
Syntax: Meta-Programming Helpers
Version 5.0

June 6, 2010

1

Contents

1 Syntax Object Helpers 5

1.1 Deconstructing Syntax Objects . 5

1.2 Matching Fully-Expanded Expressions . 6

1.3 Hashing on bound-identifier=? and free-identifier=? 7

1.4 Identifier dictionaries . 10

1.4.1 Dictionaries for bound-identifier=? 10

1.4.2 Dictionaries for free-identifier=? 12

1.5 Rendering Syntax Objects with Formatting 13

1.6 Computing the Free Variables of an Expression 13

1.7 Replacing Lexical Context . 14

1.8 Helpers for Processing Keyword Syntax 14

1.9 Legacy Zodiac Interface . 19

2 Module-Processing Helpers 21

2.1 Reading Module Source Code . 21

2.2 Getting Module Compiled Code . 21

2.3 Resolving Module Paths to File Paths . 23

2.4 Simplifying Module Paths . 24

2.5 Inspecting Modules and Module Dependencies 25

3 Macro Transformer Helpers 26

3.1 Extracting Inferred Names . 26

3.2 Support for local-expand . 26

3.3 Parsing define-like Forms . 26

3.4 Flattening begin Forms . 27

2

3.5 Expanding define-struct-like Forms 27

3.6 Resolving include-like Paths . 31

3.7 Controlling Syntax Templates . 31

4 Reader Helpers 34

4.1 Raising exn:fail:read . 34

4.2 Module Reader . 35

5 Non-Module Compilation And Expansion 42

6 Trusting Standard Recertifying Transformers 44

7 Attaching Documentation to Exports 45

8 Parsing and classifying syntax 47

8.1 Quick Start . 47

8.2 Parsing and classifying syntax . 50

8.2.1 Parsing syntax . 51

8.2.2 Classifying syntax . 53

8.2.3 Pattern directives . 55

8.2.4 Pattern variables and attributes . 57

8.2.5 Inspection tools . 58

8.3 Syntax patterns . 59

8.3.1 Single-term patterns . 61

8.3.2 Head patterns . 69

8.3.3 Ellipsis-head patterns . 71

8.3.4 Action patterns . 73

8.4 Literal sets and Conventions . 75

3

8.5 Library syntax classes and literal sets . 77

8.5.1 Syntax classes . 77

8.5.2 Literal sets . 78

Index 79

4

1 Syntax Object Helpers

1.1 Deconstructing Syntax Objects

(require syntax/stx)

(stx-null? v) → boolean?

v : any/c

Returns #t if v is either the empty list or a syntax object representing the empty list (i.e.,
syntax-e on the syntax object returns the empty list).

(stx-pair? v) → boolean?

v : any/c

Returns #t if v is either a pair or a syntax object representing a pair (see syntax pair).

(stx-list? v) → boolean?

v : any/c

Returns #t if v is a list, or if it is a sequence of pairs leading to a syntax object such that
syntax->list would produce a list.

(stx->list stx-list) → list?

stx-list : stx-list?

Produces a list by flatting out a trailing syntax object using syntax->list.

(stx-car v) → any

v : stx-pair?

Takes the car of a syntax pair.

(stx-cdr v) → any

v : stx-pair?

Takes the cdr of a syntax pair.

(module-or-top-identifier=? a-id b-id) → boolean?

a-id : identifier?

5

b-id : identifier?

Returns #t if a-id and b-id are free-identifier=?, or if a-id and b-id have the same
name (as extracted by syntax-e) and a-id has no binding other than at the top level.

This procedure is useful in conjunction with syntax-case* to match procedure names that
are normally bound by Racket. For example, the include macro uses this procedure to rec-
ognize build-path; using free-identifier=? would not work well outside of module,
since the top-level build-path is a distinct variable from the racket/base export (though
it’s bound to the same procedure, initially).

1.2 Matching Fully-Expanded Expressions

(require syntax/kerncase)

(kernel-syntax-case stx-expr trans?-expr clause ...)

A syntactic form like syntax-case*, except that the literals are built-in as the names of
the primitive Racket forms as exported by scheme/base; see §1.2.3.1 “Fully Expanded
Programs”.

The trans?-expr boolean expression replaces the comparison procedure, and instead se-
lects simply between normal-phase comparisons or transformer-phase comparisons. The
clauses are the same as in syntax-case*.

The primitive syntactic forms must have their normal bindings in the context of the kernel-
syntax-case expression. Beware that kernel-syntax-case does not work in a module
whose language is mzscheme, since the binding of if from mzscheme is different than the
primitive if.

(kernel-syntax-case* stx-expr trans?-expr (extra-id ...) clause ...)

A syntactic form like kernel-syntax-case, except that it takes an additional list of extra
literals that are in addition to the primitive Racket forms.

(kernel-syntax-case/phase stx-expr phase-expr clause ...)

Generalizes kernel-syntax-case to work at an arbitrary phase level, as indicated by
phase-expr .

(kernel-syntax-case*/phase stx-expr phase-expr (extra-id ..)

clause ...)

6

Generalizes kernel-syntax-case* to work at an arbitrary phase level, as indicated by
phase-expr .

(kernel-form-identifier-list) → (listof identifier?)

Returns a list of identifiers that are bound normally, for-syntax, and for-template to the
primitive Racket forms for expressions, internal-definition positions, and module-level and
top-level positions. This function is useful for generating a list of stopping points to provide
to local-expand.

In addition to the identifiers listed in §1.2.3.1 “Fully Expanded Programs”, the list includes
letrec-syntaxes+values, which is the core form for local expand-time binding and can
appear in the result of local-expand.

1.3 Hashing on bound-identifier=? and free-identifier=?

See also syntax/id-table for an implementation of identifier mappings using the
scheme/dict dictionary interface.

(require syntax/boundmap)

(make-bound-identifier-mapping) → bound-identifier-mapping?

Produces a hash-table-like value for storing a mapping from syntax identifiers to arbitrary
values.

The mapping uses bound-identifier=? to compare mapping keys, but also uses a hash
table based on symbol equality to make the mapping efficient in the common case (i.e.,
where non-equivalent identifiers are derived from different symbolic names).

(bound-identifier-mapping? v) → boolean?

v : any/c

Returns #t if v was produced by make-bound-identifier-mapping, #f otherwise.

(bound-identifier-mapping-get bound-map

id

[failure-thunk]) → any

bound-map : bound-identifier-mapping?

id : identifier?

failure-thunk : any/c

= (lambda () (raise (make-exn:fail)))

7

Like hash-table-get for bound-identifier mappings.

(bound-identifier-mapping-put! bound-map

id

v) → void?

bound-map : bound-identifier-mapping?

id : identifier?

v : any/c

Like hash-table-put! for bound-identifier mappings.

(bound-identifier-mapping-for-each bound-map

proc) → void?

bound-map : boud-identifier-mapping?

proc : (identifier? any/c . -> . any)

Like hash-table-for-each.

(bound-identifier-mapping-map bound-map

proc) → (listof any?)

bound-map : bound-identifier-mapping?

proc : (identifier? any/c . -> . any)

Like hash-table-map.

(make-free-identifier-mapping) → free-identifier-mapping?

Produces a hash-table-like value for storing a mapping from syntax identifiers to arbitrary
values.

The mapping uses free-identifier=? to compare mapping keys, but also uses a hash
table based on symbol equality to make the mapping efficient in the common case (i.e., where
non-equivalent identifiers are derived from different symbolic names at their definition sites).

(free-identifier-mapping? v) → boolean?

v : any/c

Returns #t if v was produced by make-free-identifier-mapping, #f otherwise.

(free-identifier-mapping-get free-map

id

[failure-thunk]) → any

8

free-map : free-identifier-mapping?

id : identifier?

failure-thunk : any/c

= (lambda () (raise (make-exn:fail)))

Like hash-table-get for free-identifier mappings.

(free-identifier-mapping-put! free-map id v) → void?

free-map : free-identifier-mapping?

id : identifier?

v : any/c

Like hash-table-put! for free-identifier mappings.

(free-identifier-mapping-for-each free-map

proc) → void?

free-map : free-identifier-mapping?

proc : (identifier? any/c . -> . any)

Like hash-table-for-each.

(free-identifier-mapping-map free-map proc) → (listof any?)

free-map : free-identifier-mapping?

proc : (identifier? any/c . -> . any)

Like hash-table-map.

(make-module-identifier-mapping) → module-identifier-mapping?

(module-identifier-mapping? v) → boolean?

v : any/c

(module-identifier-mapping-get module-map

id

[failure-thunk]) → any

module-map : module-identifier-mapping?

id : identifier?

failure-thunk : any/c

= (lambda () (raise (make-exn:fail)))

(module-identifier-mapping-put! module-map

id

v) → void?

module-map : module-identifier-mapping?

id : identifier?

v : any/c

9

(module-identifier-mapping-for-each module-map

proc) → void?

module-map : module-identifier-mapping?

proc : (identifier? any/c . -> . any)

(module-identifier-mapping-map module-map

proc) → (listof any?)

module-map : module-identifier-mapping?

proc : (identifier? any/c . -> . any)

The same as make-free-identifier-mapping, etc.

1.4 Identifier dictionaries

(require syntax/id-table)

This module provides functionality like that of syntax/boundmap but with more oper-
ations, standard names, implementation of the scheme/dict interface, and immutable
(functionally-updating) variants.

1.4.1 Dictionaries for bound-identifier=?

Bound-identifier tables implement the dictionary interface of scheme/dict. Consequently,
all of the appropriate generic functions (dict-ref, dict-map, etc) can be used on free-
identifier tables.

(make-bound-id-table [init-dict]) → mutable-bound-id-table?

init-dict : dict? = null

(make-immutable-bound-id-table [init-dict])
→ immutable-bound-id-table?

init-dict : dict? = null

Produces a dictionary mapping syntax identifiers to arbitrary values. The mapping uses
bound-identifier=? to compare keys, but also uses a hash table based on symbol equality
to make the mapping efficient in the common case. The two procedures produce mutable
and immutable dictionaries, respectively.

The optional init-dict argument provides the initial mappings. It must be a dictionary,
and its keys must all be identifiers. If the init-dict dictionary has multiple distinct entries
whose keys are bound-identifier=?, only one of the entries appears in the new id-table,
and it is not specified which entry is picked.

(bound-id-table? v) → boolean?

10

v : any/c

Returns #t if v was produced by make-bound-id-table or make-immutable-bound-
id-table, #f otherwise.

(mutable-bound-id-table? v) → boolean?

v : any/c

(immutable-bound-id-table? v) → boolean?

v : any/c

Predicate for the mutable and immutable variants of bound-identifier tables, respectively.

(bound-id-table-ref table id [failure]) → any

table : bound-id-table?

id : identifier?

failure : any/c = (lambda () (raise (make-exn:fail)))

Like hash-ref for bound identifier tables. In particular, if id is not found, the failure

argument is applied if it is a procedure, or simply returned otherwise.

(bound-id-table-set! table id v) → void?

table : mutable-bound-id-table?

id : identifier?

v : any/c

Like hash-set! for mutable bound-identifier tables.

(bound-id-table-set table id v) → immutable-bound-id-table?

table : immutable-bound-id-table?

id : identifier?

v : any/c

Like hash-set for immutable bound-identifier tables.

(bound-id-table-remove! table id) → void?

table : mutable-bound-id-table?

id : identifier?

Like hash-remove! for mutable bound-identifier tables.

(bound-id-table-remove table id v) → immutable-bound-id-table?

table : immutable-bound-id-table?

id : identifier?

11

v : any/c

Like hash-remove for immutable bound-identifier tables.

(bound-id-table-map table proc) → list?

table : bound-id-table?

proc : (-> identifier? any/c any)

Like hash-map for bound-identifier tables.

(bound-id-table-for-each table proc) → void?

table : bound-id-table?

proc : (-> identifier? any/c any)

Like hash-for-each for bound-identifier tables.

(bound-id-table-count table) → exact-nonnegative-integer?

table : bound-id-table?

Like hash-count for bound-identifier tables.

1.4.2 Dictionaries for free-identifier=?

Free-identifier tables implement the dictionary interface of scheme/dict. Consequently,
all of the appropriate generic functions (dict-ref, dict-map, etc) can be used on free-
identifier tables.

(make-free-id-table [init-dict]) → mutable-free-id-table?

init-dict : dict? = null

(make-immutable-free-id-table [init-dict])
→ immutable-free-id-table?

init-dict : dict? = null

(free-id-table? v) → boolean?

v : any/c

(mutable-free-id-table? v) → boolean?

v : any/c

(immutable-free-id-table? v) → boolean?

v : any/c

(free-id-table-ref table id [failure]) → any

table : free-id-table?

id : identifier?

failure : any/c = (lambda () (raise (make-exn:fail)))

12

(free-id-table-set! table id v) → void?

table : mutable-free-id-table?

id : identifier?

v : any/c

(free-id-table-set table id v) → immutable-free-id-table?

table : immutable-free-id-table?

id : identifier?

v : any/c

(free-id-table-remove! table id) → void?

table : mutable-free-id-table?

id : identifier?

(free-id-table-remove table id v) → immutable-free-id-table?

table : immutable-free-id-table?

id : identifier?

v : any/c

(free-id-table-map table proc) → list?

table : free-id-table?

proc : (-> identifier? any/c any)

(free-id-table-for-each table proc) → void?

table : free-id-table?

proc : (-> identifier? any/c any)

(free-id-table-count table) → exact-nonnegative-integer?

table : free-id-table?

Like the procedures for bound-identifier tables (make-bound-id-table, bound-id-

table-ref, etc), but for free-identifier tables, which use free-identifier=? to compare
keys.

1.5 Rendering Syntax Objects with Formatting

(require syntax/to-string)

(syntax->string stx-list) → string?

stx-list : stx-list?

Builds a string with newlines and indenting according to the source locations in stx-list ;
the outer pair of parens are not rendered from stx-list .

1.6 Computing the Free Variables of an Expression

(require syntax/free-vars)

13

(free-vars expr-stx) → (listof identifier?)

expr-stx : syntax?

Returns a list of free lambda- and let-bound identifiers in expr-stx . The expression must
be fully expanded (see §1.2.3.1 “Fully Expanded Programs” and expand).

1.7 Replacing Lexical Context

(require syntax/strip-context)

(strip-context stx) → syntax?

stx : syntax?

