Syntax: Meta-Programming Helpers

Version 5.0

June 6, 2010

Contents

I Syntax Object Helpers|

1.1 Deconstructing Syntax Objects|

|1.2 Matching Fully-Expanded Expressions|.

|1.3 Hashing on bound-identifier=7 and free-identifier=7|

1.5 Rendering Syntax Objects with Formattingl

1.6 Computing the Free Variables of an Expression|

|1.7 Replacing Lexical Context|

|1.8 Helpers for Processing Keyword Syntax|

|I1.9 Legacy Zodiac Interface]

[2__Module-Processing Helpers

2.1 Reading Module Source Code|

2.2 Getting Module Compiled Code|

2.3 Resolving Module Paths to File Paths|

2.4 Simplifying Module Paths| o000,

2.5 Inspecting Modules and Module Dependencies|

3 Macro Transformer Helpers|

3.1 Extracting Inferred Names|,

3.2 Support for local-expand|. o

3.3 Parsing define-ikeForms|. oo o000

3.4 Flattening begin Forms| oL L.

10

10

12

13

13

14

14

19

21

21

21

23

24

25

26

3.5 Expanding define-struct-like Forms|, 27

3.6 Resolving include-like Paths| o0, 31
3.7 Controlling Syntax Templates| 31
Reader Helpers| 34
4.1 Raisingexn:fail:read|, 34
42 ModuleReaderl 35
Non-Module Compilation And Expansion| 42
Trusting Standard Recertifying Transformers| 4
Attaching Documentation to Exports| 45
Parsing and classifying syntax| 47
B.1 Quick Start] 47
8.2 Parsing and classifying syntax| 50
[8.2.1 Parsingsyntax| 0oL 51
8.2.2 Classifyingsyntax| 53
823 Pattern directives| oo 55
[8.2.4 Pattern variables and attributes| L. 57
[8.2.5 Inspectiontools|. 58
8.3 Syntax patterns| 59
[8.3.1 Single-term patterns| Lo 61
8.3.2 Headpatterns| 69
18.3.3 Ellipsis-head patterns| 71
8.3.4 Actionpatterns| oL 73
84 Literal sets and Conventionsl 75

18.5 Library syntax classes and literal sets|.

8.5.1 Syntaxclasses| o

1 Syntax Object Helpers

1.1 Deconstructing Syntax Objects

(require syntax/stx)

(stx-null? v) — boolean?
v : any/c

Returns #t if v is either the empty list or a syntax object representing the empty list (i.e.,
syntax-e on the syntax object returns the empty list).

(stx-pair? v) — boolean?
v : any/c

Returns #t if v is either a pair or a syntax object representing a pair (see syntax pair).

(stx-1ist? v) — boolean?
v : any/c

Returns #t if v is a list, or if it is a sequence of pairs leading to a syntax object such that
syntax->1list would produce a list.

(stx->1list stx-list) — list?
stx-list : stx-1list?

Produces a list by flatting out a trailing syntax object using syntax->1ist.

(stx-car v) — any
v : stx-pair?

Takes the car of a syntax pair.

(stx-cdr v) — any
v ! stx-pair?

Takes the cdr of a syntax pair.

(module-or-top-identifier=7? a-id b-id) — boolean?
a-id : identifier?

b-id : identifier?

Returns #t if a-id and b-id are free-identifier=7, orif a-id and b-id have the same
name (as extracted by syntax-e) and a-id has no binding other than at the top level.

This procedure is useful in conjunction with syntax-case* to match procedure names that
are normally bound by Racket. For example, the include macro uses this procedure to rec-
ognize build-path; using free-identifier=7 would not work well outside of module,
since the top-level build-path is a distinct variable from the racket/base export (though
it’s bound to the same procedure, initially).

1.2 Matching Fully-Expanded Expressions

(require syntax/kerncase)

(kernel-syntax-case stx-expr trans?-expr clause ...)

A syntactic form like syntax-case*, except that the literals are built-in as the names of
the primitive Racket forms as exported by scheme/base; see §1.2.3.1 “Fully Expanded
Programs”.

The trans?-expr boolean expression replaces the comparison procedure, and instead se-
lects simply between normal-phase comparisons or transformer-phase comparisons. The
clauses are the same as in syntax-casex.

The primitive syntactic forms must have their normal bindings in the context of the kernel-
syntax-case expression. Beware that kernel-syntax-case does not work in a module
whose language is mzscheme, since the binding of if from mzscheme is different than the
primitive if.

(kernel-syntax-casex stx-expr trans?-expr (extra-id ...) clause ...)

A syntactic form like kernel-syntax-case, except that it takes an additional list of extra
literals that are in addition to the primitive Racket forms.

(kernel-syntax-case/phase stx-expr phase-expr clause ...)

Generalizes kernel-syntax-case to work at an arbitrary phase level, as indicated by
phase-expr.

(kernel-syntax-casex/phase stx-expr phase-expr (extra-id ..)
clause ...)

Generalizes kernel-syntax-case* to work at an arbitrary phase level, as indicated by
phase-expr.

(kernel-form-identifier-list) — (listof identifier?)

Returns a list of identifiers that are bound normally, for-syntax, and for-template to the
primitive Racket forms for expressions, internal-definition positions, and module-level and
top-level positions. This function is useful for generating a list of stopping points to provide
to local-expand.

In addition to the identifiers listed in §1.2.3.1 “Fully Expanded Programs”, the list includes
letrec-syntaxes+values, which is the core form for local expand-time binding and can
appear in the result of local-expand.

1.3 Hashing on bound-identifier=7 and free-identifier="7

See also syntax/id-table for an implementation of identifier mappings using the
scheme/dict dictionary interface.

(require syntax/boundmap)

(make-bound-identifier-mapping) — bound-identifier-mapping?

