Unstable

Version 5.0

June 6, 2010

(require unstable)
This manual documents some of the libraries available in the unstable collection.

The name unstable is intended as a warning that the interfaces in particular are unsta-
ble. Developers of planet packages and external projects should avoid using modules in the
unstable collection. Contracts may change, names may change or disappear, even entire
modules may move or disappear without warning to the outside world.

Developers of unstable libraries must follow the guidelines in §1 “Guidelines for developing
unstable libraries”.

1 Guidelines for developing unstable libraries

Any collection developer may add modules to the unstable collection.

Every module needs an owner to be responsible for it.

* If you add a module, you are its owner. Add a comment with your name at the top of
the module.

* If you add code to someone else’s module, tag your additions with your name. The
module’s owner may ask you to move your code to a separate module if they don’t
wish to accept responsibility for it.

When changing a library, check all uses of the library in the collections tree and update them
if necessary. Notify users of major changes.

Place new modules according to the following rules. (These rules are necessary for main-
taining PLT’s separate text, gui, and drracket distributions.)

* Non-GUI modules go under unstable (or subcollections thereof). Put the docu-
mentation in unstable/scribblings and include with include-section from
unstable/scribblings/unstable.scrbl.

* GUI modules go under unstable/gui. Put the documentation in un-
stable/scribblings/gui and include them with include-section from
unstable/scribblings/gui.scrbl.

* Do not add modules depending on DrRacket to the unstable collection.

» Put tests in tests/unstable.

Keep documentation and tests up to date.

2 Bytes

(require unstable/bytes)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(bytes-ci=7 bl b2) — boolean?
bl : bytes?
b2 : bytes?

Compares two bytes case insensitively.

(read/bytes b) — serializable?
b : bytes?

reads a value from b and returns it.

(write/bytes v) — bytes?
v : serializable?

writes v to a bytes and returns it.

3 Contracts

(require unstable/contract)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

non-empty-string/c : contract?

Contract for non-empty strings.

port-number? : contract?

Equivalent to (between/c 1 65535).

path-element? : contract?

Equivalent to (or/c path-string? (symbols ’up ’same)).

(if/c predicate then-contract else-contract) — contract?
predicate : (-> any/c any/c)
then-contract : contract?
else-contract : contract?

Produces a contract that, when applied to a value, first tests the value with predicate; if
predicate returns true, the then-contract is applied; otherwise, the else-contract
is applied. The resulting contract is a flat contract if both then-contract and else-
contract are flat contracts.

For example, the following contract enforces that if a value is a procedure, it is a thunk;
otherwise it can be any (non-procedure) value:

(if/c procedure? (-> any) any/c)
Note that the following contract is not equivalent:
(or/c (-> any) any/c) ; wrong!

The last contract is the same as any/c because or/c tries flat contracts before higher-order
contracts.

(rename-contract contract name) — contract?
contract : contract?

The subsequent
bindings were
added by Ryan
Culpepper.

name : any/c
Produces a contract that acts like contract but with the name name.

The resulting contract is a flat contract if contract is a flat contract.

4 Directories

(require unstable/dirs)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This library defines utilities dealing with the directory paths used by the Racket distribution.

(path->directory-relative-string path
[#:default default
#:dirs dirs])
— (or/c string? (one-of/c default))
path : path-string?
default : any/c = (if (path? path) (path->string path) path)
dirs : (listof (cons/c (-> path?) any/c))
= library-relative-directories

Produces a string rendering of path, replacing distribution-specific paths (normally: collec-
tions, user-installed collections, or PLanet cache) with short abbreviations.

The set of paths and their abbreviations may be overridden by the #:dirs option, which
accepts an association list. Its keys must be thunks which produce a path. Its values may be
either #f for no abbreviation (the directory prefix is simply omitted) or any other value to
be displayed in the output. For instance, "document.txt" relative to a path abbreviated
"path" would be rendered as "<path>/document.txt".

If the path is not relative to one of the given directories, the default return value is a string
rendering of the unmodified path. This default may be overridden by providing default.

Examples:

> (path->directory-relative-string
(build-path "source" "project.rkt"))

"source/project.rkt"

> (path->directory-relative-string
(build-path (current-directory) '"source

"<collects>/unstable/source/project.rkt"

> (path->directory-relative-string
(build-path "/" "source'" "project.rkt"))

"/source/project.rkt"

> (path->directory-relative-string
(build-path "/" "source" "project.rkt")
#:default #f)

#f

> (path->directory-relative-string

project.rkt"))

(build-path "/" "source" "project.rkt")
#:dirs (list
(cons (lambda () (build-path "/" "source"))
’src)))

"<src>/project.rkt"

library-relative-directories : (listof (cons (-> path?) any/c))

Represents the default directory substitutions for path->directory-relative-string.
By default, the collections directory is replaced by collects, the user-installed collections
directory is replaced by user, and the PLaneT cache is replaced by planet.

setup-relative-directories : (listof (cons (-> path?) any/c))

Represents the directory substitutions used by setup-plt. The collections directory is omit-
ted, the user-installed collections directory is replaced by user, and the PLaneT cache is
replaced by planet.

5 Exceptions

(require unstable/exn)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(network-error s fmt v ...) — void
s : symbol?
fmt : string?
v : any/c

Like error, but throws a exn:fail:network.

(exn->string exn) — string?
exn : (or/c exn? any/c)

Formats exn with (error-display-handler) as a string.

6 Filesystem

(require unstable/file)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(make-directory*/ignore-exists-exn pth) — void
pth : path-string?

Like make-directory*, except it ignores errors when the path already exists. Useful to
deal with race conditions on processes that create directories.

7 Lists

(require unstable/list)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(list-prefix? 1 r) — boolean?
1 : 1list?
r : list?

True if 1 is a prefix of r.

Example:

> (list-prefix? (1 2) ’(1 2 3 4 5))

#t The subsequent
bindings were
added by Sam
(filter-multiple 1 f ...) — list? ... Tobin-Hochstadt.

1 : list?
f : procedure?

Produces (values (filter f 1) ...).

Example:
> (filter-multiple (list 1 2 3 4 5) even? odd?)
(2 4)
’(1 3 5)

(extend 11 12 v) — list?
11 : list?
12 : list?
v : any/c

Extends 12 to be as long as 11 by adding (- (length 11) (length 12)) copies of v
to the end of 12.

Example:

> (extend (1 2 3) ’(a) ’b)

’(a b b) The subsequent
bindings were
added by Ryan
(check-duplicate 1st Culpepper.

[#:key extract-key
#:same? same?]) — (or/c any/c #f)

1st : list?

10

extract-key : (-> any/c any/c) = (lambda (x) x)
same? : (or/c (any/c any/c . -> . any/c) = equal?
dict?)

Returns the first duplicate item in 1st. More precisely, it returns the first x such that there
was a previous y where (same? (extract-key x) (extract-key y)).

The same? argument can either be an equivalence predicate such as equal? or eqv? or a
dictionary. In the latter case, the elements of the list are mapped to #t in the dictionary until
an element is discovered that is already mapped to a true value. The procedures equal?,
eqv?, and eq? automatically use a dictionary for speed.

Examples:
> (check-duplicate ’(1 2 3 4))
#t
> (check-duplicate ’(1 2 3 2 1))
2
> (check-duplicate ’((a 1) (b 2) (a 3)) #:key car)
(a 3)
> (define id-t (make-free-id-table))
> (check-duplicate (syntax->list #’(a b ¢ d a b))
#:same? id-t)
#<syntax:10:0 a>
> (dict-map id-t list)
?((#<syntax:10:0 a> #t) (#<syntax:10:0 b> #t) (#<syntax:10:0 c> #t)

(#<syntax:10:0 a> #t)) The subsequent
bindings were
added by Carl

(map/values n f Ist ...) — (listof B_1) ... (listof B_n) Eastlund.

n : natural-number/c
f : (> A ... (values B_1 ... B_n))

1st : (listof A)
Produces lists of the respective values of £ applied to the elements in 1st ... sequentially.

