
Unstable
Version 5.0.1

August 3, 2010

(require unstable)

This manual documents some of the libraries available in the unstable collection.

The name unstable is intended as a warning that the interfaces in particular are unsta-
ble. Developers of planet packages and external projects should avoid using modules in the
unstable collection. Contracts may change, names may change or disappear, even entire
modules may move or disappear without warning to the outside world.

Developers of unstable libraries must follow the guidelines in §1 “Guidelines for developing
unstable libraries”.

1

1 Guidelines for developing unstable libraries

Any collection developer may add modules to the unstable collection.

Every module needs an owner to be responsible for it.

• If you add a module, you are its owner. Add a comment with your name at the top of
the module.

• If you add code to someone else’s module, tag your additions with your name. The
module’s owner may ask you to move your code to a separate module if they don’t
wish to accept responsibility for it.

When changing a library, check all uses of the library in the collections tree and update them
if necessary. Notify users of major changes.

Place new modules according to the following rules. (These rules are necessary for main-
taining PLT’s separate text, gui, and drracket distributions.)

• Non-GUI modules go under unstable (or subcollections thereof). Put the docu-
mentation in unstable/scribblings and include with include-section from
unstable/scribblings/unstable.scrbl.

• GUI modules go under unstable/gui. Put the documentation in un-

stable/scribblings/gui and include them with include-section from
unstable/scribblings/gui.scrbl.

• Do not add modules depending on DrRacket to the unstable collection.

• Put tests in tests/unstable.

Keep documentation and tests up to date.

2

2 Bytes

(require unstable/bytes)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(bytes-ci=? b1 b2) → boolean?

b1 : bytes?

b2 : bytes?

Compares two bytes case insensitively.

(read/bytes b) → serializable?

b : bytes?

reads a value from b and returns it.

(write/bytes v) → bytes?

v : serializable?

writes v to a bytes and returns it.

3

3 Classes and Objects

(require unstable/class)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This module provides tools for classes, objects, and mixins.

3.1 Predicates and Contracts

class-or-interface/c : flat-contract?

Recognizes classes and interfaces.

(object-provides/c spec ...) → flat-contract?

spec : class-or-interface/c

Recognizes objects which are instances of all the given classes and interfaces.

(class-provides/c spec ...) → flat-contract?

spec : class-or-interface/c

Recognizes classes which are subclasses (not strictly) and implementations, respectively, of
all the given classes and interfaces.

(mixin-provides/c [super-expr ...] [sub-expr ...])

Function contract for a mixin whose argument is the parent class c% matching (class-

provides/c super-expr ...) and whose result matches (class-provides/c c%

sub-expr ...).

3.2 Mixins

(ensure-interface i<%> mx c%) → (class-provides/c c% i<%>)

i<%> : interface?

mx : (mixin-provides/c [] [i<%>])

c% : class?

4

Returns c% if it implements i<%> ; otherwise, returns (mx c%).

3.3 Methods

(send+ obj [message arg ...] ...)

Sends each message (with arguments) to obj , then returns obj .

Examples:
(define c%

(class object%

(super-new)

(define/public (say msg) (printf "∼a!\n" msg))))

> (send+ (new c%) [say 'Hello] [say 'Good-bye])

Hello!

Good-bye!

(object:c% ...)

(send-each objs message arg ...)

Sends the message to each object in the list objs , returning (void).

Examples:
(define c%

(class object%

(super-new)

(init-field msg)

(define/public (say to) (printf "∼a, ∼a!\n" msg to))))

> (send-each

(list (new c% [msg 'Hello])

(new c% [msg 'Good-bye]))

say 'World)

Hello, World!

Good-bye, World!

5

4 Contracts

(require unstable/contract)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

non-empty-string/c : contract?

Contract for non-empty strings.

port-number? : contract?

Equivalent to (between/c 1 65535).

path-element? : contract?

Equivalent to (or/c path-string? (symbols 'up 'same)). The subsequent
bindings were
added by Ryan
Culpepper.(if/c predicate then-contract else-contract) → contract?

predicate : (-> any/c any/c)

then-contract : contract?

else-contract : contract?

Produces a contract that, when applied to a value, first tests the value with predicate ; if
predicate returns true, the then-contract is applied; otherwise, the else-contract

is applied. The resulting contract is a flat contract if both then-contract and else-

contract are flat contracts.

For example, the following contract enforces that if a value is a procedure, it is a thunk;
otherwise it can be any (non-procedure) value:

(if/c procedure? (-> any) any/c)

Note that the following contract is not equivalent:

(or/c (-> any) any/c) ; wrong!

The last contract is the same as any/c because or/c tries flat contracts before higher-order
contracts.

failure-result/c : contract?

6

A contract that describes the failure result arguments of procedures such as hash-ref.

Equivalent to (if/c procedure? (-> any) any/c).

(rename-contract contract name) → contract?

contract : contract?

name : any/c

Produces a contract that acts like contract but with the name name .

The resulting contract is a flat contract if contract is a flat contract. The subsequent
bindings were
added by Carl
Eastlund
<cce@racket-
lang.org>.

4.1 Flat Contracts

nat/c : flat-contract?

This contract recognizes natural numbers that satisfy exact-nonnegative-integer?.

pos/c : flat-contract?

This contract recognizes positive integers that satisfy exact-positive-integer?.

truth/c : flat-contract?

This contract recognizes Scheme truth values, i.e., any value, but with a more informative
name and description. Use it in negative positions for arguments that accept arbitrary truth
values that may not be booleans.

4.2 Syntax Object Contracts

(syntax-datum/c datum/c) → flat-contract?

datum/c : any/c

Recognizes syntax objects stx such that (syntax->datum stx) satisfies datum/c .

(syntax-listof/c elem/c) → flat-contract?

elem/c : any/c

Recognizes syntax objects stx such that (syntax->list stx) satisfies (listof

7

mailto:cce@racket-lang.org
mailto:cce@racket-lang.org

elem/c).

(syntax-list/c elem/c ...) → flat-contract?

elem/c : any/c

Recognizes syntax objects stx such that (syntax->list stx) satisfies (list/c elem/c

...).

4.3 Higher-Order Contracts

thunk/c : contract?

unary/c : contract?

binary/c : contract?

These contracts recognize functions that accept 0, 1, or 2 arguments, respectively, and pro-
duce a single result.

predicate/c : contract?

predicate-like/c : contract?

These contracts recognize predicates: functions of a single argument that produce a boolean
result.

The first constrains its output to satisfy boolean?. Use predicate/c in positive position
for predicates that guarantee a result of #t or #f.

The second constrains its output to satisfy truth/c. Use predicate-like/c in negative
position for predicates passed as arguments that may return arbitrary values as truth values.

comparison/c : contract?

comparison-like/c : contract?

These contracts recognize comparisons: functions of two arguments that produce a boolean
result.

The first constrains its output to satisfy boolean?. Use comparison/c in positive position
for comparisons that guarantee a result of #t or #f.

The second constrains its output to satisfy truth/c. Use comparison-like/c in negative
position for comparisons passed as arguments that may return arbitrary values as truth values.

(sequence/c elem/c ...) → contract?

8

elem/c : contract?

Wraps a sequence, obligating it to produce as many values as there are elem/c contracts,
and obligating each value to satisfy the corresponding elem/c . The result is not guaranteed
to be the same kind of sequence as the original value; for instance, a wrapped list is not
guaranteed to satisfy list?.

Examples:
> (define/contract predicates

(sequence/c (-> any/c boolean?))

(list integer? string->symbol))

> (for ([P predicates])

(printf "∼s\n" (P "cat")))

#f

eval:3.0: (definition predicates) broke the contract
(sequence/c (-> any/c boolean?))

on predicates; expected <boolean?>, given: ’cat

(dict/c key/c value/c) → contract?

key/c : contract?

value/c : contract?

Wraps a dictionary, obligating its keys to satisfy key/c and their corresponding values to
satisfy value/c . The result is not guaranteed to be the same kind of dictionary as the
original value; for instance, a wrapped hash table is not guaranteed to satisfy hash?.

Examples:
> (define/contract table

(dict/c symbol? string?)

(make-immutable-hash (list (cons 'A "A") (cons 'B 2) (cons 3 "C"))))

> (dict-ref table 'A)

"A"

> (dict-ref table 'B)

eval:4.0: (definition table) broke the contract (dict/c
symbol? string?) on table; expected <string?>, given: 2
> (dict-ref table 3)

eval:4.0: (definition table) broke the contract (dict/c
symbol? string?) on table; expected <symbol?>, given: 3

Warning: Bear in mind that key and value contracts are re-wrapped on every dictionary
operation, and dictionaries wrapped in dict/c multiple times will perform the checks as
many times for each operation. Especially for immutable dictionaries (which may be passed
through a constructor that involves dict/c on each update), contract-wrapped dictionaries
may be much less efficient than the original dictionaries.

9

5 Definitions

(require unstable/define)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This module provides macros for creating and manipulating definitions.

5.1 Deferred Evaluation in Modules

(at-end expr)

When used at the top level of a module, evaluates expr at the end of the module. This can
be useful for calling functions before their definitions.

Examples:
> (module Failure scheme

(f 5)

(define (f x) x))

> (require 'Failure)

reference to an identifier before its definition: f in
module: ’Failure
> (module Success scheme

(require unstable/define)

(at-end (f 5))

(define (f x) x))

> (require 'Success)

5.2 Conditional Binding

(define-if-unbound x e)

(define-if-unbound (f . args) body ...)

(define-values-if-unbound [x ...] e)

(define-syntax-if-unbound x e)

(define-syntax-if-unbound (f . args) body ...)

(define-syntaxes-if-unbound [x ...] e)

These forms define each x (or f) if no such binding exists, or do nothing if the name(s)
is(are) already bound. The define-values-if-unbound and define-syntaxes-if-

unbound forms raise a syntax error if some of the given names are bound and some are

10

not.

These are useful for writing programs that are portable across versions of Racket with dif-
ferent bindings, to provide an implementation of a binding for versions that do not have it
but use the built-in one in versions that do.

Examples:
> (define-if-unbound x 1)

> x

1

(define y 2)

> (define-if-unbound y 3)

> y

3

5.3 Renaming Definitions

(define-renamings [new old] ...)

This form establishes a rename transformer for each new identifier, redirecting it to the
corresponding old identifier.

Examples:
> (define-renamings [def define] [lam lambda])

> (def plus (lam (x y) (+ x y)))

> (plus 1 2)

3

5.4 Forward Declarations

(declare-names x ...)

This form provides forward declarations of identifiers to be defined later. It is useful for
macros which expand to mutually recursive definitions, including forward references, that
may be used at the Racket top level.

5.5 Definition Shorthands

(define-with-parameter name parameter)

11

Defines the form name as a shorthand for setting the parameter parameter . Specifically,
(name value body ...) is equivalent to (parameterize ([parameter value])

body ...).

Examples:
> (define-with-parameter with-input current-input-port)

> (with-input (open-input-string "Tom Dick Harry") (read))

'Tom

(define-single-definition define-one-name define-many-name)

This form defines a marco define-one-name as a single identifier definition form with
function shorthand like define and define-syntax, based on an existing macro define-

many-name which works like define-values or define-syntaxes.

Examples:
> (define-single-definition define-like define-values)

> (define-like x 0)

> x

0

> (define-like (f a b c) (printf "∼s, ∼s\n" a b) c)

> (f 1 2 3)

1, 2

3

5.6 Effectful Transformation

(in-phase1 e)

This form executes e during phase 1 (the syntax transformation phase) relative to its context,
during pass 1 if it occurs in a head expansion position.

(in-phase1/pass2 e)

This form executes e during phase 1 (the syntax transformation phase) relative to its context,
during pass 2 (after head expansion).

12

6 Dictionaries

(require unstable/dict)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This module provides tools for manipulating dictionary values.

6.1 Dictionary Constructors

(empty-dict [#:mutable? mutable?

#:weak? weak?

#:compare compare]) → hash?

mutable? : boolean? = weak?

weak? : boolean? = #f

compare : (or/c 'eq 'eqv 'equal) = equal

Constructs an empty hash table based on the behavior specified by mutable?, weak?, and
compare .

Examples:
> (empty-dict)

'#hash()

> (empty-dict #:mutable? #t)

'#hash()

> (empty-dict #:weak? #t)

'#hash()

> (empty-dict #:compare 'eqv)

'#hasheqv()

(make-dict d

[#:mutable? mutable?

#:weak? weak?

#:compare compare]) → hash?

d : dict?

mutable? : boolean? = weak?

weak? : boolean? = #f

compare : (or/c 'eq 'eqv 'equal) = equal

Converts a given dictionary d to a hash table based on the behavior specified by mutable?,
weak?, and compare .

13

Examples:
> (make-dict '([1 . one] [2 . two]))

'#hash((1 . one) (2 . two))

> (make-dict '([1 . one] [2 . two]) #:mutable? #t)

'#hash((1 . one) (2 . two))

> (make-dict '([1 . one] [2 . two]) #:weak? #t)

'#hash((1 . one) (2 . two))

> (make-dict '([1 . one] [2 . two]) #:compare 'eqv)

'#hasheqv((1 . one) (2 . two))

(custom-dict equiv?

[hash-primary
hash-secondary

#:mutable? mutable?

#:weak? weak?]) → dict?

equiv? : (-> any/c any/c any/c)

hash-primary : (-> any/c exact-integer?) = (lambda (x) 0)

hash-secondary : (-> any/c exact-integer?) = (lambda (x) 0)

mutable? : boolean? = weak?

weak? : boolean? = #f

Constructs a dictionary based on custom comparison and optional hash functions. Given no
hash functions, the dictionary defaults to a degenerate hash function and is thus essentially
equivalent to a list-based dictionary.

Examples:
(define table (custom-dict = add1 sub1 #:mutable? #t))

> (dict-set! table 1 'one)

> (dict-set! table 2 'two)

> (for/list ([(key val) (in-dict table)])

(cons key val))

'((2 . two) (1 . one))

6.2 Dictionary Lookup

(dict-ref! d k v) → any/c

d : (and/c dict? dict-mutable?)

k : any/c

v : (or/c (-> any/c) any/c)

Looks up key k in dictionary d . If d has no entry for k , updates d to map k to the result of
(v) (if v is a procedure) or v (otherwise), and returns the new mapping.

14

Examples:
(define d (make-hash))

> (dict-set! d 1 'one)

> (dict-set! d 2 'two)

> d

'#hash((1 . one) (2 . two))

> (dict-ref! d 2 'dos)

'two

> d

'#hash((1 . one) (2 . two))

> (dict-ref! d 3 'tres)

'tres

> d

'#hash((1 . one) (2 . two) (3 . tres))

> (dict-ref! d 4 gensym)

'g22133

> d

'#hash((1 . one) (2 . two) (3 . tres) (4 . g22133))

(dict-ref/check d k) → any/c

d : dict?

k : (lambda (k) (dict-has-key? d k))

Looks up key k in dictionary d . Raises a contract error if d has no entry for k . Equivalent
to (dict-ref d k), except for the specific exception value raised.

Example:
> (dict-ref/check '([1 . one] [2 . two] [3 . three]) 2)

'two

(dict-ref/identity d k) → any/c

d : dict?

k : any/c

Looks up key k in dictionary d . Returns k if d has no entry for k . Equivalent to (dict-ref

d k (lambda () k)).

Examples:
> (dict-ref/identity '([1 . one] [2 . two] [3 . three]) 2)

'two

> (dict-ref/identity '([1 . one] [2 . two] [3 . three]) 4)

4

(dict-ref/default d k v) → any/c

15

d : dict?

k : any/c

v : any/c

Looks up key k in dictionary d . Returns v if d has no entry for k . Equivalent to (dict-ref

d k (lambda () v)).

Examples:
> (dict-ref/default '([1 . one] [2 . two] [3 . three]) 2 'other)

'two

> (dict-ref/default '([1 . one] [2 . two] [3 . three]) 4 'other)

'other

(dict-ref/failure d k f) → any/c

d : dict?

k : any/c

f : (-> any/c)

Looks up key k in dictionary d . Returns the result of applying f (in tail position) if d has
no entry for k . Equivalent to (dict-ref d k f).

Examples:
> (dict-ref/failure '([1 . one] [2 . two] [3 . three]) 2 gensym)

'two

> (dict-ref/failure '([1 . one] [2 . two] [3 . three]) 4 gensym)

'g22223

6.3 Dictionary Accessors

(dict-empty? d) → boolean?

d : dict?

Reports whether d is empty (has no keys).

Examples:
> (dict-empty? '())

#t

> (dict-empty? '([1 . one] [2 . two]))

#f

(dict-has-key? d k) → boolean?

d : dict?

k : any/c

16

Reports whether d has an entry for k .

Examples:
> (dict-has-key? '([1 . one] [2 . two] [3 . three]) 2)

#t

> (dict-has-key? '([1 . one] [2 . two] [3 . three]) 4)

#f

(dict-domain d) → list?

d : dict?

Produces the domain of a dictionary as a list of keys.

Example:
> (dict-domain '([1 . one] [2 . two] [3 . three]))

'(1 2 3)

(dict-range d) → list?

d : dict?

Produces the range of a dictionary as a list of values.

Example:
> (dict-range '([1 . one] [2 . two] [3 . three]))

'(one two three)

6.4 Dictionary Combinations

(dict-union d0

d ...

