
c-lambda: C FFI via raco ctool

Version 5.1.1

April 30, 2011

(require compiler/cffi)

The compiler/cffi module relies on a C compiler to statically construct an interface to C
code through directives embedded in a Racket program. The library implements a subset of
Gambit-C’s foreign-function interface [Feeley98].

The ffi/unsafe library is a better interface for most tasks; see FFI: Racket Foreign Inter-
face for more information on ffi/unsafe. See also Inside: Racket C API, which describes
Racket’s C-level API for extending the run-time system.

The compiler/cffi library defines three forms: c-lambda, c-declare, and c-include.
When interpreted directly or compiled to byte code, c-lambda produces a function that
always raises exn:fail, and c-declare and c-include raise exn:fail. When compiled
by raco ctool --extension, the forms provide access to C. Thus, compiler/cffi is
normally required by a module to be compiled via raco ctool. In addition, the raco

ctool compiler implicitly imports compiler/cffi into the top-level environment for non-
module compilation.

The c-lambda form creates a Racket procedure whose body is implemented in C. Instead
of declaring argument names, a c-lambda form declares argument types, as well as a return
type. The implementation can be simply the name of a C function, as in the following
definition of fmod:

(define fmod (c-lambda (double double) double "fmod"))

Alternatively, the implementation can be C code to serve as the body of a function, where
the arguments are bound to ___arg1 (three underscores), etc., and the result is installed into
___result (three underscores):

(define machine-string->float

(c-lambda (char-string) float

"___result = *(float *)___arg1;"))

1



The c-lambda form provides only limited conversions between C and Racket data. For
example, the following function does not reliably produce a string of four characters:

(define broken-machine-float->string

(c-lambda (float) char-string

"char b[5]; *(float *)b = ___arg1; b[4] = 0; ___result = b;"))

because the representation of a float can contain null bytes, which terminate the string.
However, the full Racket API, which is described in Inside: Racket C API, can be used in a
function body:

(define machine-float->string

(c-lambda (float) racket-object

"char b[4];"

"*(float *)b = ___arg1;"

"___result = racket_make_sized_byte_string(b, 4, 1);"))

The c-declare form declares arbitrary C code to appear after "escheme.h" or
"scheme.h" is included, but before any other code in the compilation environment of the
declaration. It is often used to declare C header file inclusions. For example, a proper defi-
nition of fmod needs the "math.h" header file:

(c-declare "#include <math.h>")

(define fmod (c-lambda (double double) double "fmod"))

The c-declare form can also be used to define helper C functions to be called through
c-lambda.

The c-include form expands to a c-declare form using the content of a specified file.
Use (c-include file) instead of (c-declare "#include file") when it’s easier to
have Racket resolve the file path than to have the C compiler resolve it.

The "collects/mzscheme/examples" directory in the Racket distribution contains addi-
tional examples.

When compiling for Racket 3m (see Inside: Racket C API), C code inserted by c-

lambda, c-declare, and c-include will be transformed in the same was as raco ctool’s
--xform mode (which may or may not be enough to make the code work correctly in Racket
3m; see Inside: Racket C API for more information).

(c-lambda (argument-type ...) return-type impl-string ...+)

Creates a Racket procedure whose body is implemented in C. The procedure takes as many
arguments as the supplied argument-types, and it returns one value. If return-type is

2



void, the procedure’s result is always void. The impl-string is either the name of a C
function (or macro) or the body of a C function.

If a single impl-string is provided, and if it is a string containing only alphanumeric char-
acters and _, then the created Racket procedure passes all of its arguments to the named C
function (or macro) and returns the function’s result. Each argument to the Racket procedure
is converted according to the corresponding argument-type (as described below) to pro-
duce an argument to the C function. Unless return-type is void, the C function’s result
is converted according to return-type for the Racket procedure’s result.