Example:
> (map/values
3
(lambda (x)
(values (+ x 1) x (- x 1)))
(list 1 2 3))
(2 3 4)
(12 3)
(01 2)

11

8 Net

(require unstable/net)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

8.1 URLs

(require unstable/net/url)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(url-replace-path proc u) — url?
proc : ((listof path/param?) . -> . (listof path/param?))
u : url?

Replaces the URL path of u with proc of the former path.

(url-path->string url-path) — string?
url-path : (listof path/param?)

Formats url-path as a string with ""/" as a delimiter and no params.

12

9 Path

(require unstable/path)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(explode-path* p) — (listof path-element?)
p : path-string?

Like normalize-path, but does not resolve symlinks.

(path-without-base base p) — (listof path-element?)
base : path-string?
p : path-string?

Returns, as a list, the portion of p after base, assuming base is a prefix of p.

(directory-part p) — path?
p : path-string?

Returns the directory part of p, returning (current-directory) if it is relative.

(build-path-unless-absolute base p) — path?
base : path-string?
p : path-string?

Prepends base to p, unless p is absolute.

(strip-prefix-ups p) — (listof path-element?)
p : (listof path-element?)

Removes all the prefix ".."s from p.

13

10 Source Locations

There are two libraries in this collection for dealing with source locations; one for manipu-
lating representations of them, and the other for quoting the location of a particular piece of
source code.

10.1 Representations

(require unstable/srcloc)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This module defines utilities for manipulating representations of source locations, including
both srcloc structures and all the values accepted by datum->syntax’s third argument:
syntax objects, lists, vectors, and #f.

(source-location? x) — boolean?

x @ any/c

(source-location-list? x) — boolean?
x : any/c

(source-location-vector? x) — boolean?
x : any/c

These functions recognize valid source location representations. The first, source-
location?, recognizes srcloc structures, syntax objects, lists, and vectors with appro-
priate structure, as well as #f. The latter predicates recognize only valid lists and vectors,
respectively.

Examples:
> (source-location? #f)
#t
> (source-location? #’here)
#t
> (source-location? (make-srcloc ’here 1 0 1 0))
#t
> (source-location? (make-srcloc ’bad 1 #f 1 0))
#f
> (source-location? (list ’here 1 0 1 0))
#t
> (source-location? (list* ’bad 1 0 1 0 ’tail))
#f
> (source-location? (vector ’here 1 0 1 0))

14

#t
> (source-location? (vector ’bad 0 0 0 0))
#£

(check-source-location! name x) — void?
name : symbol?
x : any/c

This procedure checks that its input is a valid source location. If it is, the procedure returns
(void). If it is not, check-source-location! raises a detailed error message in terms of
name and the problem with x.

Examples:
> (check-source-location! ’this-example #f)
> (check-source-location! ’this-example #’here)
> (check-source-location! ’this-example (make-
srcloc ’here 1 0 1 0))
> (check-source-location! ’this-example (make-
srcloc ’bad 1 #f 1 0))
this-example: expected a source location with line number
and column number both numeric or both #f; got 1 and #f
respectively: (srcloc 'bad 1 #f 1 0)
> (check-source-location! ’this-example (list ’here 1 0 1 0))
> (check-source-location! ’this-example (list* ’bad 1 0 1 0 ’tail))
this-example: expected a source location (a list of 5
elements); got an improper list: "(bad 1 0 1 0. tail)
> (check-source-location! ’this-example (vector ’here 1 0 1 0))
> (check-source-location! ’this-example (vector ’bad 0 0 0 0))
this-example: expected a source location with a positive
line number or #f (second element); got line number 0:

"#(bad 00 00)

(build-source-location loc ...) — srcloc?
loc : source-location?

(build-source-location-list loc ...) — source-location-1list?
loc : source-location?

(build-source-location-vector loc ...) — source-location-vector?
loc : source-location?

(build-source-location-syntax loc ...) — syntax?

loc : source-location?

These procedures combine multiple (zero or more) source locations, merging locations
within the same source and reporting #f for locations that span sources. They also convert
the result to the desired representation: srcloc, list, vector, or syntax object, respectively.

15

Examples:
> (build-source-location)
(srcloc #f #f #f #f #f)
> (build-source-location-list)
S (#f #f #f #T #I)
> (build-source-location-vector)
‘#(#E #E #f #f #f)
> (build-source-location-syntax)
#<syntax (O>
> (build-source-location #f)
(srcloc #f #f #f #f #f)
> (build-source-location-list #f)
Y (#f #f #f #f #f)
> (build-source-location-vector #f)
S#(#E #E #f #f #I)
> (build-source-location-syntax #f)
#<syntax (O>
> (build-source-location (list ’here 1 2 3 4))
(srcloc here 1 2 3 4)
> (build-source-location-list (make-srcloc ’here 1 2 3 4))
(here 1 2 3 4)
> (build-source-location-vector (make-srcloc ’here 1 2 3 4))
‘#(here 1 2 3 4)
> (build-source-location-syntax (make-srcloc ’here 1 2 3 4))
#<syntax:1:2 (>
> (build-source-location (list ’here 1 2 3 4) (vector ’here 5 6 7 8))
(srcloc here 1 2 3 12)
> (build-source-location-list (make-srcloc ’here 1 2 3 4) (vector ’here 5 6 7 8))
(here 1 2 3 12)
> (build-source-location-vector (make-srcloc ’here 1 2 3 4) (vector ’here 5 6 7 8))
‘#(here 1 2 3 12)
> (build-source-location-syntax (make-srcloc ’here 1 2 3 4) (vector ’here 5 6 7 8))
#<syntax:1:2 ()>
> (build-source-location (list ’here 1 2 3 4) (vector ’there 5 6 7 8))
(srcloc #f #f #f #f #f)
> (build-source-location-list (make-srcloc ’here 1 2 3 4) (vector ’there 5 6 7 8))
S (#f #f #f #f #I)
> (build-source-location-vector (make-srcloc ’here 1 2 3 4) (vector ’there 5 6 7 8))
T#(#E #E #f #f #f)
> (build-source-location-syntax (make-srcloc ’here 1 2 3 4) (vector ’there 5 6 7 8))
#<syntax (O>

(source-location-known? loc) — boolean?
loc : source-location?

16

This predicate reports whether a given source location contains more information than sim-
ply #£.

Examples:
> (source-location-known? #f)
#f
> (source-location-known? (make-srcloc #f #f #f #f #f))
#f
> (source-location-known? (make-srcloc ’source 1 2 3 4))
#t
> (source-location-known? (list #f #f #f #f #f))
#f
> (source-location-known? (vector ’source #f #f #f #f))
#t
> (source-location-known? (datum->syntax #f null #f))
#t
> (source-location-known? (datum->syntax #f null (list ’source #f #f #f #f)))
#t

(source-location-source loc) — any/c
loc : source-location?

(source-location-line loc)

— (or/c orexact-positive-integer? #f)
loc : source-location?

(source-location-column loc)

— (or/c exact-nonnegative-integer? #f)
Joc : source-location?

(source-location-position loc)

— (or/c exact-positive-integer? #f)
loc : source-location?

(source-location-span loc)

— (or/c exact-nonnegative-integer? #f)
Joc : source-location?

These accessors extract the fields of a source location.

