This manual defines the core Racket language and describes its most prominent libraries.
The companion manual Guide: Racket provides a friendlier (though less precise and less

Reference: Racket

Version 5.0.2

Matthew Flatt
and PLT

November 6, 2010

complete) overview of the language.

#lang racket/base

#lang racket

Unless otherwise noted, the bindings defined in this manual are exported by the

racket/base and racket languages.

The racket/base
library is much
smaller than the
racket library and
will typically load
faster.

The racket library
combines
racket/base,
racket/bool,
racket/class,
racket/cmdline,
racket/contract,
racket/dict,
racket/file,
racket/function,
racket/future,
racket/include,
racket/list,
racket/local,
racket/match,
racket/math,
racket/path,
racket/place,
racket/port,
racket/pretty,
racket/promise,
racket/set,
racket/shared,
racket/stream,
racket/string,
racket/system,
racket/tcp,
racket/udp,
racket/unit, and
racket/vector.

Contents

1 Language Modell 17
[LT _EvaluationModell 17
|I1.1.1 Sub-expression Evaluation and Continuations| 17
[L1.2 TailPosition| 17
[1.1.3 Multiple Return Values| 18
|[1.1.4 Top-Level Variables| 18

I1.1.5 Objects and Imperative Update|. 20
|1.1.6 Object Identity and Comparisons|. 22
|[1.1.7 Garbage Collection| 22
|I1.1.8 Procedure Applications and Local Variables|. 23

1.1 les and Locations|, 25
LLL10 Modules and Module-Level Vaniables| 25
[L1I1T Confinuation Frames and Marksl 27
|1.1.12° Prompts, Delimited Continuations, and Barriers| 27
CLI3Threads - - - - v oot 27
[L1.14 Parameters| 28
[1.1.1S Exceptions| 28
[LI.16 Custodians| 29

[1.2 SyntaxModel| 30
[1.2.1 Identifiersand Binding| 00 30
[1.2.2 Syntax Objects| 31

[1.2.3 Expansion (Parsing)l 32
[1.2.4 Compilation| 42

[1.2.5 Namespaces|. 43

2 Syntactic Forms| 46
2.1 Modules: module, ...| 46
2.2 Importing and Exporting: require and provide| 49

2.2.1 Additional require Forms|. 66

[2.2.2 Additional provide Forms|.00, 69
2.3 Literals: quote and #/datum|. L. 69
2.4 Expression Wrapper: #rexpression| 70
[2.5 Variable References and #7top|. L. 70
2.6 Locations: #s4variable-reference| 71
2.7 Procedure Applications and #/%app|o 72
2.8 Procedure Expressions: lambda and case-lambdal 73
2.9 Local Binding: 1let, let*, letrec,..| 76
210 Local Defimtions: locall 80
[2.11T Constructing Graphs: shared| 80
12.12 Conditionals: if, cond,and,andor| 82
[2.13 Dispatch: case| 85
[2.14 Definitions: define, define-syntax,..|] 86

2.14.1 requireMacros| oo 90

2.14.2 provide Macros| o 90
[2.15 Sequencing: begin, begin0, and begin-for-syntax| 91
2.16 Guarded Evaluation: when andunless| 92
[2.17 Assignment: set! and set!-values| 93
[2.18 TIterations and Comprehensions: for, for/list,..| 94

[2.18.1 TIteration and Comprehension Forms| 94

[2.18.2 Deriving New Iteration Forms| 99

2.18.3 DoLoops| 101

2.1 ntinuation Marks: with-continuation-mark|. 101
2.20 Quasiquoting: quasiquote, unquote, and unquote-splicing|. 101
[2.21 Syntax Quoting: quote-syntax| 0oL 103
[2.22 Interaction Wrapper: #4top-interaction| 104
[2.23 Limiting Scope: define-package, open-package,..|. 104
224 Blocks: blockl 106
[2.25 Internal-Definition Limiting: #/stratified-bodyl. 107
) D 108
3.1 "Booleans and Equality|, 108
3.1.1 Boolean Synonyms| 112

B2 Numbers. oo 113
[3.2.1 Number Types| 114
322 Generic Numerics| o oo 120
B2Z3 FIONUMS .« -« o v vt e 144
............................... 149
trings| e 153

3.3.1 String Constructors, Selectors, and Mutators| 153
3.3.2 String Comparisons|.t 158
3.3.3 String Conversions| 161
3.3.4 Locale-Specific String Operations| 163
[3.3.5 Additional String Functions|, 164

3.4 ByteStrings| 165
3.4.1 Byte String Constructors, Selectors, and Mutators|. 165

3.4.2 Byte String Comparisons| oL, 170

3.4.3 Bytes to/from Characters, Decoding and Encoding| 171
[3.4.4 Bytes to Bytes Encoding Conversion|. 176

B CharaClersl o o oot 180
3.5.1 Characters and Scalar Values| 180
[3.5.2 Character Comparisons|. v v 181
353 Classifications] o o 184
354 Character Conversions| 186

3.6 Symbols| 188
3.7 Regular Expressions| 190
3.7.1 RegexpSyntax| 191
[3.7.2 Additional Syntactic Constraints| 194
[3.7.3 Regexp Constructors| 195
3.7.4 Regexp Matching|. 198
3.7.5 Regexp Splitting| L . 209
[3.7.6 Regexp Substitution|, 210

8 K ds| 212
Parrsand Lasts|. o 213
[3.9.1 Pair Constructors and Selectors| 213
3.9.2 ListOperations| 216
393 listlteration| 218
3.9.4 ListFilteringl 221
3.9.5 lListSearchingl 223
3.9.6 Pair Accessor Shorthands| 226
[3.9.7 Additional List Functions and Synonyms| 231

3.9.8 Immutable CyclicDatal 240

3.10 Mutable Pairsand Lusts oo oo 242
3.10.1 Mutable Pair Constructors and Selectors|. 243
3.10.2 Mutable [ist Functions|, 243

BITVEClOrsl . . . o oot e e e 247
3.11.1 Additional Vector Functions| 250

BIZBoxeso 255

BI3 HashTablesl 256

................................... 264
[3.14.1 Sequence Predicate and Constructors| 265
[3.14.2 Additional Sequence Operations| 272
[3.14.3 Sequence Generators|o 275
3.14.4 TIterator Generatorsl, 275

B.1S Dictionariesl 279

BI6 Sets 293

BIZ Proceduresl. 296
3.17.1 Keywords and Arity] 297
[3.17.2 Reflecting on Primitives| 305
B.17.3 Additional Procedure Functions| 306

3.18 Voidand Undefined 308

4 Structures| 309

4.1 Defining Structure Types: struct| 310

4.2 Creating Structure Types| 314

4.3 Structure Type Properties| 318

4.4 Copying and Updating Structures|. 320

4.6 Structure Type Transformer Binding| 323
[Classes and Objects| 326
5.1 Creating Interfaces| 327
5.2 Creating Classes|. 328
B.21 Tnitialization Variablesl 337
B22 7 Helds oo 339
B23 Methodsl 339

5.3 Creating Objects| e 345
5.4 Field and Method Access| L 346
541 Methodsl 347
BA2 Feldd 348
BA37Genericyo 349

B _Mixingd.o 350
B6 Traitd oo 351
5.7 Object and Class Contracts| 354
5.8 Object Equality and Hashing| 359
5.9 Object Serialization| 360
5.10 Object Printing| 362
I5.11 Object, Class, and Interface Utilities| 362
................................... 366
6 Units| 368
6.1 Creating Units|. e 368
6.2 Invoking Units| 372

6.4 Inferred Linking|. oo o 375
6.5 Generating A Unit from Context| 377
6.6 Structural Matching| 378
6.7 Extending the Syntax of Signatures|. 379
6.8 UnmtUtilities] 379
69 UnitContracts|. 380
16.10 Single-Unit Modules| 381
[6.11 Single-Signature Modules| 381
[6.12 Transformer Helpers| 382
7_Contracts 384
[/.1 Data-structure Contracts| 384
[£2 _Function Contracts| 393
[7.3 Lazy Data-structure Contracts| 399
[7.4 Attaching Contracts to Values| 400
[7.5 Building New Contract Combinators| 404
[7.5.1 Blame Objects|, 410
[/52 Contractsasstructs| 0 oo 412
[7.5.3 Obligation Information in Check Syntax|. 415

[£.6 ContractUtilities| 417
|8 Pattern Matching| 422
8.1 Additional Matching Forms|. 428
8.2 Extendingmatch| 430
8.3 Library Extensions| 431

9 Control Flow| 432

9.1 Muluple Values| 432
................................... 432
9.2.1 Raising Exceptions| 433
9.2.2 Handling Exceptions| 437
9.2.3 Configuring Default Handling| 439
9.2.4 Built-in Exception Types| 441

9.3 Delayed Evaluation| o 445
1__Additional Promise Kinds| 447

9.4 Continuations| o 448
9.4.1 Classical Control Operators| 455
ntinuation Marks| L oo 459

9.6 Breaks|. 463
0.7 Exiting|. 465
|10 Concurrency| 467
MOTThreadsot o 467
[10.1.1 Creating Threads| 467
[10.1.2 Suspending, Resuming, and Killing Threads|. 468
110.1.3 Synchronizing Thread State| 470
[10.1.4 Thread Mailboxes| 471

[10.2 Synchronization|. 472
MO2T EVENE. - « o v v vt et e e e 472
10.2.2 Channels| 479
[10.2.3 Semaphores|. 480
110.2.4 Buffered Asynchronous Channels| 482

M03T Thread Cellso it 484
[10.3.2 Parametersl 486
110.4 Futures for Parallelisml| 490
[T0.3 Places: Coarse-grained Parallelism|. 491
110.5.1 BasicExample| 493
10.5.2 Place Channelslo 000 493
110.5.3 Message Passing Parallelism| 493
110.5.4 Architecture and Garbage Collectionf. 493

11 Macros 495
|IT.1 Pattern-Based Syntax Matching| 495
[I1.2 Syntax Object Content| 504
[11.3 Syntax Object Bindings| 509
[I1.4 Syntax Transformers| 513
[11.4.1 require Transformers|. 527
[11.4.2 provide Transformers| 530

[I1.5 Syntax Parameters|, 532
|[11.5.1 Syntax Parameter Inspection| 532

|11.6 Local Binding with SplicingBody| 533
|11.7 Syntax Object Properties|, 535
[IT.8 Syntax Certificates] i 537
[11.9 Expanding Top-Level Forms| 539
[11.9.1 Information on Expanded Modules| 541
LLI0Fle Inclusionl 542

10

|12 Input and Output] 544

3 20 0 544
[12.1.1 Encodings and Locales| 544
[12.1.2 Managing Ports|. 546
[12.1.3 Port Buffers and Positionsl 548
|12.1.4 Counting Positions, Lines, and Columns|. 550
215 FilePorts| 551
[12.1.6 String Ports| 557
12.1.7 Prpes| 558
I2.1.8 StructuresasPorts| 559
1219 CustomPortsl 560
112.1.10 More Port Constructors, Procedures, and Events| 579

[12.2 Byteand StringInput| 593

[12.3 Byteand String Output|, 602

4 Reading| e 606
W I 613

M26 TheReadedot 620
[12.6.1 Delimiters and Dispatch| 620
[12.6.2 Reading Symbols|. 622
[12.6.3 Reading Numbers|. 623
12.6.4 ReadingBooleans| 624
[12.6.5 Reading Pairsand Lists|. 624
[12.6.6 Reading Strings|. 626
[12.6.7 Reading Quotes|. 627
[12.6.8 Reading Comments|. 628

11

[12.6.9 Reading Vectors| 628

|12.6.10 Reading Structures| oL, 629
[12.6.11 Reading Hash Tables| 629
[12.6.12Reading Boxes|, 630
12.6.13 Reading Characters| 630
[12.6.14 Reading Keywords|, 631
[12.6.15 Reading Regular Expressions| 631
|12.6.16 Reading Graph Structure| 632
|12.6.17 Reading via an Extension|. 632
[12.6.18Honu Parsing| 634
MZ7ThePrnterl oot ot et e 634
[12.7.1 Printing Symbols| oo 635
[12.7.2 Printing Numbers|. 635
[12.7.3 Printing Booleans|. 636
[12.7.4 Printing Parrsand Lists| 00 636
[12.7.5 Printing Strings| 637
[12.7.6 Printing Vectors|., 637
[12.7.7 Printing Structures| Lo 638
[12.7.8 Printing Hash Tables| 639
112.7.9 Printing Boxes| L. 639
[12.7.10 Printing Characters| 640
[12.7.11 Printing Keywords| 640
[12.7.12 Printing Regular Expressions|. 640
[12.7.13 Printing Paths| oo 640
[12.7.14 Printing Unreadable Values|. 641

12

[12.7.15 Printing Compiled Code| 641

[12.8 Pretty Printing|. 642
[12.8.1 Basic Pretty-Print Options| 643
[12.8.2 Per-Symbol Special Printing| 644
112.8.3 Line-Output Hook| 646
112.8.4 Value Output Hook| 647
[12.8.5 Additional Custom-Output Support] 649

[12.9 Reader Extension| e 650

129.1 R lesl 650
12.9.2 Reader-Extension Procedures| 656
112.9.3 Special Comments| 656

12.10Pnnter Extensionl 657

2. 118enalization| 659

[2.12Fast-Load Serialization 667

|13 Reflection and Security| 668

[13.1 Namespaces| oo i i e 668

[13.2 Evaluation and Compilation| 675

[13.3 The racket/load Language| 683

|13.4 Module Names and Loading| 684
|13.4.1 Resolving Module Names| 684
[13.4.2 Compiled Modules and References| 687
|13.4.3 Dynamic Module Access|. 690

|13.5 Proxies and Chaperones|. 692
[13.5.1 Proxy Constructors|, 694
[13.5.2 Chaperone Constructors| 699

113.5.3 Proxy Properties|

[13.6 Security Guards|

113.8 Thread Groups| e

[13.9 Structure Inspectors| Lo

[13.10Code Inspectors|

114.2.4 Declaring Paths Needed at Run Time|

|14.2.5 More File and Directory Ualities|.

|14.3 Networking|

14.3.1 TCP

14.3.2 UDPI

|[14.4.1 Simple Subprocesses| Lo 781

Bl e e e e e e e 784

[14.5.1 Creating Loggers| 785

114.5.2 LoggingEvents|. 786

|14.5.3 Recetving Logged Events| 787
...................................... 787

[14.6.1 Date Utilities| o o o 790

[14.7 Environment and Runtime Informationf. 792
[14.8 Command-Line Parsing|. 795

[15 Memory Management] 802
5.1 Weak Boxes| 802
[15.2 Ephemerons| 802
U3 Wills and Executors| 803
[15.4 Garbage Collection|, 804

116 Unsafe Operations| 806
|16.1 Unsafe Numeric Operations| 806
116.2 Unsafe Data Extractionl 810
[T7 Running Rackef| 814
[I7.1 Running Racketor GRacket] 814
1.1 Imtializationl, 814

712 ExitStatusl 815

U713 ImitLabraries) o oo 815

[7Z14 CommandLinel 816

[17.3 Interactive Help|

|I'7.4 Interactive Module Loading{.

16

1 Language Model

1.1 Evaluation Model

Racket evaluation can be viewed as the simplification of expressions to obtain values. For
example, just as an elementary-school student simplifies

1+1=2
Racket evaluation simplifies
+11) -2

The arrow — above replaces the more traditional = to emphasize that evaluation proceeds
in a particular direction towards simpler expressions. In particular, a value is an expression
that evaluation simplifies no further, such as the number 2.

1.1.1 Sub-expression Evaluation and Continuations

Some simplifications require more than one step. For example:
(-4 +11)) - (-42) — 2

An expression that is not a value can always be partitioned into two parts: a redex, which
is the part that changed in a single-step simplification (highlighted), and the continuation,
which is the surrounding expression context. In (- 4 (+ 1 1)), theredexis (+ 1 1), and
the continuation is (- 4 []), where [] takes the place of the redex. That is, the continuation
says how to “continue” after the redex is reduced to a value.

Before some things can be evaluated, some sub-expressions must be evaluated; for example,
in the application (- 4 (+ 1 1)), the application of - cannot be reduced until the sub-
expression (+ 1 1) is reduced.

Thus, the specification of each syntactic form specifies how (some of) its sub-expressions
are evaluated, and then how the results are combined to reduce the form away.

The dynamic extent of an expression is the sequence of evaluation steps during which an
expression contains the redex.

1.1.2 Tail Position

An expression exprl is in tail position with respect to an enclosing expression expr2 if,
whenever expr1 becomes a redex, its continuation is the same as was the enclosing expr2’s

17

continuation.

For example, the (+ 1 1) expression is not in tail position with respect to (- 4 (+ 1
1)). To illustrate, we use the notation C[expr] to mean the expression that is produced by
substituting expr in place of [] in the continuation C:

Cl(- 4 (+ 1 1))] — C[(- 4 2)]
In this case, the continuation for reducing (+ 1 1) is C[(+ 4 [])], not just C.

In contrast, (+ 1 1) is in tail position with respect to (if (zero? 0) (+ 1 1) 3), be-
cause, for any continuation C,

C[(if (zero? 0) (+ 1 1) 3)] — C[(if #t (+ 1 1) 3)] — C[(+ 1 1)]

The steps in this reduction sequence are driven by the definition of if, and they do not
depend on the continuation C. The “then” branch of an if form is always in tail position
with respect to the if form. Due to a similar reduction rule for if and #f, the “else” branch
of an if form is also in tail position.

Tail-position specifications provide a guarantee about the asymptotic space consumption of
a computation. In general, the specification of tail positions goes with each syntactic form,
like if.

1.1.3 Multiple Return Values

A Racket expression can evaluate to multiple values, in the same way that a procedure can
accept multiple arguments.

Most continuations expect a particular number of result values. Indeed, most continuations,
such as (+ [] 1) expect a single value. The continuation (let-values ([(x y) []1)
expr) expects two result values; the first result replaces x in the body expr, and the second
replaces y in expr. The continuation (begin [] (+ 1 2)) accepts any number of result
values, because it ignores the result(s).

In general, the specification of a syntactic form inidicates the number of values that it pro-
duces and the number that it expects from each of its sub-expression. In addtion, some
procedures (notably values) produce multiple values, and some procedures (notably call-
with-values) create continuations internally that accept a certain number of values.

1.1.4 Top-Level Variables

Given

18

x = 10
then an algebra student simplifies x + 1 as follows:
x+1=10+1=11

Racket works much the same way, in that a set of top-level variables are available for substi-
tutions on demand during evaluation. For example, given

(define x 10)
then
(+x1) — (+ 10 1) — 11

In Racket, the way definitions appear is just as important as the way that they are used.
Racket evaluation thus keeps track of both definitions and the current expression, and it
extends the set of definitions in response to evaluating forms such as define.

Each evaluation step, then, takes the current set of definitions and program to a new set
of definitions and program. Before a define can be moved into the set of definitions, its
right-hand expression must be reduced to a value.

defined:

evaluate: (begin (define x (+ 9 1)) (+ x 1))
—defined:

evaluate: (begin (define x 10) (+ x 1))
—defined: (define x 10)

evaluate: (begin (void) (+ x 1))
—defined: (define x 10)

evaluate: (+ x 1)
—defined: (define x 10)

evaluate: (+ 10 1)
—defined: (define x 10)

evaluate:11

Using set!, a program can change the value associated with an existing top-level variable:

defined: (define x 10)

evaluate: (begin (set! x 8) x)
—defined: (define x 8)

evaluate: (begin (void) x)
—defined: (define x 8)

evaluate: x
—defined: (define x 8)

evaluate:8

19

1.1.5 Objects and Imperative Update

In addition to set! for imperative update of top-level variables, various procedures enable
the modification of elements within a compound data structure. For example, vector-set!
modifies the content of a vector.

To allow such modifications to data, we must distinguish between values, which are the
results of expressions, and objects, which hold the data referenced by a value.

A few kinds of objects can serve directly as values, including booleans, (void), and small
exact integers. More generally, however, a value is a reference to an object. For example,
a value can be a reference to a particular vector that currently holds the value 10 in its first
slot. If an object is modified, then the modification is visible through all copies of the value
that reference the same object.

In the evaluation model, a set of objects must be carried along with each step in evaluation,
just like the definition set. Operations that create objects, such as vector, add to the set of
objects:

objects:
defined:
evaluate: (begin (define x (vector 10 20))
(define y x)
(vector-set! x 0 11)
(vector-ref y 0))
—objects: (define (vector 10 20))
defined:
evaluate: (begin (define x)
(define y x)
(vector-set! x 0 11)
(vector-ref y 0))
—objects: (define (vector 10 20))
defined: (define x)
evaluate: (begin (void)
(define y x)
(vector-set! x 0 11)
(vector-ref y 0))
—objects: (define (vector 10 20))
defined: (define x <o1>)
evaluate: (begin (define y x)
(vector-set! x 0 11)
(vector-ref y 0))
—objects: (define (vector 10 20))
defined: (define x)

20

evaluate: (begin (define y)
(vector-set! x 0 11)
(vector-ref y 0))
—objects: (define (vector 10 20))
defined: (define x <o1>)
(define y <o1>)
evaluate: (begin (void)
(vector-set! x 0 11)
(vector-ref y 0))
—objects: (define <ol1> (vector 10 20))
defined: (define x)
(define y)
evaluate: (begin (vector-set! x 0 11)
(vector-ref y 0))
—objects: (define <ol1> (vector 10 20))
defined: (define x)
(define y)
evaluate: (begin (vector-set! 0 11)
(vector-ref y 0))
—objects: (define (vector 11 20))
defined: (define x)
(define y <o1>)
evaluate: (begin (void)

(vector-ref y 0))
—objects: (define (vector 11 20))
defined: (define x)
(define y)
evaluate: (vector-ref y 0)
—objects: (define (vector 11 20))
defined: (define x)
(define y)
evaluate: (vector-ref 0)
—objects: (define (vector 11 20))
defined: (define x <o1>)
(define y <ol1>)
evaluate: 11

The distinction between a top-level variable and an object reference is crucial. A top-level
variable is not a value; each time a variable expression is evaluated, the value is extracted
from the current set of definitions. An object reference, in contrast is a value, and therefore
needs no further evaluation. The model evaluation steps above use angle-bracketed <o1> for
an object reference to distinguish it from a variable name.

A direct object reference can never appear in a text-based source program. A program rep-

21

resentation created with datum->syntax, however, can embed direct references to existing
objects.

1.1.6 Object Identity and Comparisons

The eq? operator compares two values, returning #t when the values refer to the same
object. This form of equality is suitable for comparing objects that support imperative update
(e.g., to determine that the effect of modifying an object through one reference is visible
through another reference). Also, an eq? test evaluates quickly, and eq?-based hashing is
more lightweight than equal?-based hashing in hash tables.

In some cases, however, eq? is unsuitable as a comparison operator, because the generation
of objects is not clearly defined. In particular, two applications of + to the same two exact
integers may or may not produce results that are eq?, although the results are always equal?.
Similarly, evaluation of a lambda form typically generates a new procedure object, but it
may re-use a procedure object previously generated by the same source lambda form.

The behavior of a datatype with respect to eq? is generally specified with the datatype and
its associated procedures.

1.1.7 Garbage Collection

In the program state

objects: (define (vector 10 20))
(define <02> (vector 0))

defined: (define x <o1>)

evaluate: (+ 1 x)

evaluation cannot depend on <o2>, because it is not part of the program to evaluate, and it
is not referenced by any definition that is accessible in the program. The object <o2> may
therefore be removed from the evaluation by garbage collection.

A few special compound datatypes hold weak references to objects. Such weak references
are treated specially by the garbage collector in determining which objects are reachable for
the remainder of the computation. If an object is reachable only via a weak reference, then
the object can be reclaimed, and the weak reference is replaced by a different value (typically
#1).

As a special case, a fixnum is always considered reachable by the garbage collector. Many
other values are always reachable due to the way they are implemented and used: A character
in the Latin-1 range is always reachable, because equal? Latin-1 characters are always eq?,
and all of the Latin-1 characters are referenced by an internal module. Similarly, null,
#t, #f, eof, and #<void> and are always reachable. Values produced by quote remain

22

See §15 “Memory
Management” for
functions related to
garbage collection.

reachable when the quote expression itself is reachable.

1.1.8 Procedure Applications and Local Variables

Given
f(x) = x + 10

then an algebra student simplifies £ (7) as follows:
£(7) =7 + 10 = 17

The key step in this simplification is take the body of the defined function f, and then replace
each x with the actual value 7.

Racket procedure application works much the same way. A procedure is an object, so eval-
uating (£ 7) starts with a variable lookup:

objects: (define <pl> (lambda (x) (+ x 10)))
defined: (define f <pi1>)
evaluate: (f 7)

—objects: (define <pl> (lambda (x) (+ x 10)))
defined: (define f <pi1>)
evaluate: (<p1> 7)

Unlike in algebra, however, the value associated with an argument can be changed in the
body of a procedure by using set!, as in the example (lambda (x) (begin (set! x 3)
x)). Since the value associated with x can be changed, an actual value cannot be substituted
for x when the procedure is applied.

Instead, a new location is created for each variable on each application. The argument value
is placed in the location, and each instance of the variable in the procedure body is replaced
with the new location:

objects: (define <pl> (lambda (x) (+ x 10)))
defined: (define f <pi1>)
evaluate: (<p1> 7)
—objects: (define <p1> (lambda (x) (+ x 10)))
defined: (define f <pi1>)
(define xloc 7)
evaluate: (+ xloc 10)
—objects: (define <p1> (lambda (x) (+ x 10)))
defined: (define f <pi1>)
(define xloc 7)
evaluate: (+ 7 10)

23

—objects: (define <pl> (lambda (x) (+ x 10)))
defined: (define f <pi1>)
(define xloc 7)
evaluate:17

A location is the same as a top-level variable, but when a location is generated, it (concep-
tually) uses a name that has not been used before and that cannot not be generated again or
accessed directly.

Generating a location in this way means that set! evaluates for local variables in the same
way as for top-level variables, because the local variable is always replaced with a location
by the time the set! form is evaluated:

objects: (define <pl> (lambda (x) (begin (set! x 3) x)))
defined: (define f <p1>)
evaluate: (£ 7)
—objects: (define <pl> (lambda (x) (begin (set! x 3) x)))
defined: (define f <p1>)
evaluate: (<p1> 7)
—objects: (define <pl1> (lambda (x) (begin (set! x 3) x)))
defined: (define f <pi1>)
(define xloc 7)
evaluate: (begin (set! xloc 3) xloc)
—objects: (define <pl> (lambda (x) (begin (set! x 3) x)))
defined: (define f <p1>)
(define xloc 3)
evaluate: (begin (void) xloc)
—objects: (define <pl1> (lambda (x) (begin (set! x 3) x)))
defined: (define f <p1>)
(define xloc 3)
evaluate:xloc
—objects: (define <pl1> (lambda (x) (begin (set! x 3) x)))
defined: (define f <pi1>)
(define xloc 3)
evaluate:3

The substitution and location-generation step of procedure application requires that the ar-
gument is a value. Therefore, in ((lambda (x) (+ x 10)) (+ 1 2)),the (+ 1 2) sub-
expression must be simplified to the value 3, and then 3 can be placed into a location for x.
In other words, Racket is a call-by-value language.

Evaluation of a local-variable form, such as (let ([x (+ 1 2)]) expr), is the same as
for a procedure call. After (+ 1 2) produces a value, it is stored in a fresh location that
replaces every instance of x in expr.

24

1.1.9 Variables and Locations

A variable is a placeholder for a value, and expressions in an initial program refer to vari-
ables. A top-level variable is both a variable and a location. Any other variable is always
replaced by a location at run-time, so that evaluation of expressions involves only locations.
A single local variable (i.e., a non-top-level, non-module-level variable), such as a procedure
argument, can correspond to different locations through different instantiations.

For example, in the program
(define y (+ (let ([x 5]) x) 6))

both y and x are variables. The y variable is a top-level variable, and the x is a local variable.
When this code is evaluated, a location is created for x to hold the value 5, and a location is
also created for y to hold the value 6.

The replacement of a variable with a location during evaluation implements Racket’s lexical
scoping. For example, when a procedure-argument variable x is replaced by the location
xloc, then it is replaced throughout the body of the procedure, including any nested 1ambda
forms. As a result, future references of the variable always access the same location.

1.1.10 Modules and Module-Level Variables

Most definitions in Racket are in modules. In terms of evaluation, a module is essentially a
prefix on a defined name, so that different modules can define the name. That is, a module-
level variable is like a top-level variable from the perspective of evaluation.

One difference between a module and a top-level definition is that a module can be declared
without instantiating its module-level definitions. Evaluation of a require instantiates (i.e.,
triggers the instantiation of) a declared module, which creates variables that correspond to
its module-level definitions.

For example, given the module declaration

(module m racket
(define x 10))

the evaluation of (require m) creates the variable x and installs 10 as its value. This x is
unrelated to any top-level definition of x.

Phases

A module can be instantiated in multiple phases. A phase is an integer that, again, is effec-
tively a prefix on the names of module-level definitions. A top-level require instantiates a

25

See §2.1 “Modules:
module, ...” for the
syntax of modules.

module at phase 0, if the module is not already instantiated at phase 0. A top-level (require
(for-syntax)) instantiates a module at phase 1 (if it is not already instantiated at
that level); for-syntax also has a different binding effect on further program parsing, as
described in §1.2.3.4 “Introducing Bindings”.

Within a module, some definitions are shifted by a phase already; the define-for-syntax
form is like define, but it defines a variable at relative phase 1, instead of relative phase
0. Thus, if the module is instantiated at phase 1, the variables for define-for-syntax
are created at phase 2, and so on. Moreover, this relative phase acts as another layer of
prefixing, so that a define of x and a define-for-syntax of x can co-exist in a module
without colliding. Again, the higher phases are mainly related to program parsing, instead
of normal evaluation.

If a module instantiated at phase n requires another module, then the required module is
first instantiated at phase n, and so on transitively. (Module requires cannot form cycles.)
If a module instantiated at phase n requires for-syntax another module, the other module
becomes available at phase n+1, and it may later be instantiated at phase n+1. If a module
that is available at phase n for n>0 requires for-template another module, the other
module becomes available at phase n-1, and so on. Instantiations of available modules above
phase O are triggered on demand as described in §1.2.3.8 “Module Phases and Visits”.

A final distinction among module instantiations is that multiple instantiations may exist at
phase 1 and higher. These instantiations are created by the parsing of module forms (see
§1.2.3.8 “Module Phases and Visits”), and are, again, conceptually distinguished by prefixes.

Top-level variables can exist in multiple phases in the same way as within modules. For
example, define-for-syntax creates a phase 1 variable. Furthermore, reflective opera-
tions like make-base-namespace and eval provide access to top-level variables in higher
phases, while module instantiations (triggered by with require) relative to such top-levels
are in corresponding higher phases.

Module Re-declarations

When a module is declared using a name for which a module is already declared, the new
declaration’s definitions replace and extend the old declarations. If a variable in the old
declaration has no counterpart in the new declaration, the old variable continues to exist, but
its binding is not included in the lexical information for the module body. If a new variable
definition has a counterpart in the old declaration, it effectively assigns to the old variable.

If a module is instantiated in any phases before it is re-declared, each re-declaration of the
module is immediately instantiated in the same phases.

26

1.1.11 Continuation Frames and Marks

Every continuation C can be partitioned into continuation frames Cy, Ca, ..., Cyp such that
C = Cy[Co[...[Cp]]], and no frame C; can be itself partitioned into smaller continuations.
Evaluation steps add and remove frames to the current continuation, typically one at a time.

Each frame is conceptually annotated with a set of continuation marks. A mark consists of
a key and its value; the key is an arbitrary value, and each frame includes at most one mark
for any key. Various operations set and extract marks from continuations, so that marks can
be used to attach information to a dynamic extent. For example, marks can be used to record
information for a “stack trace” to be used when an exception is raised, or to implement
dynamic scope.

1.1.12 Prompts, Delimited Continuations, and Barriers

A prompt is a special kind of continuation frame that is annotated with a specific prompt
tag (essentially a continuation mark). Various operations allow the capture of frames in the
continuation from the redex position out to the nearest enclosing prompt with a particular
prompt tag; such a continuation is sometimes called a delimited continuation. Other opera-
tions allow the current continuation to be extended with a captured continuation (specifically,
a composable continuation). Yet other operations abort the computation to the nearest en-
closing prompt with a particular tag, or replace the continuation to the nearest enclosing
prompt with another one. When a delimited continuation is captured, the marks associated
with the relevant frames are also captured.

A continuation barrier is another kind of continuation frame that prohibits certain replace-
ments of the current continuation with another. Specifically, a continuation can be replaced
by another only when the replacement does not introduce any continuation barriers (but it
may remove them). A continuation barrier thus prevents “downward jumps” into a con-
tinuation that is protected by a barrier. Certain operations install barriers automatically; in
particular, when an exception handler is called, a continuation barrier prohibits the continu-
ation of the handler from capturing the continuation past the exception point.

A escape continuation is essentially a derived concept. It combines a prompt for escape
purposes with a continuation for mark-gathering purposes. As the name implies, escape
continuations are used only to abort to the point of capture.

1.1.13 Threads

Racket supports multiple threads of evaluation. Threads run concurrently, in the sense that
one thread can preempt another without its cooperation, but threads currently all run on the
same processor (i.e., the same underlying OS process and thread). See also §10.4 “Futures
for Parallelism”.

27

See §9.5
“Continuation
Marks” for
continuation-mark
forms and
functions.

See §9.4
“Continuations” for
continuation and
prompt functions.

See §10
“Concurrency” for
thread and
synchronization
functions.

Threads are created explicitly by functions such as thread. In terms of the evaluation model,
each step in evaluation actually consists of multiple concurrent expressions, up to one per
thread, rather than a single expression. The expressions all share the same objects and top-
level variables, so that they can communicate through shared state. Most evaluation steps
involve a single step in a single expression, but certain synchronization primitives require
multiple threads to progress together in one step.

In addition to the state that is shared among all threads, each thread has its own private state
that is accessed through thread cells. A thread cell is similar to a normal mutable object,
but a change to the value inside a thread cell is seen only when extracting a value from the
cell from the same thread. A thread cell can be preserved; when a new thread is created, the
creating thread’s value for a preserved thread cell serves as the initial value for the cell in
the created thread. For a non-preserved thread cell, a new thread sees the same initial value
(specified when the thread cell is created) as all other threads.

1.1.14 Parameters

Parameters are essentially a derived concept in Racket; they are defined in terms of contin-
uation marks and thread cells. However, parameters are also built in, in the sense that some
primitive procedures consult parameter values. For example, the default output stream for
primitive output operations is determined by a parameter.

A parameter is a setting that is both thread-specific and continuation-specific. In the empty
continuation, each parameter corresponds to a preserved thread cell; a corresponding param-
eter procedure accesses and sets the thread cell’s value for the current thread.

In a non-empty continuation, a parameter’s value is determined through a parameteriza-
tion that is associated with the nearest enclosing continuation frame though a continuation
mark (whose key is not directly accessible). A parameterization maps each parameter to
a preserved thread cell, and the combination of thread cell and current thread yields the
parameter’s value. A parameter procedure sets or accesses the relevant thread cell for its
parameter.

Various operations, such as parameterize or call-with-parameterization, install a
parameterization into the current continuation’s frame.

1.1.15 Exceptions

Exceptions are essentially a derived concept in Racket; they are defined in terms of continu-
ations, prompts, and continuation marks. However, exceptions are also built in, in the sense
that primitive forms and procedures may raise exceptions.

An exception handler to catch exceptions can be associated with a continuation frame though
a continuation mark (whose key is not directly accessible). When an exception is raised, the

28

See §10.3.2
“Parameters” for
parameter forms
and functions.

See §9.2
“Exceptions” for
exception forms,
functions, and

types.

current continuation’s marks determine a chain of exception handler procedures that are
consulted to handle the exception. A handler for uncaught exceptions is designated through
a built-in parameter.

One potential action of an exception handler is to abort the current continuation up to an
enclosing prompt with a particular prompt tag. The default handler for uncaught exceptions,
in particular, aborts to a particular tag for which a prompt is always present, because the
prompt is installed in the outermost frame of the continuation for any new thread.

1.1.16 Custodians

A custodian manages a collection of threads, file-stream ports, TCP ports, TCP listeners,
UDP sockets, and byte converters. Whenever a thread, etc. is created, it is placed under the
management of the current custodian as determined by the current-custodian parameter.

Except for the root custodian, every custodian itself it managed by a custodian, so that cus-
todians form a hierarchy. Every object managed by a subordinate custodian is also managed
by the custodian’s owner.

When a custodian is shut down via custodian-shutdown-all, it forcibly and immediately
closes the ports, TCP connections, etc. that it manages, as well as terminating (or suspend-
ing) its threads. A custodian that has been shut down cannot manage new objects. If the
current custodian is shut down before a procedure is called to create a managed resource
(e.g., open-input-port, thread), the exn:fail:contract exception is raised.

A thread can have multiple managing custodians, and a suspended thread created with
thread/suspend-to-kill can have zero custodians. Extra custodians become asso-
ciated with a thread through thread-resume (see §10.1.2 “Suspending, Resuming, and
Killing Threads”). When a thread has multiple custodians, it is not necessarily killed by a
custodian-shutdown-all, but shut-down custodians are removed from the thread’s man-
aging set, and the thread is killed when its managing set becomes empty.

The values managed by a custodian are only weakly held by the custodian. As a result, a
will can be executed for a value that is managed by a custodian. In addition, a custodian only
weakly references its subordinate custodians; if a subordinate custodian is unreferenced but
has its own subordinates, then the custodian may be collected, at which point its subordinates
become immediately subordinate to the collected custodian’s superordinate custodian.

In addition to the other entities managed by a custodian, a custodian box created with make-
custodian-box strongly holds onto a value placed in the box until the box’s custodian is
shut down. The custodian only weakly retains the box itself, however (so the box and its
content can be collected if there are no other references to them).

When Racket is compiled with support for per-custodian memory accounting (see
custodian-memory-accounting-available?), the current-memory-use procedure

29

See §13.7
“Custodians” for
custodian functions.

In GRacket,
custodians also
manage
eventspaces.

can report a custodian-specific result. This result determines how much memory is occupied
by objects that are reachable from the custodian’s managed values, especially its threads, and
including its sub-custodians’ managed values. If an object is reachable from two custodians
where neither is an ancestor of the other, an object is arbitrarily charged to one or the other,
and the choice can change after each collection; objects reachable from both a custodian
and its descendant, however, are reliably charged to the custodian and not to the descen-
dants, unless the custodian can reach the objects only through a descendant custodian or a
descendant’s thread. Reachability for per-custodian accounting does not include weak ref-
erences, references to threads managed by other custodians, references to other custodians,
or references to custodian boxes for other custodians.

1.2 Syntax Model
The syntax of a Racket program is defined by

* a read phase that processes a character stream into a syntax object; and

* an expand phase that processes a syntax object to produce one that is fully parsed.

For details on the read phase, see §12.6 “The Reader”. Source code is normally read in
read-syntax mode, which produces a syntax object.

The expand phase recursively processes a syntax object to produce a complete parse of the
program. Binding information in a syntax object drives the expansion process, and when the
expansion process encounters a binding form, it extends syntax objects for sub-expression
with new binding information.

1.2.1 Identifiers and Binding

An identifier is source-program entity. Parsing (i.e., expanding) a Racket program reveals
that some identifiers correspond to variables, some refer to syntactic forms, and some are
quoted to produce a symbol or a syntax object.

An identifier binds another (i.e., it is a binding) when the former is parsed as a variable and
the latter is parsed as a reference to the former; the latter is bound. The scope of a binding is
the set of source forms to which it applies. The environment of a form is the set of bindings
whose scope includes the form. A binding for a sub-expression shadows any bindings (i.e., it
is shadowing) in its environment, so that uses of an identifier refer to the shadowing binding.

For example, as a bit of source, the text

(let ([x 5]) x)

30

§4.2 “Identifiers
and Binding” in
Guide: Racket
introduces binding.

includes two identifiers: let and x (which appears twice). When this source is parsed in a
typical environment, x turns out to represent a variable (unlike let). In particular, the first x
binds the second x.

A top-level binding is a binding from a definition at the top-level; a module binding is a
binding from a definition in a module; and a local binding is another other kind of binding.
There is no difference between an unbound identifier and one with a top-level binding; within
a module, references to top-level bindings are disallowed, and so such identifiers are called
unbound in a module context.

Throughout the documentation, identifiers are typeset to suggest the way that they are parsed.
A black, boldface identifier like 1ambda indicates as a reference to a syntactic form. A plain
blue identifier like x is a variable or a reference to an unspecified top-level variable. A
hyperlinked identifier cons is a reference to a specific top-level variable.

Every binding has a phase level in which it can be referenced, where a phase level normally
corresponds to an integer (but the special label phase level does not correspond to an integer).
Phase level O corresponds to the run time of the enclosing module (or the run time of top-
level expressions). Bindings in phase level O constitute the base environment. Phase level
1 corresponds to the time during which the enclosing module (or top-level expression) is
expanded; bindings in phase level 1 constitute the transformer environment. Phase level
-1 corresponds to the run time of a different module for which the enclosing module is
imported for use at phase level 1 (relative to the importing module); bindings in phase level
-1 constitute the template environment. The label phase level does not correspond to any
execution time; it is used to track bindings (e.g., to identifiers within documentation) without
implying an execution dependency.

If an identifier has a local binding, then it is the same for all phase levels, though the reference
is allowed only at a particular phase level. Attempting to reference a local binding in a
different phase level from the binding’s context produces a syntax error. If an identifier has
a top-level binding or module binding, then it can have different such bindings in different
phase levels.

1.2.2 Syntax Objects

A syntax object combines a simpler Racket value, such as a symbol or pair, with lexical
information about bindings, source-location information, syntax properties, and syntax cer-
tificates. In particular, an identifier is represented as a symbol object that combines a symbol
and lexical and other information.

For example, a car identifier might have lexical information that designates it as the car
from the racket/base language (i.e., the built-in car). Similarly, a 1ambda identifier’s
lexical information may indicate that it represents a procedure form. Some other identifier’s
lexical information may indicate that it references a top-level variable.

31

When a syntax object represents a more complex expression than an identifier or simple
constant, its internal components can be extracted. Even for extracted identifier, detailed
information about binding is available mostly indirectly; two identifiers can be compared to
see if they refer to the same binding (i.e., free-identifier=7), or whether each identifier
would bind the other if one was in a binding position and the other in an expression position
(i.e., bound-identifier="7).

For example, the when the program written as
(let ([x 5]) (+ x 6))

is represented as a syntax object, then two syntax objects can be extracted for the two xs.
Both the free-identifier=7 and bound-identifier=7 predicates will indicate that the
xs are the same. In contrast, the 1let identifier is not free-identifier=7 or bound-
identifier="7 to either x.

The lexical information in a syntax object is independent of the other half, and it can be
copied to a new syntax object in combination with an arbitrary other Racket value. Thus,
identifier-binding information in a syntax object is predicated on the symbolic name of the
identifier as well as the identifier’s lexical information; the same question with the same
lexical information but different base value can produce a different answer.

For example, combining the lexical information from let in the program above to ’x would
not produce an identifier that is free-identifier=7 to either x, since it does not appear
in the scope of the x binding. Combining the lexical context of the 6 with ’x, in contrast,
would produce an identifier that is bound-identifier=7 to both xs.

The quote-syntax form bridges the evaluation of a program and the representation of a
program. Specifically, (quote-syntax datum) produces a syntax object that preserves all
of the lexical information that datum had when it was parsed as part of the quote-syntax
form.

1.2.3 Expansion (Parsing)

Expansion recursively processes a syntax object in a particular phase level, starting with
phase level 0. Bindings from the syntax object’s lexical information drive the expansion pro-
cess, and cause new bindings to be introduced for the lexical information of sub-expressions.
In some cases, a sub-expression is expanded in a deeper phase than the enclosing expression.

Fully Expanded Programs

A complete expansion produces a syntax object matching the following grammar:

top-level-form = general-top-level-form

32

Beware that the
symbolic names of
identifiers in a fully
expanded program
may not match the
symbolic names in
the grammar. Only
the binding
(according to
free-identifier=7?)
matters.

| (#%expression expr)
| (module id name-id
(#/plain-module-begin
module-level-form ...))
| (begin top-level-form ...)

module-level-form = general-top-level-form

| (#%provide raw-provide-spec ...)
general-top-level-form = expr
| (define-values (id ...) expr)
| (define-syntaxes (id ...) expr)
| (define-values-for-syntax (id ...) expr)
| (#%require raw-require-spec ...)
expr = id
| (#%plain-lambda formals expr ...+)
| (case-lambda (formals expr ...+) ...)
| (if expr expr expr)
| (begin expr ...+)
| (beginO expr expr ...)
| (let-values (((id ...) expr) ...)
expr ...+)
| (letrec-values (((id ...) expr) ...)
expr ...+)
| (set! id expr)
| (quote datum)
| (quote-syntax datum)
| (with-continuation-mark expr expr expr)
| (#%plain-app expr ...+)
| (#%top . id)
| (#)variable-reference id)
| (#%variable-reference (#)top . id))
| (#%variable-reference)
(id ...)
(id ...+ . id)

formals =
\
| id

A fully-expanded syntax object corresponds to a parse of a program (i.e., a parsed program),
and lexical information on its identifiers indicates the parse.

More specifically, the typesetting of identifiers in the above grammar is significant. For
example, the second case for expr is a syntax-object list whose first element is an identifier,
where the identifier’s lexical information specifies a binding to the #%plain-lambda of the
racket/base language (i.e., the identifier is free-identifier="7 to one whose binding is

33

#/plain-lambda). In all cases, identifiers above typeset as syntactic-form names refer to
the bindings defined in §2 “Syntactic Forms”.

Only phase levels 0 and 1 are relevant for the parse of a program (though the datum in a
quote-syntax form preserves its information for all phase levels). In particular, the relevant
phase level is 0, except for the exprs in a define-syntax, define-syntaxes, define-
for-syntax, or define-values-for-syntax form, in which case the relevant phase level
is 1 (for which comparisons are made using free-transformer-identifier=7 instead
of free-identifier="7).