[#:combine combine

#:combine/key combine/key])
→ (and/c dict? dict-can-functional-set?)

d0 : (and/c dict? dict-can-functional-set?)

d : dict?

combine : (-> any/c any/c any/c)

= (lambda _ (error 'dict-union ...))

combine/key : (-> any/c any/c any/c any/c)

= (lambda (k a b) (combine a b))

Computes the union of d0 with each dictionary d by functional update, adding each element
of each d to d0 in turn. For each key k and value v, if a mapping from k to some value v0

already exists, it is replaced with a mapping from k to (combine/key k v0 v).

17

Examples:
> (dict-union '([1 . one]) '([2 . two]) '([3 . three]))

'((1 . one) (2 . two) (3 . three))

> (dict-union '([1 one uno] [2 two dos])

'([1 ein une] [2 zwei deux])

#:combine/key (lambda (k v1 v2) (append v1 v2)))

'((1 one uno ein une) (2 two dos zwei deux))

(dict-union! d0

d ...

[#:combine combine

#:combine/key combine/key]) → void?

d0 : (and/c dict? dict-mutable?)

d : dict?

combine : (-> any/c any/c any/c)

= (lambda _ (error 'dict-union! ...))

combine/key : (-> any/c any/c any/c any/c)

= (lambda (k a b) (combine a b))

Computes the union of d0 with each dictionary d by mutable update, adding each element
of each d to d0 in turn. For each key k and value v, if a mapping from k to some value v0

already exists, it is replaced with a mapping from k to (combine/key k v0 v).

Examples:
(define d (make-hash))

> d

'#hash()

> (dict-union! d '([1 one uno] [2 two dos]))

> d

'#hash((1 . (one uno)) (2 . (two dos)))

> (dict-union! d

'([1 ein une] [2 zwei deux])

#:combine/key (lambda (k v1 v2) (append v1 v2)))

> d

'#hash((1 . (one uno ein une)) (2 . (two dos zwei deux)))

18

6.5 Dictionary Structure Properties

(wrapped-dict-property #:unwrap unwrap

[#:wrap wrap

#:predicate pred

#:mutable? mutable?

#:weak? mutable?

#:functional? functional?]) → vector?

unwrap : (-> (and/c dict? pred) dict?)

wrap : (-> dict? (and/c dict? pred)) = (lambda (x) x)

pred : (-> any/c boolean?) = (lambda (x) #t)

mutable? : boolean? = weak?

mutable? : boolean? = #f

functional? : boolean? = #t

Produces a value appropriate for prop:dict for a derived dictionary type recognized by
pred . Dictionaries constructed from this property will extract a nested dictionary using
unwrap and will produce a wrapped dictionary during functional update using wrap .

Examples:
(define-struct table [dict]

#:transparent

#:property prop:dict

(wrapped-dict-property

#:unwrap (lambda (d) (table-dict d))

#:wrap (lambda (d) (make-table d))

#:predicate (lambda (d) (table? d))))

> (dict? (make-table '([1 . one] [2 . two])))

#t

> (dict-ref (make-table '([1 . one] [2 . two])) 1)

'one

> (dict-set (make-table '([1 . one] [2 . two])) 3 'three)

(table ((1 . one) (2 . two) (3 . three)))

6.6 Contracted Dictionaries

This library re-provides dict/c from unstable/contract.

19

7 Directories

(require unstable/dirs)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This library defines utilities dealing with the directory paths used by the Racket distribution.

(path->directory-relative-string path

[#:default default

#:dirs dirs])
→ (or/c string? (one-of/c default))

path : path-string?

default : any/c = (if (path? path) (path->string path) path)

dirs : (listof (cons/c (-> path?) any/c))

= library-relative-directories

Produces a string rendering of path , replacing distribution-specific paths (normally: collec-
tions, user-installed collections, or PLanet cache) with short abbreviations.

The set of paths and their abbreviations may be overridden by the #:dirs option, which
accepts an association list. Its keys must be thunks which produce a path. Its values may be
either #f for no abbreviation (the directory prefix is simply omitted) or any other value to
be displayed in the output. For instance, "document.txt" relative to a path abbreviated
"path" would be rendered as "<path>/document.txt".

If the path is not relative to one of the given directories, the default return value is a string
rendering of the unmodified path. This default may be overridden by providing default .

Examples:
> (path->directory-relative-string

(build-path "source" "project.rkt"))

"source/project.rkt"

> (path->directory-relative-string

(build-path (current-directory) "source" "project.rkt"))

"<collects>/unstable/source/project.rkt"

> (path->directory-relative-string

(build-path "/" "source" "project.rkt"))

"/source/project.rkt"

> (path->directory-relative-string

(build-path "/" "source" "project.rkt")

#:default #f)

#f

> (path->directory-relative-string

20

(build-path "/" "source" "project.rkt")

#:dirs (list

(cons (lambda () (build-path "/" "source"))

'src)))

"<src>/project.rkt"

library-relative-directories : (listof (cons (-> path?) any/c))

Represents the default directory substitutions for path->directory-relative-string.
By default, the collections directory is replaced by collects, the user-installed collections
directory is replaced by user, and the PLaneT cache is replaced by planet.

setup-relative-directories : (listof (cons (-> path?) any/c))

Represents the directory substitutions used by setup-plt. The collections directory is omit-
ted, the user-installed collections directory is replaced by user, and the PLaneT cache is
replaced by planet.

21

8 Exceptions

(require unstable/exn)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(network-error s fmt v ...) → void

s : symbol?

fmt : string?

v : any/c

Like error, but throws a exn:fail:network.

(exn->string exn) → string?

exn : (or/c exn? any/c)

Formats exn with (error-display-handler) as a string. The subsequent
bindings were
added by Carl
Eastlund
<cce@racket-
lang.org>.

(try expr ...+)

Executes the first expression expr in the sequence, producing its result value(s) if it returns
any. If it raises an exception instead, try continues with the next expr . Exceptions raised
by intermediate expressions are reported to the current logger at the 'debug level before
continuing. Exceptions raised by the final expression are not caught by try.

Examples:
> (try (+ 1 2) (+ 3 4))

3

> (try (+ 'one 'two) (+ 3 4))

7

> (try (+ 'one 'two) (+ 'three 'four))

+: expects type <number> as 1st argument, given: ’three;
other arguments were: ’four

22

mailto:cce@racket-lang.org
mailto:cce@racket-lang.org

9 Filesystem

(require unstable/file)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(make-directory*/ignore-exists-exn pth) → void

pth : path-string?

Like make-directory*, except it ignores errors when the path already exists. Useful to
deal with race conditions on processes that create directories.

23

10 Functions

(require unstable/function)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This module provides tools for higher-order programming and creating functions.

10.1 Simple Functions

(identity x) → (one-of/c x)

x : any/c

Returns x .

(thunk body ...)

Creates a function that ignores its inputs and evaluates the given body. Useful for creating
event handlers with no (or irrelevant) arguments.

Examples:
(define f (thunk (define x 1) (printf "∼a\n" x)))

> (f)

1

> (f 'x)

1

> (f #:y 'z)

1

10.2 Higher Order Predicates

((negate f) x ...) → boolean?

f : (-> A ... boolean?)

x : A

Negates the results of f ; equivalent to (not (f x ...)).

This function is reprovided from scheme/function.

Examples:

24

(define f (negate exact-integer?))

> (f 1)

#f

> (f 'one)

#t

((conjoin f ...) x ...) → boolean?

f : (-> A ... boolean?)

x : A

Combines calls to each function with and. Equivalent to (and (f x ...) ...)

Examples:
(define f (conjoin exact? integer?))

> (f 1)

#t

> (f 1.0)

#f

> (f 1/2)

#f

> (f 0.5)

#f

((disjoin f ...) x ...) → boolean?

f : (-> A ... boolean?)

x : A

Combines calls to each function with or. Equivalent to (or (f x ...) ...)

Examples:
(define f (disjoin exact? integer?))

> (f 1)

#t

> (f 1.0)

#t

> (f 1/2)

#t

> (f 0.5)

#f

10.3 Currying and (Partial) Application

(call f x ...) → B

25

f : (-> A ... B)

x : A

Passes x ... to f . Keyword arguments are allowed. Equivalent to (f x ...). Useful for
application in higher-order contexts.

Examples:
> (map call

(list + - * /)

(list 1 2 3 4)

(list 5 6 7 8))

'(6 -4 21 1/2)

(define count 0)

(define (inc)

(set! count (+ count 1)))

(define (reset)

(set! count 0))

(define (show)

(printf "∼a\n" count))

> (for-each call (list inc inc show reset show))

2

0

(papply f x ...) → (B ... -> C)

f : (A ... B ... -> C)

x : A

(papplyr f x ...) → (A ... -> C)

f : (A ... B ... -> C)

x : B

The papply and papplyr functions partially apply f to x ..., which may include keyword
arguments. They obey the following equations:

((papply f x ...) y ...) = (f x ... y ...)

((papplyr f x ...) y ...) = (f y ... x ...)

Examples:
(define reciprocal (papply / 1))

> (reciprocal 3)

1/3

> (reciprocal 4)

1/4

(define halve (papplyr / 2))

> (halve 3)

3/2

> (halve 4)

26

2

(curryn n f x ...) → (A1 ... -> ooo -> An ... -> B)

n : exact-nonnegative-integer?

f : (A0 ... A1 ... ooo An ... -> B)

x : A0

(currynr n f x ...) → (An ... -> ooo -> A1 ... -> B)

n : exact-nonnegative-integer?

f : (A1 ... ooo An ... An+1 ... -> B)

x : An+1

Note: The ooo above denotes a loosely associating ellipsis.

The curryn and currynr functions construct a curried version of f , specialized at x ...,
that produces a result after n further applications. Arguments at any stage of application may
include keyword arguments, so long as no keyword is duplicated. These curried functions
obey the following equations:

(curryn 0 f x ...) = (f x ...)

((curryn (+ n 1) f x ...) y ...) = (curryn n f x ... y ...)

(currynr 0 f x ...) = (f x ...)

((currynr (+ n 1) f x ...) y ...) = (currynr n f y ... x ...)

The call, papply, and papplyr utilities are related to curryn and currynr in the follow-
ing manner:

(call f x ...) = (curryn 0 f x ...) = (currynr 0 f x ...)

(papply f x ...) = (curryn 1 f x ...)

(papplyr f x ...) = (currynr 1 f x ...)

Examples:
(define reciprocal (curryn 1 / 1))

> (reciprocal 3)

1/3

> (reciprocal 4)

1/4

(define subtract-from (curryn 2 -))

(define from-10 (subtract-from 10))

> (from-10 5)

5

> (from-10 10)

0

(define from-0 (subtract-from 0))

> (from-0 5)

-5

27

> (from-0 10)

-10

(define halve (currynr 1 / 2))

> (halve 3)

3/2

> (halve 4)

2

(define subtract (currynr 2 -))

(define minus-10 (subtract 10))

> (minus-10 5)

-5

> (minus-10 10)

0

(define minus-0 (subtract 0))

> (minus-0 5)

5

> (minus-0 10)

10

10.4 Eta Expansion

(eta f)

Produces a function equivalent to f , except that f is evaluated every time it is called.

This is useful for function expressions that may be run, but not called, before f is defined.
The eta expression will produce a function without evaluating f .

Examples:
(define f (eta g))

> f

#<procedure:eta>

(define g (lambda (x) (+ x 1)))

> (f 1)

2

(eta* f x ...)

Produces a function equivalent to f , with argument list x In simple cases, this is equiv-
alent to (lambda (x ...) (f x ...)). Optional (positional or keyword) arguments are
not allowed.

This macro behaves similarly to eta, but produces a function with statically known arity

28

which may improve efficiency and error reporting.

Examples:
(define f (eta* g x))

> f

#<procedure:f>

> (procedure-arity f)

1

(define g (lambda (x) (+ x 1)))

> (f 1)

2

10.5 Parameter Arguments

(lambda/parameter (param-arg ...) body ...)

param-arg = param-arg-spec

| keyword param-spec

param-arg-spec = id

| [id default-expr]

| [id #:param param-expr]

Constructs a function much like lambda, except that some optional arguments correspond
to the value of a parameter. For each clause of the form [id #:param param-expr],
param-expr must evaluate to a value param satisfying parameter?. The default value of
the argument id is (param); param is bound to id via parameterize during the function
call.

Examples:
(define p (open-output-string))

(define hello-world

(lambda/parameter ([port #:param current-output-port])

(display "Hello, World!")

(newline port)))

> (hello-world p)

> (get-output-string p)

"Hello, World!\n"

29

11 Lists

(require unstable/list)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(list-prefix? l r) → boolean?

l : list?

r : list?

True if l is a prefix of r .

Example:
> (list-prefix? '(1 2) '(1 2 3 4 5))

#t The subsequent
bindings were
added by Sam
Tobin-Hochstadt.(filter-multiple l f ...) → list? ...

l : list?

f : procedure?

Produces (values (filter f l) ...).

Example:
> (filter-multiple (list 1 2 3 4 5) even? odd?)

'(2 4)

'(1 3 5)

(extend l1 l2 v) → list?

l1 : list?

l2 : list?

v : any/c

Extends l2 to be as long as l1 by adding (- (length l1) (length l2)) copies of v
to the end of l2 .

Example:
> (extend '(1 2 3) '(a) 'b)

'(a b b) The subsequent
bindings were
added by Ryan
Culpepper.(check-duplicate lst

[#:key extract-key

#:same? same?]) → (or/c any/c #f)

lst : list?

30

extract-key : (-> any/c any/c) = (lambda (x) x)

same? : (or/c (any/c any/c . -> . any/c)

dict?)

= equal?

Returns the first duplicate item in lst . More precisely, it returns the first x such that there
was a previous y where (same? (extract-key x) (extract-key y)).

The same? argument can either be an equivalence predicate such as equal? or eqv? or a
dictionary. In the latter case, the elements of the list are mapped to #t in the dictionary until
an element is discovered that is already mapped to a true value. The procedures equal?,
eqv?, and eq? automatically use a dictionary for speed.

Examples:
> (check-duplicate '(1 2 3 4))

#f

> (check-duplicate '(1 2 3 2 1))

2

> (check-duplicate '((a 1) (b 2) (a 3)) #:key car)

'(a 3)

> (define id-t (make-free-id-table))

> (check-duplicate (syntax->list #'(a b c d a b))

#:same? id-t)

#<syntax:10:0 a>

> (dict-map id-t list)

'((#<syntax:10:0 b> #t) (#<syntax:10:0 c> #t) (#<syntax:10:0 a> #t)

(#<syntax:10:0 d> #t)) The subsequent
bindings were
added by Carl
Eastlund.(map/values n f lst ...) → (listof B_1) ... (listof B_n)

n : natural-number/c

f : (-> A ... (values B_1 ... B_n))

lst : (listof A)

Produces lists of the respective values of f applied to the elements in lst ... sequentially.

Example:
> (map/values

3

(lambda (x)

(values (+ x 1) x (- x 1)))

(list 1 2 3))

'(2 3 4)

'(1 2 3)

'(0 1 2) The subsequent
bindings were
added by David Van
Horn.(remf pred lst) → list?

31

pred : procedure?

lst : list?

Returns a list that is like lst , omitting the first element of lst for which pred produces a
true value.

Example:
> (remf negative? '(1 -2 3 4 -5))

'(1 3 4 -5)

32

12 Net

(require unstable/net)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

12.1 URLs

(require unstable/net/url)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(url-replace-path proc u) → url?

proc : ((listof path/param?) . -> . (listof path/param?))

u : url?

Replaces the URL path of u with proc of the former path.

(url-path->string url-path) → string?

url-path : (listof path/param?)

Formats url-path as a string with "/" as a delimiter and no params.

33

13 Path

(require unstable/path)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(explode-path* p) → (listof path-element?)

p : path-string?

Like normalize-path, but does not resolve symlinks.

(path-without-base base p) → (listof path-element?)

base : path-string?

p : path-string?

Returns, as a list, the portion of p after base , assuming base is a prefix of p .

(directory-part p) → path?

p : path-string?

Returns the directory part of p , returning (current-directory) if it is relative.

(build-path-unless-absolute base p) → path?

base : path-string?

p : path-string?

Prepends base to p , unless p is absolute.

(strip-prefix-ups p) → (listof path-element?)

p : (listof path-element?)

Removes all the prefix ".."s from p .

34

14 PLaneT Packages

(require unstable/planet)

This module provides tools relating to PLaneT packages. In addition to the bind-
ing described below, it provides define-planet-package and this-package-in

from unstable/require, and make-planet-path, syntax-source-planet-package,
syntax-source-planet-package-owner, syntax-source-planet-package-name,
syntax-source-planet-package-major, syntax-source-planet-package-minor,
and syntax-source-planet-package-symbol from unstable/planet-syntax.

(this-package-version-symbol)

(this-package-version-symbol path)

Produces a symbol corresponding to a planet module path for the current planet package,
possibly with a 〈path〉 (from the grammar of planet module specs) into the package. This
is similar to this-package-version and similar tools from planet/util.

35

15 Ports

(require unstable/port)

This module provides tools for port I/O.

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(read-all [reader port]) → list?

reader : (-> any/c) = read

port : input-port? = (current-input-port)

This function produces a list of all the values produced by calling (reader) while
current-input-port is set to port , up until it produces eof.

