 'bar]
'bar

Typed Racket also provides a rich hierarchy for describing particular kinds of numbers.

>0

- : Integer [more precisely: Zero]

0

> -7

- : Integer [more precisely: Negative-Fixnum]
-7

> 14

- : Integer [more precisely: Positive-Bytel
14

10

\%

3.2

: Flonum [more precisely: Positive-Flonum]
.2

7.0+2.81

: Float-Complex

.0+2.81

I vV W 1

~

Finally, any value is itself a type:

> (ann 23 23)
- : Integer [more precisely: 23]
23

4.2 Function Types

We have already seen some examples of function types. Function types are constructed
using ->, where the last type is the result type and the others are the argument types. Here
are some example function types:

(-> Number Number)
(-> String String Boolean)
(-> Char (Values String Natural))

The first type requires a Number as input, and produces a Number. The second requires two
arguments. The third takes one argument, and produces multiple values, of types String
and Natural. Here are example functions for each of these types.

> (lambda ([x : Number]) x)

- : (-> Number Number)

#<procedure>

> (lambda ([a : String] [b : String]) (equal? a b))

- ¢ (-> String String Boolean)

#<procedure>

> (lambda ([c : Char]) (values (string c) (char->integer c)))
- : (-> Char (values String Index))

#<procedure>

4.3 Types for Functions with Optional or Keyword Arguments

Racket functions often take optional or keyword arguments in addition to standard manda-
tory arguments. Types for these functions can written concisely using the ->* type construc-
tor. Here are some examples:

11

(->* () (Number) Number)
(->* (String String) Boolean)
(->x (#:x Number) (#:y Number) (values Number Number))

The first type describes a function that has no mandatory arguments, one optional argument
with type Number, and returns a Number.

The second requires two mandatory arguments, no optional arguments, and produces a
Boolean. This function type could have been written using -> as (-> String String
Boolean).

The third requires a mandatory keyword argument with the keyword #:x and accepts an
optional argument with keyword #:y. The result is two values of type Number.

4.4 Union Types

Sometimes a value can be one of several types. To specify this, we can use a union type,
written with the type constructor U.

> (let ([a-number 37])
(if (even? a-number)
'yes
'no))
- : Symbol [more precisely: (U 'yes 'mno)]
'no

Any number of types can be combined together in a union, and nested unions are flattened.

(U Number String Boolean Char)

4.5 Recursive Types

Recursive types are types whose definitions refer to themselves. This allows a type to de-

scribe an infinite family of data. For example, this is the type of binary trees of numbers.
(define-type BinaryTree (U Number (Pair BinaryTree BinaryTree)))

Types can also be mutually recursive. For example, the above type defintion could also be

written like this.

(define-type BinaryTree (U BinaryTreeLeaf BinaryTreeNode))
(define-type BinaryTreelLeaf Number)
(define-type BinaryTreeNode (Pair BinaryTree BinaryTree))

12

Recursive types can
also be created
anonymously
without the use of
define-type
using the Rec type
constructor.

Of course, types which directly refer to themselves are not permitted. For example, both of
these definitions are illegal.

> (define-type BinaryTree BinaryTree)
eval:18:0: Type Checker: Error in macro expansion -- parse
error in type;
recursive types are not allowed directly inside their
definition
in: BinaryTree
> (define-type BinaryTree (U Number BinaryTree))
eval:19:0: Type Checker: Error in macro expansion -- parse
error in type;
recursive types are not allowed directly inside their
definition
in: BinaryTree

4.6 Structure Types

Using struct introduces new types, distinct from any previous type.

(struct point ([x : Real] [y : Reall))

Instances of this structure, such as (point 7 12), have type point.

If a struct supertype is provided, then the newly defined type is a subtype of the parent.

4.7 Subtyping

In Typed Racket, all types are placed in a hierarchy, based on what values are included in
the type. When an element of a larger type is expected, an element of a smaller type may be
provided. The smaller type is called a subtype of the larger type. The larger type is called a
supertype. For example, Integer is a subtype of Real, since every integer is a real number.
Therefore, the following code is acceptable to the type checker:

(: £ (-> Real Real))
(define (f x) (* x 0.75))

(: x Integer)
(define x -125)

(f x)
All types are subtypes of the Any type.

