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Typed Racket is a family of languages, each of which enforce that programs written in the
language obey a type system that ensures the absence of many common errors. This guide
is intended for programmers familiar with Racket. For an introduction to Racket, see the
Guide: Racket.



1 Quick Start

Given a module written in the racket language, using Typed Racket requires the following
steps:

1. Change the language to typed/racket.

2. Change the uses of (require mod) to (require typed/mod).

3. Annotate structure definitions and top-level definitions with their types.

Then, when the program is run, it will automatically be typechecked before any execution,
and any type errors will be reported. If there are any type errors, the program will not run.

Here is an example program, written in the racket language:

#lang racket
(define-struct pt (x y))

; mag : pt -> number
(define (mag p)

(sqrt (+ (sqr (pt-x p)) (sar (pt-y p)))))
Here is the same program, in typed/racket:

#lang typed/racket
(define-struct: pt ([x : Reall [y : Reall))

(: mag (pt -> Number))
(define (mag p)

(sqrt (+ (sqr (pt-x p)) (sqr (pt-y p)))))



2 Beginning Typed Racket

Recall the typed module from §1 “Quick Start™:

#lang typed/racket
(define-struct: pt ([x : Real] [y : Reall))

(: mag (pt -> Number))
(define (mag p)
(sqrt (+ (sqr (pt-x p)) (sqr (pt-y p)))))

Let us consider each element of this program in turn.
#lang typed/racket

This specifies that the module is written in the typed/racket language, which is a typed
version of the racket language. Typed versions of other languages are provided as well; for
example, the typed/racket/base language corresponds to racket/base.

(define-struct: pt ([x : Reall] [y : Reall))

This defines a new structure, name pt, with two fields, x and y. Both fields are specified to
have the type Real, which corresponds to the real numbers. The define-struct: form cor-
responds to the define-struct form from racket—when porting a program from racket
to typed/racket, uses of define-struct should be changed to define-struct:.

(: mag (pt -> Number))
This declares that mag has the type (pt -> Number).

The type (pt -> Number) is a function type, that is, the type of a procedure. The input
type, or domain, is a single argument of type pt, which refers to an instance of the pt
structure. The -> both indicates that this is a function type and separates the domain from
the range, or output type, in this case Number.

(define (mag p)
(sqrt (+ (sqr (pt-x p)) (sar (pt-y p)))))

This definition is unchanged from the untyped version of the code. The goal of Typed Racket
is to allow almost all definitions to be typechecked without change. The typechecker verifies
that the body of the function has the type Real, under the assumption that p has the type pt,
taking these types from the earlier type declaration. Since the body does have this type, the
program is accepted.

Many forms in
Typed Racket have
the same name as
the untyped forms,
with a : suffix.



2.1 Datatypes and Unions

Many data structures involve multiple variants. In Typed Racket, we represent these using
union types, written (U t1 t2 ...).

#lang typed/racket

(define-type Tree (U leaf node))

(define-struct: leaf ([val : Number]))
(define-struct: node ([left : Tree] [right : Treel))

(: tree-height (Tree -> Number))
(define (tree-height t)
(cond [(leaf? t) 1]
[else (max (+ 1 (tree-height (node-left t)))
(+ 1 (tree-height (node-right t))))1))

(: tree-sum (Tree -> Number))
(define (tree-sum t)
(cond [(leaf? t) (leaf-val t)]
[else (+ (tree-sum (node-left t))
(tree-sum (node-right t)))1))

In this module, we have defined two new datatypes: leaf and node. We’ve also defined
the type name Tree to be (U node leaf), which represents a binary tree of numbers. In
essence, we are saying that the tree-height function accepts a Tree, which is either a
node or a leaf, and produces a number.

In order to calculate interesting facts about trees, we have to take them apart and get at their
contents. But since accessors such as node-left require a node as input, not a Tree, we
have to determine which kind of input we were passed.

For this purpose, we use the predicates that come with each defined structure. For example,
the 1eaf? predicate distinguishes leafs from all other Typed Racket values. Therefore, in
the first branch of the cond clause in tree-sum, we know that t is a 1eaf, and therefore we
can get its value with the leaf-val function.

In the else clauses of both functions, we know that t is not a 1leaf, and since the type of t
was Tree by process of elimination we can determine that t must be a node. Therefore, we
can use accessors such as node-left and node-right with t as input.