Examples:
> (read-all read (open-input-string "1 2 3"))

'(1 2 3)

> (parameterize ([current-input-port (open-input-string "a b c")])

(read-all))

'(a b c)

(read-all-syntax [reader port]) → (syntax/c list?)

reader : (-> (or/c syntax? eof-object?)) = read

port : input-port? = (current-input-port)

This function produces a syntax object containing a list of all the syntax objects produced
by calling (reader) while current-input-port is set to port , up until it produces eof.
The source location of the result spans the entire portion of the port that was read.

Examples:
(define port1 (open-input-string "1 2 3"))

> (port-count-lines! port1)

> (read-all-syntax read-syntax port1)

#<syntax:1:0 (1 2 3)>

(define port2 (open-input-string "a b c"))

> (port-count-lines! port2)

> (parameterize ([current-input-port port2])

(read-all-syntax))

#<syntax:1:0 (a b c)>

(port->srcloc port [source span]) → srcloc?

port : port?

36

source : any/c = (object-name port)

span : exact-nonnegative-integer? = 0

Produces a srcloc structure representing the current position of a port, using the provided
source and span values to fill in missing fields. This function relies on port-next-

location, so line counting must be enabled for port to get meaningful results.

Examples:
(define port (open-input-string "1 2 3"))

> (port-count-lines! port)

> (read port)

1

> (port->srcloc port)

(srcloc string 1 1 2 0)

> (port->srcloc port "1 2 3" 1)

(srcloc "1 2 3" 1 1 2 1)

(read-available-bytes [port]) → (or/c bytes? eof-object?)

port : input-port? = (current-input-port)

This function reads all immediately available bytes from a port and produces a byte string
containing them. If there are no bytes available and the port is known to have no more input,
it produces eof; if there are none available but the port may have more input, it produces an
empty byte string. This procedure never blocks to wait for input from the port.

Examples:
(define-values [in out] (make-pipe))

> (parameterize ([current-input-port in]) (read-available-bytes))

#""

> (write-byte (char->integer #\c) out)

> (read-available-bytes in)

#"c"

> (read-available-bytes in)

#""

> (close-output-port out)

> (read-available-bytes in)

#<eof>

37

16 Pretty-Printing

(require unstable/pretty)

This module provides tools for pretty-printing.

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(pretty-format/write x [columns]) → string?

x : any/c

columns : (or/c exact-nonnegative-integer? 'infinity)

= (pretty-print-columns)

This procedure behaves like pretty-format, but it formats values consistently with write

instead of print.

Examples:
> (struct both [a b] #:transparent)

> (pretty-format/write (list (both (list 'a 'b) (list "a" "b"))))

"(#(struct:both (a b) (\"a\" \"b\")))\n"

(pretty-format/display x [columns]) → string?

x : any/c

columns : (or/c exact-nonnegative-integer? 'infinity)

= (pretty-print-columns)

This procedure behaves like pretty-format, but it formats values consistently with dis-

play instead of print.

Examples:
> (struct both [a b] #:transparent)

> (pretty-format/display (list (both (list 'a 'b) (list "a" "b"))))

"(#(struct:both (a b) (a b)))\n"

(pretty-format/print x [columns]) → string?

x : any/c

columns : (or/c exact-nonnegative-integer? 'infinity)

= (pretty-print-columns)

This procedure behaves the same as pretty-format, but is named more explicitly to de-
scribe how it formats values. It is included for symmetry with pretty-format/write and
pretty-format/display.

Examples:

38

> (struct both [a b] #:transparent)

> (pretty-format/print (list (both (list 'a 'b) (list "a" "b"))))

"(list (both '(a b) '(\"a\" \"b\")))\n"

39

17 Imperative Queues

(require unstable/queue)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This module provides a simple mutable queue representation, first-in/first-out only. Opera-
tions on queues mutate it in a thread-unsafe way.

(make-queue) → queue/c

Produces an empty queue.

(enqueue! q v) → void?

q : queue/c

v : any/c

Adds an element to the back of a queue.

(dequeue! q) → any/c

q : nonempty-queue/c

Removes an element from the front of a nonempty queue, and returns that element.

Examples:
(define q (make-queue))

> (enqueue! q 1)

> (dequeue! q)

1

> (enqueue! q 2)

> (enqueue! q 3)

> (dequeue! q)

2

> (dequeue! q)

3

(queue-empty? q) → boolean?

q : queue/c

Recognizes whether a queue is empty or not.

Examples:

40

(define q (make-queue))

> (queue-empty? q)

#t

> (enqueue! q 1)

> (queue-empty? q)

#f

> (dequeue! q)

1

> (queue-empty? q)

#t

(queue? v) → boolean?

v : any/c

This predicate recognizes queues.

Examples:
> (queue? (make-queue))

#t

> (queue? 'not-a-queue)

#f

queue/c : flat-contract?

nonempty-queue/c : flat-contract?

These contracts recognize queues; the latter requires the queue to contain at least one value.

41

18 Regular Expressions

(require unstable/regexp)

This module provides tools for building strings which can be compiled to regular expres-
sions. In particular, the constructors wrap their arguments in appropriate delimeters to pre-
vent misparsing after concatenation.

(regexp-sequence [#:start start

#:between between

#:end end]
re ...) → string?

start : string? = ""

between : string? = ""

end : string? = ""

re : string?

Produces a regular expression string that matches start , followed by each re interleaved
with between , followed by end .

Examples:
(define re

(pregexp

(regexp-sequence "[0-9]+" "[0-9]+" "[0-9]+"

#:start (regexp-quote "(")

#:between (regexp-quote ",")

#:end (regexp-quote ")"))))

> (regexp-match-exact? re "(1,10,100)")

#t

> (regexp-match-exact? re "(1,10)")

#f

> (regexp-match-exact? re " (1 , 10 , 100) ")

#f

(regexp-or re ...+) → string?

re : string?

Produces a regular expression string that matches any of the given res.

Examples:
(define re (pregexp (regexp-or "[0-9]+" "[a-z]")))

> (regexp-match-exact? re "123")

#t

> (regexp-match-exact? re "c")

42

#t

> (regexp-match-exact? re "12c")

#f

(regexp-maybe re ...+) → string?

re : string?

Produces a regular expression string that matches either the empty string, or the concatena-
tion of all the given res.

Examples:
(define re (pregexp (regexp-maybe "[0-9]+" "[.]" "[0-9]+")))

> (regexp-match-exact? re "123.456")

#t

> (regexp-match-exact? re "")

#t

> (regexp-match-exact? re "123")

#f

(regexp-star re ...+) → string?

re : string?

Produces a regular expression string that matches zero or more consecutive occurrences of
the concatenation of the given res.

Examples:
(define re (pregexp (regexp-star "a" "b" "c")))

> (regexp-match-exact? re "")

#t

> (regexp-match-exact? re "abc")

#t

> (regexp-match-exact? re "abcabcabc")

#t

> (regexp-match-exact? re "a")

#f

(regexp-plus re ...+) → string?

re : string?

Produces a regular expression string that matches one or more consecutive occurrences of
the concatenation of the given res.

Examples:
(define re (pregexp (regexp-plus "a" "b" "c")))

> (regexp-match-exact? re "")

43

#f

> (regexp-match-exact? re "abc")

#t

> (regexp-match-exact? re "abcabcabc")

#t

> (regexp-match-exact? re "a")

#f

(regexp-save re ...+) → string?

re : string?

Produces a regular expression string that matches the concatenation of the given res and
saves the result.

Examples:
(define re

(pregexp (regexp-sequence (regexp-save "[0-9]+") "\\1")))

> (regexp-match-exact? re "11")

#t

> (regexp-match-exact? re "123123")

#t

> (regexp-match-exact? re "123456")

#f

(regexp-multi re ...+) → string?

re : string?

Produces a regular expression string that matches the concatenation of the given res in
multiple-line mode.

Examples:
(define re (pregexp (regexp-multi "^abc$")))

> (regexp-match? re "abc")

#t

> (regexp-match? re "xyz\nabc\ndef")

#t

44

19 Requiring Modules

(require unstable/require)

This module provides tools for importing from modules.

(require/provide module-path ...)

Re-exports all bindings provided by each module-path . Equivalent to:

(require module-path ...)

(provide (all-from-out module-path ...))

(quote-require require-spec ...)

Produces the names exported by the require-specs as a list of symbols.

Example:
> (quote-require racket/bool racket/function)

'(false true symbol=? false? boolean=? negate curryr curry const)

(define-planet-package name package)

Defines a shortcut name for importing modules from planet package package . Subse-
quently, (name module) is equivalent to (planet package/module) as a require path.
For instance, to import the text and web modules from this package:

(define-planet-package my-package cce/scheme)

(require (my-package web) (my-package text))

The above require is equivalent to:

(require (planet cce/scheme/web) (planet cce/scheme/text))

(define-collection name collect)

Defines a shortcut name for importing modules from collect and its subcollections. Subse-
quently, (name) is equivalent to collect as a require path, and (name path) is equivalent
to collect/path.

(define-collection macro syntax)

(require (macro parse))

The above require is equivalent to the below:

45

(require syntax/parse)

(this-package-in path)

This require transformer imports the file at path in the current planet package. For instance,
in the package (planet cce/scheme:7), writing:

(require (this-package-in function))

... is equivalent to writing:

(require (planet cce/scheme:7/function))

46

20 Sandboxed Evaluation

(require unstable/sandbox)

This module provides tools for sandboxed evaluation.

(make-trusted-evaluator language

input-program ...

#:requires requires

#:allow-read allow)

→ (any/c . -> . any)

language : (or/c module-path?

(list/c 'special symbol?)

(cons/c 'begin list?))

input-program : any/c

requires : (listof (or/c module-path? path?))

allow : (listof or/c module-path? path?)

(make-trusted-module-evaluator module-decl

#:language lang

#:allow-read allow)

→ (any/c . -> . any)

module-decl : (or/c syntax? pair?)

lang : (or/c #f module-path?)

allow : (listof (or/c module-path? path?))

These procedures wrap calls to make-evaluator and make-module-evaluator, respec-
tively, with call-with-trusted-sandbox-configuration.

(make-scribble-evaluator language

input-program ...

#:requires requires

#:allow-read allow)

→ (any/c . -> . any)

language : (or/c module-path?

(list/c 'special symbol?)

(cons/c 'begin list?))

input-program : any/c

requires : (listof (or/c module-path? path?))

allow : (listof or/c module-path? path?)

47

(make-scribble-module-evaluator module-decl

#:language lang

#:allow-read allow)

→ (any/c . -> . any)

module-decl : (or/c syntax? pair?)

lang : (or/c #f module-path?)

allow : (listof (or/c module-path? path?))

These procedures wrap calls to make-trusted-evaluator and make-trusted-module-

evaluator, respectively, with parameterizations setting sandbox-output and sandbox-

error-output to 'string.

(make-sandbox-namespace-specs make-ns

path ...)

→ (cons/c (-> namespace?) (listof module-path?))

make-ns : (-> namespace?)

path : module-path?

This function produces a value for the parameter sandbox-namespace-specs such that
new sandbox evaluators start with a namespace constructed by make-ns and share a set of
instances of the modules referred to by the given paths.

48

21 Scribble Documentation

(require unstable/scribble)

This module provides tools for Scribble documentation; specifically, of PLaneT packages. In
addition to the bindings described below, this module provides this-package-version-
symbol from unstable/planet, this-package-in from unstable/require, and
make-scribble-evaluator and make-scribble-module-evaluator from unsta-

ble/sandbox.

(defmodule/this-package)

(defmodule/this-package #:use-sources [src-path ...] [src ...])

(defmodule/this-package path)

(defmodule/this-package path #:use-sources [src-path ...] [src ...])

This Scribble form corresponds to defmodule within a planet package. The displayed mod-
ule path is a planet module path to the current planet package, possibly with a 〈path〉 (from
the grammar of planet module specs) into the package. If the #:use-sources option is
present, each src-path is similarly treated as a path into the current planet package, while
each src is treated normally. Both sets of paths are concatenated and passed to the normal
defmodule.

(defmodule*/no-declare/this-package [src-path ...] [src ...])

This Scribble form corresponds to defmodule*/no-declare within a planet package. The
displayed module paths are planet module paths to the current planet package, possibly
with 〈path〉s (from the grammar of planet module specs) into the package. Each src-

path is similarly treated as a path into the current planet package, while each src is treated
normally. Both sets of paths are concatenated and passed to the normal defmodule*/no-
declare.

(schememodname/this-package)

(schememodname/this-package path)

This Scribble form corresponds to schememodname much like defmodule/this-package
above corresponds to defmodule. The path , if present, is treated as a 〈path〉 (from the
grammar of planet module specs) into the current planet package, and converted into a
planet module spec.

(declare-exporting/this-package [mod-path ...] [mod ...])

(declare-exporting/this-package [mod-path ...] [mod ...]

#:use-sources [src-path ...] [src ...])

49

This Scribble form corresponds to declare-exporting much like defmodule/this-

package above corresponds to defmodule. Each mod-path and src-path is treated
as a 〈path〉 (from the grammar of planet module specs) into the current package. They
are concatenated with the lists of mods and srcs, respectively, and passed to the normal
declare-exporting.

50

22 Sets

(require unstable/set)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This module provides tools for representing finite sets.

(list->set lst) → set?

lst : list?

(list->seteq lst) → set?

lst : list?

(list->seteqv lst) → set?

lst : list?

Produces the appropriate type of set containing the elements of the given list.

Examples:
(define lst

(list 'atom (expt 2 100) (list 'compound)

'atom (expt 2 100) (list 'compound)))

> (list->set lst)

#<set: atom (compound) 1267650600228229401496703205376>

> (list->seteqv lst)

#<set: atom (compound) (compound) 1267650600228229401496703205376>

> (list->seteq lst)

#<set: atom (compound) (compound) 1267650600228229401496703205376

1267650600228229401496703205376>

(set=? a b) → boolean?

a : set?

b : set?

Reports whether two sets contain the same elements.

Examples:
> (set=? (set 1) (set 1 2 3))

#f

> (set=? (set 1 2 3) (set 1))

#f

> (set=? (set 1 2 3) (set 1 2 3))

#t

51

(proper-subset? a b) → boolean?

a : set?

b : set?

Reports whether b contains all of the elements of a , and at least one element not in a .

Examples:
> (proper-subset? (set 1) (set 1 2 3))

#t

> (proper-subset? (set 1 2 3) (set 1))

#f

> (proper-subset? (set 1 2 3) (set 1 2 3))

#f

(set->list s) → list?

s : set?

Produces a list containing the elements of s .

Example:
> (set->list (set 1 2 3))

'(1 2 3)

(set-exclusive-or s ...+) → set?

s : set?

Produces a set containing only those elements found in each s an odd number of times.

Example:
> (set-exclusive-or (set 1) (set 1 2) (set 1 2 3))

#<set: 1 3>

52

23 S-Expression Diff

(require unstable/sexp-diff)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(sexp-diff old-tree new-tree) → any/c

old-tree : any/c

new-tree : any/c

Takes two S-Expressions and returns their diff. Based on the Levenshtein distance for trees.

Example:
> (sexp-diff '(0 (1 2 3)) '(0 (4 2 3)))

'((0 (#:new 4 #:old 1 2 3)))

53

24 Source Locations

There are two libraries in this collection for dealing with source locations; one for manipu-
lating representations of them, and the other for quoting the location of a particular piece of
source code.

24.1 Representations

(require unstable/srcloc)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This module defines utilities for manipulating representations of source locations, including
both srcloc structures and all the values accepted by datum->syntax’s third argument:
syntax objects, lists, vectors, and #f.

(source-location? x) → boolean?

x : any/c

(source-location-list? x) → boolean?

x : any/c

(source-location-vector? x) → boolean?

x : any/c

These functions recognize valid source location representations. The first, source-

location?, recognizes srcloc structures, syntax objects, lists, and vectors with appro-
priate structure, as well as #f. The latter predicates recognize only valid lists and vectors,
respectively.

Examples:
> (source-location? #f)

#t

> (source-location? #'here)

#t

> (source-location? (make-srcloc 'here 1 0 1 0))

#t

> (source-location? (make-srcloc 'bad 1 #f 1 0))

#f

> (source-location? (list 'here 1 0 1 0))

#t

> (source-location? (list* 'bad 1 0 1 0 'tail))

#f

> (source-location? (vector 'here 1 0 1 0))

54

#t

> (source-location? (vector 'bad 0 0 0 0))

#f

(check-source-location! name x) → void?

name : symbol?

x : any/c

This procedure checks that its input is a valid source location. If it is, the procedure returns
(void). If it is not, check-source-location! raises a detailed error message in terms of
name and the problem with x .

Examples:
> (check-source-location! 'this-example #f)

> (check-source-location! 'this-example #'here)

> (check-source-location! 'this-example (make-

srcloc 'here 1 0 1 0))

> (check-source-location! 'this-example (make-

srcloc 'bad 1 #f 1 0))

this-example: expected a source location with line number
and column number both numeric or both #f; got 1 and #f
respectively: (srcloc ’bad 1 #f 1 0)
> (check-source-location! 'this-example (list 'here 1 0 1 0))

> (check-source-location! 'this-example (list* 'bad 1 0 1 0 'tail))

this-example: expected a source location (a list of 5
elements); got an improper list: ’(bad 1 0 1 0 . tail)
> (check-source-location! 'this-example (vector 'here 1 0 1 0))

> (check-source-location! 'this-example (vector 'bad 0 0 0 0))

this-example: expected a source location with a positive
line number or #f (second element); got line number 0:
’#(bad 0 0 0 0)

(build-source-location loc ...) → srcloc?

loc : source-location?

