
Syntax Color: Utilities
Version 6.5

Scott Owens

April 22, 2016

The "syntax-color" collection provides the underlying data structures and some helpful
utilities for the color:text<%> class of framework.

1

1 Parenthesis Matching

(require syntax-color/paren-tree)
package: syntax-color-lib

paren-tree% : class?
superclass: object%

Parenthesis matching code built on top of token-tree%.

2

2 Lexer Contract & the Don’t Stop Structure Type

(require syntax-color/lexer-contract)
package: syntax-color-lib

lexer/c : contract?

Checks to be sure a lexing function is well-behaved. For more details, see start-colorer
in color:text<%>.

(struct dont-stop (val))
val : any/c

A structure type used to indicate to the lexer that it should not allow itself to be interrupted.
For more details, see start-colorer in color:text<%>.

3

3 Racket Lexer

(require syntax-color/racket-lexer)
package: syntax-color-lib

(racket-lexer in) Ñ (or/c string? eof-object?)
symbol?
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)

in : input-port?

A lexer for Racket, including reader extensions (§13.7 “Reader Extension”), built specifi-
cally for color:text<%>.

The racket-lexer function returns 5 values:

• Either a string containing the matching text or the eof object. Block comments and
specials currently return an empty string. This may change in the future to other string
or non-string data.

• A symbol in '(error comment sexp-comment white-space constant
string no-color parenthesis hash-colon-keyword symbol eof other).

• A symbol in '(|(| |)| |[| |]| |{| |}|) or #f.

• A number representing the starting position of the match (or #f if eof).

• A number representing the ending position of the match (or #f if eof).

(racket-lexer/status in) Ñ (or/c string? eof-object?)
symbol?
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)
(or/c 'datum 'open 'close 'continue)

in : input-port?

Like racket-lexer, but returns an extra value. The last return value indicates whether the
consumed token should count as a datum, an opening parenthesis (or similar starting token
to group other tokens), a closing parenthesis (or similar), or a prefix (such as whitespace) on
a datum.

(racket-nobar-lexer/status in)

4

Ñ (or/c string? eof-object?)
symbol?
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)
(or/c 'datum 'open 'close 'continue)

in : input-port?

Like racket-lexer/status, except it treats | as a delimiter instead of quoting syntax for
a symbol. This function is used by scribble-lexer.

5

4 Default Lexer

(require syntax-color/default-lexer)
package: syntax-color-lib

(default-lexer in) Ñ (or/c string? eof-object?)
symbol?
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)

in : input-port?

A lexer that only identifies (,), [,], {, and } built specifically for color:text<%>.

default-lexer returns 5 values:

• Either a string containing the matching text or the eof object. Block specials currently
return an empty string. This may change in the future to other string or non-string
data.

• A symbol in '(comment white-space no-color eof).

• A symbol in '(|(| |)| |[| |]| |{| |}|) or #f.

• A number representing the starting position of the match (or #f if eof).

• A number representing the ending position of the match (or #f if eof).

6

5 Module Lexer

(require syntax-color/module-lexer)
package: syntax-color-lib

(module-lexer in offset mode)
Ñ (or/c string? eof-object?)

symbol?
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)
exact-nonnegative-integer?
(or/c #f

(-> input-port? any)
(cons/c (-> input-port? any/c any) any/c))

in : input-port?
offset : exact-nonnegative-integer?
mode : (or/c #f

(-> input-port? any)
(cons/c (-> input-port? any/c any) any/c))

Like racket-lexer, but with several differences:

• The module-lexer function accepts an offset and lexer mode, instead of just an input
port.

• In addition to the results of racket-lexer, module-lexer returns a backup distance
and a new lexer mode.

• When mode is #f (indicating the start of the stream), the lexer checks in for a #lang
specification.

If a #lang line is present but the specified language does not exist, the entire in input
is consumed and colored as 'error.

If the language exists and the language provides a get-info function, then it is called
with 'color-lexer. If the result is not #f, then it should be a lexer function for use
with color:text<%>. The result mode is the lexer—paired with #f if the lexer is a
procedure arity 3—so that future calls will dispatch to the language-supplied lexer.