13

The elements of a union type are individually subtypes of the whole union, so String is
a subtype of (U String Number). One function type is a subtype of another if they have
the same number of arguments, the subtype’s arguments are more permissive (is a super-
type), and the subtype’s result type is less permissive (is a subtype). For example, (-> Any
String) is a subtype of (-> Number (U String #f)).

4.8 Polymorphism

Typed Racket offers abstraction over types as well as values. This allows the definition of
functions that use parametric polymorphism.

4.8.1 Polymorphic Data Structures

Virtually every Racket program uses lists and other collections. Fortunately, Typed Racket
can handle these as well. A simple list processing program can be written like this:

#lang typed/racket
(: sum-list (-> (Listof Number) Number))
(define (sum-list 1)
(cond [(null? 1) 0]
[else (+ (car 1) (sum-list (cdr 1)))1))

This looks similar to our earlier programs — except for the type of 1, which looks like a
function application. In fact, it’s a use of the type constructor Listof, which takes another
type as its input, here Number. We can use Listof to construct the type of any kind of list
we might want.

We can define our own type constructors as well. For example, here is an analog of the
Maybe type constructor from Haskell:

#lang typed/racket
(struct None ())
(struct (a) Some ([v : al))

(define-type (Opt a) (U None (Some a)))
(: find (-> Number (Listof Number) (Opt Number)))
(define (find v 1)

(cond [(null? 1) (Nomne)]

[(= v (car 1)) (Some v)]
[else (find v (cdr 1))1))

The first struct: defines None to be a structure with no contents.

14

The second definition

(struct (a) Some ([v : al))

creates a parameterized type, Some, which is a structure with one element, whose type is that
of the type argument to Some. Here the type parameters (only one, a, in this case) are written
before the type name, and can be referred to in the types of the fields.

The type definiton

(define-type (Opt a) (U None (Some a)))

creates a parameterized type — Opt is a potential container for whatever type is supplied.

The f£ind function takes a number v and list, and produces (Some v) when the number is
found in the list, and (None) otherwise. Therefore, it produces a (Opt Number), just as the
annotation specified.

4.8.2 Polymorphic Functions

Sometimes functions over polymorphic data structures only concern themselves with the
form of the structure. For example, one might write a function that takes the length of a list
of numbers:

#lang typed/racket
(: list-number-length (-> (Listof Number) Integer))
(define (list-number-length 1)
(if (null? 1)
0
(addl (list-number-length (cdr 1)))))

and also a function that takes the length of a list of strings:

#lang typed/racket
(: list-string-length (-> (Listof String) Integer))
(define (list-string-length 1)
(if (null? 1)
0
(addl (list-string-length (cdr 1)))))

Notice that both of these functions have almost exactly the same definition; the only dif-
ference is the name of the function. This is because neither function uses the type of the
elements in the definition.

We can abstract over the type of the element as follows:

15

#lang typed/racket
(: list-length (A1l (A) (-> (Listof A) Integer)))
(define (list-length 1)
(if (null? 1)
0
(addl (1list-length (cdr 1)))))

The new type constructor A1l takes a list of type variables and a body type. The type
variables are allowed to appear free in the body of the A11 form.

4.8.3 Lexically Scoped Type Variables

When the : type annotation form includes type variables for parametric polymorphism, the
type variables are lexically scoped. In other words, the type variables are bound in the body
of the definition that you annotate.

For example, the following definition of my-id uses the type variable a to annotate the
argument x:

(: my-id (A1l (a) (-> a a)))
(define my-id (lambda ([x : al) x))

Lexical scope also implies that type variables can be shadowed, such as in the following
example:

(: my-id (A1l (a) (-> a a)))
(define my-id
(lambda ([x : al)
(: helper (A1l (a) (-> a a)))
(define helper
(lambda ([y : al) y))
(helper x)))

The reference to a inside the inner lambda refers to the type variable in helper’s annota-
tion. That a is not the same as the a in the annotation of the outer 1ambda expression.

4.9 Variable-Arity Functions: Programming with Rest Arguments

Typed Racket can handle some uses of rest arguments.