Removes all lexical context from stx , preserving source-location information and proper-
ties.

(replace-context ctx-stx stx) → syntax?

ctx-stx : (or/c syntax? #f)

stx : syntax?

Uses the lexical context of ctx-stx to replace the lexical context of all parts of stx , pre-
serving source-location information and properties of stx .

1.8 Helpers for Processing Keyword Syntax

The syntax/keyword module contains procedures for parsing keyword options in macros.

(require syntax/keyword)

keyword-table = (dict-of keyword (listof check-procedure))

A keyword-table is a dictionary (dict?) mapping keywords to lists of check-procedures.
(Note that an association list is a suitable dictionary.) The keyword’s arity is the length of
the list of procedures.

Example:
> (define my-keyword-table

(list (list '#:a check-identifier)

(list '#:b check-expression check-expression)))

check-procedure = (syntax syntax -> any)

14

A check procedure consumes the syntax to check and a context syntax object for error re-
porting and either raises an error to reject the syntax or returns a value as its parsed repre-
sentation.

Example:
> (define (check-stx-string stx context-stx)

(unless (string? (syntax-e stx))

(raise-syntax-error #f "expected string" context-stx stx))

stx)

options = (listof (list keyword syntax-keyword any ...))

Parsed options are represented as an list of option entries. Each entry contains the keyword,
the syntax of the keyword (for error reporting), and the list of parsed values returned by the
keyword’s list of check procedures. The list contains the parsed options in the order they
appeared in the input, and a keyword that occurs multiple times in the input occurs multiple
times in the options list.

(parse-keyword-options stx

table

[#:context ctx

#:no-duplicates? no-duplicates?

#:incompatible incompatible

#:on-incompatible incompatible-handler

#:on-too-short too-short-handler

#:on-not-in-table not-in-table-handler])
→ options any/c

stx : syntax?

table : keyword-table
ctx : (or/c false/c syntax?) = #f

no-duplicates? : boolean? = #f

incompatible : (listof (listof keyword?)) = '()

incompatible-handler : (-> keyword? keyword?

options syntax? syntax?

(values options syntax?))

= (lambda (....) (error))

too-short-handler : (-> keyword? options syntax? syntax?

(values options syntax?))

= (lambda (....) (error))

not-in-table-handler : (-> keyword? options syntax? syntax?

(values options syntax?))

= (lambda (....) (error))

Parses the keyword options in the syntax stx (stx may be an improper syntax list). The
keyword options are described in the table association list. Each entry in table should be
a list whose first element is a keyword and whose subsequent elements are procedures for

15

checking the arguments following the keyword. The keyword’s arity (number of arguments)
is determined by the number of procedures in the entry. Only fixed-arity keywords are
supported.

Parsing stops normally when the syntax list does not have a keyword at its head (it may be
empty, start with a non-keyword term, or it may be a non-list syntax object). Two values are
returned: the parsed options and the rest of the syntax (generally either a syntax object or a
list of syntax objects).

A variety of errors and exceptional conditions can occur during the parsing process. The
following keyword arguments determine the behavior in those situations.

The #:context ctx argument is used to report all errors in parsing syntax. In addition,
ctx is passed as the final argument to all provided handler procedures. Macros using parse-
keyword-options should generally pass the syntax object for the whole macro use as ctx .

If no-duplicates? is a non-false value, then duplicate keyword options are not allowed. If
a duplicate is seen, the keyword’s associated check procedures are not called and an incom-
patibility is reported.

The incompatible argument is a list of incompatibility entries, where each entry is a list
of at least two keywords. If any keyword in the entry occurs after any other keyword in the
entry, an incompatibility is reported.

Note that including a keyword in an incompatibility entry does not prevent it from occurring
multiple times. To disallow duplicates of some keywords (as opposed to all keywords),
include those keywords in the incompatible list as being incompatible with themselves.
That is, include them twice:

; Disallow duplicates of only the #:foo keyword

(parse-keyword-options #:incompatible '((#:foo #:foo)))

When an incompatibility occurs, the incompatible-handler is tail-called with the two
keywords causing the incompatibility (in the order that they occurred in the syntax list, so
the keyword triggering the incompatibility occurs second), the syntax list starting with the
occurrence of the second keyword, and the context (ctx). If the incompatibility is due to a
duplicate, the two keywords are the same.

When a keyword is not followed by enough arguments according to its arity in table , the
too-short-handler is tail-called with the keyword, the options parsed thus far, the syntax
list starting with the occurrence of the keyword, and ctx .

When a keyword occurs in the syntax list that is not in table , the not-in-table-handler
is tail-called with the keyword, the options parsed thus far, the syntax list starting with the
occurrence of the keyword, and ctx .

16

Handlers typically escape—all of the default handlers raise errors—but if they return, they
should return two values: the parsed options and a syntax object; these are returned as the
results of parse-keyword-options.

Examples:
> (parse-keyword-options

#'(#:transparent #:property p (lambda (x) (f x)))

(list (list '#:transparent)

(list '#:inspector check-expression)

(list '#:property check-expression check-expression)))

'((#:transparent #<syntax:3:0 #:transparent>) (#:property

#<syntax:3:0 #:property> #<syntax:3:0 p> #<syntax:3:0 (lambda (x)

(f x))>))

'()

> (parse-keyword-options

#'(#:transparent #:inspector (make-inspector))

(list (list '#:transparent)

(list '#:inspector check-expression)

(list '#:property check-expression check-expression))

#:context #'define-struct

#:incompatible '((#:transparent #:inspector)

(#:inspector #:inspector)

(#:inspector #:inspector)))

eval:4:0: define-struct: #:inspector option not allowed
after #:transparent option at: #:inspector in: define-struct

(parse-keyword-options/eol

stx

table

[#:context ctx

#:no-duplicates? no-duplicates?

#:incompatible incompatible

#:on-incompatible incompatible-handler

#:on-too-short too-short-handler

#:on-not-in-table not-in-table-handler

#:on-not-eol not-eol-handler])
→ options
stx : syntax?

table : keyword-table
ctx : (or/c false/c syntax?) = #f

no-duplicates? : boolean? = #f

incompatible : (listof (list keyword? keyword?)) = '()

17

incompatible-handler : (-> keyword? keyword?

options syntax? syntax?

(values options syntax?))

= (lambda (....) (error))

too-short-handler : (-> keyword? options syntax? syntax?

(values options syntax?))

= (lambda (....) (error))

not-in-table-handler : (-> keyword? options syntax? syntax?

(values options syntax?))

= (lambda (....) (error))

not-eol-handler : (-> options syntax? syntax?

options)
= (lambda (....) (error))

Like parse-keyword-options, but checks that there are no terms left over after parsing
all of the keyword options. If there are, not-eol-handler is tail-called with the options
parsed thus far, the leftover syntax, and ctx .

(options-select options keyword) → (listof list?)

options : options
keyword : keyword?

Selects the values associated with one keyword from the parsed options. The resulting list
has as many items as there were occurrences of the keyword, and each element is a list whose
length is the arity of the keyword.

(options-select-row options

keyword

#:default default) → any

options : options
keyword : keyword?

default : any/c

Like options-select, except that the given keyword must occur either zero or one times
in options . If the keyword occurs, the associated list of parsed argument values is returned.
Otherwise, the default list is returned.

(options-select-value options

keyword

#:default default) → any

options : options
keyword : keyword?

default : any/c

18

Like options-select, except that the given keyword must occur either zero or one times
in options . If the keyword occurs, the associated list of parsed argument values must have
exactly one element, and that element is returned. If the keyword does not occur in options ,
the default value is returned.

(check-identifier stx ctx) → identifier?

stx : syntax?

ctx : (or/c false/c syntax?)

A check-procedure that accepts only identifiers.

(check-expression stx ctx) → syntax?

stx : syntax?

ctx : (or/c false/c syntax?)

A check-procedure that accepts any non-keyword term. It does not actually check that the
term is a valid expression.

((check-stx-listof check) stx ctx) → (listof any/c)

check : check-procedure
stx : syntax?

ctx : (or/c false/c syntax?)

Lifts a check-procedure to accept syntax lists of whatever the original procedure accepted.

(check-stx-string stx ctx) → syntax?

stx : syntax?

ctx : (or/c false/c syntax?)

A check-procedure that accepts syntax strings.

(check-stx-boolean stx ctx) → syntax?

stx : syntax?

ctx : (or/c false/c syntax?)

A check-procedure that accepts syntax booleans.

1.9 Legacy Zodiac Interface

(require syntax/zodiac)

(require syntax/zodiac-unit)

19

(require syntax/zodiac-sig)

The interface is similar to Zodiac—enough to be useful for porting—but different in many
ways. See the source "zodiac-sig.ss" for details. New software should not use this
compatibility layer.

20

2 Module-Processing Helpers

2.1 Reading Module Source Code

(require syntax/modread)

(with-module-reading-parameterization thunk) → any

thunk : (-> any)

Calls thunk with all reader parameters reset to their default values.

(check-module-form stx

expected-module-sym

source-v)

→ (or/c syntax? false/c)

stx : (or/c syntax? eof-object?)

expected-module-sym : symbol?

source-v : (or/c string? false/c)

Inspects stx to check whether evaluating it will declare a module—at least if module is
bound in the top-level to Racket’s module. The syntax object stx can contain a compiled
expression. Also, stx can be an end-of-file, on the grounds that read-syntax can produce
an end-of-file.

The expected-module-sym argument is currently ignored. In previous versions, the mod-
ule form stx was obliged to declare a module who name matched expected-module-sym .

If stx can declare a module in an appropriate top-level, then the check-module-form

procedure returns a syntax object that certainly will declare a module (adding explicit context
to the leading module if necessary) in any top-level. Otherwise, if source-v is not #f, a
suitable exception is raised using the write form of the source in the message; if source-v
is #f, #f is returned.

If stx is eof or eof wrapped as a syntax object, then an error is raised or #f is returned.

2.2 Getting Module Compiled Code

(require syntax/modcode)

21

(get-module-code module-path-v

[#:sub-path compiled-subdir0

compiled-subdir

#:compile compile-proc0

compile-proc

#:extension-handler ext-proc0

ext-proc

#:choose choose-proc

#:notify notify-proc

#:src-reader read-syntax-proc]) → any

module-path-v : module-path?

compiled-subdir0 : (and/c path-string? relative-path?)

= "compiled"

compiled-subdir : (and/c path-string? relative-path?)

= compiled-subdir0

compile-proc0 : (any/c . -> . any) = compile

compile-proc : (any/c . -> . any) = compile-proc0

ext-proc0 : (or/c false/c (path? boolean? . -> . any)) = #f

ext-proc : (or/c false/c (path? boolean? . -> . any))

= ext-proc0

choose-proc : (path? path? path?

. -> .

(or/c (symbols 'src 'zo 'so) false/c))

= (lambda (src zo so) #f)

notify-proc : (any/c . -> . any) = void

read-syntax-proc : (any/c input-port? . -> . syntax?)

= read-syntax

Returns a compiled expression for the declaration of the module specified by module-path-
v .

The compiled-subdir argument defaults to "compiled"; it specifies the sub-directory to
search for a compiled version of the module.

The compile-proc argument defaults to compile. This procedure is used to compile mod-
ule source if an already-compiled version is not available.

The ext-proc argument defaults to #f. If it is not #f, it must be a procedure of two
arguments that is called when a native-code version of path is should be used. In that case,
the arguments to ext-proc are the path for the extension, and a boolean indicating whether
the extension is a _loader file (#t) or not (#f).

The choose-proc argument is a procedure that takes three paths: a source path, a ".zo"

file path, and an extension path (for a non-_loader extension). Some of the paths may not
exist. The result should be either 'src, 'zo, 'so, or #f, indicating which variant should be

22

used or (in the case of #f) that the default choice should be used.

The default choice is computed as follows: if a ".zo" version of path is available and
newer than path itself (in one of the directories specified by compiled-subdir), then it is
used instead of the source. Native-code versions of path are ignored, unless only a native-
code non-_loader version exists (i.e., path itself does not exist). A _loader extension is
selected a last resort.

If an extension is prefered or is the only file that exists, it is supplied to ext-proc when
ext-proc is #f, or an exception is raised (to report that an extension file cannot be used)
when ext-proc is #f.

If notify-proc is supplied, it is called for the file (source, ".zo" or extension) that is
chosen.

If read-syntax-proc is provided, it is used to read the module from a source file (but not
from a bytecode file).

(moddep-current-open-input-file)

→ (path-string? . -> . input-port?)

(moddep-current-open-input-file proc) → void?

proc : (path-string? . -> . input-port?)

A parameter whose value is used like open-input-file to read a module source or ".zo"
file.

(struct exn:get-module-code exn (path)

#:extra-constructor-name make-exn:get-module-code)

path : path?

An exception structure type for exceptions raised by get-module-code.

2.3 Resolving Module Paths to File Paths

(require syntax/modresolve)

(resolve-module-path module-path-v

rel-to-path-v) → path?

module-path-v : module-path?

rel-to-path-v : (or/c path-string? (-> any) false/c)

Resolves a module path to filename path. The module path is resolved relative to rel-to-

path-v if it is a path string (assumed to be for a file), to the directory result of calling the

23

thunk if it is a thunk, or to the current directory otherwise.

(resolve-module-path-index module-path-index

rel-to-path-v) → path?

module-path-index : module-path-index?

rel-to-path-v : (or/c path-string? (-> any) false/c)

Like resolve-module-path but the input is a module path index; in this case, the rel-

to-path-v base is used where the module path index contains the “self” index. If module-
path-index depends on the “self” module path index, then an exception is raised unless
rel-to-path-v is a path string.

2.4 Simplifying Module Paths

(require syntax/modcollapse)

(collapse-module-path module-path-v

rel-to-module-path-v)

→ (or/c path? module-path?)

module-path-v : module-path?

rel-to-module-path-v : any/c

Returns a “simplified” module path by combining module-path-v with rel-to-module-

path-v , where the latter must have the form '(lib) or a symbol, '(file

<string>), '(planet), a path, or a thunk to generate one of those.

The result can be a path if module-path-v contains a path element that is needed for the
result, or if rel-to-module-path-v is a non-string path that is needed for the result; oth-
erwise, the result is a module path in the sense of module-path?.

