
Continue: Web Applications in Racket
Version 5.1.1

Danny Yoo <dyoo@cs.wpi.edu>
and Jay McCarthy <jay@cs.byu.edu>

April 30, 2011

How do we make dynamic web applications? This tutorial will show how we can build web
applications using Racket. As our working example, we’ll build a simple web journal (a
“blog”). We’ll cover how to start up a web server, how to generate dynamic web content,
and how to interact with the user.

The target audience for this tutorial are students who’ve gone through the design and use
of structures in How to Design Programs, with some higher-order functions, local, and a
minor bit of mutation.

1

mailto:dyoo@cs.wpi.edu
mailto:jay@cs.byu.edu
http://www.htdp.org/

1 Getting Started

Everything you needed in this tutorial is provided in Racket. We will be using the DrRacket
Module language. Enter the following into the Definition window.

#lang web-server/insta

(define (start request)

(response/xexpr

'(html

(head (title "My Blog"))

(body (h1 "Under construction")))))

Press the Run button. If a web browser comes up with an “Under Construction” page, then
clap your hands with delight: you’ve built your first web application! It doesn’t do much
yet, but we will get there. Press the Stop button to shut the server down for now.

2

http://racket-lang.org/

2 The Application

We want to motivate this tutorial by showing how to develop a blog. Users should be able
to create posts and add comments to any posts. We’ll take an iterative approach, with one or
two pitfalls along the way. The game plan, roughly, will be:

• Show a static list of posts.

• Allow a user to add new posts to the system.

• Extend the model to let a user add comments to a post.

• Allow all users to share the same set of posts.

• Serialize our data structures to disk.

By the end of this tutorial, we’ll have a simple blogging application.

3

3 Basic Blog

We start by considering our data definitions. We want to represent a list of posts. Let’s say
that a post is:

(struct post (title body))

(struct post (title body))

title : string?

body : string?

Exercise. Make a few examples of posts.

A blog, then, will be a list of posts:

blog : (listof post?)

As a very simple example of a blog:

(define BLOG (list (post "First Post!"

"Hey, this is my first post!")))

Now that we have a sample blog structure, let’s get our web application to show it.

4

4 Rendering HTML

When a web browser visits our application’s URL, the browser constructs a request structure
and sends it off to our web application. Our start function will consume requests and produce
responses. One basic kind of response is to show an HTML page, represented as an X-
expression in Racket, by using response/xexpr.

(define xexpr/c

(flat-rec-contract

xexpr

(or/c string?

(or/c (cons/c symbol? (listof xexpr))

(cons/c symbol?

(cons/c (listof (list/c symbol? string?))

(listof xexpr)))))))

For example:

The HTML hello is represented as "hello". Strings are automatically escaped
when output. This guarantees valid HTML. Therefore, the value "Unfinished

tag" is rendered as Unfinished tag not Unfinished tag. Similarly,
"<i>Finished tag</i>" is rendered as <i>Finished tag</i> not
<i>Finished tag</i>.

<p>This is an example</p> is

'(p "This is an example").

Past is

'(a ((href "link.html")) "Past").

<p>This is <div class="emph">another</div> example.</p> is

'(p "This is " (div ((class "emph")) "another") " example.").

We can produce these xexprs by using cons and list directly. Doing so, however, can be
notationally heavy. Consider:

(list 'html (list 'head (list 'title "Some title"))

(list 'body (list 'p "This is a simple static page.")))

vs:

'(html (head (title "Some title"))

(body (p "This is a simple static page.")))

5

They both produce the same xexpr, but the latter is a lot easier to type and read. We’ve
been using the extended list abbreviation form described in Section 13 of How to Design
Programs: by using a leading forward quote mark to concisely represent the list structure,
we can construct static html responses with aplomb.

However, we can run into a problem when we use simple list abbreviation with dynamic
content. If we have expressions to inject into the xexpr structure, we can’t use a simple
list-abbreviation approach because those expressions will be treated literally as part of the
list structure!

We want a notation that gives us the convenience of quoted list abbreviations, but with the
option to treat a portion of the structure as a normal expression. That is, we would like to
define a template whose placeholders can be easily expressed and filled in dynamically.

Racket provides this templating functionality with quasiquotation. Quasiquotation uses a
leading back-quote in front of the whole structure. Like regular quoted list abbreviation, the
majority of the list structure will be literally preserved in the nested list result. In places
where we’d like a subexpression’s value to be plugged in, we prepend an unquoting comma
in front of the subexpression. As an example:

; render-greeting: string -> response

; Consumes a name, and produces a dynamic response.

(define (render-greeting a-name)

(response/xexpr

`(html (head (title "Welcome"))

(body (p ,(string-append "Hello " a-name))))))

Exercise. Write a function that consumes a post and produces an xexpr representing that
content.

render-post : (post? . -> . xexpr/c)

As an example, we want:

(render-post (post "First post!" "This is a first post."))

to produce:

'(div ((class "post")) "First post!" (p "This is a first post."))

Exercise. Revise render-post to show the number of comments attached to a post.

————

6

http://htdp.org/2003-09-26/Book/curriculum-Z-H-17.html#node_chap_13
http://htdp.org/
http://htdp.org/

If an expression produces a list of xexpr fragments, we may want to splice in the elements
of a list into our template, rather plug in the whole list itself. In these situations, we can use
the splicing form ,@expression.

As an example, we may want a helper function that transforms a xexpr list into a fragment
representing an unordered, itemized HTML list:

; render-as-itemized-list: (listof xexpr) -> xexpr

; Consumes a list of items, and produces a rendering

; as an unordered list.

(define (render-as-itemized-list fragments)

`(ul ,@(map render-as-item fragments)))

; render-as-item: xexpr -> xexpr

; Consumes an xexpr, and produces a rendering

; as a list item.

(define (render-as-item a-fragment)

`(li ,a-fragment))

Exercise. Write a function render-posts that consumes a (listof post?) and produces
an xexpr for that content.

render-posts : ((listof post?) . -> . xexpr/c)

As examples:

(render-posts empty)

should produce:

'(div ((class "posts")))

While

(render-posts (list (post "Post 1" "Body 1")

(post "Post 2" "Body 2")))

should produce:

'(div ((class "posts"))

(div ((class "post")) "Post 1" "Body 1")

(div ((class "post")) "Post 2" "Body 2"))

————

7

Now that we have the render-posts function handy, let’s revisit our web application and
change our start function to return an interesting response.

#lang web-server/insta

; A blog is a (listof post)

; and a post is a (make-post title body)

(struct post (title body))

; BLOG: blog

; The static blog.

(define BLOG

(list (post "First Post" "This is my first post")

(post "Second Post" "This is another post")))

; start: request -> response

; Consumes a request, and produces a page that displays all of the

; web content.

(define (start request)

(render-blog-page BLOG request))

; render-blog-page: blog request -> response

; Consumes a blog and a request, and produces an HTML page

; of the content of the blog.

(define (render-blog-page a-blog request)

(response/xexpr

`(html (head (title "My Blog"))

(body (h1 "My Blog")

,(render-posts a-blog)))))

; render-post: post -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

(define (render-post a-post)

`(div ((class "post"))

,(post-title a-post)

(p ,(post-body a-post))))

; render-posts: blog -> xexpr

; Consumes a blog, produces an xexpr fragment

; of all its posts.