(build-source-location-list loc ...) → source-location-list?

loc : source-location?

(build-source-location-vector loc ...) → source-location-vector?

loc : source-location?

(build-source-location-syntax loc ...) → syntax?

loc : source-location?

These procedures combine multiple (zero or more) source locations, merging locations
within the same source and reporting #f for locations that span sources. They also convert
the result to the desired representation: srcloc, list, vector, or syntax object, respectively.

55

Examples:
> (build-source-location)

(srcloc #f #f #f #f #f)

> (build-source-location-list)

'(#f #f #f #f #f)

> (build-source-location-vector)

'#(#f #f #f #f #f)

> (build-source-location-syntax)

#<syntax ()>

> (build-source-location #f)

(srcloc #f #f #f #f #f)

> (build-source-location-list #f)

'(#f #f #f #f #f)

> (build-source-location-vector #f)

'#(#f #f #f #f #f)

> (build-source-location-syntax #f)

#<syntax ()>

> (build-source-location (list 'here 1 2 3 4))

(srcloc here 1 2 3 4)

> (build-source-location-list (make-srcloc 'here 1 2 3 4))

'(here 1 2 3 4)

> (build-source-location-vector (make-srcloc 'here 1 2 3 4))

'#(here 1 2 3 4)

> (build-source-location-syntax (make-srcloc 'here 1 2 3 4))

#<syntax:1:2 ()>

> (build-source-location (list 'here 1 2 3 4) (vector 'here 5 6 7 8))

(srcloc here 1 2 3 12)

> (build-source-location-list (make-srcloc 'here 1 2 3 4) (vector 'here 5 6 7 8))

'(here 1 2 3 12)

> (build-source-location-vector (make-srcloc 'here 1 2 3 4) (vector 'here 5 6 7 8))

'#(here 1 2 3 12)

> (build-source-location-syntax (make-srcloc 'here 1 2 3 4) (vector 'here 5 6 7 8))

#<syntax:1:2 ()>

> (build-source-location (list 'here 1 2 3 4) (vector 'there 5 6 7 8))

(srcloc #f #f #f #f #f)

> (build-source-location-list (make-srcloc 'here 1 2 3 4) (vector 'there 5 6 7 8))

'(#f #f #f #f #f)

> (build-source-location-vector (make-srcloc 'here 1 2 3 4) (vector 'there 5 6 7 8))

'#(#f #f #f #f #f)

> (build-source-location-syntax (make-srcloc 'here 1 2 3 4) (vector 'there 5 6 7 8))

#<syntax ()>

(source-location-known? loc) → boolean?

loc : source-location?

56

This predicate reports whether a given source location contains more information than sim-
ply #f.

Examples:
> (source-location-known? #f)

#f

> (source-location-known? (make-srcloc #f #f #f #f #f))

#f

> (source-location-known? (make-srcloc 'source 1 2 3 4))

#t

> (source-location-known? (list #f #f #f #f #f))

#f

> (source-location-known? (vector 'source #f #f #f #f))

#t

> (source-location-known? (datum->syntax #f null #f))

#t

> (source-location-known? (datum->syntax #f null (list 'source #f #f #f #f)))

#t

(source-location-source loc) → any/c

loc : source-location?

(source-location-line loc)

→ (or/c orexact-positive-integer? #f)

loc : source-location?

(source-location-column loc)

→ (or/c exact-nonnegative-integer? #f)

loc : source-location?

(source-location-position loc)

→ (or/c exact-positive-integer? #f)

loc : source-location?

(source-location-span loc)

→ (or/c exact-nonnegative-integer? #f)

loc : source-location?

These accessors extract the fields of a source location.

Examples:
> (source-location-source #f)

#f

> (source-location-line (make-srcloc 'source 1 2 3 4))

1

> (source-location-column (list 'source 1 2 3 4))

2

> (source-location-position (vector 'source 1 2 3 4))

3

> (source-location-span (datum->syntax #f null (list 'source 1 2 3 4)))

57

4

(source-location-end loc)

→ (or/c exact-nonnegative-integer? #f)

loc : source-location?

This accessor produces the end position of a source location (the sum of its position and
span, if both are numbers) or #f.

Examples:
> (source-location-end #f)

#f

> (source-location-end (make-srcloc 'source 1 2 3 4))

7

> (source-location-end (list 'source 1 2 3 #f))

#f

> (source-location-end (vector 'source 1 2 #f 4))

#f

(update-source-location loc

#:source source

#:line line

#:column column

#:position position

#:span span) → source-location?

loc : source-location?

source : any/c

line : (or/c exact-nonnegative-integer? #f)

column : (or/c exact-positive-integer? #f)

position : (or/c exact-nonnegative-integer? #f)

span : (or/c exact-positive-integer? #f)

Produces a modified version of loc , replacing its fields with source , line , column , po-
sition , and/or span , if given.

Examples:
> (update-source-location #f #:source 'here)

'(here #f #f #f #f)

> (update-source-location (list 'there 1 2 3 4) #:line 20 #:column 79)

'(there 20 79 3 4)

> (update-source-location (vector 'everywhere 1 2 3 4) #:position #f #:span #f)

'#(everywhere 1 2 #f #f)

58

(source-location->string loc) → string?

loc : source-location?

(source-location->prefix loc) → string?

loc : source-location?

These procedures convert source locations to strings for use in error messages. The first
produces a string describing the source location; the second appends ": " to the string if it
is non-empty.

Examples:
> (source-location->string (make-srcloc 'here 1 2 3 4))

"here:1.2"

> (source-location->string (make-srcloc 'here #f #f 3 4))

"here::3-7"

> (source-location->string (make-srcloc 'here #f #f #f #f))

"here"

> (source-location->string (make-srcloc #f 1 2 3 4))

":1.2"

> (source-location->string (make-srcloc #f #f #f 3 4))

"::3-7"

> (source-location->string (make-srcloc #f #f #f #f #f))

""

> (source-location->prefix (make-srcloc 'here 1 2 3 4))

"here:1.2: "

> (source-location->prefix (make-srcloc 'here #f #f 3 4))

"here::3-7: "

> (source-location->prefix (make-srcloc 'here #f #f #f #f))

"here: "

> (source-location->prefix (make-srcloc #f 1 2 3 4))

":1.2: "

> (source-location->prefix (make-srcloc #f #f #f 3 4))

"::3-7: "

> (source-location->prefix (make-srcloc #f #f #f #f #f))

""

24.2 Quoting

(require unstable/location)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This module defines macros that evaluate to various aspects of their own source location.

59

Note: The examples below illustrate the use of these macros and the representation of their
output. However, due to the mechanism by which they are generated, each example is con-
sidered a single character and thus does not have realistic line, column, and character posi-
tions.

Furthermore, the examples illustrate the use of source location quoting inside macros, and
the difference between quoting the source location of the macro definition itself and quoting
the source location of the macro’s arguments.

(quote-srcloc)

(quote-srcloc form)

(quote-srcloc form #:module-source expr)

Quotes the source location of form as a srcloc structure, using the location of the whole
(quote-srcloc) expression if no expr is given. Uses relative directories for paths found
within the collections tree, the user’s collections directory, or the PLaneT cache.

Examples:
> (quote-srcloc)

(srcloc eval 2 0 2 1)

> (define-syntax (not-here stx) #'(quote-srcloc))

> (not-here)

(srcloc eval 3 0 3 1)

> (not-here)

(srcloc eval 3 0 3 1)

> (define-syntax (here stx) #`(quote-srcloc #,stx))

> (here)

(srcloc eval 7 0 7 1)

> (here)

(srcloc eval 8 0 8 1)

(quote-source-file)

(quote-source-file form)

(quote-line-number)

(quote-line-number form)

(quote-column-number)

(quote-column-number form)

(quote-character-position)

(quote-character-position form)

(quote-character-span)

(quote-character-span form)

Quote various fields of the source location of form , or of the whole macro application if no
form is given.

60

Examples:
> (list (quote-source-file)

(quote-line-number)

(quote-column-number)

(quote-character-position)

(quote-character-span))

'(eval 2 0 2 1)

> (define-syntax (not-here stx)

#'(list (quote-source-file)

(quote-line-number)

(quote-column-number)

(quote-character-position)

(quote-character-span)))

> (not-here)

'(eval 3 0 3 1)

> (not-here)

'(eval 3 0 3 1)

> (define-syntax (here stx)

#`(list (quote-source-file #,stx)

(quote-line-number #,stx)

(quote-column-number #,stx)

(quote-character-position #,stx)

(quote-character-span #,stx)))

> (here)

'(eval 7 0 7 1)

> (here)

'(eval 8 0 8 1)

(quote-module-name)

(quote-module-path)

Quote the name of the module in which the form is compiled. The quote-module-name

form produces a string or a symbol, while quote-module-path produces a module path.

These forms use relative names for modules found in the collections or PLaneT cache; their
results are suitable for printing, but not for accessing libraries programmatically, such as via
dynamic-require.

Examples:
> (module A racket

(require unstable/location)

(define-syntax-rule (name) (quote-module-name))

(define-syntax-rule (path) (quote-module-path))

(define a-name (name))

(define a-path (path))

61

(provide (all-defined-out)))

> (require 'A)

> a-name

'A

> a-path

�A

> (module B racket

(require unstable/location)

(require 'A)

(define b-name (name))

(define b-path (path))

(provide (all-defined-out)))

> (require 'B)

> b-name

'B

> b-path

�B

> (quote-module-name)

'top-level

> (quote-module-path)

'top-level

> [current-namespace (module->namespace ''A)]

> (quote-module-name)

'A

> (quote-module-path)

�A

62

25 Strings

(require unstable/string)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(lowercase-symbol! sb) → symbol?

sb : (or/c string? bytes?)

Returns sb as a lowercase symbol.

(read/string s) → serializable?

s : string?

reads a value from s and returns it.

(write/string v) → string?

v : serializable?

writes v to a string and returns it.

63

26 Structs

(require unstable/struct)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(make struct-id expr ...)

Creates an instance of struct-id , which must be bound as a struct name. The number of
exprs is statically checked against the number of fields associated with struct-id . If they
are different, or if the number of fields is not known, an error is raised at compile time.

Examples:
> (define-struct triple (a b c))

> (make triple 3 4 5)

#<triple>

> (make triple 2 4)

eval:4:0: make: wrong number of arguments for struct triple
(expected 3, got 2) in: (make triple 2 4)

(struct->list v [#:on-opaque on-opaque]) → (or/c list? #f)

v : any/c

on-opaque : (or/c 'error 'return-false 'skip) = 'error

Returns a list containing the struct instance v ’s fields. Unlike struct->vector, the struct
name itself is not included.

If any fields of v are inaccessible via the current inspector the behavior of struct->list
is determined by on-opaque . If on-opaque is 'error (the default), an error is raised. If
it is 'return-false, struct->list returns #f. If it is 'skip, the inaccessible fields are
omitted from the list.

Examples:
> (define-struct open (u v) #:transparent)

> (struct->list (make-open 'a 'b))

'(a b)

> (struct->list #s(pre 1 2 3))

'(1 2 3)

> (define-struct (secret open) (x y))

> (struct->list (make-secret 0 1 17 22))

struct->list: expected argument of type <non-opaque
struct>; given (secret 0 1 ...)
> (struct->list (make-secret 0 1 17 22) #:on-opaque 'return-false)

#f

64

> (struct->list (make-secret 0 1 17 22) #:on-opaque 'skip)

'(0 1)

> (struct->list 'not-a-struct #:on-opaque 'return-false)

#f

> (struct->list 'not-a-struct #:on-opaque 'skip)

'()

65

27 Syntax

(require unstable/syntax)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(current-syntax-context) → (or/c syntax? false/c)

(current-syntax-context stx) → void?

stx : (or/c syntax? false/c)

The current contextual syntax object, defaulting to #f. It determines the special form name
that prefixes syntax errors created by wrong-syntax.

(wrong-syntax stx format-string v ...) → any

stx : syntax?

format-string : string?

v : any/c

Raises a syntax error using the result of (current-syntax-context) as the “major” syn-
tax object and the provided stx as the specific syntax object. (The latter, stx , is usually
the one highlighted by DrRacket.) The error message is constructed using the format string
and arguments, and it is prefixed with the special form name as described under current-
syntax-context.

Examples:
> (wrong-syntax #'here "expected ∼s" 'there)

?: expected there
> (parameterize ((current-syntax-context #'(look over here)))

(wrong-syntax #'here "expected ∼s" 'there))

eval:4:0: look: expected there at: here in: (look over here)

A macro using wrong-syntax might set the syntax context at the very beginning of its
transformation as follows:

(define-syntax (my-macro stx)

(parameterize ((current-syntax-context stx))

(syntax-case stx ()

__)))

Then any calls to wrong-syntax during the macro’s transformation will refer to my-macro

(more precisely, the name that referred to my-macro where the macro was used, which may
be different due to renaming, prefixing, etc).

66

(define/with-syntax pattern expr)

Definition form of with-syntax. That is, it matches the syntax object result of expr against
pattern and creates pattern variable definitions for the pattern variables of pattern .

Examples:
> (define/with-syntax (px ...) #'(a b c))

> (define/with-syntax (tmp ...) (generate-temporaries #'(px ...)))

> #'([tmp px] ...)

#<syntax:7:0 ((a5 a) (b6 b) (c7 c))>

(define-pattern-variable id expr)

Evaluates expr and binds it to id as a pattern variable, so id can be used in subsequent
syntax patterns.

Examples:
> (define-pattern-variable name #'Alice)

> #'(hello name)

#<syntax:9:0 (hello Alice)>

(with-temporaries (temp-id ...) . body)

Evaluates body with each temp-id bound as a pattern variable to a freshly generated iden-
tifier.

Example:
> (with-temporaries (x) #'(lambda (x) x))

#<syntax:10:0 (lambda (x8) x8)>

(generate-temporary [name-base]) → identifier?

name-base : any/c = 'g

Generates one fresh identifier. Singular form of generate-temporaries. If name-base
is supplied, it is used as the basis for the identifier’s name.

(generate-n-temporaries n) → (listof identifier?)

n : exact-nonnegative-integer?

Generates a list of n fresh identifiers.

(current-recorded-disappeared-uses)

67

→ (or/c (listof identifier?) false/c)

(current-recorded-disappeared-uses ids) → void?

ids : (or/c (listof identifier?) false/c)

Parameter for tracking disappeared uses. Tracking is “enabled” when the parameter has a
non-false value. This is done automatically by forms like with-disappeared-uses.

(with-disappeared-uses stx-expr)

stx-expr : syntax?

Evaluates the stx-expr , catching identifiers looked up using syntax-local-

value/catch. Adds the caught identifiers to the 'disappeared-uses syntax property
of the resulting syntax object.

(syntax-local-value/record id predicate) → any/c

id : identifier?

predicate : (-> any/c boolean?)

Looks up id in the syntactic environment (as syntax-local-value). If the lookup suc-
ceeds and returns a value satisfying the predicate, the value is returned and id is recorded
as a disappeared use. If the lookup fails or if the value does not satisfy the predicate, #f is
returned and the identifier is not recorded as a disappeared use.

(record-disappeared-uses ids) → void?

ids : (listof identifier?)

Add ids to (current-recorded-disappeared-uses).

If not used within the extent of a with-disappeared-uses form or similar, has no effect.

(format-symbol fmt v ...) → symbol?

fmt : string?

v : (or/c string? symbol? identifier? keyword? char? number?)

Like format, but produces a symbol. The format string must use only ∼a placeholders.
Identifiers in the argument list are automatically converted to symbols.

Example:
> (format-symbol "make-∼a" 'triple)

'make-triple

68

(format-id lctx

[#:source src

#:props props

#:cert cert]
fmt

v ...) → identifier?

lctx : (or/c syntax? #f)

src : (or/c syntax? #f) = #f

props : (or/c syntax? #f) = #f

cert : (or/c syntax? #f) = #f

fmt : string?

v : (or/c string? symbol? identifier? keyword? char? number?)

Like format-symbol, but converts the symbol into an identifier using lctx for the lexical
context, src for the source location, props for the properties, and cert for the inactive
certificates. (See datum->syntax.)

The format string must use only ∼a placeholders. Identifiers in the argument list are auto-
matically converted to symbols.

Examples:
> (define-syntax (make-pred stx)

(syntax-case stx ()

[(make-pred name)

(format-id #'name "∼a?" (syntax-e #'name))]))

> (make-pred pair)

#<procedure:pair?>

> (make-pred none-such)

reference to undefined identifier: none-such?
> (define-syntax (better-make-pred stx)

(syntax-case stx ()

[(better-make-pred name)

(format-id #'name #:source #'name

"∼a?" (syntax-e #'name))]))

> (better-make-pred none-such)

reference to undefined identifier: none-such?

(Scribble doesn’t show it, but the DrRacket pinpoints the location of the second error but not
of the first.) This binding was

added by Vincent
St-Amour.