When the result is a 'lib or 'planet module path, it is normalized so that equivalent
module paths are represented by equal? results.

(collapse-module-path-index module-path-index

rel-to-module-path-v)

→ (or/c path? module-path?)

module-path-index : module-path-index?

rel-to-module-path-v : any/c

Like collapse-module-path, but the input is a module path index; in this case, the rel-
to-module-path-v base is used where the module path index contains the “self” index.

24

2.5 Inspecting Modules and Module Dependencies

(require syntax/moddep)

Re-exports syntax/modread, syntax/modcode, syntax/modcollapse, and syn-

tax/modresolve, in addition to the following:

(show-import-tree module-path-v) → void?

module-path-v : module-path?

A debugging aid that prints the import hierarchy starting from a given module path.

25

3 Macro Transformer Helpers

3.1 Extracting Inferred Names

(require syntax/name)

(syntax-local-infer-name stx) → any/c

stx : syntax?

Similar to syntax-local-name except that stx is checked for an 'inferred-name prop-
erty (which overrides any inferred name). If neither syntax-local-name nor 'inferred-
name produce a name, then a name is constructed from the source-location information in
stx , if any. If no name can be constructed, the result is #f.

3.2 Support for local-expand

(require syntax/context)

(build-expand-context v) → list?

v : (or/c symbol? list?)

Returns a list suitable for use as a context argument to local-expand for an internal-
definition context. The v argument represents the immediate context for expansion. The
context list builds on (syntax-local-context) if it is a list.

(generate-expand-context) → list?

Calls build-expand-context with a generated symbol.

3.3 Parsing define-like Forms

(require syntax/define)

(normalize-definition defn-stx

lambda-id-stx

[check-context?
opt+kws?]) → identifier? syntax?

defn-stx : syntax?

lambda-id-stx : identifier?

26

check-context? : boolean? = #t

opt+kws? : boolean? = #t

Takes a definition form whose shape is like define (though possibly with a different name)
and returns two values: the defined identifier and the right-hand side expression.

To generate the right-hand side, this function may need to insert uses of lambda. The
lambda-id-stx argument provides a suitable lambda identifier.

If the definition is ill-formed, a syntax error is raised. If check-context? is true, then a
syntax error is raised if (syntax-local-context) indicates that the current context is an
expression context. The default value of check-context? is #t.

If opt-kws? is #t, then arguments of the form [id expr], keyword id, and keyword

[id expr] are allowed, and they are preserved in the expansion.

3.4 Flattening begin Forms

(require syntax/flatten-begin)

(flatten-begin stx) → (listof syntax?)

stx : syntax?

Extracts the sub-expressions from a begin-like form, reporting an error if stx does not have
the right shape (i.e., a syntax list). The resulting syntax objects have annotations transferred
from stx using syntax-track-origin.

3.5 Expanding define-struct-like Forms

(require syntax/struct)

(parse-define-struct stx orig-stx) → identifier?

(or/c identifier? false/c)

(listof identifier?)

syntax?

stx : syntax?

orig-stx : syntax?

Parses stx as a define-struct form, but uses orig-stx to report syntax errors (under
the assumption that orig-stx is the same as stx , or that they at least share sub-forms).
The result is four values: an identifier for the struct type name, a identifier or #f for the
super-name, a list of identifiers for fields, and a syntax object for the inspector expression.

27

(build-struct-names name-id

field-ids

omit-sel?

omit-set?

[src-stx]) → (listof identifier?)

name-id : identifier?

field-ids : (listof identifier?)

omit-sel? : boolean?

omit-set? : boolean?

src-stx : (or/c syntax? false/c) = #f

Generates the names bound by define-struct given an identifier for the struct type name
and a list of identifiers for the field names. The result is a list of identifiers:

• struct:name-id

• make-name-id

• name-id?

• name-id-field , for each field in field-ids .

• set-name-id-field! (getter and setter names alternate).

•

If omit-sel? is true, then the selector names are omitted from the result list. If omit-set?
is true, then the setter names are omitted from the result list.

The default src-stx is #f; it is used to provide a source location to the generated identifiers.

(build-struct-generation name-id

field-ids

omit-sel?

omit-set?

[super-type
prop-value-list

immutable-k-list])
→ (listof identifier?)

name-id : identifier?

field-ids : (listof identifier?)

omit-sel? : boolean?

omit-set? : boolean?

super-type : any/c = #f

prop-value-list : list? = empty

28

immutable-k-list : list? = empty

Takes the same arguments as build-struct-names and generates an S-expression for code
using make-struct-type to generate the structure type and return values for the identifiers
created by build-struct-names. The optional super-type , prop-value-list , and
immutable-k-list parameters take S-expression values that are used as the corresponding
arguments to make-struct-type.

(build-struct-generation* all-name-ids

name-id

field-ids

omit-sel?

omit-set?

[super-type
prop-value-list

immutable-k-list])
→ (listof identifier?)

all-name-ids : (listof identifier?)

name-id : identifier?

field-ids : (listof identifier?)

omit-sel? : boolean?

omit-set? : boolean?

super-type : any/c = #f

prop-value-list : list? = empty

immutable-k-list : list? = empty

Like build-struct-generation, but given the names produced by build-struct-

names, instead of re-generating them.

(build-struct-expand-info name-id

field-ids

omit-sel?

omit-set?

base-name

base-getters

base-setters) → any

name-id : identifier?

field-ids : (listof identifier?)

omit-sel? : boolean?

omit-set? : boolean?

base-name : (or/c identifier? boolean?)

base-getters : (listof (or/c identifier? false/c))

base-setters : (listof (or/c identifier? false/c))

29

Takes the same arguments as build-struct-names, plus a parent identifier/#t/#f and a list
of accessor and mutator identifiers (possibly ending in #f) for a parent type, and generates an
S-expression for expansion-time code to be used in the binding for the structure name. A #t

for the base-name means no super-type, #f means that the super-type (if any) is unknown,
and an identifier indicates the super-type identifier.

(struct-declaration-info? v) → boolean?

v : any/c

Returns #t if x has the shape of expansion-time information for structure type declarations,
#f otherwise. See §4.6 “Structure Type Transformer Binding”.

(generate-struct-declaration orig-stx

name-id

super-id-or-false

field-id-list

current-context

make-make-struct-type

[omit-sel?
omit-set?]) → syntax?

orig-stx : syntax?

name-id : identifier?

super-id-or-false : (or/c identifier? false/c)

field-id-list : (listof identifier?)

current-context : any/c

make-make-struct-type : procedure?

omit-sel? : boolean? = #f

omit-set? : boolean? = #f

This procedure implements the core of a define-struct expansion.

The generate-struct-declaration procedure is called by a macro expander to generate
the expansion, where the name-id , super-id-or-false , and field-id-list arguments
provide the main parameters. The current-context argument is normally the result of
syntax-local-context. The orig-stx argument is used for syntax errors. The optional
omit-sel? and omit-set? arguments default to #f; a #t value suppresses definitions of
field selectors or mutators, respectively.

The make-struct-type procedure is called to generate the expression to actually create
the struct type. Its arguments are orig-stx , name-id-stx, defined-name-stxes, and
super-info. The first two are as provided originally to generate-struct-declaration,
the third is the set of names generated by build-struct-names, and the last is super-struct
info obtained by resolving super-id-or-false when it is not #f, #f otherwise.

30

The result should be an expression whose values are the same as the result of make-struct-
type. Thus, the following is a basic make-make-struct-type :

(lambda (orig-stx name-stx defined-name-stxes super-info)

#`(make-struct-type '#,name-stx

#,(and super-info (list-ref super-info 0))

#,(/ (- (length defined-name-stxes) 3) 2)

0 #f))

but an actual make-make-struct-type will likely do more.

3.6 Resolving include-like Paths

(require syntax/path-spec)

(resolve-path-spec path-spec-stx

source-stx

expr-stx

build-path-stx) → complete-path?

path-spec-stx : syntax?

source-stx : syntax?

expr-stx : syntax?

build-path-stx : syntax?

Resolves the syntactic path specification path-spec-stx as for include.

The source-stx specifies a syntax object whose source-location information determines
relative-path resolution. The expr-stx is used for reporting syntax errors. The build-

path-stx is usually #'build-path; it provides an identifier to compare to parts of path-
spec-stx to recognize the build-path keyword.

3.7 Controlling Syntax Templates

(require syntax/template)

31

(transform-template template-stx

#:save save-proc

#:restore-stx restore-proc-stx

[#:leaf-save leaf-save-proc

#:leaf-restore-stx leaf-restore-proc-stx

#:leaf-datum-stx leaf-datum-proc-stx

#:pvar-save pvar-save-proc

#:pvar-restore-stx pvar-restore-stx

#:cons-stx cons-proc-stx

#:ellipses-end-stx ellipses-end-stx

#:constant-as-leaf? constant-as-leaf?])
→ syntax?

template-stx : syntax?

save-proc : (syntax? . -> . any/c)

restore-proc-stx : syntax?

leaf-save-proc : (syntax? . -> . any/c) = save-proc

leaf-restore-proc-stx : syntax? = #'(lambda (data stx) stx)

leaf-datum-proc-stx : syntax? = #'(lambda (v) v)

pvar-save-proc : (identifier? . -> . any/c) = (lambda (x) #f)

pvar-restore-stx : syntax? = #'(lambda (d stx) stx)

cons-proc-stx : syntax? = cons

ellipses-end-stx : syntax? = #'values

constant-as-leaf? : boolean? = #f

Produces an representation of an expression similar to #`(syntax #,template-stx), but
functions like save-proc can collect information that might otherwise be lost by syntax

(such as properties when the syntax object is marshaled within bytecode), and run-time
functions like the one specified by restore-proc-stx can use the saved information or
otherwise process the syntax object that is generated by the template.

The save-proc is applied to each syntax object in the representation of the original template
(i.e., in template-stx). If constant-as-leaf? is #t, then save-proc is applied only
to syntax objects that contain at least one pattern variable in a sub-form. The result of
save-proc is provided back as the first argument to restore-proc-stx , which indicates
a function with a contract (-> any/c syntax any/c any/c); the second argument to
restore-proc-stx is the syntax object that syntax generates, and the last argument is
a datum that have been processed recursively (by functions such as restore-proc-stx)
and that normally would be converted back to a syntax object using the second argument’s
context, source, and properties. Note that save-proc works at expansion time (with respect
to the template form), while restore-proc-stx indicates a function that is called at run
time (for the template form), and the data that flows from save-proc to restore-proc-

stx crosses phases via quote.

The leaf-save-proc and leaf-restore-proc-stx procedures are analogous to save-

proc and restore-proc-stx , but they are applied to leaves, so there is no third argument

32

for recursively processed sub-forms. The function indicated by leaf-restore-proc-stx

should have the contract (-> any/c syntax? any/c).

The leaf-datum-proc-stx procedure is applied to leaves that are not syntax objects,
which can happen because pairs and the empty list are not always individually wrapped
as syntax objects. The function should have the contract (-> any/c any/c). When
constant-as-leaf? is #f, the only possible argument to the procedure is null.

The pvar-save and pvar-restore-stx procedures are analogous to save-proc and
restore-proc-stx , but they are applied to pattern variables. The pvar-restore-stx

procedure should have the contract (-> any/c syntax? any/c), where the second argu-
ment corresponds to the substitution of the pattern variable.

The cons-proc-stx procedure is used to build intermediate pairs, including pairs passed
to restore-proc-stx and pairs that do not correspond to syntax objects.

The ellipses-end-stx procedure is an extra filter on the syntax object that follows a
sequence of ... ellipses in the template. The procedure should have the contract (-> any/c

any/c).

The following example illustrates a use of transform-template to implement a syn-

tax/shape form that preserves the 'paren-shape property from the original template,
even if the template code is marshaled within bytecode.

(define-for-syntax (get-shape-prop stx)

(syntax-property stx 'paren-shape))

(define (add-shape-prop v stx datum)

(syntax-property (datum->syntax stx datum stx stx stx)

'paren-shape

v))

(define-syntax (syntax/shape stx)

(syntax-case stx ()

[(_ tmpl)

(transform-template #'tmpl

#:save get-shape-prop

#:restore-stx #'add-shape-prop)]))

33

4 Reader Helpers

4.1 Raising exn:fail:read

(require syntax/readerr)

(raise-read-error msg-string

source

line

col

pos

span) → any

msg-string : string?

source : any/c

line : (or/c number? false/c)

col : (or/c number? false/c)

pos : (or/c number? false/c)

span : (or/c number? false/c)

Creates and raises an exn:fail:read exception, using msg-string as the base error mes-
sage.

Source-location information is added to the error message using the last five arguments (if
the error-print-source-location parameter is set to #t). The source argument is an
arbitrary value naming the source location—usually a file path string. Each of the line , pos
arguments is #f or a positive exact integer representing the location within source-name

(as much as known), col is a non-negative exact integer for the source column (if known),
and span is #f or a non-negative exact integer for an item range starting from the indicated
position.

The usual location values should point at the beginning of whatever it is you were reading,
and the span usually goes to the point the error was discovered.

(raise-read-eof-error msg-string

source

line

col

pos

span) → any

msg-string : string?

source : any/c

line : (or/c number? false/c)

col : (or/c number? false/c)

34

pos : (or/c number? false/c)

span : (or/c number? false/c)

Like raise-read-error, but raises exn:fail:read:eof instead of exn:fail:read.

4.2 Module Reader
See also §17.3
“Defining new
#lang Languages”
in Guide: Racket.

(require syntax/module-reader)

The syntax/module-reader library provides support for defining #lang readers. It is
normally used as a module language, though it may also be required to get make-meta-
reader. It provides all of the bindings of scheme/base other than #%module-begin.

(#%module-begin module-path)

(#%module-begin module-path reader-option ... form)

(#%module-begin reader-option ... form)

reader-option = #:read read-expr

| #:read-syntax read-syntax-expr

| #:whole-body-readers? whole?-expr

| #:wrapper1 wrapper1-expr

| #:wrapper2 wrapper2-expr

| #:language lang-expr

| #:info info-expr

| #:language-info language-info-expr

read-expr : (input-port? . -> . any/c)

read-syntax-expr : (any/c input-port? . -> . any/c)

whole-expr : any/c

wrapper1-expr : (or/c ((-> any/c) . -> . any/c)

((-> any/c) boolean? . -> . any/c))

wrapper2-expr : (or/c (input-port? (input-port? . -> . any/c)

. -> . any/c)

(input-port? (input-port? . -> . any/c)

boolean? . -> . any/c))

info-expr : (symbol? any/c (symbol? any/c . -> . any/c) . -> . any/c)

module-info-expr : (or/c (vector/c module-path? symbol? any/c) #f)

lang-expr : (or/c module-path?