In addition to the grammar above, letrec-syntaxes+values can appear in a fully local-
expanded expression, such as the result from local-expand when the stop list is empty.

Expansion Steps

In a recursive expansion, each single step in expanding a syntax object at a particular phase
level depends on the immediate shape of the syntax object being expanded:

e If it is an identifier (i.e., a syntax-object symbol), then a binding is determined by
the identifier’s lexical information. If the identifier has a binding other than as a top-
level variable, that binding is used to continue. If the identifier has no binding, a new
syntax-object symbol ’#/top is created using the lexical information of the identifier;
if this #%top identifier has no binding (other than as a top-level variable), then parsing
fails with an exn:fail:syntax exception. Otherwise, the new identifier is combined
with the original identifier in a new syntax-object pair (also using the same lexical
information as the original identifier), and the #%top binding is used to continue.

 If it is a syntax-object pair whose first element is an identifier, and if the identifier
has a binding other than as a top-level variable, then the identifier’s binding is used to
continue.

* Ifitis a syntax-object pair of any other form, then a new syntax-object symbol ’ #%,app
is created using the lexical information of the pair. If the resulting #%app identifier has
no binding, parsing fails with an exn:fail:syntax exception. Otherwise, the new
identifier is combined with the original pair to form a new syntax-object pair (also
using the same lexical information as the original pair), and the #%app binding is used
to continue.

« If it is any other syntax object, then a new syntax-object symbol ’#/datum is created
using the lexical information of the original syntax object. If the resulting #%datum
identifier has no binding, parsing fails with an exn:fail:syntax exception. Other-
wise, the new identifier is combined with the original syntax object in a new syntax-
object pair (using the same lexical information as the original pair), and the #%datum
binding is used to continue.

34

Thus, the possibilities that do not fail lead to an identifier with a particular binding. This
binding refers to one of three things:

* A transformer binding, such as introduced by define-syntax or let-syntax. If
the associated value is a procedure of one argument, the procedure is called as a syn-
tax transformer (described below), and parsing starts again with the syntax-object re-
sult. If the transformer binding is to any other kind of value, parsing fails with an
exn:fail:syntax exception. The call to the syntax transformer is parameterized
to set current-namespace to a namespace that shares bindings and variables with
the namespace being used to expand, except that its base phase is one greater.

* A variable binding, such as introduced by a module-level define or by let. In this
case, if the form being parsed is just an identifier, then it is parsed as a reference to the
corresponding variable. If the form being parsed is a syntax-object pair, then an #%app
is added to the front of the syntax-object pair in the same way as when the first item
in the syntax-object pair is not an identifier (third case in the previous enumeration),
and parsing continues.

* A core syntactic form, which is parsed as described for each form in §2 “Syntactic
Forms”. Parsing a core syntactic form typically involves recursive parsing of sub-
forms, and may introduce bindings that determine the parsing of sub-forms.

Expansion Context

Each expansion step occurs in a particular context, and transformers and core syntactic forms
may expand differently for different contexts. For example, a module form is allowed only
in a top-level context, and it fails in other contexts. The possible contexts are as follows:

* top-level context : outside of any module, definition, or expression, except that sub-
expressions of a top-level begin form are also expanded as top-level forms.

* module-begin context : inside the body of a module, as the only form within the
module.

* module context : in the body of a module (inside the module-begin layer).

* internal-definition context : in a nested context that allows both definitions and ex-
pressions.

* expression context : in a context where only expressions are allowed.

Different core syntactic forms parse sub-forms using different contexts. For example, a let
form always parses the right-hand expressions of a binding in an expression context, but it
starts parsing the body in an internal-definition context.

35

Introducing Bindings

Bindings are introduced during expansion when certain core syntactic forms are encoun-
tered:

* When a require form is encountered at the top level or module level, all lexical
information derived from the top level or the specific module’s level are extended
with bindings from the specified modules. If not otherwise indicated in the require
form, bindings are introduced at the phase levels specified by the exporting modules:
phase level O for each normal provide, phase level 1 for each for-syntax provide,
and so on. The for-meta provide form allows exports at an arbitrary phase level (as
long as a binding exists within the module at the phase level).

A for-syntax sub-form within require imports similarly, but the resulting bindings
have a phase level that is one more than the exported phase levels, when exports for
the label phase level are still imported at the label phase level. More generally, a for-
meta sub-form within require imports with the specified phase level shift; if the
specified shift is #£, or if for-label is used to import, then all bindings are imported
into the label phase level.

* When a define, define-values, define-syntax, or define-syntaxes form is
encountered at the top level or module level, all lexical information derived from the
top level or the specific module’s level is extended with bindings for the specified
identifiers at phase level O (i.e., the base environment is extended).

* When a define-for-syntax or define-values-for-syntax form is encountered
at the top level or module level, bindings are introduced as for def ine-values, but
at phase level 1 (i.e., the transformer environment is extended).

* When a let-values form is encountered, the body of the let-values form is ex-
tended (by creating new syntax objects) with bindings for the specified identifiers. The
same bindings are added to the identifiers themselves, so that the identifiers in binding
position are bound-identifier=7 to uses in the fully expanded form, and so they
are not bound-identifier="7 to other identifiers. The bindings are available for use
at the phase level at which the let-values form is expanded.

* When a letrec-values or letrec-syntaxes+values form is encountered, bind-
ings are added as for let-values, except that the right-hand-side expressions are also
extended with the bindings.

* Definitions in internal-definition contexts introduce bindings as described in §1.2.3.7
“Internal Definitions”.

A new binding in lexical information maps to a new variable. The identifiers mapped to
this variable are those that currently have the same binding (i.e., that are currently bound-
identifier="?) to the identifier associated with the binding.

36

For example, in
(let-values ([(x) 101) (+ x y))

the binding introduced for x applies to the x in the body, but not the y n the body, because
(at the point in expansion where the 1let-values form is encountered) the binding x and the
body y are not bound-identifier="7.

Transformer Bindings

In a top-level context or module context, when the expander encounters a define-
syntaxes form, the binding that it introduces for the defined identifiers is a transformer
binding. The value of the binding exists at expansion time, rather than run time (though the
two times can overlap), though the binding itself is introduced with phase level O (i.e., in the
base environment).

The value for the binding is obtained by evaluating the expression in the def ine-syntaxes
form. This expression must be expanded (i.e. parsed) before it can be evaluated, and it is
expanded at phase level 1 (i.e., in the transformer environment) instead of phase level 0.

If the resulting value is a procedure of one argument or the result of make-set!-
transformer on a procedure, then it is used as a syntax transformer (a.k.a. macro). The
procedure is expected to accept a syntax object and return a syntax object. A use of the bind-
ing (at phase level 0) triggers a call of the syntax transformer by the expander; see §1.2.3.2
“Expansion Steps”.

Before the expander passes a syntax object to a transformer, the syntax object is extended
with a syntax mark (that applies to all sub-syntax objects). The result of the transformer is
similarly extended with the same syntax mark. When a syntax object’s lexical information
includes the same mark twice in a row, the marks effectively cancel. Otherwise, two identi-
fiers are bound-identifier=7 (that is, one can bind the other) only if they have the same
binding and if they have the same marks—counting only marks that were added after the
binding.

This marking process helps keep binding in an expanded program consistent with the lexical
structure of the source program. For example, the expanded form of the program

(define x 12)
(define-syntax m
(syntax-rules ()
[(C id) (let ([x 10]) id)1))
(m x)

is

(define x 12)

37

(define-syntax m
(syntax-rules ()
[(C id) (let ([x 10]) id)1))
(let-values ([(x) 10]) x)

However, the result of the last expression is 12, not 10. The reason is that the transformer
bound to m introduces the binding x, but the referencing x is present in the argument to the
transformer. The introduced x is the one left with a mark, and the reference x has no mark,
so the binding x is not bound-identifier=7 to the body x.

The set! form works with the make-set!-transformer and prop:set!-transformer
property to support assignment transformers that transform set! expressions. An assign-
ment transformer contains a procedure that is applied by set! in the same way as a normal
transformer by the expander.

The make-rename-transformer procedure or prop:rename-transformer property cre-
ates a value that is also handled specially by the expander and by set! as a trans-
former binding’s value. When id is bound to a rename transformer produced by make-
rename-transformer, it is replaced with the target identifier passed to make-rename-
transformer. In addition, as long as the target identifier does not have a true value for
the 'not-free-identifier=7 syntax property, the lexical information that contains the
binding of id is also enriched so that id is free-identifier=7 to the target identifier,
identifier-binding returns the same results for both identifiers, and provide exports id
as the target identifier. Finally, the binding is treated specially by syntax-local-value,
and syntax-local-make-delta-introducer as used by syntax transformers.

In addition to using marks to track introduced identifiers, the expander tracks the expansion
history of a form through syntax properties such as ’origin. See §11.7 “Syntax Object
Properties” for more information.

Finally, the expander uses syntax certificates to control the way that unexported and pro-
tected module bindings are used. See §11.8 “Syntax Certificates” for more information on
syntax certificates.

The expander’s handling of letrec-values+syntaxes is similar to its handling of
define-syntaxes. A letrec-values+syntaxes mist be expanded in an arbitrary phase
level n (not just 0), in which case the expression for the transformer binding is expanded at
phase level n+1.

The expression in a define-for-syntax or define-values-for-syntax form is ex-
panded and evaluated in the same way as for syntax. However, the introduced binding is a
variable binding at phase level 1 (not a transformer binding at phase level 0).

38

Partial Expansion

In certain contexts, such as an internal-definition context or module context, forms are par-
tially expanded to determine whether they represent definitions, expressions, or other decla-
ration forms. Partial expansion works by cutting off the normal recursion expansion when
the relevant binding is for a primitive syntactic form.

As a special case, when expansion would otherwise add an #%app, #/,datum, or #%top iden-
tifier to an expression, and when the binding turns out to be the primitive #},app, #/datum,
or #%top form, then expansion stops without adding the identifier.

Internal Definitions

An internal-definition context corresponds to a partial expansion step (see §1.2.3.6 “Partial
Expansion™). A form that supports internal definitions starts by expanding its first form in
an internal-definition context, but only partially. That is, it recursively expands only until the
form becomes one of the following:

* A define-values or define-syntaxes form, for any form other than the last one:
The definition form is not expanded further. Instead, the next form is expanded par-
tially, and so on. The content of a begin form is spliced into the body-form se-
quence. After all forms are partially expanded, the accumulated definition forms
are converted to a letrec-values (if no define-syntaxes forms were found) or
letrec-syntaxes+values form, moving the expression-form tail to the body to be
expanded in expression context. An expression expr that appears before a definition
is converted to a letrec-values clause [() (begin expr (values))], so that
the expression can produce any number of values, and its evaluation order is preserved
relative to definitions.

When a define-values form is discovered, the lexical context of all syntax objects
for the body sequence is immediately enriched with bindings for the define-values
form before expansion continues. When a define-syntaxes form is discovered,
the right-hand side is expanded and evaluated (as for a letrec-values+syntaxes
form), and a transformer binding is installed for the body sequence before expansion
continues.

e A primitive expression form other than begin: The expression is expanded in an
expression context, along with all remaining body forms. If any definitions were
found, this expansion takes place after conversion to a letrec-values or letrec-
syntaxes+values form. Otherwise, the expressions are expanded immediately.

* A begin form: The sub-forms of the begin are spliced into the internal-definition
sequence, and partial expansion continues with the first of the newly-spliced forms (or
the next form, if the begin had no sub-forms).

39

If the last expression form turns out to be a define-values or define-syntaxes form,
expansion fails with a syntax error.

Module Phases and Visits

A require form not only introduces bindings at expansion time, but also visits the refer-
enced module when it is encountered by the expander. That is, the expander instantiates any
define-for-syntaxed variables defined in the module, and also evaluates all expressions
for def ine-syntaxes transformer bindings.

Module visits propagate through requires in the same way as module instantiation. More-
over, when a module is visited at phase 0, any module that it requires for-syntax is
instantiated at phase 1, while further requires for-template leading back to phase 0
causes the required module to be visited at phase O (i.e., not instantiated).

During compilation, the top-level of module context is itself implicitly visited. Thus, when
the expander encounters (require (for-syntax)), it immediately instantiates the
required module at phase 1, in addition to adding bindings at phase level 1 (i.e., the trans-
former environment). Similarly, the expander immediately evaluates any define-values-
for-syntax form that it encounters.

Phases beyond 0 are visited on demand. For example, when the right-hand side of a phase-0
let-syntax is to be expanded, then modules that are available at phase 1 are visited. More
generally, initiating expansion at phase n visits modules at phase », which in turn instantiates
modules at phase n+1. These visits and instantiations apply to available modules in the
enclosing namespace’s module registry; a per-registry lock prevents multiple threads from
concurrently instantiating and visiting available modules.

When the expander encounters require and (require (for-syntax)) within a
module context, the resulting visits and instantiations are specific to the expansion of the
enclosing module, and are kept separate from visits and instantiations triggered from a top-
level context or from the expansion of a different module. Along the same lines, when a
module is attached to a namespace through namespace-attach-module, modules that it
requires are transitively attached, but instances are attached only at phases at or below the
namespace’s base phase.

Macro-Introduced Bindings

When a top-level definition binds an identifier that originates from a macro expansion, the
definition captures only uses of the identifier that are generated by the same expansion.
This behavior is consistent with expansion in internal-definition contexts, where the defined
identifier turns into a fresh lexical binding.

Examples:

40

\4

(define-syntax def-and-use-of-x
(syntax-rules ()
[(def-and-use-of-x val)
; X below originates from this macro:
(begin (define x val) x)1))
(define x 1)
X

(def-and-use-of-x 2)

X

V B VNV ~E V YV

(define-syntax def-and-use
(syntax-rules ()
[(def-and-use x val)
"x" below was provided by the macro use:

(begin (define x val) x)1))
> (def-and-use x 3)
3
>
3

For a top-level definition (outside of a module), the order of evaluation affects the binding
of a generated definition for a generated identifier use. If the use precedes the definition,
then the use refers to a non-generated binding, just as if the generated definition were not
present. (No such dependency on order occurs within a module, since a module binding
covers the entire module body.) To support the declaration of an identifier before its use, the
define-syntaxes form avoids binding an identifier if the body of the define-syntaxes
declaration produces zero results.

Examples:
> (define bucket-1 0)
> (define bucket-2 0)
> (define-syntax def-and-set!-use-of-x
(syntax-rules ()
[(def-and-set!-use-of-x val)
(begin (set! bucket-1 x) (define x val) (set! bucket-
2 x))1))
> (define x 1)
(def-and-set!-use-of-x 2)
X

bucket-1

bucket-2

NV =V~ V YV

41

> (define-syntax defs-and-uses/fail
(syntax-rules ()
[(def-and-use)
(begin
; Initial reference to even precedes definition:
(define (odd x) (if (zero? x) #f (even (subl x))))
(define (even x) (if (zero? x) #t (odd (subl x))))
(odd 17))1))
> (defs-and-uses/fail)
reference to undefined identifier: even
> (define-syntax defs-and-uses
(syntax-rules ()
[(def-and-use)
(begin
; Declare before definition via no-values define-syntaxes:
(define-syntaxes (odd even) (values))
(define (odd x) (if (zero? x) #f (even (subl x))))
(define (even x) (if (zero? x) #t (odd (subl x))))
(odd 17))1))
> (defs-and-uses)
#t

Macro-generated "require" and "provide" clauses also introduce and reference
generation-specific bindings:

e Inrequire, for a require-spec of the form (rename-in [orig-id bind-id])
or (only-in [orig-id bind-id]), the bind-id is bound only for uses of
the identifier generated by the same macro expansion as bind-id. In require for
other require-specs, the generator of the require-spec determines the scope of
the bindings.

e In provide, for a provide-spec of the form id, the exported identifier is the one
that binds id within the module in a generator-specific way, but the external name
is the plain id. The exceptions for all-except-out are similarly determined in a
generator-specific way, as is the orig-id binding of a rename-out form, but plain
identifiers are used for the external names. For all-defined-out, only identifiers
with definitions having the same generator as the (all-defined-out) form are ex-
ported; the external name is the plain identifier from the definition.

1.2.4 Compilation

Before expanded code is evaluated, it is first compiled. A compiled form has essentially the
same information as the corresponding expanded form, though the internal representation
naturally dispenses with identifiers for syntactic forms and local bindings. One significant

42

difference is that a compiled form is almost entirely opaque, so the information that it con-
tains cannot be accessed directly (which is why some identifiers can be dropped). At the
same time, a compiled form can be marshaled to and from a byte string, so it is suitable for
saving and re-loading code.

Although individual read, expand, compile, and evaluate operations are available, the oper-
ations are often combined automatically. For example, the eval procedure takes a syntax
object and expands it, compiles it, and evaluates it.

1.2.5 Namespaces

A namespace is a top-level mapping from symbols to binding information. It is the starting
point for expanding an expression; a syntax object produced by read-syntax has no initial
lexical context; the syntax object can be expanded after initializing it with the mappings of
a particular namespace. A namespace is also the starting point evaluating expanded code,
where the first step in evaluation is linking the code to specific module instances and top-
level variables.

For expansion purposes, a namespace maps each symbol in each phase level to one of three
possible bindings:

* a particular module binding from a particular module
¢ atop-level transformer binding named by the symbol

* atop-level variable named by the symbol

An “empty” namespace maps all symbols to top-level variables. Certain evaluations ex-
tend a namespace for future expansions; importing a module into the top-level adjusts the
namespace bindings for all of the imported named, and evaluating a top-level define form
updates the namespace’s mapping to refer to a variable (in addition to installing a value into
the variable).

A namespace also has a module registry that maps module names to module declarations
(see §1.1.10 “Modules and Module-Level Variables™). This registry is shared by all phase
levels.

For evaluation, each namespace encapsulates a distinct set of top-level variables at various
phases, as well as a potentially distinct set of module instances in each phase. That is, even
though module declarations are shared for all phase levels, module instances are distinct for
each phase. Each namespace has a base phase, which corresponds to the phase used by
reflective operations such as eval and dynamic-require. In particular, using eval on a
require form instantiates a module in the namespace’s base phase.

After a namespace is created, module instances from existing namespaces can be attached

43

See §13.1
“Namespaces” for
functions that
manipulate
namespaces.

to the new namespace. In terms of the evaluation model, top-level variables from differ-
ent namespaces essentially correspond to definitions with different prefixes, but attaching
a module uses the same prefix for the module’s definitions in namespaces where it is at-
tached. The first step in evaluating any compiled expression is to link its top-level variable
and module-level variable references to specific variables in the namespace.

At all times during evaluation, some namespace is designated as the current namespace. The
current namespace has no particular relationship, however, with the namespace that was used
to expand the code that is executing, or with the namespace that was used to link the compiled
form of the currently evaluating code. In particular, changing the current namespace during
evaluation does not change the variables to which executing expressions refer. The current
namespace only determines the behavior of reflective operations to expand code and to start
evaluating expanded/compiled code.

Examples:
> (define x ’orig) ; define in the original namespace
; The following let expression is compiled in the original
; namespace, so direct references to x see ’orig.
(let ([n (make-base-namespace)]) ; make new namespace
(parameterize ([current-namespace n])
(eval ’(define x ’new)) ; evals in the new namespace
(display x) ; displays ’orig
(display (eval ’x)))) ; displays ’new
orignew

\4

A namespace is purely a top-level entity, not to be confused with an environment. In partic-
ular, a namespace does not encapsulate the full environment of an expression inside local-
binding forms.

If an identifier is bound to syntax or to an import, then defining the identifier as a variable
shadows the syntax or import in future uses of the environment. Similarly, if an identifier is
bound to a top-level variable, then binding the identifier to syntax or an import shadows the
variable; the variable’s value remains unchanged, however, and may be accessible through
previously evaluated expressions.

Examples:
> (define x 5)
(define (f) x)
X

(define-syntax x (syntax-id-rules () [_ 10]))
X

10

> ()

>
>
5
> (£)
5
>
>

44

(define x 7)
x

(£
(module m racket (define x 8) (provide x))

(require ’m)
X

£

NV OV YV VNV NV Vo

1.2.6 Inferred Value Names

To improve error reporting, names are inferred at compile-time for certain kinds of values,
such as procedures. For example, evaluating the following expression:

(let ([f (lambda () 0)1) (£ 1 2 3))

produces an error message because too many arguments are provided to the procedure. The
error message is able to report £ as the name of the procedure. In this case, Racket decides,
at compile-time, to name as ’f all procedures created by the let-bound lambda.

Names are inferred whenever possible for procedures. Names closer to an expression take
precedence. For example, in

(define my-f
(let ([f (lambda () 0)1) £))

the procedure bound to my-£ will have the inferred name ’£.

When an ’inferred-name property is attached to a syntax object for an expression (see
§11.7 “Syntax Object Properties”), the property value is used for naming the expression,
and it overrides any name that was inferred from the expression’s context. Normally, the
property value should be a symbol or an identifier.

When an inferred name is not available, but a source location is available, a name is con-
structed using the source location information. Inferred and property-assigned names are
also available to syntax transformers, via syntax-local-name.

45

2 Syntactic Forms

This section describes the core syntax forms that appear in a fully expanded expression, plus
a many closely-related non-core forms. See §1.2.3.1 “Fully Expanded Programs” for the
core grammar.

Notation

Each syntactic form is described by a BNF-like notation that describes a combination of
(syntax-wrapped) pairs, symbols, and other data (not a sequence of characters). These gram-
matical specifications are shown as in the following specification of a something form:

(something id thing-expr ...)
thing-expr : number?
Within such specifications,
* ... indicates zero or more repetitions of the preceding datum; more generally, N
consecutive . . .s a row indicate a consecutive repetition of the preceding N datums.

* ...+ indicates one or more repetitions of the preceding datum.

* Italic meta-identifiers play the role of non-terminals. Some meta-identifier names im-
ply syntactic constraints:

A meta-identifier that ends in id stands for an identifier.

A meta-identifier that ends in keyword stands for a keyword.

A meta-identifier that ends with expr (such as thing-expr) stands for a sub-
form that is expanded as an expression.

A meta-identifier that ends with body stands for a sub-form that is expanded in
an internal-definition context (see §1.2.3.7 “Internal Definitions”).

* Contracts indicate constraints on sub-expression results. For example, thing-expr
number? indicates that the expression thing-expr must produce a number.

2.1 Modules: module, ...

(module id module-path form ...)

46

§6.2.1 “The
module Form” in
Guide: Racket
introduces module.

Declares a top-level module. If the current-module-declare-name parameter is set, the
parameter value is used for the module name and id is ignored, otherwise (quote id) is
the name of the declared module.

The module-path form must be as for require, and it supplies the initial bindings for the
body forms. That is, it is treated like a (require module-path) prefix before the forms,
except that the bindings introduced by module-path can be shadowed by definitions and
requires in the module body forms.

If a single form is provided, then it is partially expanded in a module-begin context. If
the expansion leads to #/plain-module-begin, then the body of the #)plain-module-
begin is the body of the module. If partial expansion leads to any other primitive form, then
the form is wrapped with #/module-begin using the lexical context of the module body;
this identifier must be bound by the initial module-path import, and its expansion must
produce a #/plain-module-begin to supply the module body. Finally, if multiple forms
are provided, they are wrapped with #/module-begin, as in the case where a single form
does not expand to #%plain-module-begin.

After such wrapping, if any, and before any expansion, an ’enclosing-module-name
property is attached to the #%module-begin syntax object (see §11.7 “Syntax Object Prop-
erties”); the property’s value is a symbol corresponding to id.

Each form is partially expanded (see §1.2.3.6 “Partial Expansion”) in a module context.
Further action depends on the shape of the form:

e If it is a begin form, the sub-forms are flattened out into the module’s body and
immediately processed in place of the begin.

e If it is a define-syntaxes or define-values-for-syntax form, then the right-
hand side is evaluated (in phase 1), and the binding is immediately installed for further
partial expansion within the module. Evaluation of the right-hand side is parameter-
ized to set current-namespace as in let-syntax.

o If the form is a require form, bindings are introduced immediately, and the imported
modules are instantiated or visited as appropriate.

o If the form is a provide form, then it is recorded for processing after the rest of the
body.

e If the form is a def ine-values form, then the binding is installed immediately, but
the right-hand expression is not expanded further.

 Similarly, if the form is an expression, it is not expanded further.

After all forms have been partially expanded this way, then the remaining expression forms
(including those on the right-hand side of a definition) are expanded in an expression context.

47

For a module-like
form for use within
modules and other
contexts, see
define-package.

The scope of all imported identifiers covers the entire module body, as does the scope of
any identifier defined within the module body. The ordering of syntax definitions does not
affect the scope of the syntax names; a transformer for A can produce expressions containing
B, while the transformer for B produces expressions containing A, regardless of the order of
declarations for A and B. However, a syntactic form that produces syntax definitions must be
defined before it is used.

No identifier can be imported or defined more than once at any phase level. Every exported
identifier must be imported or defined. No expression can refer to a top-level variable.

The evaluation of amodule form does not evaluate the expressions in the body of the module.
Evaluation merely declares a module, whose full name depends both on id or (current-
module-declare-name).

The module body is executed only when the module is explicitly instantiated via require
or dynamic-require. On invocation, expressions and definitions are evaluated in order as
they appear within the module. Each evaluation of an expression or definition is wrapped
with a continuation prompt (see call-with-continuation-prompt) for the default con-
tinuation and using the default prompt handler.

Accessing a module-level variable before it is defined signals a run-time error, just like ac-
cessing an undefined global variable. If a module (in its fully expanded form) does not con-
tain a set! for an identifier that defined within the module, then the identifier is a constant
after it is defined; its value cannot be changed afterward, not even through reflective mech-
anisms. The compile-enforce-module-constants parameter, however, can be used to
disable enforcement of constants.

When a syntax object representing a module form has a "module-language syntax prop-
erty attached, and when the property value is a vector of three elements where the first is a
module path (in the sense of module-path?) and the second is a symbol, then the property
value is preserved in the corresponding compiled and/or declared module. The third com-
ponent of the vector should be printable and readable, so that it can be preserved in mar-
shaled bytecode. The racket/base and racket languages attach ’# (racket/language-
info get-info #f) to a module form. See also module-compiled-language-info,
module->language-info, and racket/language-info.

See also §1.1.10 “Modules and Module-Level Variables” and §1.2.3.8 “Module Phases and
Visits”.

Example:
> (module duck racket/base
(provide num-eggs quack)
(define num-eggs 2)
(define (quack n)
(unless (zero? n)
(printf "quack\n")
(quack (subl n)))))

48

(#)module-begin form ...)
Legal only in a module begin context, and handled by the module form.

The #%module-begin form of racket/base wraps every top-level expression to print non-
#<void> results using current-print.

(#)plain-module-begin form ...)

Legal only in a module begin context, and handled by the module form.

2.2 Importing and Exporting: require and provide
§6.4 “Imports:

require” in

Guide: Racket
) introduces

require.

(require require-spec

49

require-spec = module-path
| (only-in require-spec id-maybe-renamed ...)
| (except-in require-spec id ...)
| (prefix-in prefix-id require-spec)
| (rename-in require-spec [orig-id bind-id] ...)
| (combine-in require-spec ...)
| (only-meta-in phase-level require-spec ...)
| (for-syntax require-spec ...)
| (for-template require-spec ...)
| (for-label require-spec ...)
| (for-meta phase-level require-spec ...)
| derived-require-spec
module-path (quote id)
rel-string
(1ib rel-string ...+)
id
(file string)
(planet id)
(planet string)
(planet rel-string
(user-string pkg-string vers)
rel-string ...)

id-maybe-renamed = id
| [orig-id bind-id]

phase-level = exact-integer
| #f
vers

| nat
| nat minor-vers

nat

(nat nat)
(= nat)
(+ nat)
(- nat)

minor-vers

In a top-level context, require instantiates modules (see §1.1.10 “Modules and Module-
Level Variables”). In a top-level context or module context, expansion of require visits
modules (see §1.2.3.8 “Module Phases and Visits”). In both contexts and both evaluation
and expansion, require introduces bindings into a namespace or a module (see §1.2.3.4
“Introducing Bindings”). A require form in a expression context or internal-definition
context is a syntax error.

50

A require-spec designates a particular set of identifiers to be bound in the importing
context. Each identifier is mapped to a particular export of a particular module; the identifier
to bind may be different from the symbolic name of the originally exported identifier. Each
identifier also binds at a particular phase level.

The syntax of require-spec can be extended via define-require-syntax, and when
multiple require-specs are specified in a require, the bindings of each require-spec
are visible for expanding later require-specs. The pre-defined forms (as exported by
racket/base) are as follows:

module-path

Imports all exported bindings from the named module, using the export iden-
tifiers as the local identifiers. (See below for information on module-path.)
The lexical context of the module-path form determines the context of the
introduced identifiers.

(only-in require-spec id-maybe-renamed ...)

Like require-spec, but constrained to those exports for which the identifiers
to bind match id-maybe-renamed: as id oras orig-id in [orig-id bind-
id]. If the id or orig-id of any id-maybe-renamed is not in the set that
require-spec describes, a syntax error is reported.

Examples:
> (require (only-in racket/tcp
tcp-listen
[tcp-accept my-accept]))
> tcp-listen
#<procedure:tcp-listen>
> my-accept
#<procedure:tcp-accept>
> tcp-accept
reference to undefined identifier: tcp-accept

(except-in require-spec id ...)
Like require-spec, but omitting those imports for which ids are the identi-
fiers to bind; if any id is not in the set that require-spec describes, a syntax
error is reported.

Examples:
> (require (except-in racket/tcp
tcp-listen))
> tcp-accept
#<procedure:tcp-accept>

51

> tcp-listen
reference to undefined identifier: tcp-listen

(prefix-in prefix-id require-spec)
Like require-spec, but adjusting each identifier to be bound by prefixing it

with prefix-id. The lexical context of the prefix-id is ignored, and instead
preserved from the identifiers before prefixing.

Examples:
> (require (prefix-in tcp: racket/tcp))
> tcp:tcp-accept
#<procedure:tcp-accept>
> tcp:tcp-listen
#<procedure:tcp-listen>

(rename-in require-spec [orig-id bind-id] ...)

Like require-spec, but replacing the identifier to bind orig-id with bind-
id; if any orig-id is not in the set that require-spec describes, a syntax
error is reported.

Examples:

> (require (rename-in racket/tcp
(tcp-accept accept)
(tcp-listen listen)))

> accept

#<procedure:tcp-accept>

> listen

#<procedure:tcp-listen>

(combine-in require-spec ...)
The union of the require-specs.

Examples:
> (require (combine-in (only-in racket/tcp tcp-accept)
(only-in racket/tcp tcp-listen)))
> tcp-accept
#<procedure:tcp-accept>
> tcp-listen
#<procedure:tcp-listen>

(only-meta-in phase-level require-spec ...)

52

Like the combination of require-specs, but removing any binding that is not
for phase-level, where #f for phase-level corresponds to the label phase
level.

The following example imports bindings only at phase level 1, the transform
phase:

> (module nest racket
(provide (for-syntax meta-eggs)
(for-meta 1 meta-chicks)
num-eggs)
(define-for-syntax meta-eggs 2)
(define-for-syntax meta-chicks 3)
(define num-eggs 2))
> (require (only-meta-in 1 ’nest))
> (define-syntax (desc stx)
(printf "~s ~s\n" meta-eggs meta-chicks)
#’ (void))
> (desc)
23
> num-eggs
reference to undefined identifier: num-eggs

The following example imports only bindings at phase level 0, the normal phase.

> (require (only-meta-in 0 ’nest))
> num-eggs
2

(for-meta phase-level require-spec ...)

Like the combination of require-specs, but constrained each binding speci-
fied by each require-spec is shifted by phase-level. The label phase level
corresponds to #f, and a shifting combination that involves #f produces #f.

Examples:
> (module nest racket
(provide num-eggs)
(define num-eggs 2))

> (require (for-meta 0 ’nest))

> num-eggs

2

> (require (for-meta 1 ’nest))

> (define-syntax (roost stx)
(datum->syntax stx num-eggs))

> (roost)

2

53

(for-syntax require-spec ...)

Same as (for-meta 1 require-spec ...).
(for-template require-spec ...)

Same as (for-meta -1 require-spec ...).
(for-label require-spec ...)

Same as (for-meta #f require-spec ...).

derived-require-spec

See define-require-syntax for information on expanding the set of
require-spec forms.

A module-path identifies a module, either through a concrete name in the form of an
identifier, or through an indirect name that can trigger automatic loading of the module dec-
laration. Except for the id case below, the actual resolution is up to the current module name
resolver (see current-module-name-resolver), and the description below corresponds
to the default module name resolver.

(quote id)
Refers to a module previously declared interactively with the name id.

Examples:
; a module declared interactively as test:
> (require ’test)

rel-string

A path relative to the containing source (as determined by current-load-
relative-directory or current-directory). Regardless of the current
platform, rel-string is always parsed as a Unix-format relative path: / is
the path delimiter (multiple adjacent /s are treated as a single delimiter), . .
accesses the parent directory, and . accesses the current directory. The path
cannot be empty or contain a leading or trailing slash, path elements before than
the last one cannot include a file suffix (i.e., a . in an element other than . or
..), and the only allowed characters are ASCII letters, ASCII digits, -, +, _,
., /, and %. Furthermore, a 7 is allowed only when followed by two lowercase

54

§6.3 “Module
Paths” in Guide:
Racket introduces
module paths.

hexadecimal digits, and the digits must form a number that is not the ASCII
value of a letter, digit, -, +, or _.

If rel-string ends with a ".ss" suffix, it is converted to a ".rkt" suffix.
The compiled-load handler may reverse that conversion if a ".rkt" file does
not existand a " . ss" exists.

Examples:
; a module named "x.rkt" in the same
; directory as the enclosing module’s file:
> (require "x.rkt")
; a module named "x.rkt" in the parent directory
; of the enclosing module file’s directory:
> (require "../x.rkt")

(1ib

rel-string ...+)

A path to a module installed into a collection (see §17.2 “Libraries and Col-
lections”). The rel-strings in 1ib are constrained similar to the plain rel-
string case, with the additional constraint that a rel-string cannot contain
. or .. directory indicators.

The specific interpretation of the path depends on the number and shape of the
rel-strings:

* If a single rel-string is provided, and if it consists of a single element
(i.e., no /) with no file suffix (i.e., no .), then rel-string names a col-
lection, and "main.rkt" is the library file name.

Examples:
; the main swindle library:
> (require (lib "swindle"))
; the same:
> (require (lib "swindle/main.rkt"))

 If a single rel-string is provided, and if it consists of multiple /-
separated elements, then each element up to the last names a collection,
subcollection, etc., and the last element names a file. If the last element
has no file suffix, ".rkt" is added, while a ".ss" suffix is converted to
".rkt".
Examples:
"turbo.rkt" from the "swindle" collection:

> (require (lib "swindle/turbo"))

; the same:

> (require (lib "swindle/turbo.rkt'))

; the same:

> (require (lib "swindle/turbo.ss"))

* If a single rel-string is provided, and if it consists of a single element
with a file suffix (i.e, with a .), then rel-string names a file within

55

The % provision is
intended to support
a one-to-one
encoding of
arbitrary strings as
path elements (after
UTF-8 encoding).
Such encodings are
not decoded to
arrive at a filename,
but instead
preserved in the file
access.

the "mz1ib" collection. A ".ss" suffix is converted to ".rkt". (This
convention is for compatibility with older version of Racket.)
Examples:
"tar.rkt" module from the "mzlib" collection:
> (require (lib '"tar.ss"))

* Otherwise, when multiple rel-strings are provided, the first rel-
string is effectively moved after the others, and all rel-strings are
appended with / separators. The resulting path names a collection, then
subcollection, etc., ending with a file name. No suffix is added automati-
cally, but a ".ss" suffix is converted to ".rkt". (This convention is for
compatibility with older version of Racket.)

Examples:
"tar.rkt" module from the "mzlib" collection:
> (require (lib "tar.ss" "mzlib"))

id
A shorthand for a 1ib form with a single rel-string whose characters are

the same as in the symbolic form of id. In addition to the constraints of a 1ib
rel-string, id must not contain ..

Example:
> (require racket/tcp)

(file string)

Similar to the plain rel-string case, but string is a path—possibly
absolute—using the current platform’s path conventions and expand-user-
path. A ".ss" suffix is converted to " .rkt".

Example:
> (require (file "~/tmp/x.rkt"))

(planet id)

(planet string)

(planet rel-string (user-string pkg-string vers)
rel-string ...)

Specifies a library available via the PLaneT server.

The first form is a shorthand for the last one, where the id’s character sequence
must match the following (spec) grammar:

(spec) = (owner) / (pkg) (lib)
(owner) = (elem)
(pkg) = (elem) | (elem) : (version)

56

(version) (int) | (int) : (minor)

(minor) = (int) | <= {(int) | >= (int) | = (ins)
| (int) - (int)

(lib) 2= (empty) | / (path)

(path) ::= (elem) | (elem) / (path)

and where an (elem) is a non-empty sequence of characters that are ASCII let-
ters, ASCII digits, -, +, _, or % followed by lowercase hexadecimal digits (that
do not encode one of the other allowed characters), and an (inf) is a non-empty
sequence of ASCII digits. As this shorthand is expended, a ".plt" extension
is added to (pkg), and a ".rkt" extension is added to (path); if no {(path) is
included, "main.rkt" is used in the expansion.

A (planet string) form is like a (planet id) form with the identifier
converted to a string, except that the string can optionally end with a file
extension (i.e., a .) for a (path). A ".ss" file extension is converted to " . rkt".

In the more general last form of a planet module path, the rel-strings are
similar to the 1ib form, except that the (user-string pkg-string vers)
names a PLaneT-based package instead of a collection. A version specification
can include an optional major and minor version, where the minor version can
be a specific number or a constraint: (nat nat) specifies an inclusive range,
(= nat) specifies an exact match, (+ nat) specifies a minimum version and
is equivalent to just nat, and (- nat) specifies a maximum version. The =, +,
and - identifiers in a minor-version constraint are recognized symbolically.

Examples:

; "main.rkt" in package "farm" by "mcdonald":

> (require (planet mcdonald/farm))
"main.rkt" in version >= 2.0 of "farm" by "mcdonald":
(require (planet mcdonald/farm:2))
"main.rkt" in version >= 2.5 of "farm" by "mcdonald":
(require (planet mcdonald/farm:2:5))
; "duck.rkt" in version >= 2.5 of "farm" by "mcdonald":
(require (planet mcdonald/farm:2:5/duck))

Vo oee Ve

\4

No identifier can be bound multiple times in a given phase level by an import, unless all of
the bindings refer to the same original definition in the same module. In a module context,
an identifier can be either imported or defined for a given phase level, but not both.

(local-require require-spec ...)

Like require, but for use in a local-definition context to import just into the local context.

Only bindings from phase level 0 are imported. §6.5 “Exports:
provide”in
Guide: Racket

) introduces
provide.

(provide provide-spec

57

provide-spec

= id

| (all-defined-out)

| (all-from-out module-path ...)

| (rename-out [orig-id export-id] ...)

| (except-out provide-spec provide-spec ...)
| (prefix-out prefix-id provide-spec)

| (struct-out id)
|

|

|

|

|

|

|

(combine-out provide-spec ...)
(protect-out provide-spec ...)
(for-meta phase-level provide-spec ...)
(for-syntax provide-spec ...)
(for-template provide-spec ...)

(for-label provide-spec ...)
derived-provide-spec

phase-level = exact-integer

Declares exports from a module. A provide form must appear in a module context or a

| #f

module-begin context.

A provide-spec indicates one or more bindings to provide. For each exported binding,
the external name is a symbol that can be different from the symbolic form of the identifier
that is bound within the module. Also, each export is drawn from a particular phase level

and exported at the same phase level.

The syntax of provide-spec can be extended via define-provide-syntax, but the pre-

defined forms are as follows.

id

Exports id, which must be bound within the module (i.e., either defined or
imported) at the relevant phase level. The symbolic form of id is used as the
external name, and the symbolic form of the defined or imported identifier must
match (otherwise, the external name could be ambiguous).

Examples:
> (module nest racket
(provide num-eggs)
(define num-eggs 2))
> (require ’nest)
> num-eggs
2

If id has a transformer binding to a rename transformer, then the exported
binding is the target identifier of the rename transformer, instead of id, unless
the target identifier has a true value for the *not-free-identifier=7 syntax

58

property.

(all-defined-out)

Exports all identifiers that are defined at phase level O or phase level 1 within
the exporting module, and that have the same lexical context as the (all-
defined-out) form, excluding bindings to rename transformers where the
target identifier has the ’not-provide-all-defined syntax property. The
external name for each identifier is the symbolic form of the identifier. Only
identifiers accessible from the lexical context of the (all-defined-out) form
are included; that is, macro-introduced imports are not re-exported, unless the
(all-defined-out) form was introduced at the same time.

Examples:
> (module nest racket
(provide (all-defined-out))
(define num-eggs 2))
> (require ’nest)
> num-eggs
2

(all-from-out module-path ...)

Exports all identifiers that are imported into the exporting module using a
require-spec built on each module-path (see §2.2 “Importing and Export-
ing: require and provide”) with no phase-level shift. The symbolic name for
export is derived from the name that is bound within the module, as opposed
to the symbolic name of the export from each module-path. Only identifiers
accessible from the lexical context of the module-path are included; that is,
macro-introduced imports are not re-exported, unless the module-path was
introduced at the same time.

Examples:
> (module nest racket
(provide num-eggs)
(define num-eggs 2))
> (module hen-house racket
(require ’nest)
(provide (all-from-out ’nest)))
> (require ’hen-house)
> num-eggs
2

(rename-out [orig-id export-id] ...)

59

Exports each orig-id, which must be bound within the module at phase level
0. The symbolic name for each export is export-id instead orig-d.

Examples:

> (module nest racket
(provide (rename-out [count num-eggs]))
(define count 2))

> (require ’nest)

> num-eggs

2

> count

reference to undefined identifier: count

(except-out provide-spec provide-spec ...)

Like the first provide-spec, but omitting the bindings listed in each subse-
quent provide-spec. If one of the latter bindings is not included in the initial
provide-spec, a syntax error is reported. The symbolic export name informa-
tion in the latter provide-specs is ignored; only the bindings are used.

Examples:

> (module nest racket

(provide (except-out (all-defined-out)
num-chicks))

(define num-eggs 2)
(define num-chicks 3))

> (require ’nest)

> num-eggs

2

> num-chicks

reference to undefined identifier: num-chicks

(prefix-out prefix-id provide-spec)
Like provide-spec, but with each symbolic export name from provide-
spec prefixed with prefix-id.
Examples:
> (module nest racket
(provide (prefix-out chicken: num-eggs))
(define num-eggs 2))
> (require ’nest)
> chicken:num-eggs
2

(struct-out id)

60

Exports the bindings associated with a structure type id. Typically, id is bound
with (struct id);more generally, id must have a transformer binding
of structure-type information at phase level 0; see §4.6 “Structure Type Trans-
former Binding”. Furthermore, for each identifier mentioned in the structure-
type information, the enclosing module must define or import one identifier that
is free-identifier=7. If the structure-type information includes a super-type
identifier, and if the identifier has a transformer binding of structure-type infor-
mation, the accessor and mutator bindings of the super-type are not included by
struct-out for export.

Examples:
> (module nest racket
(provide (struct-out egg))
(struct egg (color wt)))
> (require ’nest)
> (egg-color (egg ’blue 10))
’blue

(combine-out provide-spec ...)
The union of the provide-specs.

Examples:

> (module nest racket
(provide (combine-out num-eggs num-chicks))
(define num-eggs 2)
(define num-chicks 1))

> (require ’nest)

> num-eggs

2

> num-chicks

1

(protect-out provide-spec ...)

Like the union of the provide-specs, except that the exports are protected;
see §13.10 “Code Inspectors”. The provide-spec must specify only bindings
that are defined within the exporting module.

Examples:
> (module nest racket
(provide num-eggs (protect-out num-chicks))
(define num-eggs 2)
(define num-chicks 3))
> (define weak-inspector (make-inspector (current-code-
inspector)))
> (define (weak-eval x)

61

(parameterize ([current-code-inspector weak-
inspector])
(eval x)))
> (require ’nest)
> (list num-eggs num-chicks)
(2 3)
> (weak-eval ’num-eggs)
2
> (weak-eval ’num-chicks)
compile: access from an uncertified context to protected
variable from module: ’nest in: num-chicks

(for-meta phase-level provide-spec ...)

Like the union of the provide-specs, but adjusted to apply to phase level
specified by phase-Ilevel (where #f corresponds to the label phase level). In
particular, an id or rename-out form as a provide-spec refers to a binding
at phase-level, an all-defined-out exports only phase-level defini-
tions, and an all-from-out exports bindings imported with a shift by phase-
Jevel.

Examples:

> (module nest racket
(define-for-syntax eggs 2)
(define chickens 3)
(provide (for-syntax eggs)

chickens))

> (require ’nest)

> (define-syntax (test-eggs stx)
(printf "Eggs are ~a\n'" eggs)
#20)

> (test-eggs)

Eggs are 2

0

> chickens

3

> (module broken-nest racket
(define eggs 2)
(define chickens 3)
(provide (for-syntax eggs)

chickens))

eval:7:0: module: provided identifier not defined or

imported at: eggs in: (#%module-begin

(printing-module-begin (define eggs 2))

(printing-module-begin (define chickens 3))

(printing-module-begin (provide (for-syntax eggs)

62

chickens)))

> (module nest2 racket
(define-for-syntax eggs 2)
(provide (for-syntax eggs)))

> (require (for-meta 2 racket/base)

(for-syntax ’nest2))

> (define-syntax (test stx)
(define-syntax (show-eggs stx)
(printf "Eggs are ~a\n'" eggs)
#70)
(begin
(show-eggs)
#20))

Eggs are 2

> (test)

0

(for-syntax provide-spec ...)

Same as (for-meta 1 provide-spec ...).

(for-template provide-spec ...)

Same as (for-meta -1 provide-spec ...).

(for-label provide-spec ...)

Same as (for-meta #f provide-spec ...).

derived-provide-spec

See define-provide-syntax for information on expanding the set of
provide-spec forms.

Each export specified within a module must have a distinct symbolic export name, though
the same binding can be specified with the multiple symbolic names.

(for-meta phase-level require-spec ...)

See require and provide.

(for-syntax require-spec ...)

63

See require and provide.