16

4.9.1 Uniform Variable-Arity Functions

In Racket, one can write a function that takes an arbitrary number of arguments as follows:

#lang racket
(define (sum . xs)
(if (null? xs)
0
(+ (car xs) (apply sum (cdr xs)))))

(sum)
(sum 1 2 3 4)
(sum 1 3)

The arguments to the function that are in excess to the non-rest arguments are converted to a
list which is assigned to the rest parameter. So the examples above evaluate to 0, 10, and 4.

We can define such functions in Typed Racket as well:

#lang typed/racket
(: sum (-> Number * Number))
(define (sum . xs)
(if (null? xs)
0
(+ (car xs) (apply sum (cdr xs)))))

This type can be assigned to the function when each element of the rest parameter is used at
the same type.

4.9.2 Non-Uniform Variable-Arity Functions

However, the rest argument may be used as a heterogeneous list. Take this (simplified)
definition of the R6RS function fold-left:

#lang racket
(define (fold-left f i as . bss)
(if (or (null? as)
(ormap null? bss))
i
(apply fold-left
£
(apply f i (car as) (map car bss))
(cdr as)
(map cdr bss))))

17

(fold-left + 0 (list 1 2 3 4) (list 5 6 7 8))
(fold-left + 0 (list 1 2 3) (list 2 3 4) (list 3 4 5) (list 4 5 6))
(fold-left (A (i v n s) (string-append i (vector-ref v n) s))
(1ist (vector "A cat" "A dog" "A mouse")
(vector "tuna'" "steak" '"cheese"))
(list 0 2)
(list " does not eat " "."))

Here the different lists that make up the rest argument bss can be of different types, but the
type of each list in bss corresponds to the type of the corresponding argument of £. We also
know that, in order to avoid arity errors, the length of bss must be two less than the arity of

f. The first argument to f is the accumulator, and as corresponds to the second argument of
f.

The example uses of fold-left evaluate to 36, 42, and "A cat does not eat
cheese.".

In Typed Racket, we can define fold-left as follows:

#lang typed/racket

(: fold-left
(A1l (CAB ...)
(<> (->CAB ... BC)C (Listof A) (Listof B) ... B
Cc)))

(define (fold-left f i as . bss)
(if (or (null? as)
(ormap null? bss))
i
(apply fold-left
f
(apply f i (car as) (map car bss))
(cdr as)
(map cdr bss))))

Note that the type variable B is followed by an ellipsis. This denotes that B is a dotted type
variable which corresponds to a list of types, much as a rest argument corresponds to a list
of values. When the type of fold-left is instantiated at a list of types, then each type t
which is bound by B (notated by the dotted pre-type t ... B) is expanded to a number of

copies of t equal to the length of the sequence assigned to B. Then B in each copy is replaced
with the corresponding type from the sequence.

So the type of (inst fold-left Integer Boolean String Number) is

18

(-> (-> Integer Boolean String Number Integer) Integer (Listof
Boolean) (Listof String) (Listof Number) Integer).

19

5 Occurrence Typing

5.1 Basic Occurrence Typing

One of Typed Racket’s distinguishing type system features is occurrence typing, which al-
lows the type system to ascribe more precise types based on whether a predicate check
succeeds or fails.

To illustrate, consider the following code:

(: flexible-length (-> (U String (Listof Any)) Integer))
(define (flexible-length str-or-1st)
(if (string? str-or-1lst)
(string-length str-or-1lst)
(length str-or-1lst)))

The flexible-length function above computes the length of either a string or a list. The
function body uses the typical Racket idiom of dispatching using a predicate (e.g., string?).

Typed Racket successfully type-checks this function because the type system understands
that in the "then" branch of the if expression, the predicate string? must have returned
a true value. The type system further knows that if string? returns true, then the str-
or-1st variable must have type String and can narrow the type from its original union of
String and (Listof Any). This allows the call to string-length in the "then" branch
to type-check successfully.

Furthermore, the type system also knows that in the "else" branch of the if expression, the
predicate must have returned #f. This implies that the variable str-or-1st must have
type (Listof Any) by process of elimination, and thus the call (length str-or-1st)
type-checks.

To summarize, if Typed Racket can determine the type a variable must have based on a
predicate check in a conditional expression, it can narrow the type of the variable within the
appropriate branch of the conditional.

5.2 Filters and Predicates

In the previous section, we demonstrated that a Typed Racket programmer can take advan-
tage of occurrence typing to type-check functions with union types and conditionals. This
may raise the question: how does Typed Racket know how to narrow the type based on the
predicate?