(and/c syntax? (compose module-path? syntax->datum))

procedure?)

35

In its simplest form, the body of a module written with syntax/module-reader contains
just a module path, which is used in the language position of read modules. For example, a
module something/lang/reader implemented as

(module reader syntax/module-reader

module-path)

creates a reader such that a module source

#lang something

....

is read as

(module name-id module-path

(#%module-begin))

Keyword-based reader-options allow further customization, as listed below. Additional
forms are as in the body of scheme/base module; they can import bindings and define
identifiers used by the reader-options.

• #:read and #:read-syntax (both or neither must be supplied) specify alternate
readers for parsing the module body—replacements read and read-syntax, respec-
tively. Normally, the replacements for read and read-syntax are applied repeatedly
to the module source until eof is produced, but see also #:whole-body-readers?.

For example, a language built on the Honu reader could be implemented with:

(module reader syntax/module-reader

module-path

#:read read-honu

#:read-syntax read-honu-syntax)

See also #:wrapper1 and #:wrapper2, which support simple parameterization of
readers rather than wholesale replacement.

• #:whole-body-readers? specified as true indicates that the #:read and #:read-

syntax functions each produce a list of S-expressions or syntax objects for the module
content, so that each is applied just once to the input stream.

If the resulting list contains a single form that starts with the symbol '#%module-
begin (or a syntax object whose datum is that symbol), then the first item is used as
the module body; otherwise, a '#%module-begin (symbol or identifier) is added to
the beginning of the list to form the module body.

• #:wrapper1 specifies a function that controls the dynamic context in which the read
and read-syntax functions are called. A #:wrapper1-specified function must ac-
cept a thunk, and it normally calls the thunk to produce a result while parameteriz-
ing the call. Optionally, a #:wrapper1-specified function can accept a boolean that
indicates whether it is used in read (#f) or read-syntax (#t) mode.

36

For example, a language like scheme/base but with case-insensitive reading of sym-
bols and identifiers can be implemented as

(module reader syntax/module-reader

scheme/base

#:wrapper1 (lambda (t)

(parameterize ([read-case-sensitive #f])

(t))))

Using a readtable, you can implement languages that are extensions of plain S-
expressions.

• #:wrapper2 is like #:wrapper1, but a #:wrapper2-specified function receives the
input port to be read, and the function that it receives accepts an input port (usually, but
not necessarily the same input port). A #:wrapper2-specified function can optionally
accept an boolean that indicates whether it is used in read (#f) or read-syntax (#t)
mode.

• #:info specifies an implementation of reflective information that is used by external
tools to manipulate the source of modules in the language something . For example,
DrRacket uses information from #:info to determine the style of syntax coloring that
it should use for editing a module’s source.

The #:info specification should be a function of three arguments: a symbol indicating
the kind of information requested (as defined by external tools), a default value that
normally should be returned if the symbol is not recognized, and a default-filtering
function that takes the first two arguments and returns a result.

The expression after #:info is placed into a context where language-module

and language-data are bound. The language-module identifier is bound to the
module-path that is used for the read module’s language as written directly or as de-
termined through #:language. The language-data identifier is bound to the second
result from #:language, or #f by default.

The default-filtering function passed to the #:info function is intended to pro-
vide support for information that syntax/module-reader can provide automati-
cally. Currently, it recognizes only the 'module-language key, for which it returns
language-module; it returns the given default value for any other key.

In the case of the DrRacket syntax-coloring example, DrRacket supplies 'color-

lexer as the symbol argument, and it supplies #f as the default. The default-filtering
argument (i.e., the third argument to the #:info function) currently just returns the
default for 'color-lexer.

• #:language-info specifies an implementation of reflective information that is used
by external tools to manipulate the module in the language something in its ex-
panded, compiled, or declared form (as opposed to source). For example, when
Racket starts a program, it uses information attached to the main module to initial-
ize the run-time environment.

37

Since the expanded/compiled/declared form exists at a different time than when the
source is read, a #:language-info specification is a vector that indicates an im-
plementation of the reflective information, instead of a direct implementation as a
function like #:info. The first element of the vector is a module path, the second is a
symbol corresponding to a function exported from the module, and the last element is
a value to be passed to the function. The last value in the vector must be one that can
be written with write and read back with read. When the exported function indicated
by the first two vector elements is called with the value from the last vector element,
the result should be a function or two arguments: a symbol and a default value. The
symbol and default value are used as for the #:info function (but without an extra
default-filtering function).

The value specified by #:language-info is attached to the module form that is
parsed from source through the 'module-language syntax property. See module for
more information.

The expression after #:language-info is placed into a context where language-

module are language-data are bound, the same as for #:info.

In the case of the Racket run-time configuration example, Racket uses the
#:language-info vector to obtain a function, and then it passes 'configure-

runtime to the function to obtain information about configuring the runtime envi-
ronment. See also §17.1.5 “Language Run-Time Configuration”.

• #:language allows the language of the read module to be computed dynamically
and based on the program source, instead of using a constant module-path . (Either
#:language or module-path must be provided, but not both.)

This value of the #:language option can be either a module path (possibly as a syntax
object) that is used as a module language, or it can be a procedure. If it is a procedure
it can accept either

– 0 arguments;

– 1 argument: an input port; or

– 5 arguments: an input port, a syntax object whose datum is a module path for
the enclosing module as it was referenced through #lang or #reader, a starting
line number (positive exact integer) or #f, a column number (non-negative exact
integer) or #f, and a position number (positive exact integer) or #f.

The result can be either

– a single value, which is a module path or a syntax object whose datum is a
module path, to be used like module-path ; or

– two values, where the first is like a single-value result and the second can be any
value.

The second result, which defaults to #f if only a single result is produced, is made
available to the #:info and #:module-info functions through the language-data
binding. For example, it can be a specification derived from the input stream that

38

changes the module’s reflective information (such as the syntax-coloring mode or the
output-printing styles).

As another example, the following reader defines a “language” that ignores the contents of
the file, and simply reads files as if they were empty:

(module ignored syntax/module-reader

scheme/base

#:wrapper1 (lambda (t) (t) '()))

Note that the wrapper still performs the read, otherwise the module loader would complain
about extra expressions.

As a more useful example, the following module language is similar to at-exp, where the
first datum in the file determines the actual language (which means that the library specifi-
cation is effectively ignored):

(module reader syntax/module-reader

-ignored-

#:wrapper2

(lambda (in rd stx?)

(let* ([lang (read in)]

[mod (parameterize ([current-readtable

(make-at-readtable)])

(rd in))]

[mod (if stx? mod (datum->syntax #f mod))]

[r (syntax-case mod ()

[(module name lang* . body)

(with-syntax ([lang (datum->syntax

#'lang* lang #'lang*)])

(syntax/loc mod (module name lang . body)))])])

(if stx? r (syntax->datum r))))

(require scribble/reader))

The ability to change the language position in the resulting module expression can be useful
in cases such as the above, where the base language module is chosen based on the input.
To make this more convenient, you can omit the module-path and instead specify it via
a #:language expression. This expression can evaluate to a datum or syntax object that
is used as a language, or it can evaluate to a thunk. In the latter case, the thunk is invoked
to obtain such a datum before reading the module body begins, in a dynamic extent where
current-input-port is the source input. A syntax object is converted using syntax-

>datum when a datum is needed (for read instead of read-syntax). Using #:language,
the last example above can be written more concisely:

(module reader syntax/module-reader

#:language read

39

#:wrapper2 (lambda (in rd stx?)

(parameterize ([current-readtable

(make-at-readtable)])

(rd in)))

(require scribble/reader))

For such cases, however, the alternative reader constructor make-meta-reader implements
a might tightly controlled reading of the module language.

(make-meta-reader self-sym

path-desc-str

[#:read-spec read-spec]
module-path-parser

convert-read

convert-read-syntax

convert-get-info)

→ procedure? procedure? procedure?

self-sym : symbol?

path-desc-str : string?

read-spec : (input-port? . -> . any/c) = (lambda (in))

module-path-parser : (any/c . -> . (or/c module-path? #f))

convert-read : (procedure? . -> . procedure?)

convert-read-syntax : (procedure? . -> . procedure?)

convert-get-info : (procedure? . -> . procedure?)

Generates procedures suitable for export as read (see read and #lang), read-syntax (see
read-syntax and #lang), and get-info (see read-language and #lang), respectively,
where the procedures chains to another language that is specified in an input stream. The at-exp,

reader, and
planet languages
are implemented
using this function.

The generated functions expect a target language description in the input stream that is pro-
vided to read-spec . The default read-spec extracts a non-empty sequence of bytes af-
ter one or more space and tab bytes, stopping at the first whitespace byte or end-of-file
(whichever is first), and it produces either such a byte string or #f. If read-spec produces
#f, a reader exception is raised, and path-desc-str is used as a description of the expected
language form in the error message. The reader

language supplies
read for
read-spec . The
at-exp and
planet languages
use the default
read-spec .

The result of read-spec is converted to a module path using module-path-parser . If
module-path-parser produces #f, a reader exception is raised in the same way as when
read-spec produces a #f. The planet languages supply a module-path-parser that
converts a byte string to a module path.

If loading the module produced by module-path-parser succeeds, then the loaded mod-
ule’s read, read-syntax, or get-info export is passed to convert-read , convert-
read-syntax , or convert-get-info , respectively. The at-exp

language supplies
convert-read and
convert-read-syntax

to add
@-expression
support to the
current readtable
before chaining to
the given
procedures.

40

The procedures generated by make-meta-reader are not meant for use with the
syntax/module-reader language; they are meant to be exported directly.

(wrap-read-all mod-path

in

read

mod-path-stx

src

line

col

pos) → any/c

mod-path : module-path?

in : input-port?

read : (input-port . -> . any/c)

mod-path-stx : syntax?

src : (or/c syntax? #f)

line : number?

col : number?

pos : number?

This function is deprecated; the syntax/module-reader language can be adapted using
the various keywords to arbitrary readers; please use it instead.

Repeatedly calls read on in until an end of file, collecting the results in order into lst , and
derives a name-id from (object-name in). The last five arguments are used to construct
the syntax object for the language position of the module. The result is roughly

`(module ,name-id ,mod-path ,@lst)

41

5 Non-Module Compilation And Expansion

(require syntax/toplevel)

(expand-syntax-top-level-with-compile-time-evals stx) → syntax?

stx : syntax?

Expands stx as a top-level expression, and evaluates its compile-time portion for the benefit
of later expansions.

The expander recognizes top-level begin expressions, and interleaves the evaluation and
expansion of of the begin body, so that compile-time expressions within the begin body
affect later expansions within the body. (In other words, it ensures that expanding a begin

is the same as expanding separate top-level expressions.)

The stx should have a context already, possibly introduced with namespace-syntax-

introduce.

(expand-top-level-with-compile-time-evals stx) → syntax?

stx : syntax?

Like expand-syntax-top-level-with-compile-time-evals, but stx is first given
context by applying namespace-syntax-introduce to it.

(expand-syntax-top-level-with-compile-time-evals/flatten stx)

→ (listof syntax?)

stx : syntax?

Like expand-syntax-top-level-with-compile-time-evals, except that it returns a
list of syntax objects, none of which have a begin. These syntax objects are the flattened
out contents of any begins in the expansion of stx .

(eval-compile-time-part-of-top-level stx) → void?

stx : syntax?

Evaluates expansion-time code in the fully expanded top-level expression represented by
stx (or a part of it, in the case of begin expressions). The expansion-time code might affect
the compilation of later top-level expressions. For example, if stx is a require expression,
then namespace-require/expansion-time is used on each require specification in the
form. Normally, this function is used only by expand-top-level-with-compile-time-

evals.

(eval-compile-time-part-of-top-level/compile stx)

42

→ (listof compiled-expression?)

stx : syntax?

Like eval-compile-time-part-of-top-level, but the result is compiled code.

43

6 Trusting Standard Recertifying Transformers

(require syntax/trusted-xforms)

The syntax/trusted-xforms library has no exports. It exists only to require other mod-
ules that perform syntax transformations, where the other transformations must use syntax-
recertify. An application that wishes to provide a less powerful code inspector to a sub-
program should generally attach syntax/trusted-xforms to the sub-program’s names-
pace so that things like the class system from scheme/class work properly.

44

7 Attaching Documentation to Exports

(require syntax/docprovide)

(provide-and-document doc-label-id doc-row ...)

doc-row = (section-string (name type-datum doc-string ...) ...)

| (all-from prefix-id module-path doc-label-id)

| (all-from-except prefix-id module-path doc-label-id id ...)

name = id

| (local-name-id external-name-id)

A form that exports names and records documentation information.

The doc-label-id identifier is used as a key for accessing the documentation through
lookup-documentation. The actual documentation is organized into “rows”, each with a
section title.

A row has one of the following forms:

• (section-string (name type-datum doc-string ...) ...)

Creates a documentation section whose title is section-string , and pro-
vides/documents each name . The type-datum is arbitrary, for use by clients that
call lookup-documentation. The doc-strings are also arbitrary documentation
information, usually concatenated by clients.

A name is either an identifier or a renaming sequence (local-name-id extenal-

name-id).

Multiple rows with the same section name will be merged in the documentation output.
The final order of sections matches the order of the first mention of each section.

• (all-from prefix-id module-path doc-label-id)

• (all-from-except prefix-id module-path doc-label-id id ...)

Merges documentation and provisions from the specified module into the current one;
the prefix-id is used to prefix the imports into the current module (so they can
be re-exported). If ids are provided, the specified ids are not re-exported and their
documentation is not merged.

(lookup-documentation module-path-v

label-sym) → any

module-path-v : module-path?

label-sym : symbol?

45

Returns documentation for the specified module and label. The module-path-v argument
is a quoted module path, like the argument to dynamic-require. The label-sym identifies
a set of documentation using the symbol as a label identifier in provide-and-document.