(for-template require-spec ...)

See require and provide.

(for-label require-spec ...)

See require and provide.

(#%require raw-require-spec ...)

raw-require-spec

phase-level

phaseless-spec

raw-module-path

phaseless-spec

(for-meta phase-level phaseless-spec ...)
(for-syntax phaseless-spec ...)
(for-template phaseless-spec ...)

(for-label phaseless-spec ...)

(just-meta phase-level raw-require-spec ...)

exact-integer
#£

raw-module-path
(only raw-module-path id ...)
(prefix prefix-id raw-module-path)
(all-except raw-module-path id ...)
(prefix-all-except prefix-id

raw-module-path id ...)
(rename raw-module-path local-id exported-id)

(quote id)
rel-string
(1ib rel-string ...)
id
(file string)
(planet rel-string
(user-string pkg-string vers ...))

The primitive import form, to which require expands. A raw-require-spec is similar
to a require-spec in a require form, except that the syntax is more constrained, not
composable, and not extensible. Also, sub-form names like for-syntax and 1ib are recog-
nized symbolically, instead of via bindings. Although not formalized in the grammar above,
a just-meta form cannot appear within a just-meta form.

64

Each raw-require-spec corresponds to the obvious require-spec, but the rename sub-
form has the identifiers in reverse order compared to rename-in.

For most raw-require-specs, the lexical context of the raw-require-spec determines
the context of introduced identifiers. The exception is the rename sub-form, where the
lexical context of the 1ocal-id is preserved.

(#Yprovide raw-provide-spec ...)
raw-provide-spec = phaseless-spec

| (for-meta phase-level phaseless-spec)
| (for-syntax phaseless-spec)

| (for-label phaseless-spec)

| (protect raw-provide-spec)

phase-level = exact-integer
| #£

phaseless-spec = id
| (rename local-id export-id)

| (struct struct-id (field-id ...))

| (all-from raw-module-path)

| (all-from-except raw-module-path id ...)

| (all-defined)

| (all-defined-except id ...)

| (prefix-all-defined prefix-id)

| (prefix-all-defined-except prefix-id id ...)
| (protect phaseless-spec ...)

| (expand (id . datum))

The primitive export form, to which provide expands. A raw-module-path is as for
#/irequire. A protect sub-form cannot appear within a protect sub-form.

Like #%require, the sub-form keywords for #)provide are recognized symbolically, and
nearly every raw-provide-spec has an obvious equivalent provide-spec via provide,
with the exception of the struct and expand sub-forms.

A (struct struct-id (field-id ...)) sub-form expands to struct-id, make-
struct-id, struct: struct-id, struct-id?, struct-id-field-id for each field-
id, and set-struct-id-field-id! for each field-id. The lexical context of the
struct-id is used for all generated identifiers.

Unlike #%require, the #/,provide form is macro-extensible via an explicit expand sub-
form; the (id . datum) part is locally expanded as an expression (even though it is not
actually an expression), stopping when a begin form is produced; if the expansion result is
(begin raw-provide-spec ...),itis spliced in place of the expand form, otherwise a

65

syntax error is reported. The expand sub-form is not normally used directly; it provides a
hook for implementing provide and provide transformers.

The all-from and all-from-except forms re-export only identifiers that are accessi-
ble in lexical context of the all-from or all-from-except form itself. That is, macro-
introduced imports are not re-exported, unless the all-from or all-from-except form
was introduced at the same time. Similarly, all-defined and its variants export only defi-
nitions accessible from the lexical context of the phaseless-spec form.

2.2.1 Additional require Forms

(require racket/require)

The bindings documented in this section are provided by the racket/require library, not
racket/base or racket.

The following forms support more complex selection and manipulation of sets of imported
identifiers.

(matching-identifiers-in regexp require-spec)

Like require-spec, but including only imports whose names match regexp. The regexp
must be a literal regular expression (see §3.7 “Regular Expressions”).

Examples:

> (module zoo racket/base

(provide tunafish swordfish blowfish

monkey lizard ant)

(define tunafish 1)

(define swordfish 2)

(define blowfish 3)

(define monkey 4)

(define lizard 5)

(define ant 6))
> (require racket/require)
> (require (matching-identifiers-in #rx"\\w*fish" ’zoo))
> tunafish
1
> swordfish
2
> blowfish
3
> monkey

reference to undefined identifier: monkey

66

(subtract-in require-spec subtracted-spec ...)

Like require-spec, but omitting those imports that would be imported by one of the
subtracted-specs.

Examples:
> (module earth racket
(provide land sea air)
(define land 1)
(define sea 2)
(define air 3))
> (module mars racket
(provide aliens)
(define aliens 4))
(module solar-system racket
(require ’earth ’mars)
(provide (all-from-out ’earth)
(all-from-out ’mars)))
> (require racket/require)
> (require (subtract-in ’solar-system ’earth))
> land
reference to undefined identifier: land
> aliens
4

\2

(filtered-in proc-expr require-spec)

Applies an arbitrary transformation on the import names (as strings) of require-spec.
The proc-expr must evaluate at expansion time to a single-argument procedure, which is
applied on each of the names from require-spec. For each name, the procedure must
return either a string for the import’s new name or #£ to exclude the import.

For example,
(require (filtered-in

(lambda (name)
(and (regexp-match? #rx"~[a-z-]+$" name)

(regexp-replace #rx"-" (string-
titlecase name) "')))
racket/base))

imports only bindings from racket/base that match the pattern #rx"~[a-z-]+$", and it
converts the names to “camel case.”

67

(path-up rel-string ...)

Specifies paths to modules named by the rel-strings similar to using the rel-strings
directly, except that if a required module file is not found relative to the enclosing source,
it is searched for in the parent directory, and then in the grand-parent directory, etc., all the
way to the root directory. The discovered path relative to the enclosing source becomes part
of the expanded form.

This form is useful in setting up a “project environment”. For example, you can write a
"config.ss" file in the root directory of your project with:

#lang racket/base
(require racket/require-syntax (for-syntax "utils/in-here.ss"))

(provide utils-in)
(define-require-syntax utils-in in-here-transformer)

and in "utils/in-here.ss" in the root:

#lang racket/base
(require racket/runtime-path)
(provide in-here-transformer)
(define-runtime-path here ".")
(define (in-here-transformer stx)
(syntax-case stx ()
[(_ sym)
(identifier? #’sym)
(let ([path (build-path here (format "~a.ss" (syntax-
e #’sym))) 1)
(datum->syntax stx ‘(file ,(path->string path)) stx))]))

Finally, you can use it via path-up:
(require racket/require (path-up "config.ss") (utils-in foo))

Note that the order of requires in this example is important, as each of the first two bind the
identifier used in the following.

An alternative in this scenario is to use path-up directly to get to the utility module:
(require racket/require (path-up "utils/foo.ss"))

but then you need to be careful with subdirectories that are called "utils", which will
override the one in the project’s root. In other words, the previous method requires a single
unique name.

68

2.2.2 Additional provide Forms

(require racket/provide)

The bindings documented in this section are provided by the racket/provide library, not
racket/base or racket.

(matching-identifiers-out regexp provide-spec)

Like provide-spec, but including only exports of bindings with an external name that
matches regexp. The regexp must be a literal regular expression (see §3.7 “Regular Ex-
pressions”).

(filtered-out proc-expr provide-spec)
Analogous to filtered-in, but for filtering and renaming exports.
For example,

(provide (filtered-out
(lambda (name)
(and (regexp-match? #rx"~[a-z-]1+$" name)
(regexp-replace
#rx"-" (string-titlecase name) "")))
(all-defined-out)))

exports only bindings that match the pattern #rx"~[a-z-]+$", and it converts the names to
“camel case.”

2.3 Literals: quote and #/datum

Many forms are implicitly quoted (via #%datum) as literals. See §1.2.3.2 “Expansion Steps”

for more information. §4.10 “Quoting:
quote and ’” in
Guide: Racket
introduces quote.

(quote datum)

Produces a constant value corresponding to datum (i.e., the representation of the program
fragment) without its lexical information, source location, etc. Quoted pairs, vectors, and
boxes are immutable.

Examples:

> (quote x)
’x

69

> (quote (+ 1 2))

(+12)
> (+12)
3

(#%datum . datum)

Expands to (quote datum), as long as datum is not a keyword. If datum is a keyword, a
syntax error is reported.

See also §1.2.3.2 “Expansion Steps” for information on how the expander introduces #7da-
tum identifiers.

Examples:
> (#)hdatum . 10)
10
> (#)datum . x)
’x

> (#fdatum . #:x)
eval:471:0: #%datum: keyword used as an expression in: #:x

2.4 Expression Wrapper: #J/,expression

(#%expression expr)

Produces the same result as expr. The only use of #/expression is to force the parsing of
a form as an expression.

Examples:
> (#)expression (+ 1 2))
3
> (#)iexpression (define x 10))
eval:473:0: define: not allowed in an expression context
in: (define x 10)

2.5 Variable References and #/,top

id

Refers to a module-level or local binding, when id is not bound as a transformer (see §1.2.3
“Expansion (Parsing)”). At run-time, the reference evaluates to the value in the location

70

associated with the binding.

When the expander encounters an id that is not bound by a module-level or local binding,
it converts the expression to (#J%top . id) giving #%top the lexical context of the id;
typically, that context refers to #/top. See also §1.2.3.2 “Expansion Steps”.

Examples:
> (define x 10)
> x
10
(let ([x 51) x)

>
5
> ((lambda (x) x) 2)
2

(#%top . id)

Refers to a top-level definition that could bind id, even if id has a local binding in its
context. Such references are disallowed anywhere within a module form. See also §1.2.3.2
“Expansion Steps” for information on how the expander introduces #7top identifiers.

Examples:
> (define x 12)
> (let ([x 51) (#%top . x))
12

2.6 Locations: #)variable-reference

(#Yvariable-reference id)
(#Y%variable-reference (#Jtop . id))
(#Y%variable-reference)

Produces an opaque variable reference value representing the location of id, which must be
bound as a top-level variable or module-level variable. If no id is supplied, the resulting
value refers to an “anonymous” variable defined within the enclosing context (i.e., within
the enclosing module, or at the top level if the form is not inside a module).

A variable reference can be used with variable-reference->empty-namespace,
variable-reference->resolved-module-path, and variable-reference->top-
level-namespace, but facilities like define-namespace-anchor and namespace-
anchor->namespace wrap those to provide an clearer interface. A variable reference is
also useful to low-level extensions; see Inside: Racket C API.

71

2.7 Procedure Applications and #%app

(proc-expr arg ...)

Applies a procedure, when proc-expr is not an identifier that has a transformer binding
(see §1.2.3 “Expansion (Parsing)”).

More precisely, the expander converts this form to (#/app proc-expr arg ...),giving
#%app the lexical context that is associated with the original form (i.e., the pair that com-
bines proc-expr and its arguments). Typically, the lexical context of the pair indicates the
procedure-application #%app that is described next. See also §1.2.3.2 “Expansion Steps”.

Examples:
> (+12)
3
> ((lambda (x #:arg y) (list y x)) #:arg 2 1)
(2 1)

(#%app proc-expr arg ...)

Applies a procedure. Each arg is one of the following:

arg-expr

The resulting value is a non-keyword argument.

keyword arg-expr

The resulting value is a keyword argument using keyword. Each keyword in
the application must be distinct.

The proc-expr and arg-exprs are evaluated in order, left to right. If the result of proc-
expr is a procedure that accepts as many arguments as non-keyword arg-exprs, if it
accepts arguments for all of the keywords in the application, and if all required keyword-
based arguments are represented among the keywords in the application, then the procedure
is called with the values of the arg-exprs. Otherwise, the exn:fail:contract exception
is raised.

The continuation of the procedure call is the same as the continuation of the application
expression, so the results of the procedure are the results of the application expression.

The relative order of keyword-based arguments matters only for the order of arg-expr
evaluations; the arguments are associated with argument variables in the applied procedure

72

§4.3 “Function
Calls (Procedure
Applications)” in
Guide: Racket
introduces
procedure
applications.

based on the keywords, and not their positions. The other arg-expr values, in contrast, are
associated with variables according to their order in the application form.

See also §1.2.3.2 “Expansion Steps” for information on how the expander introduces #%app
identifiers.

Examples:
> (#%app + 1 2)
3
> (#%app (lambda (x #:arg y) (list y x)) #:arg 2 1)
(2 1)
> (#)app cons)
cons: expects 2 arguments, given 0

(#)plain-app proc-expr arg-expr ...)
(#)plain-app)

Like #%app, but without support for keyword arguments. As a special case, (#);plain-app)
produces ’ ().

2.8 Procedure Expressions: 1lambda and case-lambda
§4.4 “Functions

(Procedures):
lambda” in Guide:
(lambda kw-formals body ...+) Racket introduces
(N kw-formals body ...+) Proced‘{re
expressions.
kw-formals = (arg ...)
| (arg ...+ . rest-id)
| rest-id
arg = id
| [id default-expr]
| keyword id
|

keyword [id default-expr]

Produces a procedure. The kw-formals determines the number of arguments and which
keyword arguments that the procedure accepts.

Considering only the first arg case, a simple kw-formals has one of the following three
forms:

(id ...

The procedure accepts as many non-keyword argument values as the number of

73

ids. Each id is associated with an argument value by position.

(id ...+ . rest-id)

The procedure accepts any number of non-keyword arguments greater or equal
to the number of ids. When the procedure is applied, the ids are associated
with argument values by position, and all leftover arguments are placed into a
list that is associated to rest-id.

rest-id

The procedure accepts any number of non-keyword arguments. All arguments
are placed into a list that is associated with rest-id.

More generally, an arg can include a keyword and/or default value. Thus, the first two cases
above are more completely specified as follows:

(arg ...)

Each arg has the following four forms:

id
Adds one to both the minimum and maximum number of non-
keyword arguments accepted by the procedure. The id is associated
with an actual argument by position.

[id default-expr]
Adds one to the maximum number of non-keyword arguments ac-
cepted by the procedure. The id is associated with an actual argu-
ment by position, and if no such argument is provided, the default-
expr is evaluated to produce a value associated with id. No arg
with a default-expr can appear before an id without a default-
expr and without a keyword.

keyword id
The procedure requires a keyword-based argument using keyword.
The id is associated with a keyword-based actual argument using
keyword.

keyword [id default-expr]

74

The procedure accepts a keyword-based using keyword. The id is
associated with a keyword-based actual argument using keyword, if
supplied in an application; otherwise, the default-expr is evalu-
ated to obtain a value to associate with id.

The position of a keyword arg in kw-formals does not matter, but each spec-
ified keyword must be distinct.

(arg ...+ . rest-id)

Like the previous case, but the procedure accepts any number of non-keyword
arguments beyond its minimum number of arguments. When more arguments
are provided than non-keyword arguments among the args, the extra argu-
ments are placed into a list that is associated to rest-id.

The kw-formals identifiers are bound in the bodys. When the procedure is applied, a new
location is created for each identifier, and the location is filled with the associated argu-
ment value. The locations are created and filled in order, with default-exprs evaluated as
needed to fill locations.

If any identifier appears in the bodys that is not one of the identifiers in kw-formals, then
it refers to the same location that it would if it appeared in place of the 1ambda expression.
(In other words, variable reference is lexically scoped.)

When multiple identifiers appear in a kw-formals, they must be distinct according to
bound-identifier=7.

If the procedure produced by lambda is applied to fewer or more by-position or by-keyword
arguments than it accepts, to by-keyword arguments that it does not accept, or without re-
quired by-keyword arguments, then the exn:fail:contract exception is raised.

The last body expression is in tail position with respect to the procedure body.

Examples:
> ((lambda (x) x) 10)
10
> ((lambda (x y) (list y x)) 1 2)
(2 1)
> ((lambda (x [y 51) (Qist y x)) 1 2)
(2 D
> (let ([f (lambda (x #:arg y) (list y x))1)
(list (f 1 #:arg 2)
(f #:arg 2 1)))
(2 1) (2 1)

When compiling a lambda or case-lambda expression, Racket looks for a ’method-
arity-error property attached to the expression (see §11.7 “Syntax Object Properties”).

75

In other words,
argument bindings
with default-value
expressions are
evaluated analogous
to letx*.

If it is present with a true value, and if no case of the procedure accepts zero arguments,
then the procedure is marked so that an exn:fail:contract:arity exception involving
the procedure will hide the first argument, if one was provided. (Hiding the first argument
is useful when the procedure implements a method, where the first argument is implicit in
the original source). The property affects only the format of exn:fail:contract:arity
exceptions, not the result of procedure-arity.

(case-lambda [formals body ...+] ...)

formals = (id ...)
| (id ...+ . rest-id)
| rest-id
Produces a procedure. Each [forms body ...+] clause is analogous to a single lambda

procedure; applying the case-lambda-generated procedure is the same as applying a proce-
dure that corresponds to one of the clauses—the first procedure that accepts the given num-
ber of arguments. If no corresponding procedure accepts the given number of arguments,
the exn:fail:contract exception is raised.

Note that a case-1ambda clause supports only formals, not the more general kw-formals
of lambda. That is, case-lambda does not directly support keyword and optional argu-
ments.

Example:
> (let ([f (case-lambda
[O 10]
[(x) x]
[(x y) (list y x)]
[r r1)1)
(list (f)
(f 1)
(f 12
(f 123)))
(101 (2 1) (1230

(#%plain-lambda formals body ...+)

Like 1ambda, but without support for keyword or optional arguments.

2.9 Local Binding: let, let*, letrec, ...

(let ([id val-expr] ...) body ...+)

76

§4.6 “Local
Binding” in Guide:
Racket introduces
local binding.

(let proc-id ([id init-expr] ...) body ...+)

The first form evaluates the val-exprs left-to-right, creates a new location for each id, and
places the values into the locations. It then evaluates the bodys, in which the ids are bound.
The last body expression is in tail position with respect to the 1let form. The ids must be

distinct according to bound-identifier=7.

Examples:
> (let ([x 5]1) x)
5
> (let ([x 5]1)
(let ([x 2]
[y x1)
(1list y x)))
(5 2)

The second form evaluates the init-exprs; the resulting values become arguments in an
application of a procedure (lambda (id ...) body ...+), where proc-id is bound
within the bodys to the procedure itself.

Example:
> (let fac ([n 10])
(if (zero? n)
1
(* n (fac (subl n)))))

3628800

(let* ([id val-expr] ...) body ...+)

Similar to let, but evaluates the val-exprs one by one, creating a location for each id as
soon as the value is available. The ids are bound in the remaining val-exprs as well as
the bodys, and the ids need not be distinct; later bindings shadow earlier bindings.

Example:
> (let* ([x 1]
[y (+ x DD
(1ist y %))
7(2 1)

(letrec ([id val-expr] ...) body ...+)

Similar to 1et, but the locations for all ids are created first and filled with #<undefined>,
and all ids are bound in all val-exprs as well as the bodys. The ids must be distinct

according to bound-identifier="7.

Example:

71

> (letrec ([is-even? (lambda (n)
(or (zero? n)
(is-0dd? (subl n))))]
[is-0dd? (lambda (n)
(and (not (zero? mn))
(is-even? (subl n))))]1)
(is-o0dd? 11))
#t

(let-values ([(id ...) val-expr] ...) body ...+)

Like let, except that each val-expr must produce as many values as corresponding ids,
otherwise the exn:fail:contract exception is raised. A separate location is created for
each id, all of which are bound in the bodys.

Example:
> (let-values ([(x y) (quotient/remainder 10 3)1)
(1ist y %))
(1 3)

(let*-values ([(id ...) val-expr] ...) body ...+)

Like 1etx*, except that each val-expr must produce as many values as corresponding ids.
A separate location is created for each id, all of which are bound in the later val-expzrs
and in the bodys.

Example:
> (let*-values ([(x y) (quotient/remainder 10 3)]
[(z) (list y x)1)
z)
(1 03)

(letrec-values ([(id ...) val-expr] ...) body ...+)

Like letrec, except that each val-expr must produce as many values as corresponding
ids. A separate location is created for each id, all of which are initialized to #<undefined>
and bound in all val-exprs and in the bodys.

Example:
> (letrec-values ([(is-even? is-o0dd7)
(values
(lambda (n)

(or (zero? n)
(is-0dd? (subl n))))
(lambda (n)

78

(or (=n 1)
(is-even? (subl n)))))1)
(is-o0dd? 11))
#t

(let-syntax ([id trans-expr] ...) body ...+) See also
splicing-let-syntax.

Creates a transformer binding (see §1.2.3.5 “Transformer Bindings”) of each id with the

value of trans-expr, which is an expression at phase level 1 relative to the surrounding

context. (See §1.2.1 “Identifiers and Binding” for information on phase levels.)

The evaluation of each trans-expr is parameterized to set current-namespace to a
namespace that shares bindings and variables with the namespace being used to expand the
let-syntax form, except that its base phase is one greater.

Each id is bound in the bodys, and not in other trans-exprs.

(letrec-syntax ([id trans-expr] ...) body ...+) See also

splicing-letrec-syntax.

Like let-syntax, except that each id is also bound within all trans-exprs.

(let-syntaxes ([(id ...) trams-expr] ...) body ...+) See also
splicing-let-syntaxes.

Like let-syntax, but each trans-expr must produce as many values as corresponding

ids, each of which is bound to the corresponding value.

(letrec-syntaxes ([(id ...) trans-expr] ...) body ...+) See also

splicing-letrec-syntaxes.

Like let-syntax, except that each id is also bound within all trans-exprs.

(letrec-syntaxes+values ([(trans-id ...) trans-expr] ...)
([(val-id ...) val-expr] ...)
body ...+)

Combines letrec-syntaxes with letrec-values: each trans-id and val-id is bound
in all trans-exprs and val-exprs.

The letrec-syntaxes+values form is the core form for local compile-time bindings,
since forms like letrec-syntax and internal define-syntax expand to it. In a fully
expanded expression (see §1.2.3.1 “Fully Expanded Programs”), the trans-id bindings
are discarded and the form reduces to letrec, but letrec-syntaxes+values can appear
in the result of local-expand with an empty stop list.

See also local, which supports local bindings with def ine, def ine-syntax, and more.

79

2.10 Local Definitions: local

(require racket/local)

The bindings documented in this section are provided by the racket/local and racket
libraries, but not racket/base.

(local [definition ...] body ...+)

Like letrec, except that the bindings are expressed in the same way as in the top-level or
in a module body: using define, define-values, define-syntax, struct, etc. Defini-
tions are distinguished from non-definitions by partially expanding definition forms (see
§1.2.3.6 “Partial Expansion”). As in the top-level or in a module body, a begin-wrapped
sequence is spliced into the sequence of definitions.

2.11 Constructing Graphs: shared

(require racket/shared)

The bindings documented in this section are provided by the racket/shared and racket
libraries, but not racket/base.

(shared ([id expr] ...) body ...+)

Binds ids with shared structure according to exprs and then evaluates the body-exprs,
returning the result of the last expression.

The shared form is similar to letrec, except that special forms of expr are recognized
(after partial macro expansion) to construct graph-structured data, where the corresponding
letrec would instead produce #<undefined>s.

Each expr (after partial expansion) is matched against the following shared-expr gram-
mar, where earlier variants in a production take precedence over later variants:

shared-expr shell-expr

| plain-expr

(box-immutable in-immutable-expr)
(mcons patchable-expr patchable-expr)

shell-expr = (cons in-immutable-expr in-immutable-expr)
| (list in-immutable-expr ...)
| (list* in-immutable-expr ...)
| (append early-expr ... in-immutable-expr)
| (vector-immutable in-immutable-expr ...)
|
|

80

| (vector patchable-expr ...)
| (box patchable-expr ...)
| (prefix:make-id patchable-expr ...)

= shell-id
| shell-expr
| early-expr

in-immutable-expr

shell-id = id
patchable-expr = expr
early-expr = expr
plain-expr = expr

The prefix:make-id identifier above references to any binding whose name has make- in
the middle, and where prefix:id has a transformer binding to structure information with a
full set of mutator bindings; see §4.6 “Structure Type Transformer Binding”. A shell-id
must be one of the ids bound by the shared form to a shell-expr.

When the exprs of the shared form are parsed via shared-expr (taking into account the
order of the variants for precedence), and sub-expressions that parse via early-expr will
be evaluated first when the shared form is evaluated. Among such expressions, they are
evaluated in the order as they appear within the shared form. However, any reference to
an id bound by shared produces #<undefined>, even if the binding for the id appears
before the corresponding early-expr within the shared form.

The shell-ids and shell-exprs (not counting patchable-expr and early-expr sub-
expressions) are effectively evaluated next. A shell-id reference produces the same value
as the corresponding id will produce within the bodys, assuming that id is never mutated
with set!. This special handling of a shell-id reference is one way in which shared
supports the creation of cyclic data, including immutable cyclic data.

Next, the plain-exprs are evaluated as for letrec, where a reference to an id produces
#<undefined> if it is evaluated before the right-hand side of the id binding.

Finally, the patchable-exprs are evaluated. At this point, all ids are bound, so
patchable-exprs also creates data cycles (but only with cycles that can be created via
mutation).

Examples:
> (shared ([a (cons 1 a)l)
a)
#0= (1 . #0#)
> (shared ([a (cons 1 b)]
[b (cons 2 a)l)

81

a)
#0= (1 2 . #0#)
> (shared ([a (cons 1 b)]
[b 71)
a)
1.7
> (shared ([a al]) ; no indirection...
a)
#<undefined>
> (shared ([a (cons 1 b)] ; b is early...
[b al)
a)
’(1 . #<undefined>)
> (shared ([a (mcons 1 b)] ; b is patchable...
[b al)
a)
#0=(mcons 1 #O#)
> (shared ([a (vector b b b)]
[b (box 1)1)
(set-box! b 5)
a)
Y (#&5 #&5 #&5)
> (shared ([a (box b)]
[b (vector (unbox a) ; unbox after a is patched
(unbox c))] ; unbox before c is patched
[c (box b)1)
b)
#0= ’#(#0# #<undefined>)

2.12 Conditionals: if, cond, and, and or

(if test-expr then-expr else-expr)

Evaluates test-expr. If it produces any value other than #f, then then-expr is evaluated,
and its results are the result for the if form. Otherwise, else-expr is evaluated, and its
results are the result for the if form. The then-expr and else-expr are in tail position

with respect to the if form.

Examples:
> (if (positive? -5) (error "doesn’t get here") 2)
2
> (if (positive? 5) 1 (error 'doesn’t get here"))
1

82

§4.7 “Conditionals”
in Guide: Racket
introduces
conditionals.

> (if ’we-have-no-bananas "yes'" "no")
"yesll
(cond cond-clause ...)

cond-clause = [test-expr then-body ...+]
| [else then-body ...+]

| [test-expr => proc-expr]

|

[test-expr]
A cond-clause that starts with else must be the last cond-clause.
If no cond-clauses are present, the result is #<void>.

If only a [else then-body ...+] is present, then the then-bodys are evaluated. The
results from all but the last then-body are ignored. The results of the last then-body,
which is in tail position with respect to the cond form, are the results for the whole cond
form.

Otherwise, the first test-expr is evaluated. If it produces #£, then the result is the same as
a cond form with the remaining cond-clauses, in tail position with respect to the original
cond form. Otherwise, evaluation depends on the form of the cond-clause:

[test-expr then-body ...+]

The then-bodys are evaluated in order, and the results from all but the last
then-body are ignored. The results of the last then-body, which is in tail
position with respect to the cond form, provides the result for the whole cond
form.

[test-expr => proc-expr]

The proc-expr is evaluated, and it must produce a procedure that accepts on
argument, otherwise the exn:fail:contract exception is raised. The proce-
dure is applied to the result of test-expr in tail position with respect to the
cond expression.

[test-expr]

The result of the test-expr is returned as the result of the cond form. The
test-expr is not in tail position.

Examples:
> (cond)

83

§4.7.3 “Chaining
Tests: cond” in
Guide: Racket
introduces cond.

> (cond

[else 5])

5

> (cond
[(positive? -5) (error "doesn’t get here')]
[(zero? -5) (error "doesn’t get here, either")]
[(positive? 5) ’here])

’here

> (cond
[(member 2 ’(1 2 3)) => (lambda (1) (map - 1))1)

7(-2 -3)

> (cond
[(member 2 °(1 2 3))1)

(2 3)

else

Recognized specially within forms like cond. An else form as an expression is a syntax
error.

=>

Recognized specially within forms like cond. A => form as an expression is a syntax error.

(and expr .. D) §4.7.2 “Combining
Tests: and and or”
If no exprs are provided, then result is #t. in Guide: Racket

introduces and.

If a single expr is provided, then it is in tail position, so the results of the and expression
are the results of the expr.

Otherwise, the first expr is evaluated. If it produces #£, the result of the and expression is
#£. Otherwise, the result is the same as an and expression with the remaining exprs in tail
position with respect to the original and form.

Examples:
> (and)
#t
> (and 1)
1
> (and (values 1 2))
1
2
> (and #f (error '"doesn’t get here"))

84

> (and #t 5)
5

(or expr ...)
If no exprs are provided, then result is #£.

If a single expr is provided, then it is in tail position, so the results of the and expression
are the results of the expr.

Otherwise, the first expr is evaluated. If it produces a value other than #f, that result is the
result of the or expression. Otherwise, the result is the same as an or expression with the
remaining exprs in tail position with respect to the original or form.

Examples:
> (or)

#f
(or 1)

(or (values 1 2))

(or 5 (error "doesn’t get here"))

(or #f 5)

Vv 0 VNN~V eV

2.13 Dispatch: case

(case val-expr case-clause ...)

case-clause = [(datum ...) then-body ...+]
| [else then-body ...+]

Evaluates val-expr and uses the result to select a case-clause. The selected clause is
the first one with a datum whose quoted form is eqv? to the result of val-expr. If no such
datum is present, the else case-clause is selected; if no else case-clause is present,
either, then the result of the case form is #<void>.

For the selected case-clause, the results of the last then-body, which is in tail position
with respect to the case form, are the results for the whole case form.

A case-clause that starts with else must be the last case-clause.

85

§4.7.2 “Combining
Tests: and and or”
in Guide: Racket
introduces or.

Examples:
> (case (+ 7 b)
[(1 2 3) ’smalll
[(10 11 12) ’bigl)
big
> (case (- 7 b)
[(1 2 3) ’smalll
[(10 11 12) °big])
’small

(define (classify c)

(case (char-general-category c)
[(11 1u 1t 1In lo) "letter"]
[(nd nl no) '"number"]

[else "other"]))

> (classify #\A)
"letter"
> (classify #\1)
"number"
> (classify #\!)
"other"

2.14 Definitions: define, define-syntax, ...
§4.5 “Definitions:

define” in Guide:
Racket introduces
definitions.

(define id expr)
(define (head args) body ...+)

head = id
| (head args)
args = arg
| arg rest-id
arg arg-id

keyword arg-id

| [arg-id default-expr]
|
| keyword [arg-id default-expr]

The first form binds id to the result of expr, and the second form binds id to a procedure.
In the second case, the generated procedure is (CVT (head args) body ...+), using
the CVT meta-function defined as follows:

(CVT (id . kw-formals) . datum) = (lambda kw-formals . datum)

86

(CVT (head . kw-formals) . datum) = (lambda kw-formals expr)
if (CVT head . datum) = expr

At the top level, the top-level binding id is created after evaluating expr, if it does not
exist already, and the top-level mapping of id (in the namespace linked with the compiled
definition) is set to the binding at the same time.

Examples:
(define x 10)
> x
10

(define (f x)
+x 1)

> (£ 10)
11

(define ((f x) [y 201)
+ x y))

> ((£ 10) 30)
40

> ((£ 10))
30

(define-values (id ...) expr)

Evaluates the expr, and binds the results to the ids, in order, if the number of re-
sults matches the number of ids; if expr produces a different number of results, the
exn:fail:contract exception is raised.

At the top level, the top-level binding for each id is created after evaluating expr, if it does
not exist already, and the top-level mapping of each id (in the namespace linked with the
compiled definition) is set to the binding at the same time.

Examples:
(define-values () (values))
(define-values (x y z) (values 1 2 3))
>z
3

(define-syntax id expr)
(define-syntax (head args) body ...+)

The first form creates a transformer binding (see §1.2.3.5 “Transformer Bindings™) of id

87

with the value of expr, which is an expression at phase level 1 relative to the surrounding
context. (See §1.2.1 “Identifiers and Binding” for information on phase levels.) Evaluation
of expr side is parameterized to set current-namespace as in let-syntax

The second form is a shorthand the same as for define; it expands to a definition of the first
form where the expr is a lambda form.

Examples:
> (define-syntax foo
(syntax-rules ()
((Ca...)
(printf "~a\n" (list a ...)))))
> (foo 1 2 3 4)
1234
> (define-syntax (bar syntax-object)
(syntax-case syntax-object ()
(Ca...)
#’ (printf "~a\n" (list a ...)))))
> (bar 1 2 3 4)
1234

(define-syntaxes (id ...) expr)

Like define-syntax, but creates a transformer binding for each id. The expr should
produce as many values as ids, and each value is bound to the corresponding id.

When expr produces zero values for a top-level define-syntaxes (i.e., not in a module
or internal-definition position), then the ids are effectively declared without binding; see
§1.2.3.9 “Macro-Introduced Bindings”.

Examples:
> (define-syntaxes (fool foo2 foo3)
(let ([transformerl (lambda (syntax-object)
(syntax-case syntax-object ()
L) #211))1]
[transformer2 (lambda (syntax-object)
(syntax-case syntax-object ()
L) #221))]
[transformer3 (lambda (syntax-object)
(syntax-case syntax-object (O
L) #231))D)
(values transformerl
transformer?
transformer3)))
> (fool)
1

88

(foo02)

(fo03)

w Vv N VvV

(define-for-syntax id expr)
(define-for-syntax (head args) body ...+)

Like define, except that the binding is at phase level 1 instead of phase level O relative to
its context. The expression for the binding is also at phase level 1. (See §1.2.1 “Identifiers
and Binding” for information on phase levels.) Evaluation of expr side is parameterized
to set current-namespace as in let-syntax.

Within a module, bindings introduced by define-for-syntax must appear before their
uses or in the same define-for-syntax form (i.e., the define-for-syntax form must
be expanded before the use is expanded). In particular, mutually recursive functions bound
by define-for-syntax must be defined by the same define-for-syntax form.

Examples:
> (define-for-syntax helper 2)
> (define-syntax (make-two syntax-object)
(printf "helper is ~a\n" helper)
#22)

> (make-two)
helper is 2
2
; ‘helper’ is not bound in the runtime phase
> helper
reference to undefined identifier: helper
> (define-for-syntax (filter-ids ids)

(filter identifier? ids))
> (define-syntax (show-variables syntax-object)

(syntax-case syntax-object ()

[(_ expr ...)
(with-syntax ([(only-ids ...)
(filter-ids (syntax->list #’(expr ...)))1)
#’(list only-ids ...))1))

> (let ([a 1] [b 2] [c 31)

(show-variables a 5 2 b ¢))
(1 2 3)

(define-values-for-syntax (id ...) expr)

Like define-for-syntax, but expr must produce as many values as supplied ids, and all
of the ids are bound (at phase level 1).

&9

Examples:

> (define-values-for-syntax (fool foo2) (values 1 2))

> (define-syntax (bar syntax-object)
(printf "fool is ~a foo2 is ~a\n" fool foo02)
#22)

> (bar)

fool is 1 foo2 is 2

2

2.14.1 require Macros

(require racket/require-syntax)

The bindings documented in this section are provided by the racket/require-syntax
library, not racket/base or racket.

(define-require-syntax id expr)
(define-require-syntax (id args ...) body ...+)

The first form is like define-syntax, but for a require sub-form. The proc-expr must
produce a procedure that accepts and returns a syntax object representing a require sub-
form.

This form expands to define-syntax with a use of make-require-transformer; see
§11.4.1 “require Transformers” for more information.

The second form is a shorthand the same as for define-syntax; it expands to a definition
of the first form where the expr is a lambda form.

2.14.2 provide Macros

(require racket/provide-syntax)

The bindings documented in this section are provided by the racket/provide-syntax
library, not racket/base or racket.

(define-provide-syntax id expr)
(define-provide-syntax (id args ...) body ...+)

The first form is like def ine-syntax, but for a provide sub-form. The proc-expr must
produce a procedure that accepts and returns a syntax object representing a provide sub-
form.

90

This form expands to define-syntax with a use of make-provide-transformer; see
§11.4.2 “provide Transformers” for more information.

The second form is a shorthand the same as for define-syntax; it expands to a definition
of the first form where the expr is a lambda form.

2.15 Sequencing: begin, begin0, and begin-for-syntax

§4.8 “Sequencing”
in Guide: Racket
introduces begin
and begin0.

(begin form ...)
(begin expr ...+)

The first form applies when begin appears at the top level, at module level, or in an internal-
definition position (before any expression in the internal-definition sequence). In that case,
the begin form is equivalent to splicing the forms into the enclosing context.

The second form applies for begin in an expression position. In that case, the exprs are
evaluated in order, and the results are ignored for all but the last expr. The last expr is in
tail position with respect to the begin form.

Examples:
> (begin
(define x 10)
x)
10
> (+ 1 (begin
(printf "hi\n")
2))
hi
3
> (let-values ([(x y) (begin
(values 1 2 3)
(values 1 2))1)
(1ist x y))
(1 2)

(begin0 expr body ...+)

Evaluates the expr, then evaluates the bodys, ignoring the body results. The results of the
expr are the results of the begin0 form, but the expr is in tail position only if no bodys
are present.

Example:
> (begin0

91

(values 1 2)
(printf "hi\n"))
hi
1
2

(begin-for-syntax form ...)

Allowed only in a top-level context or module context. Each form is partially expanded (see
§1.2.3.6 “Partial Expansion”) to determine one of the following classifications:

* define or define-values form: converted to a define-values-for-syntax
form.

* require form: content is wrapped with for-syntax.

 expression form expr: converted to (define-values-for-syntax () (begin
expr (values))), which effectively evaluates the expression at expansion time and,
in the case of a module context, preserves the expression for future visits of the mod-
ule.

2.16 Guarded Evaluation: when and unless
§4.8.3 “Effects If...:

when and unless”
in Guide: Racket

(when test-expr body ...+) introduces when
and unless.

Evaluates test-expr. If the result is #£, then the result of the when expression is #<void>.
Otherwise, the bodys are evaluated, and the last body is in tail position with respect to the
when form.

Examples:
> (when (positive? -5)
(display "hi™))
> (when (positive? b5)
(display "hi'")
(display " there'))
hi there

(unless test-expr body ...+)
Equivalent to (when (not test-expr) body ...+).
Examples:

> (unless (positive? 5)
(display "hi"))

92

> (unless (positive? -5)
(display "hi')
(display " there'))

hi there

2.17 Assignment: set! and set!-values

(set! id expr)

If id has a transformer binding to an assignment transformer, as produced by make-set!-
transformer or as an instance of a structure type with the prop:set!-transformer
property, then this form is expanded by calling the assignment transformer with the full
expressions. If id has a transformer binding to a rename transformer as produced by
make-rename-transformer or as an instance of a structure type with the prop:rename-
transformer property, then this form is expanded by replacing id with the target iden-
tifier (e.g., the one provided to make-rename-transformer). If a transformer binding
has both prop:set!-transformer ad prop:rename-transformer properties, the latter
takes precedence.

Otherwise, evaluates expr and installs the result into the location for id, which must be
bound as a local variable or defined as a top-level variable or module-level variable. If id
refers to an imported binding, a syntax error is reported. If id refers to a top-level variable
that has not been defined, the exn:fail:contract exception is raised.

See also compile-allow-set!-undefined.

Examples:
(define x 12)
> (set! x (addl x))
> X
13
> (let ([x 51)
(set! x (addl x))
x)
6
> (set! i-am-not-defined 10)
set!: cannot set undefined variable: i-am-not-defined

(set!-values (id ...) expr)

Assuming that all ids refer to variables, this form evaluates expr, which must produce as
many values as supplied ids. The location of each id is filled wih to the corresponding
value from expr in the same way as for set!.

93

§4.9 “Assignment:
set!” in Guide:
Racket introduces
set!.

Example:
> (let ([a 1]
[b 21)
(set!-values (a b) (values b a))
(list a b))
(2 1)

More generally, the set!-values form is expanded to

(let-values ([(tmp-id ...) exprl)
(set! id tmp-id) ...)

which triggers further expansion if any id has a transformer binding to an assignment trans-
former.

2.18 Iterations and Comprehensions: for, for/list, ...
§11 “Iterations and
Comprehensions”
The for iteration forms are based on SRFI-42 [SRFI-42]. in Guide: Racket
introduces
iterations and
comprehensions.
2.18.1 Iteration and Comprehension Forms

(for (for-clause ...) body ...+)

for-clause = [id seq-expr]
| [(id ...) seq-expr]
| #:when guard-expr

seq-expr : sequence?

Iteratively evaluates body. The for-clauses introduce bindings whose scope includes
body and that determine the number of times that body is evaluated.

In the simple case, each for-clause has one of its first two forms, where [id seq-expr]
is a shorthand for [(id) seg-expr]. In this simple case, the seq-exprs are evaluated
left-to-right, and each must produce a sequence value (see §3.14 “Sequences”).

The for form iterates by drawing an element from each sequence; if any sequence is empty,
then the iteration stops, and #<void> is the result of the for expression. Otherwise a loca-
tion is created for each id to hold the values of each element; the sequence produced by a
seqg-expr must return as many values for each iteration as corresponding ids.

The ids are then bound in the body, which is evaluated, and whose results are ignored.
Iteration continues with the next element in each sequence and with fresh locations for each

94

id.

A for form with zero for-clauses is equivalent to a single for-clause that binds an
unreferenced id to a sequence containing a single element. All of the ids must be distinct
according to bound-identifier=7.

If any for-clause has the form #:when guard-expr, then only the preceding clauses
(containing no #:when) determine iteration as above, and the body is effectively wrapped
as

(when guard-expr
(for (for-clause ...) body ...+))

using the remaining for-clauses.

Examples:
> (for ([1 ’(1 2 3)]
[j "abc"]
#:when (odd? i)
[k #(#t #£)1)
(display (1ist i j k)))
(1 a #t)(1 a #£)(3 c #t)(3 c #f)
> (for ([(i j) #hash(("a" . 1) ("b" . 20))1)
(display (1list i j)))
(a 1) (D 20)
> (for ()
(display "here"))
here
> (for ([1i >OD

(error "doesn’t get here"))

(for/list (for-clause ...) body ...+)

Iterates like for, but that the last expression in the bodys must produce a single value, and
the result of the for/1ist expression is a list of the results in order.

Examples:
> (for/list ([1 ’(1 2 3)]
[J "abc"]
#:when (odd? i)
[k #(#t #£)1)
(list i j k))
Y((1 #\a #t) (1 #\a #f) (3 #\c #t) (3 #\c #f))
> (for/list () ’any)
> (any)
> (for/list ([i *O)1)

95

(error "doesn’t get here"))

40

(for/vector (for-clause ...) body ...+)
(for/vector #:length length-expr (for-clause ...) body ...+)

Iterates like for, but the last expression in the bodys must produce a single value, which
is placed in the corresponding slot of a vector. If the optional #:1length form is used,
then length-expr must evaluate to an exact-nonnegative-integer?, and the result
vector is constructed with this length. In this case, the iteration can be performed more
efficiently, and terminates when the vector is full or the requested number of iterations have
been performed, whichever comes first. If the provided 1ength-expr evaluates to a length
longer than the number of iterations then the remaining slots of the vector are intialized to
the default argument of make-vector.

(for/hash (for-clause ...) body ...+)
(for/hasheq (for-clause ...) body ...+)
(for/hasheqv (for-clause ...) body ...+)

Like for/list, but the result is an immutable hash table; for/hash creates a table using
equal? to distinguish keys, for/hasheq produces a table using eq?, and for/hasheqv
produces a table using eqv?. The last expression in the bodys must return two values: a key
and a value to extend the hash table accumulated by the iteration.

Example:
> (for/hash ([i (1 2 3)1)
(values i (number->string i)))
‘#hash((1 . "1") (2 . "2") (3 . "3"))

(for/and (for-clause ...) body ...+)

Iterates like for, but when last expression of body produces #f, then iteration terminates,
and the result of the for/and expression is #f. If the body is never evaluated, then the
result of the for/and expression is #t. Otherwise, the result is the (single) result from the
last evaluation of body.

Examples:
> (for/and ([i (1 2 3 "x'")1)
(i.<.3)
#f
> (for/and ([i (1 2 3 4)])
i)
4

> (for/and ([i >(O)1)

96

(error "doesn’t get here"))
#t

(for/or (for-clause ...) body ...+)

Iterates like for, but when last expression of body produces a value other than #f, then
iteration terminates, and the result of the for/or expression is the same (single) value. If
the body is never evaluated, then the result of the for/or expression is #f. Otherwise, the
result is #£.

Examples:
> (for/or ([i (1 2 3 "x'")])
(1. <.3)
#t
> (for/or ([i °(1 2 3 4)1)
i)
1

> (for/or ([i *O1)
(error "doesn’t get here"))
#f

(for/lists (id ...) (for-clause ...) body ...+)

Similar to for/1ist, but the last body expression should produce as many values as given
ids, and the result is as many lists as supplied ids. The ids are bound to the lists accumu-
lated so far in the for-clauses and bodys.

(for/first (for-clause ...) body ...+)

Iterates like for, but after body is evaluated the first time, then the iteration terminates, and
the for/first result is the (single) result of body. If the body is never evaluated, then the
result of the for/first expression is #f.

Examples:
> (for/first ([1 ’(1 2 3 "x")]
#:when (even? 1))

(number->string i))

"2"

> (for/first ([1 *(O1)
(error "doesn’t get here"))

#t

(for/last (for-clause ...) body ...+)

97

Iterates like for, but the for/last result is the (single) result of of the last evaluation of
body. If the body is never evaluated, then the result of the for/last expression is #£.

Examples:
> (for/last ([1 (1 2 3 4 5)]
#:when (even? 1))

(number->string i))

||4||

> (for/last ([i *O1)
(error "doesn’t get here"))

#t

(for/fold (l[accum-id init-expr] ...) (for-clause ...) . body)

Iterates like for. Before iteration starts, the init-exprs are evaluated to produce initial
accumulator values. At the start of each iteration, a location is generated for each accum-
id, and the corresponding current accumulator value is placed into the location. The last
expression in body must produce as many values as accum-ids, and those values become
the current accumulator values. When iteration terminates, the results of the fold/for
expression are the accumulator values.