Examples:
> (source-location-source #f)
#f
> (source-location-line (make-srcloc ’source 1 2 3 4))
1
> (source-location-column (list ’source 1 2 3 4))
2
> (source-location-position (vector ’source 1 2 3 4))
3
> (source-location-span (datum->syntax #f null (list ’source 1 2 3 4)))

17

(source-location-end loc)
— (or/c exact-nonnegative-integer? #f)
loc : source-location?

This accessor produces the end position of a source location (the sum of its position and
span, if both are numbers) or #f.

Examples:
> (source-location-end #f)
#f
> (source-location-end (make-srcloc ’source 1 2 3 4))
7
> (source-location-end (list ’source 1 2 3 #f))
#f
> (source-location-end (vector ’source 1 2 #f 4))
#f

(update—source—location loc
#:source source
:line line
:column column
:position position
:span span) — source-location?

= o =

loc : source-location?

source : any/c

line : (or/c exact-nonnegative-integer? #f)
column : (or/c exact-positive-integer? #f)
position : (or/c exact-nonnegative-integer? #f)
span : (or/c exact-positive-integer? #f)

Produces a modified version of loc, replacing its fields with source, 1ine, column, po-
sition, and/or span, if given.

Examples:
> (update-source-location #f #:source ’here)
’(here #f #f #f #f)
> (update-source-location (list ’there 1 2 3 4) #:line 20 #:column 79)
> (there 20 79 3 4)
> (update-source-location (vector ’everywhere 1 2 3 4) #:position #f #:span #f)
‘#(everywhere 1 2 #f #f)

18

(source-location->string loc) — string?
loc : source-location?

(source-location->prefix loc) — string?
Joc : source-location?

These procedures convert source locations to strings for use in error messages. The first
produces a string describing the source location; the second appends ": " to the string if it
is non-empty.

Examples:
> (source-location->string (make-srcloc ’here 1 2 3 4))
"here:1.2"
> (source-location->string (make-srcloc ’here #f #f 3 4))
"here::3-7"
> (source-location->string (make-srcloc ’here #f #f #f #f))

|lhere|l

> (source-location->string (make-srcloc #f 1 2 3 4))
"ol

> (source-location->string (make-srcloc #f #f #f 3 4))
"i3-7

> (source-location->string (make-srcloc #f #f #f #f #f))

m

> (source-location->prefix (make-srcloc ’here 1 2 3 4))
"here:1.2: "

> (source-location->prefix (make-srcloc ’here #f #f 3 4))
"here::3-7: "

> (source-location->prefix (make-srcloc ’here #f #f #f #f))

"here: "

> (source-location->prefix (make-srcloc #f 1 2 3 4))
"i1.2:

> (source-location->prefix (make-srcloc #f #f #f 3 4))
We:3-7: "

> (source-location->prefix (make-srcloc #f #f #f #f #f))

10.2 Quoting

(require unstable/location)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This module defines macros that evaluate to various aspects of their own source location.

19

Note: The examples below illustrate the use of these macros and the representation of their
output. However, due to the mechanism by which they are generated, each example is con-
sidered a single character and thus does not have realistic line, column, and character posi-
tions.

Furthermore, the examples illustrate the use of source location quoting inside macros, and
the difference between quoting the source location of the macro definition itself and quoting
the source location of the macro’s arguments.

(quote-srcloc)
(quote-srcloc form)
(quote-srcloc form #:module-source expr)

Quotes the source location of form as a srcloc structure, using the location of the whole
(quote-srcloc) expression if no expr is given. Uses relative directories for paths found
within the collections tree, the user’s collections directory, or the PLaneT cache.

Examples:
> (quote-srcloc)
(srcloc eval 2 0 2 1)
> (define-syntax (not-here stx) #’(quote-srcloc))
> (not-here)
(srcloc eval 3 0 3 1)
> (not-here)
(srcloc eval 3 0 3 1)
> (define-syntax (here stx) #°‘(quote-srcloc #,stx))
> (here)
(srcloc eval 7 0 7 1)
> (here)
(srcloc eval 8 0 8 1)

(quote-source-file)
(quote-source-file form)
(quote-line-number)
(quote-line-number form)
(quote-column-number)
(quote-column-number form)
(quote-character-position)
(quote-character-position form)
(quote-character-span)
(quote-character-span form)

Quote various fields of the source location of form, or of the whole macro application if no
form is given.

20

Examples:

> (list (quote-source-file)
(quote-line-number)
(quote-column-number)
(quote-character-position)
(quote-character-span))

Y(eval 2 0 2 1)

> (define-syntax (not-here stx)

#’(list (quote-source-file)
(quote-line-number)
(quote-column-number)
(quote-character-position)
(quote-character-span)))

> (not-here)

’(eval 3 0 3 1)

> (not-here)

’(eval 3 0 3 1)

> (define-syntax (here stx)

#¢(list (quote-source-file #,stx)
(quote-line-number #,stx)
(quote-column-number #,stx)
(quote-character-position #,stx)
(quote-character-span #,stx)))

> (here)
’(eval 7 0 7 1)
> (here)
’(eval 8 0 8 1)

(quote-module-name)
(quote-module-path)

Quote the name of the module in which the form is compiled. The quote-module-name
form produces a string or a symbol, while quote-module-path produces a module path.

These forms use relative names for modules found in the collections or PLaneT cache; their
results are suitable for printing, but not for accessing libraries programmatically, such as via
dynamic-require.

Examples:
> (module A racket
(require unstable/location)
(define-syntax-rule (name) (quote-module-name))
(define-syntax-rule (path) (quote-module-path))
(define a-name (name))
(define a-path (path))

21

(provide (all-defined-out)))

> (require ’A)

> a-name

’A

> a-path

A

> (module B racket
(require unstable/location)
(require ’A)
(define b-name (name))
(define b-path (path))
(provide (all-defined-out)))

> (require ’B)

> b-name

’B

> b-path

B

> (quote-module-name)

’top-level

> (quote-module-path)

’top-level

> [current-namespace (module->namespace ’’A)]

> (quote-module-name)

’A

> (quote-module-path)

A

22

11 Strings

(require unstable/string)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(lowercase-symbol! sb) — symbol?
sb : (or/c string? bytes?)

Returns sb as a lowercase symbol.

(read/string s) — serializable?
s @ string?

reads a value from s and returns it.

(write/string v) — string?
v : serializable?

writes v to a string and returns it.

23

12 Structs

(require unstable/struct)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(make struct-id expr ...)

Creates an instance of struct-id, which must be bound as a struct name. The number of
exprs is statically checked against the number of fields associated with struct-id. If they
are different, or if the number of fields is not known, an error is raised at compile time.

Examples:
> (define-struct triple (a b ¢))
> (make triple 3 4 5)
#<triple>
> (make triple 2 4)
eval:4:0: make: wrong number of arguments for struct triple
(expected 3, got 2) in: (make triple 2 4)

(struct->list v [#:on-opaque on-opaque]) — (or/c list? #f)
v : any/c
on-opaque : (or/c ’error ’return-false ’skip) = ’error

Returns a list containing the struct instance v’s fields. Unlike struct->vector, the struct
name itself is not included.

If any fields of v are inaccessible via the current inspector the behavior of struct->1ist
is determined by on-opaque. If on-opaque is ’error (the default), an error is raised. If
itis 'return-false, struct->1list returns #£f. If it is ’skip, the inaccessible fields are
omitted from the list.

