
Graphics: Legacy Library
Version 5.0.2

November 6, 2010

(require graphics/graphics)

The viewport graphics library is a relatively simple toolbox of graphics commands. The
library is not very powerful; it is intended as a simplified alternative to scheme/gui’s full
graphical toolbox.

The graphics library originated as SIXlib, a library of X Windows commands available
within Chez Scheme at Rice University. The functionality of that library has been repro-
duced (with backward compatibility) in this version.

1

Contents

1 Basic Commands 4

2 Position Operations 6

3 Color Operations 7

4 Draw, Clear, and Flip Operations 8

4.1 Viewports . 8

4.2 Pixels . 9

4.3 Lines . 9

4.4 Rectangles . 10

4.5 Ellipses . 11

4.6 Polygons . 13

4.7 Strings . 15

4.8 Pixmaps . 15

5 World Operations 17

6 Miscellaneous Operations 18

7 An Example 19

8 A More Complicated Example 20

9 Protecting Graphics Operations 21

10 Mouse Operations 22

11 Keyboard Operations 24

2

12 Flushing 25

13 Graphics Library as a Unit 26

13.1 Signatures . 26

13.2 Unit with posn . 26

13.3 Unit without posn . 26

3

1 Basic Commands

(open-graphics) → void?

Initializes the library’s graphics routines. It must be called before any other graphics opera-
tions.

(close-graphics) → void?

Closes all of the windows. Until open-graphics is called again, no graphics routines will
work.

(open-viewport name horiz vert) → viewport?

name : string?

horiz : exact-nonnegative-integer?

vert : exact-nonnegative-integer?

(open-viewport name dimensions) → viewport?

name : string?

dimensions : posn?

Creates a new window called name . The window is horiz pixels wide and vert pixels
high. For backward compatibility, a single posn value can be submitted in the place of
horiz and vert . The result is a viewport descriptor.

(open-pixmap name horiz vert) → viewport?

name : string?

horiz : exact-nonnegative-integer?

vert : exact-nonnegative-integer?

(open-pixmap name dimensions) → viewport?

name : string?

dimensions : posn?

Like open-viewport, but the resulting viewport is not displayed on the screen. Offscreen
pixmaps are useful for executing a sequence of drawing commands and displaying them all
at once with copy-viewport.

Offscreen pixmaps are also useful in conjunction with viewport->snip (see below). This
allows functions to compute with graphical objects and view the graphics when results are
returned to the interactions window.

(close-viewport viewport) → void?

viewport : viewport?

4

Removes the viewport from the screen and makes subsequent operations dealing with the
viewport illegal.

(viewport? v) → boolean?

v : any/c

Returns #t if v is a viewport (i.e., a destination for drawing), #f otherwise.

5

2 Position Operations

A position is a pixel location within a viewport. The upper-left corner is pixel (0, 0), and
positions increase to the right and down.

(struct posn (x y)

#:extra-constructor-name make-posn)

x : real?

y : real?

Represents a positions.

((get-pixel viewport) p) → (one-of/c 0 1)

viewport : viewport?

p : posn?

Returns the color of the pixel at position p in viewport ; 0 denotes white and 1 denotes not
white.

((get-color-pixel viewport) p) → rgb?

viewport : viewport?

p : posn?

Returns an rgb value for color of the pixel at position p in viewport .

((test-pixel viewport) color) → rgb?

viewport : viewport?

color : (or/c (integer-in 0 299)

string?

rgb?)

Returns the color that will actually be used if color is used to draw.

6

3 Color Operations

A color can be represented in three ways: as a color index (an integer in 0 to 299, inclusive),
as a color name string, or as a rgb value. All drawing functions which take a color argument
accept colors in any form. An rgb value is assigned to an index with change-color.

(struct rgb (red green blue)

#:extra-constructor-name make-rgb)

red : (real-in 0 1)

green : (real-in 0 1)

blue : (real-in 0 1)

Takes three values in the range 0 (dark) to 1 (bright) and returns an rgb (a color).

(change-color index rgb) → void?

index : (integer-in 0 299)

rgb : rgb?