The answer is that predicate types in Typed Racket are annotated with filters that tell the
typechecker what additional information is gained when a predicate check succeeds or fails.

20

For example, consider the REPL’s type printout for string?:
> string?

- ¢ (-> Any Boolean : String)
#<procedure:string?>

The type (-> Any Boolean : String) has three parts. The first two are the same as any
other function type and indicate that the predicate takes any value and returns a boolean. The
third part, after the :, is a filter that tells the typechecker two things:

1. If the predicate check succeeds, the argument variable has type String

2. If the predicate check fails, the argument variable does not have type String

Predicates for all built-in types are annotated with similar filters that allow the type system
to reason about predicate checks.

5.3 Other conditionals and assertions

So far, we have seen that occurrence typing allows precise reasoning about if expressions.
Occurrence typing works for most control flow constructs that are present in Racket such as
cond, when, and others.

For example, the flexible-length function from earlier can be re-written to use cond
with no additional effort:

(: flexible-length/cond (-> (U String (Listof Any)) Integer))
(define (flexible-length/cond str-or-1st)
(cond [(string? str-or-1lst) (string-length str-or-1lst)]
[else (length str-or-1lst)]))

In some cases, the type system does not have enough information or is too conservative to
typecheck an expression. For example, consider the following interaction:

> (: a Positive-Integer)
> (define a 15)

> (: b Positive-Integer)

\2

(define b 20)

> (: c Positive-Integer)

21

After all, these
control flow
constructs
macro-expand to if
in the end.

> (define c (- b a))

eval:12:0: Type Checker: type mismatch
expected: Positive-Integer
given: Integer
in: a

In this case, the type system only knows that a and b are positive integers and cannot con-
clude that their difference will always be positive in defining c. In cases like this, occurrence
typing can be used to make the code type-check using an assertion. For example,

(: d Positive-Integer)
(define d (assert (- b a) positive?))

Using the filter on positive?, Typed Racket can assign the type Positive-Integer to
the whole assert expression. This type-checks, but note that the assertion may raise an
exception at run-time if the predicate returns #£.

Note that assert is a derived concept in Typed Racket and is a natural consequence of
occurrence typing. The assertion above is essentially equivalent to the following:

(: e Positive-Integer)
(define e (let ([diff (- b a)])
(if (positive? diff)
diff
(error "Assertion failed"))))

5.4 A caveat about set!

If a variable is ever mutated with set! in the scope in which it is defined, Typed Racket
cannot use occurrence typing with that variable. This precaution is needed to ensure that
concurrent modification of a variable does not invalidate Typed Racket’s knowledge of the
type of that variable. Also see §4.9.1 “Guidelines for Using Assignment”.

Furthermore, this means that the types of top-level variables in the REPL cannot be refined
by Typed Racket either. This is because the scope of a top-level variable includes future
top-level interactions, which may include mutations. It is possible to work around this by
moving the variable inside of a module or into a local binding form like let.

5.5 1let-aliasing

Typed Racket is able to reason about some cases when variables introduced by
let-expressions alias other values (e.g. when they alias non-mutated identifiers,

22

car/cdr/struct accesses into immutable values, etc...). This allows programs which ex-
plicitly rely on occurrence typing and aliasing to typecheck:

(: £ (Any -> Number))
(define (f x)
(let ([y xD)
(cond
[(number? y) x]
[(and (pair? y)
(number? (car y)))
(car x)]
[else 42])))

It also allows the typechecker to check programs which use macros that heavily rely on
let-bindings internally (such as match):

(: g (Any -> Number))
(define (g x)

(match x
[(? number?) x]
[_ . ,(7 number?)) (cddr x)]
[_ . ,(7 pair? p))
(if (number? (caddr x))
(car p)
41)1
[_ 421))

23

6 Typed-Untyped Interaction

In the previous sections, all of the examples have consisted of programs that are entirely
typed. One of the key features of Typed Racket is that it allows the combination of both
typed and untyped code in a single program.