If more than impl-string is provided, or if it contains more than alphanumeric characters
and _, then the concatenated impl-strings must contain C code to implement the function
body. The converted arguments for the function will be in variables ___arg1, ___arg2, ...
(with three underscores in each name) in the context where the impl-strings are placed for
compilation. Unless return-type is void, the impl-strings code should assign a result
to the variable ___result (three underscores), which will be declared but not initialized.
The impl-strings code should not return explicitly; control should always reach the end
of the body. If the impl-strings code defines the pre-processor macro ___AT_END (with
three leading underscores), then the macro’s value should be C code to execute after the
value ___result is converted to a Racket result, but before the result is returned, all in the
same block; defining ___AT_END is primarily useful for deallocating a string in ___result

that has been copied by conversion. The impl-strings code will start on a new line at the
beginning of a block in its compilation context, and ___AT_END will be undefined after the
code.

In addition to ___arg1, etc., the variable argc is bound in impl-strings to the number of
arguments supplied to the function, and argv is bound to a Racket_Object* array of length
argc containing the function arguments as Racket values. The argv and argc variables are
mainly useful for error reporting (e.g., with racket_wrong_type).

Each argument-type must be one of the following, which are recognized symbolically:

• bool

Racket range: any value
C type: int
Racket to C conversion: #f→ 0, anything else→ 1
C to Racket conversion: 0→ #f, anything else→ #t

• char

Racket range: character
C type: char
Racket to C conversion: character’s Latin-1 value cast to signed byte
C to Racket conversion: Latin-1 value from unsigned cast mapped to character

• unsigned-char

Racket range: character
C type: unsigned char

3



Racket to C conversion: character’s Latin-1 value
C to Racket conversion: Latin-1 value mapped to character

• signed-char

Racket range: character
C type: signed char

Racket to C conversion: character’s Latin-1 value cast to signed byte
C to Racket conversion: Latin-1 value from unsigned cast mapped to character

• int

Racket range: exact integer that fits into an int

C type: int
conversions: (obvious and precise)

• unsigned-int

Racket range: exact integer that fits into an unsigned int

C type: unsigned int

conversions: (obvious and precise)

• long

Racket range: exact integer that fits into a long
C type: long
conversions: (obvious and precise)

• unsigned-long

Racket range: exact integer that fits into an unsigned long

C type: unsigned long

conversions: (obvious and precise)

• short

Racket range: exact integer that fits into a short
C type: short
conversions: (obvious and precise)

• unsigned-short

Racket range: exact integer that fits into an unsigned short

C type: unsigned short

conversions: (obvious and precise)

• float

Racket range: real number
C type: float
Racket to C conversion: number converted to inexact and cast to float

C to Racket conversion: cast to double and encapsulated as an inexact number

• double

Racket range: real number
C type: double
Racket to C conversion: number converted to inexact
C to Racket conversion: encapsulated as an inexact number

4



• char-string

Racket range: byte string or #f
C type: char*
Racket to C conversion: string→ contained byte-array pointer, #f→ NULL

C to Racket conversion: NULL → #f, anything else → new byte string created by
copying the string

• nonnull-char-string

Racket range: byte string
C type: char*
Racket to C conversion: byte string’s contained byte-array pointer
C to Racket conversion: new byte string created by copying the string

• racket-object

Racket range: any value
C type: Racket_Object*
Racket to C conversion: no conversion
C to Racket conversion: no conversion

• (pointer bstr)

Racket range: an opaque c-pointer value, identified as type bstr, or #f
C type: bstr*
Racket to C conversion: #f→ NULL, c-pointer→ contained pointer cast to bstr*

C to Racket conversion: NULL → #f, anything else → new c-pointer containing the
pointer and identified as type bstr

The return-type must be void or one of the arg-type keywords.

(c-declare code-string)

Declares arbitrary C code to appear after "escheme.h" or "scheme.h" is included, but
before any other code in the compilation environment of the declaration. A c-declare

form can appear only at the top-level or within a module’s top-level sequence.

The code code will appear on a new line in the file for C compilation. Multiple c-include
declarations are concatenated (with newlines) in order to produces a sequence of declara-
tions.

(c-include path-spec)

Expands to a use of c-declare with the content of path-spec . The path-spec has the
same form as for mzlib/include’s include.

5



Bibliography

[Feeley98] Marc Feeley, “Gambit-C, version 3.0.” 1998.

6