Changes the color at index in the color table to the color specified in rgb . Only the first
twenty-one indices are initialized; a color index should not be used until it has been initial-
ized.

(default-display-is-color?) → boolean?

Returns #t if the default display screen for viewports is in color or #f otherwise.

7

4 Draw, Clear, and Flip Operations

The following are the basic graphics operations for drawing to a viewport. Each function
takes a viewport as its argument and returns a function operating within that viewport. Fur-
ther arguments, if any, are curried. For example, (draw-line viewport) returns a func-
tion, that can then be applied to the proper arguments to draw a line in the viewport corre-
sponding to viewport descriptor viewport .

In general, draw- functions make pixels black or colored, clear- functions make them
white, and flip- commands invert pixels (which makes black white, white black, and is
otherwise ill-defined).

4.1 Viewports

((draw-viewport viewport) [color]) → void?

viewport : viewport?

color : (or/c (integer-in 0 299)

string?

rgb?)

= "black"

Colors the entire contents of viewport with color .

((clear-viewport viewport)) → void?

viewport : viewport?

Whitens the entire contents of viewport .

((flip-viewport viewport)) → void?

viewport : viewport?

Inverts the entire contents of viewport .

(copy-viewport source dest) → void?

source : viewport?

dest : viewport?

Copies the content of source into dest .

8

4.2 Pixels

((draw-pixel viewport) p [color]) → void?

viewport : viewport?

p : posn?

color : (or/c (integer-in 0 299)

string?

rgb?)

= "black"

Colors the pixel in viewport at p .

((clear-pixel viewport) p) → void?

viewport : viewport?

p : posn?

Whitens the pixel in viewport at p .

((flip-pixel viewport) p) → void?

viewport : viewport?

p : posn?

Inverts the pixel in viewport at p .

4.3 Lines

((draw-line viewport) p1 p2 [color]) → void?

viewport : viewport?

p1 : posn?

p2 : posn?

color : (or/c (integer-in 0 299)

string?

rgb?)

= "black"

Draws a line in viewport connecting positions p1 and p2 .

((clear-line viewport) p1 p2) → void?

viewport : viewport?

p1 : posn?

p2 : posn?

Whitens a line in viewport connecting positions p1 and p2 .

9

((flip-line viewport) p1 p2) → void?

viewport : viewport?

p1 : posn?

p2 : posn?

Inverts a line in viewport connecting positions p1 and p2 .

4.4 Rectangles

((draw-rectangle viewport)

p

width

height

[color]) → void?

viewport : viewport?

p : posn?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

color : (or/c (integer-in 0 299)

string?

rgb?)

= "black"

Draws a rectangle border in the viewport with the top-left of the rectangle at the position
p and with sides width across and height tall.

((clear-rectangle viewport) p width height) → void?

viewport : viewport?

p : posn?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

Whitens a rectangle border in the viewport , analogous to draw-rectangle.

((flip-rectangle viewport) p width height) → void?

viewport : viewport?

p : posn?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

Inverts a rectangle border in the viewport , analogous to draw-rectangle.

10

((draw-solid-rectangle viewport)

p

width

height

[color]) → void?

viewport : viewport?

p : posn?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

color : (or/c (integer-in 0 299)

string?

rgb?)

= "black"

Draws a solid rectangle in the viewport with the top-left of the rectangle at the position p

and with sides width across and height tall.

((clear-solid-rectangle viewport)

p

width

height) → void?

viewport : viewport?

p : posn?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

Whitens a rectangle border in the viewport , analogous to draw-solid-rectangle.

((flip-solid-rectangle viewport)

p

width

height) → void?

viewport : viewport?

p : posn?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

Inverts a rectangle border in the viewport , analogous to draw-solid-rectangle.

4.5 Ellipses

((draw-ellipse viewport) p width height [color]) → void?

11

viewport : viewport?

p : posn?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

color : (or/c (integer-in 0 299)

string?

rgb?)

= "black"

Draws a ellipse border in the viewport . The ellipse is inscribed with a rectangle whose
top-left is at position p and with sides width across and height tall.

((clear-ellipse viewport) p width height) → void?

viewport : viewport?

p : posn?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

Whitens a ellipse border in the viewport , analogous to draw-ellipse.