69

(format-unique-id lctx

[#:source src

#:props props

#:cert cert]
fmt

v ...) → identifier?

lctx : (or/c syntax? #f)

src : (or/c syntax? #f) = #f

props : (or/c syntax? #f) = #f

cert : (or/c syntax? #f) = #f

fmt : string?

v : (or/c string? symbol? identifier? keyword? char? number?)

Like format-id, but returned identifiers are guaranteed to be unique.

(internal-definition-context-apply intdef-ctx

stx) → syntax?

intdef-ctx : internal-definition-context?

stx : syntax?

Applies the renamings of intdef-ctx to stx .

(syntax-local-eval stx [intdef-ctx]) → any

stx : syntax?

intdef-ctx : (or/c internal-definition-context? #f) = #f

Evaluates stx as an expression in the current transformer environment (that is, at phase level
1), optionally extended with intdef-ctx .

Examples:
> (define-syntax (show-me stx)

(syntax-case stx ()

[(show-me expr)

(begin

(printf "at compile time produces ∼s\n"
(syntax-local-eval #'expr))

#'(printf "at run time produes ∼s\n"
expr))]))

> (show-me (+ 2 5))

at compile time produces 7

at run time produes 7

> (define-for-syntax fruit 'apple)

> (define fruit 'pear)

> (show-me fruit)

70

at compile time produces apple

at run time produes pear The subsequent
bindings were
added by Sam
Tobin-Hochstadt.(with-syntax* ([pattern stx-expr] ...)

body ...+)

Similar to with-syntax, but the pattern variables are bound in the remaining stx-exprs as
well as the bodys, and the patterns need not bind distinct pattern variables; later bindings
shadow earlier bindings.

Example:
> (with-syntax* ([(x y) (list #'val1 #'val2)]

[nest #'((x) (y))])

#'nest)

#<syntax:22:0 ((val1) (val2))>

(syntax-map f stxl ...) → (listof A)

f : (-> syntax? A)

stxl : syntax?

Performs (map f (syntax->list stxl) ...).

Example:
> (syntax-map syntax-e #'(a b c))

'(a b c) The subsequent
bindings were
added by Carl
Eastlund
<cce@racket-
lang.org>.

(syntax-list template ...)

This form constructs a list of syntax objects based on the given templates. It is equivalent to
(syntax->list #'(template ...)).

Example:
> (with-syntax ([(x ...) #'(1 2 3)]) (syntax-list x ...))

'(#<syntax:3:0 1> #<syntax:3:0 2> #<syntax:3:0 3>)

(to-syntax datum

[#:stx stx

#:src src

#:ctxt ctxt

#:prop prop

#:cert cert]) → syntax?

datum : any/c

stx : (or/c false/c syntax?) = #f

src : src/c = stx

71

mailto:cce@racket-lang.org
mailto:cce@racket-lang.org

ctxt : (or/c false/c syntax?) = stx

prop : (or/c false/c syntax?) = stx

cert : (or/c false/c syntax?) = stx

A wrapper for datum->syntax with keyword arguments.

The "master" keyword #:stx sets all attributes from a single syntax object, defaulting to #f

for unadorned syntax objects.

The individual keywords #:src, #:ctxt, #:prop, and #:cert override #:stx for individ-
ual syntax object attributes. They control source src information, lexical context information,
syntax object properties, and syntax certificates, respectively.

Examples:
(define blank-stx (to-syntax 'car))

> blank-stx

#<syntax car>

> (syntax-e blank-stx)

'car

> (free-identifier=? blank-stx #'car)

#f

(define full-stx (to-syntax 'car #:stx #'here))

> full-stx

#<syntax:7:0 car>

> (syntax-e full-stx)

'car

> (free-identifier=? full-stx #'car)

#t

(define partial-stx (to-syntax 'car #:ctxt #'here))

> partial-stx

#<syntax car>

> (syntax-e partial-stx)

'car

> (free-identifier=? partial-stx #'car)

#t

27.1 Syntax Object Source Locations

(syntax-source-directory stx) → (or/c path? #f)

stx : syntax?

(syntax-source-file-name stx) → (or/c path? #f)

stx : syntax?

These produce the directory and file name, respectively, of the path with which stx is asso-

72

ciated, or #f if stx is not associated with a path.

Examples:
(define loc

(list (build-path "/tmp" "dir" "somewhere.ss")

#f #f #f #f))

(define stx1 (datum->syntax #f 'somewhere loc))

> (syntax-source-directory stx1)

#<path:/tmp/dir/>

> (syntax-source-file-name stx1)

#<path:somewhere.ss>

(define stx2 (datum->syntax #f 'nowhere #f))

> (syntax-source-directory stx2)

#f

> (syntax-source-directory stx2)

#f

27.2 Macro Transformers

(redirect-transformer id) → (-> syntax? syntax?)

id : identifier?

Constructs a function that behaves like a rename transformer; it does not cooperate with
syntax-local-value like a rename transformer does, but unlike a rename transformer it
may be used as a function to transform a syntax object referring to one identifier into a syntax
object referring to another.

Examples:
> ((redirect-transformer #'x) #'a)

#<syntax:3:0 x>

> ((redirect-transformer #'y) #'(a b c))

#<syntax:4:0 (y b c)>

(head-expand stx [stop-list] intdef-ctx) → syntax?

stx : syntax?

stop-list : (listof identifier?) = null

intdef-ctx : (or/c internal-definitions-context?

(non-empty-listof internal-definitions-context?)

#f)

This function performs head expansion on stx . In other words, it uses local-expand to ex-
pand stx until its head identifier is a core form (a member of (kernel-form-identifier-
list)) or a member of stop-list , or until it can not be expanded further (e.g. due to

73

error).

It is equivalent to (local-expand stx (syntax-local-context) (append stop-

ids (kernel-form-identifier-list) intdef-ctx)).

(trampoline-transformer f) → (-> syntax? syntax?)

f : (-> (-> syntax? void?) (-> syntax? syntax?) syntax? syntax?)

Produces a transformer that can emit multiple results during macro expansion, to be spliced
together via begin. This can be useful for compound expansion that relies on transformer
definitions, as well as on expansion state that is difficult to marshall.

Specifically, f is invoked with three arguments. The first is the function used to emit inter-
mediate results (other than the last one). The second applies the syntax mark used for the
entire expansion; syntax-local-introduce will not be reliable during this process. The
third is the syntax object to expand.

Examples:
> (define-syntax magic-begin

(trampoline-transformer

(lambda (emit intro stx)

(syntax-case stx ()

[(_ term ...)

(let loop ([terms (syntax->list #'(term ...))])

(cond

[(null? terms) #'(begin)]

[(null? (cdr terms)) (car terms)]

[else

(printf "Presto: ∼s!\n"
(syntax->datum (car terms)))

(emit (car terms))

(loop (cdr terms))]))]))))

(magic-begin

(define x 1)

(define y 2)

(+ x y))

Presto: (define x 1)!

Presto: (define y 2)!

3

(quote-transformer x) → syntax?

x : any/c

Produces a syntax object representing an expression that reconstructs x when executed, in-
cluding faithfully reconstructing any syntax objects contained in x . Note that quote nor-

74

mally converts syntax objects to non-syntax data, and quote-syntax does the opposite.

Examples:
> (define-for-syntax x (list 1 #'(2 3) 4))

> (define-syntax (the-many-faces-of-x stx)

(with-syntax ([x x] [qx (quote-transformer x)])

#'(list 'x

(quote-syntax x)

qx)))

> (the-many-faces-of-x)

'((1 (2 3) 4) #<syntax (1 (2 3) 4)> (1 #<syntax:3:0 (2 3)> 4))

75

28 Planet Package Macros

(require unstable/planet-syntax)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(syntax-source-planet-package stx)

→ (or/c (list/c string?

string?

exact-nonnegative-integer?

exact-nonnegative-integer?)

#f)

stx : syntax?

(syntax-source-planet-package-owner stx) → (or/c string? #f)

stx : syntax?

(syntax-source-planet-package-name stx) → (or/c string? #f)

stx : syntax?

(syntax-source-planet-package-major stx)

→ (or/c exact-nonnegative-integer? #f)

stx : syntax?

(syntax-source-planet-package-minor stx)

→ (or/c exact-nonnegative-integer? #f)

stx : syntax?

(syntax-source-planet-package-symbol stx

[text]) → (or/c symbol? #f)

stx : syntax?

text : (or/c text? #f) = #f

These functions extract the planet package with which stx is associated, if any, based on its
source location information and the currently installed set of planet packages. They produce,
respectively, the planet package s-expression, its owner, name, major version number, minor
version number, or a symbol corresponding to a planet module path. They each produce
#f if stx is not associated with a planet package.

Examples:
(define loc

(list (build-path (current-directory) "file.ss")

#f #f #f #f))

(define stx (datum->syntax #f 'stx loc))

> (syntax-source-planet-package stx)

#f

> (syntax-source-planet-package-owner stx)

#f

> (syntax-source-planet-package-name stx)

76

#f

> (syntax-source-planet-package-major stx)

#f

> (syntax-source-planet-package-minor stx)

#f

> (syntax-source-planet-package-symbol stx)

#f

> (syntax-source-planet-package-symbol stx "there")

#f

(make-planet-path stx id) → syntax?

stx : syntax?

id : (or/c identifier? #f)

Constructs a syntax object representing a require spec for the planet package from which
stx arises, with suffix id (if any).

Examples:
(define loc

(list (build-path (current-directory) "file.ss")

#f #f #f #f))

(define stx (datum->syntax #f 'stx loc))

> (make-planet-path stx #f)

#<syntax (planet #f)>

> (make-planet-path stx #'there)

#<syntax:5:0 (planet #f)>

77

29 Text Representations

(require unstable/text)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This module provides tools for manipulating and converting textual data.

29.1 Contracts and Predicates

text/c : flat-contract?

(text? v) → boolean?

v : any/c

This contract and predicate recognize text values: strings, byte strings, symbols, and key-
words, as well as syntax objects containing them.

Examples:
> (text? "text")

#t

> (text? #"text")

#t

> (text? 'text)

#t

> (text? '#:text)

#t

> (text? #'"text")

#t

> (text? #'#"text")

#t

> (text? #'text)

#t

> (text? #'#:text)

#t

> (text? '(not text))

#f

(string-literal? v) → boolean?

v : any/c

(bytes-literal? v) → boolean?

v : any/c

78

(keyword-literal? v) → boolean?

v : any/c

These predicates recognize specific text types stored in syntax objects.

Examples:
> (string-literal? #'"literal")

#t

> (string-literal? "not literal")

#f

> (bytes-literal? #'#"literal")

#t

> (bytes-literal? #"not literal")

#f

> (keyword-literal? #'#:literal)

#t

> (keyword-literal? '#:not-literal)

#f

29.2 Text Conversions and Concatenation

(text->string [#:before before

#:between between

#:after after]
text ...) → string?

before : text/c = ""

between : text/c = ""

after : text/c = ""

text : text/c

(text->bytes [#:before before

#:between between

#:after after]
text ...) → bytes?

before : text/c = ""

between : text/c = ""

after : text/c = ""

text : text/c

79

(text->symbol [#:before before

#:between between

#:after after]
text ...) → symbol?

before : text/c = ""

between : text/c = ""

after : text/c = ""

text : text/c

(text->keyword [#:before before

#:between between

#:after after]
text ...) → keyword?

before : text/c = ""

between : text/c = ""

after : text/c = ""

text : text/c

These functions convert text values to specific types. They concatenate each text argument,
adding before and after to the front and back of the result and between between each
argument.

Examples:
> (text->string #"concat" #'enate)

"concatenate"

> (text->bytes #:between "-" 'concat #'#:enate)

#"concat-enate"

> (text->symbol #:before "(" #:after ")" '#:concat #'"enate")

'|(concatenate)|

> (text->keyword #:before #'< #:between #'- #:after #'> "concat" #'#"enate")

'#:<concat-enate>

(text->string-literal [#:before before

#:between between

#:after after

#:stx stx]
text ...) → string-literal?

before : text/c = ""

between : text/c = ""

after : text/c = ""

stx : (or/c syntax? false/c) = #f

text : text/c

80

(text->bytes-literal [#:before before

#:between between

#:after after

#:stx stx]
text ...) → bytes-literal?

before : text/c = ""

between : text/c = ""

after : text/c = ""

stx : (or/c syntax? false/c) = #f

text : text/c

(text->identifier [#:before before

#:between between

#:after after

#:stx stx]
text ...) → identifier?

before : text/c = ""

between : text/c = ""

after : text/c = ""

stx : (or/c syntax? false/c) = #f

text : text/c

(text->keyword-literal [#:before before

#:between between

#:after after

#:stx stx]
text ...) → keyword-literal?

before : text/c = ""

between : text/c = ""

after : text/c = ""

stx : (or/c syntax? false/c) = #f

text : text/c

These functions convert text values to specific syntax object types, deriving syntax object
properties from the stx argument. They concatenate each text argument, adding before

and after to the front and back of the result and between between each argument.

Examples:
> (text->string-literal #"concat" #'enate)

#<syntax "concatenate">

> (text->bytes-literal #:between "-" 'concat #'#:enate)

#<syntax #"concat-enate">

> (text->identifier #:before "(" #:after ")"

#:stx #'props

'#:concat #'"enate")

#<syntax:4:0 |(concatenate)|>

> (text->keyword-literal #:before #'< #:between #'- #:after #'>

#:stx #'props

81

"concat" #'#"enate")

#<syntax:5:0 #:<concat-enate>>

29.3 Text Comparisons

(text=? one two) → boolean?

one : text/c

two : text/c

(text<? one two) → boolean?

one : text/c

two : text/c

(text<=? one two) → boolean?

one : text/c

two : text/c

(text>? one two) → boolean?

one : text/c

two : text/c

(text>=? one two) → boolean?

one : text/c

two : text/c

These predicates compare the character content of two text values. They are equivalent to:

(text=? one two) = (string=? (text->string one) (text-

>string two))

(text<? one two) = (string<? (text->string one) (text-

>string two))

(text<=? one two) = (string<=? (text->string one) (text-

>string two))

(text>? one two) = (string>? (text->string one) (text-

>string two))

(text>=? one two) = (string>=? (text->string one) (text-

>string two))

Examples:
> (text=? #"x" #'y)

#f

> (text<? #"x" #'y)

#t

> (text<=? #"x" #'y)

#t

> (text>? #"x" #'y)

#f

> (text>=? #"x" #'y)

82

#f

83

30 Multiple Values

(require unstable/values)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This module provides tools for manipulating functions and expressions that produce multiple
values.

(values->list expr)

Produces a list of the values returned by expr .

Example:
> (values->list (values 1 2 3))

'(1 2 3)

(map2 f lst ...) → (listof B) (listof C)

f : (-> A ... (values B C))

lst : (listof A)

Produces a pair of lists of the respective values of f applied to the elements in lst ...

sequentially.

Example:
> (map2 (lambda (x) (values (+ x 1) (- x 1))) (list 1 2 3))

'(2 3 4)

'(0 1 2)

(map/values n f lst ...) → (listof B_1) ... (listof B_n)

n : natural-number/c

f : (-> A ... (values B_1 ... B_n))

lst : (listof A)

Produces lists of the respective values of f applied to the elements in lst ... sequentially.

Example:
> (map/values

3

(lambda (x)

(values (+ x 1) x (- x 1)))

(list 1 2 3))

'(2 3 4)

84

'(1 2 3)

'(0 1 2)

(foldr/values f vs lst ...) → B ...

f : (-> A ... B ... (values B ...))

vs : (list/c B ...)

lst : (listof A)

(foldl/values f vs lst ...) → B ...

f : (-> A ... B ... (values B ...))

vs : (list/c B ...)

lst : (listof A)

These functions combine the values in the lists lst ... using the multiple-valued function
f ; foldr/values traverses the lists right to left and foldl/values traverses left to right.

Examples:
(define (add/cons a b c d)

(values (+ a c) (cons b d)))

> (foldr/values add/cons (list 0 null)

(list 1 2 3 4) (list 5 6 7 8))

10

'(5 6 7 8)

> (foldl/values add/cons (list 0 null)

(list 1 2 3 4) (list 5 6 7 8))

10

'(8 7 6 5)

85

31 XML and CSS

(require unstable/web)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This module provides tools for programmatic creation of static web pages. It is based on the
XML collection; see documentation for xexpr?.

css/c : flat-contract?

(css? v) → boolean?

v : any/c

This contract and predicate pair recognizes CSS-expressions, which are described by the
following grammar:

css = (list style ...)

style-def = (cons selector (list property ...))

property = (list name value)

selector = text

name = text

value = text

Here, text is any of the datatypes described in §29 “Text Representations”.

xexpr/c : flat-contract?

This flat contract corresponds to xexpr?. It is reprovided from xml. In versions of PLT
Scheme before the implementation of xexpr/c, this module provides its own definition.

(write-css css [out]) → void?

css : css/c

out : output-port? = (current-output-port)

(write-xexpr css [out]) → void?

css : css/c

out : output-port? = (current-output-port)

These functions write CSS-expressions and X-expressions, respectively, to output ports, by

86

their canonical text representations.

(create-stylesheet file css) → void?

file : path-string?

css : css/c

(create-webpage file xexpr) → void?

file : path-string?

xexpr : xexpr/c

These functions write style sheets (represented as CSS-expressions) or webpages (repre-
sented as X-expressions) to files.