(define (render-posts a-blog)

`(div ((class "posts"))

,@(map render-post a-blog)))

If we press Run, we should see the blog posts in our web browser.

8

5 Inspecting Requests

Our application still seems a bit static: although we’re building the page dynamically, we
haven’t yet provided a way for an external user to add new posts. Let’s tackle that now. Let’s
provide a form that will let the user add a new blog entry. When the user presses the submit
button, we want the user to see the new post at the top of the page.

Until now, we’ve been passing around a request object without doing anything with it. As
we might expect, the request object isn’t meant to be ignored so much! When a user fills
out a web form and submits it, that user’s browser constructs a new request that holds the
form values in it. We can use the function request-bindings to grab at the values that the
user has filled out. The type of request-bindings is:

request-bindings : (request? . -> . bindings?)

Along with request-bindings, there’s another function called extract-

binding/single that takes this as well as a name, and returns the value associated
to that name.

extract-binding/single : (symbol? bindings? . -> . string?)

Finally, we can check to see if a name exists in a binding with exists-binding?:

exists-binding? : (symbol? bindings? . -> . boolean?)

With these functions, we can design functions that consume requests and do something
useful.

Exercise. Write a function can-parse-post? that consumes a bindings?. It should pro-
duce #t if there exist bindings both for the symbols 'title and 'body, and #f otherwise.

can-parse-post? : (bindings? . -> . boolean?)

Exercise. Write a function parse-post that consumes a bindings. Assume that the bindings
structure has values for the symbols 'title and 'body. parse-post should produce a post
containing those values.

parse-post : (bindings? . -> . post?)

Now that we have these helper functions, we can extend our web application to handle form
input. We’ll add a small form at the bottom, and adjust out program to handle the addition
of new posts. Our start method, then, will first see if the request has a parsable post, extend
its set of posts if it can, and finally display those blog posts.

9

#lang web-server/insta

; A blog is a (listof post)

; and a post is a (make-post title body)

(struct post (title body))

; BLOG: blog

; The static blog.

(define BLOG

(list (post "First Post" "This is my first post")

(post "Second Post" "This is another post")))

; start: request -> response

; Consumes a request and produces a page that displays all of the

; web content.

(define (start request)

(local [(define a-blog

(cond [(can-parse-post? (request-bindings request))

(cons (parse-post (request-bindings request))

BLOG)]

[else

BLOG]))]

(render-blog-page a-blog request)))

; can-parse-post?: bindings -> boolean

; Produces true if bindings contains values for 'title and 'body.

(define (can-parse-post? bindings)

(and (exists-binding? 'title bindings)

(exists-binding? 'body bindings)))

; parse-post: bindings -> post

; Consumes a bindings, and produces a post out of the bindings.

(define (parse-post bindings)

(post (extract-binding/single 'title bindings)

(extract-binding/single 'body bindings)))

; render-blog-page: blog request -> response

; Consumes a blog and a request, and produces an HTML page

; of the content of the blog.

(define (render-blog-page a-blog request)

(response/xexpr

`(html (head (title "My Blog"))

(body

(h1 "My Blog")

10

,(render-posts a-blog)

(form

(input ((name "title")))

(input ((name "body")))

(input ((type "submit"))))))))

; render-post: post -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

(define (render-post a-post)

`(div ((class "post"))

,(post-title a-post)

(p ,(post-body a-post))))

; render-posts: blog -> xexpr

; Consumes a blog, produces an xexpr fragment

; of all its posts.

(define (render-posts a-blog)

`(div ((class "posts"))

,@(map render-post a-blog)))

This appears to work... but there’s an issue with this! Try to add two new posts. What
happens?

11

6 Advanced Control Flow

For the moment, let’s ignore the admittedly huge problem of having a blog that only accepts
one new blog entry. Don’t worry! We will fix this.

But there’s a higher-level problem with our program: although we do have a function,
start, that can respond to requests directed at our application’s URL, that start func-
tion is starting to get overloaded with a lot of responsibility. Conceptually, start is now
handling two different kinds of requests: it’s either a request for showing a blog, or a request
for adding a new blog post.

What’s happening is that start is becoming a traffic cop — a dispatcher — for all the
behavior of our web application. As far as we know, if we want to add more functionality to
our application, start needs to know how to deal. Can we can get different kinds of requests
to automatically direct themselves to different functions?

The web server library provides a function, send/suspend/dispatch, that allows us to
create URLs that direct to different parts of our application. Let’s demonstrate a dizzying
example. In a new file, enter the following in the definition window.

#lang web-server/insta

; start: request -> response

(define (start request)

(phase-1 request))

; phase-1: request -> response

(define (phase-1 request)

(local [(define (response-generator embed/url)

(response/xexpr

`(html

(body (h1 "Phase 1")

(a ((href ,(embed/url phase-2)))

"click me!")))))]

(send/suspend/dispatch response-generator)))

; phase-2: request -> response

(define (phase-2 request)

(local [(define (response-generator embed/url)

(response/xexpr

`(html

(body (h1 "Phase 2")

(a ((href ,(embed/url phase-1)))

"click me!")))))]

(send/suspend/dispatch response-generator)))

This is a web application that goes round and round. When a user first visits the application,

12

the user starts off in phase-1. The page that’s generated has a hyperlink that, when clicked,
continues to phase-2. The user can click back, and falls back to phase-1, and the cycle
repeats.

Let’s look more closely at the send/suspend/dispatch mechanism.
send/suspend/dispatch consumes a response-generating function, and it gives
that response-generator a function called embed/url that we’ll use to build special URLs.
What makes these URLs special is this: when a web browser visits these URLs, our web
application restarts, but not from start, but from the handler that we associate to the URL. In
phase-1, the use of embed/url associates the link with phase-2, and vice versa.

We can be more sophisticated about the handlers associated with embed/url. Because the
handler is just a request-consuming function, it can be defined within a local. Conse-
quently, a local-defined handler knows about all the variables that are in the scope of its
definition. Here’s another loopy example:

#lang web-server/insta

; start: request -> response

(define (start request)

(show-counter 0 request))

; show-counter: number request -> doesn't

; Displays a number that's hyperlinked: when the link is pressed,

; returns a new page with the incremented number.

(define (show-counter n request)

(local [(define (response-generator embed/url)

(response/xexpr

`(html (head (title "Counting example"))

(body

(a ((href ,(embed/url next-number-handler)))

,(number->string n))))))

(define (next-number-handler request)

(show-counter (+ n 1) request))]

(send/suspend/dispatch response-generator)))

This example shows that we can accumulate the results of an interaction. Even though the
user start off by visiting and seeing zero, the handlers produced by next-number-handler
continue the interaction, accumulating a larger and larger number.

Now that we’ve been going a little bit in circles, let’s move forward back to the blog appli-
cation. We will adjust the form’s action so it directs to a URL that’s associated to a separate
handler.

#lang web-server/insta

13

; A blog is a (listof post)

; and a post is a (make-post title body)

(struct post (title body))

; BLOG: blog

; The static blog.

(define BLOG

(list (post "First Post" "This is my first post")

(post "Second Post" "This is another post")))

; start: request -> doesn't

; Consumes a request and produces a page that displays all of the

; web content.