Produces a hash-table-like value for storing a mapping from syntax identifiers to arbitrary
values.

The mapping uses bound-identifier=7 to compare mapping keys, but also uses a hash
table based on symbol equality to make the mapping efficient in the common case (i.e.,
where non-equivalent identifiers are derived from different symbolic names).

(bound-identifier-mapping? v) — boolean?
v : any/c

Returns #t if v was produced by make-bound-identifier-mapping, #f otherwise.

(bound-identifier-mapping-get bound-map
id
[failure-thunk]) — any
bound-map : bound-identifier-mapping?
id : identifier?
failure-thunk : any/c
= (lambda () (raise (make-exn:fail)))

Like hash-table-get for bound-identifier mappings.

(bound-identifier-mapping-put! bound-map
id
V) — void?
bound-map : bound-identifier-mapping?
id : identifier?
v : any/c

Like hash-table-put! for bound-identifier mappings.

(bound-identifier-mapping-for-each bound-map

proc) — void?
bound-map : boud-identifier-mapping?
proc : (identifier? any/c . -> . any)

Like hash-table-for-each.

(bound-identifier-mapping-map bound-map

proc) — (listof any?)
bound-map : bound-identifier-mapping?
proc : (identifier? any/c . -> . any)

Like hash-table-map.

(make-free-identifier-mapping) — free-identifier-mapping?

Produces a hash-table-like value for storing a mapping from syntax identifiers to arbitrary
values.

The mapping uses free-identifier=7 to compare mapping keys, but also uses a hash
table based on symbol equality to make the mapping efficient in the common case (i.e., where
non-equivalent identifiers are derived from different symbolic names at their definition sites).

(free-identifier-mapping? v) — boolean?
v : any/c

Returns #t if v was produced by make-free-identifier-mapping, #f otherwise.

(free-identifier-mapping-get free-map
id
[failure-thunk]) — any

free-map : free-identifier-mapping?
id : identifier?
failure-thunk : any/c
= (lambda () (raise (make-exn:fail)))

Like hash-table-get for free-identifier mappings

(free-identifier-mapping-put! free-map id v) — void?
free-map : free-identifier-mapping?
id : identifier?
v : any/c

Like hash-table-put! for free-identifier mappings.

(free-identifier-mapping-for-each free-map

proc) — void?
free-map : free-identifier-mapping?
proc : (identifier? any/c . -> . any)

Like hash-table-for-each.

(free-identifier-mapping-map free-map proc) — (listof any?)
free-map : free-identifier-mapping?
proc : (identifier? any/c . -> . any)

Like hash-table-map.

(make-module-identifier-mapping) — module-identifier-mapping?
(module-identifier-mapping? v) — boolean?
v : any/c
(module-identifier-mapping-get module-map
id
[failure-thunk]) — any
module-map : module-identifier-mapping?
id : identifier?
failure-thunk : any/c

= (lambda () (raise (make-exn:fail)))
(module-identifier-mapping-put! module-map
id
V) — void?

module-map : module-identifier-mapping?
id : identifier?
v : any/c

(module-identifier-mapping-for-each module-map

proc) — void?
module-map : module-identifier-mapping?
proc : (identifier? any/c . -> . any)
(module-identifier-mapping-map module-map
proc) — (listof any?)
module-map : module-identifier-mapping?
proc : (identifier? any/c . -> . any)

The same as make-free-identifier-mapping, etc.

1.4 Identifier dictionaries

(require syntax/id-table)

This module provides functionality like that of syntax/boundmap but with more oper-
ations, standard names, implementation of the scheme/dict interface, and immutable
(functionally-updating) variants.

1.4.1 Dictionaries for bound-identifier=7

Bound-identifier tables implement the dictionary interface of scheme/dict. Consequently,
all of the appropriate generic functions (dict-ref, dict-map, etc) can be used on free-
identifier tables.

(make-bound-id-table [init-dict]) — mutable-bound-id-table?
init-dict : dict? = null

(make-immutable-bound-id-table [init-dict])

— immutable-bound-id-table?
init-dict : dict? = null

Produces a dictionary mapping syntax identifiers to arbitrary values. The mapping uses
bound-identifier=7 to compare keys, but also uses a hash table based on symbol equality
to make the mapping efficient in the common case. The two procedures produce mutable
and immutable dictionaries, respectively.

The optional init-dict argument provides the initial mappings. It must be a dictionary,
and its keys must all be identifiers. If the init-dict dictionary has multiple distinct entries
whose keys are bound-identifier=7, only one of the entries appears in the new id-table,
and it is not specified which entry is picked.

(bound-id-table? v) — boolean?

10

v : any/c

Returns #t if v was produced by make-bound-id-table or make-immutable-bound-
id-table, #f otherwise.

(mutable-bound-id-table? v) — boolean?

v : any/c
(immutable-bound-id-table? v) — boolean?
v : any/c

Predicate for the mutable and immutable variants of bound-identifier tables, respectively.

(bound-id-table-ref table id [failure]) — any
table : bound-id-table?
id : identifier?
failure : any/c = (lambda () (raise (make-exn:fail)

Like hash-ref for bound identifier tables. In particular, if id is not found, the failure
argument is applied if it is a procedure, or simply returned otherwise.

(bound-id-table-set! table id v) — void?
table : mutable-bound-id-table?
id : identifier?
v : any/c

Like hash-set! for mutable bound-identifier tables.

(bound-id-table-set table id v) — immutable-bound-id-table?
table : immutable-bound-id-table?
id : identifier?
v : any/c

Like hash-set for immutable bound-identifier tables.

(bound-id-table-remove! table id) — void?
table : mutable-bound-id-table?
id : identifier?

Like hash-remove! for mutable bound-identifier tables.