87

32 Polymorphic Contracts

(require unstable/poly-c)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(poly/c (x ...) c)

Creates a contract for polymorphic functions that may inspect their arguments. Each function
is protected by c , where each x is bound in c and refers to a polymorphic type that is
instantiated each time the function is applied.

At each application of a function, the poly/c contract constructs a new weak, eq?-based
hash table for each x . Values flowing into the polymorphic function (i.e. values protected
by some x in negative position with respect to poly/c) are stored in the hash table. Values
flowing out of the polymorphic function (i.e. protected by some x in positive position with
respect to poly/c) are checked for their presence in the hash table. If they are present, they
are returned; otherwise, a contract violation is signalled.

Examples:
> (define/contract (check x y) (poly/c [X] (boolean? X . -> . X))

(if (or (not x) (equal? y 'surprise))

'invalid

y))

> (check #t 'ok)

'ok

> (check #f 'ignored)

eval:2.0: (function check) broke the contract (poly/c (X)
...) on check; expected a(n) X; got: ’invalid
> (check #t 'surprise)

eval:2.0: (function check) broke the contract (poly/c (X)
...) on check; expected a(n) X; got: ’invalid

(parametric/c (x ...) c)

Creates a contract for parametric polymorphic functions. Each function is protected by c ,
where each x is bound in c and refers to a polymorphic type that is instantiated each time
the function is applied.

At each application of a function, the parametric/c contract constructs a new opaque
wrapper for each x ; values flowing into the polymorphic function (i.e. values protected by
some x in negative position with respect to parametric/c) are wrapped in the correspond-
ing opaque wrapper. Values flowing out of the polymorphic function (i.e. values protected
by some x in positive position with respect to parametric/c) are checked for the appro-

88

priate wrapper. If they have it, they are unwrapped; if they do not, a contract violation is
signalled.

Examples:
> (define/contract (check x y) (parametric/c [X] (boolean? X . ->

. X))

(if (or (not x) (equal? y 'surprise))

'invalid

y))

> (check #t 'ok)

'ok

> (check #f 'ignored)

eval:2.0: (function check) broke the contract (parametric/c
(X) ...) on check; expected a(n) X; got: ’invalid
> (check #t 'surprise)

'surprise

(memory/c positive? name) → contract?

positive? : boolean?

name : any/c

This function constructs a contract that records values flowing in one direction in a fresh,
weak hash table, and looks up values flowing in the other direction, signalling a contract
violation if those values are not in the table.

If positive? is true, values in positive position get stored and values in negative position
are checked. Otherwise, the reverse happens.

(opaque/c positive? name) → contract?

positive? : boolean?

name : any/c

This function constructs a contract that wraps values flowing in one direction in a unique,
opaque wrapper, and unwraps values flowing in the other direction, signalling a contract
violation if those values are not wrapped.

If positive? is true, values in positive position get wrapped and values in negative position
get unwrapped. Otherwise, the reverse happens.

89

33 Finding Mutated Variables

(require unstable/mutated-vars)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(find-mutated-vars stx [dict]) → dict?

stx : syntax?

dict : dict? = (make-immutable-free-id-table)

Traverses stx , which should be module-level-form in the sense of the grammar for fully-
expanded forms, and records all of the variables that are mutated. Each mutated variable is
added to dict , mapped to #t. If dict is mutable, as determined by dict-mutable?, then
the table is updated destructively. Otherwise, the table is updated functionally.

Examples:
> (define t (find-mutated-vars #'(begin (set! var 'foo) 'bar)))

> (dict-ref t #'var #f)

#t

> (dict-ref t #'other-var #f)

#f

> (define tbl (make-free-id-table))

> (find-mutated-vars #'(begin (set! var 'foo) 'bar) tbl)

#<mutable-free-id-table>

> (dict-ref tbl #'var #f)

#t

}

90

34 Find

(require unstable/find)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(find pred

x

[#:stop-on-found? stop-on-found?

#:stop stop

#:get-children get-children]) → list?

pred : (-> any/c any/c)

x : any/c

stop-on-found? : any/c = #f

stop : (or/c #f (-> any/c any/c)) = #f

get-children : (or/c #f (-> any/c (or/c #f list?))) = #f

Returns a list of all values satisfying pred contained in x (possibly including x itself).

If stop-on-found? is true, the children of values satisfying pred are not examined. If
stop is a procedure, then the children of values for which stop returns true are not exam-
ined (but the values themselves are; stop is applied after pred). Only the current branch of
the search is stopped, not the whole search.

The search recurs through pairs, vectors, boxes, and the accessible fields of structures. If
get-children is a procedure, it can override the default notion of a value’s children by
returning a list (if it returns false, the default notion of children is used).

No cycle detection is done, so find on a cyclic graph may diverge. To do cycle checking
yourself, use stop and a mutable table.

Examples:
> (find symbol? '((all work) and (no play)))

'(all work and no play)

> (find list? '#((all work) and (no play)) #:stop-on-found? #t)

'((all work) (no play))

> (find negative? 100

#:stop-on-found? #t

#:get-children (lambda (n) (list (- n 12))))

'(-8)

> (find symbol? (shared ([x (cons 'a x)]) x)

#:stop (let ([table (make-hasheq)])

(lambda (x)

(begin0 (hash-ref table x #f)

91

(hash-set! table x #t)))))

'(a)

(find-first pred

x

[#:stop stop

#:get-children get-children

#:default default]) → any/c

pred : (-> any/c any/c)

x : any/c

stop : (or/c #f (-> any/c any/c)) = #f

get-children : (or/c #f (-> any/c (or/c #f list?))) = #f

default : any/c = (lambda () (error))

Like find, but only returns the first match. If no matches are found, default is applied as
a thunk if it is a procedure or returned otherwise.

Examples:
> (find-first symbol? '((all work) and (no play)))

'all

> (find-first list? '#((all work) and (no play)))

'(all work)

> (find-first negative? 100

#:get-children (lambda (n) (list (- n 12))))

-8

> (find-first symbol? (shared ([x (cons 'a x)]) x))

'a

92

35 Interface-Oriented Programming for Classes

(require unstable/class-iop)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(define-interface name-id (super-ifc-id ...) (method-id ...))

Defines name-id as a static interface extending the interfaces named by the super-ifc-

ids and containing the methods specified by the method-ids.

A static interface name is used by the checked method call variants (send/i, send*/i,
and send/apply/i). When used as an expression, a static interface name evaluates to an
interface value.

Examples:
> (define-interface stack<%> () (empty? push pop))

> stack<%>

#<|interface:stack<%>|>

> (define stack%

(class* object% (stack<%>)

(define items null)

(define/public (empty?) (null? items))

(define/public (push x) (set! items (cons x items)))

(define/public (pop) (begin (car items) (set! items (cdr items))))

(super-new)))

(define-interface/dynamic name-id ifc-expr (method-id ...))

Defines name-id as a static interface with dynamic counterpart ifc-expr , which must
evaluate to an interface value. The static interface contains the methods named by the
method-ids. A run-time error is raised if any method-id is not a member of the dynamic
interface ifc-expr .

Use define-interface/dynamic to wrap interfaces from other sources.

Examples:
> (define-interface/dynamic object<%> (class-

>interface object%) ())

> object<%>

#<interface:object%>

(send/i obj-exp static-ifc-id method-id arg-expr ...)

93

Checked variant of send.

The argument static-ifc-id must be defined as a static interface. The method method-

id must be a member of the static interface static-ifc-id ; otherwise a compile-time
error is raised.

The value of obj-expr must be an instance of the interface static-ifc-id ; otherwise, a
run-time error is raised.

Examples:
> (define s (new stack%))

> (send/i s stack<%> push 1)

> (send/i s stack<%> popp)

eval:9:0: send/i: method not in static interface in: popp
> (send/i (new object%) stack<%> push 2)

send/i: interface check failed on: (object)

(send*/i obj-expr static-ifc-id (method-id arg-expr ...) ...)

Checked variant of send*.

Example:
> (send*/i s stack<%>

(push 2)

(pop))

(send/apply/i obj-expr static-ifc-id method-id arg-expr ... list-arg-expr)

Checked variant of send/apply.

Example:
> (send/apply/i s stack<%> push (list 5))

(define/i id static-ifc-id expr)

Checks that expr evaluates to an instance of static-ifc-id before binding it to id . If
id is subsequently changed (with set!), the check is performed again.

No dynamic object check is performed when calling a method (using send/i, etc) on a name
defined via define/i.

(init/i (id static-ifc-id maybe-default-expr) ...)

(init-field/i (id static-ifc-id maybe-default-expr) ...)

94

(init-private/i (id static-ifc-id maybe-default-expr) ...)

maybe-default-expr = ()

| default-expr

Checked versions of init and init-field. The value attached to each id is checked
against the given interface.

No dynamic object check is performed when calling a method (using send/i, etc) on a name
bound via one of these forms. Note that in the case of init-field/i this check omission
is unsound in the presence of mutation from outside the class. This should be fixed.

95

36 Sequences

(require unstable/sequence)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(in-syntax stx) → sequence?

stx : syntax?

Produces a sequence equivalent to (syntax->list lst).

An in-syntax application can provide better performance for syntax iteration when it ap-
pears directly in a for clause.

Example:
> (for/list ([x (in-syntax #'(1 2 3))])

x)

'(#<syntax:2:0 1> #<syntax:2:0 2> #<syntax:2:0 3>)

(in-pairs seq) → sequence?

seq : sequence?

Produces a sequence equivalent to (in-parallel (sequence-lift car seq)

(sequence-lift cdr seq)).

(in-sequence-forever seq val) → sequence?

seq : sequence?

val : any/c

Produces a sequence whose values are the elements of seq , followed by val repeated.

(sequence-lift f seq) → sequence?

f : procedure?

seq : sequence?

Produces the sequence of f applied to each element of seq .

Example:
> (for/list ([x (sequence-lift add1 (in-range 10))])

x)

'(1 2 3 4 5 6 7 8 9 10)

96

37 Hash Tables

(require unstable/hash)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This module provides tools for manipulating hash tables.

37.1 Hash Table Lookup

(hash-ref/check h k) → any/c

h : hash?

k : (lambda (k) (hash-has-key? h k))

Looks up key k in hash table h . Raises a contract error if h has no entry for k . Equivalent
to (hash-ref h k), except for the specific exception value raised.

Example:
> (hash-ref/check (make-immutable-hash '([1 . one] [2 . two] [3 .

three])) 2)

'two

(hash-ref/identity h k) → any/c

h : hash?

k : any/c

Looks up key k in hash table h . Returns k if h has no entry for k . Equivalent to (hash-ref

h k (lambda () k)).

Examples:
> (hash-ref/identity (make-immutable-hash '([1 . one] [2 .

two] [3 . three])) 2)

'two

> (hash-ref/identity (make-immutable-hash '([1 . one] [2 .

two] [3 . three])) 4)

4

(hash-ref/default h k v) → any/c

h : hash?

k : any/c

v : any/c

97

Looks up key k in hash table h . Returns v if h has no entry for k . Equivalent to (hash-ref

h k (lambda () v)).

Examples:
> (hash-ref/default (make-immutable-hash '([1 . one] [2 . two] [3 .

three])) 2 'other)

'two

> (hash-ref/default (make-immutable-hash '([1 . one] [2 . two] [3 .

three])) 4 'other)

'other

(hash-ref/failure h k f) → any/c

h : hash?

k : any/c

f : (-> any/c)

Looks up key k in hash table h . Returns the result of applying f (in tail position) if h has
no entry for k . Equivalent to (hash-ref h k f).

Examples:
> (hash-ref/failure (make-immutable-hash '([1 . one] [2 . two] [3 .

three])) 2 gensym)

'two

> (hash-ref/failure (make-immutable-hash '([1 . one] [2 . two] [3 .

three])) 4 gensym)

'g20638

37.2 Hash Table Accessors

(hash-equal? h) → boolean?

h : hash?

Reports whether h maps keys according to equal?.

Examples:
> (hash-equal? #hash())

#t

> (hash-equal? #hasheq())

#f

> (hash-equal? #hasheqv())

#f

(hash-has-key? h k) → boolean?

98

h : hash?

k : any/c

Reports whether h has an entry for k . This function is re-exported from scheme/base. In
versions of Racket before hash-has-key? was implemented, this module provides its own
definition.

Examples:
> (hash-has-key? (make-immutable-hash '([1 . one] [2 . two] [3 .

three])) 2)

#t

> (hash-has-key? (make-immutable-hash '([1 . one] [2 . two] [3 .

three])) 4)

#f

(hash-domain h) → list?

h : hash?

Produces the domain of a hash table as a list of keys.

Example:
> (hash-domain (make-immutable-hash '([1 . one] [2 . two] [3 .

three])))

'(1 2 3)

(hash-range h) → list?

h : hash?

Produces the range of a hash table as a list of values.

Example:
> (hash-range (make-immutable-hash '([1 . one] [2 . two] [3 .

three])))

'(one two three)

37.3 Hash Table Combinations

(hash-union h0

h ...

[#:combine combine

#:combine/key combine/key])
→ (and/c hash? hash-can-functional-set?)

h0 : (and/c hash? hash-can-functional-set?)

99

h : hash?

combine : (-> any/c any/c any/c)

= (lambda _ (error 'hash-union ...))

combine/key : (-> any/c any/c any/c any/c)

= (lambda (k a b) (combine a b))

Computes the union of h0 with each hash table h by functional update, adding each element
of each h to h0 in turn. For each key k and value v, if a mapping from k to some value v0

already exists, it is replaced with a mapping from k to (combine/key k v0 v).

Examples:
> (hash-union (make-immutable-hash '([1 . one])) (make-immutable-

hash '([2 . two])) (make-immutable-hash '([3 . three])))

'#hash((1 . one) (2 . two) (3 . three))

> (hash-union (make-immutable-hash '([1 one uno] [2 two dos]))

(make-immutable-hash '([1 ein une] [2 zwei deux]))

#:combine/key (lambda (k v1 v2) (append v1 v2)))

'#hash((1 . (one uno ein une)) (2 . (two dos zwei deux)))

(hash-union! h0

h ...

[#:combine combine

#:combine/key combine/key]) → void?

h0 : (and/c hash? hash-mutable?)

h : hash?

combine : (-> any/c any/c any/c)

= (lambda _ (error 'hash-union ...))

combine/key : (-> any/c any/c any/c any/c)

= (lambda (k a b) (combine a b))

Computes the union of h0 with each hash table h by mutable update, adding each element
of each h to h0 in turn. For each key k and value v, if a mapping from k to some value v0

already exists, it is replaced with a mapping from k to (combine/key k v0 v).

Examples:
(define h (make-hash))

> h

'#hash()

> (hash-union! h (make-immutable-hash '([1 one uno] [2 two dos])))

> h

'#hash((1 . (one uno)) (2 . (two dos)))

> (hash-union! h

(make-immutable-hash '([1 ein une] [2 zwei deux]))

#:combine/key (lambda (k v1 v2) (append v1 v2)))

> h

'#hash((1 . (one uno ein une)) (2 . (two dos zwei deux)))

100

38 Match

(require unstable/match)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(== val comparator)

(== val)

A match expander which checks if the matched value is the same as val when compared by
comparator . If comparator is not provided, it defaults to equal?.

Examples:
> (match (list 1 2 3)

[(== (list 1 2 3)) 'yes]

[_ 'no])

'yes

> (match (list 1 2 3)

[(== (list 1 2 3) eq?) 'yes]

[_ 'no])

'no

> (match (list 1 2 3)

[(list 1 2 (== 3 =)) 'yes]

[_ 'no])

'yes The subsequent
bindings were
added by Carl
Eastlund
<cce@racket-
lang.org>.

(match? val-expr pat ...)

Returns #t if the result of val-expr matches any of pat , and returns #f otherwise.

Examples:
> (match? (list 1 2 3)

(list a b c)

(vector x y z))

#t

> (match? (vector 1 2 3)

(list a b c)

(vector x y z))

#t

> (match? (+ 1 2 3)

(list a b c)

(vector x y z))

#f

101

mailto:cce@racket-lang.org
mailto:cce@racket-lang.org

(as ([lhs-id rhs-expr] ...) pat ...)

As a match expander, binds each lhs-id as a pattern variable with the result value of rhs-
expr , and continues matching each subsequent pat .

Example:
> (match (list 1 2 3)

[(as ([a 0]) (list b c d)) (list a b c d)])

'(0 1 2 3)

102

39 Skip Lists

(require unstable/skip-list)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

Skip lists are a simple, efficient data structure for mutable dictionaries with totally ordered
keys. They were described in the paper “Skip Lists: A Probabilistic Alternative to Balanced
Trees” by William Pugh in Communications of the ACM, June 1990, 33(6) pp668-676.

A skip-list is a dictionary (dict? from racket/dict). It also supports extensions of the
dictionary interface for iterator-based search and mutation.

(make-skip-list =? <?) → skip-list?

=? : (any/c any/c . -> . any/c)

<? : (any/c any/c . -> . any/c)

Makes a new empty skip-list. The skip-list uses =? and <? to order keys.