Example:
> (for/fold ([sum 0]
[rev-roots null])
(li > 238D
(values (+ sum i) (coms (sqrt i) rev-roots)))
10
7 (2 1.7320508075688772 1.4142135623730951 1)

(forx (for-clause ...) body ...+)

Like for, but with an implicit #:when #t between each pair of for-clauses, so that all
sequence iterations are nested.

Example:
> (forx ([i (1 2)]
[j "ab"1)
(display (list i j)))
(1 a1 b2 a)(2b)

(forx/list (for-clause ...) body ...+)

(forx/lists (id ...) (for-clause ...) body ...+)

(forx/vector (for-clause ...) body ...+)

(forx/vector #:length length-expr (for-clause ...) body ...+)
(forx/hash (for-clause ...) body ...+)

98

(for*/hasheq (for-clause ...) body ...+)

(forx/hasheqv (for-clause ...) body ...+)

(forx/and (for-clause ...) body ...+)

(forx/or (for-clause ...) body ...+)

(forx/first (for-clause ...) body ...+)

(forx/last (for-clause ...) body ...+)

(forx/fold ([accum-id init-expr] ...) (for-clause ...) body ...+)

Like for/1list, etc., but with the implicit nesting of forx*.

Example:
> (forx/list ([i (1 2)]
[j "ab"])
(list i)

2((1 #\a) (1 #\b) (2 #\a) (2 #\b))

2.18.2 Deriving New Iteration Forms

(for/fold/derived orig-datum
([accum-id init-expr] ...) (for-clause ...) body ...+)

Like for/fold, but the extra orig-datum is used as the source for all syntax errors.

(forx/fold/derived orig-datum
([accum-id init-expr] ...) (for-clause ...) body ...+)

Like for*/fold, but the extra orig-datum is used as the source for all syntax errors.

(define-sequence-syntax id
expr-transform-expr
clause-transform-expr)

expr-transform-expr : (or/c (-> identifier?)
(syntax? . -> . syntax?))

clause-transform-expr : (syntax? . -> . syntax?)

Defines id as syntax. An (id . rest) form is treated specially when used to generate a
sequence in a clause of for (or one of its variants). In that case, the procedure result of

clause-transform-expr is called to transform the clause.

When id is used in any other expression position, the result of expr-transform-expr is
used. If it is a procedure of zero arguments, then the result must be an identifier other-id,
and any use of id is converted to a use of other-id. Otherwise,expr-transform-expr

99

must produce a procedure (of one argument) that is used as a macro transformer.

When the clause-transform-expr transformer is used, it is given a clause as an ar-
gument, where the clause’s form is normalized so that the left-hand side is a parenthesized
sequence of identifiers. The right-hand side is of the form (id . rest). The result can
be either #f, to indicate that the forms should not be treated specially (perhaps because the
number of bound identifiers is inconsistent with the (id . rest) form), or a new clause
to to replace the given one. The new clause might use :do-in.

(:do-in ([(outer-id ...) outer-expr] ...)
outer-check
([1oop-id loop-expr] ...)
pos-guard
([(inner-id ...) inner-expr] ...)
pre-guard
post-guard
(loop-arg ...))

A form that can only be used as a seq-expr in a clause of for (or one of its variants).

Within a for, the pieces of the :do-in form are spliced into the iteration essentially as

follows:

(let-values ([(outer-id ...) outer-expr] ...)
outer-check
(let loop ([loop-id loop-expr] ...)
(if pos-guard
(let-values ([(inner-id ...) inner-expr] ...)
(if pre-guard
(let body-bindings
(if post-guard
(loop loop-arg ...)
done-expr))
done-expr))
done-expr)))

where body-bindings and done-expr are from the context of the :do-in use. The iden-
tifiers bound by the for clause are typically part of the ([(inner-id ...) inner-expr]
...) section.

The actual loop binding and call has additional loop arguments to support iterations in
parallel with the :do-in form, and the other pieces are similarly accompanied by pieces

from parallel iterations.

100

2.18.3 Do Loops

(do ([id init-expr step-expr-maybe] ...)
(stop?-expr finish-expr ...)
expr ...)

step-expr-maybe =
| step-expr

Iteratively evaluates the exprs for as long as stop?-expr returns #£.

To initialize the loop, the init-exprs are evaluated in order and bound to the corresponding
ids. The ids are bound in all expressions within the form other than the init-exprs.

After the ids are bound, then stop?-expr is evaluated. If it produces #f, each expr is
evaluated for its side-effect. The ids are then effectively updated with the values of the
step-exprs, where the default step-expr for id is just id; more precisely, iteration con-
tinues with fresh locations for the ids that are initialized with the values of the corresponding
step-exprs.

When stop?-expr produces a true value, then the finish-exprs are evaluated in order,
and the last one is evaluated in tail position to produce the overall value for the do form. If
no finish-expr is provided, the value of the do form is #<void>.

2.19 Continuation Marks: with-continuation-mark

(with-continuation-mark key-expr val-expr result-expr)

The key-expr, mark-expr, and result-expr expressions are evaluated in order. After
key-expr is evaluated to obtain a key and mark-expr is evaluated to obtain a mark, the
key is mapped to the mark in the current continuation’s initial frame. If the frame already
has a mark for the key, it is replaced. Finally, the result-expr is evaluated; the contin-
uation for evaluating result-expr is the continuation of the with-continuation-mark
expression (so the result of the result-expr is the result of the with-continuation-
mark expression, and result-expr is in tail position for the with-continuation-mark
expression).

2.20 Quasiquoting: quasiquote, unquote, and unquote-splicing

(quasiquote datum)

101

§9.5 “Continuation
Marks” provides
more information
on continuation
marks.

§4.11
“Quasiquoting:
quasiquote and
“” in Guide: Racket
introduces
quasiquote.

The same as ’datum if datum does not include (unquote expr) or (unquote-splicing
expr). An (unquote expr) form escapes from the quote, however, and the result of
the expr takes the place of the (unquote expr) form in the quasiquote result. An
(unquote-splicing expr) similarly escapes, but the expr must produce a list, and its
elements are spliced as multiple values place of the (unquote-splicing expr), which
must appear as the car or a quoted pair, as an element of a quoted vector, or as an element
of a quoted prefab structure; in the case of a pair, if the cdr of the relevant quoted pair
is empty, then expr need not produce a list, and its result is used directly in place of the
quoted pair (in the same way that append accepts a non-list final argument). In a quoted
hash table, an (unquote expr) or (unquote-splicing expr) expression escapes only
in the second element of an entry pair (i.e., the value), while entry keys are always implicitly
quoted. If unquote or unquote-splicing appears within quasiquote in any other way
than as (unquote expr) or (unquote-splicing expr), a syntax error is reported.

Examples:
> (quasiquote (0 1 2))
(01 2)
> (quasiquote (0 (unquote (+ 1 2)) 4))
’(0 3 4)
> (quasiquote (0 (unquote-splicing (1list 1 2)) 4))
(012 4)
> (quasiquote (0 (unquote-splicing 1) 4))
unquote-splicing: expected argument of type <proper list>;
given 1
> (quasiquote (0 (unquote-splicing 1)))
(0 . 1)

A quasiquote, unquote, or unquote-splicing form is typically abbreviated with ¢, ,,
or , @, respectively. See also §12.6.7 “Reading Quotes™.

Examples:
> ‘(01 2)
(01 2)
> (1 ,(+12) 4
(1 3 4)
> ‘#s(stuff 1 ,(+ 1 2) 4)
‘#s(stuff 1 3 4)
> ‘#hash(("a" . ,(+ 1 2)))
‘#thash(("a" . 3))
> ‘#hash((,(+ 1 2) . "a"))
‘#hash((,’(+ 1 2) . "a"))
> (1 ,0(list 1 2) 4)
‘(112 4)
> “#(1 ,0(list 1 2) 4)
#(1 1 2 4)

102

A quasiquote form within the original datum increments the level of quasiquotation:
within the quasiquote form, each unquote or unquote-splicing is preserved, but a
further nested unquote or unquote-splicing escapes. Multiple nestings of quasiquote
require multiple nestings of unquote or unquote-splicing to escape.

Examples:
> (1 ,(+1 ,(+23)) 4
(14, (+15) 4
> f(1 “¢¢,,0,,e(list (+ 1 2)) 4)
(1 ¢¢¢,e,3 4)

The quasiquote form allocates only as many fresh cons cells, vectors, and boxes as are
needed without analyzing unquote and unquote-splicing expressions. For example, in

‘(12 3)

a single tail > (2 3) is used for every evaluation of the quasiquote expression.

unquote

See quasiquote, where unquote is recognized as an escape. An unquote form as an
expression is a syntax error.

unquote-splicing

See quasiquote, where unquote-splicing is recognized as an escape. An unquote-
splicing form as an expression is a syntax error.

2.21 Syntax Quoting: quote-syntax

(quote-syntax datum)

Produces a syntax object that preserves the lexical information and source-location informa-
tion attached to datum at expansion time.

Example:

> (syntax? (quote-syntax x))
#t

103

2.22 Interaction Wrapper: #/top-interaction

(#%top-interaction . form)

Expands to simply form. The #J%top-interaction form is similar to #)app and
#/module-begin, in that it provides a hook to control interactive evaluation through load
(more precisely, the default load handler) or read-eval-print-loop.

2.23 Limiting Scope: define-package, open-package, ...

(require racket/package)

The bindings documented in this section are provided by the racket/package library, not
racket/base or racket.

(define-package package-id exports form ...)
(open-package package-id) The
define-package
s form is based on the
exports = (id) . module form of
| #:only (id ...) Chez Scheme
| #:al1-defined [Waddell99].
| #:all-defined-except (id ...)

The def ine-package form is similar to module, except that it can appear in any definition
context. The forms within a define-package form can be definitions or expressions;
definitions are not visible outside the define-package form, but exports determines a
subset of the bindings that can be made visible outside the package using the definition form
(open-package package-id).

The (id ...) and #:only (id ...) exports forms are equivalent: exactly the listed
ids are exported. The #:all-defined form exports all definitions from the package body,
and #:all-defined-except (id ...) exports all definitions except the listed ids.

All of the usual definition forms work within a define-package body, and such definitions
are visible to all expressions within the body (and, in particular, the definitions can refer to
each other). However, define-package handles define*, define*-syntax, define*-
values, definex-syntaxes, and open*-package specially: the bindings introduced by
those forms within a def ine-package body are visible only to forms that appear later in
the body, and they can shadow any binding from preceding forms (even if the preceding
binding did not use one of the special * definition forms). If an exported identifier is defined
multiple times, the last definition is the exported one.

Examples:

104

> (define-package presents (doll)
(define doll "Molly Coddle'")
(define robot "Destructo"))

> doll

reference to undefined identifier: doll

> robot

reference to undefined identifier: robot

> (open-package presents)

> doll

"Molly Coddle"

> robot

reference to undefined identifier: robot

> (define-package big-russian-doll (middle-russian-doll)
(define-package middle-russian-doll (little-russian-doll)

(define little-russian-doll "Anastasia')))

> (open-package big-russian-doll)

> (open-package middle-russian-doll)

> little-russian-doll

"Anastasia"

(package-begin form ...)

Similar to def ine-package, but it only limits the visible of definitions without binding a
package name. If the last form is an expression, then the expression is in tail position for
the package-begin form, so that its result is the package-begin result.

A package-begin form can be used as an expression, but if it is used in a context where
definitions are allowed, then the definitions are essentially spliced into the enclosing context
(though the defined bindings remain hidden outside the package-begin).

Examples:
> (package-begin
(define secret "mimi')
(list secret))
> ("mimi")
> secret
reference to undefined identifier: secret

definex*
define*-values
define*-syntax
define*-syntaxes
openx-package

Equivalent to define, define-values, define-syntax, def ine-syntaxes, and open-

105

package, except within a def ine-package or package-begin form, where they create
bindings that are visible only to later body forms.

Examples:
> (define-package mail (cookies)
(define* cookies (list ’sugar))
(definex cookies (cons ’chocolate-chip cookies)))
> (open-package mail)
> cookies
> (chocolate-chip sugar)
> (define-syntax-rule (define-seven id) (define id 7))
> (define-syntax-rule (definex*-seven id)
(begin
(define-package p (id) (define-seven id))
(open*-package p)))
> (package-begin
(define vii 8)
(definex-seven vii)
vii)

(package? v) — boolean?
v : any/c

(package-exported-identifiers id) — (listof identifier?)
id : identifier?

(package-original-identifiers id) — (listof identifier?)
id : identifier?

The package?, package-exported-identifiers, and package-original-
identifiers functions are exported for-syntax by racket/package.

The package? predicate returns #t if v is a package value as obtained by syntax-local-
value on an identifier that is bound to a package.

Given such an identifier, the package-exported-identifiers function returns a list of
identifiers that corresponding to the bindings that would be introduced by opening the pack-
age in the lexical context being expanded. The package-original-identifiers function
returns a parallel list of identifiers for existing bindings of package’s exports.

2.24 Blocks: block

(require racket/block)

The bindings documented in this section are provided by the racket/block library, not

106

racket/base or racket.

(block defn-or-expr ...)

Supports a mixture of expressions and mutually recursive definitions, as in a module body.
Unlike an internal-definition context, the last defn-or-expr need not be an expression.

The result of the block form is the result of the last defn-or-expr if it is an expression,
#<void> otherwise. If no defn-or-expr is provided (after flattening begin forms), the
result is #<void>.

The final defn-or-expr is executed in tail position, if it is an expression.

Examples:
> (define (f x)
(block

(define y (addl x))
(displayln y)
(define z (* 2 y))
(+ 3 2)))

> (f 12)

13

29

2.25 Internal-Definition Limiting: #/stratified-body

(#Ystratified-body defn-or-expr ...)

Like (let () defn-or-expr ...) for an internal-definition context sequence, except
that an expression is not allowed to precede a definition.

The #)stratified-body form is useful for implementing syntactic forms or languages
that supply a more limited kind of internal-definition context.

107

3 Datatypes

Each pre-defined datatype comes with a set of procedures for manipulating instances of the
datatype.

3.1 Booleans and Equality

True and false booleans are represented by the values #t and #f£, respectively, though oper-
ations that depend a boolean value typically treat anything other than #£ as true.

See also: and, or, andmap, ormap.

(boolean? v) — boolean?
v : any/c

Returns #t if v is #t or #f, #f otherwise.

Examples:
> (boolean? #f)
#t
> (boolean? #t)
#t
> (boolean? ’true)
#f

(not v) — boolean?
v : any/c

Returns #t if v is #f, #f otherwise.

Examples:
> (not #f)
#t
> (not #t)
#f
> (not ’we-have-no-bananas)
#f

(equal? v1 v2) — boolean?
vl : any/c
v2 : any/c

108

Two values are equal? if and only if they are eqv?, unless otherwise specified for a partic-
ular datatype.

Datatypes with further specification of equal? include strings, byte strings, numbers, pairs,
mutable pairs, vectors, boxes, hash tables, and inspectable structures. In the last five cases,
equality is recursively defined; if both v1 and v2 contain reference cycles, they are equal
when the infinite unfoldings of the values would be equal. See also prop:equal+hash and
prop:proxy-of.

Examples:
> (equal? ’yes ’yes)
#t
> (equal? ’yes ’no)
#f
> (equal? (expt 2 100) (expt 2 100))
#t
> (equal? 2 2.0)
#f
> (equal? (make-string 3 #\z) (make-string 3 #\z))
#t

(eqv? vl v2) — Dboolean?
vl : any/c
v2 : any/c

Two values are eqv? if and only if they are eq?, unless otherwise specified for a particular
datatype.

The number and character datatypes are the only ones for which eqv? differs from eq?.

Examples:
> (eqv? ’yes ’yes)
#t
> (eqv? ’yes ’no)
#f
> (eqv? (expt 2 100) (expt 2 100))
#t
> (eqv? 2 2.0)
#f
> (eqv? (integer->char 955) (integer->char 955))
#t
> (eqv? (make-string 3 #\z) (make-string 3 #\z))
#f

(eq? v1 v2) — boolean?

109

vl : any/c
v2 : any/c

Return #t if v1 and v2 refer to the same object, #f otherwise. See also §1.1.6 “Object
Identity and Comparisons”.

Examples:
> (eq? ’yes ’yes)
#t
> (eq? ’yes ’no)
#f
> (let ([v (mcoms 1 2)]) (eq? v v))
#t
> (eq? (mcons 1 2) (mcons 1 2))
#f
> (eq? (make-string 3 #\z) (make-string 3 #\z))
#f

(equal?/recur vl v2 recur-proc) — boolean?
vl : any/c
v2 : any/c
recur-proc : (any/c any/c -> any/c)

Like equal?, but using recur-proc for recursive comparisons (which means that reference
cycles are not handled automatically). Non-#f results from recur-proc are converted to
#t before being returned by equal?/recur.

Examples:
> (equal?/recur 1 1 (lambda (a b) #£))
#t
> (equal?/recur ’(1) (1) (lambda (a b) #f))
#t

> (equal?/recur ’#(1 1 1) *#(1 1.2 3/4)
(lambda (a b) (<= (abs (- a b)) 0.25)))
#t

(immutable? v) — boolean?
v : any/c

Returns #t if v is an immutable string, byte string, vector, hash table, or box, #f otherwise.

Examples:
> (immutable? ’hello)
#f
> (immutable? "a string")

110

#t

> (immutable? (box 5))

#f

> (immutable? #(0 1 2 3))

#t

> (immutable? (make-hash))

#f

> (immutable? (make-immutable-hash ’([a b])))
#t

prop:equal+hash : struct-type-property?

A structure type property (see §4.3 “Structure Type Properties”) that supplies an equality
predicate and hashing functions for a structure type. The property value must be a list of
three procedures:

e equal-proc : (-> any/c any/c (-> any/c any/c boolean?) any/c) —
tests whether the first two arguments are equal, where both values are instances of the
structure type to which the property is associated (or a subtype of the structure type).

The third argument is an equal? predicate to use for recursive equality checks; use the
given predicate instead of equal? to ensure that data cycles are handled properly and
to work with equal?/recur (but beware that an arbitrary function can be provided
to equal?/recur for recursive checks, which means that arguments provided to the
predicate might be exposed to arbitrary code).

The equal-proc is called for a pair of structures only when they are not eq?, and
only when they both have a prop:equal+hash value inherited from the same struc-
ture type. With this strategy, the order in which equal? receives two structures does
not matter. It also means that, by default, a structure sub-type inherits the equality
predicate of its parent, if any.

e hash-proc : (-> any/c (-> any/c exact-integer?) exact-integer?)
— computes a hash code for the given structure, like equal-hash-code. The first
argument is an instance of the structure type (or one of its subtypes) to which the
property is associated.

The second argument is a equal -hash-code-like procedure to use for recursive hash-
code computation; use the given procedure instead of equal-hash-code to ensure
that data cycles are handled properly.

* hash2-proc : (-> any/c (-> any/c exact-integer?) exact-integer?)
— computes a secondary hash code for the given structure. This procedure is like
hash-proc, but analogous to equal-secondary-hash-code.

Take care to ensure that hash-proc and hash2-proc are consistent with equal-proc.
Specifically, hash-proc and hash2-proc should produce the same value for any two struc-
tures for which equal-proc produces a true value.

111

When a structure type has no prop: equal+hash property, then transparent structures (i.e.,
structures with an inspector that is controlled by the current inspector) are equal? when
they are instances of the same structure type (not counting sub-types), and when they
have equal? field values. For transparent structures, equal-hash-code and equal-
secondary-hash-code derive hash code using the field values. For opaque structure types,
equal? is the same as eq?, and equal-hash-code and equal-secondary-hash-code
results are based only on eq-hash-code. If a structure has a prop:proxy-of property,
then the prop:proxy-of property takes precedence over prop:equal+hash if the prop-
erty value’s procedure returns a non-#f value when applied to the structure.

Examples:
> (define (farm=7 farml farm2 recursive-equal?)
(and (= (farm-apples farml)
(farm-apples farm2))
(= (farm-oranges farml)
(farm-oranges farm?2))
(= (farm-sheep farml)
(farm-sheep farm2))))
> (define (farm-hash-1 farm recursive-equal-hash)
(+ (% 10000 (farm-apples farm))
(* 100 (farm-oranges farm))
(* 1 (farm-sheep farm))))
> (define (farm-hash-2 farm recursive-equal-hash)
(+ (% 10000 (farm-sheep farm))
(* 100 (farm-apples farm))
(* 1 (farm-oranges farm))))
> (define-struct farm (apples oranges sheep)
#:property prop:equal+hash
(list farm=7 farm-hash-1 farm-hash-2))

> (define east (make-farm 5 2 20))

> (define west (make-farm 18 6 14))
> (define north (make-farm 5 20 20))
> (define south (make-farm 18 6 14))
> (equal? east west)

#f

> (equal? east north)

#f

> (equal? west south)

#t

3.1.1 Boolean Synonyms

(require racket/bool)

112

The bindings documented in this section are provided by the racket/bool and racket
libraries, but not racket/base.

true : boolean?

A synonym for #t.

false : boolean?

A synonym for #£.

(symbol=?7 a b) — boolean?
a : symbol?
b : symbol?

Returns (equal? a b).

(boolean=7? a b) — boolean?
a : boolean?
b : boolean?

Returns (equal? a b).

(false? v) — boolean?
v : any/c

Returns (not v).

3.2 Numbers

All numbers are complex numbers. Some of them are real numbers, and all of the real num-
bers that can be represented are also rational numbers, except for +inf . 0 (positive infinity),
-inf .0 (negative infinity), and +nan. 0 (not-a-number). Among the rational numbers, some
are integers, because round applied to the number produces the same number.

Orthogonal to those categories, each number is also either an exact number or an inexact
number. Unless otherwise specified, computations that involve an inexact number produce
inexact results. Certain operations on inexact numbers, however, produce an exact number,
such as multiplying an inexact number with an exact 0. Some operations, which can produce
an irrational number for rational arguments (e.g., sqrt), may produce inexact results even
for exact arguments.

113

§3.2 “Numbers” in
Guide: Racket
introduces numbers.

See §12.6.3
“Reading Numbers”
for information on
the syntax of
number literals.

In the case of complex numbers, either the real and imaginary parts are both exact or inexact,
or the number has an exact zero real part and an inexact imaginary part; a complex number
with an exact zero imaginary part is a real number.

Inexact real numbers are implemented as either single- or double-precision IEEE floating-
point numbers—the latter by default, and the former only when support for 32-bit inexact
numbers is specifically enabled when the run-time system is built, and only when a com-
putation starts with numerical constants specified as single-precision numbers. Inexact real
numbers that are represented as double-precision floating-point numbers are flonums.

The precision and size of exact numbers is limited only by available memory (and the pre-
cision of operations that can produce irrational numbers). In particular, adding, multiplying,
subtracting, and dividing exact numbers always produces an exact result.

Inexact numbers can be coerced to exact form, except for the inexact numbers +inf .0, -
inf.0, and +nan. 0, which have no exact form. Dividing a number by exact zero raises an
exception; dividing a non-zero number other than +nan . 0 by an inexact zero returns +inf .0
or -inf .0, depending on the sign of the dividend. The +nan.0 value is not = to itself, but
+nan.0 is eqv? to itself. Conversely, (= 0.0 -0.0) is #t, but (eqv? 0.0 -0.0) is #f.
The datum -nan . O refers to the same constant as +nan. 0.

Calculations with infinites produce results consistent with IEEE double-precision floating
point where IEEE specifies the result; in cases where IEEE provides no specification (e.g.,
(angle +inf.O+inf.01i)), the result corresponds to the limit approaching infinity, or
+nan. 0 if no such limit exists.

A fixnum is an exact integer whose two’s complement representation fit into 31 bits on a
32-bit platform or 63 bits on a 64-bit platform; furthermore, no allocation is required when
computing with fixnums. See also the racket/fixnum module, below.

Two fixnums that are = are also the same according to eq?. Otherwise, the result of eq?
applied to two numbers is undefined.

Two numbers are eqv? when they are both inexact or both exact, and when they are = (except
for +nan.0, 0.0, and -0. 0, as noted above). Two numbers are equal? when they are eqv?.

3.2.1 Number Types

(number? v) — boolean?
v : any/c

Returns #t if v is a number, #f otherwise.

Examples:
> (number? 1)

114

#t

> (number? 2+3i)

#t

> (number? "hello")
#f

(complex? v) — boolean?
v : any/c

Returns (number? v), because all numbers are complex numbers.

(real? v) — boolean?
v : any/c

Returns #t if v is a real number, #f otherwise.

Examples:
> (real? 1)
#t
> (real? +inf.0)
#t
> (real? 2+3i)
#f
> (real? 2.0+0.01)
#f
> (real? "hello")
#f

(rational? v) — boolean?
v : any/c

Returns #t if v is a rational number, #f otherwise.

Examples:
> (rational? 1)
#t
> (rational? +inf.0)
#f
> (real? "hello")
#f

(integer? v) — boolean?
v : any/c

115

Returns #t if v is a number that is an integer, #f otherwise.

Examples:
> (integer? 1)
#t
> (integer? 2.3)
#t
> (integer? 4.0)
#t
> (integer? +inf.0)
#t
> (integer? 2+3i)
#f
> (integer? "hello")
#f

(exact-integer? v) — boolean?
v : any/c

Returns (and (integer? v) (exact? v)).

Examples:
> (exact-integer? 1)
#t
> (exact-integer? 4.0)
#f

(exact-nonnegative-integer? v) — boolean?
v : any/c

Returns (and (exact-integer? v) (not (negative? v))).

Examples:
> (exact-nonnegative-integer? 0)
#t
> (exact-nonnegative-integer? -1)
#t

(exact-positive-integer? v) — boolean?
v : any/c

Returns (and (exact-integer? v) (positive? v)).

Examples:
> (exact-positive-integer? 1)

116

#t
> (exact-positive-int eger? 0)
#f

(inexact-real? v) — boolean?
v : any/c

Returns (and (real? v) (inexact? v)).

(fixnum? v) — boolean?
v : any/c

Return #t if v is a fixnum, #f otherwise.

Note: the result of this function is platform-dependent, so using it in syntax transformers can
lead to platform-dependent bytecode files.

(flonum? v) — boolean?
v : any/c

Return #t if v is a flonum, #£ otherwise.

(zero? z) — boolean?
z : number?

Returns (= 0 =z).

Examples:
> (zero? 0)
#t
> (zero? -0.0)
#t

(positive? x) — boolean?
X @ real?

Returns (> x 0).

Examples:
> (positive? 10)
#t
> (positive? -10)
#f

> (positive? 0.0)

117

#f

(negative? x) — boolean?
x @ real?

Returns (< x 0).

Examples:
> (negative? 10)
#f
> (negative? -10)
#t
> (negative? -0.0)
#t

(even? n) — boolean?
n : integer?

Returns (zero? (modulo n 2)).

Examples:
> (even? 10.0)
#t
> (even? 11)
#f
> (even? +inf.0)
even?: expects argument of type <integer>; given +inf.0

(0dd? n) — boolean?
n : integer?

Returns (not (even? n)).

Examples:
> (0dd? 10.0)
#t
> (0dd? 11)
#t
> (0dd? +inf.0)
odd?: expects argument of type <integer>; given +inf.0

(exact? z) — boolean?
Z . number?

118

Returns #t if z is an exact number, #f otherwise.

Examples:
> (exact? 1)
#t
> (exact? 1.0)
#f

(inexact? z) — boolean?
Z . number?

Returns #t if z is an inexact number, #f otherwise.

Examples:
> (inexact? 1)
#f
> (inexact? 1.0)
#t

(inexact->exact z) — exact?
Zz : number?

Coerces z to an exact number. If z is already exact, it is returned. If z is +inf.0, -inf .0,
or +nan.0, then the exn:fail:contract exception is raised.

Examples:
> (inexact->exact 1)

(inexact->exact 1.0)

=V e

(exact->inexact z) — inexact?
z : number?

Coerces z to an inexact number. If z is already inexact, it is returned.

Examples:
> (exact->inexact 1)
1.0
> (exact->inexact 1.0)
1.0

119

3.2.2 Generic Numerics

Most Racket numeric operations work on any kind of number.

Arithmetic

(+ z ...) — number?
Z : number?

Returns the sum of the zs, adding pairwise from left to right. If no arguments are provided,
the result is O.

Examples:
> (+12)

(+ 1.0 2+31 5)
.0+3.01
(+)

OV 00 VW

(- z) — number?
z . number?

(- z w ...+) — number?
Zz : number?
w . number?

When no ws are supplied, returns (- 0 z). Otherwise, returns the subtraction of the ws
from z working pairwise from left to right.

Examples:
> (- 5 3.0)
2.0
> (- 1)
-1
> (- 2+71i 1 3)
-2+71
(¥ z ...) — number?

z . number?

Returns the product of the zs, multiplying pairwise from left to right. If no arguments are
provided, the result is 1. Multiplying any number by exact 0 produces exact O.

120

Examples:
> (% 2 3)
6
> (x 8.0 9)
72.0
> (% 1421 3+41)
-b+101

(/ z) — number?
Z . number?

(/ z w ...+) — number?
Z . number?
w . number?

When no ws are supplied, returns (/ 1 z). Otherwise, returns the division z by the ws
working pairwise from left to right.

If z is exact O and no w is exact O, then the result is exact 0. If any w is exact O, the
exn:fail:contract:divide-by-zero exception is raised.

Examples:
> (/ 3 4)
3/4
> (/ 81 3 3)
9
> (/ 10.0)
0.1
> (/ 1+2i 3+41)
11/25+42/251

(quotient n m) — integer?
n : integer?
m : integer?

Returns (truncate (/ n m)).

Examples:
> (quotient 10 3)
3
> (quotient -10.0 3)
-3.0

> (quotient +inf.0 3)
quotient: expects type <integer> as Ist argument, given:
+inf.0; other arguments were: 3

121

(remainder n m) — integer?
n : integer?
m : integer?

Returns g with the same sign as n such that

e (abs q) is between O (inclusive) and (abs m) (exclusive), and

e (+ g (* m (quotient n m))) equals n.

If m is exact O, the exn:fail:contract:divide-by-zero exception is raised.

Examples:
> (remainder 10 3)
1
> (remainder -10.0 3)
-1.0
> (remainder 10.0 -3)
1.0
> (remainder -10 -3)
-1

> (remainder +inf.0 3)
remainder: expects type <integer> as Ist argument, given:
+inf.0; other arguments were: 3

(quotient/remainder n m) — integer? integer?
n : integer?
m : integer?

Returns (values (quotient n m) (remainder n m)), but the combination may be
computed more efficiently than separate calls to quotient and remainder.

Example:
> (quotient/remainder 10 3)
3
1

(modulo n m) — integer?
n : integer?
m : integer?

Returns g with the same sign as m where

e (abs q) is between O (inclusive) and (abs m) (exclusive), and

122

* the difference between g and (- n (* m (quotient n m))) is a multiple of m.

If m is exact O, the exn:fail:contract:divide-by-zero exception is raised.

Examples:
> (modulo 10 3)
1
> (modulo -10.0 3)
2.0
> (modulo 10.0 -3)
-2.0
> (modulo -10 -3)
-1

> (modulo +inf.0 3)
modulo: expects type <integer> as st argument, given:
+inf.0; other arguments were: 3

(addl z) — number?
z . number?

Returns (+ z 1).

(subl z) — number?
z . number?

Returns (- z 1).

(abs x) — number?
X . real?

Returns the absolute value of x.

Examples:
> (abs 1.0)
1.0
> (abs -1)
1

(max x ...+) — real?
X . real?

Returns the largest of the xs, or +nan. 0 if any x is +nan.0. If any x is inexact, the result is
coerced to inexact.

123

Examples:
> (max 1 3 2)

3
> (max 1 3 2.0)
3.0
(min x ...+) — real?
X : real?

Returns the smallest of the xs, or +nan.0 if any x is +nan.0. If any x is inexact, the result
is coerced to inexact.

Examples:
> (min 1 3 2)

(min 1 3 2.0)
.0

RV

(gcd n ...) — integer?
n : integer?

Returns the greatest common divisor (a non-negative number) of the ns. If no arguments are
provided, the result is 0. If all arguments are zero, the result is zero.

Examples:
> (ged 10)
10
> (ged 12 81.0)
3.0
(lem n ...) — integer?

n : integer?

Returns the least common multiple (a non-negative number) of the ns. If no arguments are
provided, the result is 1. If any argument is zero, the result is zero; furthermore, if any
argument is exact O, the result is exact O.

Examples:
> (lem 10)
10
> (lem 3 4.0)
12.0

(round x) — integer?

124

X . real?

Returns the integer closest to x, resolving ties in favor of an even number.

Examples:
> (round 17/4)
4
> (round -17/4)
-4
> (round 2.5)
2.0
> (round -2.5)
-2.0

(floor x) — integer?
x @ real?

Returns the largest integer that is no more than x.

Examples:
> (floor 17/4)
4
> (floor -17/4)
-5
> (floor 2.5)
2.0
> (floor -2.5)
-3.0

(ceiling x) — integer?
x @ real?

Returns the smallest integer that is at least as large as x.

Examples:
> (ceiling 17/4)
5
> (ceiling -17/4)
-4
> (ceiling 2.5)
3.0
> (ceiling -2.5)
-2.0

(truncate x) — integer?

125

X . real?

Returns the integer farthest from 0 that is no closer to O than x.

Examples:
> (truncate 17/4)
4
> (truncate -17/4)
-4
> (truncate 2.5)
2.0
> (truncate -2.5)
-2.0

(numerator q) — integer?
q : rational?

Coreces g to an exact number, finds the numerator of the number expressed in its simplest
fractional form, and returns this number coerced to the exactness of g.

Examples:
> (numerator 5)
5
> (numerator 17/4)
17
> (numerator 2.3)
2589569785738035.0

(denominator g) — integer?
q g
q : rational?

Coreces g to an exact number, finds the numerator of the number expressed in its simplest
fractional form, and returns this number coerced to the exactness of q.

Examples:
> (denominator 5)

(denominator 17/4)

(denominator 2.3)
125899906842624.0

RV b Ve

(rationalize x tolerance) — real?
X . real?
tolerance . real?

126

Among the real numbers within (abs tolerance) of x, returns the one corresponding to
an exact number whose denominator is smallest. If multiple integers are within toler-
ance of x, the one closest to O is used.

Examples:
> (rationalize 1/4 1/10)
1/3
> (rationalize -1/4 1/10)
-1/3
> (rationalize 1/4 1/4)
0
> (rationalize 11/40 1/4)
1/2

Number Comparison

(=z w ...+) — boolean?
z . number?
w . number?

Returns #t if all of the arguments are numerically equal, #f otherwise. An inexact number
is numerically equal to an exact number when the exact coercion of the inexact number is
the exact number. Also, 0.0 and -0. 0 are numerically equal, but +nan. O is not numerically
equal to itself.

Examples:
> (=11.0)
#t
> (=1 2)
#£
> (= 2+3i 2+31 2+31i)
#t
(< xy ...+) — boolean?
X @ real?
y : real?

Returns #t if the arguments in the given order are in strictly increasing, #f otherwise.

Examples:
> (<1 1)
#t
> (< 123)
#t

127

> (< 1 +inf.0)
#t
> (< 1 +nan.0)
#f

(<= x y ...+) — boolean?
x @ real?
y @ real?

Returns #t if the arguments in the given order are in non-decreasing, #f otherwise.

Examples:
> (k=1 1)
#t
> (k=121)
#f
(> xy ...+) — boolean?
X ! real?
y : real?

Returns #t if the arguments in the given order are in strictly decreasing, #f otherwise.

Examples:
> (> 1 1)
#f
> (>321)
#t
> (> +inf.0 1)
#t
> (< +nan.0 1)
#f

(>=x y ...+) — boolean?
X @ real?
y @ real?

Returns #t if the arguments in the given order are in non-increasing, #f otherwise.

Examples:
> (>=1 1)
#t
> (>=121)
#f

128

Powers and Roots

(sqrt z) — number?
z : number?

Returns the principal square root of z. The result is exact if z is exact and z’s square root is
rational. See also integer-sqrt.

Examples:
> (sqrt 4/9)
2/3
> (sqrt 2)
1.4142135623730951
> (sqrt -1)
0+1i

(integer-sqrt n) — complex?
n : integer?

Returns (floor (sqrt n)) for positive n. For negative n, the result is (¥ (integer-
sqrt (- n)) 0+1i).

Examples:
> (integer-sqrt 4.0)
2.0
> (integer-sqrt 5)
2

(integer-sqrt/remainder n) — integer? integer?
n : integer?

Returns (integer-sqrt n) and (- n (expt (integer-sqrt n) 2)).

Examples:
> (integer-sqrt/remainder 4.0)
2.0
0.0
> (integer-sqrt/remainder 5)
2
1

(expt z w) — number?
z : number?
w . number?

129

Returns z raised to the power of w. If w is exact O, the result is exact 1. If z is exact O and
w is negative, the exn:fail:contract:divide-by-zero exception is raised.

Examples:
> (expt 2 3)
8
> (expt 4 0.5)
2.0
> (expt +inf.0 0)
1

(exp z) — number?
z : number?

Returns Euler’s number raised to the power of z. The result is normally inexact, but it is
exact 1 when z is an exact 0.

Examples:
> (exp 1)
2.718281828459045
> (exp 2+31i)
-7.315110094901103+1.04274365623590451
> (exp 0)
1

(log z) — number?
z @ number?

Returns the natural logarithm of z. The result is normally inexact, but it is exact O when
z is an exact 1. When z is exact 0, exn:fail:contract:divide-by-zero exception is
raised.

Examples:

> (log (exp 1))
.0

(log 2+3i)
.2824746787307684+0.9827937232473291
(log 1)

OV P,V e

Trignometric Functions

(sin z) — number?

130

z . number?

Returns the sine of z, where z is in radians. The result is normally inexact, but it is exact 0
if z is exact O.

Examples:
> (sin 3.14159)
2.65358979335273e-06
> (sin 1.0+5.01)
62.44551846769653+40.09216577799841

(cos z) — number?
Zz : number?

Returns the cosine of z, where z is in radians.

Examples:
> (cos 3.14159)
-0.9999999999964793
> (cos 1.0+5.01)
40.095806306298826-62.439848680799631

(tan z) — number?
Z . number?

Returns the tangent of z, where z is in radians. The result is normally inexact, but it is exact
0 if z is exact O.

Examples:
> (tan 0.7854)
1.0000036732118496
> (tan 1.0+5.01)
8.256719834227411e-05+1.00003778337960081

(asin z) — number?
z . number?

Returns the arcsin in radians of z. The result is normally inexact, but it is exact 0 if z is
exact 0.

Examples:
> (asin 0.25)
0.25268025514207865
> (asin 1.0+5.01)
0.1937931365549321+2.33097465304931231

131

(acos z) — number?
z . number?

Returns the arccosine in radians of z.

Examples:
> (acos 0.25)
1.318116071652818
> (acos 1.0+5.01)
1.3770031902399644-2.,33097465304931231

(atan z) — number?
z : number?

(atan y x) — number?
y @ real?
X . real?

In the one-argument case, returns the arctangent of the inexact approximation of z, except

that the result is an exact O for an exact O argument.

In the two-argument case, the result is roughly the same as (/ (exact->inexact y)
(exact->inexact x)), but the signs of y and x determine the quadrant of the result.
Moreover, a suitable angle is returned when y divided by x produces +nan.0 in the case
that neither y nor x is +nan. 0. Finally, if x is exact O and y is an exact positive number, the
result is exact 0. If both x and y are exact 0, the exn:fail:contract:divide-by-zero

exception is raised.

Examples:
> (atan 0.5)
0.4636476090008061
> (atan 2 1)
1.1071487177940904
> (atan -2 -1)
-2.0344439357957027
> (atan 1.0+5.01)
1.530881333938778+0.194426142147002131
> (atan +inf.0 -inf.0)
2.356194490192345

Complex Numbers

(make-rectangular x y) — number?

132

X . real?
y : real?

Returns (+ x (* y 0+11)).

Example:
> (make-rectangular 3 4.0)
3.0+4.01

(make-polar magnitude angle) — number?
magnitude : real?
angle : real?

Returns (+ (* magnitude (cos angle)) (* magnitude (sin angle) 0+1i)).

Examples:
> (make-polar 10 (* pi 1/2))
6.123233995736766e-16+10.01
> (make-polar 10 (* pi 1/4))
7.0710678118654755+7.0710678118654751

(real-part z) — real?
Z : number?

Returns the real part of the complex number z in rectangle coordinates.

Examples:
> (real-part 3+41i)
3
> (real-part 5.0)
5.0

(imag-part z) — real?
z . number?

Returns the imaginary part of the complex number z in rectangle coordinates.

Examples:
> (imag-part 3+41)

(imag-part 5.0)

(imag-part 5.0+0.01)
.0

OV O V b

133

(magnitude z) — (and/c real? (not/c negative?))
Z . number?

Returns the magnitude of the complex number z in polar coordinates.

Examples:
> (magnitude -3)

(magnitude 3.0)
.0
(magnitude 3+4i)

g Vv Ww VvV w

(angle z) — real?
z : number?

Returns the angle of the complex number z in polar coordinates.

Examples:

(angle -3)
.141592653589793
(angle 3.0)

\4

.9272952180016122
(angle +inf.0+inf.01)

3
>
0
> (angle 3+41i)
0
>
0.7853981633974483

Bitwise Operations

(bitwise-ior n ...) — exact-integer?
n : exact-integer?

Returns the bitwise “inclusive or” of the ns in their (semi-infinite) two’s complement repre-
sentation. If no arguments are provided, the result is 0.

Examples:
> (bitwise-ior 1 2)
3
> (bitwise-ior -32 1)
-31

134

(bitwise-and n ...) — exact-integer?
n . exact-integer?

Returns the bitwise “and” of the ns in their (semi-infinite) two’s complement representation.
If no arguments are provided, the result is - 1.

Examples:
> (bitwise-and 1 2)
0
> (bitwise-and -32 -1)
-32
(bitwise-xor n ...) — exact-integer?

n : exact-integer?

Returns the bitwise “exclusive or” of the ns in their (semi-infinite) two’s complement repre-
sentation. If no arguments are provided, the result is 0.

Examples:
> (bitwise-xor 1 5)
4
> (bitwise-xor -32 -1)
31

(bitwise-not n) — exact-integer?
n : exact-integer?

Returns the bitwise “not” of n in its (semi-infinite) two’s complement representation.

Examples:
> (bitwise-not 5)
-6
> (bitwise-not -1)
0

(bitwise-bit-set? n m) — boolean?
n : exact-integer?
m : exact-nonnegative-integer?

Returns #t when the mth bit of n is set in n’s (semi-infinite) two’s complement representa-
tion.

This operation is equivalent to (not (zero? (bitwise-and n (arithmetic-shift 1
m)))), but it is faster and runs in constant time when z is positive.

135

Examples:
> (bitwise-bit-set? 5 0)

#t

> (bitwise-bit-set? 5 2)

#t

> (bitwise-bit-set? -5 (expt 2 700))
#t

(bitwise-bit-field n start end) — exact-integer?
n : exact-integer?
start . exact-nonnegative-integer?
end : (and/c exact-nonnegative-integer?
(start . <= . end))

Extracts the bits between position start and (- end 1) (inclusive) from n and shifts them
down to the least significant portion of the number.

This operation is equivalent to the computation

(bitwise-and (subl (arithmetic-shift 1 (- end start)))
(arithmetic-shift n (- start)))

but it runs in constant time when n is positive, start and end are fixnums, and (- end
start) is no more than the maximum width of a fixnum.

Each pair of examples below uses the same numbers, showing the result both in binary and
as integers.

Examples:
> (format "~b" (bitwise-bit-field (string->number "1101" 2) 1 1))
||0||
> (bitwise-bit-field 13 1 1)
0
> (format "~b" (bitwise-bit-field (string->number "1101" 2) 1 3))
"10"
> (bitwise-bit-field 13 1 3)
2
> (format "~b" (bitwise-bit-field (string->number "1101" 2) 1 4))
"110"
> (bitwise-bit-field 13 1 4)
6

(arithmetic-shift n m) — exact-integer?
n : exact-integer?
m : exact-integer?

136

Returns the bitwise “shift” of n in its (semi-infinite) two’s complement representation. If
m is non-negative, the integer n is shifted left by m bits; i.e., m new zeros are introduced as
rightmost digits. If m is negative, n is shifted right by (- m) bits; i.e., the rightmost m digits
are dropped.

Examples:
> (arithmetic-shift 1 10)
1024
> (arithmetic-shift 255 -3)
31

(integer-length n) — exact-integer?
n : exact-integer?

Returns the number of bits in the (semi-infinite) two’s complement representation of n after
removing all leading zeros (for non-negative n) or ones (for negative n).

Examples:
> (integer-length 8)
4
> (integer-length -8)
3

Random Numbers

(random k [generator]) — exact-nonnegative-integer?
k : (integer-in 1 4294967087)
generator : pseudo-random-generator?
= (current-pseudo-random-generator)
(random [generator]) — (and/c real? inexact? (>/c 0) (</c 1))
generator . pseudo-random-generator?
= (current-pseudo-random-generator)

When called with and integer argument k, returns a random exact integer in the range 0 to
k-1. When called with zero arguments, returns a random inexact number between 0 and 1,
exclusive.

In each case, the number is provided by the given pseudo-random number generator (which
defaults to the current one, as produced by current-pseudo-random-generator). The
generator maintains an internal state for generating numbers. The random number generator
uses a 54-bit version of L’Ecuyer’s MRG32k3a algorithm [L’Ecuyer02].

(random-seed k) — void?

137

k : (integer-in 1 (subl (expt 2 31)))

Seeds the current pseudo-random number generator with k. Seeding a generator sets its
internal state deterministically; that is, seeding a generator with a particular number forces
it to produce a sequence of pseudo-random numbers that is the same across runs and across
platforms.

(make-pseudo-random-generator) — pseudo-random-generator?

Returns a new pseudo-random number generator. The new generator is seeded with a number
derived from (current-milliseconds).

(pseudo-random-generator? v) — boolean?
v : any/c

Returns #t if v is a pseudo-random number generator, #f otherwise.