(bound-id-table-remove table id v) — immutable-bound-id-table?
table : immutable-bound-id-table?
id : identifier?

11

v : any/c

Like hash-remove for immutable bound-identifier tables.

(bound-id-table-map table proc) — list?
table : bound-id-table?
proc : (-> identifier? any/c any)

Like hash-map for bound-identifier tables.

(bound-id-table-for-each table proc) — void?
table : bound-id-table?
proc : (-> identifier? any/c any)

Like hash-for-each for bound-identifier tables.

(bound-id-table-count table) — exact-nonnegative-integer?
table : bound-id-table?

Like hash-count for bound-identifier tables.

1.4.2 Dictionaries for free-identifier=7

Free-identifier tables implement the dictionary interface of scheme/dict. Consequently,
all of the appropriate generic functions (dict-ref, dict-map, etc) can be used on free-
identifier tables.

(make-free-id-table [init-dict]) — mutable-free-id-table?
init-dict : dict? = null

(make-immutable-free-id-table [init-dict])

— immutable-free-id-table?
init-dict : dict? = null

(free-id-table? v) — boolean?

v : any/c

(mutable-free-id-table? v) — boolean?
v : any/c

(immutable-free-id-table? v) — boolean?
v : any/c

(free-id-table-ref table id [failure]) — any
table : free-id-table?
id : identifier?
failure : any/c = (lambda () (raise (make-exn:fail)

12

(free-id-table-set! table id v) — void?
table : mutable-free-id-table?
id : identifier?
v : any/c
(free-id-table-set table id v) — immutable-free-id-table?
table : immutable-free-id-table?
id : identifier?
v : any/c
(free-id-table-remove! table id) — void?
table : mutable-free-id-table?
id : identifier?
(free-id-table-remove table id v) — immutable-free-id-table?
table : immutable-free-id-table?
id : identifier?
v : any/c
(free-id-table-map table proc) — list?
table : free-id-table?
proc : (-> identifier? any/c any)
(free-id-table-for-each table proc) — void?
table : free-id-table?
proc : (-> identifier? any/c any)
(free-id-table-count table) — exact-nonnegative-integer?
table : free-id-table?

Like the procedures for bound-identifier tables (make-bound-id-table, bound-id-
table-ref, etc), but for free-identifier tables, which use free-identifier=7 to compare
keys.

1.5 Rendering Syntax Objects with Formatting

(require syntax/to-string)

(syntax->string stx-list) — string?
stx-list : stx-1list?

Builds a string with newlines and indenting according to the source locations in stx-1ist;
the outer pair of parens are not rendered from stx-1ist.

1.6 Computing the Free Variables of an Expression

(require syntax/free-vars)

13

(free-vars expr-stx) — (listof identifier?)
expr-stx . syntax?

Returns a list of free 1ambda- and let-bound identifiers in expr-stx. The expression must
be fully expanded (see §1.2.3.1 “Fully Expanded Programs” and expand).

1.7 Replacing Lexical Context

(require syntax/strip-context)

(strip-context stx) — syntax?
stx : syntax?

Removes all lexical context from stx, preserving source-location information and proper-
ties.

(replace-context ctx-stx stx) — syntax?
ctx-stx : (or/c syntax? #f)
stx : syntax?

Uses the lexical context of ctx-stx to replace the lexical context of all parts of stx, pre-
serving source-location information and properties of stx.

1.8 Helpers for Processing Keyword Syntax

The syntax/keyword module contains procedures for parsing keyword options in macros.

(require syntax/keyword)

keyword-table = (dict-of keyword (listof check-procedure))

A keyword-table is a dictionary (dict?) mapping keywords to lists of check-procedures.
(Note that an association list is a suitable dictionary.) The keyword’s arity is the length of
the list of procedures.

Example:
> (define my-keyword-table
(l1ist (list ’#:a check-identifier)
(1ist ’#:b check-expression check-expression)))

check-procedure = (syntax syntax -> any)

14

A check procedure consumes the syntax to check and a context syntax object for error re-
porting and either raises an error to reject the syntax or returns a value as its parsed repre-
sentation.

Example:
> (define (check-stx-string stx context-stx)
(unless (string? (syntax-e stx))
(raise-syntax-error #f "expected string" context-stx stx))
stx)

options = (listof (list keyword syntax-keyword any ...))

Parsed options are represented as an list of option entries. Each entry contains the keyword,
the syntax of the keyword (for error reporting), and the list of parsed values returned by the
keyword’s list of check procedures. The list contains the parsed options in the order they
appeared in the input, and a keyword that occurs multiple times in the input occurs multiple
times in the options list.

(parse-keyword-options stx

table
:context ctx
:no-duplicates? no-duplicates?
:incompatible incompatible
:on-incompatible incompatible-handler
:on-too-short too-short-handler
:on-not-in-table not-in-table-handler])

ﬁ
=+ o# o H B

— options any/c
stx @ syntax?
table : keyword-table
ctx : (or/c false/c syntax?) = #f
no-duplicates? : boolean? = #f
incompatible : (listof (listof keyword?)) = ’()
incompatible-handler : (-> keyword? keyword?
options syntax? syntax?
(values options syntax?))
= (lambda (....) (error))
too-short-handler : (-> keyword? options syntax? syntax?
(values options syntax?))
= (lambda (....) (error))
not-in-table-handler : (-> keyword? options syntax? syntax?
(values options syntax?))
= (lambda (....) (error))

Parses the keyword options in the syntax stx (stx may be an improper syntax list). The
keyword options are described in the table association list. Each entry in table should be
a list whose first element is a keyword and whose subsequent elements are procedures for

15

checking the arguments following the keyword. The keyword’s arity (number of arguments)
is determined by the number of procedures in the entry. Only fixed-arity keywords are
supported.