(define (start request)

(render-blog-page BLOG request))

; parse-post: bindings -> post

; Extracts a post out of the bindings.

(define (parse-post bindings)

(post (extract-binding/single 'title bindings)

(extract-binding/single 'body bindings)))

; render-blog-page: blog request -> doesn't

; Consumes a blog and a request, and produces an HTML page

; of the content of the blog.

(define (render-blog-page a-blog request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "My Blog"))

(body

(h1 "My Blog")

,(render-posts a-blog)

(form ((action

,(make-url insert-post-handler)))

(input ((name "title")))

(input ((name "body")))

(input ((type "submit"))))))))

(define (insert-post-handler request)

(render-blog-page

(cons (parse-post (request-bindings request))

a-blog)

request))]

(send/suspend/dispatch response-generator)))

14

; render-post: post -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

(define (render-post a-post)

`(div ((class "post"))

,(post-title a-post)

(p ,(post-body a-post))))

; render-posts: blog -> xexpr

; Consumes a blog, produces an xexpr fragment

; of all its posts.

(define (render-posts a-blog)

`(div ((class "posts"))

,@(map render-post a-blog)))

Note that the structure of the render-blog-page function looks very similar to that of our
last show-counter example. The user can finally add and see multiple posts to their blog.

Unfortunately, there’s still a problem. To see the problem: add a few posts to the system, and
then open up a new browser window. In the new browser window, visit the web application’s
URL. What happens?

15

7 Share and Share Alike

We have run into another flaw with our application: each browser window keeps track of
its own distinct blog. That defeats the point a blog for most people, that is, to share with
others! When we insert a new post, rather than create a new blog value, we’d like to make
a structural change to the existing blog. (HTDP Chapter 41). So let’s add mutation into the
mix.

There’s one small detail we need to touch: in the web-server language, structures are im-
mutable by default. We’ll want to override this default and get get access to the structure
mutators. To do so, we adjust our structure definitions with the #:mutable keyword.

Earlier, we had said that a blog was a list of posts, but because we want to allow the blog
to be changed, let’s revisit our definition so that a blog is a mutable structure:

(struct blog (posts) #:mutable)

(struct blog (posts))

posts : (listof post?)

Mutable structures provide functions to change the fields of a structure; in this case, we now
have a structure mutator called set-blog-posts!,

set-blog-posts! : (blog? (listof post?) . -> . void)

and this will allow us to change the posts of a blog.

Exercise. Write a function blog-insert-post!

blog-insert-post! : (blog? post? . -> . void)

The intended side effect of the function will be to extend the blog’s posts.

————

Since we’ve changed the data representation of a blog, we’ll need to revise our web appli-
cation to use the updated representation. One other thing to note is that, within the web
application, because we’re sharing the same blog value, we don’t need to pass it around with
our handlers anymore: we can get at the current blog through our BLOG variable.

After doing the adjustments incorporating insert-blog-post!, and doing a little variable
cleanup, our web application now looks like this:

16

#lang web-server/insta

; A blog is a (make-blog posts)

; where posts is a (listof post)

(struct blog (posts) #:mutable)

; and post is a (make-post title body)

; where title is a string, and body is a string

(struct post (title body))

; BLOG: blog

; The initial BLOG.

(define BLOG

(blog

(list (post "First Post" "This is my first post")

(post "Second Post" "This is another post"))))

; blog-insert-post!: blog post -> void

; Consumes a blog and a post, adds the post at the top of the blog.

(define (blog-insert-post! a-blog a-post)

(set-blog-posts! a-blog

(cons a-post (blog-posts a-blog))))

; start: request -> doesn't

; Consumes a request and produces a page that displays

; all of the web content.

(define (start request)

(render-blog-page request))

; parse-post: bindings -> post

; Extracts a post out of the bindings.

(define (parse-post bindings)

(post (extract-binding/single 'title bindings)

(extract-binding/single 'body bindings)))

; render-blog-page: request -> doesn't

; Produces an HTML page of the content of the BLOG.

(define (render-blog-page request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "My Blog"))

(body

(h1 "My Blog")

,(render-posts)

(form ((action

,(make-url insert-post-handler)))

17

(input ((name "title")))

(input ((name "body")))

(input ((type "submit"))))))))

(define (insert-post-handler request)

(blog-insert-post!

BLOG (parse-post (request-bindings request)))

(render-blog-page request))]

(send/suspend/dispatch response-generator)))

; render-post: post -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

(define (render-post a-post)

`(div ((class "post"))

,(post-title a-post)

(p ,(post-body a-post))))

; render-posts: -> xexpr

; Consumes a blog, produces an xexpr fragment

; of all its posts.

(define (render-posts)

`(div ((class "posts"))

,@(map render-post (blog-posts BLOG))))

Open two windows that visit our web application, and start adding in posts from both win-
dows. We should see that both browsers are sharing the same blog.

18

8 Extending the Model

Next, let’s extend the application so that each post can hold a list of comments. We refine
the data definition of a blog to be:

(struct post (title body comments)

#:mutable)

title : string?

body : string?

comments : (listof string?)

Exercise. Write the updated data structure definition for posts. Make sure to make the
structure mutable, since we intend to add comments to posts.

Exercise. Make up a few examples of posts.

Exercise. Define a function post-add-comment!

post-add-comment! : (post? string? . -> . void)

whose intended side effect is to add a new comment to the end of the post’s list of comments.

Exercise. Adjust render-post so that the produced fragment will include the comments in
an itemized list.

Exercise. Because we’ve extended a post to include comments, other post-manipulating
parts of the application may need to be adjusted, such as uses of post. Identify and fix any
other part of the application that needs to accommodate the post’s new structure.

————

Once we’ve changed the data structure of the posts and adjusted our functions to deal with
this revised structure, the web application should be runnable. The user may even see some
of the fruits of our labor: if the initial BLOG has a post with a comment, the user should see
those comments now. But obviously, there’s something missing: the user doesn’t have the
user interface to add comments to a post!

19

9 Breaking Up the Display

How should we incorporate comments more fully into the user’s web experience? Seeing
all the posts and comments all on one page may be a bit overwhelming. Perhaps we should
hold off on showing the comments on the main blog page. Let’s present a secondary "detail"
view of a post, and present the comments there.

The top-level view of a blog then can show the blog’s title and body. We can also show a
count of how many comments are associated to the post.

So now we need some way to visit a post’s detail page. One way to do this is to hyperlink
each post’s title: if the user wants to see the detail page of a post, user should be able to click
the title to get there. From that post’s detail page, we can even add a form to let the user add
new comments.

Here’s a diagram of a simple page flow of our web application that should let us add com-
ments.

Each point in the diagram corresponds to a request-consuming handler. As we might suspect,
we’ll be using send/suspend/dispatch some more. Every arrow in the diagram will be
realized as a URL that we generate with embed/url.

This has a slightly messy consequence: previously, we’ve been rendering the list of posts
without any hyperlinks. But since any function that generates a special dispatching URL uses
embed/url to do it, we’ll need to adjust render-posts and render-post to consume and
use embed/url itself when it makes those hyperlinked titles.

Our web application now looks like:

#lang web-server/insta

; A blog is a (make-blog posts)

; where posts is a (listof post)

20

(struct blog (posts) #:mutable)

; and post is a (make-post title body comments)

; where title is a string, body is a string,

; and comments is a (listof string)

(struct post (title body comments) #:mutable)

; BLOG: blog

; The initial BLOG.

