
The Typed Racket Reference
Version 5.0

Sam Tobin-Hochstadt

June 6, 2010

#lang typed/racket/base

#lang typed/racket

1

1 Type Reference

Base Types

Number

Complex

Real

Integer

Natural

Exact-Positive-Integer

Exact-Nonnegative-Integer

Boolean

True

False

String

Keyword

Symbol

Void

Input-Port

Output-Port

Path

Regexp

PRegexp

Syntax

Identifier

Bytes

Namespace

EOF

Continuation-Mark-Set

Char

These types represent primitive Racket data. Note that Integer represents exact integers.

Any

Any Racket value. All other types are subtypes of Any.

Nothing

The empty type. No values inhabit this type, and any expression of this type will not evaluate
to a value.

The following base types are parameteric in their type arguments.

2

(Listof t)

Homogenous lists of t

(Boxof t)

A box of t

(Syntaxof t)

A syntax object containing a t

(Vectorof t)

Homogenous vectors of t

(Option t)

Either t of #f

(Parameter t)

(Parameter s t)

A parameter of t . If two type arguments are supplied, the first is the type the parameter
accepts, and the second is the type returned.

(Pair s t)

is the pair containing s as the car and t as the cdr

(HashTable k v)

is the type of a hash table with key type k and value type v .

Type Constructors

(dom ... -> rng)

(dom ... rest * -> rng)

(dom ... rest ... bound -> rng)

(dom -> rng : pred)

3

is the type of functions from the (possibly-empty) sequence dom ... to the rng type. The
second form specifies a uniform rest argument of type rest , and the third form specifies a
non-uniform rest argument of type rest with bound bound . In the third form, the second
occurrence of ... is literal, and bound must be an identifier denoting a type variable. In the
fourth form, there must be only one dom and pred is the type checked by the predicate.

(U t ...)

is the union of the types t ...

(case-lambda fun-ty ...)

is a function that behaves like all of the fun-tys. The fun-tys must all be function types
constructed with ->.

(t t1 t2 ...)

is the instantiation of the parametric type t at types t1 t2 ...

(All (v ...) t)

is a parameterization of type t , with type variables v ...

(List t ...)

is the type of the list with one element, in order, for each type provided to the List type
constructor.

(Vector t ...)

is the type of the list with one element, in order, for each type provided to the Vector type
constructor.

(values t ...)

is the type of a sequence of multiple values, with types t This can only appear as the
return type of a function.

v

where v is a number, boolean or string, is the singleton type containing only that value

4

(quote val)

where val is a Racket value, is the singleton type containing only that value

i

where i is an identifier can be a reference to a type name or a type variable

(Rec n t)

is a recursive type where n is bound to the recursive type in the body t

Other types cannot be written by the programmer, but are used internally and may appear in
error messages.

(struct:n (t ...))

is the type of structures named n with field types t . There may be multiple such types with
the same printed representation.

<n>

is the printed representation of a reference to the type variable n

5

2 Special Form Reference

Typed Racket provides a variety of special forms above and beyond those in Racket. They
are used for annotating variables with types, creating new types, and annotating expressions.

2.1 Binding Forms

loop , f , a , and v are names, t is a type. e is an expression and body is a block.

(let: ([v : t e] ...) . body)

(let: loop : t0 ([v : t e] ...) . body)

Local bindings, like let, each with associated types. In the second form, t0 is the type of
the result of loop (and thus the result of the entire expression as well as the final expression
in body).

(letrec: ([v : t e] ...) . body)

(let*: ([v : t e] ...) . body)

(let-values: ([([v : t] ...) e] ...) . body)

(letrec-values: ([([v : t] ...) e] ...) . body)

(let*-values: ([([v : t] ...) e] ...) . body)

Type-annotated versions of letrec, let*, let-values, letrec-values, and let*-

values.

(let/cc: v : t . body)

(let/ec: v : t . body)

Type-annotated versions of let/cc and let/ec.

2.2 Anonymous Functions

(lambda: formals . body)

formals = ([v : t] ...)

| ([v : t] ... v : t)

A function of the formal arguments v , where each formal argument has the associated type.
If a rest argument is present, then it has type (Listof t).

6

(λ: formals . body)

An alias for the same form using lambda:.

(plambda: (a ...) formals . body)

A polymorphic function, abstracted over the type variables a . The type variables a are
bound in both the types of the formal, and in any type expressions in the body .

(case-lambda: [formals body] ...)

A function of multiple arities. Note that each formals must have a different arity.

(pcase-lambda: (a ...) [formals body] ...)

A polymorphic function of multiple arities.

2.3 Loops

(do: : u ([id : t init-expr step-expr-maybe] ...)

(stop?-expr finish-expr ...)

expr ...+)

step-expr-maybe =
| step-expr

Like do, but each id having the associated type t , and the final body expr having the type
u .

2.4 Definitions

(define: v : t e)

(define: (f . formals) : t . body)

(define: (a ...) (f . formals) : t . body)

These forms define variables, with annotated types. The first form defines v with type t and
value e . The second and third forms defines a function f with appropriate types. In most
cases, use of : is preferred to use of define:.

7

2.5 Structure Definitions

(define-struct: maybe-type-vars name-spec ([f : t] ...))

maybe-type-vars =
| (v ...)

name-spec = name

| (name parent)

Defines a structure with the name name , where the fields f have types t . When parent , the
structure is a substructure of parent . When maybe-type-vars is present, the structure is
polymorphic in the type variables v .