6.1 Using Untyped Code from Typed Code

Suppose that we write the untyped module from [§T “Quick Start”] again:

’"distance.rkt"

#lang racket

(provide (struct-out pt)
distance)

(struct pt (x y))

; distance : pt pt -> real
(define (distance pl p2)
(sqrt (+ (sqr (- (pt-x p2) (pt-x pl)))
(sqr (- (pt-y p2) (pt-y pI)N))

If we want to use the distance function defined in the above module from a typed module,
we need to use the require/typed form to import it. Since the untyped module did not
specify any types, we need to annotate the imports with types (just like how the example in

[§TQuick Start"| had additional type annotations with :): Note that a typed

module does not
require/typed to
import from another
typed module. The
(require/typed "distance.rkt" require form will

[#:struct pt ([x : Real] [y : Reall)] work in such cases.
[distance (-> pt pt Real)l)

#lang typed/racket

(distance (pt 3 5) (pt 7 0))

The require/typed form has several kinds of clauses. The #:struct clause specifies the
import of a structure type and allows us to use the structure type as if it were defined with
Typed Racket’s struct.

The second clause in the example above specifies that a given binding distance has the
given type (-> pt pt Real).

24

Note that the require/typed form can import bindings from any module, including those
that are part of the Racket standard library. For example,

#lang typed/racket

(require/typed racket/base [addl (-> Integer Integer)])

is a valid use of the require/typed form and imports add1 from the racket/base library.

6.2 Using Typed Code in Untyped Code

In the previous subsection, we saw that the use of untyped code from typed code requires
the use of require/typed. However, the use of code in the other direction (i.e., the use of
typed code from untyped code) requires no additional work.

If an untyped module requires a typed module, it will be able to use the bindings defined
in the typed module as expected. The major exception to this rule is that macros defined in
typed modules may not be used in untyped modules.

6.3 Protecting Typed-Untyped Interaction

One might wonder if the interactions described in the first two subsections are actually safe;
after all, untyped code might be able to ignore the errors that Typed Racket’s type system
will catch at compile-time.

To ensure that typed-untyped interactions are safe, Typed Racket establishes contracts wher-
ever typed and untyped code interact. For example, suppose that we write an untyped module
that implements an increment function:

> (module increment racket
(provide increment)

; increment : exact-integer? -> exact-integer?
(define (increment x) "this is broken"))

and a typed module that uses it:

> (module client typed/racket
(require/typed 'increment [increment (-> Integer Integer)])

(increment 5))

25

For general
information on
Racket’s contract
system , see §7
“Contracts”.

This combined program is not correct. All uses of increment in Typed Racket are correct
under the assumption that the increment function upholds the (-> Integer Integer)
type. Unfortunately, our increment implementation does not actually uphold this assump-
tion, because the function actually produces strings.

On the other hand, when the program is run:

> (require 'client)
increment: broke its own contract
promised: Integer
produced: "this is broken"
in: the range of
(-> any/c Integer)
contract from: (interface for increment)
blaming: (interface for increment)
(assuming the contract is correct)
at: eval:3.0

we find that the contract system checks the assumption made by the typed module and cor-
rectly finds that the assumption failed because of the implementation in the untyped module
(hence it is blamed in the error message).

In the same fashion, Typed Racket checks all functions and other values that pass from a
typed module to untyped module or vice versa with contracts. This means that, for example,
Typed Racket can safely optimize programs (see|§7 “Optimization in Typed Racket”)) with
the assurance that the program will not segfault due to an unchecked assumption.

Important caveat: contracts such as the Integer check from above are performant. How-
ever, contracts in general can have a non-trivial performance impact, especially with the use
of first-class functions or other higher-order data such as vectors.

Note that no contract overhead is ever incurred for uses of typed values from another typed
module.

26

7 Optimization in Typed Racket

For general
information on
Typed Racket provides a type-driven optimizer that rewrites well-typed programs to poten- Racket performance

tially make them faster. It should in no way make your programs slower or unsafe. andg’leSChmarki“gv
see

“Performance”.

7.1 Turning the optimizer off

Typed Racket’s optimizer is turned on by default. If you want to deactivate it (for debugging,
for instance), you must add the #:no-optimize keyword when specifying the language of
your program:

#lang typed/racket #:no-optimize

7.2 Getting the most out of the optimizer

Typed Racket’s optimizer can improve the performance of various common Racket idioms.
However, it does a better job on some idioms than on others. By writing your programs
using the right idioms, you can help the optimizer help you.