Parsing stops normally when the syntax list does not have a keyword at its head (it may be
empty, start with a non-keyword term, or it may be a non-list syntax object). Two values are
returned: the parsed options and the rest of the syntax (generally either a syntax object or a
list of syntax objects).

A variety of errors and exceptional conditions can occur during the parsing process. The
following keyword arguments determine the behavior in those situations.

The #:context ctx argument is used to report all errors in parsing syntax. In addition,
ctx is passed as the final argument to all provided handler procedures. Macros using parse-
keyword-options should generally pass the syntax object for the whole macro use as ctx.

If no-duplicates?is a non-false value, then duplicate keyword options are not allowed. If
a duplicate is seen, the keyword’s associated check procedures are not called and an incom-
patibility is reported.

The incompatible argument is a list of incompatibility entries, where each entry is a list
of at least two keywords. If any keyword in the entry occurs after any other keyword in the
entry, an incompatibility is reported.

Note that including a keyword in an incompatibility entry does not prevent it from occurring
multiple times. To disallow duplicates of some keywords (as opposed to all keywords),
include those keywords in the incompatible list as being incompatible with themselves.
That is, include them twice:

; Disallow duplicates of only the #:foo keyword
(parse-keyword-options #:incompatible ’((#:foo #:fo00)))

When an incompatibility occurs, the incompatible-handler is tail-called with the two
keywords causing the incompatibility (in the order that they occurred in the syntax list, so
the keyword triggering the incompatibility occurs second), the syntax list starting with the
occurrence of the second keyword, and the context (ctx). If the incompatibility is due to a
duplicate, the two keywords are the same.

When a keyword is not followed by enough arguments according to its arity in table, the
too-short-handler is tail-called with the keyword, the options parsed thus far, the syntax
list starting with the occurrence of the keyword, and ctx.

When a keyword occurs in the syntax list that is not in table, the not-in-table-handler
is tail-called with the keyword, the options parsed thus far, the syntax list starting with the
occurrence of the keyword, and ctx.

16

Handlers typically escape—all of the default handlers raise errors—but if they return, they
should return two values: the parsed options and a syntax object; these are returned as the
results of parse-keyword-options

Examples:
> (parse-keyword-options
#’ (#:transparent #:property p (lambda (x) (f x)))
(1ist (1list ’#:transparent)
(1ist ’#:inspector check-expression)
(1ist ’#:property check-expression check-expression)))
> ((#:transparent #<syntax:3:0 #:transparent>) (#:property
#<syntax:3:0 #:property> #<syntax:3:0 p> #<syntax:3:0 (lambda (x)
(f x))>))
70
> (parse-keyword-options
#’ (#:transparent #:inspector (make-inspector))
(1ist (list ’#:transparent)
(1ist ’#:inspector check-expression)
(1ist ’#:property check-expression check-expression))
#:context #’define-struct
#:incompatible ’ ((#:transparent #:inspector)
(#:inspector #:inspector)
(#:inspector #:inspector)))
eval:4:0: define-struct: #:inspector option not allowed
after #:transparent option at: #:inspector in: define-struct

(parse-keyword-options/eol

stx

table

[#:context ctx

#:no-duplicates? no-duplicates?
#:incompatible incompatible
#:on-incompatible incompatible-handler
#:on-too-short too-short-handler
#:on-not-in-table not-in-table-handler
#:on-not-eol not-eol-handler])

— options

stx : syntax?

table : keyword-table

ctx : (or/c false/c syntax?) = #f

no-duplicates? : boolean? = #f

incompatible : (listof (list keyword? keyword?)) = ’()

17

incompatible-handler : (-> keyword? keyword?
options syntax? syntax?
(values options syntax?))

= (lambda (....) (error))
too-short-handler : (-> keyword? options syntax? syntax?
(values options syntax?))
= (lambda (....) (error))

not-in-table-handler : (-> keyword? options syntax? syntax?
(values options syntax?))
= (lambda (....) (error))
not-eol-handler : (-> options syntax? syntax?
options)
= (lambda (....) (error))

Like parse-keyword-options, but checks that there are no terms left over after parsing
all of the keyword options. If there are, not-eol-handler is tail-called with the options
parsed thus far, the leftover syntax, and ctx.

(options-select options keyword) — (listof list?)
options : options
keyword : keyword?

Selects the values associated with one keyword from the parsed options. The resulting list
has as many items as there were occurrences of the keyword, and each element is a list whose
length is the arity of the keyword.

(options-select-row options
keyword
#:default default) — any
options : options
keyword : keyword?
default : any/c

Like options-select, except that the given keyword must occur either zero or one times
in options. If the keyword occurs, the associated list of parsed argument values is returned.
Otherwise, the default list is returned.

(options-select-value options
keyword
#:default default) — any
options : options
keyword : keyword?
default : any/c

18

Like options-select, except that the given keyword must occur either zero or one times
in options. If the keyword occurs, the associated list of parsed argument values must have
exactly one element, and that element is returned. If the keyword does not occur in options,
the default value is returned.

(check-identifier stx ctx) — identifier?
stx : syntax?
ctx : (or/c false/c syntax?)

A check-procedure that accepts only identifiers.

(check-expression stx ctx) — syntax?
stx : syntax?
ctx : (or/c false/c syntax?)

A check-procedure that accepts any non-keyword term. It does not actually check that the
term is a valid expression.

((check-stx-listof check) stx ctx) — (listof amy/c)
check : check-procedure
stx : syntax?
ctx : (or/c false/c syntax?)

Lifts a check-procedure to accept syntax lists of whatever the original procedure accepted.

(check-stx-string stx ctx) — syntax?
stx : syntax?
ctx : (or/c false/c syntax?)

A check-procedure that accepts syntax strings.