Examples:
> (define-struct open (u v) #:transparent)
> (struct->list (make-open ’a ’b))
’(a b)
> (struct->list #s(pre 1 2 3))
(1 2 3)
> (define-struct (secret open) (x y))
> (struct->list (make-secret 0 1 17 22))
struct->list: expected argument of type <non-opaque
struct>; given (secret 01 ...)
> (struct->list (make-secret 0 1 17 22) #:on-opaque ’return-false)
#t

24

> (struct->list (make-secret 0 1 17 22) #:on-opaque ’skip)
(0 1)

> (struct->list ’not-a-struct #:on-opaque ’return-false)
#£f

> (struct->list ’not-a-struct #:on-opaque ’skip)

70

25

13 Syntax

(require unstable/syntax)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(current-syntax-context) — (or/c syntax? false/c)
(current-syntax-context stx) — void?
stx : (or/c syntax? false/c)

The current contextual syntax object, defaulting to #£. It determines the special form name
that prefixes syntax errors created by wrong-syntax.

(wrong-syntax stx format-string v ...) — any
stx : syntax?
format-string : string?
v : any/c

Raises a syntax error using the result of (current-syntax-context) as the “major” syn-
tax object and the provided stx as the specific syntax object. (The latter, stx, is usually
the one highlighted by DrRacket.) The error message is constructed using the format string
and arguments, and it is prefixed with the special form name as described under current-
syntax-context.

Examples:
> (wrong-syntax #’here "expected ~s" ’there)
?: expected there
> (parameterize ((current-syntax-context #’(look over here)))
(wrong-syntax #’here "expected ~s" ’there))
eval:4:0: look: expected there at: here in: (look over here)

A macro using wrong-syntax might set the syntax context at the very beginning of its
transformation as follows:

(define-syntax (my-macro stx)
(parameterize ((current-syntax-context stx))
(syntax-case stx ()

--)))

Then any calls to wrong-syntax during the macro’s transformation will refer to my-macro
(more precisely, the name that referred to my-macro where the macro was used, which may
be different due to renaming, prefixing, etc).

26

(define/with-syntax pattern expr)

Definition form of with-syntax. Thatis, it matches the syntax object result of expr against
pattern and creates pattern variable definitions for the pattern variables of pattern.

Examples:
> (define/with-syntax (px ...) #’(a b ¢))
> (define/with-syntax (tmp ...) (generate-temporaries #’(px ...)))
> #2 ([tmp px] ...)
#<syntax:7:0 ((ab a) (b6 b) (c7 ¢))>

(define-pattern-variable id expr)

Evaluates expr and binds it to id as a pattern variable, so id can be used in subsequent
syntax patterns.

Examples:
> (define-pattern-variable name #’Alice)
> #’ (hello name)
#<syntax:9:0 (hello Alice)>

(with-temporaries (temp-id ...) . body)

Evaluates body with each temp-id bound as a pattern variable to a freshly generated iden-
tifier.

Example:
> (with-temporaries (x) #’(lambda (x) x))
#<syntax:10:0 (lambda (x8) x8)>

(generate-temporary [name-base]) — identifier?
name-base : any/c = ’g

Generates one fresh identifier. Singular form of generate-temporaries. If name-base
is supplied, it is used as the basis for the identifier’s name.

(generate-n-temporaries n) — (listof identifier?)
n : exact-nonnegative-integer?

Generates a list of n fresh identifiers.

(current-caught-disappeared-uses)

27

— (or/c (listof identifier?) false/c)
(current-caught-disappeared-uses ids) — void?
ids : (or/c (listof identifier?) false/c)

Parameter for tracking disappeared uses. Tracking is “enabled” when the parameter has a
non-false value. This is done automatically by forms like with-disappeared-uses.

(with-disappeared-uses stx-expr)
stx-expr : syntax?

Evaluates the stx-expr, catching identifiers looked up wusing syntax-local-
value/catch. Adds the caught identifiers to the ’disappeared-uses syntax property
of the resulting syntax object.

(with-catching-disappeared-uses body-expr)

Evaluates the body-expr, catching identifiers looked up using syntax-local-
value/catch. Returns two values: the result of body-expr and the list of caught iden-
tifiers.

(syntax-local-value/catch id predicate) — any/c
id : identifier?
predicate : (-> any/c boolean?)

Looks up id in the syntactic environment (as syntax-local-value). If the lookup suc-
ceeds and returns a value satisfying the predicate, the value is returned and id is recorded
(“‘caught”) as a disappeared use. If the lookup fails or if the value does not satisfy the predi-
cate, #f is returned and the identifier is not recorded as a disappeared use.

If not used within the extent of a with-disappeared-uses form or similar, has no effect.

(record-disappeared-uses ids) — void?
ids : (listof identifier?)

Add ids to the current disappeared uses.

If not used within the extent of a with-disappeared-uses form or similar, has no effect.

(format-symbol fmt v ...) — symbol?
fmt : string?
v : (or/c string? symbol? identifier? keyword? char? number?)

28

Like format, but produces a symbol. The format string must use only ~a placeholders.
Identifiers in the argument list are automatically converted to symbols.

Example:
> (format-symbol '"make-~a" ’triple)
‘make-triple

(format-id Ictx
[#:source src
#:props props
#:cert cert]
fmt
v o.o..) — identifier?
lctx : (or/c syntax? #f)
src : (or/c syntax? #f) = #f
props : (or/c syntax? #f) = #f
cert : (or/c syntax? #f) = #f
fmt : string?
v : (or/c string? symbol? identifier? keyword? char? number?)

Like format-symbol, but converts the symbol into an identifier using Ictx for the lexical
context, src for the source location, props for the properties, and cert for the inactive
certificates. (See datum->syntax.)

The format string must use only ~a placeholders. Identifiers in the argument list are auto-
matically converted to symbols.

Examples:
> (define-syntax (make-pred stx)
(syntax-case stx O
[(make-pred name)
(format-id #’name "~a?" (syntax-e #’name))]))
> (make-pred pair)
#<procedure:pair?>
> (make-pred none-such)
reference to undefined identifier: none-such?
> (define-syntax (better-make-pred stx)
(syntax-case stx ()
[(better-make-pred name)
(format-id #’name #:source #’name
"~a?" (syntax-e #’name))]))
> (better-make-pred none-such)
reference to undefined identifier: none-such?

(Scribble doesn’t show it, but the DrRacket pinpoints the location of the second error but not
of the first.)

29

(internal-definition-context-apply intdef-ctx
stx) — syntax?
intdef-ctx : internal-definition-context?
stx : syntax?

Applies the renamings of intdef-ctx to stx.

(syntax-local-eval stx [intdef-ctx]|) — any
stx : syntax?
intdef-ctx : (or/c internal-definition-context? #f) = #f

Evaluates stx as an expression in the current transformer environment (that is, at phase level
1), optionally extended with intdef-ctx.

Examples:
> (define-syntax (show-me stx)
(syntax-case stx ()
[(show-me expr)
(begin
(printf "at compile time produces ~s\n"
(syntax-local-eval #’expr))
#’ (printf "at run time produes ~s\n"
expr))1))
> (show-me (+ 2 5))
at compile time produces 7
at run time produes 7
> (define-for-syntax fruit ’apple)
> (define fruit ’pear)
> (show-me fruit)
at compile time produces apple

at run time produes pear The subsequent
bindings were
added by Sam

(with-syntax* ([pattern stx-expr]) Tobin-Hochstadt.

body ...+)

Similar to with-syntax, but the pattern variables are bound in the remaining stx-exprs as
well as the bodys, and the patterns need not bind distinct pattern variables; later bindings
shadow earlier bindings.

Example:
> (with-syntax* ([(x y) (list #’vall #’val2)]
[nest #’ ((x) (y))1)
#’nest)

30

#<syntax:22:0 ((vall) (val2))>

(syntax-map f stxl ...) — (listof A)
f : (-> syntax? A)
stxl : syntax?

Performs (map f (syntax->list stxl) ...).
Example:

> (syntax-map syntax-e #’(a b c))
’(a b c)

31

14 Polymorphic Contracts

(require unstable/poly-c)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(poly/c (x ...) ¢)

Creates a contract for polymorphic functions that may inspect their arguments. Each function
is protected by ¢, where each x is bound in ¢ and refers to a polymorphic type that is
instantiated each time the function is applied.