To best take advantage of the Typed Racket optimizer, consult the Optimization Coach doc-
umentation.

7.2.1 Numeric types

Being type-driven, the optimizer makes most of its decisions based on the types you assigned
to your data. As such, you can improve the optimizer’s usefulness by writing informative

types.

For example, the following programs both typecheck:
(define (f [x : Real]) : Real (+ x 2.5))
(f 3.5)

(define (f [x : Float]) : Float (+ x 2.5))
(f 3.5)

However, the second one uses more informative types: the Float type includes only 64-bit
floating-point numbers whereas the Real type includes both exact and inexact real numbers
and the Inexact-Real type includes both 32- and 64-bit floating-point numbers. Typed

27

Racket’s optimizer can optimize the latter program to use float -specific operations whereas
it cannot do anything with the former program.

Thus, to get the most of Typed Racket’s optimizer, you should use the Float type when
possible. For similar reasons, you should use floating-point literals instead of exact literals
when doing floating-point computations.

When mixing floating-point numbers and exact reals in arithmetic operations, the result is not
necessarily a Float. For instance, the result of (* 2.0 0) is O which is not a Float. This
can result in missed optimizations. To prevent this, when mixing floating-point numbers and
exact reals, coerce exact reals to floating-point numbers using exact->inexact. This is not
necessary when using + or -. When mixing floating-point numbers of different precisions,
results use the highest precision possible.

On a similar note, the Float-Complex type is preferable to the Complex type for the same
reason. Typed Racket can keep float complex numbers unboxed; as such, programs using
complex numbers can have better performance than equivalent programs that represent com-
plex numbers as two real numbers. As with floating-point literals, float complex literals (such
as 1.0+1.01) should be preferred over exact complex literals (such as 1+11i). Note that both
parts of a literal must be present and inexact for the literal to be of type Float-Complex;
0.0+1.01 is of type Float-Complex but 0+1.01 is not. To get the most of Typed Racket’s
optimizer, you should also favor rectangular coordinates over polar coordinates.

7.2.2 Lists

Typed Racket handles potentially empty lists and lists that are known to be non-empty dif-
ferently: when taking the car or the cdr of a list Typed Racket knows is non-empty, it can
skip the check for the empty list that is usually done when calling car and cdr.

(define (sum [1 : (Listof Integer)]) : Integer
(if (null? 1)
0
(+ (car 1) (sum (cdr 1)))))

In this example, Typed Racket knows that if we reach the else branch, 1 is not empty. The
checks associated with car and cdr would be redundant and are eliminated.

In addition to explicitly checking for the empty list using null?, you can inform Typed
Racket that a list is non-empty by using the known-length list type constructor; if your data
is stored in lists of fixed length, you can use the List type constructors.

For instance, the type of a list of two Integers can be written either as:

(define-type List-2-Ints (Listof Integer))

or as the more precise:

28

(define-type List-2-Ints (List Integer Integer))

Using the second definition, all car and cdr-related checks can be eliminated in this func-
tion:

(define (sum2 [1 : List-2-Ints]) : Integer
(+ (car 1) (car (cdr 1))))

7.2.3 Vectors

In addition to known-length lists, Typed Racket supports known-length vectors through the
Vector type constructor. Known-length vector access using constant indices can be opti-
mized in a similar fashion as car and cdr.

; #(color r g b)

(define-type Color (Vector String Integer Integer Integer))
(define x : Color (vector "red" 255 0 0))

(vector-ref x 0) ; good

(define color-name 0)

(vector-ref x color-name) ; good

(vector-ref x (x 0 10)) ; bad

In many such cases, however, structs are preferable to vectors. Typed Racket can optimize
struct access in all cases.

7.2.4 Contract boundaries

When interoperating with untyped code (see[§6 “Typed-Untyped Interaction™), contracts are
installed between typed and untyped modules. Contracts can have significant overhead, thus
typed-untyped boundary crossings should be avoided in performance-sensitive code.

Typed Racket provides types for most of the bindings provided by #lang racket; using
require/typed is unnecessary in these cases.

If you suspect that contracts at a typed-untyped boundary may be have a significant cost in
your program, you can investigate further using the contract profiler.