(check-stx-boolean stx ctx) — syntax?
stx : syntax?
ctx : (or/c false/c syntax?)

A check-procedure that accepts syntax booleans.

1.9 Legacy Zodiac Interface

(require syntax/zodiac)
(require syntax/zodiac-unit)

19

(require syntax/zodiac-sig)

The interface is similar to Zodiac—enough to be useful for porting—but different in many
ways. See the source "zodiac-sig.ss" for details. New software should not use this
compatibility layer.

20

2 Module-Processing Helpers

2.1 Reading Module Source Code

(require syntax/modread)

(with-module-reading-parameterization thunk) — any
thunk : (-> any)

Calls thunk with all reader parameters reset to their default values.

(check-module-form stx
expected-module-sym
source-v)

— (or/c syntax? false/c)

stx : (or/c syntax? eof-object?)
expected-module-sym : symbol?
source-v : (or/c string? false/c)

Inspects stx to check whether evaluating it will declare a module—at least if module is
bound in the top-level to Racket’s module. The syntax object stx can contain a compiled
expression. Also, stx can be an end-of-file, on the grounds that read-syntax can produce
an end-of-file.

The expected-module-sym argument is currently ignored. In previous versions, the mod-
ule form stx was obliged to declare a module who name matched expected-module-sym.

If stx can declare a module in an appropriate top-level, then the check-module-form
procedure returns a syntax object that certainly will declare a module (adding explicit context
to the leading module if necessary) in any top-level. Otherwise, if source-v is not #£, a
suitable exception is raised using the write form of the source in the message; if source-v
is #f, #£ is returned.

If stx is eof or eof wrapped as a syntax object, then an error is raised or #f is returned.

2.2 Getting Module Compiled Code

(require syntax/modcode)

21

(get-module-code module-path-v
[#:sub-path compiled-subdir(
compiled-subdir
#:compile compile-procO
compile-proc
#:extension-handler ext-procO
ext-proc
#:choose choose-proc
#:notify notify-proc
#:src-reader read-syntax-proc]) — any
module-path-v : module-path?
compiled-subdir0O : (and/c path-string? relative-path?)
= "compiled"
compiled-subdir : (and/c path-string? relative-path?)
= compiled-subdir0

compile-procO : (any/c . -> . any) = compile

compile-proc : (any/c . -> . any) = compile-proc0
ext-procO : (or/c false/c (path? boolean? . -> . any)) = #f
ext-proc : (or/c false/c (path? boolean? . -> . any))

= ext-procO

choose-proc : (path? path? path?

L=

(or/c (symbols ’src ’zo ’so) false/c))

= (lambda (src zo so) #f)
notify-proc : (any/c . -> . any) = void
read-syntax-proc : (any/c input-port? . -> . syntax?)
= read-syntax

Returns a compiled expression for the declaration of the module specified by module-path-
V.

The compiled-subdir argument defaults to "compiled"; it specifies the sub-directory to
search for a compiled version of the module.

The compile-proc argument defaults to compile. This procedure is used to compile mod-
ule source if an already-compiled version is not available.

The ext-proc argument defaults to #f. If it is not #£f, it must be a procedure of two
arguments that is called when a native-code version of path is should be used. In that case,
the arguments to ext-proc are the path for the extension, and a boolean indicating whether
the extension is a _loader file (#t) or not (#f).

The choose-proc argument is a procedure that takes three paths: a source path, a ".zo"
file path, and an extension path (for a non-_loader extension). Some of the paths may not
exist. The result should be either ’src, ’zo, ’so, or #f, indicating which variant should be

22

used or (in the case of #f) that the default choice should be used.

The default choice is computed as follows: if a ".zo" version of path is available and
newer than path itself (in one of the directories specified by compiled-subdir), then it is
used instead of the source. Native-code versions of path are ignored, unless only a native-
code non-_loader version exists (i.e., path itself does not exist). A _loader extension is
selected a last resort.

If an extension is prefered or is the only file that exists, it is supplied to ext-proc when
ext-proc is #f, or an exception is raised (to report that an extension file cannot be used)
when ext-proc is #f.

If notify-proc is supplied, it is called for the file (source, ".zo" or extension) that is
chosen.

If read-syntax-proc is provided, it is used to read the module from a source file (but not
from a bytecode file).

(moddep-current-open-input-file)

— (path-string? . -> . input-port?)

(moddep-current-open-input-file proc) — void?
proc : (path-string? . -> . input-port?)

A parameter whose value is used like open-input-file to read a module source or " .zo"
file.

(struct exn:get-module-code exn (path)
#:extra-constructor-name make-exn: get—module—code)
path : path?

An exception structure type for exceptions raised by get-module-code.

2.3 Resolving Module Paths to File Paths

(require syntax/modresolve)

(resolve-module-path module-path-v
rel-to-path-v) — path?
module-path-v : module-path?
rel-to-path-v : (or/c path-string? (-> any) false/c)

Resolves a module path to filename path. The module path is resolved relative to rel-to-
path-v if it is a path string (assumed to be for a file), to the directory result of calling the

23

thunk if it is a thunk, or to the current directory otherwise.

(resolve-module-path-index module-path-index
rel-to-path-v) — path?
module-path-index : module-path-index?
rel-to-path-v : (or/c path-string? (-> any) false/c)

Like resolve-module-path but the input is a module path index; in this case, the rel-
to-path-v base is used where the module path index contains the “self” index. If module-
path-index depends on the “self” module path index, then an exception is raised unless
rel-to-path-v is a path string.

2.4 Simplifying Module Paths

(require syntax/modcollapse)

(collapse-module-path module-path-v
rel-to-module-path-v)
— (or/c path? module-path?)
module-path-v : module-path?
rel-to-module-path-v : any/c

Returns a “simplified” module path by combining module-path-v with rel-to-module-
path-v, where the latter must have the form ’(1ib) or a symbol, ’(file
<string>), > (planet), apath, or a thunk to generate one of those.