At each application of a function, the poly/c contract constructs a new weak, eq?-based
hash table for each x. Values flowing into the polymorphic function (i.e. values protected
by some x in negative position with respect to poly/c) are stored in the hash table. Values
flowing out of the polymorphic function (i.e. protected by some x in positive position with
respect to poly/c) are checked for their presence in the hash table. If they are present, they
are returned; otherwise, a contract violation is signalled.

Examples:
> (define/contract (check x y) (poly/c [X] (boolean? X . -> . X))
(if (or (not x) (equal? y ’surprise))

’invalid
¥))

> (check #t ’ok)

7ok

> (check #f ’ignored)

eval:2.0: (function check) broke the contract (poly/c (X)

...) on check; expected a(n) X; got: ’invalid

> (check #t ’surprise)

eval:2.0: (function check) broke the contract (poly/c (X)

...) on check; expected a(n) X; got: ’invalid

(parametric/c (x ...) ¢)

Creates a contract for parametric polymorphic functions. Each function is protected by c,
where each x is bound in ¢ and refers to a polymorphic type that is instantiated each time
the function is applied.

At each application of a function, the parametric/c contract constructs a new opaque
wrapper for each x; values flowing into the polymorphic function (i.e. values protected by
some x in negative position with respect to parametric/c) are wrapped in the correspond-
ing opaque wrapper. Values flowing out of the polymorphic function (i.e. values protected
by some x in positive position with respect to parametric/c) are checked for the appro-

32

priate wrapper. If they have it, they are unwrapped; if they do not, a contract violation is
signalled.

Examples:
> (define/contract (check x y) (parametric/c [X] (boolean? X . ->
X))
(if (or (not x) (equal? y ’surprise))
’invalid
y))
> (check #t ’ok)

’ok

> (check #f ’ignored)

eval:2.0: (function check) broke the contract (parametric/c
(X) ...) on check; expected a(n) X; got: ’invalid

> (check #t ’surprise)

’surprise

(memory/c positive? name) — contract?
positive? : boolean?
name : any/c

This function constructs a contract that records values flowing in one direction in a fresh,
weak hash table, and looks up values flowing in the other direction, signalling a contract
violation if those values are not in the table.

If positive? is true, values in positive position get stored and values in negative position
are checked. Otherwise, the reverse happens.

(opaque/c positive? name) — contract?
positive? : boolean?
name : any/c

This function constructs a contract that wraps values flowing in one direction in a unique,
opaque wrapper, and unwraps values flowing in the other direction, signalling a contract
violation if those values are not wrapped.

If positive?is true, values in positive position get wrapped and values in negative position
get unwrapped. Otherwise, the reverse happens.

33

15 Finding Mutated Variables

(require unstable/mutated-vars)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(find-mutated-vars stx) — void?
stx : syntax?

Traverses stx, which should be module-level-form in the sense of the grammar for fully-
expanded forms, and records all of the variables that are mutated.

(is-var-mutated? id) — boolean?
id : identifier?

Produces #t if id is mutated by an expression previously passed to find-mutated-vars,
otherwise produces #£.

Examples:
> (find-mutated-vars #’(begin (set! var ’foo) ’bar))
> (is-var-mutated? #’var)
#t
> (is-var-mutated? #’other-var)
#t

34

16 Find

(require unstable/find)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(find pred
x
[#:stop-on-found? stop-on-found?
#:stop stop
#:get-children get-children]) — list?
pred : (-> any/c any/c)
x @ any/c
stop-on-found? : any/c = #f
stop : (or/c #f (-> any/c any/c)) = #f
get-children : (or/c #f (-> any/c (or/c #f 1list?))) = #f

Returns a list of all values satisfying pred contained in x (possibly including x itself).

If stop-on-found? is true, the children of values satisfying pred are not examined. If
stop is a procedure, then the children of values for which stop returns true are not exam-
ined (but the values themselves are; stop is applied after pred). Only the current branch of
the search is stopped, not the whole search.

The search recurs through pairs, vectors, boxes, and the accessible fields of structures. If
get-children is a procedure, it can override the default notion of a value’s children by
returning a list (if it returns false, the default notion of children is used).

No cycle detection is done, so find on a cyclic graph may diverge. To do cycle checking
yourself, use stop and a mutable table.

Examples:

> (find symbol? ’((all work) and (no play)))
’(all work and no play)
> (find 1ist? ’#((all work) and (no play)) #:stop-on-found? #t)
’((all work) (mo play))
> (find negative? 100

#:stop-on-found? #t

#:get-children (lambda (n) (list (- n 12))))
7 (-8)
> (find symbol? (shared ([x (coms ’a x)]) x)

#:stop (let ([table (make-hasheq)])

(lambda (x)
(beginO (hash-ref table x #f)

35

(hash-set! table x #t)))))
’(a)

(find-first pred
x
[#:stop stop
#:get-children get-children
#:default default]) — any/c
pred : (-> any/c any/c)
x : any/c
stop : (or/c #f (-> any/c any/c)) = #f
get-children : (or/c #f (-> any/c (or/c #f list?))) = #f
default : any/c = (lambda () (error))

Like find, but only returns the first match. If no matches are found, default is applied as
a thunk if it is a procedure or returned otherwise.

Examples:
> (find-first symbol? ’((all work) and (no play)))
Jall
> (find-first 1ist? ’#((all work) and (no play)))
’(all work)
> (find-first negative? 100
#:get-children (lambda (n) (1list (- n 12))))
-8
> (find-first symbol? (shared ([x (cons ’a x)]) x))
‘a

36

17 Interface-Oriented Programming for Classes

(require unstable/class-iop)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(define-interface name-id (super-ifc-id ...) (method-id ...))

Defines name-id as a static interface extending the interfaces named by the super-ifc-
ids and containing the methods specified by the method-ids.

A static interface name is used by the checked method call variants (send/i, send*/1i,
and send/apply/i). When used as an expression, a static interface name evaluates to an
interface value.

Examples:

> (define-interface stack<)> () (empty? push pop))

> stack<%>

#<|interface:stack<y>|>

> (define stack

(class* object’ (stack<%>)

(define items null)
(define/public (empty?) (null? items))
(define/public (push x) (set! items (cons x items)))
(define/public (pop) (begin (car items) (set! items (cdr items))))
(super-new)))

(define-interface/dynamic name-id ifc-expr (method-id ...))

Defines name-id as a static interface with dynamic counterpart ifc-expr, which must
evaluate to an interface value. The static interface contains the methods named by the
method-ids. A run-time error is raised if any method-1id is not a member of the dynamic
interface ifc-expr.

Use define-interface/dynamic to wrap interfaces from other sources.

Examples:

> (define-interface/dynamic object<)> (class-
>interface object%) ())

> object<y>

#<interface:object’>

(send/i obj-exp static-ifc-id method-id arg-expr ...)

37

Checked variant of send.

The argument static-ifc-id must be defined as a static interface. The method method-
id must be a member of the static interface static-ifc-id; otherwise a compile-time
error is raised.

The value of obj-expr must be an instance of the interface static-ifc-id; otherwise, a
run-time error is raised.

Examples:
> (define s (new stacky))
> (send/i s stack<’> push 1)
> (send/i s stack<)> popp)
eval:9:0: send/i: method not in static interface in: popp
> (send/i (new objectl,) stack<})> push 2)
send/i: interface check failed on: (object)

(send*/i obj-expr static-ifc-id (method-id arg-expr ...) ...)
Checked variant of sendx.