Examples:
> (define skip-list (make-skip-list = <))

> (skip-list-set! skip-list 3 'apple)

> (skip-list-set! skip-list 6 'cherry)

> (dict-map skip-list list)

'((3 apple) (6 cherry))

> (skip-list-ref skip-list 3)

'apple

> (skip-list-remove! skip-list 6)

> (skip-list-count skip-list)

1

(skip-list? v) → boolean?

v : any/c

Returns #t if v is a skip-list, #f otherwise.

(skip-list-ref skip-list key [default]) → any/c

skip-list : skip-list?

key : any/c

default : any/c = (lambda () (error))

103

(skip-list-set! skip-list key value) → void?

skip-list : skip-list?

key : any/c

value : any/c

(skip-list-remove! skip-list key) → void?

skip-list : skip-list?

key : any/c

(skip-list-count skip-list) → exact-nonnegative-integer?

skip-list : skip-list?

(skip-list-iterate-first skip-list) → (or/c skip-list-iter? #f)

skip-list : skip-list?

(skip-list-iterate-next skip-list iter)

→ (or/c skip-list-iter? #f)

skip-list : skip-list?

iter : skip-list-iter?

(skip-list-iterate-key skip-list iter) → any/c

skip-list : skip-list?

iter : skip-list-iter?

(skip-list-iterate-value skip-list iter) → any/c

skip-list : skip-list?

iter : skip-list-iter?

Implementations of dict-ref, dict-set!, dict-remove!, dict-count, dict-

iterate-first, dict-iterate-next, dict-iterate-key, and dict-iterate-

value, respectively.

(skip-list-iterate-greatest/<? skip-list

key)

→ (or/c skip-list-iter? #f)

skip-list : skip-list?

key : any/c

(skip-list-iterate-greatest/<=? skip-list

key)

→ (or/c skip-list-iter? #f)

skip-list : skip-list?

key : any/c

(skip-list-iterate-least/>? skip-list key)

→ (or/c skip-list-iter? #f)

skip-list : skip-list?

key : any/c

(skip-list-iterate-least/>=? skip-list key)

→ (or/c skip-list-iter? #f)

skip-list : skip-list?

key : any/c

104

Return the position of, respectively, the greatest key less than key , the greatest key less than
or equal to key , the least key greater than key , and the least key greater than or equal to
key .

(skip-list-iterate-set-key! skip-list

iter

key) → void?

skip-list : skip-list?

iter : skip-list-iter?

key : any/c

(skip-list-iterate-set-value! skip-list

iter

value) → void?

skip-list : skip-list?

iter : skip-list-iter?

value : any/c

Set the key and value, respectively, at the position iter in skip-list .

Warning: Changing a position’s key to be less than its predecessor’s key or greater than
its successor’s key results in an out-of-order skip-list, which may cause comparison-based
operations to behave incorrectly.

(skip-list-iter? v) → boolean?

v : any/c

Returns #t if v represents a position in a skip-list, #f otherwise.

105

40 Interval Maps

(require unstable/interval-map)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

An interval-map is a mutable dictionary-like data structure where mappings are added by
half-open intervals and queried by discrete points. Interval-maps can be used with any total
order. Internally, an interval-map uses a skip-list (unstable/skip-list) of intervals for
efficient query and update.

Interval-maps implement the dictionary (racket/dict) interface to a limited extent. Only
dict-ref and the iteraction-based methods (dict-iterate-first, dict-map, etc) are
supported. For the iteration-based methods, the mapping’s keys are considered the pairs of
the start and end positions of the mapping’s intervals.

Examples:
> (define r (make-numeric-interval-map))

> (interval-map-set! r 1 5 'apple)

> (interval-map-set! r 6 10 'pear)

> (interval-map-set! r 3 6 'banana)

> (dict-map r list)

'(((1 . 3) apple) ((3 . 6) banana) ((6 . 10) pear))

(make-interval-map =? <? [translate]) → interval-map?

=? : (any/c any/c . -> . any/c)

<? : (any/c any/c . -> . any/c)

translate : (or/c (any/c any/c . -> . (any/c . -> . any/c)) #f)

= #f

Makes a new empty interval-map. The interval-map uses =? and <? to order the endpoints
of intervals.

If translate is a procedure, the interval-map supports contraction and expansion of re-
gions of its domain via interval-map-contract! and interval-map-expand!. See
also make-numeric-interval-map.

(make-numeric-interval-map) → interval-map-with-translate?

Makes a new empty interval-map suitable for representing numeric ranges.

Equivalent to

(make-interval-map = < (lambda (x y) (lambda (z) (+ z (- y x)))))

106

(interval-map? v) → boolean?

v : any/c

Returns #t if v is an interval-map, #f otherwise.

(interval-map-with-translate? v) → boolean?

v : any/c

Returns #t if v is an interval-map constructed with support for translation of keys, #f oth-
erwise.

(interval-map-ref interval-map

position

[default]) → any/c

interval-map : interval-map?

position : any/c

default : any/c = (lambda () (error))

Return the value associated with position in interval-map . If no mapping is found,
default is applied if it is a procedure, or returned otherwise.

(interval-map-set! interval-map

start

end

value) → void?

interval-map : interval-map?

start : any/c

end : any/c

value : any/c

Updates interval-map , associating every position in [start , end) with value .

Existing interval mappings contained in [start , end) are destroyed, and partly overlap-
ping intervals are truncated. See interval-map-update*! for an updating procedure that
preserves distinctions within [start , end).

(interval-map-update*! interval-map

start

end

updater

[default]) → void?

interval-map : interval-map?

107

start : any/c

end : any/c

updater : (any/c . -> . any/c)

default : any/c = (lambda () (error))

Updates interval-map , associating every position in [start , end) with the result of ap-
plying updater to the position’s previously associated value, or to the default value pro-
duced by default if no mapping exists.

Unlike interval-map-set!, interval-map-update*! preserves existing distinctions
within [start , end).

(interval-map-remove! interval-map

start

end) → void?

interval-map : interval-map?

start : any/c

end : any/c

Removes the value associated with every position in [start , end).

(interval-map-expand! interval-map

start

end) → void?

interval-map : interval-map-with-translate?

start : any/c

end : any/c

Expands interval-map ’s domain by introducing a gap [start , end) and adjusting inter-
vals after start using (translate start end).

If interval-map was not constructed with a translate argument, an exception is raised.
If start is not less than end , an exception is raised.

(interval-map-contract! interval-map

start

end) → void?

interval-map : interval-map-with-translate?

start : any/c

end : any/c

Contracts interval-map ’s domain by removing all mappings on the interval [start , end)
and adjusting intervals after end using (translate end start).

If interval-map was not constructed with a translate argument, an exception is raised.

108

If start is not less than end , an exception is raised.

(interval-map-cons*! interval-map

start

end

v

[default]) → void?

interval-map : interval-map?

start : any/c

end : any/c

v : any/c

default : any/c = null

Same as the following:

(interval-map-update*! interval-map start end

(lambda (old) (cons v old))

default)

(interval-map-iter? v) → boolean?

v : any/c

Returns #t if v represents a position in an interval-map, #f otherwise.

109

41 Generics

(require unstable/generics)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(define-generics (name prop:name name?)

[method . kw-formals*]

...)

kw-formals* = (arg* ...)

| (arg* ...+ . rest-id)

| rest-id

arg* = id

| [id]

| keyword id

| keyword [id]

name : identifier?

prop:name : identifier?

name? : identifier?

method : identifier?

Defines name as a transformer binding for the static information about a new generic group.

Defines prop:name as a structure type property. Structure types implementing this generic
group should have this property where the value is a vector with one element per method
where each value is either #f or a procedure with the same arity as specified by kw-

formals* . (kw-formals* is similar to the kw-formals used by lambda, except no ex-
pression is given for optional arguments.) The arity of each method is checked by the guard
on the structure type property.

Defines name? as a predicate identifying instances of structure types that implement this
generic group.

Defines each method as a generic procedure that calls the corresponding method on val-
ues where name? is true. Each method must have a required by-position argument that is
free-identifier=? to name . This argument is used in the generic definition to locate the
specialization.

110

(generics name

[method . kw-formals*]

...)

name : identifier?

method : identifier?

Expands to

(define-generics (name prop:name name?)

[method . kw-formals*]

...)

where prop:name and name? are created with the lexical context of name .

(define-methods name definition ...)

name : identifier?

name must be a transformer binding for the static information about a new generic group.

Expands to a value usable as the property value for the structure type property of the name

generic group.

If the definitions define the methods of name , then they are used in the property value.

If any method of name is not defined, then #f is used to signify that the structure type does
not implement the particular method.

Allows define/generic to appear in definition

(define/generic local-name method-name)

local-name : identifier?

method-name : identifier?

When used inside define-methods, binds local-name to the generic for method-name .
This is useful for method specializations to use the generic methods on other values.

Syntactically an error when used outside define-methods.

Examples:
> (define-generics (printable prop:printable printable?)

(gen-print printable [port])

111

(gen-port-print port printable)

(gen-print* printable [port] #:width width #:height [height]))

> (define-struct num (v)

#:property prop:printable

(define-methods printable

(define/generic super-print gen-print)

(define (gen-print n [port (current-output-port)])

(fprintf port "Num: ∼a" (num-v n)))

(define (gen-port-print port n)

(super-print n port))

(define (gen-print* n [port (current-output-port)]

#:width w #:height [h 0])

(fprintf port "Num (∼ax∼a): ∼a" w h (num-v n)))))

> (define-struct bool (v)

#:property prop:printable

(define-methods printable

(define/generic super-print gen-print)

(define (gen-print b [port (current-output-port)])

(fprintf port "Bool: ∼a"
(if (bool-v b) "Yes" "No")))

(define (gen-port-print port b)

(super-print b port))

(define (gen-print* b [port (current-output-port)]

#:width w #:height [h 0])

(fprintf port "Bool (∼ax∼a): ∼a" w h

(if (bool-v b) "Yes" "No")))))

> (define x (make-num 10))

> (gen-print x)

Num: 10

> (gen-port-print (current-output-port) x)

Num: 10

> (gen-print* x #:width 100 #:height 90)

Num (100x90): 10

> (define y (make-bool #t))

> (gen-print y)

Bool: Yes

> (gen-port-print (current-output-port) y)

Bool: Yes

> (gen-print* y #:width 100 #:height 90)

Bool (100x90): Yes

112

42 Mark Parameters

(require unstable/markparam)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This library provides a simplified version of parameters that are backed by continuation
marks, rather than parameterizations. This means they are slightly slower, are not inherited
by child threads, do not have initial values, and cannot be imperatively mutated.

(struct mark-parameter ())

The struct for mark parameters. It is guaranteed to be serializable and transparent. If used as
a procedure, it calls mark-parameter-first on itself.

(mark-parameter-first mp [tag]) → any/c

mp : mark-parameter?

tag : continuation-prompt-tag?

= default-continuation-prompt-tag

Returns the first value of mp up to tag .

(mark-parameter-all mp [tag]) → list?

mp : mark-parameter?

tag : continuation-prompt-tag?

= default-continuation-prompt-tag

Returns the values of mp up to tag .

(mark-parameters-all mps none-v [tag]) → (listof vector?)

mps : (listof mark-parameter?)

none-v : [any/c #f]

tag : continuation-prompt-tag?

= default-continuation-prompt-tag

Returns the values of the mps up to tag . The length of each vector in the result list is
the same as the length of mps , and a value in a particular vector position is the value for
the corresponding mark parameter in mps . Values for multiple mark parameter appear in
a single vector only when the mark parameters are for the same continuation frame in the
current continuation. The none-v argument is used for vector elements to indicate the lack
of a value.

113

(mark-parameterize ([mp expr] ...) body-expr ...)

Parameterizes (begin body-expr ...) by associating each mp with the evaluation of
expr in the parameterization of the entire expression.

114

43 Debugging

(require unstable/debug)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This module provides macros and functions for printing out debugging information.

(debug options ... expr)

options = #:name name-expr

| #:source srcloc-expr

Writes debugging information about the evaluation of expr to the current error port. The
name and source location of the expression may be overridden by keyword options; their de-
faults are the syntactic form of the expression and its syntactic source location, respectively.

Examples:
> (debug 0)

>> eval:2.0: 0
result: 0

<< eval:2.0: 0
0

> (debug #:name "one, two, three" (values 1 2 3))

>> eval:3.0: "one, two, three"
results: (values 1 2 3)

<< eval:3.0: "one, two, three"
1

2

3

> (debug #:source (make-srcloc 'here 1 2 3 4)

(error 'function "something went wrong"))

>> here:1.2: (error ’function "something went wrong")
raised exception: function: something went wrong

<< here:1.2: (error ’function "something went wrong")
function: something went wrong

(dprintf fmt arg ...) → void?

fmt : string?

arg : any/c

Constructs a message in the same manner as format and writes it to (current-error-

port), with indentation reflecting the number of nested debug forms.

115

Examples:
> (dprintf "level: ∼a" 0)

level: 0
> (debug (dprintf "level: ∼a" 1))

>> eval:3.0: (dprintf "level: ∼a" 1)
level: 1
result: #<void>

<< eval:3.0: (dprintf "level: ∼a" 1)
> (debug (debug (dprintf "level: ∼a" 2)))

>> eval:4.0: (debug (dprintf "level: ∼a" 2))
>> eval:4.0: (dprintf "level: ∼a" 2)

level: 2
result: #<void>

<< eval:4.0: (dprintf "level: ∼a" 2)
result: #<void>

<< eval:4.0: (debug (dprintf "level: ∼a" 2))

(debugf function-expr argument ...)

argument = argument-expr

| argument-keyword argument-expr

Logs debugging information for (#%app function-expr argument ...), including the
evaluation and results of the function and each argument.

Example:
> (debugf + 1 2 3)

>> eval:2.0: debugf
>> eval:2.0: +

result: #<procedure:+>
<< eval:2.0: +
>> eval:2.0: 1

result: 1
<< eval:2.0: 1
>> eval:2.0: 2

result: 2
<< eval:2.0: 2
>> eval:2.0: 3

result: 3
<< eval:2.0: 3
result: 6

<< eval:2.0: debugf
6

(begin/debug expr ...)

116

(define/debug id expr)

(define/debug (head args) body ...+)

(define/private/debug id expr)

(define/private/debug (head args) body ...+)

(define/public/debug id expr)

(define/public/debug (head args) body ...+)

(define/override/debug id expr)

(define/override/debug (head args) body ...+)

(define/augment/debug id expr)

(define/augment/debug (head args) body ...+)

(let/debug ([lhs-id rhs-expr] ...) body ...+)

(let/debug loop-id ([lhs-id rhs-expr] ...) body ...+)

(let*/debug ([lhs-id rhs-expr] ...) body ...+)

(letrec/debug ([lhs-id rhs-expr] ...) body ...+)

(let-values/debug ([(lhs-id ...) rhs-expr] ...) body ...+)

(let*-values/debug ([(lhs-id ...) rhs-expr] ...) body ...+)

(letrec-values/debug ([(lhs-id ...) rhs-expr] ...) body ...+)

(with-syntax/debug ([pattern stx-expr] ...) body ...+)

(with-syntax*/debug ([pattern stx-expr] ...) body ...+)

(parameterize/debug ([param-expr value-expr] ...) body ...+)

These macros add logging based on debug to the evaluation of expressions in begin, de-
fine, define/private, define/public, define/override, define/augment, let,
let*, letrec, let-values, let*-values, letrec-values, with-syntax, with-

syntax*, and parameterize.

117

44 GUI libraries

44.1 DrRacket Language Levels

(require unstable/gui/language-level)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

language-level@ : unit?

This unit imports drracket:tool^ and exports language-level^.

language-level^ : signature

(make-language-level name

path

mixin ...

[#:number number

#:hierarchy hierarchy

#:summary summary

#:url url

#:reader reader])
→ (object-provides/c drracket:language:language<%>)

name : string?

path : module-path?

mixin : (-> class? class?)

number : integer? = ...

hierarchy : (listof (cons/c string? integer?)) = ...

summary : string? = name

url : (or/c string? #f) = #f

reader : (->* [] [any/c input-port?] (or/c syntax? eof-object?))

= read-syntax

Constructs a language level as an instance of
drracket:language:language<%> with the given name based on the lan-
guage defined by the module at path . Applies (drracket:language:get-
default-mixin) and the given mixins to simple-language-level% to
construct the class, and uses the optional keyword arguments to fill in the
language’s description and reader.

118

simple-language-level% : (class-provides/c drracket:language:language<%>

drracket:language:module-based-language<%>

drracket:language:simple-module-based-language<%>)

Equal to (drracket:language:module-based-language->language-

mixin (drracket:language:simple-module-based-language-

>module-based-language-mixin drracket:language:simple-

module-based-language%)).

(language-level-render-mixin to-sexp

show-void?)

→ (mixin-provides/c [drracket:language:language<%>] [])

to-sexp : (-> any/c any/c)

show-void? : boolean?

Produces a mixin that overrides render-value/format to apply to-sexp to
each value before printing it, and to skip void? values (pre-transformation) if
show-void? is #f.

(language-level-capability-mixin dict)

→ (mixin-provides/c [drracket:language:language<%>] [])

dict : dict?