((flip-ellipse viewport) p width height) → void?

viewport : viewport?

p : posn?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

Inverts a ellipse border in the viewport , analogous to draw-ellipse.

((draw-solid-ellipse viewport)

p

width

height

[color]) → void?

viewport : viewport?

p : posn?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

color : (or/c (integer-in 0 299)

string?

rgb?)

= "black"

Draws a solid ellipse in the viewport . The ellipse is inscribed with a rectangle whose
top-left is at position p and with sides width across and height tall.

12

((clear-solid-ellipse viewport)

p

width

height) → void?

viewport : viewport?

p : posn?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

Whitens a ellipse border in the viewport , analogous to draw-solid-ellipse.

((flip-solid-ellipse viewport)

p

width

height) → void?

viewport : viewport?

p : posn?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

Inverts a ellipse border in the viewport , analogous to draw-solid-ellipse.

4.6 Polygons

((draw-polygon viewport) points offset [color]) → void?

viewport : viewport?

points : (listof posn?)

offset : posn?

color : (or/c (integer-in 0 299)

string?

rgb?)

= "black"

Draws a polygon border in viewport using points for the polygon vertices and offset

as an offset added to all points.

((clear-polygon viewport) points offset) → void?

viewport : viewport?

points : (listof posn?)

offset : posn?

Whitens a polygon border in viewport , analogous to draw-polygon.

13

((flip-polygon viewport) points offset) → void?

viewport : viewport?

points : (listof posn?)

offset : posn?

Inverts a polygon border in viewport , analogous to draw-polygon.

((draw-solid-polygon viewport)

points

offset

[color]) → void?

viewport : viewport?

points : (listof posn?)

offset : posn?

color : (or/c (integer-in 0 299)

string?

rgb?)

= "black"

Draws a solid polygon in viewport using points for the polygon vertices and offset as
an offset added to all points.

((clear-solid-polygon viewport)

points

offset) → void?

viewport : viewport?

points : (listof posn?)

offset : posn?

Whitens a polygon border in viewport , analogous to draw-solid-polygon.

((flip-solid-polygon viewport)

points

offset) → void?

viewport : viewport?

points : (listof posn?)

offset : posn?

Inverts a polygon border in viewport , analogous to draw-solid-polygon.

14

4.7 Strings

((draw-string viewport) p str [color]) → void?

viewport : viewport?

p : posn?

str : string?

color : (or/c (integer-in 0 299)

string?

rgb?)

= "black"

Draws a string at a specified location in the viewport . The lower left of the string begins at
p .

((clear-string viewport) p str) → void?

viewport : viewport?

p : posn?

str : string?

Whitens a string at a specified location in the viewport . The lower left of the string begins
at p .

((flip-string viewport) p str) → void?

viewport : viewport?

p : posn?

str : string?

Inverts a string at a specified location in the viewport . The lower left of the string begins
at p .

4.8 Pixmaps

(((draw-pixmap-posn file

[type]))
viewport)

p

[color]) → void?

file : path-string?

type : (one-of/c 'unknown 'unknown/mask

'gif 'gif/mask 'jpeg 'png 'png/mask

'xbm 'xpm 'bmp 'pict)

= 'unknown/mask

15

viewport : viewport?

p : posn?

color : (or/c (integer-in 0 299)

string?

rgb?)

= "black"

Draws a pixmap into viewport with its upper left corner at position p . If type is 'unknown
or 'unknown/mask, then the content of the file is examined to determine the type. All
formats are supported on all platforms, except 'pict which is only supported under Mac
OS X. The 'gif/mask, 'png/mask, and 'unknown/mask types draw the bitmap with a
transparent background if filename refers to a GIF/PNG file with a transparent background.

The argument color is only used when the loaded pixmap is monochrome. In that case, the
color is used instead of black in the drawn image.

((draw-pixmap viewport) file p [color]) → void?

viewport : viewport?

file : path-string?

p : posn?

color : (or/c (integer-in 0 299)

string?

rgb?)

= "black"

Equivalent to (((draw-pixmap-posn file) viewport) p color).