If the contract profiler is not already installed, the following command will install it:

raco pkg install contract-profile

29

8 Caveats and Limitations

This section describes limitations and subtle aspects of the type system that programmers
often stumble on while porting programs to Typed Racket.

8.1 The Integer type and integer?

In Typed Racket, the Integer type corresponds to values that return #t for the exact-
integer? predicate, not the integer? predicate. In particular, values that return #t for
integer? may be inexact numbers (e.g, 1.0).

When porting a program to Typed Racket, you may need to replace uses of functions like
round and floor with corresponding exact functions like exact-round and exact-floor.

In other cases, it may be necessary to use assertions or casts.

8.2 Type inference for polymorphic functions

Typed Racket’s local type inference algorithm is currently not able to infer types for poly-
morphic functions that are used on higher-order arguments that are themselves polymorphic.

For example, the following program results in a type error that demonstrates this limitation:

> (map cons '(a b cd) '"(1234))
eval:2:0: Type Checker: Polymorphic function “map' could not
be applied to arguments:
Domains: (-> ab ... b c)(Listof a) (Listof b) ... b
(-> a c) (Pairof a (Listof a))
Arguments: (All (a b) (case-> (-> a (Listof a) (Listof a))
(-> a b (Pairof a b)))) (List 'a 'b 'c 'd) (List One
Positive-Byte Positive-Byte Positive-Byte)

in: 4

The issue is that the type of cons is also polymorphic:

> cons

- : (A11 (a b) (case-> (-> a (Listof a) (Listof a)) (-> a b
(Pairof a b))))

#<procedure:cons>

To make this expression type-check, the inst form can be used to instantiate the polymor-
phic argument (e.g., cons) at a specific type:

30

> (map (inst cons Symbol Integer) '(a b c d) '(1 2 3 4))
- : (Listof (Pairof Symbol Integer))
"((a . 1) (b.2) (¢ . 3) (a.4d)

8.3 Typed-untyped interaction and contract generation

When a typed module requires bindings from an untyped module (or vice-versa), there are
some types that cannot be converted to a corresponding contract.

This could happen because a type is not yet supported in the contract system, because Typed
Racket’s contract generator has not been updated, or because the contract is too difficult to
generate. In some of these cases, the limitation will be fixed in a future release.

The following illustrates an example type that cannot be converted to a contract:

> (require/typed racket/base
[object-name (case-> (-> Struct-Type-Property Symbol)
(-> Regexp (U String Bytes)))])
eval:5:0: Type Checker: Error in macro expansion -- Type
(case-> (-> Struct-Type-Property Symbol) (-> Regexp (U
String Bytes))) could not be converted to a contract:
function type has two cases of arity 1
in: (case-> (-> Struct-Type-Property Symbol) (-> Regexp (U
String Bytes)))

This function type by cases is a valid type, but a corresponding contract is difficult to gener-
ate because the check on the result depends on the check on the domain. In the future, this
may be supported with dependent contracts.

A more approximate type will work for this case, but with a loss of type precision at use
sites:

> (require/typed racket/base
[object-name (-> (U Struct-Type-Property Regexp)
(U String Bytes Symbol))])

> (object-name #rx"a regexp")
- : (U Symbol String Bytes)
"a regexp"

Use of define-predicate also involves contract generation, and so some types cannot
have predicates generated for them. The following illustrates a type for which a predicate
can’t be generated:

31

> (define-predicate p? (All (A) (Listof A)))
eval:8:0: Type Checker: Error in macro expansion -- Type
Listof could not be converted to a predicate: cannot
generate contract for non-function polymorphic type

in: (All (A) (Listof A))

8.4 Unsupported features

Most structure type properties do not work in Typed Racket, including support for generic
interfaces.

8.5 Type generalization

Not so much a caveat as a feature that may have unexpected consequences. To make pro-
gramming with invariant type constructors (such as Boxof) easier, Typed Racket generalizes
types that are used as arguments to invariant type constructors. For example:

>0

- : Integer [more precisely: Zero]
0

> (define b (box 0))

>b
- : (Boxof Integer)
' #&0

0 has type Zero, which means that b “should” have type (Boxof Zero). On the other hand,
that type is not especially useful, as it only allows O to be stored in the box. Most likely, the
intent was to have a box of a more general type (such as Integer) and initialize it with 0.
Type generalization does exactly that.