(define BLOG

(blog

(list (post "First Post"

"This is my first post"

(list "First comment!"))

(post "Second Post"

"This is another post"

(list)))))

; blog-insert-post!: blog post -> void

; Consumes a blog and a post, adds the post at the top of the blog.

(define (blog-insert-post! a-blog a-post)

(set-blog-posts! a-blog

(cons a-post (blog-posts a-blog))))

; post-insert-comment!: post string -> void

; Consumes a post and a comment string. As a side-efect,

; adds the comment to the bottom of the post's list of comments.

(define (post-insert-comment! a-post a-comment)

(set-post-comments!

a-post

(append (post-comments a-post) (list a-comment))))

; start: request -> doesn't

; Consumes a request, and produces a page that displays

; all of the web content.

(define (start request)

(render-blog-page request))

; render-blog-page: request -> doesn't

; Produces an doesn't page of the content of the

; BLOG.

(define (render-blog-page request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "My Blog"))

21

(body

(h1 "My Blog")

,(render-posts make-url)

(form ((action

,(make-url insert-post-handler)))

(input ((name "title")))

(input ((name "body")))

(input ((type "submit"))))))))

; parse-post: bindings -> post

; Extracts a post out of the bindings.

(define (parse-post bindings)

(post (extract-binding/single 'title bindings)

(extract-binding/single 'body bindings)

(list)))

(define (insert-post-handler request)

(blog-insert-post!

BLOG (parse-post (request-bindings request)))

(render-blog-page request))]

(send/suspend/dispatch response-generator)))

; render-post-detail-page: post request -> doesn't

; Consumes a post and request, and produces a detail page

; of the post. The user will be able to insert new comments.

(define (render-post-detail-page a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Post Details"))

(body

(h1 "Post Details")

(h2 ,(post-title a-post))

(p ,(post-body a-post))

,(render-as-itemized-list

(post-comments a-post))

(form ((action

,(make-url insert-comment-handler)))

(input ((name "comment")))

(input ((type "submit"))))))))

(define (parse-comment bindings)

(extract-binding/single 'comment bindings))

(define (insert-comment-handler a-request)

(post-insert-comment!

22

a-post (parse-comment (request-bindings a-request)))

(render-post-detail-page a-post a-request))]

(send/suspend/dispatch response-generator)))

; render-post: post (handler -> string) -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

; The fragment contains a link to show a detailed view of the post.

(define (render-post a-post make-url)

(local [(define (view-post-handler request)

(render-post-detail-page a-post request))]

`(div ((class "post"))

(a ((href ,(make-url view-post-handler)))

,(post-title a-post))

(p ,(post-body a-post))

(div ,(number->string (length (post-comments a-post)))

" comment(s)"))))

; render-posts: (handler -> string) -> xexpr

; Consumes a make-url, and produces an xexpr fragment

; of all its posts.

(define (render-posts make-url)

(local [(define (render-post/make-url a-post)

(render-post a-post make-url))]

`(div ((class "posts"))

,@(map render-post/make-url (blog-posts BLOG)))))

; render-as-itemized-list: (listof xexpr) -> xexpr

; Consumes a list of items, and produces a rendering as

; an unorderered list.

(define (render-as-itemized-list fragments)

`(ul ,@(map render-as-item fragments)))

; render-as-item: xexpr -> xexpr

; Consumes an xexpr, and produces a rendering

; as a list item.

(define (render-as-item a-fragment)

`(li ,a-fragment))

We now have an application that’s pretty sophisticated: we can add posts and write com-
ments. Still, there’s a problem with this: once the user’s in a post-detail-page, they
can’t get back to the blog without pressing the browser’s back button! That’s disruptive. We
should provide a page flow that lets us get back to the main blog-viewing page, to keep the

23

user from every getting "stuck" in a dark corner of the web application.

24

10 Adding a Back Button

Here’s a diagram of a our revised page flow of our web application. Maybe we can just add a
BACK link from the render-post-detail-page that gets us back to viewing the top-level
blog.

Exercise. Adjust render-post-detail-page to include another link that goes back to
render-blog-page.

To make this more interesting, maybe we should enrich the flow a bit more. We can give
the user a choice right before committing to their comment. Who knows? They may have a
change of heart.

25

Although this seems complicated, the shape of our handlers will look more-or-less like what
we had before. After we’ve added all the handlers, our web application is fairly functional.

#lang web-server/insta

; A blog is a (make-blog posts)

; where posts is a (listof post)

(struct blog (posts) #:mutable)

; and post is a (make-post title body comments)

; where title is a string, body is a string,

; and comments is a (listof string)

(struct post (title body comments) #:mutable)

; BLOG: blog

; The initial BLOG.

(define BLOG

(blog

(list (post "First Post"

"This is my first post"

(list "First comment!"))

(post "Second Post"

"This is another post"

(list)))))

26

; blog-insert-post!: blog post -> void

; Consumes a blog and a post, adds the post at the top of the blog.

(define (blog-insert-post! a-blog a-post)

(set-blog-posts! a-blog

(cons a-post (blog-posts a-blog))))

; post-insert-comment!: post string -> void

; Consumes a post and a comment string. As a side-efect,

; adds the comment to the bottom of the post's list of comments.

(define (post-insert-comment! a-post a-comment)

(set-post-comments!

a-post

(append (post-comments a-post) (list a-comment))))

; start: request -> doesn't

; Consumes a request and produces a page that displays

; all of the web content.

(define (start request)

(render-blog-page request))

; render-blog-page: request -> doesn't

; Produces an HTML page of the content of the

; BLOG.

(define (render-blog-page request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "My Blog"))

(body

(h1 "My Blog")

,(render-posts make-url)

(form ((action

,(make-url insert-post-handler)))

(input ((name "title")))

(input ((name "body")))

(input ((type "submit"))))))))

; parse-post: bindings -> post

; Extracts a post out of the bindings.

(define (parse-post bindings)

(post (extract-binding/single 'title bindings)

(extract-binding/single 'body bindings)

(list)))

(define (insert-post-handler request)

27

(blog-insert-post!

BLOG (parse-post (request-bindings request)))

(render-blog-page request))]

(send/suspend/dispatch response-generator)))

; render-post-detail-page: post request -> doesn't

; Consumes a post and produces a detail page of the post.

; The user will be able to either insert new comments

; or go back to render-blog-page.

(define (render-post-detail-page a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Post Details"))

(body

(h1 "Post Details")

(h2 ,(post-title a-post))

(p ,(post-body a-post))

,(render-as-itemized-list

(post-comments a-post))

(form ((action

,(make-url insert-comment-handler)))

(input ((name "comment")))

(input ((type "submit"))))

(a ((href ,(make-url back-handler)))

"Back to the blog")))))

(define (parse-comment bindings)

(extract-binding/single 'comment bindings))

(define (insert-comment-handler request)

(render-confirm-add-comment-page

(parse-comment (request-bindings request))

a-post

request))

(define (back-handler request)

(render-blog-page request))]

(send/suspend/dispatch response-generator)))

; render-confirm-add-comment-page :

; comment post request -> doesn't

; Consumes a comment that we intend to add to a post, as well

; as the request. If the user follows through, adds a comment

; and goes back to the display page. Otherwise, goes back to

28

; the detail page of the post.