((save-pixmap viewport) file [type]) → void?

viewport : viewport?

file : path-string?

type : (one-of/c 'gif 'jpeg 'png 'xbm 'xpm 'bmp) = 'xpm

Saves the current content of viewport to file . The type argument determines the kind
of file that is written.

16

5 World Operations

Every canvas comes with an associated world. A client program can set the world, start
the world’s clock, stop the world’s clock, and deal with tick events (the clock ticks) and
keyboard inputs (keyevents).

((init-world viewport) v) → void?

viewport : viewport?

v : any/c

Sets the initial value of viewport ’s world to v .

((set-on-tick-event viewport)

secs

update-callback) → void?

viewport : viewport?

secs : real?

update-callback : (any/c . -> . any/c)

For viewport , sets update-callback to be invoked to transform the world value every
secs seconds. Only one callback is installed at a time.

((stop-tick viewport)) → void?

viewport : viewport?

Stops updating viewport ’s world via a callback installed with set-on-tick-event.

((set-on-key-event viewport) key-callback) → void?

viewport : viewport?

key-callback : (any/c any/c . -> . any/c)

Sets key-callback as the function to call whenever a key event is received for viewport .
The key-callback is given a key event and the current world, and it produces an updated
world.

17

6 Miscellaneous Operations

((get-string-size viewport) str) → (list/c real? real?)

viewport : viewport?

str : string?

Returns the size of str as drawn into viewport as a list of two numbers: width and height.

(viewport->snip viewport) → (is-a?/c snip%)

viewport : viewport?

Returns an object that can be inserted into an editor buffer to display the current image in
the viewport. (Subsequent drawing to the viewport does not affect the snip’s image.)

When snips are the results of computations in the interactions window, DrRacket shows the
snip in the interactions window.}

(viewport-dc viewport) → (is-a?/c dc<%>)

viewport : viewport?

Returns an object for direct drawing into viewport ’s on-screen representation (if any).
Mirror all such drawing to the result of (viewport-buffer-dc viewport), too.

(viewport-buffer-dc viewport) → (is-a?/c dc<%>)

viewport : viewport?

Returns an object for direct drawing into viewport ’s off-screen representation. Mirror all
such drawing to the result of (viewport-dc viewport), too.

18

7 An Example

(open-graphics)

; nothing appears to happen, but the library is initialized...

(define w (open-viewport "practice" 300 300))

; viewport window appears

((draw-line w) (make-posn 30 30) (make-posn 100 100))

; line appears

(close-viewport w)

; viewport disappears

(close-graphics)

; again, nothing appears to happen, but

; unclosed viewports (if any) would disappear

19

8 A More Complicated Example

The use of multiple viewports, viewport descriptors, drawing operations for multiple view-
ports is as easy as the use of a single viewport:

(open-graphics)

(let* (; w1 and w2 are viewports for different windows

[w1 (open-viewport "viewport 1" 300 300)]

[w2 (open-viewport "viewport 2" 200 500)]

; d1 and d2 draw lines in different viewports

[d1 (draw-line w1)]

[d2 (draw-line w2)])

; draws a line in viewport labeled �viewport 1�

(d1 (make-posn 100 5) (make-posn 5 100))

; draws a line in viewport labeled �viewport 2�

(d2 (make-posn 100 100) (make-posn 101 400)))

; we no longer have access to viewports 1 and 2,

; since their descriptors did not escape the let

(close-graphics)

; removes the viewports

20

9 Protecting Graphics Operations

To guarantee the proper closing of viewports in cases of errors, especially when a program
manages several viewports simultaneously, a programmer should use dynamic-wind:

(let ([w (open-viewport "hello" 100 100)])

(dynamic-wind

; what we want to happen first: nothing

void

; the main program (errors constrained to this piece)

(lambda () (draw-pixel 13)) ; an error

; what we would like to happen, whether the main program

; finishes normally or not

(lambda () (close-viewport w))))

21

10 Mouse Operations

The graphics library contains functions that determine where the mouse is, if there are
any clicks, etc. The functions get-mouse-click and ready-mouse-click first return a
“mouse-click descriptor,” and then other functions take the descriptor and return the mouse’s
position, which button was pushed, etc. Mouse clicks are buffered and returned in the same
order in which they occurred. Thus, the descriptors returned by get-mouse-click and
ready-mouse-click may be from clicks that occurred long before these functions were
called.