46

8 Parsing and classifying syntax

The syntax/parse library provides a framework for describing and parsing syntax. Us-
ing syntax/parse, macro writers can define new syntactic categories, specify their legal
syntax, and use them to write clear, concise, and robust macros. The library also provides
a pattern-matching form, syntax-parse, which offers many improvements over syntax-
case.

(require syntax/parse)

8.1 Quick Start

This section provides a rapid introduction to the syntax/parse library for the macro pro-
grammer.

To use syntax-parse to write a macro transformer, import it for-syntax:

(require (for-syntax syntax/parse))

For example, here is is a module that defines mylet, a macro that has the same behavior as
the standard let form (including “named let”):

(module example racket/base

(require (for-syntax scheme/base syntax/parse))

(define-syntax (mylet stx)

(syntax-parse stx

[(_ loop:id ((x:id e:expr) ...) . body)

#'(letrec ([loop (lambda (x ...) . body)])

(loop e ...))]

[(_ ((x:id e:expr) ...) . body)

#'((lambda (x ...) . body) e ...)])))

The macro is defined as a procedure that takes one argument, stx. The syntax-parse form
is similar to syntax-case, except that there is no literals list between the syntax argument
and the sequence of clauses.

Note: Remember not to put a syntax-case style literals list between the syntax argument
and the clauses!

The patterns contain identifiers consisting of two parts separated by a colon character, such
as loop:id or e:expr. These are pattern variables annotated with syntax classes. For
example, loop:id is a pattern variable named loop with the syntax class id (identifier).
Note that only the pattern variable part is used in the syntax template.

Syntax classes restrict what a pattern variable can match. Above, loop only matches an

47

identifier, so the first clause only matches the “named-let” syntax. Syntax classes replace
some uses of syntax-case’s “fenders” or guard expressions. They also enable syntax-

parse to automatically give specific error messages.

The syntax/parse library provides several built-in syntax classes (see §8.5 “Library syntax
classes and literal sets” for a list). Programmers can also define their own using define-

syntax-class:

(module example-syntax racket/base

(require syntax/parse)

(provide binding)

(define-syntax-class binding

#:attributes (x e)

(pattern (x:id e:expr))))

(module example racket/base

(require (for-syntax racket/base

syntax/parse

'example-syntax))

(define-syntax (mylet stx)

(syntax-parse stx

[(_ loop:id (b:binding ...) . body)

#'(letrec ([loop (lambda (b.x ...) . body)])

(loop b.e ...))]

[(_ (b:binding ...) . body)

#'((lambda (b.x ...) . body) b.e ...)])))

Note: Syntax classes must be defined in the same phase as the syntax-parse expression
they’re used in. The right-hand side of a macro is at phase 1, so syntax classes it uses
must be defined in a separate module and required for-syntax. Since the auxiliary module
uses define-syntax-class at phase 0, it has (require syntax/parse), with no for-

syntax.

Alternatively, the syntax class could be made a local definition, thus:

(module example racket/base

(require (for-syntax scheme/base

syntax/parse))

(define-syntax (mylet stx)

(define-syntax-class binding

#:attributes (x e)

(pattern (x:id e:expr)))

(syntax-parse stx

[(_ loop:id (b:binding ...) . body)

#'(letrec ([loop (lambda (b.x ...) . body)])

(loop b.e ...))]

48

[(_ (b:binding ...) . body)

#'((lambda (b.x ...) . body) b.e ...)])))

A syntax class is an abstraction of a syntax pattern. The syntax class binding gives a name
to the repeated pattern fragment (x:id e:expr). The components of the fragment, x and e,
become attributes of the syntax class. When b:binding matches, b gets bound to the whole
binding pair, and b.x and b.e get bound to the variable name and expression, respectively.
Actually, all of them are bound to sequences, because of the ellipses.

Syntax classes can have multiple alternative patterns. Suppose we wanted to extend mylet

to allow a simple identifier as a binding, in which case it would get the value #f:

(mylet ([a 1] b [c 'foo]))

Here’s how the syntax class would change: The (require
(for-template

scheme/base)) is
needed for the
quote expression.
If the syntax class
definition were a
local definition in
the same module,
the for-template
would be
unnecessary.

(module example-syntax scheme/base

(require syntax/parse)

(require (for-template scheme/base))

(provide binding)

(define-syntax-class binding

#:attributes (x e)

(pattern (x:id e:expr))

(pattern x:id

#:with e #''#f)))

The second pattern matches unparenthesized identifiers. The e attribute is bound using a
#:with clause, which matches the pattern e against the syntax from evaluating #'#f.

Optional keyword arguments are supported via head patterns. Unlike normal patterns, which
match one term, head patterns can match a variable number of subterms in a list.

Suppose mylet accepted an optional #:check keyword with one argument, a procedure
that would be applied to every variable’s value. Here’s one way to write it (dropping the
named-let variant for simplicity):

(define-syntax (mylet stx)

(syntax-parse stx

[(_ (∼optional (∼seq #:check pred)) (b:binding ...) . body)

#`((lambda (b.x ...)

#,(if (attribute pred)

#'(unless (and (pred b.x) ...) (error 'check))

#'(void))

. body)

b.e ...)]))

An optional subpattern might not match, so attributes within an ∼optional form might

49

not be bound to syntax. Such non-syntax-valued attributes may not be used within syntax
templates. The attribute special form is used to get the value of an attribute; if the attribute
didn’t get matched, the value is #f.

Here’s another way write it, using #:defaults to give the pred attribute a default value:

(define-syntax (mylet stx)

(syntax-parse stx

[(_ (∼optional (∼seq #:check pred)

#:defaults ([pred #'(lambda (x) #t)]))

(b:binding ...) . body)

#`((lambda (b.x ...)

(unless (and (pred b.x) ...) (error 'check))

. body)

b.e ...)]))

Programmers can also create abstractions over head patterns, using define-splicing-

syntax-class. Here it is, rewritten to use multiple alternatives instead of ∼optional:

(define-splicing-syntax-class optional-check

#:attributes (pred)

(pattern (∼seq #:check pred))

(pattern (∼seq)
#:with pred #'(lambda (x) #t)))

Note: When defining a splicing syntax class, remember to include ∼seq in the pattern!

Here is the corresponding macro:

(define-syntax (mylet stx)

(syntax-parse stx

[(_ c:optional-check (b:binding ...) . body)

#'((lambda (b.x ...)

(unless (and (c.pred b.x) ...) (error 'check))

. body)

b.e ...)]))

The documentation in the following sections contains additional examples of syn-

tax/parse features.

8.2 Parsing and classifying syntax

This section describes syntax/parse’s facilities for parsing and classifying syntax. These
facilities use a common language of syntax patterns, which is described in detail in the next
section, §8.3 “Syntax patterns”.

50

8.2.1 Parsing syntax

Two parsing forms are provided: syntax-parse and syntax-parser.

(syntax-parse stx-expr parse-option ... clause ...+)

parse-option = #:context context-expr

| #:literals (literal ...)

| #:literal-sets (literal-set ...)

| #:conventions (convention-id ...)

| #:local-conventions (convention-rule ...)

literal = literal-id

| (pattern-id literal-id)

| (pattern-id literal-id #:phase phase-expr)

literal-set = literal-set-id

| (literal-set-id literal-set-option ...)

literal-set-option = #:at context-id

| #:phase phase-expr

clause = (syntax-pattern pattern-directive ... expr ...+)

stx-expr : syntax?

Evaluates stx-expr , which should produce a syntax object, and matches it against the
clauses in order. If some clause’s pattern matches, its attributes are bound to the corre-
sponding subterms of the syntax object and that clause’s side conditions and expr is evalu-
ated. The result is the result of expr .

If the syntax object fails to match any of the patterns (or all matches fail the corresponding
clauses’ side conditions), a syntax error is raised.

The following options are supported:

#:context context-expr

context-expr : syntax?

When present, context-expr is used in reporting parse failures; otherwise
stx-expr is used.

Examples:
> (syntax-parse #'(a b 3)

51

[(x:id ...) 'ok])

a: expected identifier at: 3
> (syntax-parse #'(a b 3)

#:context #'(lambda (a b 3) (+ a b))

[(x:id ...) 'ok])

lambda: expected identifier at: 3

#:literals (literal ...)

literal = literal-id

| (pattern-id literal-id)

| (pattern-id literal-id #:phase phase-expr)

Unlike
syntax-case,
syntax-parse

requires all literals
to have a binding.
To match identifiers
by their symbolic
names, use the
∼datum pattern
form instead.

The #:literals option specifies identifiers that should be treated as liter-
als rather than pattern variables. An entry in the literals list has two com-
ponents: the identifier used within the pattern to signify the positions to be
matched (pattern-id), and the identifier expected to occur in those positions
(literal-id). If the entry is a single identifier, that identifier is used for both
purposes.

If the #:phase option is given, then the literal is compared at phase phase-

expr . Specifically, the binding of the literal-id at phase phase-expr must
match the input’s binding at phase phase-expr .

#:literal-sets (literal-set ...)

literal-set = literal-set-id

| (literal-set-id literal-set-option ...)

literal-set-option = #:at context-id

| #:phase phase-expr

Many literals can be declared at once via one or more literal sets, imported with
the #:literal-sets option. See literal sets for more information.

#:conventions (conventions-id ...)

Imports conventions that give default syntax classes to pattern variables that do
not explicitly specify a syntax class.

#:local-conventions (convention-rule ...)

Uses the conventions specified. The advantage of #:local-conventions over
#:conventions is that local conventions can be in the scope of syntax-class
parameter bindings. See the section on conventions for examples.

52

Each clause consists of a syntax pattern, an optional sequence of pattern directives, and a
non-empty sequence of body expressions.

(syntax-parser parse-option ... clause ...+)

Like syntax-parse, but produces a matching procedure. The procedure accepts a single
argument, which should be a syntax object.

8.2.2 Classifying syntax

Syntax classes provide an abstraction mechanism for syntax patterns. Built-in syntax classes
are supplied that recognize basic classes such as identifier and keyword. Programmers
can compose basic syntax classes to build specifications of more complex syntax, such as
lists of distinct identifiers and formal arguments with keywords. Macros that manipulate the
same syntactic structures can share syntax class definitions.

(define-syntax-class name-id stxclass-option ...

stxclass-variant ...+)

(define-syntax-class (name-id arg-id ...) stxclass-option ...

stxclass-variant ...+)

stxclass-option = #:attributes (attr-arity-decl ...)

| #:description description-expr

| #:opaque

| #:literals (literal-entry ...)

| #:literal-sets (literal-set ...)

| #:conventions (convention-id ...)

| #:local-conventions (convention-rule ...)

attr-arity-decl = attr-name-id

| (attr-name-id depth)

stxclass-variant = (pattern syntax-pattern pattern-directive ...)

Defines name-id as a syntax class, which encapsulates one or more single-term patterns.

When the arg-ids are present, they are bound as variables in the body. The body of the
syntax-class definition contains a non-empty sequence of pattern variants.

The following options are supported:

#:attributes (attr-arity-decl ...)

53

attr-arity-decl = attr-id

| (attr-id depth)

Declares the attributes of the syntax class. An attribute arity declaration con-
sists of the attribute name and optionally its ellipsis depth (zero if not explicitly
specified).

If the attributes are not explicitly listed, they are inferred as the set of all pattern
variables occurring in every variant of the syntax class. Pattern variables that
occur at different ellipsis depths are not included, nor are nested attributes from
annotated pattern variables.

#:description description-expr

The description argument is an expression (evaluated in a scope containing
the syntax class’s parameters) that should evaluate to a string. It is used in
error messages involving the syntax class. For example, if a term is rejected
by the syntax class, an error of the form "expected description" may be
synthesized.

If absent, the name of the syntax class is used instead.

#:opaque

Indicates that errors should not be reported with respect to the internal structure
of the syntax class.

#:literals (literal-entry)

#:literal-sets (literal-set ...)

#:conventions (convention-id ...)

Declares the literals and conventions that apply to the syntax class’s variant pat-
terns and their immediate #:with clauses. Patterns occuring within subexpres-
sions of the syntax class (for example, on the right-hand side of a #:fail-when
clause) are not affected.

These options have the same meaning as in syntax-parse.

Each variant of a syntax class is specified as a separate pattern-form whose syntax pattern
is a single-term pattern.

54

(define-splicing-syntax-class name-id stxclass-option ...

stxclass-variant ...+)

(define-splicing-syntax-class (name-id arg-id ...) stxclass-option ...

stxclass-variant ...+)

Defines name-id as a splicing syntax class, analogous to a syntax class but encapsulating
head patterns rather than single-term patterns.

The options are the same as for define-syntax-class.

Each variant of a splicing syntax class is specified as a separate pattern-form whose syntax
pattern is a head pattern.

(pattern syntax-pattern pattern-directive ...)

Used to indicate a variant of a syntax class or splicing syntax class. The variant accepts
syntax matching the given syntax pattern with the accompanying pattern directives.

When used within define-syntax-class, syntax-pattern should be a single-term pat-
tern; within define-splicing-syntax-class, it should be a head pattern.

The attributes of the variant are the attributes of the pattern together with all attributes bound
by #:with clauses, including nested attributes produced by syntax classes associated with
the pattern variables.

8.2.3 Pattern directives

Both the parsing forms and syntax class definition forms support pattern directives for an-
notating syntax patterns and specifying side conditions. The grammar for pattern directives
follows:

pattern-directive = #:declare pattern-id syntax-class-id

| #:declare pattern-id (syntax-class-id expr ...)

| #:with syntax-pattern expr

| #:attr attr-id expr

| #:fail-when condition-expr message-expr

| #:fail-unless condition-expr message-expr

| #:when condition-expr

#:declare pvar-id syntax-class-id

55

#:declare pvar-id (syntax-class-id expr ...)

The first form is equivalent to using the pvar-id:syntax-class-id form in
the pattern (but it is illegal to use both for the same pattern variable).

The second form allows the use of parameterized syntax classes, which cannot
be expressed using the “colon” notation. The exprs are evaluated outside the
scope of any of the attribute bindings from pattern that the #:declare directive
applies to.

#:with syntax-pattern stx-expr

Evaluates the stx-expr in the context of all previous attribute bindings and
matches it against the pattern. If the match succeeds, the pattern’s attributes
are added to environment for the evaluation of subsequent side conditions. If
the #:with match fails, the matching process backtracks. Since a syntax object
may match a pattern in several ways, backtracking may cause the same clause
to be tried multiple times before the next clause is reached.