The result can be a path if module-path-v contains a path element that is needed for the
result, or if rel-to-module-path-v is a non-string path that is needed for the result; oth-
erwise, the result is a module path in the sense of module-path?.

When the result is a >1ib or ’planet module path, it is normalized so that equivalent
module paths are represented by equal? results.

(collapse-module-path-index module-path-index
rel-to-module-path-v)
— (or/c path? module-path?)
module-path-index : module-path-index?
rel-to-module-path-v : any/c

Like collapse-module-path, but the input is a module path index; in this case, the rel-
to-module-path-v base is used where the module path index contains the “self” index.

24

2.5 Inspecting Modules and Module Dependencies

(require syntax/moddep)

Re-exports syntax/modread, syntax/modcode, syntax/modcollapse, and syn-
tax/modresolve, in addition to the following:

(show-import-tree module-path-v) — void?
module-path-v : module-path?

A debugging aid that prints the import hierarchy starting from a given module path.

25

3 Macro Transformer Helpers

3.1 Extracting Inferred Names

(require syntax/name)

(syntax-local-infer-name stx) — any/c
stx : syntax?

Similar to syntax-local-name except that stx is checked for an > inferred-name prop-
erty (which overrides any inferred name). If neither syntax-local-name nor ’inferred-
name produce a name, then a name is constructed from the source-location information in
stx, if any. If no name can be constructed, the result is #£.

3.2 Support for local-expand

(require syntax/context)

(build-expand-context v) — list?
v : (or/c symbol? list?)

Returns a list suitable for use as a context argument to local-expand for an internal-
definition context. The v argument represents the immediate context for expansion. The
context list builds on (syntax-local-context) if itis a list.

(generate-expand-context) — list?

Calls build-expand-context with a generated symbol.

3.3 Parsing define-like Forms

(require syntax/define)

(normalize-definition defn-stx
lambda-id-stx
[check-context?
opt+kws?]) — identifier? syntax?
defn-stx : syntax?
lambda-id-stx : identifier?

26

check-context? : boolean? = #t
opt+kws? : boolean? = #t

Takes a definition form whose shape is like def ine (though possibly with a different name)
and returns two values: the defined identifier and the right-hand side expression.

To generate the right-hand side, this function may need to insert uses of lambda. The
lambda-id-stx argument provides a suitable lambda identifier.

If the definition is ill-formed, a syntax error is raised. If check-context? is true, then a
syntax error is raised if (syntax-local-context) indicates that the current context is an
expression context. The default value of check-context?is #t.

If opt-kws? is #t, then arguments of the form [id expr], keyword id, and keyword
[id expr] are allowed, and they are preserved in the expansion.

3.4 Flattening begin Forms

(require syntax/flatten-begin)

(flatten-begin stx) — (listof syntax?)
stx @ syntax?

Extracts the sub-expressions from a begin-like form, reporting an error if stx does not have
the right shape (i.e., a syntax list). The resulting syntax objects have annotations transferred
from stx using syntax-track-origin.

3.5 Expanding define-struct-like Forms

(require syntax/struct)

(parse-define-struct stx orig-stx) — identifier?
(or/c identifier? false/c)
(listof identifier?)
syntax?
stx : syntax?
orig-stx : syntax?

Parses stx as a define-struct form, but uses orig-stx to report syntax errors (under
the assumption that orig-stx is the same as stx, or that they at least share sub-forms).
The result is four values: an identifier for the struct type name, a identifier or #f for the
super-name, a list of identifiers for fields, and a syntax object for the inspector expression.

27

(build-struct-names name-id
field-ids
omit-sel?
omit-set?
[src-stx]) — (listof identifier?)
name-id : identifier?
field-ids : (listof identifier?)
omit-sel? : boolean?
omit-set? : boolean?
src-stx : (or/c syntax? false/c) = #f

Generates the names bound by define-struct given an identifier for the struct type name
and a list of identifiers for the field names. The result is a list of identifiers:

* struct:name-id

* make-name-id

* name-id?

e name-id-field, for each field in field-ids.

* set-name-id-field! (getter and setter names alternate).

If omit-sel?is true, then the selector names are omitted from the result list. If omit-set?
is true, then the setter names are omitted from the result list.

The default src-stx is #f; it is used to provide a source location to the generated identifiers.

(build-struct-generation name-id
field-ids
omit-sel?
omit-set?
[super-type
prop-value-list
immutable-k-1ist])

— (listof identifier?)

name-id : identifier?

field-ids : (listof identifier?)
omit-sel? : boolean?

omit-set? : boolean?

super-type : any/c = #f
prop-value-list : list? = empty

28

immutable-k-list : list? = empty

Takes the same arguments as build-struct-names and generates an S-expression for code
using make-struct-type to generate the structure type and return values for the identifiers
created by build-struct-names. The optional super-type, prop-value-1list, and
immutable-k-1ist parameters take S-expression values that are used as the corresponding
arguments to make-struct-type.

(build-struct-generation* all-name-ids
name-id
field-ids
omit-sel?
omit-set?
[super-type
prop-value-list
immutable-k-1ist])

— (listof identifier?)

all-name-ids : (listof identifier?)
name-id : identifier?

field-ids : (listof identifier?)
omit-sel? : boolean?

omit-set? : boolean?

super-type : any/c = #f
prop-value-list : list? = empty
immutable-k-list : list? = empty

Like build-struct-generation, but given the names produced by build-struct-
names, instead of re-generating them.