(current-pseudo-random-generator) — pseudo-random-generator?
(current-pseudo-random-generator generator) — void?
generator . pseudo-random-generator?

A parameter that determines the pseudo-random number generator used by random.

(pseudo-random-generator->vector generator) — vector?
generator : pseudo-random-generator?

Produces a vector that represents the complete internal state of generator. The vector is
suitable as an argument to vector->pseudo-random-generator to recreate the generator
in its current state (across runs and across platforms).

(vector->pseudo-random-generator vec)
— pseudo-random-generator?
vec @ vector?

Produces a pseudo-random number generator whose internal state corresponds to vec. The
vector vec must contain six exact integers; the first three integers must be in the range 0
to 4294967086, inclusive; the last three integers must be in the range O to 4294944442,
inclusive; at least one of the first three integers must be non-zero; and at least one of the last
three integers must be non-zero.

(vector->pseudo-random-generator! generator
vec) — void?

138

generator : pseudo-random-generator?
vec @ vector?

Like vector->pseudo-random-generator, but changes generator to the given state,
instead of creating a new generator.

Number-String Conversions

(number->string z [radix]) — string?
z : number?
radix : (or/c 2 8 10 16) = 10

Returns a string that is the printed form of z in the base specific by radix. If z is inexact,
radix must be 10, otherwise the exn:fail:contract exception is raised.

Examples:
> (number->string 3.0)
||3 . O”
> (number->string 255 8)
|l377l|

(string->number s [radix]) — (or/c number? #f)
s : string?
radix : (integer-in 2 16) = 10

Reads and returns a number datum from s (see §12.6.3 “Reading Numbers”), returning #f
if s does not parse exactly as a number datum (with no whitespace). The optional radix
argument specifies the default base for the number, which can be overriden by #b, #o, #d, or
#x in the string.

Examples:
> (string->number "3.0+2.5i")
3.0+2.51
> (string->number "hello")
#f
> (string->number "111" 7)
57
> (string->number "#bill1" 7)
7

(real->decimal-string n [decimal-digits]) — string?
n : real?
decimal-digits : exact-nonnegative-integer? = 2

139

Prints n into a string and returns the string. The printed form of n shows exactly decimal-
digits digits after the decimal point. The printed for uses a minus sign if n is negative, and
it does not use a plus sign if n is positive.

Before printing, n is converted to an exact number, multiplied by (expt 10 decimal-
digits), rounded, and then divided again by (expt 10 decimal-digits). The result
of ths process is an exact number whose decimal representation has no more than decimal-
digits digits after the decimal (and it is padded with trailing zeros if necessary).

Examples:
> (real->decimal-string pi)
"3.14"
> (real->decimal-string pi 5)
"3.14159"

(integer-bytes->integer bstr

signed?
[pig-endian?
start
end]) — exact-integer?
bstr : bytes?
signed? : any/c
big-endian? : any/c = (system-big-endian?)
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Converts the machine-format number encoded in bstr to an exact integer. The start and
end arguments specify the substring to decode, where (- end start) must be 2, 4, or 8.
If signed? is true, then the bytes are decoded as a two’s-complement number, otherwise it
is decoded as an unsigned integer. If big-endian? is true, then the first character’s ASCII
value provides the most significant eight bits of the number, otherwise the first character
provides the least-significant eight bits, and so on.

(integer->integer-bytes n
size-n
signed?
[big-endian?
dest-bstr
start]) — bytes?
n : exact-integer?
size-n : (or/c 2 4 8)
signed? : any/c
big-endian? : any/c = (system-big-endian?)
dest-bstr : (and/c bytes? (not/c immutable?))
= (make-bytes size-n)

140

start : exact-nonnegative-integer? = 0

Converts the exact integer n to a machine-format number encoded in a byte string of length
size-n, which must be 2, 4, or 8. If signed? is true, then the number is encoded as two’s
complement, otherwise it is encoded as an unsigned bit stream. If big-endian? is true,
then the most significant eight bits of the number are encoded in the first character of the
resulting byte string, otherwise the least-significant bits are encoded in the first byte, and so
on.

The dest-bstr argument must be a mutable byte string of length size-n. The encoding
of n is written into dest-bstr starting at offset start, and dest-bstr is returned as the
result.

If n cannot be encoded in a string of the requested size and format, the exn:fail:contract
exception is raised. If dest-bstr is not of length size-n, the exn:fail:contract ex-
ception is raised.

(floating-point-bytes->real bstr
[pbig-endian?

start
end])
— (and/c real? inexact?)
bstr : bytes?
big-endian? : any/c = (system-big-endian?)
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Converts the IEEE floating-point number encoded in bstr from position start (inclusive)
to end (exclusive) to an inexact real number. The difference between start an end must
be either 4 or 8 bytes. If big-endian? is true, then the first byte’s ASCII value provides the
most significant eight bits of the IEEE representation, otherwise the first byte provides the
least-significant eight bits, and so on.

(real->floating-point-bytes x

size-n
[pbig-endian?
dest-bstr
start]) — bytes?
X ! real?
size-n : (or/c 4 8)
big-endian? : any/c = (system-big-endian?)

dest-bstr : (and/c bytes? (not/c immutable?))
= (make-bytes size-n)
start : exact-nonnegative-integer? = 0

141

Converts the real number x to its IEEE representation in a byte string of length size-
n, which must be 4 or 8. If big-endian? is true, then the most significant eight bits of
the number are encoded in the first byte of the resulting byte string, otherwise the least-
significant bits are encoded in the first character, and so on.

The dest-bstr argument must be a mutable byte string of length size-n. The encoding
of n is written into dest-bstr starting with byte start, and dest-bstr is returned as the
result.

If dest-bstr is provided and it has less than start plus size-n bytes, the
exn:fail:contract exception is raised.

(system-big-endian?) — boolean?

Returns #t if the native encoding of numbers is big-endian for the machine running Racket,
#£ if the native encoding is little-endian.

Extra Constants and Functions

(require racket/math)

The bindings documented in this section are provided by the racket/math and racket
libraries, but not racket/base.

pi : real?

An approximation to the ratio of a circle’s circumference to its diameter:
3.141592653589793.

(sqr z) — number?
Z . number?

Returns (x z z).

(sgn x) — (or/c 10 -11.0 0.0 -1.0)
X : real?

Returns the sign of x as either -1, 0, or 1.
Examples:
> (sgn 10)

1
> (sgn -10.0)

142

-1.0
> (sgn 0)
0

(conjugate z) — number?
Z . number?

Returns the complex conjugate of z.

Examples:
> (conjugate 1)
1
> (conjugate 3+41i)
3-41i

(sinh z) — number?
Z . number?

Returns the hyperbolic sine of z.

(cosh z) — number?
Zz : number?

Returns the hyperbolic cosine of z.

(tanh z) — number?
z : number?

Returns the hyperbolic tangent of z.

(order-of-magnitude r) — (and/c exact? integer?)
r : (and/c real? positive?)

Computes the greatest exact integer m such that:

(<= (expt 10 m)
(inexact->exact r))

Hence also:

(< (inexact->exact r)
(expt 10 (addl m)))

Examples:

143

> (order-of-magnitude 999)
2

> (order-of-magnitude 1000)
3

> (order-of-magnitude 1/100)
-2

> (order-of-magnitude 1/101)
-3

3.2.3 Flonums

(require racket/flonum)

The racket/flonum library provides operations like £1+ that consume and produce only
flonums. Flonum-specific operations provide can better performance when used consis-

tently, and they are as safe as generic operations like +. See also §18.6
“Fixnum and
Flonum
Optimizations” in

Flonum Arithmetic Guide: Racket.

(f1+ a b) — flonum?
a : flonum?
b : flonum?

(f1- a b) — flonum?
a : flonum?
b : flonum?

(fl1* a b) — flonum?
a : flonum?
b : flonum?

(f1/ a b) — flonum?
a : flonum?
b : flonum?

(flabs a) — flonum?
a : flonum?

Like +, -, *, /, and abs, but constrained to consume flonums. The result is always a flonum.

(fl= a b) — boolean?
a : flonum?
b : flonum?

(fl1< a b) — boolean?
a : flonum?
b : flonum?

144

(f1> a b) — boolean?
a : flonum?
b : flonum?

(fl<= a b) — boolean?
a : flonum?
b : flonum?

(f1>= a b) — boolean?
a : flonum?
b : flonum?

(flmin a b) — flonum?
a : flonum?
b : flonum?

(flmax a b) — flonum?
a : flonum?
b : flonum?

Like =, <, >, <=, >=, min, and max, but constrained to consume flonums.

(flround a) — flonum?
a : flonum?

(flfloor a) — flonum?
a : flonum?

(flceiling a) — flonum?
a : flonum?

(fltruncate a) — flonum?
a : flonum?

Like round, floor, ceiling, and truncate, but constrained to consume flonums.

(flsin a) — flonum?
a : flonum?

(flcos a) — flonum?
a : flonum?

(fltan a) — flonum?
a : flonum?

(flasin a) — flonum?
a : flonum?

(flacos a) — flonum?
a : flonum?

(flatan a) — flonum?
a : flonum?

(fllog a) — flonum?
a : flonum?

(flexp a) — flonum?
a : flonum?

145

(flsqrt a) — flonum?
a : flonum?

Like sin, cos, tan, asin, acos, atan, log, exp, and f1sqrt, but constrained to consume
and produce flonums. The result is +nan.0 when a number outside the range -1.0to 1.0 is
given to flasin or flacos, or when a negative number is given to £11og or £1sqrt.

(->f1l a) — flonum?
a : exact-integer?

Like exact->inexact, but constrained to consume exact integers, so the result is always a
flonum.

(fl->exact-integer a) — exact-integer?
a : flonum?

Like inexact->exact, but constrained to consume an integer flonum, so the result is always
an exact integer.

(make-flrectangular a b)
— (and/c complex? inexact? (not/c real?))
a : flonum?
b : flonum?
(flreal-part a) — flonum?
a : (and/c complex? inexact? (not/c real?))
(flimag-part a) — flonum?
a : (and/c complex? inexact? (not/c real?))

Like make-rectangular, real-part, and imag-part, but both parts of the complex num-
ber must be inexact.

Flonum Vectors

A flvector is like a vector, but it holds only inexact real numbers. This representation can be
more compact, and unsafe operations on flvectors (see racket/unsafe/ops) can execute
more efficiently than unsafe operations on vectors of inexact reals.

An f64vector as provided by £fi/vector stores the same kinds of values as an flvector,
but with extra indirections that make f64vectors more convenient for working with foreign
libraries. The lack of indirections make unsafe flvector access more efficient.

Two flvectors are equal? if they have the same length, and if the values in corresponding
slots of the flvectors are equal?.

146

(flvector? v) — boolean?
v : any/c

Returns #t if v is a flvector, #f otherwise.

(flvector x ...) — flvector?
x : flonum?

Creates a flvector containing the given inexact real numbers.

Example:
> (flvector 2.0 3.0 4.0 5.0)
#<flvector>

(make-flvector size [x]) — flvector?
size : exact-nonnegative-integer?
x : flonum? = 0.0

Creates a flvector with size elements, where every slot in the flvector is filled with x.

Example:
> (make-flvector 4 3.0)
#<flvector>

(flvector-length vec) — exact-nonnegative-integer?
vec : flvector?

Returns the length of vec (i.e., the number of slots in the flvector).

(flvector-ref vec pos) — flonum?
vec : flvector?
pos : exact-nonnegative-integer?

Returns the inexact real number in slot pos of vec. The first slot is position 0, and the last
slot is one less than (flvector-length vec).

(flvector-set! vec pos x) — flonum?
vec : flvector?
pos : exact-nonnegative-integer?
x @ flonum?

Sets the inexact real number in slot pos of vec. The first slot is position 0, and the last slot

147

is one less than (flvector-length vec).

(flvector-copy vec [start end]) — flvector?
vec : flvector?
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length v)

Creates a fresh flvector of size (- end start), with all of the elements of vec from start
(inclusive) to end (exclusive).

(in-flvector v) — sequence?
v : flvector?

Produces a sequence that gives the elements of v in order. Inside a for form, this can be
optimized to step through the elements of v efficiently as in in-1ist, in-vector, etc.

(for/flvector (for-clause ...) body ...)
(for/flvector #:length length-expr (for-clause ...) body ...)
(forx/flvector (for-clause ...) body ...)
(forx/flvector #:length length-expr (for-clause ...) body ...)

Like for/vector or for*/vector, but for flvectors.

(shared-flvector x ...) — flvector?
x : flonum?

Creates a flvector containing the given inexact real numbers. When places are enabled, the
new flvector is allocated in the shared memory space.

Example:
> (shared-flvector 2.0 3.0 4.0 5.0)
#<flvector>

(make-shared-flvector size [x]) — flvector?
size : exact-nonnegative-integer?
x : flonum? = 0.0

Creates a flvector with size elements, where every slot in the flvector is filled with x. When
places are enabled, the new flvector is allocated in the shared memory space.

Example:
> (make-shared-flvector 4 3.0)
#<flvector>

148

3.2.4 Fixnums

(require racket/fixnum)

The racket/fixnum library provides operations like £x+ that consume and produce only
fixnums. The operations in this library are meant to be safe versions of unsafe operations

like unsafe-fx+. These safe operations are generally no faster than using generic primitives
like +.

The expected use of the racket/fixnum library is for code where the require of
racket/fixnum is replaced with

(require (filtered-in
(A (name) (regexp-replace #rx"unsafe-" name ""))
racket/unsafe/ops))

to drop in unsafe versions of the library. Alternately, when encountering crashes with code

that uses unsafe fixnum operations, use the racket/fixnum library to help debug the prob-
lems.

Fixnum Arithmetic

(fx+ a b) — fixnum?
a : fixnum?
b : fixnum?
(fx- a b) — fixnum?
a : fixnum?
b : fixnum?
(fx* a b) — fixnum?
a : fixnum?
b : fixnum?
(fxquotient a b) — fixnum?
a : fixnum?
b : fixnum?
(fxremainder a b) — fixnum?
a : fixnum?
b : fixnum?
(fxmodulo a b) — fixnum?
a : fixnum?
b : fixnum?
(fxabs a) — fixnum?
a : fixnum?

Safe versions of unsafe-fx+, unsafe-fx-, unsafe-fx*, unsafe-fxquotient, unsafe-

149

fxremainder, unsafe-fxmodulo, and unsafe-fxabs. The exn:fail:contract:non-
fixnum-result exception is raised if the arithmetic result would not be a fixnum.

(fxand a b) — fixnum?
a : fixnum?
b : fixnum?
(fxior a b) — fixnum?
a : fixnum?
b : fixnum?
(fxxor a b) — fixnum?
a : fixnum?
b : fixnum?
(fxnot a) — fixnum?
a : fixnum?
(fx1shift a b) — fixnum?
a : fixnum?
b : fixnum?
(fxrshift a b) — fixnum?
a : fixnum?
b : fixnum?

Safe versions of unsafe-fxand, unsafe-fxior, unsafe-fxxor, unsafe-fxnot,
unsafe-fxlshift, and unsafe-fxrshift. The exn:fail:contract:non-fixnum-
result exception is raised if the arithmetic result would not be a fixnum.

(fx= a b) — boolean?
a : fixnum?
b : fixnum?

(fx< a b) — boolean?
a : fixnum?
b : fixnum?

(fx> a b) — boolean?
a : fixnum?
b : fixnum?

(fx<= a b) — boolean?
a : fixnum?
b : fixnum?

(fx>= a b) — boolean?
a : fixnum?
b : fixnum?

(fxmin a b) — fixnum?
a : fixnum?
b : fixnum?

150

(fxmax a b) — fixnum?
a : fixnum?
b : fixnum?

Safe versions of unsafe-fx=, unsafe-fx<, unsafe-fx>, unsafe-fx<=, unsafe-fx>=,
unsafe-fxmin, and unsafe-fxmax.

(fx->f1 a) — flonum?
a : fixnum?

(f1->fx a) — fixnum?
a : flonum?

Safe versions of unsafe-fx->f1 and unsafe-f1->fx.

Fixnum Vectors

A fxvector is like a vector, but it holds only fixnums. The only advantage of an fxvector over
a vector is that a shared version can be created with functions like shared-fxvector.

Two fxvectors are equal? if they have the same length, and if the values in corresponding
slots of the fxvectors are equal?.

(fxvector? v) — boolean?
v : any/c

Returns #t if v is a fxvector, #f otherwise.

(fxvector x ...) — fxvector?
x : fixnum?

Creates a fxvector containing the given fixnums.

Example:
> (fxvector 2 3 4 5)
#<fxvector>

(make-fxvector size [x]) — fxvector?
size : exact-nonnegative-integer?
x : fixnum? = 0O

Creates a fxvector with size elements, where every slot in the fxvector is filled with x.

Example:

151

> (make-fxvector 4 3)
#<fxvector>

(fxvector-length vec) — exact-nonnegative-integer?
vec : fxvector?

Returns the length of vec (i.e., the number of slots in the fxvector).

(fxvector-ref vec pos) — fixnum?
vec : fxvector?
pos : exact-nonnegative-integer?

Returns the fixnum in slot pos of vec. The first slot is position 0, and the last slot is one
less than (fxvector-length vec).

(fxvector-set! vec pos x) — fixnum?
vec : fxvector?
pos : exact-nonnegative-integer?
x : fixnum?

Sets the fixnum in slot pos of vec. The first slot is position 0, and the last slot is one less
than (fxvector-length vec).

(fxvector-copy vec [start end]) — fxvector?
vec : fxvector?
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length v)

Creates a fresh fxvector of size (- end start), with all of the elements of vec from
start (inclusive) to end (exclusive).

(in-fxvector v) — sequence?
v . fxvector?

Produces a sequence that gives the elements of v in order. Inside a for form, this can be
optimized to step through the elements of v efficiently as in in-1ist, in-vector, etc.

(for/fxvector (for-clause ...) body ...)
(for/fxvector #:length length-expr (for-clause ...) body ...)
(forx/fxvector (for-clause ...) body ...)

(forx/fxvector #:length length-expr (for-clause ...) body ...)

152

Like for/vector or for*/vector, but for fxvectors.

(shared-fxvector x ...) — fxvector?
x : fixnum?

Creates a fxvector containing the given fixnums. When places are enabled, the new fxvector
is allocated in the shared memory space.

Example:
> (shared-fxvector 2 3 4 5)
#<fxvector>

(make-shared-fxvector size [x]) — fxvector?
size : exact-nonnegative-integer?
x : fixnum? = 0O

Creates a fxvector with size elements, where every slot in the fxvector is filled with x.
When places are enabled, the new fxvector is allocated in the shared memory space.

Example:
> (make-shared-fxvector 4 3)
#<fxvector>

3.3 Strings

A string is a fixed-length array of characters.

A string can be mutable or immutable. When an immutable string is provided to a pro-
cedure like string-set!, the exn:fail:contract exception is raised. String constants
generated by the default reader (see §12.6.6 “Reading Strings”) are immutable.

Two strings are equal? when they have the same length and contain the same sequence of
characters.

A string can be used as a single-valued sequence (see §3.14 “Sequences”). The characters
of the string serve as elements of the sequence. See also in-string.

See also: immutable?, symbol->string, bytes->string/utf-8.

3.3.1 String Constructors, Selectors, and Mutators

(string? v) — boolean?

153

§3.4 “Strings
(Unicode)” in
Guide: Racket
introduces strings.

v : any/c

Returns #t if v is a string, #f otherwise.

Examples:
> (string? "Apple")
#t
> (string? ’apple)
#t

(make-string k [char]) — string?
k : exact-nonnegative-integer?
char : char? = #\nul

Returns a new mutable string of length k where each position in the string is initialized with
the character char.

Example:
> (make-string 5 #\z)
"zzzzz"

(string char ...) — string?

char : char?

Returns a new mutable string whose length is the number of provided chars, and whose
positions are initialized with the given chars.

Example:
> (string #\A #\p #\p #\1 #\e)
IIAPplell

(string->immutable-string str) — (and/c string? immutable?)
str : string?

Returns an immutable string with the same content as str, returning str itself if str is
immutable.

(string-length str) — exact-nonnegative-integer?
str . string?

Returns the length of str.
Example:

> (string-length "Apple")
5

154

(string-ref str k) — char?
str : string?
k : exact-nonnegative-integer?

Returns the character at position k in str. The first position in the string corresponds to 0, so
the position k must be less than the length of the string, otherwise the exn:fail:contract
exception is raised.

Example:
> (string-ref "Apple" 0)
#\A

(string-set! str k char) — void?
str : (and/c string? (not/c immutable?))
k : exact-nonnegative-integer?
char : char?

Changes the character position k in str to char. The first position in the string corre-
sponds to O, so the position k must be less than the length of the string, otherwise the
exn:fail:contract exception is raised.

Examples:
> (define s (string #\A #\p #\p #\1 #\e))
> (string-set! s 4 #\y)
> s

IIAPplyll

(substring str start [end]) — string?
str : string?
start : exact-nonnegative-integer?
end : exact-nonnegative-integer? = (string-length str)

Returns a new mutable string that is (- end start) characters long, and that contains
the same characters as str from start inclusive to end exclusive. The start and end
arguments must be less than or equal to the length of str, and end must be greater than or
equal to start, otherwise the exn:fail:contract exception is raised.

Examples:
> (substring "Apple" 1 3)
IlpP”
> (substring "Apple" 1)
||pple||

155

(string-copy str) — string?
str : string?

Returns (substring str 0).

(string-copy! dest
dest-start
src
[src-start
src-end]) — void?
dest : (and/c string? (mot/c immutable?))
dest-start : exact-nonnegative-integer?
src : string?
src-start . exact-nonnegative-integer? = 0
src-end : exact-nonnegative-integer? = (string-length src)

Changes the characters of dest starting at position dest-start to match the characters
in src from src-start (inclusive) to src-end (exclusive). The strings dest and src
can be the same string, and in that case the destination region can overlap with the source
region; the destination characters after the copy match the source characters from before the
copy. If any of dest-start, src-start, or src-end are out of range (taking into account
the sizes of the strings and the source and destination regions), the exn:fail:contract
exception is raised.

Examples:
> (define s (string #\A #\p #\p #\1 #\e))
> (string-copy! s 4 "y")
> (string-copy! s 0 s 3 4)
> s

Illpplyll

(string-fill! dest char) — void?
dest : (and/c string? (not/c immutable?))
char : char?

Changes dest so that every position in the string is filled with char.

Examples:
> (define s (string #\A #\p #\p #\1 #\e))
> (string-fill! s #\q)
> s

"qqqaq"

156

(string-append str ...) — string?
str : string?

Returns a new mutable string that is as long as the sum of the given strs’ lengths, and that
contains the concatenated characters of the given strs. If no strs are provided, the result
is a zero-length string.

Example:
> (string-append "Apple" '"Banana')
"AppleBanana"

(string->list str) — (listof char?)
str : string?

Returns a new list of characters coresponding to the content of str. That is, the length of
the list is (string-length str), and the sequence of characters of str are in the same
sequence in the result list.

Example:
> (string->list "Apple")
P(H\A #\p #\p #\1 #\e)

(list->string 1Ist) — string?
1st : (listof char?)

Returns a new mutable string whose content is the list of characters in Ist. That is, the
length of the string is (length 1st), and the sequence of characters in 1st is in the same
sequence in the result string.

Example:
> (list->string (list #\A #\p #\p #\1 #\e))
"Applell

(build-string n proc) — string?
n : exact-nonnegative-integer?
proc : (exact-nonnegative-integer? . -> . char?)

Creates a string of n characters by applying proc to the integers from O to (subl n) in
order. If str is the resulting string, then (string-ref str i) is the character produced
by (proc i).

Example:

> (build-string 5 (lambda (i) (integer->char (+ i 97))))
"abcde"

157

3.3.2 String Comparisons

(string=7 strl str2 ...+) — boolean?
strl : string?
str2 : string?

Returns #t if all of the arguments are equal?.

Examples:
> (string=7 "Apple" "apple")
#t
> (string=? gt gt llall)
#f
(string<? strl str2 ...+) — boolean?

strl : string?
str2 : string?

Returns #t if the arguments are lexicographically sorted increasing, where individual char-
acters are ordered by char<?, #f otherwise.

Examples:
> (string<? "Apple" "apple")
#t
> (string<? "apple" "Apple")
#f
> (string<? ngn o upn "C")
#t
(string<=? strl str2 ...+) — boolean?

strl : string?
str2 : string?

Like string<?, but checks whether the arguments are nondecreasing.

Examples:
> (string<=7 "Apple'" "apple")
#t
> (string<=7 "apple" "Apple")
#f
> (string<=? gt npn "b")
#t
(string>? strl str2 ...+) — boolean?

158

strl : string?
str2 : string?

Like string<?, but checks whether the arguments are decreasing.

Examples:
> (string>? "Apple" "apple")
#f
> (string>? "apple" "Apple")
#t
> (String>7 IICH llbll l’aU)
#t
(string>=7 strl str2 ...+) — boolean?

strl : string?
str2 : string?

Like string<?, but checks whether the arguments are nonincreasing.

Examples:
> (string>=7 "Apple'" "apple")
#f
> (string>=7 "apple" "Apple")
#t
> (string>=? et npn "b")
#t
(string-ci=7 strl str2 ...+) — boolean?

strl : string?
str2 . string?

Returns #t if all of the arguments are eqv? after locale-insensitive case-folding via string-
foldcase.

Examples:
> (string-ci=7 "Apple" "apple")
#t
> (string-ci=7 "a" "a" "a")
#t
(string-ci<? strl str2 ...+) — boolean?

strl : string?
str2 : string?

Like string<?, but checks whether the arguments would be in increasing order if each was

159

first case-folded using string-foldcase (which is locale-insensitive).

Examples:
> (string-ci<? "Apple" "apple')
#t
> (string-ci<? "apple" "banana')
#t
> (string-ci<? "a" "b" "c")
#t
(string-ci<=? strl str2 ...+) — boolean?

strl : string?
str2 : string?

Like string-ci<?, but checks whether the arguments would be nondecreasing after case-
folding.

Examples:
> (string-ci<=7 "Apple" '"apple')
#t
> (string-ci<=7 "apple" "Apple')
#t
> (string-ci<=7 "a" "b" "b")
#t
(string-ci>? strl str2 ...+) — boolean?

strl : string?
str2 : string?

Like string-ci<?, but checks whether the arguments would be decreasing after case-
folding.

Examples:
> (string-ci>? "Apple" "apple')
#f
> (string-ci>? "banana" "Apple')
#t
> (string-ci>? "c" "b" "a")
#t
(string-ci>=7 strl str2 ...+) — boolean?

strl . string?
str2 : string?

Like string-ci<?, but checks whether the arguments would be nonincreasing after case-

160

folding.

Examples:
> (string-ci>=?7 "Apple" '"apple')
#t
> (string-ci>=? "apple" "Apple')
#t
> (string-ci>=? "c" "b" "b")
#t

3.3.3 String Conversions

(string-upcase str) — string?
str . string?

Returns a string whose characters are the upcase conversion of the characters in str. The
conversion uses Unicode’s locale-independent conversion rules that map code-point se-
quences to code-point sequences (instead of simply mapping a 1-to-1 function on code points
over the string), so the string produced by the conversion can be longer than the input string.

Examples:
> (string-upcase "abc!")
"ABC!"
> (string-upcase "Strafe")
"STRASSE"

(string-downcase string) — string?
string : string?

Like string-upcase, but the downcase conversion.

Examples:
> (string-downcase "aBC!")
||abC ! 1
> (string-downcase "Strafe")
"strafie"
> (string-downcase "KAOX")
"I‘iOéog"
> (string-downcase "X'")
||0-||

(string-titlecase string) — string?
string : string?

161

Like string-upcase, but the titlecase conversion only for the first character in each se-
quence of cased characters in str (ignoring case-ignorable characters).

Examples:
> (string-titlecase "aBC tw0")
"Abc Two"
> (string-titlecase "y2k'")
"Y2K"
> (string-titlecase '"main straBe")
"Main Strafie"
> (string-titlecase "stra Re'")
"Stra Sse"

(string-foldcase string) — string?
string : string?

Like string-upcase, but the case-folding conversion.

Examples:
> (string-foldcase "aBC!")
Ilabc!ll
> (string-foldcase "Strafe")
"strasse"
> (string-foldcase "KAOX")
"kooo"

(string-normalize-nfd string) — string?
string : string?

Returns a string that is the Unicode normalized form D of string. If the given string is
already in the corresponding Unicode normal form, the string may be returned directly as
the result (instead of a newly allocated string).

(string-normalize-nfkd string) — string?
string : string?

Like string-normalize-nfd, but for normalized form KD.

(string-normalize-nfc string) — string?
string : string?

Like string-normalize-nfd, but for normalized form C.

162

(string-normalize-nfkc string) — string?
string : string?

Like string-normalize-nfd, but for normalized form KC.

3.3.4 Locale-Specific String Operations

(string-locale=7 strl str2 ...+) — boolean?
strl : string?
str2 : string?

Like string="7, but the strings are compared in a locale-specific way, based the value of
current-locale. See §12.1.1 “Encodings and Locales” for more information on locales.

(string-locale<? strl str2 ...+) — boolean?
strl : string?
str2 : string?

Like string<?, but the sort order compares strings in a locale-specific way, based the value
of current-locale. In particular, the sort order may not be simply a lexicographic exten-
sion of character ordering.

(string-locale>? strl str2 ...+) — boolean?
strl : string?
str2 : string?

Like string>?, but locale-specific like string-locale<?.

(string-locale-ci=? strl str2 ...+) — boolean?
strl : string?
str2 : string?

Like string-locale=7, but strings are compared using rules that are both locale-specific
and case-insensitive (depending on what “case-insensitive” means for the current locale).

(string-locale-ci<? strl str2 ...+) — boolean?
strl : string?
str2 : string?

Like string<?, but both locale-sensitive and case-insensitive like string-locale-ci="?.

163

(string-locale-ci>? strl str2 ...+) — boolean?
strl : string?
str2 : string?

Like string>?, but both locale-sensitive and case-insensitive like string-locale-ci="?.

(string-locale-upcase string) — string?
string : string?

Like string-upcase, but using locale-specific case-conversion rules based the value of
current-locale.

(string-locale-downcase string) — string?
string : string?

Like string-downcase, but using locale-specific case-conversion rules based the value of
current-locale.

3.3.5 Additional String Functions

(require racket/string)

The bindings documented in this section are provided by the racket/string and racket
libraries, but not racket/base.

(string-append* str ... strs) — string?
str : string?
strs : (listof string?)

Like string-append, but the last argument is used as a list of arguments for string-
append, so (string-append* str ... strs) isthe same as (apply string-append
str ... strs). In other words, the relationship between string-append and string-
append* is similar to the one between 1ist and 1istx*.

Examples:
> (string—append* gt npn ’(”C" "d"))
"abcdll
> (string-append* (cdr (append* (map (lambda (x) (list ", " x))
>("Alpha" "Beta" "Gamma")))))
"Alpha, Beta, Gamma"

164

(string-join strs sep) — string?
strs : (listof string?)
sep : string?

Appends the strings in strs, inserting sep between each pair of strings in strs.

Example:
> (string-join ’("one" "two" "three" "four") " potato ")
"one potato two potato three potato four"

3.4 Byte Strings

A byte string is a fixed-length array of bytes. A byte is an exact integer between 0 and 255
inclusive.

A byte string can be mutable or immutable. When an immutable byte string is provided to
a procedure like bytes-set!, the exn:fail:contract exception is raised. Byte-string
constants generated by the default reader (see §12.6.6 “Reading Strings”) are immutable.

Two byte strings are equal? when they have the same length and contain the same sequence
of bytes.

A byte string can be used as a single-valued sequence (see §3.14 “Sequences”). The bytes
of the string serve as elements of the sequence. See also in-bytes.

See also: immutable?.

3.4.1 Byte String Constructors, Selectors, and Mutators

(bytes? v) — boolean?
v : any/c

Returns #t if v is a byte string, #f otherwise.

Examples:
> (bytes? #'"Apple")
#t
> (bytes? "Apple')
#t

(make-bytes k [b]) — Dbytes?
k . exact-nonnegative-integer?

165

§3.5 “Bytes and
Byte Strings” in
Guide: Racket
introduces byte
strings.

b : byte? =0

Returns a new mutable byte string of length k where each position in the byte string is
initialized with the byte b.

Example:
> (make-bytes 5 65)
#"AAAAA"

(bytes b ...) — bytes?
b : byte?

Returns a new mutable byte string whose length is the number of provided bs, and whose
positions are initialized with the given bs.

Example:
> (bytes 65 112 112 108 101)
#IlApplell

(bytes->immutable-bytes bstr) — (and/c bytes? immutable?)
bstr : bytes?

Returns an immutable byte string with the same content as bstr, returning bstr itself if
bstr is immutable.

Examples:
> (bytes->immutable-bytes (bytes 65 65 65))
#"AAA"
> (define b (bytes->immutable-bytes (make-bytes 5 65)))
> (bytes->immutable-bytes b)
#"AAAAA"
> (eq? (bytes->immutable-bytes b) b)
#t

(byte? v) — boolean?
v : any/c

Returns #t if v is a byte (i.e., an exact integer between O and 255 inclusive), #f otherwise.

Examples:
> (byte? 65)
#t
> (byte? 0)
#t
> (byte? 256)

166

#f
> (byte? -1)
#t

(bytes-length bstr) — exact-nonnegative-integer?
bstr : bytes?

Returns the length of bstr.
Example:

> (bytes-length #"Apple")
5

(bytes-ref bstr k) — byte?
bstr : bytes?
k : exact-nonnegative-integer?

Returns the character at position k in bstr. The first position in the bytes coore-
sponds to O, so the position k must be less than the length of the bytes, otherwise the
exn:fail:contract exception is raised.

Example:
> (bytes-ref #"Apple" 0)
65

(bytes-set! bstr k b) — void?
bstr : (and/c bytes? (not/c immutable?))
k : exact-nonnegative-integer?
b : byte?

Changes the character position k in bstr to b. The first position in the byte string coore-
sponds to O, so the position k must be less than the length of the bytes, otherwise the
exn:fail:contract exception is raised.

Examples:
> (define s (bytes 65 112 112 108 101))
> (bytes-set! s 4 121)
> s
#"Applyll

(subbytes bstr start [end]) — bytes?
bstr : bytes?
start : exact-nonnegative-integer?
end : exact-nonnegative-integer? = (bytes-length str)

167

Returns a new mutable byte string that is (- end start) bytes long, and that contains the
same bytes as bstr from start inclusive to end exclusive. The start and end arguments
must be less than or equal to the length of bstr, and end must be greater than or equal to
start, otherwise the exn:fail:contract exception is raised.

Examples:
> (subbytes #"Apple" 1 3)
#Ilpp"
> (subbytes #"Apple" 1)
#Ilpple"

(bytes-copy bstr) — bytes?
bstr : bytes?

Returns (subbytes str 0).

(bytes-copy! dest
dest-start
src
[src-start
src-end]) — void?
dest : (and/c bytes? (not/c immutable?))
dest-start : exact-nonnegative-integer?
src : bytes?
src-start . exact-nonnegative-integer? = 0
src-end : exact-nonnegative-integer? = (bytes-length src)

Changes the bytes of dest starting at position dest-start to match the bytes in src from
src-start (inclusive) to src-end (exclusive). The bytes strings dest and src can be the
same byte string, and in that case the destination region can overlap with the source region;
the destination bytes after the copy match the source bytes from before the copy. If any of
dest-start, src-start, or src-end are out of range (taking into account the sizes of the
bytes strings and the source and destination regions), the exn:fail:contract exception is
raised.

Examples:
> (define s (bytes 65 112 112 108 101))
> (bytes-copy! s 4 #"y")
> (bytes-copy! s 0 s 3 4)
> s
#lllpplyll

(bytes-£fill! dest b) — void?
dest : (and/c bytes? (not/c immutable?))

168

b : byte?
Changes dest so that every position in the bytes is filled with b.

Examples:
> (define s (bytes 65 112 112 108 101))
> (bytes-fill! s 113)
> s

#"qqqqq"

(bytes-append bstr ...) — bytes?
bstr : bytes?

Returns a new mutable byte string that is as long as the sum of the given bstrs’ lengths,
and that contains the concatenated bytes of the given bstrs. If no bstrs are provided, the
result is a zero-length byte string.

Example:
> (bytes-append #"Apple" #"Banana')
#"AppleBanana"

(bytes->list bstr) — (listof byte?)
bstr : bytes?

Returns a new list of bytes coresponding to the content of bstr. That is, the length of the
listis (bytes-length bstr), and the sequence of bytes of bstr are in the same sequence
in the result list.

Example:
> (bytes->list #"Apple")
’(65 112 112 108 101)

(1ist->bytes 1lst) — bytes?
1st : (listof byte?)

Returns a new mutable bytes whose content is the list of bytes in Ist. That is, the length of
the bytes is (length Ist), and the sequence of bytes in 1st is in the same sequence in the
result bytes.

Example:
> (list->bytes (list 65 112 112 108 101))
#IlApplell

(make-shared-bytes k [b]) — bytes?

169

k : exact-nonnegative-integer?
b : byte? =0

Returns a new mutable byte string of length k where each position in the byte string is
initialized with the byte b. When §10.5 “Places: Coarse-grained Parallelism” are enabled,
the new byte string is allocated in the shared memory space.

Example:
> (make-shared-bytes 5 65)
#"AAAAA"

(shared-bytes b ...) — bytes?
b : byte?

Returns a new mutable byte string whose length is the number of provided bs, and whose
positions are initialized with the given bs. When §10.5 “Places: Coarse-grained Parallelism”
are enabled, the new byte string is allocated in the shared memory space.

Example:
> (shared-bytes 65 112 112 108 101)
#IlApplell

3.4.2 Byte String Comparisons

(bytes=7 bstrl bstr2 ...+) — boolean?
bstrl : bytes?
bstr2 : bytes?

Returns #t if all of the arguments are eqv?.

Examples:
> (bytes=7 #"Apple" #"apple'")
#t
> (bytes=7 #"a" #"as'" #"a")
#f

(bytes<? bstrl bstr2 ...+) — boolean?
bstrl : bytes?
bstr2 : bytes?

Returns #t if the arguments are lexicographically sorted increasing, where individual bytes
are ordered by <, #f otherwise.

Examples:

170

> (bytes<? #"Apple" #"apple")

#t

> (bytes<? #"apple" #"Apple'")
#f

> (bytes<? #"a" #"b" #"c")

#t

(bytes>? bstrl bstr2 ...+) — boolean?
bstrl : bytes?
bstr2 : bytes?

Like bytes<?, but checks whether the arguments are decreasing.

Examples:
> (bytes>? #"Apple" #"apple")
#£
> (bytes>? #"apple" #'"Apple'")
#t
> (bytes>? #"c" #"b" #"a")
#t

3.4.3 Bytes to/from Characters, Decoding and Encoding

(bytes->string/utf-8 bstr [err-char start end]) — string?
bstr : bytes?
err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Produces a string by decoding the start to end substring of bstr as a UTF-8 encoding of
Unicode code points. If err-char is not #£, then it is used for bytes that fall in the range
128 to 255 but are not part of a valid encoding sequence. (This is consistent with reading
characters from a port; see §12.1.1 “Encodings and Locales” for more details.) If err-char
is #f, and if the start to end substring of bstr is not a valid UTF-8 encoding overall, then
the exn:fail:contract exception is raised.

Example:

> (bytes->string/utf-8 (bytes 195 167 195 176 195 182 194 163))
" ~pn
cO0L

171

(bytes->string/locale bstr
|err-char
start
end]) — string?
bstr : bytes?
err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Produces a string by decoding the start to end substring of bstr using the current locale’s
encoding (see also §12.1.1 “Encodings and Locales”). If err-char is not #f, it is used for
each byte in bstr that is not part of a valid encoding; if err-char is #£f, and if the start
to end substring of bstr is not a valid encoding overall, then the exn:fail:contract
exception is raised.

(bytes->string/latin-1 bstr
|err-char
start
end]) — string?
bstr : bytes?
err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Produces a string by decoding the start to end substring of bstr as a Latin-1 encoding
of Unicode code points; i.e., each byte is translated directly to a character using integer-
>char, so the decoding always succeeds. The err-char argument is ignored, but present
for consistency with the other operations.

Example:
> (bytes->string/latin-1 (bytes 254 211 209 165))
np[jf\i¥n

(string->bytes/utf-8 str [err-byte start end]) — bytes?
str : string?
err-byte : (or/c #f byte?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (string-length str)

Produces a byte string by encoding the start to end substring of str via UTF-8 (always
succeeding). The err-byte argument is ignored, but included for consistency with the
other operations.

Examples:

172

> (define b
(bytes->string/utf-8 (bytes 195 167 195 176 195 182 194 163)))
> (string->bytes/utf-8 b)
#'"\303\247\303\260\303\266\302\243"
> (bytes->string/utf-8 (string->bytes/utf-8 b))
||ga('j£||

(string->bytes/locale str [err-byte start end]) — bytes?
str : string?
err-byte : (or/c #f byte?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (string-length str)

Produces a string by encoding the start to end substring of str using the current locale’s
encoding (see also §12.1.1 “Encodings and Locales”). If err-byte is not #f, it is used for
each character in str that cannot be encoded for the current locale; if err-byte is #£, and
if the start to end substring of str cannot be encoded, then the exn:fail:contract
exception is raised.

(string->bytes/latin-1 str
[err-byte
start
end]) — bytes?
str . string?
err-byte : (or/c #f byte?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (string-length str)

Produces a string by encoding the start to end substring of stz using Latin-1; i.e., each
character is translated directly to a byte using char->integer. If err-byte is not #f, it is
used for each character in str whose value is greater than 255. If err-byte is #f, and if
the start to end substring of str has a character with a value greater than 255, then the
exn:fail:contract exception is raised.

Examples:
> (define b
(bytes->string/latin-1 (bytes 254 211 209 165)))
> (string->bytes/latin-1 b)
#'"\376\323\321\245"
> (bytes->string/latin-1 (string->bytes/latin-1 b))
|IPON¥"

(string-utf-8-length str [start end]) — exact-nonnegative-integer?
str : string?

173

start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (string-lenght str)

Returns the length in bytes of the UTF-8 encoding of str’s substring from start to end,
but without actually generating the encoded bytes.

Examples:
> (string-utf-8-length
(bytes->string/utf-8 (bytes 195 167 195 176 195 182 194 163)))
8
> (string-utf-8-length "hello")
5

(bytes-utf-8-length bstr [err-char start end])
— exact-nonnegative-integer?
bstr : bytes?
err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Returns the length in characters of the UTF-8 decoding of bstr’s substring from start
to end, but without actually generating the decoded characters. If err-char is #f and the
substring is not a UTF-8 encoding overall, the result is #f. Otherwise, err-char is used to
resolve decoding errors as in bytes->string/utf-8.

Examples:
> (bytes-utf-8-length (bytes 195 167 195 176 195 182 194 163))
4
> (bytes-utf-8-length (make-bytes 5 65))
5

(bytes-utf-8-ref bstr [skip err-char start end]) — char?
bstr : bytes?
skip : exact-nonnegative-integer? = 0
err-char : (or/c #f char?) = #f
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (bytes-length bstr)

Returns the skipth character in the UTF-8 decoding of bstr’s substring from start to
end, but without actually generating the other decoded characters. If the substring is not
a UTF-8 encoding up to the skipth character (when err-char is #£), or if the substring
decoding produces fewer than skip characters, the result is #£f. If err-char is not #£, it is
used to resolve decoding errors as in bytes->string/utf-8.

Examples:

174

> (bytes-utf-8-ref
#\¢
> (bytes-utf-8-ref
#\d
> (bytes-utf-8-ref
#\6
> (bytes-utf-8-ref
#\A
> (bytes-utf-8-ref
#\B
> (bytes-utf-8-ref
#\C

(bytes
(bytes
(bytes
(bytes
(bytes

(bytes

195 167 195 176 195 182 194 163) 0)

195 167 195 176 195 182 194 163) 1)

195 167 195 176 195 182 194 163) 2)

65 66 67 68) 0)

65 66 67 63) 1)

65 66 67 68) 2)

(bytes-utf-8-index bstr
[skip

err-char

start
end])

bstr : bytes?

— exact-nonnegative-integer?

skip : exact-nonnegative-integer? = 0

err-char : (or/c #f char?) = #f

start : exact-nonnegative-integer? = 0

end : exact-nonnegative-integer? = (bytes-length bstr)

Returns the offset in bytes into bstr at which the skipth character’s encoding starts in the
UTF-8 decoding of bstr’s substring from start to end (but without actually generating
the other decoded characters). The result is relative to the start of bstr, not to start. If the
substring is not a UTF-8 encoding up to the skipth character (when err-char is #£f), or if
the substring decoding produces fewer than skip characters, the result is #f. If err-char

is not #£, it is used to resolve decoding errors as in bytes->string/utf-8

Examples:

> (bytes-utf-8-index

N V~RV OV PHSd VNV O

(bytes-utf-8-index
(bytes-utf-8-index
(bytes-utf-8-index
(bytes-utf-8-index

(bytes-utf-8-index

(bytes 195 167 195 176 195 182 194 163) 0)
(bytes 195 167 195 176 195 182 194 163) 1)
(bytes 195 167 195 176 195 182 194 163) 2)
(bytes 65 66 67 68) 0)
(bytes 65 66 67 68) 1)

(bytes 65 66 67 68) 2)

175

3.4.4 Bytes to Bytes Encoding Conversion

(bytes-open-converter from-name to-name) — bytes-converter?
from-name : string?
to-name : string?

Produces a byte converter to go from the encoding named by from-name to the encoding
named by to-name. If the requested conversion pair is not available, #£ is returned instead
of a converter.

Certain encoding combinations are always available:

¢ (bytes-open-converter "UTF-8" "UTF-8") — the identity conversion, except
that encoding errors in the input lead to a decoding failure.

* (bytes-open-converter "UTF-8-permissive" "UTF-8") — the identity con-
version, except that any input byte that is not part of a valid encoding sequence is
effectively replaced by the UTF-8 encoding sequence for #\uFFFD. (This handling
of invalid sequences is consistent with the interpretation of port bytes streams into
characters; see §12.1 “Ports”.)