Produces a mixin that augments capability-value to look up each key in
dict , producing the corresponding value if the key is found and deferring to
inner otherwise.

language-level-no-executable-mixin : (mixin-provides/c [drracket:language:language<%>] [])

Overrides create-executable to print an error message in a dialog box.

language-level-eval-as-module-mixin : (mixin-provides/c [drracket:language:language<%>

drracket:language:module-based-language<%>]

[])

Overrides front-end/complete-program to wrap terms from the definition
in a module based on the language level’s definition module. This duplicates
the behavior of the HtDP teaching languages, for instance.

language-level-macro-stepper-mixin : (mixin-provides/c [drracket:language:language<%>]

[])

This mixin enables the macro stepper for its language level.

language-level-check-expect-mixin : (mixin-provides/c [drracket:language:language<%>] [])

This mixin overrides on-execute to set up the check-expect test engine to a
language level similarly to the HtDP teaching languages.

119

(language-level-metadata-mixin reader-module

meta-lines

meta->settings

settings->meta)

→ (mixin-provides/c [drracket:language:language<%>] [])

reader-module : module-path?

meta-lines : exact-nonnegative-integer?

meta->settings : (-> string? any/c any/c)

settings->meta : (-> symbol? any/c string?)

This mixin constructs a language level that stores metadata in saved files allow-
ing Drracket to automatically switch back to this language level upon open-
ing them. It overrides get-reader-module, get-metadata, metadata-

>settings, and get-metadata-lines.

The resulting language level uses the reader from reader-module , and is rec-
ognized in files that start with a reader directive for that module path within
the first meta-lines lines. Metadata about the language’s settings is mar-
shalled between a string and a usable value (based on a default value) by meta-

>settings , and between a usable value for a current module (with a symbolic
name) by settings->meta .

44.2 Notify-boxes

(require unstable/gui/notify)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

notify-box% : class?

superclass: object%

A notify-box contains a mutable cell. The notify-box notifies its listeners when the contents
of the cell is changed.

Examples:
> (define nb (new notify-box% (value 'apple)))

> (send nb get)

'apple

> (send nb set 'orange)

> (send nb listen (lambda (v) (printf "New value: ∼s\n" v)))

> (send nb set 'potato)

New value: potato

120

(new notify-box% [value value]) → (is-a?/c notify-box%)

value : any/c

Creates a notify-box initially containing value .

(send a-notify-box get) → any/c

Gets the value currently stored in the notify-box.

(send a-notify-box set v) → void?

v : any/c

Updates the value stored in the notify-box and notifies the listeners.

(send a-notify-box listen listener) → void?

listener : (-> any/c any)

Adds a callback to be invoked on the new value when the notify-box’s contents
change.

(send a-notify-box remove-listener listener) → void?

listener : (-> any/c any)

Removes a previously-added callback.

(send a-notify-box remove-all-listeners) → void?

Removes all previously registered callbacks.

(notify-box/pref proc

[#:readonly? readonly?]) → (is-a?/c notify-box%)

proc : (case-> (-> any/c) (-> any/c void?))

readonly? : boolean? = #f

Creates a notify-box with an initial value of (proc). Unless readonly? is true, proc is
invoked on the new value when the notify-box is updated.

Useful for tying a notify-box to a preference or parameter. Of course, changes made directly
to the underlying parameter or state are not reflected in the notify-box.

Examples:
> (define animal (make-parameter 'ant))

> (define nb (notify-box/pref animal))

> (send nb listen (lambda (v) (printf "New value: ∼s\n" v)))

> (send nb set 'bee)

New value: bee

> (animal 'cow)

121

> (send nb get)

'bee

> (send nb set 'deer)

New value: deer

> (animal)

'deer

(define-notify name value-expr)

value-expr : (is-a?/c notify-box%)

Class-body form. Declares name as a field and get-name , set-name , and listen-name

as methods that delegate to the get, set, and listen methods of value.

The value-expr argument must evaluate to a notify-box, not just the initial contents for a
notify box.

Useful for aggregating many notify-boxes together into one “configuration” object.

Examples:
> (define config%

(class object%

(define-notify food (new notify-box% (value 'apple)))

(define-notify animal (new notify-box% (value 'ant)))

(super-new)))

> (define c (new config%))

> (send c listen-food

(lambda (v) (when (eq? v 'honey) (send c set-

animal 'bear))))

> (let ([food (get-field food c)])

(send food set 'honey))

> (send c get-animal)

'bear

(menu-option/notify-box parent

label

notify-box)

→ (is-a?/c checkable-menu-item%)

parent : (or/c (is-a?/c menu%) (is-a?/c popup-menu%))

label : label-string?

notify-box : (is-a?/c notify-box%)

Creates a checkable-menu-item% tied to notify-box . The menu item is checked when-
ever (send notify-box get) is true. Clicking the menu item toggles the value of
notify-box and invokes its listeners.

122

(check-box/notify-box parent

label

notify-box) → (is-a?/c check-box%)

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

label : label-string?

notify-box : (is-a?/c notify-box%)

Creates a check-box% tied to notify-box . The check-box is checked whenever (send
notify-box get) is true. Clicking the check box toggles the value of notify-box and
invokes its listeners.

(choice/notify-box parent

label

choices

notify-box) → (is-a?/c choice%)

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

label : label-string?

choices : (listof label-string?)

notify-box : (is-a?/c notify-box%)

Creates a choice% tied to notify-box . The choice control has the value (send notify-

box get) selected, and selecting a different choice updates notify-box and invokes its
listeners.

If the value of notify-box is not in choices , either initially or upon an update, an error is
raised.

(menu-group/notify-box parent

labels

notify-box)

→ (listof (is-a?/c checkable-menu-item%))

parent : (or/c (is-a?/c menu%) (is-a?/c popup-menu%))

labels : (listof label-string?)

notify-box : (is-a?/c notify-box%)

Returns a list of checkable-menu-item% controls tied to notify-box . A menu item
is checked when its label is (send notify-box get). Clicking a menu item updates
notify-box to its label and invokes notify-box ’s listeners.

123

44.3 Preferences

(require unstable/gui/prefs)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(pref:get/set pref) → (case-> (-> any/c) (-> any/c void?))

pref : symbol?

Returns a procedure that when applied to zero arguments retrieves the current value of the
preference (framework/preferences) named pref and when applied to one argument
updates the preference named pref .

44.4 Slideshow Presentations

(require unstable/gui/slideshow)

44.4.1 Text Formatting

(with-size size expr)

Sets current-font-size to size while running expr .

(with-scale scale expr)

Multiplies current-font-size by scale while running expr .

(big text)

(small text)

Scale current-font-size by 3/2 or 2/3, respectively, while running text .

(with-font font expr)

Sets current-main-font to font while running expr .

(with-style style expr)

124

Adds style to current-main-font (via cons) while running expr .

(bold text)

(italic text)

(subscript text)

(superscript text)

(caps text)

Adds the attributes for bold, italic, superscript, subscript, or small caps text, respectively, to
current-main-font while running text .

44.4.2 Pict Colors

(color c p) → pict?

c : color/c

p : pict?

Applies color c to picture p . Equivalent to (colorize p c).

(red pict) → pict?

pict : pict?

(orange pict) → pict?

pict : pict?

(yellow pict) → pict?

pict : pict?

(green pict) → pict?

pict : pict?

(blue pict) → pict?

pict : pict?

(purple pict) → pict?

pict : pict?

(black pict) → pict?

pict : pict?

(brown pict) → pict?

pict : pict?

(gray pict) → pict?

pict : pict?

(white pict) → pict?

pict : pict?

(cyan pict) → pict?

pict : pict?

125

(magenta pict) → pict?

pict : pict?

These functions apply appropriate colors to picture p.

(light color) → color/c

color : color/c

(dark color) → color/c

color : color/c

These functions produce ligher or darker versions of a color.

color/c : flat-contract?

This contract recognizes color strings, color% instances, and RGB color lists.

44.4.3 Pict Manipulation

(fill pict width height) → pict?

pict : pict?

width : (or/c real? #f)

height : (or/c real? #f)

Extends pict ’s bounding box to a minimum width and/or height , placing the original
picture in the middle of the space.

Conditional Manipulations

These pict transformers all take boolean arguments that determine whether to transform
the pict or leave it unchanged. These transformations can be useful for staged slides, as
the resulting pict always has the same size and shape, and its contents always appear at
the same position, but changing the boolean argument between slides can control when the
transformation occurs.

(show pict [show?]) → pict?

pict : pict?

show? : truth/c = #t

(hide pict [hide?]) → pict?

pict : pict?

hide? : truth/c = #t

126

These functions conditionally show or hide an image, essentially choosing between pict

and (ghost pict). The only difference between the two is the default behavior and
the opposite meaning of the show? and hide? booleans. Both functions are provided for
mnemonic purposes.

(strike pict [strike?]) → pict?

pict : pict?

strike? : truth/c = #t

Displays a strikethrough image by putting a line through the middle of pict if strike? is
true; produces pict unchanged otherwise.

(shade pict [shade? #:ratio ratio]) → pict?

pict : pict?

shade? : truth/c = #t

ratio : (real-in 0 1) = 1/2

Shades pict to show with ratio of its normal opacity; if ratio is 1 or shade? is #f,
shows pict unchanged.

Conditional Combinations

These pict control flow operators decide which pict of several to use. All branches are
evaluated; the resulting pict is a combination of the pict chosen by normal conditional flow
with ghost applied to all the other picts. The result is a picture large enough to accomodate
each alternative, but showing only the chosen one. This is useful for staged slides, as the pict
chosen may change with each slide but its size and position will not.

(pict-if maybe-combine test-expr then-expr else-expr)

maybe-combine =
| #:combine combine-expr

Chooses either then-expr or else-expr based on test-expr , similarly to if. Combines
the chosen, visible image with the other, invisible image using combine-expr , defaulting
to pict-combine.

(pict-cond maybe-combine [test-expr pict-expr] ...)

maybe-combine =
| #:combine combine-expr

127

Chooses a pict-expr based on the first successful test-expr , similarly to cond. Com-
bines the chosen, visible image with the other, invisible images using combine-expr , de-
faulting to pict-combine.

(pict-case test-expr maybe-combine [literals pict-expr] ...)

maybe-combine =
| #:combine combine-expr

Chooses a pict-expr based on test-expr and each list of literals , similarly to case.
Combines the chosen, visible image with the other, invisible images using combine-expr ,
defaulting to pict-combine.

(pict-match test-expr maybe-combine [pattern pict-expr] ...)

maybe-combine =
| #:combine combine-expr

Chooses a pict-expr based on test-expr and each pattern , similarly to match. Com-
bines the chosen, visible image with the other, invisible images using combine-expr , de-
faulting to pict-combine.

pict-combine

This syntax parameter determines the default pict combining form used by the above macros.
It defaults to lbl-superimpose.

(with-pict-combine combine-id body ...)

Sets pict-combine to refer to combine-id within each of the body terms, which are
spliced into the containing context.

44.4.4 Staged Slides

(staged [name ...] body ...)

Executes the body terms once for each stage name . The terms may include expressions and
mutually recursive definitions. Within the body, each name is bound to a number from 1 to
the number of stages in order. Furthermore, during execution stage is bound to the number
of the current stage and stage-name is bound to a symbol representing the name of the
current stage. By comparing stage to the numeric value of each name , or stage-name to

128

quoted symbols of the form 'name, the user may compute based on the progression of the
stages.

stage

stage-name

These keywords are bound during the execution of staged and should not be used otherwise.

(slide/staged [name ...] arg ...)

Creates a staged slide. Equivalent to (staged [name ...] (slide arg ...)).

Within a staged slide, the boolean arguments to hide, show, strike, and shade can be
used to determine in which stages to perform a transformation. The macros pict-if, pict-
cond, pict-case, and pict-match may also be used to create images which change natu-
rally between stages.

44.4.5 Tables

(tabular row

...

[#:gap gap

#:hgap hgap

#:vgap vgap

#:align align

#:halign halign

#:valign valign]) → pict?

row : (listof (or/c string? pict?))

gap : natural-number/c = gap-size

hgap : natural-number/c = gap

vgap : natural-number/c = gap

align : (->* [] [] #:rest (listof pict?) pict?)

= lbl-superimpose

halign : (->* [] [] #:rest (listof pict?) pict?) = align

valign : (->* [] [] #:rest (listof pict?) pict?) = align

Constructs a table containing the given rows, all of which must be of the same length.
Applies t to each string in a row to construct a pict. The hgap , vgap , halign , and valign

are used to determine the horizontal and vertical gaps and alignments as in table (except
that every row and column is uniform).

129

44.4.6 Multiple Columns

(two-columns one two)

Constructs a two-column pict using one and two as the two columns. Sets current-para-
width appropriately in each column.

(mini-slide pict ...) → pict?

pict : pict?

Appends each pict vertically with space between them, similarly to the slide function.

(columns pict ...) → pict?

pict : pict?

Combines each pict horizontally, aligned at the top, with space in between.

(column width body ...)

Sets current-para-width to width during execution of the body expressions.

(column-size n [r]) → real?

n : exact-positive-integer?

r : real? = (/ n)

Computes the width of one column out of n that takes up a ratio of r of the available space
(according to current-para-width).

44.5 GUI Widgets

(require unstable/gui/window)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

44.5.1 Locked Text Fields

These classes and mixins provide text and combo field controls that cannot be directly edited
by the user, but may be updated by other controls.

130

locked-text-field-mixin : (class? . -> . class?)

argument extends/implements: text-field%

This mixin updates text field classes to prevent user edits, but allow programmatic update of
the text value. It also sets the undo history length to a default of 0, as user undo commands
are disabled and the history takes up space.

(new locked-text-field-mixin [[undo-history undo-history]])
→ (is-a?/c locked-text-field-mixin)

undo-history : exact-nonnegative-integer? = 0

The mixin adds the undo-history initialization argument to control the length
of the undo history. It defaults to 0 to save space, but may be set higher.

The mixin inherits all the initialization arguments of its parent class; it does not
override any of them.

(send a-locked-text-field set-value str) → void?

str : string?

Overrides set-value in text-field%.

Unlocks the text field’s nested editor, calls the parent class’s set-value, and
then re-locks the editor.

locked-text-field% : class?

superclass: text-field%

Equal to (locked-text-field-mixin text-field%).

locked-combo-field% : class?

superclass: combo-field%

Equal to (locked-text-field-mixin combo-field%).

44.5.2 Union GUIs

union-container-mixin : (class? . -> . class?)

131

argument extends/implements: area-container<%>

This mixin modifies a container class to display only one of its child areas at a time, but to
leave room to switch to any of them.

(send an-union-container choose child) → void?

child : (is-a?/c subwindow<%>)

This method changes which of the container’s children is displayed. The chosen
child is shown and the previous choice is hidden.

union-pane% : class?

superclass: pane%

Equal to (union-container-mixin pane%).

union-panel% : class?

superclass: panel%

Equal to (union-container-mixin panel%).

132

	1 Guidelines for developing blueIdentifierColorunstable libraries
	2 Bytes
	3 Classes and Objects
	3.1 Predicates and Contracts
	3.2 Mixins
	3.3 Methods

	4 Contracts
	4.1 Flat Contracts
	4.2 Syntax Object Contracts
	4.3 Higher-Order Contracts

	5 Definitions
	5.1 Deferred Evaluation in Modules
	5.2 Conditional Binding
	5.3 Renaming Definitions
	5.4 Forward Declarations
	5.5 Definition Shorthands
	5.6 Effectful Transformation

	6 Dictionaries
	6.1 Dictionary Constructors
	6.2 Dictionary Lookup
	6.3 Dictionary Accessors
	6.4 Dictionary Combinations
	6.5 Dictionary Structure Properties
	6.6 Contracted Dictionaries

	7 Directories
	8 Exceptions
	9 Filesystem
	10 Functions
	10.1 Simple Functions
	10.2 Higher Order Predicates
	10.3 Currying and (Partial) Application
	10.4 Eta Expansion
	10.5 Parameter Arguments

	11 Lists
	12 Net
	12.1 URLs

	13 Path
	14 PLaneT Packages
	15 Ports
	16 Pretty-Printing
	17 Imperative Queues
	18 Regular Expressions
	19 Requiring Modules
	20 Sandboxed Evaluation
	21 Scribble Documentation
	22 Sets
	23 S-Expression Diff
	24 Source Locations
	24.1 Representations
	24.2 Quoting

	25 Strings
	26 Structs
	27 Syntax
	27.1 Syntax Object Source Locations
	27.2 Macro Transformers

	28 Planet Package Macros
	29 Text Representations
	29.1 Contracts and Predicates
	29.2 Text Conversions and Concatenation
	29.3 Text Comparisons

	30 Multiple Values
	31 XML and CSS
	32 Polymorphic Contracts
	33 Finding Mutated Variables
	34 Find
	35 Interface-Oriented Programming for Classes
	36 Sequences
	37 Hash Tables
	37.1 Hash Table Lookup
	37.2 Hash Table Accessors
	37.3 Hash Table Combinations

	38 Match
	39 Skip Lists
	40 Interval Maps
	41 Generics
	42 Mark Parameters
	43 Debugging
	44 GUI libraries
	44.1 DrRacket Language Levels
	44.2 Notify-boxes
	44.3 Preferences
	44.4 Slideshow Presentations
	44.4.1 Text Formatting
	44.4.2 Pict Colors
	44.4.3 Pict Manipulation
	44.4.4 Staged Slides
	44.4.5 Tables
	44.4.6 Multiple Columns

	44.5 GUI Widgets
	44.5.1 Locked Text Fields
	44.5.2 Union GUIs