(build-struct-expand-info name-id
field-ids
omit-sel?
omit-set?
base-name
base-getters
base-setters) — any
name-id : identifier?
field-ids : (listof identifier?)
omit-sel? : boolean?
omit-set? : boolean?
base-name : (or/c identifier? boolean?)
base-getters : (listof (or/c identifier? false/c))
base-setters : (listof (or/c identifier? false/c))

29

Takes the same arguments as build-struct-names, plus a parent identifier/#t/#f and a list
of accessor and mutator identifiers (possibly ending in #f) for a parent type, and generates an
S-expression for expansion-time code to be used in the binding for the structure name. A #t
for the base-name means no super-type, #f means that the super-type (if any) is unknown,
and an identifier indicates the super-type identifier.

(struct-declaration-info? v) — boolean?
v : any/c

Returns #t if x has the shape of expansion-time information for structure type declarations,
#f otherwise. See §4.6 “Structure Type Transformer Binding”.

(generate-struct-declaration orig-stx

name-id
super-id-or-false
field-id-list
current-context
make-make-struct-type
[omit-sel?
omit-set?]) — syntax?

orig-stx : syntax?

name-id : identifier?

super-id-or-false : (or/c identifier? false/c)

field-id-list : (listof identifier?)

current-context : any/c

make-make-struct-type : procedure?

omit-sel? : boolean? = #f

omit-set? . boolean? = #f

This procedure implements the core of a define-struct expansion.

The generate-struct-declaration procedure is called by a macro expander to generate
the expansion, where the name-id, super-id-or-false, and field-id-1ist arguments
provide the main parameters. The current-context argument is normally the result of
syntax-local-context. The orig-stx argument is used for syntax errors. The optional
omit-sel? and omit-set? arguments default to #f; a #t value suppresses definitions of
field selectors or mutators, respectively.

The make-struct-type procedure is called to generate the expression to actually create
the struct type. Its arguments are orig-stx, name-id-stx, defined-name-stxes, and
super-info. The first two are as provided originally to generate-struct-declaration,
the third is the set of names generated by build-struct-names, and the last is super-struct
info obtained by resolving super-id-or-false when it is not #£, #f otherwise.

30

The result should be an expression whose values are the same as the result of make-struct-
type. Thus, the following is a basic make-make-struct-type:

(lambda (orig-stx name-stx defined-name-stxes super-info)
#¢ (make-struct-type ’#,name-stx
#, (and super-info (list-ref super-info 0))
#,(/ (- (length defined-name-stxes) 3) 2)
0 #£))

but an actual make-make-struct-type will likely do more.

3.6 Resolving include-like Paths

(require syntax/path-spec)

(resolve-path-spec path-spec-stx
source-stx
expr-stx
build-path-stx) — complete-path?
path-spec-stx : syntax?
source-stx : syntax?
expr-stx . syntax?
build-path-stx : syntax?

Resolves the syntactic path specification path-spec-stx as for include.

The source-stx specifies a syntax object whose source-location information determines
relative-path resolution. The expr-stx is used for reporting syntax errors. The build-
path-stx is usually #’build-path; it provides an identifier to compare to parts of path-
spec-stx to recognize the build-path keyword.

3.7 Controlling Syntax Templates

(require syntax/template)

31

(transform-template template-stx

#:save save-proc

#:restore-stx restore-proc-stx

[#:leaf-save leaf-save-proc
:leaf-restore-stx leaf-restore-proc-stx
:leaf-datum-stx leaf-datum-proc-stx
:pvar-save pvar-save-proc
:pvar-restore-stx pvar-restore-stx
:cons-stx cons-proc-stx
:ellipses-end-stx ellipses-end-stx
:constant-as-leaf? constant-as-leaf?])

HoH O B R

— syntax?
template-stx . syntax?

save-proc : (syntax? . -> . any/c)
restore-proc-stx : syntax?
leaf-save-proc : (syntax? . -> . any/c) = save-proc

leaf-restore-proc-stx : syntax? = #’(lambda (data stx) stx)
leaf-datum-proc-stx : syntax? = #’(lambda (v) v)
pvar-save-proc : (identifier? . -> . any/c) = (lambda (x) #f)
pvar-restore-stx : syntax? = #’(lambda (d stx) stx)
cons-proc-stx : syntax? = cons

ellipses-end-stx : syntax? = #’values

constant-as-leaf? . boolean? = #f

Produces an representation of an expression similar to #¢ (syntax #,template-stx),but
functions like save-proc can collect information that might otherwise be lost by syntax
(such as properties when the syntax object is marshaled within bytecode), and run-time
functions like the one specified by restore-proc-stx can use the saved information or
otherwise process the syntax object that is generated by the template.

The save-proc is applied to each syntax object in the representation of the original template
(i.e., in template-stx). If constant-as-leaf?is #t, then save-proc is applied only
to syntax objects that contain at least one pattern variable in a sub-form. The result of
save-proc is provided back as the first argument to restore-proc-stx, which indicates
a function with a contract (-> any/c syntax any/c any/c); the second argument to
restore-proc-stx is the syntax object that syntax generates, and the last argument is
a datum that have been processed recursively (by functions such as restore-proc-stx)
and that normally would be converted back to a syntax object using the second argument’s
context, source, and properties. Note that save-proc works at expansion time (with respect
to the template form), while restore-proc-stx indicates a function that is called at run
time (for the template form), and the data that flows from save-proc to restore-proc-
stx crosses phases via quote.

The leaf-save-proc and leaf-restore-proc-stx procedures are analogous to save-
proc and restore-proc-stx, but they are applied to leaves, so there is no third argument

32

for recursively processed sub-forms. The function indicated by leaf-restore-proc-stx
should have the contract (-> any/c syntax? any/c).