Example:
> (send*/i s stack<)>
(push 2)
(pop))

(send/apply/i obj-expr static-ifc-id method-id arg-expr ... list-arg-expr)
Checked variant of send/apply.

Example:
> (send/apply/i s stack<%> push (1list 5))

(define/i id static-ifc-id expr)

Checks that expr evaluates to an instance of static-ifc-id before binding it to id. If
id is subsequently changed (with set!), the check is performed again.

No dynamic object check is performed when calling a method (using send/1i, etc) on a name
defined via define/1i.

(init/i (id static-ifc-id maybe-default-expr) ...)
(init-field/i (id static-ifc-id maybe-default-expr) ...)

38

(init-private/i (id static-ifc-id maybe-default-expr) ...)

maybe-default-expr = ()
| default-expr

Checked versions of init and init-field. The value attached to each id is checked
against the given interface.

No dynamic object check is performed when calling a method (using send/1i, etc) on a name
bound via one of these forms. Note that in the case of init-field/i this check omission
is unsound in the presence of mutation from outside the class. This should be fixed.

39

18 Sequences

(require unstable/sequence)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(in-syntax stx) — sequence?
stx : syntax?

Produces a sequence equivalent to (syntax->1list 1lst).

An in-syntax application can provide better performance for syntax iteration when it ap-
pears directly in a for clause.

Example:
> (for/list ([x (in-syntax #’(1 2 3))1)
x)
’ (#<syntax:2:0 1> #<syntax:2:0 2> #<syntax:2:0 3>)

(in-pairs seq) — sequence?
seq : sequence?

Produces a sequence equivalent to (in-parallel (sequence-lift car seq)
(sequence-1ift cdr seq)).

(in-sequence-forever seq val) — sequence?
seq : sequence?
val : any/c

Produces a sequence whose values are the elements of seq, followed by val repeated.

(sequence-lift f seq) — sequence?
f : procedure?
seq : sequence?

Produces the sequence of £ applied to each element of seq.

Example:
> (for/list ([x (sequence-lift addl (in-range 10))])
x)
’(123456789 10)

40

19 Hash Tables

(require unstable/hash)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(hash-union t1 t2 combine) — hash?

t1 : hash?
t2 : hash?
combine : (any/c any/c any/c . -> . any/c)

Produces the combination of t1 and t2. If either t1 or t2 has a value for key k, then the
result has the same value for k. If both t1 and t2 have a value for k, the result has the value
(combine k (hash-ref t1 k) (hash-ref t2 k)) fork.

Examples:

> (hash-union #hash((a . 5) (b . 0)) #hash((d . 12) (c .
1)) (lambda (k v1 v2) v1))

‘#hash((c . 1) (b . 0) (d . 12) (a . 5))

> (hash-union #hash((a . 5) (b . 0)) #hash((a . 12) (c .
1)) (lambda (k v1 v2) vi1))

‘#hash((c . 1) (b . 0) (a . 5))

41

20 Match

(require unstable/match)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(== val comparator)
(== val)

A match expander which checks if the matched value is the same as val when compared by
comparator. If comparator is not provided, it defaults to equal?.

Examples:
> (match (list 1 2 3)
[(== (Qist 1 2 3)) ’yes]

[_ ’nol)

‘yes

> (match (list 1 2 3)
[(== (1ist 1 2 3) eq?) ’yes]
[_ ’nol)

’no

> (match (list 1 2 3)
[(1ist 1 2 (== 3 =)) ’yes]
[_ ’nol)

‘yes

42

21 Skip Lists

(require unstable/skip-list)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

Skip lists are a simple, efficient data structure for mutable dictionaries with totally ordered
keys. They were described in the paper “Skip Lists: A Probabilistic Alternative to Balanced
Trees” by William Pugh in Communications of the ACM, June 1990, 33(6) pp668-676.

A skip-list is a dictionary (dict? from racket/dict). It also supports extensions of the
dictionary interface for iterator-based search and mutation.

(make-skip-list =7 <?) — skip-1list?
=7 : (any/c any/c . -> . any/c)
<? : (any/c any/c . -> . any/c)

Makes a new empty skip-list. The skip-list uses =7 and <7 to order keys.

Examples:
> (define skip-list (make-skip-list = <))
> (skip-list-set! skip-list 3 ’apple)
> (skip-list-set! skip-list 6 ’cherry)
> (dict-map skip-list list)
’((3 apple) (6 cherry))
> (skip-list-ref skip-list 3)
’apple
> (skip-list-remove! skip-list 6)
> (skip-list-count skip-list)
1

(skip-list? v) — boolean?
v : any/c

Returns #t if v is a skip-list, #f otherwise.

(skip-list-ref skip-list key [default]) — any/c
skip-l1ist : skip-1list?
key : any/c
default : any/c = (lambda () (error))

43

(skip-list-set! skip-list key value) — void?
skip-l1ist : skip-1list?
key : any/c
value : any/c

(skip-list-remove! skip-list key) — void?
skip-1ist : skip-1list?
key : any/c

(skip-list-count skip-list) — exact-nonnegative-integer?
skip-list : skip-1ist?

(skip-list-iterate-first skip-list) — (or/c skip-list-iter? #f)
skip-list : skip-1list?

(skip-list-iterate-next skip-list iter)

— (or/c skip-list-iter? #f)
skip-list : skip-1ist?
iter : skip-list-iter?

(skip-list-iterate-key skip-list iter) — any/c
skip-1ist : skip-1list?
iter : skip-list-iter?

(skip-list-iterate-value skip-list iter) — any/c
skip-l1ist : skip-1list?
iter : skip-list-iter?

Implementations of dict-ref, dict-set!, dict-remove!, dict-count, dict-
iterate-first, dict-iterate-next, dict-iterate-key, and dict-iterate-
value, respectively.

(skip-list-iterate-greatest/<7 skip-list

key)
— (or/c skip-list-iter? #f)
skip-l1ist : skip-1list?
key : any/c
(skip-list-iterate-greatest/<=7 skip-list
key)

— (or/c skip-list-iter? #f)

skip-list : skip-1list?

key : any/c
(skip-list-iterate-least/>7 skip-list key)
— (or/c skip-list-iter? #f)

skip-list : skip-1ist?

key : any/c
(skip-list-iterate-least/>=7 skip-list key)
— (or/c skip-list-iter? #f)

skip-1ist : skip-1list?

key : any/c

44

Return the position of, respectively, the greatest key less than key, the greatest key less than
or equal to key, the least key greater than key, and the least key greater than or equal to
key.

(skip-list-iterate-set-key! skip-list

iter
key) — void?
skip-l1ist : skip-1list?
iter : skip-list-iter?
key : any/c
(skip-list-iterate-set-value! skip-list
iter
value) — void?

skip-list : skip-1list?
iter : skip-list-iter?
value : any/c

Set the key and value, respectively, at the position iter in skip-1list.

Warning: Changing a position’s key to be less than its predecessor’s key or greater than
its successor’s key results in an out-of-order skip-list, which may cause comparison-based
operations to behave incorrectly.

(skip-list-iter? v) — boolean?
v : any/c

Returns #t if v represents a position in a skip-list, #f otherwise.

45

22 Interval Maps

(require unstable/interval-map)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

An interval-map is a mutable dictionary-like data structure where mappings are added by
half-open intervals and queried by discrete points. Interval-maps can be used with any total
order. Internally, an interval-map uses a skip-list (unstable/skip-1list) of intervals for
efficient query and update.

Interval-maps implement the dictionary (racket/dict) interface to a limited extent. Only
dict-ref and the iteraction-based methods (dict-iterate-first, dict-map, etc) are
supported. For the iteration-based methods, the mapping’s keys are considered the pairs of
the start and end positions of the mapping’s intervals.