#:attr attr-id expr

Evaluates the expr in the context of all previous attribute bindings and binds it
to the attribute named by attr-id . The value of expr need not be syntax.

#:fail-when condition-expr message-expr

Evaluates the condition-expr in the context of all previous attribute bindings.
If the value is any true value (not #f), the matching process backtracks (with the
given message); otherwise, it continues. If the value of the condition expression
is a syntax object, it is indicated as the cause of the error.

#:fail-unless condition-expr message-expr

Like #:fail-when with the condition negated.

#:when condition-expr

Evaluates the condition-expr in the context of all previous attribute bindings.
If the value is #f, the matching process backtracks. In other words, #:when is
like #:fail-unless without the message argument.

56

8.2.4 Pattern variables and attributes

An attribute is a name bound by a syntax pattern. An attribute can be a pattern variable
itself, or it can be a nested attribute bound by an annotated pattern variable. The name of
a nested attribute is computed by concatenating the pattern variable name with the syntax
class’s exported attribute’s name, separated by a dot (see the example below).

Attribute names cannot be used directly as expressions; that is, attributes are not variables.
Instead, an attribute’s value can be gotten using the attribute special form.

(attribute attr-id)

Returns the value associated with the attribute named attr-id . If attr-id is not bound as
an attribute, an error is raised.

The value of an attribute need not be syntax. Non-syntax-valued attributes can be used to
return a parsed representation of a subterm or the results of an analysis on the subterm. A
non-syntax-valued attribute should be bound using the #:attr directive or a∼bind pattern.

Examples:
> (define-syntax-class table

(pattern ((key value) ...)

#:attr hash

(for/hash ([k (syntax->datum #'(key ...))]

[v (syntax->datum #'(value ...))])

(values k v))))

> (syntax-parse #'((a 1) (b 2) (c 3))

[t:table

(attribute t.hash)])

'#hash((c . 3) (b . 2) (a . 1))

A syntax-valued attribute is an attribute whose value is a syntax object or a syntax list of the
appropriate ellipsis depth. Syntax-valued attributes can be used within syntax, quasisyn-
tax, etc as part of a syntax template. If a non-syntax-valued attribute is used in a syntax
template, a runtime error is signalled.

Examples:
> (syntax-parse #'((a 1) (b 2) (c 3))

[t:table

#'(t.key ...)])

#<syntax:6:0 (a b c)>

> (syntax-parse #'((a 1) (b 2) (c 3))

[t:table

#'t.hash])

t.hash: attribute is bound to non-syntax value: ’#hash((c .

57

3) (b . 2) (a . 1)) at: t.hash

Every attribute has an associated ellipsis depth that determines how it can be used in a syntax
template (see the discussion of ellipses in syntax). For a pattern variable, the ellipsis depth
is the number of ellipses the pattern variable “occurs under” in the pattern. For a nested
attribute the depth is the sum of the pattern variable’s depth and the depth of the attribute in
the syntax class. Consider the following code:

(define-syntax-class quark

(pattern (a b ...)))

(syntax-parse some-term

[(x (y:quark ...) ... z:quark)

some-code])

The syntax class quark exports two attributes: a at depth 0 and b at depth 1. The syntax-
parse pattern has three pattern variables: x at depth 0, y at depth 2, and z at depth 0. Since x
and y are annotated with the quark syntax class, the pattern also binds the following nested
attributes: y.a at depth 2, y.b at depth 3, z.a at depth 0, and z.b at depth 1.

An attribute’s ellipsis nesting depth is not a guarantee that its value has that level of list
nesting. In particular, ∼or and∼optional patterns may result in attributes with fewer than
expected levels of list nesting.

Example:
> (syntax-parse #'(1 2 3)

[(∼or (x:id ...) _)

(attribute x)])

#f

8.2.5 Inspection tools

The following special forms are for debugging syntax classes.

(syntax-class-attributes syntax-class-id)

Returns a list of the syntax class’s attributes. Each attribute is listed by its name and ellipsis
depth.

(syntax-class-parse syntax-class-id stx-expr arg-expr ...)

Runs the parser for the syntax class (parameterized by the arg-exprs) on the syntax object
produced by stx-expr . On success, the result is a list of vectors representing the attribute
bindings of the syntax class. Each vector contains the attribute name, depth, and associated
value. On failure, the result is some internal representation of the failure.

58

8.3 Syntax patterns

The grammar of syntax patterns used by syntax/parse facilities is given in the following
table. There are four main kinds of syntax pattern:

• single-term patterns, abbreviated S-pattern

• head patterns, abbreviated H-pattern

• ellipsis-head patterns, abbreviated EH-pattern

• action patterns, abbreviated A-pattern

A fifth kind, list patterns (abbreviated L-pattern), is a just a syntactically restricted subset
of single-term patterns.

When a special form in this manual refers to syntax-pattern (eg, the description of the
syntax-parse special form), it means specifically single-term pattern.

S-pattern = pvar-id

| pvar-id:syntax-class-id

| literal-id

| (∼vars- id)

| (∼vars+ id syntax-class)

| (∼literal literal-id)

| atomic-datum

| (∼datum datum)

| (H-pattern . S-pattern)

| (A-pattern . S-pattern)

| (EH-pattern S-pattern)

| (H-pattern ...+ . S-pattern)

| (∼ands proper-S/A-pattern ...+)

| (∼ors S-pattern ...+)

| (∼not S-pattern)

| #(pattern-part ...)

| #s(prefab-struct-key pattern-part ...)

| #&S-pattern

| (∼rest S-pattern)

| (∼describes expr S-pattern)

| A-pattern

L-pattern = ()

| (A-pattern . L-pattern)

| (H-pattern . L-pattern)

| (EH-pattern L-pattern)

| (H-pattern ...+ . L-pattern)

59

| (∼rest L-pattern)

H-pattern = pvar-id:splicing-syntax-class-id

| (∼varh id splicing-syntax-class)

| (∼seq . L-pattern)

| (∼andh proper-H/A-pattern ...+)

| (∼orh H-pattern ...+)

| (∼optionalh H-pattern maybe-optional-option)

| (∼describeh expr H-pattern)

| proper-S-pattern

EH-pattern = (∼oreh EH-pattern ...)

| (∼once H-pattern once-option ...)

| (∼optionaleh H-pattern optional-option ...)

| (∼between H min-number max-number between-option)

| H-pattern

A-pattern = ∼!
| (∼bind [attr-id expr] ...)

| (∼fail maybe-fail-condition message-expr)

| (∼parse S-pattern stx-expr)

| (∼anda A-pattern ...+)

proper-S-pattern = a S-pattern that is not a A-pattern

proper-H-pattern = a H-pattern that is not a S-pattern

The following pattern keywords can be used in multiple pattern variants:

∼var

One of ∼vars-, ∼vars+, or ∼varh.

∼and

One of ∼ands, ∼andh, or ∼anda:

• ∼anda if all of the conjuncts are action patterns

• ∼andh if any of the conjuncts is a proper head pattern

• ∼ands otherwise

∼or

60

One of ∼ors, ∼orh, or ∼oreh:

• ∼oreh if the pattern occurs directly before ellipses (...) or immediately within an-
other ∼oreh pattern

• ∼orh if any of the disjuncts is a proper head pattern

• ∼ors otherwise

∼describe

One of ∼describes or ∼describeh:

• ∼describeh if the subpattern is a proper head pattern

• ∼describes otherwise

∼optional

One of ∼optionalh or ∼optionaleh:

• ∼optionaleh if it is an immediate disjunct of a ∼oreh pattern

• ∼optionalh otherwise

8.3.1 Single-term patterns

A single-term pattern (abbreviated S-pattern) is a pattern that describes a single term.
These are like the traditional patterns used in syntax-rules and syntax-case, but with
additional variants that make them more expressive.

“Single-term” does not mean “atomic”; a single-term pattern can have complex structure,
and it can match terms that have many parts. For example, (17 ...) is a single-term pattern
that matches any term that is a proper list of repeated 17 numerals.

A proper single-term pattern is one that is not an action pattern.

The list patterns (for “list pattern”) are single-term patterns having a restricted structure that
guarantees that they match only terms that are proper lists.

Here are the variants of single-term pattern:

61

id

An identifier can be either a pattern variable, an annotated pattern variable, or a
literal:

• If id is the “pattern” name of an entry in the literals list, it is a literal
pattern that behaves like (∼literal id).
Examples:
> (syntax-parse #'(define x 12)

#:literals (define)

[(define var:id body:expr) 'ok])

'ok

> (syntax-parse #'(lambda x 12)

#:literals (define)

[(define var:id body:expr) 'ok])

lambda: expected the literal identifier define at: lambda
> (syntax-parse #'(define x 12)

#:literals ([def define])

[(def var:id body:expr) 'ok])

'ok

> (syntax-parse #'(lambda x 12)

#:literals ([def define])

[(def var:id body:expr) 'ok])

lambda: expected the literal identifier define at: lambda
• If id is of the form pvar-id:syntax-class-id (that is, two names

joined by a colon character), it is an annotated pattern variable, and the
pattern is equivalent to (∼var pvar-id syntax-class-id).
Examples:
> (syntax-parse #'a

[var:id (syntax-e #'var)])

'a

> (syntax-parse #'12

[var:id (syntax-e #'var)])

?: expected identifier at: 12
> (define-syntax-class two

#:attributes (x y)

(pattern (x y)))

> (syntax-parse #'(a b)

[t:two (syntax->datum #'(t t.x t.y))])

'((a b) a b)

> (syntax-parse #'(a b)

[t

#:declare t two

(syntax->datum #'(t t.x t.y))])

'((a b) a b)

62

• Otherwise, id is a pattern variable, and the pattern is equivalent to (∼var
id).

(∼var pvar-id)

A pattern variable. If pvar-id has no syntax class (by #:convention), the
pattern variable matches anything. The pattern variable is bound to the matched
subterm, unless the pattern variable is the wildcard (_), in which case no binding
occurs.

If pvar-id does have an associated syntax class, it behaves like an annotated
pattern variable with the implicit syntax class inserted.

(∼var pvar-id syntax-class)

syntax-class = syntax-class-id

| (syntax-class-id arg-expr ...)

An annotated pattern variable. The pattern matches only terms accepted by
syntax-class-id (parameterized by the arg-exprs, if present).

In addition to binding pvar-id , an annotated pattern variable also binds nested
attributes from the syntax class. The names of the nested attributes are formed
by prefixing pvar-id. (that is, pvar-id followed by a “dot” character) to the
name of the syntax class’s attribute.

If pvar-id is _, no attributes are bound.

Examples:
> (syntax-parse #'a

[(∼var var id) (syntax-e #'var)])

'a

> (syntax-parse #'12

[(∼var var id) (syntax-e #'var)])

?: expected identifier at: 12
> (define-syntax-class two

#:attributes (x y)

(pattern (x y)))

> (syntax-parse #'(a b)

[(∼var t two) (syntax->datum #'(t t.x t.y))])

'((a b) a b)

> (define-syntax-class (nat-less-than n)

(pattern x:nat #:when (< (syntax-e #'x) n)))

> (syntax-parse #'(1 2 3 4 5)

[((∼var small (nat-less-than 4)) ... large:nat ...)

(list #'(small ...) #'(large ...))])

'(#<syntax:16:0 (1 2 3)> #<syntax:16:0 (4 5)>)

63

(∼literal literal-id)

A literal identifier pattern. Matches any identifier free-identifier=? to
literal-id .

Examples:
> (syntax-parse #'(define x 12)

[((∼literal define) var:id body:expr) 'ok])

'ok

> (syntax-parse #'(lambda x 12)

[((∼literal define) var:id body:expr) 'ok])

lambda: expected the literal identifier define at: lambda

atomic-datum

Numbers, strings, booleans, keywords, and the empty list match as literals.

Examples:
> (syntax-parse #'(a #:foo bar)

[(x #:foo y) (syntax->datum #'y)])

'bar

> (syntax-parse #'(a foo bar)

[(x #:foo y) (syntax->datum #'y)])

a: expected the literal #:foo at: foo

(∼datum datum)

Matches syntax whose S-expression contents (obtained by syntax->datum) is
equal? to the given datum .

Examples:
> (syntax-parse #'(a #:foo bar)

[(x (∼datum #:foo) y) (syntax->datum #'y)])

'bar

> (syntax-parse #'(a foo bar)

[(x (∼datum #:foo) y) (syntax->datum #'y)])

a: expected the literal #:foo at: foo

The ∼datum form is useful for recognizing identifiers symbolically, in contrast
to the ∼literal form, which recognizes them by binding.

Examples:
> (syntax-parse (let ([define 'something-

else]) #'(define x y))

[((∼datum define) var:id e:expr) 'yes]

[_ 'no])

'yes

64

> (syntax-parse (let ([define 'something-

else]) #'(define x y))

[((∼literal define) var:id e:expr) 'yes]

[_ 'no])

'no

(H-pattern . S-pattern)

Matches any term that can be decomposed into a list prefix matching H-

pattern and a suffix matching S-pattern .

Note that the pattern may match terms that are not even improper lists; if the
head pattern can match a zero-length head, then the whole pattern matches what-
ever the tail pattern accepts.

The first pattern can be a single-term pattern, in which case the whole pattern
matches any pair whose first element matches the first pattern and whose rest
matches the second.

See head patterns for more information.

(A-pattern . S-pattern)

Performs the actions specified by A-pattern , then matches any term that
matches S-pattern .

Pragmatically, one can throw an action pattern into any list pattern. Thus, (x
y z) is a pattern matching a list of three terms, and (x y ∼! z) is a pattern
matching a list of three terms, with a cut performed after the second one. In
other words, action patterns “don’t take up space.”

See action patterns for more information.

(EH-pattern S-pattern)

Matches any term that can be decomposed into a list head matching some num-
ber of repetitions of the EH-pattern alternatives (subject to its repetition con-
straints) followed by a list tail matching S-pattern .

In other words, the whole pattern matches either the second pattern (which need
not be a list) or a term whose head matches one of the alternatives of the first
pattern and whose tail recursively matches the whole sequence pattern.

See ellipsis-head patterns for more information.

(H-pattern ...+ . S-pattern)

Like an ellipses (...) pattern, but requires at one occurrence of the head pattern
to be present.