2.2 Type Errors

When Typed Racket detects a type error in the module, it raises an error before running the
program.



Example:

> (add1 "not a number")

eval:2:0: Type Checker: No function domains matched in

Sfunction application:

Domains: Exact-Positive-Integer
Exact-Nonnegative-Integer
Integer
Exact-Rational
Float
Real
Number

Arguments: String

in: "not a number"



3 Specifying Types

The previous section introduced the basics of the Typed Racket type system. In this section,
we will see several new features of the language, allowing types to be specified and used.

3.1 Type Annotation and Binding Forms

In general, variables in Typed Racket must be annotated with their type.

3.1.1 Annotating Definitions

We have already seen the : type annotation form. This is useful for definitions, at both the
top level of a module

(: x Number)
(define x 7)

and in an internal definition

(let O
(: x Number)
(define x 7)
(addl x))

In addition to the : form, almost all binding forms from racket have counterparts which
allow the specification of types. The define: form allows the definition of variables in both
top-level and internal contexts.

(define: x : Number 7)
(define: (id [z : Number]) z)

Here, x has the type Number, and id has the type (Number -> Number). In the body of
id, z has the type Number.

3.1.2 Annotating Local Binding

(let: ([x : Number 7])
(add1l x))

The let: form is exactly like 1et, but type annotations are provided for each variable bound.
Here, x is given the type Number. The let*: and letrec: are similar.



(let-values: ([([x : Number] [y : String]) (values 7 '"hello")])
(+ x (string-length y)))

The let*-values: and letrec-values: forms are similar.

3.1.3 Annotating Functions

Function expressions also bind variables, which can be annotated with types. This function
expects two arguments, a Number and a String:

(lambda: ([x : Number] [y : String]) (+ x 5))

This function accepts at least one String, followed by arbitrarily many Numbers. In the
body, y is a list of Numbers.

(lambda: ([x : String] . [y : Number *]) (apply + y))

This function has the type (String Number * -> Number). Functions defined by cases
may also be annotated:

(case-lambda: [() 0]
[([x : Numberl) xI1)

This function has the type (case-lambda (-> Number) (Number -> Number)).

3.1.4 Annotating Single Variables

When a single variable binding needs annotation, the annotation can be applied to a single
variable using a reader extension:

(let ([#{x : Number} 7]1) (addl x))

This is equivalent to the earlier use of let:. This is especially useful for binding forms
which do not have counterparts provided by Typed Racket, such as let+:

(let+ ([val #{x : Number} (+ 6 1)])
(* x x))

3.1.5 Annotating Expressions

It is also possible to provide an expected type for a particular expression.

(amn (+ 7 1) Number)



This ensures that the expression, here (+ 7 1), has the desired type, here Number. Other-
wise, the type checker signals an error. For example:

> (ann "not a number'" Number)

eval:2:0: Type Checker: Expected Number, but got String in:
Number

3.2 Type Inference

In many cases, type annotations can be avoided where Typed Racket can infer them. For
example, the types of all local bindings using let and let* can be inferred.

(let ([x 7]1) (addl x))

In this example, x has the type Exact-Positive-Integer.

Similarly, top-level constant definitions do not require annotation:
(define y '"foo")

In this examples, y has the type String.

Finally, the parameter types for loops are inferred from their initial values.

(let loop ([x 0] [y (ist 1 2 3)1)
(if (null? y) x (loop (+ x (car y)) (cdr y))))

Here x has the inferred type Integer, and y has the inferred type (Listof Integer). The
loop variable has type (Integer (Listof Integer) -> Integer).

3.3 New Type Names

Any type can be given a name with def ine-type.
(define-type NN (Number -> Number))

Anywhere the name NN is used, it is expanded to (Number -> Number). Type names may
not be recursive.



4 Types in Typed Racket

Typed Racket provides a rich variety of types to describe data. This section introduces them.

4.1 Basic Types

The most basic types in Typed Racket are those for primitive data, such as True and False
for booleans, String for strings, and Char for characters.

> ?"hello, world"
- : String
"hello, world"
> #\f

- : Char

#\f

> #t

- : True

#t

> #f

- : False

#f

Each symbol is given a unique type containing only that symbol. The Symbol type includes
all symbols.