(get-mouse-click viewport) → mouse-click?

viewport : viewport?

Returns the next mouse click in viewport , waiting for a click if necessary.

(ready-mouse-click viewport) → (or/c mouse-click? false/c)

viewport : viewport?

Returns either a mouse click descriptor or #f if none is available. Unlike get-mouse-

click, ready-mouse-click always returns immediately.

(ready-mouse-release viewport) → (or/c mouse-click? false/c)

viewport : viewport?

Returns either a click descriptor from a mouse-release (button-up) event or #f if none is
available.

(query-mouse-posn viewport) → (or/c posn? false/c)

viewport : viewport?

Returns either the position of the mouse cursor within viewport or else #f if the cursor is
currently outside viewport .

(mouse-click-posn mouse-click) → posn?

mouse-click : mouse-click?

Returns the position of the pixel within a viewport where a given mouse click occurred.

(left-mouse-click? mouse-click) → boolean?

mouse-click : mouse-click?

Returns #t if the mouse click occurred with the left mouse button, #f otherwise.

22

(middle-mouse-click? mouse-click) → boolean?

mouse-click : mouse-click?

Returns #t if the mouse click occurred with the middle mouse button, #f otherwise.

(right-mouse-click? mouse-click) → boolean?

mouse-click : mouse-click?

Returns #t if the mouse click occurred with the right mouse button, #f otherwise.

23

11 Keyboard Operations

The graphics library contains functions that report key presses from the keyboard. The
functions get-key-press and ready-key-press return a “key-press descriptor,” and then
key-value takes the descriptor and returns a character or symbol (usually a character) rep-
resenting the key that was pressed. Key presses are buffered and returned in the same order
in which they occurred. Thus, the descriptors returned by get-key-press and ready-

key-press may be from presses that occurred long before these functions were called.

(get-key-press viewport) → key-press?

viewport : viewport?

Returns the next key press in the viewport , waiting for a key press if necessary.

(ready-key-press viewport) → key-press?

viewport : viewport?

Returns the next key press in the viewport or returns #f if none is available. Unlike get-
key-press, ready-key-press always returns immediately.

(key-value key-press) → (or/c character? symbol?)

key-press : key-press?

Returns a character or special symbol for the key that was pressed. For example, the Enter
key generates #\return, and the up-arrow key generates 'up. For a complete list of possible
return values, see get-key-code.

24

12 Flushing

(viewport-flush-input viewport) → void?

viewport : viewport?

Empties all mouse and keyboard events in the input buffer of viewport .

25

13 Graphics Library as a Unit

13.1 Signatures

(require graphics/graphics-sig)

graphics^ : signature

Includes all of the bindings defined earlier in this chapter, except the posn bindings of §2
“Position Operations”.

graphics:posn^ : signature

Includes the posn bindings of §2 “Position Operations”.

13.2 Unit with posn

(require graphics/graphics-unit)

graphics@ : unit?

Imports mred^ and exports both graphics^ and graphics:posn^.

13.3 Unit without posn

(require graphics/graphics-posn-less-unit)

graphics-posn-less@ : unit?

Imports mred^ and graphics:posn^ and exports graphics^.

26

	1 Basic Commands
	2 Position Operations
	3 Color Operations
	4 Draw, Clear, and Flip Operations
	4.1 Viewports
	4.2 Pixels
	4.3 Lines
	4.4 Rectangles
	4.5 Ellipses
	4.6 Polygons
	4.7 Strings
	4.8 Pixmaps

	5 World Operations
	6 Miscellaneous Operations
	7 An Example
	8 A More Complicated Example
	9 Protecting Graphics Operations
	10 Mouse Operations
	11 Keyboard Operations
	12 Flushing
	13 Graphics Library as a Unit
	13.1 Signatures
	13.2 Unit with IdentifierColorblueposn
	13.3 Unit without IdentifierColorblueposn