(define (render-confirm-add-comment-page a-comment a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Add a Comment"))

(body

(h1 "Add a Comment")

"The comment: " (div (p ,a-comment))

"will be added to "

(div ,(post-title a-post))

(p (a ((href ,(make-url yes-handler)))

"Yes, add the comment."))

(p (a ((href ,(make-url cancel-handler)))

"No, I changed my mind!"))))))

(define (yes-handler request)

(post-insert-comment! a-post a-comment)

(render-post-detail-page a-post request))

(define (cancel-handler request)

(render-post-detail-page a-post request))]

(send/suspend/dispatch response-generator)))

; render-post: post (handler -> string) -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

; The fragment contains a link to show a detailed view of the post.

(define (render-post a-post make-url)

(local [(define (view-post-handler request)

(render-post-detail-page a-post request))]

`(div ((class "post"))

(a ((href ,(make-url view-post-handler)))

,(post-title a-post))

(p ,(post-body a-post))

(div ,(number->string (length (post-comments a-post)))

" comment(s)"))))

; render-posts: (handler -> string) -> xexpr

; Consumes a make-url, produces an xexpr fragment

; of all its posts.

(define (render-posts make-url)

(local [(define (render-post/make-url a-post)

(render-post a-post make-url))]

`(div ((class "posts"))

,@(map render-post/make-url (blog-posts BLOG)))))

29

; render-as-itemized-list: (listof xexpr) -> xexpr

; Consumes a list of items, and produces a rendering as

; an unorderered list.

(define (render-as-itemized-list fragments)

`(ul ,@(map render-as-item fragments)))

; render-as-item: xexpr -> xexpr

; Consumes an xexpr, and produces a rendering

; as a list item.

(define (render-as-item a-fragment)

`(li ,a-fragment))

30

11 Decorating With Style!

We have an application that’s functionally complete, but is visual lacking. Let’s try to im-
prove its appearance. One way we can do this is to use a cascading style sheet. A style
sheet can add visual panache to our web pages. For example, if we’d like to turn all of our
paragraphs green, we might add the following style declaration within our response.

'(style ((type "text/css")) "p { color: green }")

It’s tempting to directly embed this style information into our responses. However, our
source file is already quite busy. We often want to separate the logical representation of our
application from its presentation. Rather than directly embed the .css in the HTML response,
let’s instead add a link reference to an separate .css file.

Until now, all the content that our web application has produced has come from a response
generating handler. Of course, we know that not everything needs to be dynamically gen-
erated: it’s common to have files that won’t be changing. We should be able to serve these
static resources (images, documents, .css files) alongside our web applications.

To do this, we set aside a path to store these files, and then tell the web server where that
directory is. The function static-files-path,

static-files-path : (path-string? -> void)

tells the web server to look in the given path when it receives a URL that looks like a static
resource request.

Exercise. Create a simple web application called "test-static.rkt" with the following
content:

#lang web-server/insta

(define (start request)

(response/xexpr

'(html (head (title "Testing"))

(link ((rel "stylesheet")

(href "/test-static.css")

(type "text/css")))

(body (h1 "Testing")

(h2 "This is a header")

(p "This is " (span ((class "hot")) "hot") ".")))))

(static-files-path "htdocs")

Make a subdirectory called "htdocs" rooted in the same directory as the "test-

static.rkt" source. Finally, just to see that we can serve this .css page, create a very

31

simple .css file "test-static.css" file in "htdocs/" with the following content:

body {

margin-left: 10%;

margin-right: 10%;

}

p { font-family: sans-serif }

h1 { color: green }

h2 { font-size: small }

span.hot { color: red }

At this point, run the application and look at the browser’s output. We should see a Spartan
web page, but it should still have some color in its cheeks.

————

Exercise. Improve the presentation of the blog web application by writing your an external
style sheet to your tastes. Adjust all of the HTML response handlers to include a link to the
style sheet.

32

12 The Double Submit Bug

There’s yet another a subtle problem in our application. To see it, bring our blog application
up again, and add a post. Then reload the page. Reload the page again.

What’s happening is a well-known problem: it’s an instance of the "double-submit" problem.
If a user presses reload, a request is sent over to our application. This wouldn’t be such a bad
thing, if not for the fact that we’re handling certain requests by mutating our application’s
data structures.

A common pattern that web developers use to dodge the double submission problem is to
handle state-mutating request in a peculiar way: once the user sends over a request that
affects change to the system, we then redirect them off to a different URL that’s safe to
reload. To make this happen, we will use the function redirect/get.

redirect/get : (-> request?)

This redirect/get function has an immediate side effect: it forces the user’s browser to
follow a redirection to a safe URL, and gives us back that fresh new request.

For example, let’s look at a toy application that lets the users add names to a roster:

#lang web-server/insta

; A roster is a (make-roster names)

; where names is a list of string.

(struct roster (names) #:mutable)

; roster-add-name!: roster string -> void

; Given a roster and a name, adds the name

; to the end of the roster.

(define (roster-add-name! a-roster a-name)

(set-roster-names! a-roster

(append (roster-names a-roster)

(list a-name))))

(define ROSTER (roster '("kathi" "shriram" "dan")))

; start: request -> doesn't

(define (start request)

(show-roster request))

; show-roster: request -> doesn't

(define (show-roster request)

(local [(define (response-generator make-url)

33

(response/xexpr

`(html (head (title "Roster"))

(body (h1 "Roster")

,(render-as-itemized-list

(roster-names ROSTER))

(form ((action

,(make-url add-name-handler)))

(input ((name "a-name")))

(input ((type "submit"))))))))

(define (parse-name bindings)

(extract-binding/single 'a-name bindings))

(define (add-name-handler request)

(roster-add-name!

ROSTER (parse-name (request-bindings request)))

(show-roster request))]

(send/suspend/dispatch response-generator)))

; render-as-itemized-list: (listof xexpr) -> xexpr

(define (render-as-itemized-list fragments)

`(ul ,@(map render-as-item fragments)))

; render-as-item: xexpr -> xexpr

(define (render-as-item a-fragment)

`(li ,a-fragment))

This application suffers the same problem as our blog: if the user adds a name, and then
presses reload, then the same name will be added twice.

We can fix this by changing a single expression. Can you see what changed?

#lang web-server/insta

; A roster is a (make-roster names)

; where names is a list of string.

(struct roster (names) #:mutable)

; roster-add-name!: roster string -> void

; Given a roster and a name, adds the name

; to the end of the roster.

(define (roster-add-name! a-roster a-name)

(set-roster-names! a-roster

(append (roster-names a-roster)

(list a-name))))

(define ROSTER (roster '("kathi" "shriram" "dan")))

34

; start: request -> doesn't

(define (start request)

(show-roster request))

; show-roster: request -> doesn't

(define (show-roster request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Roster"))

(body (h1 "Roster")

,(render-as-itemized-list

(roster-names ROSTER))

(form ((action

,(make-url add-name-handler)))

(input ((name "a-name")))

(input ((type "submit"))))))))

(define (parse-name bindings)

(extract-binding/single 'a-name bindings))

(define (add-name-handler request)

(roster-add-name!