> 7foo

- : ’foo
foo

> ’bar

- @ ’bar
‘bar

Typed Racket also provides a rich hierarchy for describing particular kinds of numbers.

\4

0

v O 1

-7
: Integer

-7

> 14

- : Exact-Positive-Integer
14

> 3.2



: Float
.2
7.0+2.8i
: Number
.0+2.81

IV w1

~

Finally, any value is itself a type:

> (ann 23 : 23)
- : 23
23

4.2 Function Types

We have already seen some examples of function types. Function types are constructed
using ->, with the argument types before the arrow and the result type after. Here are some
example function types:

(Number -> Number)
(String String -> Boolean)
(Char -> (values String Natural))

The first type requires a Number as input, and produces a Number. The second requires two
arguments. The third takes one argument, and produces multiple values, of types String
and Natural. Here are example functions for each of these types.

> (lambda: ([x : Number]) x)

- ¢ (Number -> Number)

#<procedure>

> (lambda: ([a : String] [b : String]) (equal? a b))

- : (String String -> Boolean)

#<procedure>

> (lambda: ([c : Char]) (values (string c) (char->integer c)))
- ¢ (Char -> (values String Exact-Nonnegative-Integer))
#<procedure>

4.3 Union Types

Sometimes a value can be one of several types. To specify this, we can use a union type,
written with the type constructor U.

> (let ([a-number 37])
(if (even? a-number)

10



’yes
’no))
- : (U ’yes ’no)
’no

Any number of types can be combined together in a union, and nested unions are flattened.

(U Number String Boolean Char)

4.4 Recursive Types

Recursive types can refer to themselves. This allows a type to describe an infinite family of
data. For example, this is the type of binary trees of numbers.

(Rec BT (U Number (Pair BT BT)))

The Rec type constructor specifies that the type BT refers to the whole binary tree type within
the body of the Rec form.

4.5 Structure Types

Using define-struct: introduces new types, distinct from any previous type.
(define-struct: point ([x : Reall [y : Reall))

Instances of this structure, such as (make-point 7 12), have type point.

4.6 Subtyping

In Typed Racket, all types are placed in a hierarchy, based on what values are included in
the type. When an element of a larger type is expected, an element of a smaller type may be
provided. The smaller type is called a subtype of the larger type. The larger type is called a
supertype. For example, Integer is a subtype of Real, since every integer is a real number.
Therefore, the following code is acceptable to the type checker:

(: £ (Real -> Real))
(define (f x) (x x 0.75))

(: x Integer)
(define x -125)

(f x)
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All types are subtypes of the Any type.

The elements of a union type are individually subtypes of the whole union, so String is
a subtype of (U String Number). One function type is a subtype of another if they have
the same number of arguments, the subtype’s arguments are more permissive (is a super-
type), and the subtype’s result type is less permissive (is a subtype). For example, (Any ->
String) is a subtype of (Number -> (U String #f)).

4.7 Polymorphism

Typed Racket offers abstraction over types as well as values.

4.7.1 Polymorphic Data Structures

Virtually every Racket program uses lists and sexpressions. Fortunately, Typed Racket can
handle these as well. A simple list processing program can be written like this:

#lang typed/racket
(: sum-list ((Listof Number) -> Number))
(define (sum-list 1)
(cond [(null? 1) 0]
[else (+ (car 1) (sum-list (cdr 1)))1))

This looks similar to our earlier programs — except for the type of 1, which looks like a
function application. In fact, it’s a use of the type constructor Listof, which takes another
type as its input, here Number. We can use Listof to construct the type of any kind of list
we might want.

We can define our own type constructors as well. For example, here is an analog of the
Maybe type constructor from Haskell:

#lang typed/racket
(define-struct: None ())
(define-struct: (a) Some ([v : al))

(define-type (Opt a) (U None (Some a)))
(: find (Number (Listof Number) -> (Opt Number)))
(define (find v 1)
(cond [(null? 1) (make-None)]
[(= v (car 1)) (make-Some v)]
[else (find v (cdr 1))1))

The first define-struct: defines None to be a structure with no contents.
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The second definition
(define-struct: (a) Some ([v : al))

creates a parameterized type, Just, which is a structure with one element, whose type is that
of the type argument to Just. Here the type parameters (only one, a, in this case) are written
before the type name, and can be referred to in the types of the fields.