In some cases, however, type generalization can lead to unexpected results:

> (box (ann 1 Fixnum))
- : (Boxof Integer)
"#&1

The intent of this code may be to create of box of Fixnum, but Typed Racket will generalize
it anyway. To create a box of Fixnum, the box itself should have a type annotation:
> (ann (box 1) (Boxof Fixnum))

- : (Boxof Fixnum)

32

'#&1

> ((inst box Fixnum) 1)
- : (Boxof Fixnum)
'#&1

8.6 Macros and compile-time computation

Typed Racket will type-check all expressions at the run-time phase of the given module and
will prevent errors that would occur at run-time. However, expressions at compile-time—
including computations that occur inside macros—are not checked.

Concretely, this means that expressions inside, for example, a begin-for-syntax block
are not checked:

> (begin-for-syntax (+ 1 "foo"))
+: contract violation

expected: number?

given: "foo"

argument position: 2nd

other arguments...:

1

Similarly, expressions inside of macros defined in Typed Racket are not type-checked. On
the other hand, the macro’s expansion is always type-checked:

(define-syntax (example-1 stx)
(+ 1 "fOO")
#'1)

(define-syntax (example-2 stx)
#|(+ 1 "fOO"))

> (example-1)
+: contract violation
expected: number?
given: "foo"
argument position: 2nd
other arguments...:
1
> (example-2)
eval:17:0: Type Checker: type mismatch
expected: Number

33

given: String
in: (quote "foo")

Note that functions defined in Typed Racket that are used at compile-time in other typed
modules or untyped modules will be type-checked and then protected with contracts as de-
scribed in[§6 “Typed-Untyped Interaction’]

Additionally, macros that are defined in Typed Racket modules cannot be used in ordinary
Racket modules because such uses can circumvent the protections of the type system.

8.7 Expensive contract boundaries

Contract boundaries installed for typed-untyped interaction may cause significant slow-
downs. Seel§7.2.4 “Contract boundaries”| for details.

34

	1 Quick Start
	1.1 Using Typed Racket from the Racket REPL

	2 Beginning Typed Racket
	2.1 Datatypes and Unions
	2.2 Type Errors

	3 Specifying Types
	3.1 Type Annotation and Binding Forms
	3.1.1 Annotating Definitions
	3.1.2 Annotating Local Binding
	3.1.3 Annotating Functions
	3.1.4 Annotating Single Variables
	3.1.5 Annotating Expressions

	3.2 Type Inference
	3.2.1 When do you need type annotations?

	3.3 New Type Names

	4 Types in Typed Racket
	4.1 Basic Types
	4.2 Function Types
	4.3 Types for Functions with Optional or Keyword Arguments
	4.4 Union Types
	4.5 Recursive Types
	4.6 Structure Types
	4.7 Subtyping
	4.8 Polymorphism
	4.8.1 Polymorphic Data Structures
	4.8.2 Polymorphic Functions
	4.8.3 Lexically Scoped Type Variables

	4.9 Variable-Arity Functions: Programming with Rest Arguments
	4.9.1 Uniform Variable-Arity Functions
	4.9.2 Non-Uniform Variable-Arity Functions

	5 Occurrence Typing
	5.1 Basic Occurrence Typing
	5.2 Filters and Predicates
	5.3 Other conditionals and assertions
	5.4 A caveat about IdentifierColorblackset!
	5.5 IdentifierColorblacklet-aliasing

	6 Typed-Untyped Interaction
	6.1 Using Untyped Code from Typed Code
	6.2 Using Typed Code in Untyped Code
	6.3 Protecting Typed-Untyped Interaction

	7 Optimization in Typed Racket
	7.1 Turning the optimizer off
	7.2 Getting the most out of the optimizer
	7.2.1 Numeric types
	7.2.2 Lists
	7.2.3 Vectors
	7.2.4 Contract boundaries

	8 Caveats and Limitations
	8.1 The IdentifierColorblackInteger type and IdentifierColorblueinteger?
	8.2 Type inference for polymorphic functions
	8.3 Typed-untyped interaction and contract generation
	8.4 Unsupported features
	8.5 Type generalization
	8.6 Macros and compile-time computation
	8.7 Expensive contract boundaries