¢ (bytes-open-converter "" "UTF-8") — converts from the current locale’s de-
fault encoding (see §12.1.1 “Encodings and Locales™) to UTF-8.

¢ (bytes-open-converter "UTF-8" '"'") — converts from UTF-8 to the current lo-
cale’s default encoding (see §12.1.1 “Encodings and Locales”).

* (bytes-open-converter "platform-UTF-8" "platform-UTF-16") — con-
verts UTF-8 to UTF-16 under Unix and Mac OS X, where each UTF-16 code unit
is a sequence of two bytes ordered by the current platform’s endianess. Under Win-
dows, the input can include encodings that are not valid UTF-8, but which naturally
extend the UTF-8 encoding to support unpaired surrogate code units, and the output
is a sequence of UTF-16 code units (as little-endian byte pairs), potentially including
unpaired surrogates.

¢ (bytes-open-converter "platform-UTF-8-permissive" "platform-UTF-
16") — like (bytes-open-converter "platform-UTF-8" "platform-UTF-
16"), but an input byte that is not part of a valid UTF-8 encoding sequence (or valid
for the unpaired-surrogate extension under Windows) is effectively replaced with
(char->integer #\7).

* (bytes-open-converter "platform-UTF-16" "platform-UTF-8") — con-
verts UTF-16 (bytes orderd by the current platform’s endianness) to UTF-8 under
Unix and Mac OS X. Under Windows, the input can include UTF-16 code units that
are unpaired surrogates, and the corresponding output includes an encoding of each
surrogate in a natural extension of UTF-8. Under Unix and Mac OS X, surrogates are

176

assumed to be paired: a pair of bytes with the bits 55296 starts a surrogate pair, and
the 1023 bits are used from the pair and following pair (independent of the value of
the 56320 bits). On all platforms, performance may be poor when decoding from an
odd offset within an input byte string.

A newly opened byte converter is registered with the current custodian (see §13.7 “Custo-
dians™), so that the converter is closed when the custodian is shut down. A converter is not
registered with a custodian (and does not need to be closed) if it is one of the guaranteed
combinations not involving "" under Unix, or if it is any of the guaranteed combinations
(including " ") under Windows and Mac OS X.

The set of available encodings and combinations varies by platform, depending on the
iconv library that is installed; the from-name and to-name arguments are passed on to
iconv_open. Under Windows, "iconv.d11" or "libiconv.d11" must be in the same di-
rectory as "1ibmzschVERS .d11" (where VERS is a version number), in the user’s path, in
the system directory, or in the current executable’s directory at run time, and the DLL must
either supply _errno or link to "msvert.d11" for _errno; otherwise, only the guaranteed
combinations are available.

Use bytes-convert with the result to convert byte strings.

(bytes-close-converter converter) — void
converter : bytes-converter?

Closes the given converter, so that it can no longer be used with bytes-convert or bytes-
convert-end.

(bytes-convert converter
src-bstr
[src-start-pos
src-end-pos
dest-bstr
dest-start-pos
dest-end-pos])
— (or/c bytes? exact-nonnegative-integer?)
exact-nonnegative-integer?
(or/c ’complete ’continues ’aborts ’error)
converter : bytes-converter?
src-bstr : bytes?
src-start-pos : exact-nonnegative-integer? = 0
src-end-pos : exact-nonnegative-integer?
= (bytes-length src-bstr)
dest-bstr : (or/c bytes? #f) = #f
dest-start-pos . exact-nonnegative-integer? = 0

177

In the Racket

software

distributions for
‘Windows, a suitable
"iconv.d11l" is
included with
"libmzschVERS .d11".

dest-end-pos : (or/c exact-nonnegative-integer? #f)
= (and dest-bstr
(bytes-length dest-bstr))

Converts the bytes from src-start-pos to src-end-pos in src-bstr.

If dest-bstr is not #£, the converted byte are written into dest-bstr from dest-start-
pos to dest-end-pos. If dest-bstr is #f, then a newly allocated byte string holds the
conversion results, and if dest-end-pos is not #f, the size of the result byte string is no
more than (- dest-end-pos dest-start-pos).

The result of bytes-convert is three values:

e result-bstr or dest-wrote-amt — a byte string if dest-bstr is #f or not pro-
vided, or the number of bytes written into dest-bstr otherwise.

* src-read-amt — the number of bytes successfully converted from src-bstr.

* ’complete, ’continues, ’aborts, or ’error — indicates how conversion termi-
nated:

— ’complete: The entire input was processed, and src-read-amt will be equal
to (- src-end-pos src-start-pos).

— ’continues: Conversion stopped due to the limit on the result size or the space
in dest-bstr;in this case, fewer than (- dest-end-pos dest-start-pos)
bytes may be returned if more space is needed to process the next complete
encoding sequence in src-bstr.

— ’aborts: The input stopped part-way through an encoding sequence, and more
input bytes are necessary to continue. For example, if the last byte of input is 195
for a "UTF-8-permissive" decoding, the result is ’aborts, because another
byte is needed to determine how to use the 195 byte.

— ’error: The bytes starting at (+ src-start-pos src-read-amt) bytes in
src-bstr do not form a legal encoding sequence. This result is never produced
for some encodings, where all byte sequences are valid encodings. For example,
since "UTF-8-permissive" handles an invalid UTF-8 sequence by dropping
characters or generating “?,” every byte sequence is effectively valid.

Applying a converter accumulates state in the converter (even when the third result of
bytes-convert is ’complete). This state can affect both further processing of input
and further generation of output, but only for conversions that involve “shift sequences”
to change modes within a stream. To terminate an input sequence and reset the converter,
use bytes-convert-end.

Examples:
> (define convert (bytes-open-converter "UTF-8" "UTF-16"))
> (bytes-convert convert (bytes 65 66 67 68))

178

#"\377\376A\0B\0C\OD\O"

4

’complete

> (bytes 195 167 195 176 195 182 194 163)
#"\303\247\303\260\303\266\302\243"

> (bytes-convert convert (bytes 195 167 195 176 195 182 194 163))
#"\347\0\360\0\366\0\243\0"

8

’complete

> (bytes-close-converter convert)

(bytes-convert-end converter
[dest-bstr
dest-start-pos
dest-end-pos])
— (or/c bytes? exact-nonnegative-integer?)
(or/c ’complete ’continues)
converter : bytes-converter?
dest-bstr : (or/c bytes? #f) = #f
dest-start-pos : exact-nonnegative-integer? = 0
dest-end-pos : (or/c exact-nonnegative-integer? #f)
= (and dest-bstr
(bytes-length dest-bstr))

Like bytes-convert, but instead of converting bytes, this procedure generates an ending
sequence for the conversion (sometimes called a “shift sequence”), if any. Few encodings
use shift sequences, so this function will succeed with no output for most encodings. In any
case, successful output of a (possibly empty) shift sequence resets the converter to its initial
state.

The result of bytes-convert-end is two values:

* result-bstr or dest-wrote-amt — a byte string if dest-bstr is #f or not pro-
vided, or the number of bytes written into dest-bstr otherwise.

e ’complete or ’continues — indicates whether conversion completed. If ’com-
plete, then an entire ending sequence was produced. If ’continues, then the con-
version could not complete due to the limit on the result size or the space in dest-
bstr, and the first result is either an empty byte string or 0.

(bytes-converter? v) — boolean?
v : any/c

Returns #t if v is a byte converter produced by bytes-open-converter, #f otherwise.

179

Examples:
> (bytes-converter? (bytes-open-converter "UTF-8" "UTF-16"))
#t
> (bytes-converter? (bytes-open-converter "whacky" "not likely"))
#f
> (define b (bytes-open-converter "UTF-8" "UTF-16"))
> (bytes-close-converter b)
> (bytes-converter? b)
#t

(locale-string-encoding) — any

Returns a string for the current locale’s encoding (i.e., the encoding normally identified by
"""). See also system-language+country.

3.5 Characters

Characters range over Unicode scalar values, which includes characters whose values range
from #x0 to #x10FFFF, but not including #xD800 to #xDFFF. The scalar values are a subset
of the Unicode code points.

Two characters are eqv? if they correspond to the same scalar value. For each scalar value
less than 256, character values that are eqv? are also eq?.

3.5.1 Characters and Scalar Values

(char? v) — boolean?
v : any/c

Return #t if v is a character, #f otherwise.

(char->integer char) — exact-integer?
char : char?

Returns a character’s code-point number.
Example:

> (char->integer #\A)
65

(integer->char k) — char?

180

§3.3 “Characters”
in Guide: Racket
introduces
characters.

k : (and/c exact-integer?
(or/c (integer-in O 55295)
(integer-in 57344 1114111)))

Return the character whose code-point number is k. For k less than 256, the result is the
same object for the same k.

Example:
> (integer->char 65)
#\A

(char-utf-8-length char) — (integer-in 1 6)
char : char?

Produces the same result as (bytes-length (string->bytes/utf-8 (string
char))).

3.5.2 Character Comparisons

(char=? charl char2 ...+) — boolean?
charl : char?
char2 : char?

Returns #t if all of the arguments are eqv?.

Examples:
> (char=7 #\a #\a)
#t
> (char=7 #\a #\A #\a)
#f

(char<? charl char2 ...+) — boolean?
charl : char?
char? : char?

Returns #t if the arguments are sorted increasing, where two characters are ordered by their
scalar values, #f otherwise.

Examples:
> (char<? #\A #\a)
#t
> (char<? #\a #\A)
#f

181

> (char<? #\a #\b #\c)
#t

(char<=? charl char2 ...+) — boolean?
charl : char?
char? : char?

Like char<?, but checks whether the arguments are nondecreasing.

Examples:
> (char<=7 #\A #\a)
#t
> (char<=7 #\a #\A)
#£
> (char<=? #\a #\b #\b)
#t
(char>? charl char2 ...+) — boolean?

charl : char?
char2 : char?

Like char<?, but checks whether the arguments are decreasing.

Examples:
> (char>? #\A #\a)
#£f
> (char>? #\a #\A)
#t
> (char>? #\c #\b #\a)
#t
(char>=? charl char2 ...+) — boolean?

charl : char?
char2 : char?

Like char<?, but checks whether the arguments are nonincreasing.

Examples:
> (char>=7 #\A #\a)
#f
> (char>=7 #\a #\A)
#t
> (char>=7 #\c #\b #\b)
#t

182

(char-ci=? charl char2 ...+) — boolean?
charl : char?
char2 : char?

Returns #t if all of the arguments are eqv? after locale-insensitive case-folding via char-
foldcase.

Examples:
> (char-ci=7 #\A #\a)
#t
> (char-ci=7 #\a #\a #\a)
#t
(char-ci<? charl char2 ...+) — boolean?

charl : char?
char? : char?

Like char<?, but checks whether the arguments would be in increasing order if each was
first case-folded using char-foldcase (which is locale-insensitive).

Examples:
> (char-ci<? #\4 #\a)
#£f
> (char-ci<? #\a #\b)
#t
> (char-ci<? #\a #\b #\c)
#t
(char-ci<=?7 charl char2 ...+) — boolean?

charl : char?
char2 : char?

Like char-ci<?, but checks whether the arguments would be nondecreasing after case-
folding.

Examples:
> (char-ci<=?7 #\A #\a)
#t
> (char-ci<=7 #\a #\A)
#t
> (char-ci<=7? #\a #\b #\b)
#t
(char-ci>? charl char2 ...+) — boolean?

183

charl : char?
char? : char?

Like char-ci<?, but checks whether the arguments would be decreasing after case-folding.

Examples:
> (char-ci>? #\A4 #\a)
#£f
> (char-ci>? #\b #\A)
#t
> (char-ci>7 #\c #\b #\a)
#t
(char-ci>=? charl char2 ...+) — boolean?

charl : char?
char2 : char?

Like char-ci<?, but checks whether the arguments would be nonincreasing after case-
folding.

Examples:
> (char-ci>=?7 #\A #\a)
#t
> (char-ci>=7 #\a #\A)
#t
> (char-ci>=? #\c #\b #\b)
#t

3.5.3 Classifications

(char-alphabetic? char) — boolean?
char : char?

Returns #t if char has the Unicode “Alphabetic” property.

(char-lower-case? char) — boolean?
char : char?

Returns #t if char has the Unicode “Lowercase” property.

(char-upper-case? char) — boolean?
char : char?

184

Returns #t if char has the Unicode “Uppercase” property.

(char-title-case? char) — boolean?
char : char?

Returns #t if char’s Unicode general category is Lt, #f otherwise.

(char-numeric? char) — boolean?
char : char?

Returns #t if char has the Unicode “Numeric” property.

(char-symbolic? char) — boolean?
char : char?

Returns #t if char’s Unicode general category is Sm, Sc, Sk, or So, #f otherwise.

(char-punctuation? char) — boolean?
char : char?

Returns #t if char’s Unicode general category is Pc, Pd, Ps, Pe, Pi, Pf, or Po, #f otherwise.

(char-graphic? char) — boolean?
char : char?

Returns #t if char’s Unicode general category is Mn, Mc, Me, or if one of the follow-
ing produces #t when applied to char: char-alphabetic?, char-numeric?, char-
symbolic?, or char-punctuation?.

(char-whitespace? char) — boolean?
char : char?

Returns #t if char has the Unicode “White_Space” property.

(char-blank? char) — boolean?
char : char?

Returns #t if char’s Unicode general category is Zs or if char is #\tab. (These correspond
to horizontal whitespace.)

(char-iso-control? char) — boolean?

185

char : char?

Return #t if char is between #\nul and #\uOO1F inclusive or #\rubout and #\uO09F
inclusive.

(char-general-category char) — symbol?
char : char?

Returns a symbol representing the character’s Unicode general category, which is >1u, ’11,
’1t, ’1m, ’lo, ’mn, mc, ’me, ’nd, ’nl, ’no, ’ps, ’pe, ’pi, ’pf, ’pd, ’pc, ’po, ’sc, ’sm,
’sk, ’so, ’zs, ’zp, ’zl, ’cc, ’cf, ’cs, ’co, or ’cn.

(make-known-char-range-list)

— (listof (list/c exact-nonnegative-integer?
exact-nonnegative-integer?
boolean?))

Produces a list of three-element lists, where each three-element list represents a set of con-
secutive code points for which the Unicode standard specifies character properties. Each
three-element list contains two integers and a boolean; the first integer is a starting code-
point value (inclusive), the second integer is an ending code-point value (inclusive), and the
boolean is #t when all characters in the code-point range have identical results for all of the
character predicates above. The three-element lists are ordered in the overall result list such
that later lists represent larger code-point values, and all three-element lists are separated
from every other by at least one code-point value that is not specified by Unicode.

3.5.4 Character Conversions

(char-upcase char) — char?
char : char?

Produces a character consistent with the 1-to-1 code point mapping defined by Unicode. If

char has no upcase mapping, char-upcase produces char. String procedures,
such as
Examples: string-upcase,

handle the case

> (char-upcase #\a) where Unicode

#\A defines a

> (ch ar-upcase #\\) locale-independent

H\A mapping from the
d int t

> (char-upcase #\space) Egdz.g?i?n ot

#\ space sequence (in
addition to the 1-1
mapping on scalar
values).

186

(char-downcase char) — char?
char : char?

Like char-upcase, but for the Unicode downcase mapping.

Examples:
> (char-downcase #\A)
#\a
> (char-downcase #\A)
#\A
> (char-downcase #\space)
#\space

(char-titlecase char) — char?
char : char?

Like char-upcase, but for the Unicode titlecase mapping.

Examples:
> (char-upcase #\a)
#\A
> (char-upcase #\)\)
#\A
> (char-upcase #\space)
#\space

(char-foldcase char) — char?
char : char?

Like char-upcase, but for the Unicode case-folding mapping.

Examples:
> (char-foldcase #\A)
#\a
> (char-foldcase #\X)
#\o
> (char-foldcase #\¢)
#\o
> (char-foldcase #\space)
#\space

187

3.6 Symbols

A symbol is like an immutable string, but symbols are normally interned, so that two symbols
with the same character content are normally eq?. All symbols produced by the default
reader (see §12.6.2 “Reading Symbols”) are interned.

The two procedures string->uninterned-symbol and gensym generate uninterned sym-
bols, i.e., symbols that are not eq?, eqv?, or equal? to any other symbol, although they
may print the same as other symbols.

The procedure string->unreadable-symbol returns an unreadable symbol that is par-
tially interned. The default reader (see §12.6.2 “Reading Symbols™) never produces a un-
readable symbol, but two calls to string->unreadable-symbol with equal? strings pro-
duce eq? results. An unreadable symbol can print the same as an interned or uninterned
symbol. Unreadable symbols are useful in expansion and compilation to avoid collisions
with symbols that appear in the source; they are usually not generated directly, but they can
appear in the result of functions like identifier-binding.

Interned and unreadable symbols are only weakly held by the internal symbol table. This
weakness can never affect the result of an eq?, eqv?, or equal? test, but a symbol may
disappear when placed into a weak box (see §15.1 “Weak Boxes”) used as the key in
a weak hash table (see §3.13 “Hash Tables™), or used as an ephemeron key (see §15.2
“Ephemerons”).

(symbol? v) — boolean?
v : any/c

Returns #t if v is a symbol, #f otherwise.

Examples:
> (symbol? ’Apple)
#t
> (symbol? 10)
#f

(symbol-interned? sym) — boolean?
sym : symbol?

Returns #t if sym is interned, #f otherwise.

Examples:
> (symbol-interned? ’Apple)
#t
> (symbol-interned? (gensym))
#t

188

§3.6 “Symbols” in
Guide: Racket
introduces symbols.

> (symbol-interned? (string->unreadable-symbol "Apple"))
#t

(symbol-unreadable? sym) — boolean?
sym : symbol?

Returns #t if sym is an unreadable symbol, #f otherwise.

Examples:
> (symbol-unreadable? ’Apple)
#f
> (symbol-unreadable? (gensym))
#t

> (symbol-unreadable? (string->unreadable-symbol "Apple"))
#t

(symbol->string sym) — string?
sym : symbol?

Returns a freshly allocated mutable string whose characters are the same as in sym.
Example:

> (symbol->string ’Apple)
"Apple"

(string->symbol str) — symbol?
str : string?

Returns an interned symbol whose characters are the same as in str.

Examples:
> (string->symbol "Apple")
’Apple
> (string->symbol "1')
7111

(string->uninterned-symbol str) — symbol?
str : string?

Like (string->symbol str), but the resulting symbol is a new uninterned symbol. Call-
ing string->uninterned-symbol twice with the same str returns two distinct symbols.

Examples:
> (string->uninterned-symbol "Apple')

189

’Apple

> (eq? ’a (string->uninterned-symbol "a'))

#t

> (eq? (string->uninterned-symbol "a")
(string->uninterned-symbol "a"))

#f

(string->unreadable-symbol str) — symbol?
str : string?

Like (string->symbol str), but the resulting symbol is a new unreadable symbol. Call-
ing string->unreadable-symbol twice with equivalent strs returns the same symbol,
but read never produces the symbol.

Examples:
> (string->unreadable-symbol "Apple')
YApple
> (eq? ’a (string->unreadable-symbol "a'))
#f

> (eq? (string->unreadable-symbol "a")
(string->unreadable-symbol "a"))
#t

(gensym [base]) — symbol?
base : (or/c string? symbol?) = "g"

Returns a new uninterned symbol with an automatically-generated name. The optional base
argument is a prefix symbol or string.

Example:
> (gensym "apple")
’apple2165

3.7 Regular Expressions
§9 “Regular
Expressions” in
Regular expressions are specified as strings or byte strings, using the same pattern language Guide: Racket
as the Unix utility egrep or Perl. A string-specified pattern produces a character regexp ‘“‘rOd}{?es fegu}ar
matcher, and a byte-string pattern produces a byte regexp matcher. If a character regexp is CHPIESSIOnS.
used with a byte string or input port, it matches UTF-8 encodings (see §12.1.1 “Encodings
and Locales”) of matching character streams; if a byte regexp is used with a character string,

it matches bytes in the UTF-8 encoding of the string.

Regular expressions can be compiled into a regexp value for repeated matches. The reg-
exp and byte-regexp procedures convert a string or byte string (respectively) into a regexp

190

value using one syntax of regular expressions that is most compatible to egrep. The preg-
exp and byte-pregexp procedures produce a regexp value using a slightly different syntax
of regular expressions that is more compatible with Perl. In addition, Racket constants writ-
ten with #rx or #px (see §12.6 “The Reader”) produce compiled regexp values.

The internal size of a regexp value is limited to 32 kilobytes; this limit roughly corresponds
to a source string with 32,000 literal characters or 5,000 operators.

3.7.1 Regexp Syntax

The following syntax specifications describe the content of a string that represents a regular
expression. The syntax of the corresponding string may involve extra escape characters.
For example, the regular expression (.*)\1 can be represented with the string " (. *)\\1"
or the regexp constant #rx" (.*)\\1"; the \ in the regular expression must be escaped to
include it in a string or regexp constant.

The regexp and pregexp syntaxes share a common core:

(regexp) ::= (pces) Match (pces)
| (regexp) | (regex Match either (regexp), try left first
gexp gexp
(pces) ::= (pce) Match (pce)
| ce ces Match (pce) followed b ces
y
(pce) ::= (repeat > Match (repeat), longest possible
| repeat)? Match (repeat), shortest possible
P
| atom Match (atom) exactly once
y
(repeat > (atom) Match (atom) 0 or more times
| (atom)+ Match (atom) 1 or more times
| (atom)? Match (atom) 0 or 1 times
(atom) ::= ((regexp)) Match sub-expression (regexp) and report
| [(rng)] Match any character in (rng
8
| = <I’ng>] Match any character not in (rng)
| Match any (except newline in multi mode)
| = Match start (or after newline in multi mode)
| ¢ Match end (or before newline in multi mode)
| <literal> Match a single literal character
f{mode) :regex atch (regexp) using (mode
| (?(mod gexp)) Match ing (mod.
f2(regex, atch (regexp), on rst possible
[(7>(regexp)) Match ly first possibl
| (look) Match empty if (look) matches
| (7(tst)(pces) | (pces)) Match 1st (pces) if (st), else 2nd (pces)
YA ces atc ces) 1 (tst), empty 1f not (zst
| (7(tst) Match if if
(rng) 1=] (rng) contains] only
| - (rng) contains - only
| (mrng) (rng) contains everything in (mrng)
mrng)- rng) contains - and everything in (mrng
I g i d hing i
(mrng) ::= 1{lrng) (mrng) contains] and everything in (lrng)

191

| -<lrng> (mrng) contains - and everything in (lrng)

| (lirng) (mrng) contains everything in (lirng)
(lirng) ::= (riliteral) (lirng) contains a literal character

| (riliteral)-(rliteral) ~ (limg) contains Unicode range inclusive

| (lirng)(lrng) (lirng) contains everything in both
<lrng> =0 (Irng) contains ~

| (rliteral)-(rliteral) (Irng) contains Unicode range inclusive

| -~ <lrng> (lrng) contains ~ and more

| (lirng) (Irng) contains everything in (lirng)
(look) 1= (7=(regexp)) Match if (regexp) matches

| (7' (regexp)) Match if (regexp) doesn’t match

| (7<= (regexp>) Match if (regexp) matches preceding

| (7<t <regexp>) Match if (regexp) doesn’t match preceding
<tSl‘> HEE (<n>) True if Nth (has a match

| (look) True if {look) matches
<m0de> e Like the enclosing mode

| (mode)i Like (mode), but case-insensitive

| (mode) i Like (mode), but sensitive

| (mode)s Like (mode), but not in multi mode

| (mode)-s Like (mode), but in multi mode

| (mode)m Like (mode), but in multi mode

| (mode)-m Like (mode), but not in multi mode

The following completes the grammar for regexp, which treats { and } as literals, \ as a
literal within ranges, and \ as a literal producer outside of ranges.

(literal) ~ ::= Any character except (,), *,+, 7, [, ., =, \, or |
| \(aliteral) Match (aliteral)

(aliteraly ::= Any character

(riliteral) ::= Any character except], -, or =

(rliteral) Any character except] or -

The following completes the grammar for pregexp, which uses { and } bounded repetition
and uses \ for meta-characters both inside and outside of ranges.

(repeat) ::= ..
| (atom){(n)} Match (atom) exactly (n) times
| (atom}{(n) .t Match (atom) (n) or more times
| (atom){,(m)} Match (atom) between 0 and (m) times
| (atom){(n),(m)} Match (atom) between (n) and (m) times
(atom) 1= oL
[\{(n) Match latest reported match for (n)th (
| <class> Match any character in {(class)
[\b Match \w* boundary
| \B Match where \b does not
| \p{(property)} Match (UTF-8 encoded) in (property)

192

(literal)

(aliteral)
(lirng)

(riliteral)
(rliteral)
(eliteral)
(class)

(posix)

(property)

(category)

\P{(property)}
Any character except (,), *,+, 2, [,1,{,} .,~, \,or |
\(aliteral)
Any character except a-z, A-Z, 0-9

(élass}

(posix)
\(eliteral)

Any character except], \, -, or

Match (UTFE-8 encoded) not in (property)

Match (aliteral)

(lirng) contains all characters in (class)
(lirng) contains all characters in (posix)

(lirng) contains {eliteral)

Any character except 1, \, or -
Any character except a-z, A-Z

_\d

\D
\w
\W
\s
\S

b I e T s T e TR s T e Y e Y s Y e N e Y s T s B e B |

L1
L&
Lo
L]
Nd
N
Ps
Pc
P
Mn
M
Sc
8
Z1

:alpha:
:alnum:
rascii:
:blank:
:cntrl:
:digit:
:graph:
:lower:
:print:
:space:
1upper:
:word:]
txdigit:]
category)
(category)

{ S oy S Y S T T S [|

| Lu |

| Pd |

Lt | Lm

No

Pi | Pf
Po

Contains 0-9

Contains ASCII other than those in \d
Contains a-z, A-Z, 0-9, _

Contains ASCII other than those in \w
Contains space, tab, newline, formfeed, return
Contains ASCII other than those in \s
Contains a-z, A-Z

Contains a-z, A-Z, 0-9

Contains all ASCII characters

Contains space and tab

Contains all characters with scalar value < 32
Contains 0-9

Contains all ASCII characters that use ink
Contains space, tab, and ASCII ink users
Contains A-Z

Contains space, tab, newline, formfeed, return
Contains A-Z

Contains a-z, A-Z, 0-9, _

Contains 0-9, a-f, A-F

Includes all characters in (category)
Includes all characters not in (category)
Unicode general category

Union of LI, Lu, Lt, and Lm

Unicode general category

Union of L& and Lo

Unicode general category

Union of Nd, N1, and No

Unicode general category

Unicode general category

Union of Ps, Pe, Pi, Pf, Pc, Pd, and Po
Unicode general category

Union of Mn, Mc, and Me

Unicode general category

Union of Sc, Sk, Sm, and So

Unicode general category

193

| Z Union of ZI, Zp, and Zs
| . Union of all general categories

3.7.2 Additional Syntactic Constraints

In addition to matching a grammars, regular expressions must meet two syntactic restric-
tions:

* In a (repeat) other than (atom)?, then (arom) must not match an empty sequence.

e Ina (?7<=(regexp)) or (7<!(regexp)), the (regexp) must match a bounded sequence,
only.

These contraints are checked syntactically by the following type system. A type [n, m] corre-
sponds to an expression that matches between n and m characters. In the rule for ((Regexp)),
N means the number such that the opening parenthesis is the Nth opening parenthesis for
collecting match reports. Non-emptiness is inferred for a backreference pattern, \(N), so
that a backreference can be used for repetition patterns; in the case of mutual dependencies
among backreferences, the inference chooses the fixpoint that maximizes non-emptiness.
Finiteness is not inferred for backreferences (i.e., a backreference is assumed to match an
arbitrarily large sequence).

1 ¢ [m,m] (regexp)y : [np, mp]
(regexp), : [min(ny, ny), max(my, ny)]

(regexp)
(regexp) |

(pcey : [ny,my] (pces) : [np, my]
(pce){pces) : [n1+ny, my+my]

(repeat) : [n,m] (atom) : [n,m] n>0

(repeat)? : [0, m] (atom)* : [0, o]

(atom) : [n,m] n>0 (atom) : [n, m]
(atom)+ : [1, 0] (atom)? : [0, m]

(atom) : [n,m] n>0
(atom){(m)} : [n*(n), m*(n)]

(atom) : [n,m] n>0
(atom){(n),} : [n*(n), 0]

(atom) : [n,m] n>0
(atom){,(m)} + [0, m*(m)]

194

(atom) : [n,m] n>0
(atom){(n),(m)} : [n*(n), m*(m)]

(regexp) : [n,m]
({regexp)) : [n,m] an=n

(regexp) : [n,m]
(?(mode) : (regexp)) : [n, m]

(regexp) : [n, m] (regexp) : [n,m]
(7=(regexp)) : [0, 0] (71 (regexp)) : [0,0]
(regexpy : [n,m] m < oo (regexp) : [n,m] m < oo
(?7<=(regexp)) : [0,0] (?<t(regexp)) : [0, 0]

(regexp) : [n, m]
(?7>(regexp)) : [n, m]

(tsty = [ng,mg]l {(pces); : [n1,m] (pces)r : [no, mo]
(?(tst) (pces)1 | (pces),) + [min(ny, ny), max(my, my)]

(tsty = [ng,mg]l (pces) : [ny,mq]
(?(tst)(pces)) : [0, my]

() = [on 00l [mg)] = [1L,11 [(mg)] : [1,1]
.o (1, 1] -~ : [0, 0] $: [0,0]
(iteral) = [1,1] \(n) : [on.00] (class) : [1,1]
\b : [0,0] \B : [0, 0]

\p{(property)} : [1,6] \P{(property)} : [1,6]

3.7.3 Regexp Constructors

(regexp? v) — boolean?
v : any/c

Returns #t if v is a regexp value created by regexp or pregexp, #f otherwise.

195

(pregexp? v) — boolean?
v : any/c

Returns #t if v is a regexp value created by pregexp (not regexp), #f otherwise.

(byte-regexp? v) — boolean?
v : any/c

Returns #t if v is a regexp value created by byte-regexp or byte-pregexp, #f otherwise.

(byte-pregexp? v) — boolean?
v : any/c

Returns #t if v is a regexp value created by byte-pregexp (not byte-regexp), #f other-
wise.

(regexp str) — regexp?
str : string?

Takes a string representation of a regular expression (using the syntax in §3.7.1 “Regexp
Syntax”) and compiles it into a regexp value. Other regular expression procedures accept
either a string or a regexp value as the matching pattern. If a regular expression string is
used multiple times, it is faster to compile the string once to a regexp value and use it for
repeated matches instead of using the string each time.

The object-name procedure returns the source string for a regexp value.

Examples:
> (regexp "ap*le')
#rx"apx*le"
> (object-name #rx"ap*le')
Ilap*le"

(pregexp string) — pregexp?
string : string?

Like regexp, except that it uses a slightly different syntax (see §3.7.1 “Regexp Syntax”).
The result can be used with regexp-match, etc., just like the result from regexp.

Examples:
> (pregexp '"ap*le")
#px"ap*le"
> (regexp? #px"ap*le")

196

#t

(byte-regexp bstr) — byte-regexp?
bstr : bytes?

Takes a byte-string representation of a regular expression (using the syntax in §3.7.1 “Regexp
Syntax”) and compiles it into a byte-regexp value.

The object-name procedure returns the source byte string for a regexp value.

Examples:
> (byte-regexp #'"apxle")
#rx#"ap*le"
> (object-name #rx#'"ap+*le')
#"apxle"
> (byte-regexp "apx*le')
byte-regexp: expects argument of type <byte string>; given
"ap*le"

(byte-pregexp bstr) — byte-pregexp?
bstr : bytes?

Like byte-regexp, except that it uses a slightly different syntax (see §3.7.1 “Regexp Syn-
tax”). The result can be used with regexp-match, etc., just like the result from byte-
regexp.

Example:
> (byte-pregexp #"apxle")
#px#"apx*le"

(regexp-quote str [case-sensitive?]) — string?
str : string?
case-sensitive? : any/c = #t

(regexp-quote bstr [case-sensitive?]) — bytes?
bstr : bytes?
case-sensitive? : any/c = #t

Produces a string or byte string suitable for use with regexp to match the literal sequence
of characters in str or sequence of bytes in bstr. If case-sensitive? is true, the result-
ing regexp matches letters in str or bytes case-insensitively, otherwise it matches case-
sensitively.

Examples:
> (regexp-match "." "apple.scm')

)(uau)

197

> (regexp-match (regexp-quote ".") "apple.scm")
b (u N u)

(regexp-max-lookbehind pattern) — exact-nonnegative-integer?
gexp p g g
pattern : (or/c regexp? byte-regexp?)

Returns the maximum number of bytes that pattern may consult before the starting posi-
tion of a match to determine the match. For example, the pattern (?<=abc)d consults three
bytes preceding a matching d, while e (?<=a. .)d consults two bytes before a matching ed.
A ~ pattern may consult a preceding byte to determine whether the current position is the
start of the input or of a line.

3.7.4 Regexp Matching

(regexp-match pattern
input
[start-pos
end-pos
output-port
input-prefix])
— (if (and (or (string? pattern) (regexp? pattern))
(or (string? input) (path? input)))
(or/c #f (cons/c string? (listof (or/c string? #f))))
(or/c #f (cons/c bytes? (listof (or/c bytes? #f)))))
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
output-port : (or/c output-port? #f) = #f
input-prefix : bytes? = #""

Attempts to match pattern (a string, byte string, regexp value, or byte-regexp value) once
to a portion of input. The matcher finds a portion of input that matches and is closest to
the start of the input (after start-pos).

If input is a path, it is converted to a byte string with path->bytes if pattern is a
byte string or a byte-based regexp. Otherwise, input is converted to a string with path-
>string.

The optional start-pos and end-pos arguments select a portion of input for matching;
the default is the entire string or the stream up to an end-of-file. When input is a string,
start-pos is a character position; when input is a byte string, then start-pos is a
byte position; and when input is an input port, start-pos is the number of bytes to skip

198

before starting to match. The end-pos argument can be #£, which corresponds to the end
of the string or the end-of-file in the stream; otherwise, it is a character or byte position, like
start-pos. If input is an input port, and if the end-of-file is reached before start-pos
bytes are skipped, then the match fails.

In pattern, a start-of-string ~ refers to the first position of input after start-pos, as-
suming that input-prefix is #"". The end-of-input $ refers to the end-posth position or
(in the case of an input port) the end of file, whichever comes first, assuming that output-
prefixis #f.

The input-prefix specifies bytes that effectively precede input for the purposes of =
and other look-behind matching. For example, a #"'" prefix means that ~ matches at the

beginning of the stream, while a #'"\n" input-prefix means that a start-of-line ~ can
match the beginning of the input, while a start-of-file ~ cannot.

If the match fails, #f is returned. If the match succeeds, a list containing strings or byte
string, and possibly #£, is returned. The list contains strings only if input is a string and
pattern is not a byte regexp. Otherwise, the list contains byte strings (substrings of the
UTF-8 encoding of input, if input is a string).

The first [byte] string in a result list is the portion of input that matched pattern. If two
portions of input can match pattern, then the match that starts earliest is found.

Additional [byte] strings are returned in the list if pattern contains parenthesized sub-
expressions (but not when the open parenthesis is followed by 7). Matches for the sub-
expressions are provided in the order of the opening parentheses in pattern. When sub-
expressions occur in branches of an | “or” pattern, in a * “zero or more” pattern, or other
places where the overall pattern can succeed without a match for the sub-expression, then a
#£ is returned for the sub-expression if it did not contribute to the final match. When a single
sub-expression occurs within a * “zero or more” pattern or other multiple-match positions,
then the rightmost match associated with the sub-expression is returned in the list.

If the optional output-port is provided as an output port, the part of input from its
beginning (not start-pos) that precedes the match is written to the port. All of input
up to end-pos is written to the port if no match is found. This functionality is most useful
when input is an input port.

When matching an input port, a match failure reads up to end-pos bytes (or end-of-file),
even if pattern begins with a start-of-string ~; see also regexp-try-match. On success,
all bytes up to and including the match are eventually read from the port, but matching
proceeds by first peeking bytes from the port (using peek-bytes-avail!), and then (re-
Jreading matching bytes to discard them after the match result is determined. Non-matching
bytes may be read and discarded before the match is determined. The matcher peeks in
blocking mode only as far as necessary to determine a match, but it may peek extra bytes
to fill an internal buffer if immediately available (i.e., without blocking). Greedy repeat
operators in pattern, such as * or +, tend to force reading the entire content of the port (up
to end-pos) to determine a match.

199

If the input port is read simultaneously by another thread, or if the port is a custom port
with inconsistent reading and peeking procedures (see §12.1.9 “Custom Ports™), then the
bytes that are peeked and used for matching may be different than the bytes read and dis-
carded after the match completes; the matcher inspects only the peeked bytes. To avoid
such interleaving, use regexp-match-peek (with a progress-evt argument) followed by
port-commit-peeked.

Examples:
> (regexp-match #rx"x." "12x4x6")
7 ("x4")
> (regexp-match #rx"y." "12x4x6")
#t
> (regexp-match #rx"x." "12x4x6" 3)
’("x6™)
> (regexp-match #rx"x." "12x4x6" 3 4)
#t
> (regexp-match #rx#"x." '"12x4x6")
b (#"X4")
> (regexp-match #rx"x." "12x4x6" 0 #f (current-output-port))
12
] ("X4")
> (regexp-match #rx" (-[0-9]*)+" "a-12--345b")
7(u_12__345u 11_34511)

(regexp-match* pattern
input
[start-pos
end-pos
input-prefix])
— (if (and (or (string? pattern) (regexp? pattern))
(or (string? input) (path? input)))
(listof string?)
(listof bytes?))
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
input-prefix : bytes? = #""

Like regexp-match, but the result is a list of strings or byte strings corresponding to a se-
quence of matches of pattern in input. (Unlike regexp-match, results for parenthesized
sub-patterns in pattern are not returned.)

The pattern is used in order to find matches, where each match attempt starts at the end
of the last match, and ~ is allowed to match the beginning of the input (if input-prefix

200

is #"") only for the first match. Empty matches are handled like other matches, returning
a zero-length string or byte sequence (they are more useful in the complementing regexp-
split function), but pattern is restricted from matching an empty sequence immediately
after an empty match.

If input contains no matches (in the range start-pos to end-pos), null is returned.
Otherwise, each item in the resulting list is a distinct substring or byte sequence from input
that matches pattern. The end-pos argument can be #f to match to the end of input
(which corresponds to an end-of-file if input is an input port).

Examples:
> (regexp-match* #rx'"x." "12x4x6")
) ("X4" IIX6II)
> (regexp-match* #rx'xx" '"12x4x6")
b (llll m IIX" nn "Xll meon ll)

(regexp-try-match pattern
input
[start-pos
end-pos
output-port
input-prefix])
— (if (and (or (string? pattern) (regexp? pattern))
(string? input))
(or/c #f (cons/c string? (listof (or/c string? #f))))
(or/c #f (cons/c bytes? (listof (or/c bytes? #f)))))
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
output-port : (or/c output-port? #f) = #f
input-prefix : bytes? = #""

Like regexp-match on input ports, except that if the match fails, no characters are read and
discarded from in.

This procedure is especially useful with a pattern that begins with a start-of-string ~ or
with a non-#f end-pos, since each limits the amount of peeking into the port. Otherwise,
beware that a large portion of the stream may be peeked (and therefore pulled into memory)
before the match succeeds or fails.

201

(regexp-match-positions pattern
input
[start-pos
end-pos
output-port
input-prefix])
— (or/c (cons/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)
(1istof (or/c (comns/c exact-nonnegative-integer?
exact-nonnegative-integer?)
#£)))
#1)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
output-port : (or/c output-port? #f) = #f
input-prefix : bytes? = #""

Like regexp-match, but returns a list of number pairs (and #f) instead of a list of strings.
Each pair of numbers refers to a range of characters or bytes in input. If the result for the
same arguments with regexp-match would be a list of byte strings, the resulting ranges
correspond to byte ranges; in that case, if input is a character string, the byte ranges corre-
spond to bytes in the UTF-8 encoding of the string.

Range results are returned in a substring- and subbytes-compatible manner, independent
of start-pos. In the case of an input port, the returned positions indicate the number of
bytes that were read, including start-pos, before the first matching byte.

Examples:
> (regexp-match-positions #rx'"x." "12x4x6")
(2. 4)
> (regexp-match-positions #rx'"x." "12x4x6" 3)
(4 . 8))

> (regexp-match-positions #rx"(-[0-9]*)+" "a-12--345b")
(.9 (5. 9)

(regexp-match-positions* pattern
input
[start-pos
end-pos
input-prefix])
— (listof (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?))

202

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos . exact-nonnegative-integer? = 0

end-pos : (or/c exact-nonnegative-integer? #f) = #f
input-prefix : bytes? = #""

Like regexp-match-positions, but returns multiple matches like regexp-matchx*.

Example:
> (regexp-match-positions #rx"x." "12x4x6")
(2. 4))

(regexp-match? pattern

input

[start-pos

end-pos

output-port

input-prefix]) — boolean?
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos . exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
output-port : (or/c output-port? #f) = #f
input-prefix : bytes? = #""

Like regexp-match, but returns merely #t when the match succeeds, #f otherwise.

Examples:
> (regexp-match? #rx"x." '"12x4x6")
#t
> (regexp-match? #rx'y." "12x4x6")
#f

(regexp-match-exact? pattern input) — boolean?
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)

Like regexp-match?, but #t is only returned when the entire content of input matches
pattern.

Examples:
> (regexp-match-exact? #rx"x." "12x4x6")
#f
> (regexp-match-exact? #rx"1l.xx." "12x4x6")
#t

203

(regexp-match-peek pattern
input
[start-pos
end-pos
progress
input-prefix])
— (or/c (cons/c bytes? (listof (or/c bytes? #f)))
#1)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
progress : (or/c evt #f) = #f
input-prefix : bytes? = #""

Like regexp-match on input ports, but only peeks bytes from input instead of reading
them. Furthermore, instead of an output port, the last optional argument is a progress event
for input (see port-progress-evt). If progress becomes ready, then the match stops
peeking from input and returns #f. The progress argument can be #£, in which case the
peek may continue with inconsistent information if another process meanwhile reads from
input.

Examples:
> (define p (open-input-string "a abcd"))
> (regexp-match-peek ".xbc" p)
b (#ua abc")
> (regexp-match-peek ".*bc" p 2)
> (#"abc")
> (regexp-match ".*bc" p 2)
) (#"abc")
> (peek-char p)
#\d
> (regexp-match ".*bc" p)
#f
> (peek-char p)
#<eof>

(regexp-match-peek-positions pattern
input
[start-pos
end-pos
progress
input-prefix])

204

— (or/c (cons/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)
(listof (or/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)
#£)))
#1)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos . exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
progress : (or/c evt #f) = #f
input-prefix : bytes? = #""

Like regexp-match-positions on input ports, but only peeks bytes from input instead
of reading them, and with a progress argument like regexp-match-peek.

(regexp-match-peek-immediate pattern
input
[start-pos
end-pos
progress
input-prefix])
— (or/c (cons/c bytes? (listof (or/c bytes? #f)))
#1)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos . exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
progress : (or/c evt #f) = #f
input-prefix : bytes? = #""

Like regexp-match-peek, but it attempts to match only bytes that are available from in-

put without blocking. The match fails if not-yet-available characters might be used to match
pattern.

(regexp-match-peek-positions-immediate pattern
input
[start-pos
end-pos
progress
input-prefix])

205

— (or/c (cons/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)
(listof (or/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)
#£)))
#1)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos . exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
progress : (or/c evt #f) = #f
input-prefix : bytes? = #""

Like regexp-match-peek-positions, but it attempts to match only bytes that are avail-

able from input without blocking. The match fails if not-yet-available characters might be
used to match pattern.

(regexp-match-peek-positions* pattern
input
[start-pos
end-pos
input-prefix])
— (listof (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?))
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos . exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
input-prefix : bytes? = #""

Like regexp-match-peek-positions, but returns multiple matches lik

€ regexp-
matchx.

(regexp-match/end pattern
input
[start-pos
end-pos
output-port
input-prefix
count])

— (if (and (or (string? pattern) (regexp? pattern))

(or/c (string? input) (path? input)))
(or/c #f (cons/c string? (listof (or/c string? #f))))

(or/c #f (cons/c bytes? (listof (or/c bytes? #f)))))
(or/c #f bytes?)

206

pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos . exact-nonnegative-integer? = 0

end-pos : (or/c exact-nonnegative-integer? #f) = #f
output-port : (or/c output-port? #f) = #f
input-prefix : bytes? = #""

count : nonnegative-exact-integer? = 1

Like regexp-match, but with a second result: a byte string of up to count bytes that

correspond to the input (possibly including the input-prefix) leading to the end of the
match; the second result is #f if no match is found.

The second result can be useful as an input-prefix for attempting a second match on
input starting from the end of the first match. In that case, use regexp-max-lookbehind
to determine an appropriate value for count.

(regexp-match-positions/end pattern
input
[start-pos
end-pos
input-prefix
count])
— (listof (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?))
(or/c #f bytes?)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? path? input-port?)
start-pos . exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
input-prefix : bytes? = #""
count : exact-nonnegative-integer? = 1

207

(regexp-match-peek-positions/end pattern
input
[start-pos
end-pos
progress
input-prefix
count])
— (or/c (cons/c (cons/c exact-nonnegative-integer?
exact-nonnegative-integer?)
(1istof (or/c (cons/c exact-nonnegative-integer?

exact-nonnegative-integer?)
#1)))
#1)

(or/c #f bytes?)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
progress : (or/c evt #f) = #f
input-prefix : bytes? = #""
count : exact-nonnegative-integer? = 1
(regexp-match-peek-positions-immediate/end pattern
input
[start-pos
end-pos
progress
input-prefix
count])

— (or/c (cons/c (cons/c exact-nonnegative-integer?

exact-nonnegative-integer?)
(1istof (or/c (cons/c exact-nonnegative-integer?

exact-nonnegative-integer?)

#£)))
#1)

(or/c #f bytes?)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : input-port?
start-pos : exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
progress : (or/c evt #f) = #f
input-prefix : bytes? = #""

count : exact-nonnegative-integer? = 1

Like regexp-match-positions, etc., but with a second result like regexp-match/end.