Examples:
> (define r (make-numeric-interval-map))
> (interval-map-set! r 1 5 ’apple)
> (interval-map-set! r 6 10 ’pear)
> (interval-map-set! r 3 6 ’banana)
> (dict-map r list)
7(((1 . 3) apple) ((3 . 6) banana) ((6 . 10) pear))

(make-interval-map =7 <7 [translate]) — interval-map?
=7 : (any/c any/c . -> . any/c)

<? : (any/c any/c . -> . any/c)
translate : (or/c (any/c any/c . -> . (any/c . -> . any/c)) #f)
= #f

Makes a new empty interval-map. The interval-map uses =? and <7 to order the endpoints
of intervals.

If translate is a procedure, the interval-map supports contraction and expansion of re-
gions of its domain via interval-map-contract! and interval-map-expand!. See
also make-numeric-interval-map.

(make-numeric-interval-map) — interval-map-with-translate?
Makes a new empty interval-map suitable for representing numeric ranges.
Equivalent to

(make-interval-map = < (lambda (x y) (lambda (z) (+ z (- y x)))))

46

(interval-map? v) — boolean?
v : any/c

Returns #t if v is an interval-map, #f otherwise.

(interval-map-with-translate? v) — boolean?
v : any/c

Returns #t if v is an interval-map constructed with support for translation of keys, #f oth-
erwise.

(interval-map-ref interval-map
position
[default]) — any/c
interval-map : interval-map?
position : any/c
default : any/c = (lambda () (error))

Return the value associated with position in interval-map. If no mapping is found,
default is applied if it is a procedure, or returned otherwise.

(interval-map-set! interval-map
start
end
value) — void?
interval-map : interval-map?
start : any/c
end : any/c
value : any/c

Updates interval-map, associating every position in [start, end) with value.

Existing interval mappings contained in [start, end) are destroyed, and partly overlap-
ping intervals are truncated. See interval-map-update*! for an updating procedure that
preserves distinctions within [start, end).

(interval-map-updatex! interval-map
start
end
updater
[default]) — void?
interval-map : interval-map?

47

start : any/c

end : any/c

updater : (any/c . -> . any/c)

default : any/c = (lambda () (error))

Updates interval-map, associating every position in [start, end) with the result of ap-
plying updater to the position’s previously associated value, or to the default value pro-
duced by default if no mapping exists.

Unlike interval-map-set!, interval-map-updatex*! preserves existing distinctions
within [start, end).

(interval-map-remove! interval-map
start
end) — void?
interval-map : interval-map?
start : any/c
end : any/c

Removes the value associated with every position in [start, end).

(interval-map-expand! interval-map
start
end) — void?
interval-map : interval-map-with-translate?
start : any/c
end : any/c

Expands interval-map’s domain by introducing a gap [start, end) and adjusting inter-
vals after start using (translate start end).

If interval-map was not constructed with a translate argument, an exception is raised.
If start is not less than end, an exception is raised.

(interval-map-contract! interval-map
start
end) — void?
interval-map : interval-map-with-translate?
start : any/c
end : any/c

Contracts interval-map’s domain by removing all mappings on the interval [start, end)
and adjusting intervals after end using (translate end start).

48

If interval-map was not constructed with a translate argument, an exception is raised.
If start is not less than end, an exception is raised.

(interval-map-cons*! interval-map
start
end
v
[default]) — void?
interval-map : interval-map?
start : any/c
end : any/c
v : any/c
default : any/c = null

Same as the following:

(interval-map-update*! interval-map start end
(lambda (o0ld) (cons v old))
default)

(interval-map-iter? v) — boolean?
v : any/c

Returns #t if v represents a position in an interval-map, #f otherwise.

49

23 Generics

(require unstable/generics)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(define-generics (name prop:name name?)
[method . kw-formalsx]

)

kw-formals* = (arg* ...)
| (arg* ...+ . rest-id)
| rest-id

arg* = id

| [id]
| keyword id
|

keyword [id]

name : identifier?
prop:name : identifier?
name? : identifier?

method : identifier?
Defines name as a transformer binding for the static information about a new generic group.

Defines prop:name as a structure type property. Structure types implementing this generic
group should have this property where the value is a vector with one element per method
where each value is either #f or a procedure with the same arity as specified by kw-
formals*. (kw-formals* is similar to the kw-formals used by lambda, except no ex-
pression is given for optional arguments.) The arity of each method is checked by the guard
on the structure type property.

Defines name? as a predicate identifying instances of structure types that implement this
generic group.

Defines each method as a generic procedure that calls the corresponding method on val-
ues where name? is true. Each method must have a required by-position argument that is
free-identifier=7 to name. This argument is used in the generic definition to locate the
specialization.

50

(generics name
[method . kw-formals+*]
)

name : identifier?

method : identifier?
Expands to

(define-generics (name prop:name name?)
[method . kw-formalsx]
)

where prop:name and name? are created with the lexical context of name.

(define-methods name definition ...)
name : identifier?
name must be a transformer binding for the static information about a new generic group.

Expands to a value usable as the property value for the structure type property of the name
generic group.

If the definitions define the methods of name, then they are used in the property value.

If any method of name is not defined, then #f is used to signify that the structure type does
not implement the particular method.

Allows define/generic to appear in definition

(define/generic local-name method-name)

local-name : identifier?

method-name : identifier?

When used inside def ine-methods, binds 1ocal-name to the generic for method-name.
This is useful for method specializations to use the generic methods on other values.

Syntactically an error when used outside def ine-methods.
Examples:

> (define-generics (printable prop:printable printable?)
(gen-print printable [port])

51

(gen-port-print port printable)
(gen-print* printable [port] #:width width #:height [height]))
> (define-struct num (v)
#:property prop:printable
(define-methods printable
(define/generic super-print gen-print)
(define (gen-print n [port (current-output-port)])
(fprintf port "Num: ~a'" (num-v n)))
(define (gen-port-print port n)
(super-print n port))
(define (gen-print* n [port (current-output-port)]
#:width w #:height [h 0])
(fprintf port "Num (~ax~a): ~a" w h (num-v n)))))
> (define-struct bool (v)
#:property prop:printable
(define-methods printable
(define/generic super-print gen-print)
(define (gen-print b [port (current-output-port)])
(fprintf port "Bool: ~a"
(if (bool-v b) "Yes" "No")))
(define (gen-port-print port b)
(super-print b port))
(define (gen-print* b [port (current-output-port)]
#:width w #:height [h 0])
(fprintf port "Bool (~ax~a): ~a" w h
(if (bool-v b) "Yes" "No")))))
> (define x (make-num 10))
> (gen-print x)

Num: 10
> (gen-port-print (current-output-port) x)
Num: 10

> (gen-print* x #:width 100 #:height 90)
Num (100x90): 10

> (define y (make-bool #t))

> (gen-print y)

Bool: Yes
> (gen-port-print (current-output-port) y)
Bool: Yes

> (gen-print* y #:width 100 #:height 90)
Bool (100x90): Yes

52

24 Mark Parameters

(require unstable/markparam)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This library provides a simplified version of parameters that are backed by continuation
marks, rather than parameterizations. This means they are slightly slower, are not inherited
by child threads, do not have initial values, and cannot be imperatively mutated.

(struct mark-parameter ())

The struct for mark parameters. It is guaranteed to be serializable and transparent. If used as
a procedure, it calls mark-parameter-first on itself.

(mark-parameter-first mp [tag]) — any/c
mp : mark-parameter?
tag . continuation-prompt-tag?
= default-continuation-prompt-tag

Returns the first value of mp up to tag.

(mark-parameter-all mp [tag]) — 1list?
mp : mark-parameter?
tag : continuation-prompt-tag?
= default-continuation-prompt-tag

Returns the values of mp up to tag.