ROSTER (parse-name (request-bindings request)))

(show-roster (redirect/get)))]

(send/suspend/dispatch response-generator)))

; render-as-itemized-list: (listof xexpr) -> xexpr

(define (render-as-itemized-list fragments)

`(ul ,@(map render-as-item fragments)))

; render-as-item: xexpr -> xexpr

(define (render-as-item a-fragment)

`(li ,a-fragment))

Double-submit, then, is painlessly easy to mitigate. Whenever we have handlers that mutate
the state of our system, we use redirect/get when we send our response back.

Exercise. Revise the blog application with redirect/get to address the double-submit
problem.

With these minor fixes, our blog application now looks like this:

#lang web-server/insta

; A blog is a (make-blog posts)

; where posts is a (listof post)

35

(struct blog (posts) #:mutable)

; and post is a (make-post title body comments)

; where title is a string, body is a string,

; and comments is a (listof string)

(struct post (title body comments) #:mutable)

; BLOG: blog

; The initial BLOG.

(define BLOG

(blog

(list (post "First Post"

"This is my first post"

(list "First comment!"))

(post "Second Post"

"This is another post"

(list)))))

; blog-insert-post!: blog post -> void

; Consumes a blog and a post, adds the post at the top of the blog.

(define (blog-insert-post! a-blog a-post)

(set-blog-posts! a-blog

(cons a-post (blog-posts a-blog))))

; post-insert-comment!: post string -> void

; Consumes a post and a comment string. As a side-efect,

; adds the comment to the bottom of the post's list of comments.

(define (post-insert-comment! a-post a-comment)

(set-post-comments!

a-post

(append (post-comments a-post) (list a-comment))))

; start: request -> doesn't

; Consumes a request and produces a page that displays

; all of the web content.

(define (start request)

(render-blog-page request))

; render-blog-page: request -> doesn't

; Produces an doesn't page of the content of the

; BLOG.

(define (render-blog-page request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "My Blog"))

36

(body

(h1 "My Blog")

,(render-posts make-url)

(form ((action

,(make-url insert-post-handler)))

(input ((name "title")))

(input ((name "body")))

(input ((type "submit"))))))))

; parse-post: bindings -> post

; Extracts a post out of the bindings.

(define (parse-post bindings)

(post (extract-binding/single 'title bindings)

(extract-binding/single 'body bindings)

(list)))

(define (insert-post-handler request)

(blog-insert-post!

BLOG (parse-post (request-bindings request)))

(render-blog-page (redirect/get)))]

(send/suspend/dispatch response-generator)))

; render-post-detail-page: post request -> doesn't

; Consumes a post and produces a detail page of the post.

; The user will be able to either insert new comments

; or go back to render-blog-page.

(define (render-post-detail-page a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Post Details"))

(body

(h1 "Post Details")

(h2 ,(post-title a-post))

(p ,(post-body a-post))

,(render-as-itemized-list

(post-comments a-post))

(form ((action

,(make-url insert-comment-handler)))

(input ((name "comment")))

(input ((type "submit"))))

(a ((href ,(make-url back-handler)))

"Back to the blog")))))

(define (parse-comment bindings)

(extract-binding/single 'comment bindings))

37

(define (insert-comment-handler request)

(render-confirm-add-comment-page

(parse-comment (request-bindings request))

a-post

request))

(define (back-handler request)

(render-blog-page request))]

(send/suspend/dispatch response-generator)))

; render-confirm-add-comment-page :

; comment post request -> doesn't

; Consumes a comment that we intend to add to a post, as well

; as the request. If the user follows through, adds a comment

; and goes back to the display page. Otherwise, goes back to

; the detail page of the post.

(define (render-confirm-add-comment-page a-comment a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Add a Comment"))

(body

(h1 "Add a Comment")

"The comment: " (div (p ,a-comment))

"will be added to "

(div ,(post-title a-post))

(p (a ((href ,(make-url yes-handler)))

"Yes, add the comment."))

(p (a ((href ,(make-url cancel-handler)))

"No, I changed my mind!"))))))

(define (yes-handler request)

(post-insert-comment! a-post a-comment)

(render-post-detail-page a-post (redirect/get)))

(define (cancel-handler request)

(render-post-detail-page a-post request))]

(send/suspend/dispatch response-generator)))

; render-post: post (handler -> string) -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

; The fragment contains a link to show a detailed view of the post.

(define (render-post a-post make-url)

38

(local [(define (view-post-handler request)

(render-post-detail-page a-post request))]

`(div ((class "post"))

(a ((href ,(make-url view-post-handler)))

,(post-title a-post))

(p ,(post-body a-post))

(div ,(number->string (length (post-comments a-post)))

" comment(s)"))))

; render-posts: (handler -> string) -> xexpr

; Consumes a make-url, produces an xexpr fragment

; of all its posts.

(define (render-posts make-url)

(local [(define (render-post/make-url a-post)

(render-post a-post make-url))]

`(div ((class "posts"))

,@(map render-post/make-url (blog-posts BLOG)))))

; render-as-itemized-list: (listof xexpr) -> xexpr

; Consumes a list of items, and produces a rendering as

; an unorderered list.

(define (render-as-itemized-list fragments)

`(ul ,@(map render-as-item fragments)))

; render-as-item: xexpr -> xexpr

; Consumes an xexpr, and produces a rendering

; as a list item.

(define (render-as-item a-fragment)

`(li ,a-fragment))

39

13 Abstracting the Model

If we "turn off the lights" by closing the program, then the state of our application disappears
into the ether. How do we get our ephemeral state to stick around? Before we tackle that
question, we should consider: what do we want to save? There’s some state that we probably
don’t have a lingering interest in, like requests. What we care about saving is our model of
the blog.

If we look closely at our web application program, we see a seam between the model of our
blog, and the web application that uses that model. Let’s isolate the model: it’s all the stuff
near the top:

(struct blog (posts) #:mutable)

(struct post (title body comments) #:mutable)

(define BLOG ...)

(define (blog-insert-post! ...) ...)

(define (post-insert-comment! ...) ...)

In realistic web applications, the model and the web application are separated by some wall
of abstraction. The theory is that, if we do this separation, it should be easier to then make
isolated changes without breaking the entire system. Let’s do this: we will first rip the model
out into a separate file. Once we’ve done that, then we’ll look into making the model persist.

Create a new file called "model.rkt" with the following content.

#lang racket

; A blog is a (make-blog posts)

; where posts is a (listof post)

(struct blog (posts) #:mutable)

; and post is a (make-post title body comments)

; where title is a string, body is a string,

; and comments is a (listof string)

(struct post (title body comments) #:mutable)

; BLOG: blog

; The initial BLOG.

(define BLOG

(blog

(list (post "First Post"

"This is my first post"

(list "First comment!"))

(post "Second Post"

"This is another post"

40

(list)))))

; blog-insert-post!: blog post -> void

; Consumes a blog and a post, adds the post at the top of the blog.

(define (blog-insert-post! a-blog a-post)

(set-blog-posts!

a-blog

(cons a-post (blog-posts a-blog))))

; post-insert-comment!: post string -> void

; Consumes a post and a comment string. As a side-efect,

; adds the comment to the bottom of the post's list of comments.