208

3.7.5 Regexp Splitting

(regexp-split pattern
input
[start-pos
end-pos
input-prefix])
— (if (and (or (string? pattern) (regexp? pattern))
(string? input))
(cons/c string? (listof string?))
(cons/c bytes? (listof bytes?)))
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes? input-port?)
start-pos . exact-nonnegative-integer? = 0
end-pos : (or/c exact-nonnegative-integer? #f) = #f
input-prefix : bytes? = #""

The complement of regexp-matchx: the result is a list of strings (if pattern is a string
or character regexp and input is a string) or byte strings (otherwise) from in input that
are separated by matches to pattern. Adjacent matches are separated with "" or #"".
Zero-length matches are treated the same as for regexp-matchx.

If input contains no matches (in the range start-pos to end-pos), the result is a list
containing input’s content (from start-pos to end-pos) as a single element. If a match
occurs at the beginning of input (at start-pos), the resulting list will start with an empty
string or byte string, and if a match occurs at the end (at end-pos), the list will end with an
empty string or byte string. The end-pos argument can be #£, in which case splitting goes
to the end of input (which corresponds to an end-of-file if input is an input port).

Examples:
> (regexp-split #rx" +" "12 34")
;(||12|| l|34ll)
> (regexp-split #rx"." "12 34")
7(|ll| me o oarnomronn Il")
> (regexp-split #rx"" "12 34")
7("" "1" l|2|’ nononon "3" "4" Il")
> (regexp-split #rx" *" "12 34")
)(|ll| ||1l| l|2|l nn ||3l| |l4l| ||||)
> (regexp-split #px"\\b" "12, 13 and 14.")
J (llll "12" i , " "13" imon Ilandll mon "14" " . ll)

209

3.7.6 Regexp Substitution

(regexp-replace pattern
input
insert
[input-prefix])
— (if (and (or (string? pattern) (regexp? pattern))
(string? input))
string?
bytes?)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes?)
insert : (or/c string? bytes?
((string?) () #:rest (listof string?) . ->* . string?)
((bytes?) () #:rest (listof bytes?) . ->* . bytes?))
input-prefix : bytes? = #""

Performs a match using pattern on input, and then returns a string or byte string in
which the matching portion of input is replaced with insert. If pattern matches no part
of input, then iput is returned unmodified.

The insert argument can be either a (byte) string, or a function that returns a (byte) string.
In the latter case, the function is applied on the list of values that regexp-match would
return (i.e., the first argument is the complete match, and then one argument for each paren-
thesized sub-expression) to obtain a replacement (byte) string.

If pattern is a string or character regexp and input is a string, then insert must be a
string or a procedure that accept strings, and the result is a string. If pattern is a byte string
or byte regexp, or if input is a byte string, then insert as a string is converted to a byte
string, insert as a procedure is called with a byte string, and the result is a byte string.

If insert contains &, then & is replaced with the matching portion of input before it is
substituted into the match’s place. If insert contains \(n) for some integer (n), then it is
replaced with the (n)th matching sub-expression from input. A & and \0 are synonymous.
If the (n)th sub-expression was not used in the match, or if (n) is greater than the number of
sub-expressions in pattern, then \(n) is replaced with the empty string.

To substitute a literal & or \, use \& and \\, respectively, in insert. A \$ in insert is
equivalent to an empty sequence; this can be used to terminate a number (n) following \. If
a \ in insert is followed by anything other than a digit, &, \, or $, then the \ by itself is
treated as \O.

Note that the \ described in the previous paragraphs is a character or byte of input. To
write such an input as a Racket string literal, an escaping \ is needed before the \. For
example, the Racket constant "\\1" is \ 1.

210

Examples:
> (regexp-replace "mi" "mi casa" "su")
"su casa"
> (regexp-replace "mi" "
"MI casa"
> (regexp-replace "([Mm])i ([a-zA-Z]*)" "Mi Casa" "\\1y \\2")
"My Casa"
> (regexp-replace "([Mm])i ([a-zA-Z]*)" "mi cerveza Mi Mi Mi"
"\\1y \\2")
"my cerveza Mi Mi Mi"
> (regexp-replace #rx"x" "12x4x6" "\\\\")
"12\\4x6"
> (display (regexp-replace #rx"x" "12x4x6" "\\\\"))

12\4x6

mi casa" string-upcase)

(regexp-replace* pattern
input
insert
[input-prefix]) — (or/c string? bytes?)
pattern : (or/c string? bytes? regexp? byte-regexp?)
input : (or/c string? bytes?)
insert : (or/c string? bytes?
((string?) () #:rest (listof string?) . ->* . string?)
((bytes?) () #:rest (listof bytes?) . ->* . bytes?))
input-prefix : bytes? = #""

Like regexp-replace, except that every instance of pattern in input is replaced with
insert, instead of just the first match. Only non-overlapping instances of pattern in
input are replaced, so instances of pattern within inserted strings are not replaced recur-
sively. Zero-length matches are treated the same as in regexp-matchx*.

Examples:
> (regexp-replacex "([Mm])i ([a-zA-Z]*)" "mi cerveza Mi Mi Mi"
"\\1y \\2")
"my cerveza My Mi Mi"
> (regexp-replace* "([Mm])i ([a-zA-Z]*)" "mi cerveza Mi Mi Mi"
(lambda (all one two)
(string-append (string-downcase one) "y"
(string-upcase two))))
"myCERVEZA myMI Mi"
> (display (regexp-replace* #rx"x" '"12x4x6" "\\\\'"))
12\4\6

(regexp-replace-quote str) — string?
str : string?

211

(regexp-replace-quote bstr) — bytes?
bstr : bytes?

Produces a string suitable for use as the third argument to regexp-replace to insert the
literal sequence of characters in str or bytes in bstr as a replacement. Concretely, every \
and & in str or bstr is protected by a quoting \.

Examples:
> (regexp-replace "UT" "Go UT!'" "A&M")
"Go AUTM!"
> (regexp-replace "UT" "Go UT!" (regexp-replace-quote "A&M'"))
"Go A&M!"

3.8 Keywords

A keyword is like an interned symbol, but its printed form starts with #:, and a keyword
cannot be used as an identifier. Furthermore, a keyword by itself is not a valid expression,
though a keyword can be quoted to form an expression that produces the symbol.

Two keywords are eq? if and only if they print the same.

Like symbols, keywords are only weakly held by the internal keyword table; see §3.6 “Sym-
bols” for more information.

(keyword? v) — boolean?
v : any/c

Returns #t if v is a keyword, #f otherwise.

(keyword->string keyword) — string?
keyword : keyword?

Returns a string for the displayed form of keyword, not including the leading #:.

(string->keyword str) — keyword?
str : string?

Returns a keyword whose displayed form is the same as that of str, but with a leading
#e.

(keyword<? a-keyword b-keyword ...+) — boolean?
a-keyword : keyword?
b-keyword : keyword?

212

§3.7 “Keywords” in
Guide: Racket
introduces
keywords.

Returns #t if the arguments are sorted, where the comparison for each pair of keywords is
the same as using keyword->string and string<?.

3.9 Pairs and Lists

A pair combines exactly two values. The first value is accessed with the car procedure, and
the second value is accessed with the cdr procedure. Pairs are not mutable (but see §3.10
“Mutable Pairs and Lists”).

A list is recursively defined: it is either the constant null, or it is a pair whose second value
is a list.

A list can be used as a single-valued sequence (see §3.14 “Sequences”). The elements of the
list serve as elements of the sequence. See also in-1ist.

Cyclic data structures can be created using only immutable pairs via read or make-reader-
graph. If starting with a pair and using some number of cdrs returns to the starting pair,
then the pair is not a list.

3.9.1 Pair Constructors and Selectors

(pair? v) — boolean?
v : any/c

Returns #t if v is a pair, #f otherwise.

Examples:
> (pair? 1)
#f
> (pair? (coms 1 2))
#t
> (pair? (list 1 2))
#t
> (pair? (1 2))
#t
> (pair? ()
#t

(null? v) — boolean?
v : any/c

Returns #t if v is the empty list, #£ otherwise.

213

§3.8 “Pairs and
Lists” in Guide:
Racket introduces
pairs and lists.

Examples:
> (null? 1)
#f
> (null? (1 2))
#f
> (null? ’())
#t
> (null? (cdr (list 1)))
#t

(cons a d) — pair?
a : any/c
d : any/c

Returns a newly allocated pair whose first element is a and second element is d.

Examples:
> (cons 1 2)
(1. 2)
> (cons 1 °())
7 (1)

(car p) — any/c
p : pair?

Returns the first element of the pair p.

Examples:
> (car ’(1 2))
1
> (car (cons 2 3))
2

(cdr p) — any/c
p : pair?

Returns the second element of the pair p.

Examples:
> (cdr ’(1 2))
7(2)
> (edr (1))
70

214

null : null?
The empty list.

Examples:
> null
70
>0
70
> (eq? () null)
#t

(1ist? v) — boolean?
v : any/c

Returns #t if v is a list: either the empty list, or a pair whose second element is a list. This
procedure takes amortized constant time.

Examples:
> (1ist? (1 2))
#t
> (1ist? (cons 1 (coms 2 2())))
#t
> (1list? (cons 1 2))
#f

(1ist v ...) — 1list?
v : any/c

Returns a newly allocated list containing the vs as its elements.

Examples:
> (list 1 2 3 4)
(12 34)
> (list (list 1 2) (1list 3 4))
2((12) (3 4))

(1ist* v ... tail) — any/c
v : any/c
tail : any/c

Like 1ist, but the last argument is used as the tail of the result, instead of the final element.
The result is a list only if the last argument is a list.

215

Examples:
> (list* 1 2)
(1. 2)
> (list* 1 2 (list 3 4))
(1234

(build-list n proc) — list?
n : exact-nonnegative-integer?
proc : (exact-nonnegative-integer? . -> . any)

Creates a list of n elements by applying proc to the integers from 0 to (subl n) in order.
If 1st is the resulting list, then (1ist-ref Ist i) is the value produced by (proc 1i).

Examples:
> (build-1list 10 values)
’'(01 234567 829)
> (build-list 5 (lambda (x) (* x x)))
(014 9 16)

3.9.2 List Operations

(length 1st) — exact-nonnegative-integer?
1st : 1list?

Returns the number of elements in I1st.

Examples:
(length (list 1 2 3 4))

\4

(length ()

O Vo

(list-ref 1st pos) — any/c
1st : any/c
pos : exact-nonnegative-integer?

Returns the element of 1st at position pos, where the list’s first element is position 0. If
the list has pos or fewer elements, then the exn:fail:contract exception is raised.

The 1st argument need not actually be a list; st must merely start with a chain of at least
pos pairs.

Examples:

216

> (list-ref (list ’a ’b ’c) 0)
‘a
> (list-ref (list ’a ’b ’c) 1)
’b
> (list-ref (list ’a ’b ’c) 2)
’c

(list-tail Ist pos) — any/c
1st : any/c
pos : exact-nonnegative-integer?

Returns the list after the first pos elements of 1st. If the list has fewer than pos elements,
then the exn:fail:contract exception is raised.

The 1st argument need not actually be a list; 1st must merely start with a chain of at least
pos pairs.

Example:
> (list-tail (1ist 1 2 3 4) 2)
(3 4)

(append Ist ...) — list?
1st : list?

(append 1Ist ... v) — any/c
Ist : 1ist?
v : any/c

When given all list arguments, the result is a list that contains all of the elements of the given
lists in order. The last argument is used directly in the tail of the result.

The last argument need not be a list, in which case the result is an “improper list.”

Examples:
> (append (list 1 2) (list 3 4))
(1234
> (append (list 1 2) (list 3 4) (list 5 6) (list 7 8))
(1234567 8)

(reverse 1st) — 1list?
Ist : list?

Returns a list that has the same elements as 1st, but in reverse order.

Example:
> (reverse (list 1 2 3 4))

217

(4321

3.9.3 List Iteration

(map proc 1st ...+) — list?
proc : procedure?
Ist : 1ist?

Applies proc to the elements of the Ists from the first elements to the last. The proc
argument must accept the same number of arguments as the number of supplied 1sts, and
all 1sts must have the same number of elements. The result is a list containing each result
of proc in order.

Examples:
> (map (lambda (number)
(+ 1 number))
(12 3 4))
’(2 34 5)
> (map (lambda (numberl number2)
(+ numberl number?2))
(12 34)
> (10 100 1000 10000))
’(11 102 1003 10004)

(andmap proc lst ...+) — any
proc : procedure?
Ist : 1ist?

Similar to map, except that

e the result is #f if any application of proc produces #f, in which case proc is not
applied to later elements of the 1sts; and

* the result is that of proc applied to the last elements of the 1stss; more specifically,
the application of proc to the last elements in the 1sts is in tail position with respect
to the andmap call.

If the 1sts are empty, then #t is returned.

Examples:
> (andmap positive? ’(1 2 3))
#t
> (andmap positive? ’(1 2 a))

218

positive?: expects argument of type <real number>; given 'a
> (andmap positive? ’(1 -2 a))

#f
> (andmap + ’(1 2 3) ’(4 5 6))
9

(ormap proc 1st ...+) — any
proc : procedure?
Ist : 1ist?

Similar to map, except that

* the result is #f if every application of proc produces #f; and

* the result is that of the first application of proc producing a value other than #f, in
which case proc is not applied to later elements of the 1sts; the application of proc
to the last elements of the Ists is in tail position with respect to the ormap call.

If the 1sts are empty, then #£ is returned.

Examples:
> (ormap eq? ’(a b c) ’(a b c))
#t
> (ormap positive? ’(1 2 a))
#t
> (ormap + (1 2 3) (4 5 6))
5

(for-each proc 1st ...+) — void?
proc : procedure?
Ist : 1ist?

Similar to map, but proc is called only for its effect, and its result (which can be any number
of values) is ignored.

Example:
> (for-each (lambda (arg)
(printf "Got ~a\n" arg)

23)
(1 2 3 4))
Got 1
Got 2
Got 3
Got 4

219

(foldl proc init 1st ...+) — any/c
proc : procedure?
init : any/c
Ist : 1ist?

Like map, foldl applies a procedure to the elements of one or more lists. Whereas map
combines the return values into a list, fold1 combines the return values in an arbitrary way
that is determined by proc.

If foldl is called with n lists, then proc must take n+1 arguments. The extra argument is
the combined return values so far. The proc is initially invoked with the first item of each
list, and the final argument is init. In subsequent invocations of proc, the last argument
is the return value from the previous invocation of proc. The input 1sts are traversed from
left to right, and the result of the whole fold1 application is the result of the last application
of proc. If the 1sts are empty, the result is init.

Unlike foldr, foldl processes the 1sts in constant space (plus the space for each call to
proc).

Examples:
> (foldl cons () (1 2 3 4))
’(4321)
> (foldl + 0 ’(1 2 3 4))
10

> (foldl (lambda (a b result)
(* result (- a b)))

1
(12 3)
(4 5 6))
-27
(foldr proc init 1st ...+) — any/c

proc : procedure?
init : any/c
1st : list?

Like foldl, but the lists are traversed from right to left. Unlike foldl, foldr processes the
1sts in space proportional to the length of 1sts (plus the space for each call to proc).

Examples:
> (foldr cons () (1 2 3 4))
(12 34)

> (foldr (lambda (v 1) (coms (addl v) 1)) ’() ’(1 2 3 4))
(2 3 4 5)

220

3.9.4 List Filtering

(filter pred 1st) — list?
pred : procedure?
Ist : 1ist?

Returns a list with the elements of 1st for which pred produces a true value. The pred
procedure is applied to each element from first to last.

Example:
> (filter positive? ’(1 -2 3 4 -5))
’(1 3 4)

(remove v lst [proc]) — list?
v : any/c
Ist : list?
proc : procedure? = equal?

Returns a list that is like 1st, omitting the first element of 1st that is equal to v using the
comparison procedure proc (which must accept two arguments).

Example:
> (remove 2 (list 1 2 3 2 4))
’(1 32 4)

(remq v 1st) — list?
v : any/c
1st : list?

Returns (remove v lst eq?).

Example:
> (remq 2 (list 1 2 3 4 5))
’(1345)

(remv v 1st) — list?
v : any/c
1st : list?

Returns (remove v lst eqv?).

Example:
> (remv 2 (list 1 2 3 4 5))
’(1 34 5)

221

(removex v-Ist Ist [proc]) — list?
v-1st : list?
Ist : list?
proc : procedure? = equal?

Like remove, but removes from 1st every instance of every element of v-1st.

Example:
> (removex (list 1 2) (list 1 2 3 2 4 5 2))
(3 4 5)

(remgq* v-1st 1lst) — list?
v-1st : list?
1st : list?

Returns (remove* v-1st 1st eq?).

Example:
> (remgx (list 1 2) (list 1 2 3 2 4 5 2))
(3 4 5)

(remvx v-1st 1st) — list?
v-1st : list?
1st : list?

Returns (removex v-Ist lst eqv?).

Example:
> (remvx (list 1 2) (list 1 2 3 2 4 5 2))
’(3 4 5)

(sort 1st
less-than?
[#:key extract-key
#:cache-keys? cache-keys?]) — list?
Ist : 1ist?
less-than? : (any/c any/c . -> . any/c)
extract-key : (any/c . -> . any/c) = (lambda (x) x)
cache-keys? : boolean? = #f

Returns a list sorted according to the less-than? procedure, which takes two elements of
1st and returns a true value if the first is less than (i.e., should be sorted earlier) than the
second.

222

The sort is stable; if two elements of 1st are “equal” (i.e., proc does not return a true value
when given the pair in either order), then the elements preserve their relative order from 1st
in the output list. To preserve this guarantee, use sort with a strict comparison functions
(e.g., <or string<?; not <= or string<=7).

The #:key argument extract-key is used to extract a key value for comparison from each
list element. That is, the full comparison procedure is essentially

(lambda (x y)
(less-than? (extract-key x) (extract-key y)))

By default, extract-key is applied to two list elements for every comparison, but if
cache-keys? is true, then the extract-key function is used exactly once for each list
item. Supply a true value for cache-keys? when extract-key is an expensive operation;
for example, if file-or-directory-modify-seconds is used to extract a timestamp for
every file in a list, then cache-keys? should be #t to minimize file-system calls, but if
extract-key is car, then cache-keys? should be #f. As another example, providing
extract-key as (lambda (x) (random)) and #t for cache-keys? effectively shuffles
the list.

Examples:
> (sort ’(1 34 2) <)
(123 4)
> (sort ’("aardvark" "dingo" 'cow" "bear") string<?7)
> ("aardvark" "bear" "cow" "dingo")
> (sort ’(("aardvark") ("dingo") ("cow") ("bear"))
#:key car string<?)
’(("aardvark") ("bear") ("cow") ("dingo"))

3.9.5 List Searching

(member v Ist) — (or/c list? #f)
v : any/c
1st : list?

Locates the first element of 1st that is equal? to v. If such an element exists, the tail of
1st starting with that element is returned. Otherwise, the result is #£.

Examples:
> (member 2 (list 1 2 3 4))
(2 3 4)
> (member 9 (list 1 2 3 4))
#f

223

(memv v Ist) — (or/c list? #f)
v : any/c
1st : list?

Like member, but finds an element using eqv?.

Examples:
> (memv 2 (list 1 2 3 4))
(2 3 4)
> (memv 9 (list 1 2 3 4))
#f

(memq v 1st) — (or/c list? #f)
v : any/c
Ist : 1ist?

Like member, but finds an element using eq?.

Examples:
> (memq 2 (list 1 2 3 4))
’(2 3 4)
> (memq 9 (list 1 2 3 4))
#f

(memf proc 1lst) — (or/c list? #f)
proc : procedure?
1st : list?

Like member, but finds an element using the predicate proc; an element is found when proc
applied to the element returns a true value.

Example:
> (memf (lambda (arg)
(> arg 9))
(789 10 11))
7 (10 11)

(findf proc 1st) — any/c
proc : procedure?
1st : list?

Like memf, but returns the element or #f instead of a tail of 1st or #f.

224

Example:
> (findf (lambda (arg)
(> arg 9))
(7 8 9 10 11))
10

(assoc v 1Ist) — (or/c pair? #f)
v : any/c
1st : (listof pair?)

Locates the first element of 1st whose car is equal? to v. If such an element exists, the
pair (i.e., an element of 1st) is returned. Otherwise, the result is #£.

Examples:
> (assoc 3 (list (list 1 2) (list 3 4) (list 5 6)))
’(3 4)
> (assoc 9 (list (list 1 2) (list 3 4) (list 5 6)))
#f

(assv v 1st) — (or/c pair? #f)
v : any/c
1st : (listof pair?)

Like assoc, but finds an element using eqv?.

Example:
> (assv 3 (list (list 1 2) (list 3 4) (list 5 6)))
' (3 4)

(assq v 1st) — (or/c pair? #f)
v : any/c
1st : (listof pair?)

Like assoc, but finds an element using eq?.

Example:
> (assq 3 (list (list 1 2) (1list 3 4) (list 5 6)))
(3 4)

(assf proc 1lst) — (or/c list? #f)
proc : procedure?
1st : list?

Like assoc, but finds an element using the predicate proc; an element is found when proc

225

applied to the car of an I1st element returns a true value.

Example:
> (assf (lambda (arg)
(> arg 2))
(1ist (1ist 1 2) (list 3 4) (list 5 6)))
(3 4)

3.9.6 Pair Accessor Shorthands

(caar v) — any/c
v : (cons/c pair? any/c)

Returns (car (car p))
Example:

> (caar ’((1 2) 3 4))
1

(cadr v) — any/c
v : (cons/c any/c pair?)

Returns (car (cdr p))
Example:

> (cadr ’((1 2) 3 4))
3

(cdar v) — any/c
v : (cons/c pair? any/c)

Returns (cdr (car p))

Example:
> (cdar *((7 6 564321) 809))
’(654321)

(cddr v) — any/c
v : (cons/c any/c pair?)

Returns (cdr (cdr p))

Example:

226

> (cddr ?(2 1))
(0

(caaar v) — any/c
v : (cons/c (cons/c pair? any/c) any/c)

Returns (car (car (car p)))

Example:
> (caaar ’(((6 5432 1) 7)89))
6

(caadr v) — any/c
v : (cons/c any/c (cons/c pair? any/c))

Returns (car (car (cdr p)))

Example:
> (caadr (9 (7 6 5432 1) 8))
7

(cadar v) — any/c
v : (cons/c (cons/c any/c pair?) any/c)

Returns (car (cdr (car p)))

Example:
> (cadar >((7 6 54 32 1) 8 9))
6

(caddr v) — any/c
v : (cons/c any/c (cons/c any/c pair?))

Returns (car (cdr (cdr p)))

Example:
> (caddr (3 2 1))
1

(cdaar v) — any/c
v : (cons/c (cons/c pair? any/c) any/c)

Returns (cdr (car (car p)))

227

Example:
> (cdaar ’(((6 5432 1) 7) 8 9))
(54321

(cdadr v) — any/c
v : (cons/c any/c (cons/c pair? any/c))

Returns (cdr (car (cdr p)))

Example:
> (cdadr (9 (7 6 54 32 1) 8))
'’(654321)

(cddar v) — any/c
v : (cons/c (cons/c any/c pair?) any/c)

Returns (cdr (cdr (car p)))

Example:
> (cddar *((7 6 5432 1) 8 9))
’(64321)

(cdddr v) — any/c
v : (cons/c any/c (cons/c any/c pair?))

Returns (cdr (cdr (cdr p)))

Example:
> (cdddr ’(3 2 1))
70

(caaaar v) — any/c
v : (cons/c (cons/c (cons/c pair? any/c) any/c) any/c)

Returns (car (car (car (car p))))

Example:
> (caaaar *((((5 4 32 1) 6) 7) 8 9))
5

(caaadr v) — any/c
v : (cons/c any/c (cons/c (cons/c pair? any/c) any/c))

Returns (car (car (car (cdr p))))

228

Example:
> (caaadr (9 ((6 5432 1) 7) 8))
6

(caadar v) — any/c
v : (cons/c (cons/c any/c (cons/c pair? any/c)) any/c)

Returns (car (car (cdr (car p))))

Example:
> (caadar *((7 (54 32 1) 6) 8 9))
5

(caaddr v) — any/c
v : (cons/c any/c (cons/c any/c (cons/c pair? any/c)))

Returns (car (car (cdr (cdr p))))

Example:
> (caaddr ’(9 8 (6 5432 1) 7))
6

(cadaar v) — any/c
v : (cons/c (cons/c (cons/c any/c pair?) any/c) any/c)

Returns (car (cdr (car (car p))))

Example:
> (cadaar ’(((6 5432 1) 7) 8 9))
5

(cadadr v) — any/c
v : (cons/c any/c (cons/c (cons/c any/c pair?) any/c))

Returns (car (cdr (car (cdr p))))

Example:
> (cadadr (9 (7 6 54 32 1) 8))
6

(caddar v) — any/c
v : (cons/c (cons/c any/c (cons/c any/c pair?)) any/c)

Returns (car (cdr (cdr (car p))))

229

Example:
> (caddar *((7 6 54 3 2 1) 8 9))
5

(cadddr v) — any/c
v : (cons/c any/c (cons/c any/c (cons/c any/c pair?)))

Returns (car (cdr (cdr (cdr p))))

Example:
> (cadddr ’(4 3 2 1))
1

(cdaaar v) — any/c
v : (cons/c (cons/c (cons/c pair? any/c) any/c) any/c)

Returns (cdr (car (car (car p))))

Example:
> (cdaaar *((((5 432 1) 6) 7) 8 9))
'(4 32 1)

(cdaadr v) — any/c
v : (cons/c any/c (cons/c (cons/c pair? any/c) any/c))

Returns (cdr (car (car (cdr p))))

Example:
> (cdaadr ’(9 ((6 543 21)7) 8))
(54321

(cdadar v) — any/c
v : (cons/c (cons/c any/c (cons/c pair? amny/c)) any/c)

Returns (cdr (car (cdr (car p))))

Example:
> (cdadar °((7 (6 4 32 1) 6) 8 9))
(4 321)

(cdaddr v) — any/c
v : (cons/c any/c (cons/c any/c (cons/c pair? any/c)))

Returns (cdr (car (cdr (cdr p))))

230

Example:
> (cdaddr ’(9 8 (6 5432 1) 7))
(54321

(cddaar v) — any/c
v : (cons/c (cons/c (cons/c any/c pair?) any/c) any/c)

Returns (cdr (cdr (car (car p))))

Example:
> (cddaar *(((6 5432 1) 7) 8 9))
'(4 32 1)

(cddadr v) — any/c
v : (cons/c any/c (cons/c (cons/c any/c pair?) any/c))

Returns (cdr (cdr (car (cdr p))))

Example:
> (cddadr ’(9 (7 6 54 3 2 1) 8))
’(54321)

(cdddar v) — any/c
v : (cons/c (cons/c any/c (cons/c any/c pair?)) any/c)

Returns (cdr (cdr (cdr (car p))))

Example:
> (cdddar *((7 6 54 3 2 1) 8 9))
’(4 32 1)

(cddddr v) — any/c
v : (cons/c any/c (cons/c any/c (cons/c any/c pair?)))

Returns (cdr (cdr (cdr (cdr p))))

Example:
> (cddddr (4 3 2 1))
>0

3.9.7 Additional List Functions and Synonyms

(require racket/list)

231

The bindings documented in this section are provided by the racket/list and racket
libraries, but not racket/base.

empty : null?
The empty list.

Examples:
> empty
70
> (eq? empty null)
#t

(cons? v) — boolean?
v : any/c

The same as (pair? v).
Example:

> (cons? (1 2))
#t

(empty? v) — boolean?
v : any/c

The same as (null? v).

Examples:
> (empty? ’(1 2))
#f
> (empty? *())
#t

(first 1st) — any/c
Ist : 1ist?

The same as (car 1st), but only for lists (that are not empty).

Example:
> (first (1 23456789 10))
1

(rest 1st) — 1list?
1st : list?

232

The same as (cdr 1st), but only for lists (that are not empty).

Example:
> (rest (1 23456789 10))
(23456789 10)

(second 1st) — any
Ist : 1ist?

Returns the second element of the list.

Example:
> (second (1 23456789 10))
2

(third 1st) — any
Ist : list?

Returns the third element of the list.

Example:
> (third (1 23 4567 89 10))
3

(fourth Ist) — any
Ist : 1list?

Returns the fourth element of the list.

Example:
> (fourth (1 234567 89 10))
4

(fifth 1st) — any
Ist : 1ist?

Returns the fifth element of the list.

Example:
> (fifth °(1 23 456 7 8 9 10))
5

(sixth 1st) — any
1st : list?

233

Returns the sixth element of the list.

Example:
> (sixth (1 234567 89 10))
6

(seventh 1st) — any
1st : list?

Returns the seventh element of the list.

Example:
> (seventh (1 234567 89 10))
7

(eighth Ist) — any
Ist : 1ist?

Returns the eighth element of the list.

Example:
> (eighth (1 23456789 10))
8

(ninth 1st) — any
Ist : list?

Returns the ninth element of the list.

Example:
> (ninth (1 234567 89 10))
9

(tenth 1st) — any
Ist : list?

Returns the tenth element of the list.

Example:
> (tenth (1 23456789 10))
10

(last 1st) — any
Ist : 1ist?

234

Returns the last element of the list.

Example:
> (last (1 23456789 10))
10

(last-pair p) — pair?
p : pair?

Returns the last pair of a (possibly improper) list.

Example:
> (last-pair (1 2 3 4))
?(4)

(make-list k v) — list?
k : exact-nonnegative-integer?
v @ any?

Returns a newly constructed list of length k, holding v in all positions.
Example:

> (make-list 7 ’foo)
’ (foo foo foo foo foo foo foo)

(take 1st pos) — list?
1st : any/c
pos : exact-nonnegative-integer?

Returns a fresh list whose elements are the first pos elements of Ist. If 1st has fewer than

pos elements, the exn:fail:contract exception is raised.

The 1st argument need not actually be a list; 1st must merely start with a chain of at least

pos pairs.

Examples:
> (take ’(1 2 3 4) 2)
’(1 2)
> (take ’non-list 0)
0]

(drop 1st pos) — amny/c
1st : any/c
pos : exact-nonnegative-integer?

235

Just like 1ist-tail.

(split-at 1st pos) — list? any/c
1st : any/c
pos : exact-nonnegative-integer?
Returns the same result as

(values (take Ist pos) (drop lst pos))

except that it can be faster.

(take-right lst pos) — any/c
1st : any/c
pos : exact-nonnegative-integer?

Returns the 1ist’s pos-length tail. If 1st has fewer than pos elements, then the
exn:fail:contract exception is raised.

The 1st argument need not actually be a list; 1st must merely end with a chain of at least
pos pairs.

Examples:
> (take-right (1 2 3 4) 2)
(3 4)
> (take-right ’non-list 0)
‘non-list

(drop-right 1lst pos) — list?
1st : any/c
pos : exact-nonnegative-integer?

Returns a fresh list whose elements are the prefix of 1st, dropping its pos-length tail. If
1st has fewer than pos elements, then the exn:fail:contract exception is raised.

The 1st argument need not actually be a list; Ist must merely end with a chain of at least
pos pairs.

Examples:
> (drop-right (1 2 3 4) 2)
(1 2)
> (drop-right ’non-list 0)
>0

(split-at-right lst pos) — list? any/c

236

1st : any/c
pos : exact-nonnegative-integer?

Returns the same result as
(values (drop-right Ist pos) (take-right Ist pos))
except that it can be faster.

Examples:
> (split-at-right (1 2 3 4 5 6) 3)
(12 3)
(4 5 6)
> (split-at-right (1 2 3 4 5 6) 4)
(1 2)
’(3 45 6)

(add-between Ist v) — list?
1st : list?
v : any/c

Returns a list with the same elements as 1st, but with v between each pair of items in Ist.

Examples:
> (add-between ’(x y z) ’or)
’(x or y or z)
> (add-between ’(x) ’or)

7 (x)

(append* 1st ... lsts) — list?
Ist : list?
1sts : (listof list?)

(append* lst ... lsts) — any/c
Ist : 1ist?

Ists : list?

Like append, but the last argument is used as a list of arguments for append, so (append*
lst ... lsts) is the same as (apply append lIst ... lsts). In other words, the
relationship between append and append* is similar to the one between 1ist and 1istx*.

Examples:
> (appendx ’(a) ’(b) ’((c) (d)))
’(a b cd)
> (cdr (append* (map (lambda (x) (list ", " x))
P} ("Alpha" "Beta" "Gamma"))))
b (llAlpha” 1 s " ||Beta|| " s " "GaInIna")

237

(flatten v) — 1list?
v : any/c

Flattens an arbitrary S-expression structure of pairs into a list. More precisely, v is treated as
a binary tree where pairs are interior nodes, and the resulting list contains all of the non-null
leaves of the tree in the same order as an inorder traversal.

Examples:
> (flatten ’((a) b (c (d) . e O
‘(abcde)
> (flatten ’a)
’ (a)

(remove-duplicates Ist
[same?
#:key extract-key]) — list?
Ist : 1ist?
same? : (any/c any/c . -> . any/c) = equal?
extract-key : (any/c . -> . any/c) = (lambda (x) x)

Returns a list that has all items in 1st, but without duplicate items, where same? determines
whether two elements of the list are equivalent. The resulting list is in the same order as
1st, and for any item that occurs multiple times, the first one is kept.

The #:key argument extract-key is used to extract a key value from each list element,
so two items are considered equal if (same? (extract-key x) (extract-key y)) is
true.

Examples:
> (remove-duplicates ’(a b b a))
>(a b)
> (remove-duplicates (1 2 1.0 0))
’(121.00)
> (remove-duplicates (1 2 1.0 0) =)
(12 0)

(filter-map proc 1lst ...+) — list?
proc : procedure?
Ist : 1ist?

Returns (filter (lambda (x) x) (map proc lst ...)), but without building the
intermediate list.

Example:

238

> (filter-map (lambda (x) (and (positive? x) x)) ’(1 2 3 -2 8))
’(1 2 38)

(count proc 1st ...+) — exact-nonnegative-integer?

proc : procedure?

Ist : 1ist?
Returns (length (filter proc Ist ...)),but without building the intermediate list.
Example:

> (count positive? ’(1 -1 2 3 -2 5))

4

(partition pred 1st) — list? list?
pred : procedure?
Ist : 1ist?

Similar to filter, except that two values are returned: the items for which pred returns a
true value, and the items for which pred returns #f.

The result is the same as
(values (filter pred 1st) (filter (negate pred) Ist))
but pred is applied to each item in 1st only once.

Example:
> (partition even? ’(1 2 3 4 5 6))
’(2 4 6)
’(1 3 5)

(append-map proc lst ...+) — list?
proc : procedure?
Ist : 1ist?

Returns (append* (map proc 1st ...)).
Example:

> (append-map vector->list ’(#(1) #(2 3) #(4)))
(1234

(filter-not pred 1lst) — list?
pred : (any/c . -> . any/c)
1st : list?

239

Like filter, but the meaning of the pred predicate is reversed: the result is a list of all
items for which pred returns #£.

Example:
> (filter-not even? ’(1 2 3 4 5 8))
’(1 3 5)

(argmin proc lst) — any/c
proc : (-> any/c real?)
1st : (and/c pair? list?)

This returns the first element in the list st that minimizes the result of proc.

Examples:
> (argmin car ’((3 pears) (1 banana) (2 apples)))
’(1 banana)
> (argmin car ’((1 banana) (1 orange)))
> (1 banana)

(argmax proc lst) — any/c
proc : (-> any/c real?)
1st : (and/c pair? list?)

This returns the first element in the list 1st that maximizes the result of proc.

Examples:
> (argmax car ’((3 pears) (1 banana) (2 apples)))
(3 pears)
> (argmax car ’((3 pears) (3 oranges)))
’ (3 pears)

3.9.8 Immutable Cyclic Data

(make-reader-graph v) — any/c
v : any/c

Returns a value like v, with placeholders created by make-placeholder replaced with the
values that they contain, and with placeholders created by make-hash-placeholder with
an immutable hash table. No part of v is mutated; instead, parts of v are copied as necessary
to construct the resulting graph, where at most one copy is created for any given value.

Since the copied values can be immutable, and since the copy is also immutable, make-
reader-graph can create cycles involving only immutable pairs, vectors, boxes, and hash

240

tables.

Only the following kinds of values are copied and traversed to detect placeholders:

* pairs

* vectors, both mutable and immutable

* boxes, both mutable and immutable

¢ hash tables, both mutable and immutable
* instances of a prefab structure type

¢ placeholders created by make-placeholder and make-hash-placeholder

Due to these restrictions, make-reader-graph creates exactly the same sort of cyclic values
as read.

Example:
> (let* ([ph (make-placeholder #f)]
[x (cons 1 ph)])
(placeholder-set! ph x)
(make-reader-graph x))
#0= (1 . #0#)

(placeholder? v) — boolean?
v : any/c

Returns #t if v is a placeholder created by make-placeholder, #f otherwise.

(make-placeholder v) — placeholder?
v : any/c

Returns a placeholder for use with placeholder-set! and make-reader-graph. The v
argument supplies the initial value for the placeholder.

(placeholder-set! ph datum) — void?
ph : placeholder?
datum : any/c

Changes the value of ph to v.

(placeholder-get ph) — any/c
ph : placeholder?

241

Returns the value of ph.

(hash-placeholder? v) — boolean?
v : any/c

Returns #t if v is a placeholder created by make-hash-placeholder, #f otherwise.

(make-hash-placeholder assocs) — hash-placeholder?
assocs : (listof pair?)

Like make-immutable-hash, but produces a table placeholder for use with make-reader-
graph.

(make-hasheq-placeholder assocs) — hash-placeholder?
assocs : (listof pair?)

Like make-immutable-hasheq, but produces a table placeholder for use with make-
reader-graph.

(make-hasheqv-placeholder assocs) — hash-placeholder?
assocs : (listof pair?)

Like make-immutable-hasheqv, but produces a table placeholder for use with make-
reader-graph.

3.10 Mutable Pairs and Lists

A mutable pair is like a pair created by cons, but it supports set-mcar! and set-mcdr!
mutation operations to change the parts of the mutable pair (like traditional Lisp and Scheme
pairs).

A mutable list is analogous to a list created with pairs, but instead created with mutable pairs.

A mutable pair is not a pair; they are completely separate datatypes. Similarly, a mutable list
is not a list, except that the empty list is also the empty mutable list. Instead of programming
with mutable pairs and mutable lists, data structures such as pairs, lists, and hash tables are
practically always better choices.

A mutable list can be used as a single-valued sequence (see §3.14 “Sequences”). The ele-
ments of the mutable list serve as elements of the sequence. See also in-mlist.

242

3.10.1 Mutable Pair Constructors and Selectors

(mpair? v) — boolean?
v : any/c

Returns #t if v is a mutable pair, #f otherwise.

(mcons a d) — pair?
a : any/c
d : any/c

Returns a newly allocated mutable pair whose first element is a and second element is d.

(mcar p) — any/c
p : mpair?

Returns the first element of the mutable pair p.

(mcdr p) — any/c
p : mpair?

Returns the second element of the mutable pair p.

(set-mcar! p v) — void?
p @ mpair?
v : any/v

Changes the mutable pair p so that its first element is v.

(set-mcdr! p v) — void?
p : mpair?
v : any/v

Changes the mutable pair p so that its second element is v.

3.10.2 Mutable List Functions

(require racket/mpair)

The bindings documented in this section are provided by the racket/mpair library, not
racket/base or racket.

243

For functions described in this section, contracts are not directly enforced. In particular,
when a mutable list is expected, supplying any other kind of value (or mutating a value that
starts as a mutable list) tends to produce an exception from mcar or mcdr.

(mlist? v) — boolean?
v : any/c

Returns #t if v is a mutable list: either the empty list, or a mutable pair whose second
element is a mutable list.

(mlist v ...) — mlist?
v : any/c

Returns a newly allocated mutable list containing the vs as its elements.

(list->mlist Ist) — mlist?
Ist : list?

Returns a newly allocated mutable list with the same elements as 1st.

(mlist->list mlst) — list?
mlst : mlist?

Returns a newly allocated mutable list with the same elements as nlst.

(mlength mlst) — exact-nonnegative-integer?
mlst : mlist?

Returns the number of elements in m1st.

(mlist-ref mlst pos) — any/c
mlst : mlist?
pos : exact-nonnegative-integer?

Like 1ist-ref, but for mutable lists.

(mlist-tail mlst pos) — any/c
mlst : mlist?
pos : exact-nonnegative-integer?

Like 1ist-tail, but for mutable lists.

244

(mappend mlst ...) — mlist?
mlst : mlist?

(mappend mlst ... v) — any/c
mlst : mlist?
v : any/c

Like append, but for mutable lists.

(mappend! mlst ...) — mlist?
mlst : mlist?

(mappend! mlst ... v) — any/c
mlst : mlist?
v : any/c

The mappend! procedure appends the given mutable lists by mutating the tail of each to refer
to the next, using set-mcdr!. Empty lists are dropped; in particular, the result of calling
mappend! with one or more empty lists is the same as the result of the call with the empty
lists removed from the set of arguments.

(mreverse mlst) — mlist?
mlst : mlist?

Like reverse, but for mutable lists.

(mreverse! mlst) — mlist?
mlst : mlist?

Like mreverse, but destructively reverses the mutable list by using all of the mutable pairs
in mIst and changing them with set-mcdr!.

(mmap proc mlst ...+) — mlist?
proc : procedure?
mlst : mlist?

Like map, but for mutable lists.

(mfor-each proc mlst ...+) — void?
proc : procedure?
mlst : mlist?

Like for-each, but for mutable lists.

245

(mmember v mlst) — (or/c mlist? #f)
v : any/c
mlst : mlist?

Like member, but for mutable lists.

(mmemv v mlst) — (or/c mlist? #f)
v : any/c
mlst : mlist?

Like memv, but for mutable lists.

(mmemq v mlst) — (or/c list? #f)
v : any/c
mlst : mlist?

Like memq, but for mutable lists.

(massoc v mlst) — (or/c mpair? #f)
v : any/c
mist : (mlistof mpair?)

Like assoc, but for mutable lists of mutable pairs.

(massv v mlst) — (or/c mpair? #f)
v : any/c
mist : (mlistof mpair?)

Like assv, but for mutable lists of mutable pairs.

(massq v mlst) — (or/c mpair? #f)
v : any/c
mist : (mlistof mpair?)

Like assq, but for mutable lists of mutable pairs.

(mlistof pred) — (any/c . -> . boolean?)
pred : (any/c . -> . any/c)

Returns a procedure that returns #t when given a mutable list for which pred returns a true
value for all elements.

246

3.11 Vectors

§3.9 “Vectors” in
Guide: Racket

A vector is a fixed-length array with constant-time access and update of the vector slots, introduces vectors.
which are numbered from 0 to one less than the number of slots in the vector.

Two vectors are equal? if they have the same length, and if the values in corresponding
slots of the vectors are equal?.

A vector can be mutable or immutable. When an immutable vector is provided to a procedure
like vector-set!, the exn:fail:contract exception is raised. Vectors generated by the
default reader (see §12.6.6 “Reading Strings”) are immutable.

A vector can be used as a single-valued sequence (see §3.14 “Sequences”). The elements of
the vector serve as elements of the sequence. See also in-vector.

(vector? v) — boolean?
v : any/c

Returns #t if v is a vector, #f otherwise.

(make-vector size [v]) — vector?
size : exact-nonnegative-integer?
v : any/c = 0

Returns a mutable vector with size slots, where all slots are initialized to contain v.

(vector v ...) — vector?
v : any/c

Returns a newly allocated mutable vector with as many slots as provided vs, where the slots
are initialized to contain the given vs in order.

(vector-immutable v ...) — (and/c vector?
immutable?)
v : any/c

Returns a newly allocated immutable vector with as many slots as provided vs, where the
slots are contain the given vs in order.

(vector-length vec) — exact-nonnegative-integer?
vec : vector?

Returns the length of vec (i.e., the number of slots in the vector).

247

(vector-ref vec pos) — any/c
vec . vector?
pos : exact-nonnegative-integer?

Returns the element in slot pos of vec. The first slot is position 0, and the last slot is one
less than (vector-length vec).

(vector-set! vec pos v) — void?
vec : (and/c vector? (not/c immutable?))
pos : exact-nonnegative-integer?
v : any/c

Updates the slot pos of vec to contain v.

(vector->list vec) — list?
vec . vector?

Returns a list with the same length and elements as vec.

(list->vector lst) — vector?
1st : list?

Returns a mutable vector with the same length and elements as 1st.

(vector->immutable-vector vec) — (and/c vector? immutable?)
vec . vector?

Returns an immutable vector with the same length and elements as vec. If vec is itself
immutable, then it is returned as the result.

(vector-fill! vec v) — wvoid?
vec : (and/c vector? (not/c immutable?))
v : any/c

Changes all slots of vec to contain v.

(vector-copy! dest
dest-start
src
[src-start
src-end]) — void?

248

dest : (and/c vector? (not/c immutable?))

dest-start : exact-nonnegative-integer?

src : vector?

src-start : exact-nonnegative-integer? = 0

src-end : exact-nonnegative-integer? = (vector-length src)

Changes the elements of dest starting at position dest-start to match the elements in
src from src-start (inclusive) to src-end (exclusive). The vectors dest and src can
be the same vector, and in that case the destination region can overlap with the source region;
the destination elements after the copy match the source elements from before the copy. If
any of dest-start, src-start, or src-end are out of range (taking into account the sizes
of the vectors and the source and destination regions), the exn:fail: contract exception
is raised.

Examples:
> (define v (vector ’A ’p ’p ’1 ’e))
> (vector-copy! v 4 #(y))
> (vector-copy! v 0 v 3 4)
> v
#Qpply)

(vector->values vec [start-pos end-pos]) — any
vec : vector?
start-pos : exact-nonnegative-integer? = 0
end-pos : exact-nonnegative-integer? = (vector-length vec)

Returns end-pos - start-pos values, which are the elements of vec from start-pos
(inclusive) to end-pos (exclusive). If start-pos or end-pos are greater than (vector-
length vec), orif end-pos is less than start-pos, the exn:fail:contract exception
is raised.

