Contract Profiling

Version 6.9

April 27, 2017

This package provides support for profiling the execution of §7 “Contracts”.

Contracts are a great mechanism for enforcing invariants and producing good error mes-
sages, but they introduce run-time checking which may impose significant posts. The goal
of the contract profiler is to identify where these costs are, and provide information to help
control them.

The simplest way to use this tool is to use the raco contract-profile command, which
takes a file name as argument, and runs the contract profiler on the main submodule of that
file (if it exists), or on the module itself (if there is no main submodule). The tool’s output
is decribed below.

(require contract-profile) package: contract-profile

In addition to using raco contract-profile, it is possible to invoke the contract pro-
filer programmatically. This allows for profiling particular portions of programs, and for
controlling the output.

(contract-profile option ... body ...)
option = #:module-graph-file module-graph-file

| #:boundary-view-file boundary-view-file

| #:boundary-view-key-file boundary-view-key-file

Produces a report of the performance costs related to contract checking in body on standard
output.

Specifically, displays the proportion of body’s running time that was spent checking con-
tracts and breaks that time down by contract, and then breaks down the cost of each contract
between the different contracted values that use it.

Additional visualizations are available on-demand, controlled by keyword arguments which
specify their destination files. An argument of #f (the default) disables that visualization.



* Module Graph View: Shows a graph of modules (nodes) and the contract boundaries
(edges) between them that were crossed while running body .

The weight on each contract boundary edge corresponds to the time spent checking
contracts applied at this boundary. Modules written in Typed Racket are displayed in
green and untyped modules are displayed in red.

These graphs are rendered using Graphviz, and are only available if the contract pro-
filer can locate a Graphviz install.

When using raco contract-profile, controlled using the --module-graph-
file flag.

* Boundary View: Shows a detailed view of how contract checking costs are spread out
across contracted functions, broken down by contract boundary.

Contracted functions are shown as rectangular nodes colored according to the cost of
checking their contracts. Edges represent function calls that cross contract boundaries
and cause contracts to be applied. These edges are extracted from profiling informa-
tion, and therefore represent incomplete information. Because of this, the contract pro-
filer sometimes cannot determine the callers of contracted functions. Non-contracted
functions that call contracted functions across a boundary are shown as gray ellipsoid
nodes. Nodes are clustered by module. Each node reports its (non-contract-related)
self time. In addition, contracted function nodes list the contract boundaries the func-
tion participates in, as well as the cost of checking the contracts associated with each
boundary. For space reasons, full contracts are not displayed on the graph and are
instead numbered. The mapping from numbers to contracts is found in boundary-
view-key-file.

These graphs are rendered using Graphviz, and are only available if the contract pro-
filer can locate a Graphviz install.

When using raco contract-profile, controlled using the --boundary-view-
file and --boundary-view-key-file flags.

(contract-profile-thunk
thunk
[#:module-graph-file module-graph-file
#:boundary-view-file boundary-view-file
#:boundary-view-key-file boundary-view-key-file])
— any
thunk : (-> any)
module-graph-file : (or/c path-string #f) = #f
boundary-view-file : (or/c path-string #f) = #f
boundary-view-key-file : (or/c path-string #f) = #f

Like contract-profile, but as a function which takes a thunk to profile as argument.

Examples:



> (define/contract (sum* numbers)

(-> (listof integer?) integer?)

(for/fold ([total 0])

([n (in-list numbers)])
(+ total n)))

> (contract-profile (sum* (range (expt 10 6))))
Running time is 4.92% contracts
128/2601 ms

(-> (listof integer?) integer?) 128
ms
#<blame>:1:0

sum* 128
ms
499999500000

The example shows that a large proportion of the call to sum* with a list of 1 million integers
is spent validating the input list.

Note that the contract profiler is unlikely to detect fast-running contracts that trigger other,
slower contract checks. In the following example, there is a higher chance that the profiler
samples a (listof integer?) contract than the underlying (vectorof 1list?) contract.

Examples:

> (define/contract (vector-max* vec-of-numbers)

(-> (vectorof 1list?) integer?)

(for/fold ([total 0])

([numbers (in-vector vec-of-numbers)])
(+ total (sum* numbers))))

> (contract-profile (vector-max* (make-vector 10 (range (expt 10 6)))))
Running time is 87.477 contracts
3026/3459 ms

(-> (vectorof (listof any/c)) integer?) 1429.5
ms
#<blame>:3:0

vector-max* 1429.5
ms
(-> (listof integer?) integer?) 1596
ms
#<blame>:1:0

sums 1596
ms



4999995000000