(define (post-insert-comment! a-post a-comment)

(set-post-comments!

a-post

(append (post-comments a-post) (list a-comment))))

(provide (all-defined-out))

This is essentially a cut-and-paste of the lines we identified as our model. It’s written in
the racket language because the model shouldn’t need to worry about web-server stuff.
There’s one additional expression that looks a little odd at first:

(provide (all-defined-out))

which tells Racket to allow other files to have access to everything that’s defined in the
"model.rkt" file.

We change our web application to use this model. Going back to our web application, we rip
out the old model code, and replace it with an expression that let’s use use the new model.

(require "model.rkt")

which hooks up our web application module to the "model.rkt" module.

#lang web-server/insta

(require "model.rkt")

; start: request -> doesn't

; Consumes a request and produces a page that displays

; all of the web content.

(define (start request)

(render-blog-page request))

41

; render-blog-page: request -> doesn't

; Produces an HTML page of the content of the

; BLOG.

(define (render-blog-page request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "My Blog"))

(body

(h1 "My Blog")

,(render-posts make-url)

(form ((action

,(make-url insert-post-handler)))

(input ((name "title")))

(input ((name "body")))

(input ((type "submit"))))))))

; parse-post: bindings -> post

; Extracts a post out of the bindings.

(define (parse-post bindings)

(post (extract-binding/single 'title bindings)

(extract-binding/single 'body bindings)

(list)))

(define (insert-post-handler request)

(blog-insert-post!

BLOG (parse-post (request-bindings request)))

(render-blog-page (redirect/get)))]

(send/suspend/dispatch response-generator)))

; render-post-detail-page: post request -> doesn't

; Consumes a post and produces a detail page of the post.

; The user will be able to either insert new comments

; or go back to render-blog-page.

(define (render-post-detail-page a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Post Details"))

(body

(h1 "Post Details")

(h2 ,(post-title a-post))

(p ,(post-body a-post))

,(render-as-itemized-list

(post-comments a-post))

(form ((action

,(make-url insert-comment-handler)))

42

(input ((name "comment")))

(input ((type "submit"))))

(a ((href ,(make-url back-handler)))

"Back to the blog")))))

(define (parse-comment bindings)

(extract-binding/single 'comment bindings))

(define (insert-comment-handler request)

(render-confirm-add-comment-page

(parse-comment (request-bindings request))

a-post

request))

(define (back-handler request)

(render-blog-page request))]

(send/suspend/dispatch response-generator)))

; render-confirm-add-comment-page :

; comment post request -> doesn't

; Consumes a comment that we intend to add to a post, as well

; as the request. If the user follows through, adds a comment

; and goes back to the display page. Otherwise, goes back to

; the detail page of the post.

(define (render-confirm-add-comment-page a-comment a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Add a Comment"))

(body

(h1 "Add a Comment")

"The comment: " (div (p ,a-comment))

"will be added to "

(div ,(post-title a-post))

(p (a ((href ,(make-url yes-handler)))

"Yes, add the comment."))

(p (a ((href ,(make-url cancel-handler)))

"No, I changed my mind!"))))))

(define (yes-handler request)

(post-insert-comment! a-post a-comment)

(render-post-detail-page a-post (redirect/get)))

(define (cancel-handler request)

(render-post-detail-page a-post request))]

43

(send/suspend/dispatch response-generator)))

; render-post: post (handler -> string) -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

; The fragment contains a link to show a detailed view of the post.

(define (render-post a-post make-url)

(local [(define (view-post-handler request)

(render-post-detail-page a-post request))]

`(div ((class "post"))

(a ((href ,(make-url view-post-handler)))

,(post-title a-post))

(p ,(post-body a-post))

(div ,(number->string (length (post-comments a-post)))

" comment(s)"))))

; render-posts: (handler -> string) -> xexpr

; Consumes a make-url, produces an xexpr fragment

; of all its posts.

(define (render-posts make-url)

(local [(define (render-post/make-url a-post)

(render-post a-post make-url))]

`(div ((class "posts"))

,@(map render-post/make-url (blog-posts BLOG)))))

; render-as-itemized-list: (listof xexpr) -> xexpr

; Consumes a list of items, and produces a rendering as

; an unorderered list.

(define (render-as-itemized-list fragments)

`(ul ,@(map render-as-item fragments)))

; render-as-item: xexpr -> xexpr

; Consumes an xexpr, and produces a rendering

; as a list item.

(define (render-as-item a-fragment)

`(li ,a-fragment))

44

14 A Persistent Model

Now that the model is separated into a separate module, we can more easily modify its
functionality, and in particular, make it persistent.

The first step is to make the model structures serializable. Earlier, we made the structures
mutable by adding #:mutable to their definitions. We can make the structures serializable
by adding #:prefab. This tells Racket that these structures can be "previously fabricated",
that is, created before the program started running—which is exactly what we want when
restoring the blog data from disk. Our blog structure definition now looks like:

(struct blog (posts) #:mutable #:prefab)

Now blog structures can be read from the outside world with read and written with write.
However, we need to make sure everything inside a blog structure is also marked as
#:prefab. If we had a more complicated structure, we would need to ensure that every-
thing (transitively) in the structure was #:prefab’d.

Exercise. Write the new structure definition for posts.

At this point, we can read and write the blog to disk. Now let’s actually do it.

First, we’ll make a place to record in the model where the blog lives on disk. So, we need to
change the blog structure again. Now it will be:

(struct blog (home posts)

#:mutable)

home : string?

posts : (listof post?)

Exercise. Write the new structure definition for blogs.

Then, we’ll make a function that allows our application to initialize the blog:

; initialize-blog! : path? -> blog

; Reads a blog from a path, if not present, returns default

(define (initialize-blog! home)

(local [(define (log-missing-exn-handler exn)

(blog

(path->string home)

(list (post "First Post"

"This is my first post"

(list "First comment!"))

(post "Second Post"

"This is another post"

45

(list)))))

(define the-blog

(with-handlers ([exn? log-missing-exn-handler])

(with-input-from-file home read)))]

(set-blog-home! the-blog (path->string home))

the-blog))

initialize-blog! takes a path and tries to read from it. If the path contains a blog

structure, then read will parse it, because blogs are #:prefab. If there is no file at the path,
or if the file has some spurious data, then read or with-input-from-file will throw an
exception. with-handlers provides an exception handler that will return the default blog
structure for all kinds of errors.

After the-blog is bound to the newly read (or default) structure, we set the home to the
correct path. (Notice that we need to convert the path into a string. Why didn’t we just make
the blog structure contain paths? Answer: They can’t be used with read and write.)

Next, we will need to write a function to save the model to the disk.

; save-blog! : blog -> void

; Saves the contents of a blog to its home

(define (save-blog! a-blog)

(local [(define (write-to-blog)

(write a-blog))]

(with-output-to-file (blog-home a-blog)

write-to-blog

#:exists 'replace)))

save-blog! writes the model into its home . It provides with-output-to-file with an
#:exists flag that tells it to replace the file contents if the file at blog-home exists.

This function can now be used to save the blog structure whenever we modify it. Since we
only ever modify the blog structure in the model, we only need to update blog-insert-

post! and post-insert-comment!.

Exercise. Change blog-insert-post! and post-insert-comment! to call save-

blog!.