(build-vector n proc) — vector?
n : exact-nonnegative-integer?
proc : (exact-nonnegative-integer? . -> . any/c)

Creates a vector of n elements by applying proc to the integers from 0 to (subl n) in
order. If vec is the resulting vector, then (vector-ref vec i) is the value produced by
(proc 1i).

Example:
> (build-vector 5 addil)
'#(1 2 3 4 5)

249

3.11.1 Additional Vector Functions

(require racket/vector)

The bindings documented in this section are provided by the racket/vector and racket
libraries, but not racket/base.

(vector-set*! vec pos v) — void?
vec : (and/c vector? (not/c immutable?))
pos : exact-nonnegative-integer?

v : any/c

Updates each slot pos of vec to contain each v. The update takes place from the left so
later updates overwrite earlier updates.

(vector-map proc vec ...+) — vector?
proc : procedure?
vec : vector?

Applies proc to the elements of the vecs from the first elements to the last. The proc
argument must accept the same number of arguments as the number of supplied vecs, and
all vecs must have the same number of elements. The result is a fresh vector containing
each result of proc in order.

Example:
> (vector-map + #(1 2) #(3 4))
#(4 6)
(vector-map! proc vec ...+) — vector?

proc : procedure?
vec : vector?

Applies proc to the elements of the vecs from the first elements to the last. The proc
argument must accept the same number of arguments as the number of supplied vecs, and
all vecs must have the same number of elements. The each result of proc is inserted into
the first vec at the index that the arguments to proc was taken from. The result is the first
vec.

Examples:
> (define v #(1 2 3 4))
> (vector-map! addl v)
'#(2 3 4 5)
> v
'#(2 3 4 5)

250

(vector-append vec ...) — vector?
vec . vector?

Creates a fresh vector that contains all of the elements of the given vectors in order.

Example:
> (vector-append #(1 2) #(3 4))
‘#(1 2 3 4)

(vector-take vec pos) — vector?
vec : vector?
pos : exact-nonnegative-integer?

Returns a fresh vector whose elements are the first pos elements of vec. If vec has fewer
than pos elements, then the exn:fail:contract exception is raised.

Example:
> (vector-take #(1 2 3 4) 2)

#(1 2)

(vector-take-right vec pos) — vector?
vec . vector?
pos : exact-nonnegative-integer?

Returns a fresh vector whose elements are the last pos elements of vec. If vec has fewer
than pos elements, then the exn:fail:contract exception is raised.

Example:
> (vector-take-right #(1 2 3 4) 2)

"#(3 4)

(vector-drop vec pos) — vector?
vec : vector?
pos : exact-nonnegative-integer?

Returns a fresh vector whose elements are the elements of vec after the first pos elements.
If vec has fewer than pos elements, then the exn:fail:contract exception is raised.

Example:
> (vector-drop #(1 2 3 4) 2)

"#(3 4)

(vector-drop-right vec pos) — vector?

251

vec . vector?
pos : exact-nonnegative-integer?

Returns a fresh vector whose elements are the elements of vec before the first pos elements.
If vec has fewer than pos elements, then the exn:fail:contract exception is raised.

Example:
> (vector-drop-right #(1 2 3 4) 2)
#(1 2)

(vector-split-at vec pos) — vector? vector?
vec : vector?
pos : exact-nonnegative-integer?

Returns the same result as
(values (vector-take vec pos) (vector-drop vec pos))
except that it can be faster.

Example:
> (vector-split-at #(1 2 3 4 5) 2)
#(1 2)
#(3 4 5)

(vector-split-at-right vec pos) — vector? vector?
vec : vector?
pos : exact-nonnegative-integer?

Returns the same result as

(values (vector-take-right vec pos) (vector-drop-right vec pos))
except that it can be faster.
Example:

> (vector-split-at-right #(1 2 3 4 5) 2)

#(1 2 3)
'#(4 B)

(vector-copy vec [start end]) — vector?
vec : vector?
start : exact-nonnegative-integer? = 0
end : exact-nonnegative-integer? = (vector-length v)

Creates a fresh vector of size (- end start), with all of the elements of vec from start

252

(inclusive) to end (exclusive).

Examples:
> (vector-copy #(1 2 3 4))
#(1 2 3 4)
> (vector-copy #(1 2 3 4) 3)
#(4)
> (vector-copy #(1 2 3 4) 2 3)
'#(3)

(vector-filter pred vec) — vector?
pred : procedure?
vec : vector?

Returns a fresh vector with the elements of vec for which pred produces a true value. The
pred procedure is applied to each element from first to last.

Example:
> (vector-filter even? #(1 2 3 4 5 8))
#(2 4 6)

(vector-filter-not pred vec) — vector?
pred : procedure?
vec : vector?

Like vector-filter, but the meaning of the pred predicate is reversed: the result is a
vector of all items for which pred returns #f£.

Example:
> (vector-filter-not even? #(1 2 3 4 5 6))
*#(1 3 5)
(vector-count proc vec ...+) — exact-nonnegative-integer?

proc : procedure?
vec : vector?

Returns the number of elements of the vec ... (taken in parallel) on which proc does not
evaluate to #f.

Examples:
> (vector-count even? #(1 2 3 4 5))
2
> (vector-count = #(1 2 3 4 5) #(5 4 3 2 1))
1

253

(vector-argmin proc vec) — any/c
proc : (-> any/c real?)
vec : vector?

This returns the first element in the non-empty vector vec that minimizes the result of proc.

Examples:
> (vector-argmin car #((3 pears) (1 banana) (2 apples)))
’(1 banana)
> (vector-argmin car #((1 banana) (1 orange)))
’(1 banana)

(vector-argmax proc vec) — any/c
proc : (-> any/c real?)
vec . vector?

This returns the first element in the non-empty vector vec that maximizes the result of proc.

Examples:
> (vector-argmax car #((3 pears) (1 banana) (2 apples)))
(3 pears)
> (vector-argmax car #((3 pears) (3 oranges)))
(3 pears)

(vector-member v 1st) — (or/c natural-number/c #f)
v : any/c
1st . vector?

Locates the first element of vec that is equal? to v. If such an element exists, the index of
that element in vec is returned. Otherwise, the result is #f.

Examples:
> (vector-member 2 (vector 1 2 3 4))
1
> (vector-member 9 (vector 1 2 3 4))
#f

(vector-memv v vec) — (or/c natural-number/c #f)
v : any/c
vec . vector?

Like vector-member, but finds an element using eqv?.

Examples:

254

> (vector-memv 2 (vector 1 2 3 4))
1
> (vector-memv 9 (vector 1 2 3 4))
#f

(vector-memq v vec) — (or/c natural-number/c #f)
v : any/c
vec : vector?

Like vector-member, but finds an element using eq?.

Examples:
> (vector-memq 2 (vector 1 2 3 4))
1
> (vector-memq 9 (vector 1 2 3 4))
#f

3.12 Boxes

A box is like a single-element vector, normally used as minimal mutable storage.

(box? v) — boolean?
v : any/c

Returns #t if v is a box, #£f otherwise.

(box v) — box?
v : any/c

Returns a new mutable box that contains v.

(box-immutable v) — (and/c box? immutable?)
v : any/c

Returns a new immutable box that contains v.

(unbox box) — any/c
box : box?

Returns the content of box.

For any v, (unbox (box v)) returns v.

255

§3.11 “Boxes” in
Guide: Racket
introduces boxes.

(set-box! box v) — void?
box : (and/c box? (not/c immutable?))
v : any/c

Sets the content of box to v.

3.13 Hash Tables

A hash table (or simply hash) maps each of its keys to a single value. For a given hash
table, keys are equivalent via equal?, eqv?, or eq?, and keys are retained either strongly
or weakly (see §15.1 “Weak Boxes”). A hash table is also either mutable or immutable.
Immutable hash tables support effectively constant-time access and update, just like mutable
hash tables; the constant on immutable operations is usually larger, but the functional nature
of immutable hash tables can pay off in certain algorithms.

A hash table can be used as a two-valued sequence (see §3.14 “Sequences”). The keys
and values of the hash table serve as elements of the sequence (i.e., each element is a key
and its associated value). If a mapping is added to or removed from the hash table during
iteration, then an iteration step may fail with exn:fail:contract, or the iteration may
skip or duplicate keys and values. See also in-hash, in-hash-keys, in-hash-values,
and in-hash-pairs.

Two hash tables cannot be equal? unless they use the same key-comparison procedure
(equal?, eqv?, or eq?), both hold keys strongly or weakly, and have the same mutability.

Caveats concerning concurrent modification: A mutable hash table can be manipulated
with hash-ref, hash-set!, and hash-remove! concurrently by multiple threads, and the
operations are protected by a table-specific semaphore as needed. Three caveats apply, how-
ever:

» If a thread is terminated while applying hash-ref, hash-set!, hash-remove!,
hash-ref!, or hash-update! to a hash table that uses equal? or eqv? key com-
parisons, all current and future operations on the hash table may block indefinitely.

¢ The hash-map and hash-for-each procedures do not use the table’s semaphore to
guard the traversal as a whole. Changes by one thread to a hash table can affect the
keys and values seen by another thread part-way through its traversal of the same hash
table.

* The hash-update! and hash-ref! functions use a table’s semaphore independently
for the hash-ref and hash-set! parts of their functionality, which means that the
update as a whole is not “atomic.”

256

§3.10 “Hash
Tables” in Guide:
Racket introduces
hash tables.

Immutable hash
tables actually
provide O(log N)
access and update.
Since N is limited
by the address
space so that log N
is limited to less
than 30 or 62
(depending on the
platform), log N
can be treated
reasonably as a
constant.

Caveat concerning mutable keys: If a key in an equal?-based hash table is mutated (e.g.,
a key string is modified with string-set!), then the hash table’s behavior for insertion and
lookup operations becomes unpredictable.

(hash? v) — boolean?
v : any/c

Returns #t if v is a hash table, #f otherwise.

(hash-equal? hash) — boolean?
hash : hash?

Returns #t if hash compares keys with equal?, #f if it compares with eq? or eqv?.

(hash-eqv? hash) — boolean?
hash : hash?

Returns #t if hash compares keys with eqv?, #f if it compares with equal? or eq?.

(hash-eq? hash) — boolean?
hash : hash?

Returns #t if hash compares keys with eq?, #£ if it compares with equal? or eqv?.

(hash-weak? hash) — boolean?
hash : hash?

Returns #t if hash retains its keys weakly, #£ if it retains keys strongly.

(hash key val) — (and/c hash? hash-equal? immutable?)
key : any/c
val : any/c

(hasheq key val) — (and/c hash? hash-eq? immutable?)
key : any/c
val : any/c

(hasheqv key val) — (and/c hash? hash-eqv? immutable?)
key : any/c

val : any/c

Creates an immutable hash table with each given key mapped to the following val; each
key must have a val, so the total number of arguments to hash must be even.

257

The hash procedure creates a table where keys are compared with equal?, hasheq proce-
dure creates a table where keys are compared with eq?, and hasheqv procedure creates a
table where keys are compared with eqv?.

The key to val mappings are added to the table in the order that they appear in the argument
list, so later mappings can hide earlier mappings if the keys are equal.

(make-hash [assocs]) — (and/c hash? hash-equal?)
assocs : (listof pair?) = null

(make-hasheqv [assocs]) — (and/c hash? hash-eqv?)
assocs : (listof pair?) = null

(make-hasheq [assocs]) — (and/c hash? hash-eq?)
assocs : (listof pair?) = null

Creates a mutable hash table that holds keys strongly.

The make-hash procedure creates a table where keys are compared with equal?, make-
hasheq procedure creates a table where keys are compared with eq?, and make-hasheqv
procedure creates a table where keys are compared with eqv?.

The table is initialized with the content of assocs. In each element of assocs, the car is
a key, and the cdr is the corresponding value. The mappings are added to the table in the
order that they appear in assocs, so later mappings can hide earlier mappings.

See also make-custom-hash.

(make-weak-hash [assocs]) — (and/c hash? hash-equal? hash-weak?)
assocs : (listof pair?) = null

(make-weak-hasheqv [assocs]) — (and/c hash? hash-eqv? hash-weak?)
assocs : (listof pair?) = null

(make-weak-hasheq [assocs]) — (and/c hash? hash-eq? hash-weak?)
assocs : (listof pair?) = null

Like make-hash, make-hasheq, and make-hasheqv, but creates a mutable hash table that
holds keys weakly.

(make-immutable-hash assocs)

— (and/c hash? hash-equal? immutable?)
assocs : (listof pair?)

(make-immutable-hasheqv assocs)

— (and/c hash? hash-eqv? immutable?)
assocs : (listof pair?)

(make-immutable-hasheq assocs)

— (and/c hash? hash-eq? immutable?)
assocs : (listof pair?)

258

Like hash, hasheq, and hasheqv, but accepts the key—value mapping in association-list
form like make-hash, make-hasheq, and make-hasheqv.

(hash-set! hash key v) — void?
hash : (and/c hash? (not/c immutable?))
key : any/c
v : any/c

Maps key to v in hash, overwriting any existing mapping for key.

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-set*! hash key v) — void?
hash : (and/c hash? (not/c immutable?))
key : any/c
v : any/c

Maps each key to each v in hash, overwriting any existing mapping for each key. Map-
pings are added from the left, so later mappings overwrite earlier mappings.

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-set hash key v) — (and/c hash? immutable?)
hash : (and/c hash? immutable?)
key : any/c
v : any/c

Functionally extends hash by mapping key to v, overwriting any existing mapping for key,
and returning the extended hash table.

See also the caveat concerning mutable keys above.

(hash-set* hash key v) — (and/c hash? immutable?)
hash : (and/c hash? immutable?)
key : any/c
v : any/c

Functionally extends hash by mapping each key to v, overwriting any existing mapping
for each key, and returning the extended hash table. Mappings are added from the left, so
later mappings overwrite earlier mappings.

See also the caveat concerning mutable keys above.

259

(hash-ref hash key [failure-result]) — any
hash : hash?

key : any/c
failure-result : any/c
= (lambda ()
(raise (make-exn:fail:contract)))

Returns the value for key in hash. If no value is found for key, then failure-result
determines the result:

e If failure-result is a procedure, it is called (through a tail call) with no arguments
to produce the result.

e Otherwise, failure-result is returned as the result.

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-ref! hash key to-set) — any
hash : hash?
key : any/c
to-set : any/c

Returns the value for key in hash. If no value is found for key, then to-set determines
the result as in hash-ref (i.e., it is either a thunk that computes a value or a plain value), and
this result is stored in hash for the key. (Note that if to-set is a thunk, it is not invoked in
tail position.)

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-has-key? hash key) — boolean?
hash : hash?
key : any/c

Returns #t if hash contains a value for the given key, #f otherwise.

(hash-update! hash
key
updater
[failure-result]) — void?
hash : (and/c hash? (not/c immutable?))

260

key : any/c
updater : (any/c . -> . any/c)
failure-result : any/c
= (lambda (O
(raise (make-exn:fail:contract)))

Composes hash-ref and hash-set! to update an existing mapping in hash, where the
optional failure-result argument is used as in hash-ref when no mapping exists for
key already. See the caveat above about concurrent updates.

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-update hash key updater [failure-result])

— (and/c hash? immutable?)

hash : (and/c hash? immutable?)

key : any/c

updater : (any/c . -> . any/c)

failure-result : any/c

= (lambda (O
(raise (make-exn:fail:contract)))

Composes hash-ref and hash-set to functionally update an existing mapping in hash,
where the optional failure-result argument is used as in hash-ref when no mapping
exists for key already.

See also the caveat concerning mutable keys above.

(hash-remove! hash key) — void?
hash : (and/c hash? (not/c immutable?))
key : any/c

Removes any existing mapping for key in hash.

See also the caveats concerning concurrent modification and the caveat concerning mutable
keys above.

(hash-remove hash key) — (and/c hash? immutable?)
hash : (and/c hash? immutable?)
key : any/c

Functionally removes any existing mapping for key in hash, returning the fresh hash table.

See also the caveat concerning mutable keys above.

261

(hash-map hash proc) — (listof any/c)
hash : hash?
proc : (any/c any/c . -> . any/c)

Applies the procedure proc to each element in hash in an unspecified order, accumulating
the results into a list. The procedure proc is called each time with a key and its value.

If a hash table is extended with new keys (either through proc or by another thread) while
a hash-map or hash-for-each traversal is in process, arbitrary key—value pairs can be
dropped or duplicated in the traversal. Key mappings can be deleted or remapped (by any
thread) with no adverse affects; the change does not affect a traversal if the key has been seen
already, otherwise the traversal skips a deleted key or uses the remapped key’s new value.

See also the caveats concerning concurrent modification above.

(hash-keys hash) — (listof any/c)
hash : hash?

Returns a list of the keys of hash in an unspecified order.
See hash-map for information about modifying hash during hash-keys.

See also the caveats concerning concurrent modification above.

(hash-values hash) — (listof any/c)
hash : hash?

Returns a list of the values of hash in an unspecified order.
See hash-map for information about modifying hash during hash-values.

See also the caveats concerning concurrent modification above.

(hash->1ist hash) — (listof (cons/c any/c any/c))
hash : hash?

Returns a list of the key—value pairs of hash in an unspecified order.
See hash-map for information about modifying hash during hash->1ist.

See also the caveats concerning concurrent modification above.

(hash-for-each hash proc) — void?
hash : hash?

262

proc : (any/c any/c . -> . any)

Applies proc to each element in hash (for the side-effects of proc) in an unspecified order.
The procedure proc is called each time with a key and its value.

See hash-map for information about modifying hash within proc.

See also the caveats concerning concurrent modification above.

(hash-count hash) — exact-nonnegative-integer?
hash : hash?

Returns the number of keys mapped by hash. If hash is not created with ’weak, then the
result is computed in constant time and atomically. If hash is created with ’weak, see the
caveats concerning concurrent modification above.

(hash-iterate-first hash)
— (or/c #f exact-nonnegative-integer?)
hash : hash?

Returns #f if hash contains no elements, otherwise it returns an integer that is a index to the
first element in the hash table; “first” refers to an unspecified ordering of the table elements,
and the index values are not necessarily consecutive integers. For a mutable hash, this index
is guaranteed to refer to the first item only as long as no items are added to or removed from
hash.

(hash-iterate-next hash pos)

— (or/c #f exact-nonnegative-integer?)
hash : hash?

pos : exact-nonnegative-integer?

Returns either an integer that is an index to the element in hash after the element indexed
by pos (which is not necessarily one more than pos) or #£ if pos refers to the last element
in hash. If pos is not a valid index, then the exn:fail:contract exception is raised. For
a mutable hash, the result index is guaranteed to refer to its item only as long as no items
are added to or removed from hash.

(hash-iterate-key hash pos) — any
hash : hash?
pos : exact-nonnegative-integer?

Returns the key for the element in hash at index pos. If pos is not a valid index for hash,
the exn:fail:contract exception is raised.

263

(hash-iterate-value hash pos) — any
hash : hash?
pos : exact-nonnegative-integer?

Returns the value for the element in hash at index pos. If pos is not a valid index for hash,
the exn:fail:contract exception is raised.

(hash-copy hash) — (and/c hash? (not/c immutable?))
hash : hash?

Returns a mutable hash table with the same mappings, same key-comparison mode, and
same key-holding strength as hash.

(eq-hash-code v) — fixnum?
v : any/c

Returns a fixnum; for any two calls with eq? values, the returned number is the same.

(eqv-hash-code v) — fixnum?
v : any/c

Returns a fixnum; for any two calls with eqv? values, the returned number is the same.

(equal-hash-code v) — fixnum?
v : any/c

Returns a fixnum; for any two calls with equal? values, the returned number is the same. A
hash code is computed even when v contains a cycle through pairs, vectors, boxes, and/or
inspectable structure fields. See also prop:equal+hash.

(equal-secondary-hash-code v) — fixnum?
v : any/c

Like equal-hash-code, but computes a secondary value suitable for use in double hashing.

3.14 Sequences

A sequence encapsulates an ordered stream of values. The elements of a sequence can be
extracted with one of the for syntactic forms or with the procedures returned by sequence-
generate.

264

Equal fixnums are
always eq?.

§11.1 “Sequence
Constructors” in
Guide: Racket
introduces
sequences.

The sequence datatype overlaps with many other datatypes. Among built-in datatypes, the
sequence datatype includes the following:

* strings (see §3.3 “Strings”)

* byte strings (see §3.4 “Byte Strings”)

e lists (see §3.9 “Pairs and Lists™)

* mutable lists (see §3.10 “Mutable Pairs and Lists”)
* vectors (see §3.11 “Vectors”)

* hash tables (see §3.13 “Hash Tables”)

e dictionaries (see §3.15 “Dictionaries”)

¢ sets (see §3.16 “Sets™)

* input ports (see §12.1 “Ports™)

In addition, make-do-sequence creates a sequence given a thunk that returns procedures to
implement a generator, and the prop: sequence property can be associated with a structure

type.

For most sequence types, extracting elements from a sequence has no side-effect on the
original sequence value; for example, extracting the sequence of elements from a list does
not change the list. For other sequence types, each extraction implies a side effect; for
example, extracting the sequence of bytes from a port cause the bytes to be read from the
port.

Individual elements of a sequence typically correspond to single values, but an element may
also correspond to multiple values. For example, a hash table generates two values—a key
and its value—for each element in the sequence.

3.14.1 Sequence Predicate and Constructors

(sequence? v) — boolean?
v : any/c

Return #t if v can be used as a sequence, #£ otherwise.

(in-range end) — sequence?
end : number?
(in-range start end [step]) — sequence?

265

start : number?
end . number?
step : number? = 1

Returns a sequence whose elements are numbers. The single-argument case (in-range
end) is equivalent to (in-range O end 1). The first number in the sequence is start,
and each successive element is generated by adding step to the previous element. The
sequence stops before an element that would be greater or equal to end if step is non-
negative, or less or equal to end if step is negative.

An in-range application can provide better performance for number iteration when it ap-
pears directly in a for clause.

(in-naturals [start]) — sequence?
start : exact-nonnegative-integer? = 0

Returns an infinite sequence of exact integers starting with start, where each element is
one more than the preceding element.

An in-naturals application can provide better performance for integer iteration when it
appears directly in a for clause.

(in-1ist Ist) — sequence?
1st : list?

Returns a sequence equivalent to Ist.

An in-list application can provide better performance for list iteration when it appears
directly in a for clause.

(in-mlist mlst) — sequence?
mlst : mlist?

Returns a sequence equivalent to m1st.

An in-mlist application can provide better performance for mutable list iteration when it
appears directly in a for clause.

(in-vector vec [start stop step]) — sequence?
vec . vector?
start : exact-nonnegative-integer? = 0
stop : (or/c exact-nonnegative-integer? #f) = #f
step : (and/c exact-integer? (not/c zero?)) =1

266

See §3.9 “Pairs and
Lists” for
information on
using lists as
sequences.

See §3.10 “Mutable
Pairs and Lists” for
information on
using mutable lists
as sequences.

Returns a sequence equivalent to vec when no optional arguments are supplied.

The optional arguments start, stop, and step are analogous to in-range, except that
a #f value for stop is equivalent to (vector-length vec). That is, the first element in
the sequence is (vector-ref vec start), and each successive element is generated by
adding step to index of the previous element. The sequence stops before an index that
would be greater or equal to end if step is non-negative, or less or equal to end if step is
negative.

If start is less than stop and step is negative, then the exn:fail:contract:mismatch
exception is raised. Similarly, if start is more than stop and step is positive, then the
exn:fail:contract:mismatch exception is raised. The start and stop values are not
checked against the size of vec, so access can fail when an element is demanded from the
sequence.

An in-vector application can provide better performance for vector iteration when it ap-
pears directly in a for clause.

(in-string str [start stop step]) — sequence?

str : string?

start : exact-nonnegative-integer? = 0

stop : (or/c exact-nonnegative-integer? #f) = #f
step : (and/c exact-integer? (not/c zero?)) = 1

Returns a sequence equivalent to str when no optional arguments are supplied.
The optional arguments start, stop, and step are as in in-vector.

An in-string application can provide better performance for string iteration when it ap-
pears directly in a for clause.

(in-bytes bstr [start stop step]) — sequence?
bstr : bytes?

start : exact-nonnegative-integer? = 0
stop : (or/c exact-nonnegative-integer? #f) = #f
step : (and/c exact-integer? (not/c zero?)) = 1

Returns a sequence equivalent to bstr when no optional arguments are supplied.
The optional arguments start, stop, and step are as in in-vector.

An in-bytes application can provide better performance for byte string iteration when it
appears directly in a for clause.

(in-port [r in]) — sequence?

267

See §3.11 “Vectors”
for information on
using vectors as
sequences.

See §3.3 “Strings”
for information on
using strings as
sequences.

See §3.4 “Byte
Strings” for
information on
using byte strings as
sequences.

r : (input-port? . -> . any/c) = read
in : input-port? = (current-input-port)

Returns a sequence whose elements are produced by calling r on in until it produces eof.

(in-input-port-bytes in) — sequence?
in : input-port?

Returns a sequence equivalent to (in-port read-byte in).

(in-input-port-chars in) — sequence?
in : input-port?

Returns a sequence whose elements are read as characters form in (equivalent to (in-port
read-char in)).

(in-lines [in mode]) — sequence?

in : input-port? = (current-input-port)
mode : (or/c ’linefeed ’return ’return-linefeed ’any ’any-one)
= ’any

Returns a sequence equivalent to (in-port (lambda (p) (read-line p mode)) in).
Note that the default mode is ’ any, whereas the default mode of read-1ine is ’1linefeed.

(in-bytes-lines [in mode]) — sequence?

in : input-port? = (current-input-port)
mode : (or/c ’linefeed ’return ’return-linefeed ’any ’any-one)
= ’any

Returns a sequence equivalent to (in-port (lambda (p) (read-bytes-line p
mode)) in). Note that the default mode is ’any, whereas the default mode of read-
bytes-lineis ’linefeed.

(in-hash hash) — sequence?
hash : hash?

Returns a sequence equivalent to hash. See §3.13 “Hash
Tables” for
information on
using hash tables as
sequences.

(in-hash-keys hash) — sequence?
hash : hash?

Returns a sequence whose elements are the keys of hash.

268

(in-hash-values hash) — sequence?
hash : hash?

Returns a sequence whose elements are the values of hash.

(in-hash-pairs hash) — sequence?
hash : hash?

Returns a sequence whose elements are pairs, each containing a key and its value from hash
(as opposed to using hash directly as a sequence to get the key and value as separate values
for each element).

(in-directory [dir]) — sequence?
dir : (or/c #f path-string?) = #f

Return a sequence that produces all of the paths for files, directories, and links with dir. If
dir is not #£, then every produced path starts with dir as its prefix. If dir is #£, then paths
in and relative to the current directory are produced.

(in-producer producer stop args ...) — sequence?
producer : procedure?
stop : any/c
args : any/c

Returns a sequence that contains values from sequential calls to producer. stop identifies
the value that marks the end of the sequence — this value is not included in the sequence.
stop can be a predicate or a value that is tested against the results with eq?. Note that you
must use a predicate function if the stop value is itself a function, or if the producer returns
multiple values.

(in-value v) — sequence?
v : any/c

Returns a sequence that produces a single value: v. This form is mostly useful for 1et-like
bindings in forms such as for*/list.

(in-indexed seq) — sequence?
seq : sequence?

Returns a sequence where each element has two values: the value produced by seq, and a
non-negative exact integer starting with 0. The elements of seq must be single-valued.

269

(in-sequences seq ...) — sequence?
seq . sequence?

Returns a sequence that is made of all input sequences, one after the other. The elements of
each seq must all have the same number of values.

(in-cycle seq ...) — sequence?
seq : sequence?

Similar to in-sequences, but the sequences are repeated in an infinite cycle.

(in-parallel seq ...) — sequence?
seq : sequence?

Returns a sequence where each element has as many values as the number of supplied segs;
the values, in order, are the values of each seq. The elements of each seq must be single-
valued.

(stop-before seq pred) — sequence?
seq : sequence?
pred : (any/c . -> . any)

Returns a sequence that contains the elements of seq (which must be single-valued), but
only until the last element for which applying pred to the element produces #t, after which
the sequence ends.

(stop-after seq pred) — sequence?
seq : sequence?
pred : (any/c . -> . any)

Returns a sequence that contains the elements of seq (which must be single-valued), but
only until the element (inclusive) for which applying pred to the element produces #t, after
which the sequence ends.

(make-do-sequence thunk) — sequence?
thunk : (-> (values (any/c . -> . any)
(any/c . -> . any/c)
any/c
(any/c . -> . any/c)
(OO O #:rest 1list? . ->* . any/c)
((any/c) () #:rest list? . ->*x . any/c)))

270

Returns a sequence whose elements are generated by the procedures and initial value re-
turned by the thunk. The generator is defined in terms of a position, which is initialized to
the third result of the thunk, and the element, which may consist of multiple values.

The thunk results define the generated elements as follows:

» The first result is a pos->element procedure that takes the current position and re-
turns the value(s) for the current element.

* The second result is a next-pos procedure that takes the current position and returns
the next position.

* The third result is the initial position.

* The fourth result takes the current position and returns a true result if the sequence
includes the value(s) for the current position, and false if the sequence should end
instead of including the value(s).

¢ The fifth result is like the fourth result, but it takes the current element value(s) instead
of the current position.

* The sixth result is like the fourth result, but it takes both the current position and the
current element values(s) and determines a sequence end after the current element is
already included in the sequence.

Each of the procedures listed above is called only once per position. Among the last three
procedures, as soon as one of the procedures returns #f, the sequence ends, and none are
called again. Typically, one of the functions determines the end condition, and the other two
functions always return #t.

prop:sequence : struct-type-property?

Associates a procedure to a structure type that takes an instance of the structure and returns
a sequence. If v is an instance of a structure type with this property, then (sequence? v)
produces #t.

Examples:
> (define-struct train (car next)
#:property prop:sequence (lambda (t)
(make-do-sequence
(lambda ()
(values train-car

train-next
t
(lambda (t) t)
(lambda (v) #t)
(lambda (t v) #t))))))

271

> (for/list ([c (make-train ’engine
(make-train ’boxcar
(make-train ’caboose

#£)))1)
c)

’ (engine boxcar caboose)

3.14.2 Additional Sequence Operations

(require racket/stream)

The bindings documented in this section are provided by the racket/stream and racket
libraries, but not racket/base.

empty-stream : sequence?

A sequence with no elements.

(stream->list s) — list?
s : sequence?

Returns a list whose elements are the elements of the s, which must be a one-valued se-
quence. If s is infinite, this function does not terminate.

(stream-cons v ... s) — sequence?
v : any/c
s : sequence?

Returns a sequence whose first element is (values v ...) and whose remaining elements
are the same as s.

(stream-first s) — any/c
s : sequence?

Returns the first element of s.

(stream-rest s) — sequence?
s : sequence?

Returns a sequence equivalent to s, except the first element is omitted.

272

(stream-length s) — exact-nonnegative-integer?
s © sequence?

Returns the number of elements of s. If s is infinite, this function does not terminate.

(stream-ref s i) — any/c
s : sequence?
i : exact-nonnegative-integer?

Returns the ith element of s.

(stream-tail s i) — sequence?
s ! sequence?
i : exact-nonnegative-integer?

Returns a sequence equivalent to s, except the first i elements are omitted.

(stream-append s ...) — sequence?
s © sequence?

Returns a sequence that contains all elements of each sequence in the order they appear in
the original sequences. The new sequence is constructed lazily.

(stream-map f s) — sequence?
f : procedure?
s : sequence?

Returns a sequence that contains f applied to each element of s. The new sequence is
constructed lazily.

(stream-andmap f s) — boolean?
f : (-> any/c ... boolean?)
s ! sequence?

Returns #t if £ returns a true result on every element of s. If s is infinite and £ never returns
a false result, this function does not terminate.

(stream-ormap f s) — boolean?
f : (-> any/c ... boolean?)
s : sequence?

Returns #t if £ returns a true result on some element of s. If s is infinite and f never returns

273

a true result, this function does not terminate.

(stream-for-each f s) — (void)
f : (-> any/c ... any)
s : sequence?

Applies £ to each element of s. If s is infinite, this function does not terminate.

(stream-fold £ i s) — (void)
f : (-> any/c any/c ... any/c)
i : any/c
s © sequence?

Folds £ over each element of s with i as the initial accumulator. If s is infinite, this function
does not terminate.

(stream-filter f s) — sequence?
f : (-> any/c ... boolean?)
s : sequence?

Returns a sequence whose elements are the elements of s for which f returns a true result.
Although the new sequence is constructed lazily, if s has an infinite number of elements
where £ returns a false result in between two elements where f returns a true result then
operations on this sequence will not terminate during that infinite sub-sequence.

(stream-add-between s e) — sequence?
s @ sequence?
e : any/c

Returns a sequence whose elements are the elements of s except in between each is e. The
new sequence is constructed lazily.

(stream-count f s) — exact-nonnegative-integer?
f : procedure?
s © sequence?

Returns the number of elements in s for which f returns a true result. If s is infinite, this
function does not terminate.

274

3.14.3 Sequence Generators

(sequence-generate seq) — (-> boolean?) (-> any)
seq : sequence?

Returns two thunks to extract elements from the sequence. The first returns #t if more values
are available for the sequence. The second returns the next element (which may be multiple
values) from the sequence; if no more elements are available, the exn:fail:contract
exception is raised.

3.14.4 Iterator Generators

(require racket/generator)

(generator () body ...)

Creates a function that returns a value through yield, each time it is invoked. When the
generator runs out of values to yield, the last value it computed will be returned for future
invocations of the generator. Generators can be safely nested.

Note: The first form must be (). In the future, the () position will hold argument names
that are used for the initial generator call.

Examples:
> (define g (generator ()
(let loop ([x ’(a b c)])
(if (null? x)
0
(begin
(yield (car x))
(loop (cdr x)))))))
> (g)
‘a
> (g)
’d
> (g)
’c

> (g)

(g)

O VvV O

To use an existing generator as a sequence, you should use in-producer with a stop-value

275

known for the generator.

Examples:
> (define my-stop-value (gensym))
> (define my-generator (generator ()
(let loop ([x ’(a b c)])
(if (null? x)
my-stop-value
(begin
(yield (car x))
(loop (cdr x)))))))
> (for/list ([i (in-producer my-generator my-stop-value)])
i)
’(a b c)

(infinite-generator body ...)

Creates a function similar to generator but when the last body is executed the function
will re-execute all the bodies in a loop.

Examples:
> (define welcome
(infinite-generator
(yield ’hello)
(yield ’goodbye)))
> (welcome)
’hello
> (welcome)
’goodbye
> (welcome)
’hello
> (welcome)
’goodbye

(in-generator expr ...) — sequence?
expr : any?

Returns a generator that can be used as a sequence. The in-generator procedure takes care
of the case when expr stops producing values, so when the expr completes, the generator
will end.

Example:
> (for/list ([i (in-generator
(let loop ([x ’(a b c)])
(when (not (null? x))

276

(yield (car x))
(Loop (cdr x)))))1)
i)
’(a b c)

(yield expr ...)

Saves the point of execution inside a generator and returns a value. yield can accept any
number of arguments and will return them using values.

Values can be passed back to the generator after invoking yield by passing the arguments
to the generator instance. Note that a value cannot be passed back to the generator until after
the first yield has been invoked.

Examples:
> (define my-generator (generator () (yield 1) (yield 2 3 4)))
> (my-generator)
1
> (my-generator)

W N

Examples:
> (define pass-values-generator
(generator ()
(let* ([from-user (yield 2)]
[from-user-again (yield (addl from-user))])
(yield from-user-again))))
(pass-values-generator)

>
2
> (pass-values-generator 5)
6
>

(pass-values-generator 12)
12

(generator-state g) — symbol?
g : any?

Returns a symbol that describes the state of the generator.

e ’fresh — The generator has been freshly created and has not been invoked yet. Val-
ues cannot be passed to a fresh generator.

e ’suspended — Control within the generator has been suspended due to a call to
yield. The generator can be invoked.

277

* ’running — The generator is currently executing. This state can only be returned if
generator-state is invoked inside the generator.

¢ ’done — The generator has executed its entire body and will not call yield anymore.

Examples:
> (define my-generator (generator () (yield 1) (yield 2)))
> (generator-state my-generator)
’fresh
> (my-generator)
1
> (generator-state my-generator)
’suspended
> (my-generator)
2
> (generator-state my-generator)
’suspended
> (my-generator)
> (generator-state my-generator)
’done
> (define introspective-generator (generator () ((yield 1))))
> (introspective-generator)
1
> (introspective-generator
(lambda () (generator-state introspective-generator)))
’running
> (generator-state introspective-generator)
’done
> (introspective-generator)
’running

(sequence->generator s) — (-> any?)
s @ sequence?

Returns a generator that returns elements from the sequence, s, each time the generator is
invoked.

(sequence->repeated-generator s) — (-> any?)
s : sequence?

Returns a generator that returns elements from the sequence, s, similar to sequence-
>generator but looping over the values in the sequence when no more values are left.

278

3.15 Dictionaries

A dictionary is an instance of a datatype that maps keys to values. The following datatypes
are all dictionaries:

* hash tables;
 vectors (using only exact integers as keys);
* lists of pairs (an association list using equal? to compare keys); and
e structures whose types have the prop:dict property.
A dictionary can be used as a two-valued sequence (see §3.14 “Sequences”). The associa-

tions of the dictionary serve as elements of the sequence. See also in-dict, in-dict-keys,
and in-dict-values.

(require racket/dict)

The bindings documented in this section are provided by the racket/dict and racket
libraries, but not racket/base.

(dict? v) — boolean?
v : any/c

Returns #t if v is a dictionary, #f otherwise.

Beware that dict? is not a constant-time test on pairs, since checking that v is an association
list may require traversing the list.

Examples:

> (dict? #hash((a . "apple")))

#t

> (dict? ’#("apple" 'banana"))

#t

> (dict? ’("apple" "banana'))

#f

> (dict? ’((a . "apple") (b . "banana")))
#t

(dict-mutable? d) — boolean?
d : dict?

Returns #t if d is mutable via dict-set! and maybe dict-remove!, #f otherwise.

Examples:

279

> (dict-mutable? #hash((a . "apple")))

#t

> (dict-mutable? (make-hash))

#t

> (dict-mutable? ’#("apple" "banana'))

#f

> (dict-mutable? (vector "apple" '"banana'))

#t

> (dict-mutable? ’((a . "apple") (b . "banana")))
#f

(dict-can-remove-keys? d) — boolean?
d : dict?

Returns #t if d supports removing mappings via dict-remove! and/or dict-remove, #f
otherwise.

Examples:
> (dict-can-remove-keys? #hash((a . "apple")))
#t
> (dict-can-remove-keys? ’#("apple" "banana'))
#f
> (dict-can-remove-keys? ’((a . "apple") (b . "banana")))
#t

(dict-can-functional-set? d) — boolean?
d : dict?

Returns #t if d supports functional update via dict-set and maybe dict-remove, #f
otherwise.

Examples:
> (dict-can-functional-set? #hash((a . 'apple")))
#t
> (dict-can-functional-set? (make-hash))
#f
> (dict-can-functional-set? ’#("apple" 'banana"))
#f
> (dict-can-functional-set? ’((a . "apple") (b . "banana")))
#t

(dict-set! dict key v) — void?
dict : (and/c dict? (not/c immutable?))
key : any/c
v : any/c

280

Maps key to v in dict, overwriting any existing mapping for key. The update can fail with
aexn:fail:contract exception if dict is not mutable or if key is not an allowed key for
the dictionary (e.g., not an exact integer in the appropriate range when dict is a vector).

Examples:
> (define h (make-hash))
> (dict-set! h ’a "apple")
>h
‘#hash((a . "apple"))
> (define v (vector #f #f #f))
> (dict-set! v 0 "apple")
> v
#("apple" #f #f)

(dict-set*! dict key v) — void?
dict : (and/c dict? (not/c immutable?))
key : any/c
v : any/c

Maps each key to each v in dict, overwriting any existing mapping for each key. The
update can fail with a exn:fail:contract exception if dict is not mutable or if any key
is not an allowed key for the dictionary (e.g., not an exact integer in the appropriate range
when dict is a vector). The update takes place from the left, so later mappings overwrite
earlier mappings.

Examples:
> (define h (make-hash))
> (dict-set*! h ’a "apple" ’b '"banana')
>h
‘#hash((a . "apple") (b . "banana"))
> (define v1 (vector #f #f #f))
> (dict-set*! vl O "apple" 1 "banana")
> vl
‘#("apple" "banana" #f)
> (define v2 (vector #f #f #f))
> (dict-set*! v2 0 "apple" O "banana")
> v2
‘#("banana' #f #f)

(dict-set dict key v) — (and/c dict? immutable?)
dict : (and/c dict? immutable?)
key : any/c
v : any/c

281

Functionally extends dict by mapping key to v, overwriting any existing mapping for
key, and returning an extended dictionary. The update can fail with a exn:fail:contract
exception if dict does not support functional extension or if key is not an allowed key for
the dictionary.

Examples:
> (dict-set #hash() ’a "apple')
‘#hash((a . "apple"))
> (dict-set #hash((a . "apple") (b . "beer")) ’b "banana")
‘#hash((a . "apple") (b . "banana"))
> (dict-set () ’a "apple')
b ((a . "apple"))
> (dict-set ’((a . "apple") (b . "beer")) ’b "banana")
’((a . "apple") (b . "banana"))

(dict-set* dict key v) — (and/c dict? immutable?)
dict : (and/c dict? immutable?)
key : any/c
v : any/c

Functionally extends dict by mapping each key to each v, overwriting any existing map-
ping for each key, and returning an extended dictionary. The update can fail with a
exn:fail:contract exception if dict does not support functional extension or if any
key is not an allowed key for the dictionary. The update takes place from the left, so later
mappings overwrite earlier mappings.

Examples:
> (dict-set* #hash() ’a "apple" ’b '"beer")
‘#hash((a . "apple") (b . "beer"))

> (dict-set* #hash((a . "apple") (b . "beer")) ’b "banana" ’a "anchor")

’#hash((b . "banana") (a . "anchor"))

> (dict-set* ’() ’a "apple" ’b "beer")

’((a . "apple") (b . "beer"))

> (dict-set* ’((a . "apple") (b . "beer")) ’b "banana" ’a '"anchor")
’((a . "anchor") (b . "banana"))

> (dict-setx ’((a . "apple") (b . "beer'")) ’b "banana" ’b "balistic')
’((a . "apple") (b . "balistic"))

(dict-has-key? dict key) — boolean?
dict : dict?
key : any/c

Returns #t if dict contains a value for the given key, #f otherwise.

Examples:

282

> (dict-has-key? #hash((a . "apple") (b . "beer")) ’a)
#t

> (dict-has-key? #hash((a . "apple") (b . "beer")) ’c)
#f

> (dict-has-key? ’((a . "apple'") (b . "banana")) ’b)
#t

> (dict-has-key? #("apple" '"banana') 1)

#t
> (dict-has-key? #("apple" "banana") 3)
#f
> (dict-has-key? #("apple" "banana') -3)
#t

(dict-ref dict key [failure-result]) — any
dict : dict?
key : any/c
failure-result : any/c
= (lambda () (raise (make-exn:fail)))

Returns the value for key in dict. If no value is found for key, then failure-result
determines the result:

e If failure-result is a procedure, it is called (through a tail call) with no arguments
to produce the result.

e Otherwise, failure-result is returned as the result.

Examples:
> (dict-ref #hash((a . "apple") (b . "beer")) ’a)
"apple"
> (dict-ref #hash((a . "apple") (b . "beer")) ’c)
hash-ref: no value found for key: 'c
> (dict-ref #hash((a . "apple") (b . "beer")) ’c #f)
#t
> (dict-ref ’((a . "apple") (b . "banana")) ’b)

"banana"

> (dict-ref #("apple'" "banana") 1)
"banana"

> (dict-ref #("apple" "banana") 3 #f)
#t

> (dict-ref #("apple" "banana") -3 #f)
<collects>/racket/dict.rkt:147.2: top-level broke the
contract

(->i

((ddict?) (k(d) ...))

((default any/c))

283

any)
on dict-ref; expected <exact-nonnegative-integer?>, given:
-3

(dict-ref! dict key to-set) — any
dict : dict?
key : any/c
to-set : any/c

Returns the value for key in dict. If no value is found for key, then to-set determines
the result as in dict-ref (i.e., it is either a thunk that computes a value or a plain value), and
this result is stored in dict for the key. (Note that if to-set is a thunk, it is not invoked in
tail position.)

Examples:
> (dict-ref! (make-hasheq ’((a . "apple") (b . "beer'"))) ’a)
procedure dict-ref!: expects 3 arguments, given 2:
‘#hasheq((a . "apple”) (b . "beer")) 'a
> (dict-ref! (make-hasheq ’((a . "apple") (b .
"beer"))) ’c ’cabbage)
’cabbage
> (define h (make-hasheq ’((a . "apple") (b . '"beer"))))
> (dict-ref h ’c)
hash-ref: no value found for key: 'c
> (dict-ref! h ’c (A () ’cabbage))
’cabbage
> (dict-ref h ’c)
’cabbage

(dict-update! dict
key
updater
[failure-result]) — void?
dict : (and/c dict? (not/c immutable?))
key : any/c
updater : (any/c . -> . any/c)
failure-result : any/c
= (lambda () (raise (make-exn:fail)))

Composes dict-ref and dict-set! to update an existing mapping in dict.

Examples:
> (define h (make-hash))
> (dict-update! h ’a addl)
hash-ref: no value found for key: "a

284

> (dict-update! h ’a addl 0)
>h

‘#hash((a . 1))

> (define v (vector #f #f #f))
> (dict-update! v O not)

> v

Y (#t #f #f)

(dict-update dict key updater [failure-result])
— (and/c dict? immutable?)

dict : dict?

key : any/c

updater : (any/c . -> . any/c)

failure-result : any/c

= (lambda () (raise (make-exn:fail)))
Composes dict-ref and dict-set to functionally update an existing mapping in dict.

Examples:
> (dict-update #hash() ’a addl)
hash-ref: no value found for key: 'a
> (dict-update #hash() ’a addl 0)
‘#hash((a . 1))

> (dict-update #hash((a . "apple") (b . "beer")) ’b string-length)
‘#hash((a . "apple") (b . 4))

(dict-remove! dict key) — void?
dict : (and/c dict? (not/c immutable?))
key : any/c

Removes any existing m