The type definiton
(define-type (Opt a) (U None (Some a)))
creates a parameterized type — Opt is a potential container for whatever type is supplied.

The find function takes a number v and list, and produces (make-Some v) when the num-
ber is found in the list, and (make-None) otherwise. Therefore, it produces a (Opt Num-
ber), just as the annotation specified.

4.7.2 Polymorphic Functions

Sometimes functions over polymorphic data structures only concern themselves with the
form of the structure. For example, one might write a function that takes the length of a list
of numbers:

#lang typed/racket
(: list-number-length ((Listof Number) -> Integer))
(define (list-number-length 1)
(if (null? 1)
0
(addl (list-number-length (cdr 1)))))

and also a function that takes the length of a list of strings:

#lang typed/racket
(: list-string-length ((Listof String) -> Integer))
(define (list-string-length 1)
(if (null? 1)
0
(addl (1list-string-length (cdr 1)))))

Notice that both of these functions have almost exactly the same definition; the only dif-
ference is the name of the function. This is because neither function uses the type of the
elements in the definition.

We can abstract over the type of the element as follows:
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#lang typed/racket
(: list-length (A1l (A) ((Listof A) -> Integer)))
(define (list-length 1)
(if (null? 1)
0
(add1l (1list-length (cdr 1)))))

The new type constructor A1l takes a list of type variables and a body type. The type
variables are allowed to appear free in the body of the A11 form.

4.8 Variable-Arity Functions: Programming with Rest Arguments

Typed Racket can handle some uses of rest arguments.

4.8.1 Uniform Variable-Arity Functions

In Racket, one can write a function that takes an arbitrary number of arguments as follows:

#lang racket
(define (sum . xs)
(if (null? xs)
0
(+ (car xs) (apply sum (cdr xs)))))

(sum)
(sum 1 2 3 4)
(sum 1 3)

The arguments to the function that are in excess to the non-rest arguments are converted to a
list which is assigned to the rest parameter. So the examples above evaluate to 0, 10, and 4.

We can define such functions in Typed Racket as well:

#lang typed/racket
(: sum (Number * -> Number))
(define (sum . xs)
(if (null? xs)
0
(+ (car xs) (apply sum (cdr xs)))))

This type can be assigned to the function when each element of the rest parameter is used at
the same type.
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4.8.2 Non-Uniform Variable-Arity Functions

However, the rest argument may be used as a heterogeneous list. Take this (simplified)
definition of the Racket function map:

#lang racket
(define (map f as . bss)
(if (or (null? as)
(ormap null? bss))
null
(cons (apply f (car as) (map car bss))
(apply map f (cdr as) (map cdr bss)))))

(map addl (list 1 2 3 4))
(map cons (list 1 2 3) (list (list 4) (list 5) (1list 6)))
(map + (1list 1 2 3) (list 2 3 4) (list 3 4 5) (list 4 5 6))

Here the different lists that make up the rest argument bss can be of different types, but the
type of each list in bss corresponds to the type of the corresponding argument of £. We also
know that, in order to avoid arity errors, the length of bss must be one less than the arity of
f (as as corresponds to the first argument of £).

The example uses of map evaluate to (list 2 3 4 5), (1ist (list 1 4) (list 2 5)
(list 3 6)),and (list 10 14 18).

In Typed Racket, we can define map as follows:

#lang typed/racket
(: map
(A11 (C A B ...)
((AB ... B ->C) (Listof A) (Listof B) ... B
->
(Listof C))))
(define (map f as . bss)
(if (or (null? as)
(ormap null? bss))
null
(cons (apply f (car as) (map car bss))
(apply map f (cdr as) (map cdr bss)))))

Note that the type variable B is followed by an ellipsis. This denotes that B is a dotted type
variable which corresponds to a list of types, much as a rest argument corresponds to a list
of values. When the type of map is instantiated at a list of types, then each type t which is
bound by B (notated by the dotted pre-type t ... B)is expanded to a number of copies of
t equal to the length of the sequence assigned to B. Then B in each copy is replaced with the
corresponding type from the sequence.
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So the type of (inst map Integer Boolean String Number) is

((Boolean String Number -> Integer) (Listof Boolean) (Listof String)
(Listof Number) -> (Listof Integer)).
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