The leaf-datum-proc-stx procedure is applied to leaves that are not syntax objects,
which can happen because pairs and the empty list are not always individually wrapped
as syntax objects. The function should have the contract (-> any/c any/c). When
constant-as-leaf?is #f, the only possible argument to the procedure is null.

The pvar-save and pvar-restore-stx procedures are analogous to save-proc and
restore-proc-stx, but they are applied to pattern variables. The pvar-restore-stx
procedure should have the contract (-> any/c syntax? any/c), where the second argu-
ment corresponds to the substitution of the pattern variable.

The cons-proc-stx procedure is used to build intermediate pairs, including pairs passed
to restore-proc-stx and pairs that do not correspond to syntax objects.

The ellipses-end-stx procedure is an extra filter on the syntax object that follows a
sequence of . . . ellipses in the template. The procedure should have the contract (-> any/c
any/c).

The following example illustrates a use of transform-template to implement a syn-
tax/shape form that preserves the ’paren-shape property from the original template,
even if the template code is marshaled within bytecode.

(define-for-syntax (get-shape-prop stx)
(syntax-property stx ’paren-shape))

(define (add-shape-prop v stx datum)
(syntax-property (datum->syntax stx datum stx stx stx)
’paren-shape

v))

(define-syntax (syntax/shape stx)
(syntax-case stx (O
[(_ tmpl)
(transform-template #’tmpl
#:save get-shape-prop
#:restore-stx #’add-shape-prop)]))

33

4 Reader Helpers

4.1 Raising exn:fail:read

(require syntax/readerr)

(raise-read-error msg-string
source
line
col
pos
span) — any
msg-string : string?
source : any/c
line : (or/c number? false/c)
col : (or/c number? false/c)
pos : (or/c number? false/c)
span : (or/c number? false/c)

Creates and raises an exn:fail :read exception, using msg-string as the base error mes-
sage.

Source-location information is added to the error message using the last five arguments (if
the error-print-source-location parameter is set to #t). The source argument is an
arbitrary value naming the source location—usually a file path string. Each of the 1ine, pos
arguments is #f or a positive exact integer representing the location within source-name
(as much as known), col is a non-negative exact integer for the source column (if known),
and span is #f or a non-negative exact integer for an item range starting from the indicated
position.

The usual location values should point at the beginning of whatever it is you were reading,
and the span usually goes to the point the error was discovered.

(raise-read-eof-error msg-string
source
line
col
pos
span) — any
msg-string : string?
source : any/c
line : (or/c number? false/c)
col : (or/c number? false/c)

34

pos : (or/c number? false/c)
span : (or/c number? false/c)

Like raise-read-error, but raises exn:fail :read:eof instead of exn:fail:read.

4.2 Module Reader

(require syntax/module-reader)

The syntax/module-reader library provides support for defining #lang readers. It is
normally used as a module language, though it may also be required to get make-meta-
reader. It provides all of the bindings of scheme/base other than #/module-begin.

(#%module-begin module-path)

(#%module-begin module-path reader-option ... form)
(#/module-begin reader-option ... form)
reader-option #:read read-expr
#:read-syntax read-syntax-expr
#:whole-body-readers? whole?-expr
#:wrapperl wrapperl-expr
#:wrapper?2 wrapper2-expr
#:language lang-expr

#:info info-expr

#

:language-info language-info-expr

read-expr : (input-port? . -> . any/c)
read-syntax-expr : (any/c input-port? . -> . any/c)
whole-expr : any/c

wrapperl-expr : (or/c ((-> any/c) . -> . any/c)
((-> any/c) boolean? . -> . any/c))

wrapper2-expr : (or/c (input-port? (input-port? . -> . any/c)
-> . any/c)
(input-port? (input-port? . -> . amny/c)
boolean? . -> . any/c))

info-expr : (symbol? any/c (symbol? any/c . -> . any/c) . -> . any/c)
module-info-expr : (or/c (vector/c module-path? symbol? any/c) #f)

lang-expr : (or/c module-path?
(and/c syntax? (compose module-path? syntax->datum))
procedure?)

35

See also §17.3
“Defining new
#lang Languages”
in Guide: Racket.

In its simplest form, the body of a module written with syntax/module-reader contains
just a module path, which is used in the language position of read modules. For example, a
module something/lang/reader implemented as

(module reader syntax/module-reader
module-path)

creates a reader such that a module source

#lang something

is read as

(module name-id module-path
(#Ymodule-begin))

Keyword-based reader-options allow further customization, as listed below. Additional
forms are as in the body of scheme/base module; they can import bindings and define
identifiers used by the reader-options.

e #:read and #:read-syntax (both or neither must be supplied) specify alternate
readers for parsing the module body—replacements read and read-syntax, respec-
tively. Normally, the replacements for read and read-syntax are applied repeatedly
to the module source until eof is produced, but see also #:whole-body-readers?.

For example, a language built on the Honu reader could be implemented with:

(module reader syntax/module-reader
module-path
#:read read-honu
#:read-syntax read-honu-syntax)

See also #:wrapperl and #:wrapper2, which support simple parameterization of
readers rather than wholesale replacement.

* #:whole-body-readers? specified as true indicates that the #:read and #:read-
syntax functions each produce a list of S-expressions or syntax objects for the module
content, so that each is applied just once to the input stream.

If the resulting list contains a single form that starts with the symbol ’#/module-
begin (or a syntax object whose datum is that symbol), then the first item is used as
the module body; otherwise, a ’#/module-begin (symbol or identifier) is added to
the beginning of the list to form the module body.

e #:wrapperl specifies a function that controls the dynamic context in which the read
and read-syntax functions are called. A #:wrapperl-specified function must ac-
cept a thunk, and it normally calls the thunk to produce a result while parameteriz-
ing the call. Optionally, a #:wrapper1-specified function can accept a boolean that
indicates whether i