65

That is, the following patterns are equivalent:

• (H ...+ . S)

• ((∼between H 1 +inf.0) S)

Examples:
> (syntax-parse #'(1 2 3)

[(n:nat ...+) 'ok])

'ok

> (syntax-parse #'()

[(n:nat ...+) 'ok]

[_ 'none])

'none

(∼and S/A-pattern ...)

Matches any term that matches all of the subpatterns.

The subpatterns can contain a mixture of single-term patterns and action pat-
terns, but must contain at least one single-term pattern.

Attributes bound in subpatterns are available to subsequent subpatterns. The
whole pattern binds all of the subpatterns’ attributes.

One use for ∼and-patterns is preserving a whole term (including its lexical
context, source location, etc) while also examining its structure. Syntax classes
are useful for the same purpose, but ∼and can be lighter weight.

Examples:
> (define-syntax (import stx)

(raise-syntax-error #f "illegal use of import" stx))

> (define (check-imports stx))

> (syntax-parse #'(m (import one two))

#:literals (import)

[(_ (∼and import-clause (import i ...)))

(let ([bad (check-imports

(syntax->list #'(i ...)))])

(when bad

(raise-syntax-error

#f "bad import" #'import-clause bad))

'ok)])

'ok

(∼or S-pattern ...)

Matches any term that matches one of the included patterns. The alternatives
are tried in order.

66

The whole pattern binds all of the subpatterns’ attributes. An attribute that is
not bound by the “chosen” subpattern has a value of #f. The same attribute may
be bound by multiple subpatterns, and if it is bound by all of the subpatterns, it
is sure to have a value if the whole pattern matches.

Examples:
> (syntax-parse #'a

[(∼or x:id (∼and x #f)) (syntax->datum #'x)])

'a

> (syntax-parse #'#f

[(∼or x:id (∼and x #f)) (syntax->datum #'x)])

#f

(∼not S-pattern)

Matches any term that does not match the subpattern. None of the subpattern’s
attributes are bound outside of the ∼not-pattern.

Example:
> (syntax-parse #'(x y z => u v)

#:literals (=>)

[((∼and before (∼not =>)) ... => after ...)

(list #'(before ...) #'(after ...))])

'(#<syntax:32:0 (x y z)> #<syntax:32:0 (u v)>)

#(pattern-part ...)

Matches a term that is a vector whose elements, when considered as a list, match
the single-term pattern corresponding to (pattern-part ...).

Examples:
> (syntax-parse #'#(1 2 3)

[#(x y z) (syntax->datum #'z)])

3

> (syntax-parse #'#(1 2 3)

[#(x y ...) (syntax->datum #'(y ...))])

'(2 3)

> (syntax-parse #'#(1 2 3)

[#(x ∼rest y) (syntax->datum #'y)])

'(2 3)

#s(prefab-struct-key pattern-part ...)

Matches a term that is a prefab struct whose key is exactly the given key and
whose sequence of fields, when considered as a list, match the single-term pat-
tern corresponding to (pattern-part ...).

67

Examples:
> (syntax-parse #'#s(point 1 2 3)

[#s(point x y z) 'ok])

'ok

> (syntax-parse #'#s(point 1 2 3)

[#s(point x y ...) (syntax->datum #'(y ...))])

'(2 3)

> (syntax-parse #'#s(point 1 2 3)

[#s(point x ∼rest y) (syntax->datum #'y)])

'(2 3)

#&S-pattern

Matches a term that is a box whose contents matches the inner single-term pat-
tern.

Example:
> (syntax-parse #'#&5

[#&n:nat 'ok])

'ok

(∼rest S-pattern)

Matches just like S-pattern . The ∼rest pattern form is useful in positions
where improper (“dotted”) lists are not allowed by the reader, such as vector
and structure patterns (see above).

Examples:
> (syntax-parse #'(1 2 3)

[(x ∼rest y) (syntax->datum #'y)])

'(2 3)

> (syntax-parse #'#(1 2 3)

[#(x ∼rest y) (syntax->datum #'y)])

'(2 3)

(∼describe expr S-pattern)

The ∼describe pattern form annotates a pattern with a description, a string
expression that is evaluated in the scope of all prior attribute bindings. If pars-
ing the inner pattern fails, then the description is used to synthesize the error
message.

A describe-pattern also affects backtracking in two ways:

• A cut (∼!) within a describe-pattern only eliminates choice-points created
within the describe-pattern.

68

• If a describe-pattern succeeds, then all choice points created within the
describe-pattern are discarded, and a failure after the describe-pattern
backtracks to a choice point before the describe-pattern, never one within
it.

A-pattern

An action pattern is considered a single-term pattern when there is no ambiguity;
it matches any term.

8.3.2 Head patterns

A head pattern (abbreviated H-pattern) is a pattern that describes some number of terms
that occur at the head of some list (possibly an improper list). A head pattern’s usefulness
comes from being able to match heads of different lengths, such as optional forms like
keyword arguments.

A proper head pattern is a head pattern that is not a single-term pattern.

Here are the variants of head pattern:

pvar-id:splicing-syntax-class-id

Equivalent to (∼var pvar-id splicing-syntax-class-id).

(∼var pvar-id splicing-syntax-class)

splicing-syntax-class = splicing-syntax-class-id

| (splicing-syntax-class-id arg-expr ...)

Pattern variable annotated with a splicing syntax class. Similar to a normal
annotated pattern variable, except matches a head pattern.

(∼seq . L-pattern)

Matches a head whose elements, if put in a list, would match L-pattern .

Example:
> (syntax-parse #'(1 2 3 4)

[((∼seq 1 2 3) 4) 'ok])

'ok

See also the section on ellipsis-head patterns for more interesting examples of
∼seq.

69

(∼and H-pattern ...)

Like the single-term pattern version of ∼and, but matches a term head instead.

Example:
> (syntax-parse #'(#:a 1 #:b 2 3 4 5)

[((∼and (∼seq (∼seq k:keyword e:expr) ...)

(∼seq keyword-stuff ...))

positional-stuff ...)

(syntax->datum #'((k ...) (e ...) (keyword-

stuff ...)))])

'((#:a #:b) (1 2) (#:a 1 #:b 2))

The head pattern variant of ∼and requires that all of the subpatterns be proper
head patterns (not single-term patterns). This is to prevent typos like the follow-
ing, a variant of the previous example with the second ∼seq omitted:

Examples:
> (syntax-parse #'(#:a 1 #:b 2 3 4 5)

[((∼and (∼seq (∼seq k:keyword e:expr) ...)

(keyword-stuff ...))

positional-stuff ...)

(syntax->datum #'((k ...) (e ...) (keyword-

stuff ...)))])

syntax-parse: single-term pattern not allowed after head
pattern at: (keyword-stuff ...)
; If the example above were allowed, it would be equiva-

lent to this:

> (syntax-parse #'(#:a 1 #:b 2 3 4 5)

[((∼and (∼seq (∼seq k:keyword e:expr) ...)

(∼seq (keyword-stuff ...)))

positional-stuff ...)

(syntax->datum #'((k ...) (e ...) (keyword-

stuff ...)))])

?: expected keyword at: 3

(∼or H-pattern ...)

Like the single-term pattern version of ∼or, but matches a term head instead.

Examples:
> (syntax-parse #'(m #:foo 2 a b c)

[(_ (∼or (∼seq #:foo x) (∼seq)) y:id ...)

(attribute x)])

#<syntax:46:0 2>

> (syntax-parse #'(m a b c)

[(_ (∼or (∼seq #:foo x) (∼seq)) y:id ...)

70

(attribute x)])

#f

(∼optional H-pattern maybe-optional-option)

maybe-optional-option =
| #:defaults ([attr-id expr] ...)

Matches either the given head subpattern or an empty head. If the #:defaults
option is given, the subsequent attribute bindings are used if the subpattern does
not match. The default attributes must be a subset of the subpattern’s attributes.

Examples:
> (syntax-parse #'(m #:foo 2 a b c)

[(_ (∼optional (∼seq #:foo x) #:defaults ([x #'#f])) y:id ...)

(attribute x)])

#<syntax:48:0 2>

> (syntax-parse #'(m a b c)

[(_ (∼optional (∼seq #:foo x) #:defaults ([x #'#f])) y:id ...)

(attribute x)])

#<syntax:49:0 #f>

> (syntax-parse #'(m a b c)

[(_ (∼optional (∼seq #:foo x)) y:id ...)

(attribute x)])

#f

(∼describe expr H-pattern)

Like the single-term pattern version of ∼describe, but matches a head pattern
instead.

S-pattern

Matches a head of one element, which must be a term matching S-pattern .

8.3.3 Ellipsis-head patterns

An ellipsis-head pattern (abbreviated EH-pattern) is pattern that describes some number
of terms, like a head pattern, but may also place contraints on the number of times it occurs
in a repetition. They are useful for matching keyword arguments where the keywords may
come in any order. Multiple alternatives can be grouped together via ∼oreh.

Examples:

71

> (define parser1

(syntax-parser

[((∼or (∼once (∼seq #:a x) #:name "#:a keyword")

(∼optional (∼seq #:b y) #:name "#:b keyword")

(∼seq #:c z)) ...)

'ok]))

> (parser1 #'(#:a 1))

'ok

> (parser1 #'(#:b 2 #:c 3 #:c 25 #:a 'hi))

'ok

> (parser1 #'(#:a 1 #:a 2))

?: too many occurrences of #:a keyword after 4 terms at:
(#:a 1 #:a 2)

The pattern requires exactly one occurrence of the #:a keyword and argument, at most
one occurrence of the #:b keyword and argument, and any number of #:c keywords and
arguments. The “pieces” can occur in any order.

Here are the variants of ellipsis-head pattern:

(∼or EH-pattern ...)

Matches if any of the inner EH-pattern alternatives match.

(∼once H-pattern once-option ...)

once-option = #:name name-expr

| #:too-few too-few-message-expr

| #:too-many too-many-message-expr

Matches if the inner H-pattern matches. This pattern must be selected exactly
once in the match of the entire repetition sequence.

If the pattern is not chosen in the repetition sequence, then an error is raised
with the message either too-few-message-expr or "missing required

occurrence of name-expr".

If the pattern is chosen more than once in the repetition sequence, then an er-
ror is raised with the message either too-many-message-expr or "too many

occurrences of name-expr".

(∼optional H-pattern optional-option ...)

optional-option = #:name name-expr

| #:too-many too-many-message-expr

| #:defaults ([attr-id expr] ...)

72

Matches if the inner H-pattern matches. This pattern may be used at most
once in the match of the entire repetition.

If the pattern is chosen more than once in the repetition sequence, then an er-
ror is raised with the message either too-many-message-expr or "too many

occurrences of name-expr".

If the #:defaults option is given, the following attribute bindings are used if
the subpattern does not match at all in the sequence. The default attributes must
be a subset of the subpattern’s attributes.

(∼between H-pattern min-number max-number between-option ...)

reps-option = #:name name-expr

| #:too-few too-few-message-expr

| #:too-many too-many-message-expr

Matches if the inner H-pattern matches. This pattern must be selected at least
min-number and at most max-number times in the entire repetition.

If the pattern is chosen too few times, then an error is raised with a
message, either too-few-message-expr or "too few occurrences of

name-expr".

If the pattern is chosen too many times, then an error is raised with the
message either too-many-message-expr or "too few occurrences of

name-expr".

8.3.4 Action patterns

An action pattern (abbreviated A-pattern) does not describe any syntax; rather, it has an
effect such as the binding of attributes or the modification of the matching process.

The grammar describing where an action pattern may occur may look complicated, but the
essence is this: “action patterns don’t take up space.” They can be freely added to a list
pattern or inserted into an ∼and pattern.

∼!
The cut operator, written ∼!, eliminates backtracking choice points and com-
mits parsing to the current branch of the pattern it is exploring.

Common opportunities for cut-patterns come from recognizing special forms
based on keywords. Consider the following expression:

> (syntax-parse #'(define-values a 123)

#:literals (define-values define-syntaxes)

73

[(define-values (x:id ...) e) 'define-values]

[(define-syntaxes (x:id ...) e) 'define-syntaxes]

[e 'expression])

'expression

Given the ill-formed term (define-values a 123), the expression tries the
first clause, fails to match a against the pattern (x:id ...), and then back-
tracks to the second clause and ultimately the third clause, producing the value
'expression. But the term is not an expression; it is an ill-formed use of
define-values! The proper way to write the syntax-parse expression fol-
lows:

> (syntax-parse #'(define-values a 123)

#:literals (define-values define-syntaxes)

[(define-values ∼! (x:id ...) e) 'define-values]

[(define-syntaxes ∼! (x:id ...) e) 'define-syntaxes]

[e 'expression])

define-values: bad syntax at: (define-values a 123)

Now, given the same term, syntax-parse tries the first clause, and since the
keyword define-values matches, the cut-pattern commits to the current pat-
tern, eliminating the choice points for the second and third clauses. So when the
clause fails to match, the syntax-parse expression raises an error.

The effect of a ∼! pattern is delimited by the nearest enclosing ∼describe
pattern. If there is no enclosing ∼describe pattern but the cut occurs within a
syntax class definition, then only choice points within the syntax class definition
are discarded.

(∼bind [attr-id expr] ...)

Evaluates the exprs and binds them to the given attr-ids as attributes.

(∼fail maybe-fail-condition message-expr)

maybe-fail-condition =
| #:when condition-expr

| #:unless condition-expr

If the condition is absent, or if the #:when condition evaluates to a true value, or
if the #:unless condition evaluates to #f, then the pattern fails with the given
message.

Fail patterns can be used together with cut patterns to recognize specific ill-
formed terms and address them with specially-created failure messages.

(∼parse S-pattern stx-expr)

74

stx-expr : syntax?

Evaluates stx-expr to a syntax object and matches it against S-pattern .

(∼and A-pattern ...+)

Performs the actions of each A-pattern .

8.4 Literal sets and Conventions

Sometimes the same literals are recognized in a number of different places. The most com-
mon example is the literals for fully expanded programs, which are used in many analysis
and transformation tools. Specifying literals individually is burdensome and error-prone. As
a remedy, syntax/parse offers literal sets. A literal set is defined via define-literal-
set and used via the #:literal-set option of syntax-parse.