(mark-parameters-all mps none-v [tag]) — (listof vector?)
mps : (listof mark-parameter?)
none-v : [any/c #f]
tag . continuation-prompt-tag?
= default-continuation-prompt-tag

Returns the values of the mps up to tag. The length of each vector in the result list is
the same as the length of mps, and a value in a particular vector position is the value for
the corresponding mark parameter in mps. Values for multiple mark parameter appear in
a single vector only when the mark parameters are for the same continuation frame in the
current continuation. The none-v argument is used for vector elements to indicate the lack
of a value.

53

(mark-parameterize ([mp expr] ...) body-expr ...)

Parameterizes (begin body-expr ...) by associating each mp with the evaluation of
expr in the parameterization of the entire expression.

54

25 Debugging

(require unstable/debug)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(debug (f args ...))
(debug f args ...)

Produce debugging output for the application of £, including the values of args.

Examples:
> (debug (+ 3 4 (x 5 6)))
starting + (#<procedure:+>)
arguments are:

3: 3

4: 4

(x 56): 30
+ result was 37
37

> (debug + 1 2 3)
starting + (#<procedure:+>)
arguments are:

1: 1

2: 2

3: 3
+ result was 6
6

(debugm f args ...)

Produce debugging output for the application of £, but does not parse or print args. Suitable
for use debugging macros.

Examples:

> (debugm match (list 1 2 3)
[(list x y z) (+ x vy 2)])

starting match

match result was 6

6

> (debugm + 1 2 3)

starting +

+ result was 6

6

55

26 Byte Counting Ports

(require unstable/byte-counting-port)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

This library provides an output port constructor like open-output-nowhere, except it
counts how many bytes have been written (available through file-position.)

(make-byte-counting-port [name]) — output-port?
name : any/c = ’byte-counting-port

Creates and returns an output port that discards all output sent to it (without blocking.) The
name argument is used as the port’s name. The total number bytes written is available
through file-position.

56

27 GUI libraries

27.1 Notify-boxes

(require unstable/gui/notify)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

notify-box¥ : class?
superclass: object

A notify-box contains a mutable cell. The notify-box notifies its listeners when the contents
of the cell is changed.

Examples:
> (define nb (new notify-box} (value ’apple)))
> (send nb get)
’apple
> (send nb set ’orange)
> (send nb listen (lambda (v) (printf "New value: ~s\n" v)))
> (send nb set ’potato)
New value: potato

(new notify-box% [value value]) — (is-a?/c notify-box%)
value : any/c

Creates a notify-box initially containing value.

(send a-notify-box get) — any/c

Gets the value currently stored in the notify-box.

(send a-notify-box set v) — void?
v : any/c

Updates the value stored in the notify-box and notifies the listeners.

(send a-notify-box listen listener) — void?
listener : (-> any/c any)

Adds a callback to be invoked on the new value when the notify-box’s contents
change.

(send a-notify-box remove-listener listener) — void?

57

listener : (-> any/c any)

Removes a previously-added callback.

(send a-notify-box remove-all-listeners) — void?

Removes all previously registered callbacks.

(notify-box/pref proc
[#:readonly? readonly?]) — (is-a?/c notify-box¥%)
proc : (case-> (-> any/c) (-> any/c void?))
readonly? : boolean? = #f

Creates a notify-box with an initial value of (proc). Unless readonly? is true, proc is
invoked on the new value when the notify-box is updated.

Useful for tying a notify-box to a preference or parameter. Of course, changes made directly
to the underlying parameter or state are not reflected in the notify-box.

Examples:
> (define animal (make-parameter ’ant))
> (define nb (notify-box/pref animal))
> (send nb listen (lambda (v) (printf "New value: ~s\n" v)))
> (send nb set ’bee)
New value: bee
> (animal ’cow)
> (send nb get)
’bee
> (send nb set ’deer)
New value: deer
> (animal)
’deer

(define-notify name value-expr)
value-expr : (is-a%?/c notify-box¥%)

Class-body form. Declares name as a field and get-name, set-name, and listen-name
as methods that delegate to the get, set, and 1isten methods of value.

The value-expr argument must evaluate to a notify-box, not just the initial contents for a
notify box.

Useful for aggregating many notify-boxes together into one “configuration” object.

Examples:

58

> (define config,
(class object’

(define-notify food (new notify-box¥ (value ’apple)))

(define-notify animal (new notify-box), (value ’ant)))
(super-new)))

> (define c¢ (new config}))
> (send c listen-food
(lambda (v) (when (eq? v ’honey) (send c set-
animal ’bear))))

> (let ([food (get-field food c)])

(send food set ’homney))
> (send c get-animal)
’bear

(menu-option/notify-box parent
Jabel
notify-box)

— (is-a?/c checkable-menu-itemj,)

parent : (or/c (is-a?/c menuj,) (is-a?/c popup-menu},))
label : label-string?

notify-box : (is-a?/c notify-box’)

Creates a checkable-menu-itemy tied to notify-box. The menu item is checked when-

ever (send notify-box get) is true. Clicking the menu item toggles the value of
notify-box and invokes its listeners.

(check-box/notify-box parent
label
notify-box) — (is-a?/c check-box)
parent : (or/c (is-a?/c frame}) (is-a?/c dialogi)

(is-a?/c panel’) (is-a?/c pane%))
label : label-string?

notify-box : (is-a%?/c notify-box¥%)

Creates a check-box} tied to notify-box. The check-box is checked whenever (send

notify-box get) is true. Clicking the check box toggles the value of notify-box and
invokes its listeners.

(choice/notify-box parent
label
choices
notify-box) — (is-a?/c choicel,)
parent : (or/c (is-a?/c frame}) (is-a?/c dialogh)
(is-a?/c panel%) (is-a?/c pane%))

59

label : label-string?
choices : (listof label-string?)
notify-box : (is-a?/c notify-box’)

Creates a choice}, tied to notify-box. The choice control has the value (send notify-
box get) selected, and selecting a different choice updates notify-box and invokes its
listeners.

If the value of notify-box is not in choices, either initially or upon an update, an error is
raised.

(menu-group/notify-box parent
labels
notify-box)
— (listof (is-a?/c checkable-menu-item%))
parent : (or/c (is-a?/c menuy%) (is-a?/c popup-menu’))
labels : (listof label-string?)
notify-box : (is-a%?/c notify-box¥%)

Returns a list of checkable-menu-item) controls tied to notify-box. A menu item
is checked when its label is (send notify-box get). Clicking a menu item updates
notify-box to its label and invokes notify-box’s listeners.

27.2 Preferences

(require unstable/gui/prefs)

This library is unstable; compatibility will not be maintained. See Unstable for more infor-
mation.

(pref:get/set pref) — (case-> (-> any/c) (-> any/c void?))
pref : symbol?

Returns a procedure that when applied to zero arguments retrieves the current value of the
preference (framework/preferences) named pref and when applied to one argument
updates the preference named pref.

60

	1 Guidelines for developing blueIdentifierColorunstable libraries
	2 Bytes
	3 Contracts
	4 Directories
	5 Exceptions
	6 Filesystem
	7 Lists
	8 Net
	8.1 URLs

	9 Path
	10 Source Locations
	10.1 Representations
	10.2 Quoting

	11 Strings
	12 Structs
	13 Syntax
	14 Polymorphic Contracts
	15 Finding Mutated Variables
	16 Find
	17 Interface-Oriented Programming for Classes
	18 Sequences
	19 Hash Tables
	20 Match
	21 Skip Lists
	22 Interval Maps
	23 Generics
	24 Mark Parameters
	25 Debugging
	26 Byte Counting Ports
	27 GUI libraries
	27.1 Notify-boxes
	27.2 Preferences