If the language is specified but it provides no get-info or 'color-lexer result, then
racket-lexer is returned as the mode.

• When mode is a lexer procedure, the lexer is applied to in . The lexer’s results are
returned, plus the lexer again as the mode.

• When mode is a pair, then the lexer procedure in the car is applied to in , offset ,
and the mode in the cdr. The lexer’s results are returned, except that its mode result
is paired back with the lexer procedure.

7

6 Scribble Lexer

(require syntax-color/scribble-lexer)
package: syntax-color-lib

(scribble-lexer in offset mode) Ñ (or/c string? eof-object?)
symbol?
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)
exact-nonnegative-integer?
any/c

in : input-port?
offset : exact-nonnegative-integer?
mode : any/c

Like racket-lexer, but for Racket extended with Scribble’s @ notation (see §2 “@ Syn-
tax”).

(scribble-inside-lexer in offset mode)
Ñ (or/c string? eof-object?)

symbol?
(or/c symbol? #f)
(or/c number? #f)
(or/c number? #f)
exact-nonnegative-integer?
any/c

in : input-port?
offset : exact-nonnegative-integer?
mode : any/c

Like scribble-lexer, but starting in “text” mode instead of Racket mode.

(make-scribble-lexer [#:command-char at]) Ñ lexer/c
at : (and/c char? (not/c (or/c #\] #\[))) = #\@

Produces a lexer like scribble-lexer, but using at in place of @.

Added in version 1.1 of package syntax-color-lib.

(make-scribble-inside-lexer [#:command-char at]) Ñ lexer/c
at : (and/c char? (not/c (or/c #\] #\[))) = #\@

Produces a lexer function like scribble-inside-lexer, but using at in place of @.

Added in version 1.1 of package syntax-color-lib.

8

7 Splay Tree for Tokenization

(require syntax-color/token-tree)
package: syntax-color-lib

token-tree% : class?
superclass: object%

A splay-tree class specifically geared for the task of on-the-fly tokenization. Instead of
keying nodes on values, each node has a length, and they are found by finding a node that
follows a certain total length of preceding nodes.

FIXME: many methods are not yet documented.

(new token-tree% [len len] [data data])
Ñ (is-a?/c token-tree%)
len : (or/c exact-nonnegative-integer? fasle/c)
data : any/c

Creates a token tree with a single element.

(send a-token-tree get-root) Ñ (or/c node? #f)

Returns the root node in the tree.

(send a-token-tree search! key-position) Ñ void?
key-position : natural-number/c

Splays, setting the root node to be the closest node to offset key-position
(i.e., making the total length of the left tree at least key-position , if possible).

(node? v) Ñ boolean?
v : any/c

(node-token-length n) Ñ natural-number/c
n : node?

(node-token-data n) Ñ any/c
n : node?

(node-left-subtree-length n) Ñ natural-number/c
n : node?

(node-left n) Ñ (or/c node? #f)
n : node?

(node-right n) Ñ (or/c node? #f)
n : node?

Functions for working with nodes in a token-tree%.

9

(insert-first! tree1 tree2) Ñ void?
tree1 : (is-a?/c token-tree%)
tree2 : (is-a?/c token-tree%)

Inserts tree1 into tree2 as the first thing, setting tree2 ’s root to #f.

(insert-last! tree1 tree2) Ñ void?
tree1 : (is-a?/c token-tree%)
tree2 : (is-a?/c token-tree%)

Inserts tree1 into tree2 as the last thing, setting tree2 ’s root to #f.

(insert-last-spec! tree n v) Ñ void?
tree : (is-a?/c token-tree%)
n : natural-number/c
v : any/c

Same as

(insert-last! tree
(new token-tree%

[length n]
[data v]))

This optimization is important for the colorer.

10

	1 Parenthesis Matching
	2 Lexer Contract & the Don't Stop Structure Type
	3 Racket Lexer
	4 Default Lexer
	5 Module Lexer
	6 Scribble Lexer
	7 Splay Tree for Tokenization