(define-literal-set name-id (literal ...))

literal = literal-id

| (pattern-id literal-id)

Defines name as a literal set. Each literal can have a separate pattern-id and literal-
id . The pattern-id determines what identifiers in the pattern are treated as literals. The
literal-id determines what identifiers the literal matches.

Examples:
> (define-literal-set def-litset

(define-values define-syntaxes))

> (syntax-parse #'(define-syntaxes (x) 12)

#:literal-sets (def-litset)

[(define-values (x:id ...) e:expr) 'v]

[(define-syntaxes (x:id ...) e:expr) 's])

's

The literals in a literal set always refer to the phase-0 bindings of the enclosing module. For
example:

Examples:
> (module common racket/base

(define x 'something)

(provide x))

> (module lits racket/base

(require syntax/parse 'common)

75

(define-literal-set common-lits (x))

(provide common-lits))

In the literal set common-lits, the literal x always recognizes identifiers bound to the vari-
able x defined in module 'common.

When a literal set is used with the #:phase phase-expr option, the literals’ fixed bindings
are compared against the binding of the input literal at the specified phase. Continuing the
example:

Examples:
> (require syntax/parse 'lits (for-syntax 'common))

> (syntax-parse #'x #:literal-sets ([common-lits #:phase 1])

[x 'yes]

[_ 'no])

'yes

The occurrence of x in the pattern matches any identifier whose binding at phase 1 is the x

from module 'common.

(define-conventions name-id convention-rule ...)

convention-rule = (name-pattern syntax-class)

name-pattern = exact-id

| name-rx

syntax-class = syntax-class-id

| (syntax-class-id expr ...)

Defines conventions that supply default syntax classes for pattern variables. A pattern vari-
able that has no explicit syntax class is checked against each id-pattern, and the first one
that matches determines the syntax class for the pattern. If no id-pattern matches, then
the pattern variable has no syntax class.

Examples:
> (define-conventions xyz-as-ids

[x id] [y id] [z id])

> (syntax-parse #'(a b c 1 2 3)

#:conventions (xyz-as-ids)

[(x ... n ...) (syntax->datum #'(x ...))])

'(a b c)

> (define-conventions xn-prefixes

[#rx"^x" id]

[#rx"^n" nat])

> (syntax-parse #'(a b c 1 2 3)

76

#:conventions (xn-prefixes)

[(x0 x ... n0 n ...)

(syntax->datum #'(x0 (x ...) n0 (n ...)))])

'(a (b c) 1 (2 3))

Local conventions, introduced with the #:local-conventions keyword argument of
syntax-parse and syntax class definitions, may refer to local bindings:

Examples:
> (define-syntax-class (nat> bound)

(pattern n:nat

#:fail-unless (> (syntax-e #'n) bound)

(format "expected number > ∼s" bound)))

> (define-syntax-class (natlist> bound)

#:local-conventions ([N (nat> bound)])

(pattern (N ...)))

> (define (parse-natlist> bound x)

(syntax-parse x

#:local-conventions ([NS (natlist> bound)])

[NS 'ok]))

> (parse-natlist> 0 #'(1 2 3))

'ok

> (parse-natlist> 5 #'(8 6 4 2))

?: expected number > 5 at: 4

8.5 Library syntax classes and literal sets

8.5.1 Syntax classes

expr

Matches anything except a keyword literal (to distinguish expressions from the start of a
keyword argument sequence). The term is not otherwise inspected, and no guarantee is
made that the term is actually a valid expression.

identifier

boolean

str

char

keyword

number

integer

77

exact-integer

exact-nonnegative-integer

exact-positive-integer

Match syntax satisfying the corresponding predicates.

id

Alias for identifier.

nat

Alias for exact-nonnegative-integer.

(static predicate description)

Matches an identifier that is bound in the syntactic environment to static information (see
syntax-local-value) satisfying the given predicate . If the term does not match, the
description argument is used to describe the expected syntax.

When used outside of the dynamic extent of a macro transformer (see syntax-

transforming?), matching fails.

The attribute value contains the value the name is bound to.

(atom-in-list atoms description)

Matches a syntax object whose inner datum is eqv? to some atom in the given list.

Use atom-in-list instead of a literals list when recognizing identifier based on their sym-
bolic names rather than their bindings.

8.5.2 Literal sets

kernel-literals

Literal set containing the identifiers for fully-expanded code (§1.2.3.1 “Fully Expanded Pro-
grams”). The set contains all of the forms listed by kernel-form-identifier-list, plus
module, #%plain-module-begin, #%require, and #%provide.

Note that the literal-set uses the names #%plain-lambda and #%plain-app, not lambda
and #%app.

78

Index
#%module-begin, 35
...+, 65
action pattern, 73
Action patterns, 73
annotated pattern variable, 63
atom-in-list, 78
Attaching Documentation to Exports, 45
attribute, 57
attribute, 57
boolean, 77
bound-id-table-count, 12
bound-id-table-for-each, 12
bound-id-table-map, 12
bound-id-table-ref, 11
bound-id-table-remove, 11
bound-id-table-remove!, 11
bound-id-table-set, 11
bound-id-table-set!, 11
bound-id-table?, 10
bound-identifier-mapping-for-each,

8
bound-identifier-mapping-get, 7
bound-identifier-mapping-map, 8
bound-identifier-mapping-put!, 8
bound-identifier-mapping?, 7
build-expand-context, 26
build-struct-expand-info, 29
build-struct-generation, 28
build-struct-generation*, 29
build-struct-names, 28
char, 77
check-expression, 19
check-identifier, 19
check-module-form, 21
check-procedure, 14
check-stx-boolean, 19
check-stx-listof, 19
check-stx-string, 19
Classifying syntax, 53
collapse-module-path, 24

collapse-module-path-index, 24
Computing the Free Variables of an Expres-

sion, 13
Controlling Syntax Templates, 31
conventions, 76
cut, 73
Deconstructing Syntax Objects, 5
define-conventions, 76
define-literal-set, 75
define-splicing-syntax-class, 55
define-syntax-class, 53
Dictionaries for bound-identifier=?, 10
Dictionaries for free-identifier=?, 12
ellipsis depth, 58
ellipsis-head pattern, 71
Ellipsis-head patterns, 71
eval-compile-time-part-of-top-

level, 42
eval-compile-time-part-of-top-

level/compile, 42
exact-integer, 78
exact-nonnegative-integer, 78
exact-positive-integer, 78
exn:get-module-code, 23
exn:get-module-code-path, 23
exn:get-module-code?, 23
expand-syntax-top-level-with-

compile-time-evals, 42
expand-syntax-top-level-with-

compile-time-evals/flatten, 42
expand-top-level-with-compile-

time-evals, 42
Expanding define-struct-like Forms, 27
expr, 77
Extracting Inferred Names, 26
flatten-begin, 27
Flattening begin Forms, 27
free-id-table-count, 13
free-id-table-for-each, 13
free-id-table-map, 13
free-id-table-ref, 12
free-id-table-remove, 13
free-id-table-remove!, 13

79

free-id-table-set, 13
free-id-table-set!, 13
free-id-table?, 12
free-identifier-mapping-for-each, 9
free-identifier-mapping-get, 8
free-identifier-mapping-map, 9
free-identifier-mapping-put!, 9
free-identifier-mapping?, 8
free-vars, 14
generate-expand-context, 26
generate-struct-declaration, 30
get-module-code, 22
Getting Module Compiled Code, 21
Hashing on bound-identifier=? and
free-identifier=?, 7

head pattern, 69
Head patterns, 69
Helpers for Processing Keyword Syntax, 14
id, 78
identifier, 77
Identifier dictionaries, 10
immutable-bound-id-table?, 11
immutable-free-id-table?, 12
incompatibility, 16
Inspecting Modules and Module Dependen-

cies, 25
Inspection tools, 58
integer, 77
kernel-form-identifier-list, 7
kernel-literals, 78
kernel-syntax-case, 6
kernel-syntax-case*, 6
kernel-syntax-case*/phase, 6
kernel-syntax-case/phase, 6
keyword, 77
keyword-table, 14
Legacy Zodiac Interface, 19
Library syntax classes and literal sets, 77
list patterns, 61
literal, 64
Literal sets, 78
literal sets, 75

Literal sets and Conventions, 75
lookup-documentation, 45
Macro Transformer Helpers, 26
make-bound-id-table, 10
make-bound-identifier-mapping, 7
make-exn:get-module-code, 23
make-free-id-table, 12
make-free-identifier-mapping, 8
make-immutable-bound-id-table, 10
make-immutable-free-id-table, 12
make-meta-reader, 40
make-module-identifier-mapping, 9
Matching Fully-Expanded Expressions, 6
moddep-current-open-input-file, 23
Module Reader, 35
module-identifier-mapping-for-

each, 10
module-identifier-mapping-get, 9
module-identifier-mapping-map, 10
module-identifier-mapping-put!, 9
module-identifier-mapping?, 9
module-or-top-identifier=?, 5
Module-Processing Helpers, 21
mutable-bound-id-table?, 11
mutable-free-id-table?, 12
nat, 78
nested attributes, 63
Non-Module Compilation And Expansion,

42
normalize-definition, 26
number, 77
options, 15
options-select, 18
options-select-row, 18
options-select-value, 18
parse-define-struct, 27
parse-keyword-options, 15
parse-keyword-options/eol, 17
Parsing and classifying syntax, 50
Parsing and classifying syntax, 47
Parsing define-like Forms, 26
Parsing syntax, 51

80

pattern, 55
Pattern directives, 55
pattern directives, 55
pattern variable, 63
Pattern variables and attributes, 57
proper head pattern, 69
proper single-term pattern, 61
provide-and-document, 45
Quick Start, 47
raise-read-eof-error, 34
raise-read-error, 34
Raising exn:fail:read, 34
Reader Helpers, 34
Reading Module Source Code, 21
Rendering Syntax Objects with Formatting,

13
replace-context, 14
Replacing Lexical Context, 14
resolve-module-path, 23
resolve-module-path-index, 24
resolve-path-spec, 31
Resolving include-like Paths, 31
Resolving Module Paths to File Paths, 23
show-import-tree, 25
Simplifying Module Paths, 24
single-term pattern, 61
Single-term patterns, 61
splicing syntax class, 55
static, 78
str, 77
strip-context, 14
struct-declaration-info?, 30
struct:exn:get-module-code, 23
stx->list, 5
stx-car, 5
stx-cdr, 5
stx-list?, 5
stx-null?, 5
stx-pair?, 5
Support for local-expand, 26
syntax class, 53
Syntax classes, 77

Syntax Object Helpers, 5
Syntax patterns, 59
syntax patterns, 59
syntax->string, 13
syntax-class-attributes, 58
syntax-class-parse, 58
syntax-local-infer-name, 26
syntax-parse, 51
syntax-parser, 53
syntax/boundmap, 7
syntax/context, 26
syntax/define, 26
syntax/docprovide, 45
syntax/flatten-begin, 27
syntax/free-vars, 13
syntax/id-table, 10
syntax/kerncase, 6
syntax/keyword, 14
syntax/modcode, 21
syntax/modcollapse, 24
syntax/moddep, 25
syntax/modread, 21
syntax/modresolve, 23
syntax/module-reader, 35
syntax/name, 26
syntax/parse, 47
syntax/path-spec, 31
syntax/readerr, 34
syntax/strip-context, 14
syntax/struct, 27
syntax/stx, 5
syntax/template, 31
syntax/to-string, 13
syntax/toplevel, 42
syntax/trusted-xforms, 44
syntax/zodiac, 19
syntax/zodiac-sig, 19
syntax/zodiac-unit, 19
Syntax: Meta-Programming Helpers, 1
transform-template, 32
Trusting Standard Recertifying Transform-

ers, 44

81

with-module-reading-

parameterization, 21
wrap-read-all, 41
∼!, 73
∼and, 60
∼between, 73
∼bind, 74
∼datum, 64
∼describe, 61
∼fail, 74
∼literal, 64
∼not, 67
∼once, 72
∼optional, 61
∼or, 60
∼parse, 74
∼rest, 68
∼seq, 69
∼var, 60

82

	1 Syntax Object Helpers
	1.1 Deconstructing Syntax Objects
	1.2 Matching Fully-Expanded Expressions
	1.3 Hashing on IdentifierColorbluebound-identifier=? and IdentifierColorbluefree-identifier=?
	1.4 Identifier dictionaries
	1.4.1 Dictionaries for IdentifierColorbluebound-identifier=?
	1.4.2 Dictionaries for IdentifierColorbluefree-identifier=?

	1.5 Rendering Syntax Objects with Formatting
	1.6 Computing the Free Variables of an Expression
	1.7 Replacing Lexical Context
	1.8 Helpers for Processing Keyword Syntax
	1.9 Legacy Zodiac Interface

	2 Module-Processing Helpers
	2.1 Reading Module Source Code
	2.2 Getting Module Compiled Code
	2.3 Resolving Module Paths to File Paths
	2.4 Simplifying Module Paths
	2.5 Inspecting Modules and Module Dependencies

	3 Macro Transformer Helpers
	3.1 Extracting Inferred Names
	3.2 Support for IdentifierColorbluelocal-expand
	3.3 Parsing IdentifierColorblackdefine-like Forms
	3.4 Flattening IdentifierColorblackbegin Forms
	3.5 Expanding IdentifierColorblackdefine-struct-like Forms
	3.6 Resolving IdentifierColorinclude-like Paths
	3.7 Controlling Syntax Templates

	4 Reader Helpers
	4.1 Raising IdentifierColorblueexn:fail:read
	4.2 Module Reader

	5 Non-Module Compilation And Expansion
	6 Trusting Standard Recertifying Transformers
	7 Attaching Documentation to Exports
	8 Parsing and classifying syntax
	8.1 Quick Start
	8.2 Parsing and classifying syntax
	8.2.1 Parsing syntax
	8.2.2 Classifying syntax
	8.2.3 Pattern directives
	8.2.4 Pattern variables and attributes
	8.2.5 Inspection tools

	8.3 Syntax patterns
	8.3.1 Single-term patterns
	8.3.2 Head patterns
	8.3.3 Ellipsis-head patterns
	8.3.4 Action patterns

	8.4 Literal sets and Conventions
	8.5 Library syntax classes and literal sets
	8.5.1 Syntax classes
	8.5.2 Literal sets

	Index