(define-struct/exec: name-spec ([f : t] ...) [e : proc-t])

name-spec = name

| (name parent)

Like define-struct:, but defines an procedural structure. The procdure e is used as the
value for prop:procedure, and must have type proc-t .

2.6 Names for Types

(define-type name t)

(define-type (name v ...) t)

The first form defines name as type, with the same meaning as t . The second form is
equivalent to (define-type name (All (v ...) t)). Type names may refer to other
types defined in the same module, but cycles among them are prohibited.

2.7 Generating Predicates Automatically

(define-predicate name t)

Defines name as a predicate for the type t . name has the type (Any -> Boolean : t). t
may not contain function types.

8

2.8 Type Annotation and Instantiation

(: v t)

This declares that v has type t . The definition of v must appear after this declaration. This
can be used anywhere a definition form may be used.

(provide: [v t] ...)

This declares that the vs have the types t , and also provides all of the vs.

#{v : t} This declares that the variable v has type t. This is legal only for binding oc-
curences of v .

(ann e t)

Ensure that e has type t , or some subtype. The entire expression has type t . This is legal
only in expression contexts.

#{e :: t} This is identical to (ann e t).

(inst e t ...)

Instantiate the type of e with types t e must have a polymorphic type with the appro-
priate number of type variables. This is legal only in expression contexts.

#{e @ t ...} This is identical to (inst e t ...).

2.9 Require

Here, m is a module spec, pred is an identifier naming a predicate, and r is an optionally-
renamed identifier.

(require/typed m rt-clause ...)

rt-clause = [r t]

| [struct name ([f : t] ...)]

| [struct (name parent) ([f : t] ...)]

| [opaque t pred]

This form requires identifiers from the module m , giving them the specified types.

9

The first form requires r , giving it type t .

The second and third forms require the struct with name name with fields f ..., where
each field has type t . The third form allows a parent structure type to be specified. The
parent type must already be a structure type known to Typed Racket, either built-in or via
require/typed. The structure predicate has the appropriate Typed Racket filter type so
that it may be used as a predicate in if expressions in Typed Racket.

The fourth case defines a new type t . pred , imported from module m , is a predicate for
this type. The type is defined as precisely those values to which pred produces #t. pred
must have type (Any -> Boolean). Opaque types must be required lexically before they
are used.

In all cases, the identifiers are protected with contracts which enforce the specified types. If
this contract fails, the module m is blamed.

Some types, notably polymorphic types constructed with All, cannot be converted to con-
tracts and raise a static error when used in a require/typed form.

10

3 Libraries Provided With Typed Racket

The typed/racket language corresponds to the racket language—that is, any identifier
provided by racket, such as modulo is available by default in typed/racket.

#lang typed/racket

(modulo 12 2)

The typed/racket/base language corresponds to the racket/base language.

Some libraries have counterparts in the typed collection, which provide the same exports as
the untyped versions. Such libraries include srfi/14, net/url, and many others.

#lang typed/racket

(require typed/srfi/14)

(char-set= (string->char-set "hello")

(string->char-set "olleh"))

To participate in making more libraries available, please visit here.

Other libraries can be used with Typed Racket via require/typed.

#lang typed/racket

(require/typed version/check

[check-version (-> (U Symbol (Listof Any)))])

(check-version)

11

http://www.ccs.neu.edu/home/samth/adapt/

4 Typed Racket Syntax Without Type Checking

#lang typed-scheme/no-check

On occasions where the Typed Racket syntax is useful, but actual typechecking is not de-
sired, the typed-scheme/no-check language is useful. It provides the same bindings and
syntax as Typed Racket, but does no type checking.

Examples:

#lang typed-scheme/no-check

(: x Number)

(define x "not-a-number")

12

5 Typed Regions

The with-type for allows for localized Typed Racket regions in otherwise untyped code.

(with-type result-spec fv-clause body ...+)

(with-type export-spec fv-clause body ...+)

fv-clause =
| #:freevars ([id fv-type] ...)

result-spec = #:result type

export-spec = ([export-id export-type] ...)

The first form, an expression, checks that body ...+ has the type type . If the last expres-
sion in body ...+ returns multiple values, type must be a type of the form (values t

...). Uses of the result values are appropriately checked by contracts generated from type .

The second form, which can be used as a definition, checks that each of the export-ids
has the specified type. These types are also enforced in the surrounding code with contracts.

The ids are assumed to have the types ascribed to them; these types are converted to con-
tracts and checked dynamically.

Examples:
> (with-type #:result Number 3)

3

> ((with-type #:result (Number -> Number)

(lambda: ([x : Number]) (add1 x)))

#f)

top-level broke the contract (-> Number Number) given to
(region typed-region); expected <Number>, given: #f
> (let ([x "hello"])

(with-type #:result String

#:freevars ([x String])

(string-append x ", world")))

"hello, world"

> (let ([x 'hello])

(with-type #:result String

#:freevars ([x String])

(string-append x ", world")))

eval:5.0: top-level broke the contract String on x;
expected <String>, given: ’hello
> (with-type ([fun (Number -> Number)]

[val Number])

13

(define (fun x) x)

(define val 17))

> (fun val)

17

14

	1 Type Reference
	2 Special Form Reference
	2.1 Binding Forms
	2.2 Anonymous Functions
	2.3 Loops
	2.4 Definitions
	2.5 Structure Definitions
	2.6 Names for Types
	2.7 Generating Predicates Automatically
	2.8 Type Annotation and Instantiation
	2.9 Require

	3 Libraries Provided With Typed Racket
	4 Typed Racket Syntax Without Type Checking
	5 Typed Regions