————

You may have had a problem when trying to update post-insert-comment!. It needs to
call save-blog! with the blog structure. But, it wasn’t passed the blog as an argument.
We’ll need to add that argument and change the application appropriately. While we’re at
it, let’s change blog-insert-post! to accept the contents of the post structure, rather the
structure itself, to better abstract the model interface:

46

blog-insert-post! : (blog? string? string? . -> . void)

post-insert-comment! : (blog? post? string? . -> . void)

Exercise. Write the new definitions of blog-insert-post! and post-insert-

comment!. (Remember to call save-blog!.)

In our last iteration of our model, we used (provide (all-defined-out)) to expose
all of the model’s definitions. But we often want to hide things like private functions and
internal data structures from others. We’ll do that here by using a form of provide that
explicitly names the exposed definitions.

For example, if we wanted to limit the exposed functions to blog-insert-post! and
post-insert-comment!, we can do this:

(provide blog-insert-post!

post-insert-comment!)

Of course, this set of functions is too minimal! Let’s change the provide line in the model
to:

(provide blog? blog-posts

post? post-title post-body post-comments

initialize-blog!

blog-insert-post! post-insert-comment!)

which captures the essential interactions we do with a blog.

————

The last step is to change the application. We need to call initialize-blog! to read in
the blog structure, and we need to pass the blog value that is returned around the application,
because there is no longer a BLOG export.

First, change start to call initialize-blog! with a path in our home directory:

(define (start request)

(render-blog-page

(initialize-blog!

(build-path (current-directory)

"the-blog-data.db"))

request))

47

Exercise. Thread the blog structure through the application appropriately to give blog-

insert-post! and post-insert-comment! the correct values. (You’ll also need to
change how render-blog-page adds new posts.)

————

Our model is now:

#lang racket

; A blog is a (make-blog home posts)

; where home is a string, posts is a (listof post)

(struct blog (home posts) #:mutable #:prefab)

; and post is a (make-post blog title body comments)

; where title is a string, body is a string,

; and comments is a (listof string)

(struct post (title body comments) #:mutable #:prefab)

; initialize-blog! : path? -> blog

; Reads a blog from a path, if not present, returns default

(define (initialize-blog! home)

(local [(define (log-missing-exn-handler exn)

(blog

(path->string home)

(list (post "First Post"

"This is my first post"

(list "First comment!"))

(post "Second Post"

"This is another post"

(list)))))

(define the-blog

(with-handlers ([exn? log-missing-exn-handler])

(with-input-from-file home read)))]

(set-blog-home! the-blog (path->string home))

the-blog))

; save-blog! : blog -> void

; Saves the contents of a blog to its home

(define (save-blog! a-blog)

(local [(define (write-to-blog)

(write a-blog))]

(with-output-to-file (blog-home a-blog)

write-to-blog

#:exists 'replace)))

48

; blog-insert-post!: blog string string -> void

; Consumes a blog and a post, adds the post at the top of the blog.

(define (blog-insert-post! a-blog title body)

(set-blog-posts!

a-blog

(cons (post title body empty) (blog-posts a-blog)))

(save-blog! a-blog))

; post-insert-comment!: blog post string -> void

; Consumes a blog, a post and a comment string. As a side-efect,

; adds the comment to the bottom of the post's list of comments.

(define (post-insert-comment! a-blog a-post a-comment)

(set-post-comments!

a-post

(append (post-comments a-post) (list a-comment)))

(save-blog! a-blog))

(provide blog? blog-posts

post? post-title post-body post-comments

initialize-blog!

blog-insert-post! post-insert-comment!)

And our application is:

#lang web-server/insta

(require "model-2.rkt")

; start: request -> doesn't

; Consumes a request and produces a page that displays

; all of the web content.

(define (start request)

(render-blog-page

(initialize-blog!

(build-path (current-directory)

"the-blog-data.db"))

request))

; render-blog-page: blog request -> doesn't

; Produces an HTML page of the content of the

; blog.

(define (render-blog-page a-blog request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "My Blog"))

49

(body

(h1 "My Blog")

,(render-posts a-blog make-url)

(form ((action

,(make-url insert-post-handler)))

(input ((name "title")))

(input ((name "body")))

(input ((type "submit"))))))))

(define (insert-post-handler request)

(define bindings (request-bindings request))

(blog-insert-post!

a-blog

(extract-binding/single 'title bindings)

(extract-binding/single 'body bindings))

(render-blog-page a-blog (redirect/get)))]

(send/suspend/dispatch response-generator)))

; render-post-detail-page: post request -> doesn't

; Consumes a post and produces a detail page of the post.

; The user will be able to either insert new comments

; or go back to render-blog-page.

(define (render-post-detail-page a-blog a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Post Details"))

(body

(h1 "Post Details")

(h2 ,(post-title a-post))

(p ,(post-body a-post))

,(render-as-itemized-list

(post-comments a-post))

(form ((action

,(make-url insert-comment-handler)))

(input ((name "comment")))

(input ((type "submit"))))

(a ((href ,(make-url back-handler)))

"Back to the blog")))))

(define (parse-comment bindings)

(extract-binding/single 'comment bindings))

(define (insert-comment-handler request)

(render-confirm-add-comment-page

a-blog

50

(parse-comment (request-bindings request))

a-post

request))

(define (back-handler request)

(render-blog-page a-blog request))]

(send/suspend/dispatch response-generator)))

; render-confirm-add-comment-page :

; blog comment post request -> doesn't

; Consumes a comment that we intend to add to a post, as well

; as the request. If the user follows through, adds a comment

; and goes back to the display page. Otherwise, goes back to

; the detail page of the post.

(define (render-confirm-add-comment-page a-blog a-comment

a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Add a Comment"))

(body

(h1 "Add a Comment")

"The comment: " (div (p ,a-comment))

"will be added to "

(div ,(post-title a-post))

(p (a ((href ,(make-url yes-handler)))

"Yes, add the comment."))

(p (a ((href ,(make-url cancel-handler)))

"No, I changed my mind!"))))))

(define (yes-handler request)

(post-insert-comment! a-blog a-post a-comment)

(render-post-detail-page a-blog a-post (redirect/get)))

(define (cancel-handler request)

(render-post-detail-page a-blog a-post request))]

(send/suspend/dispatch response-generator)))

; render-post: post (handler -> string) -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

; The fragment contains a link to show a detailed view of the post.

(define (render-post a-blog a-post make-url)

(local [(define (view-post-handler request)

(render-post-detail-page a-blog a-post request))]

51

`(div ((class "post"))

(a ((href ,(make-url view-post-handler)))

,(post-title a-post))

(p ,(post-body a-post))

(div ,(number->string (length (post-comments a-post)))

" comment(s)"))))

; render-posts: blog (handler -> string) -> xexpr

; Consumes a make-url, produces an xexpr fragment

; of all its posts.

(define (render-posts a-blog make-url)

(local [(define (render-post/make-url a-post)

(render-post a-blog a-post make-url))]

`(div ((class "posts"))

,@(map render-post/make-url (blog-posts a-blog)))))

; render-as-itemized-list: (listof xexpr) -> xexpr

; Consumes a list of items, and produces a rendering as

; an unorderered list.

(define (render-as-itemized-list fragments)

`(ul ,@(map render-as-item fragments)))

; render-as-item: xexpr -> xexpr

; Consumes an xexpr, and produces a rendering

; as a list item.

(define (render-as-item a-fragment)

`(li ,a-fragment))

————

This approach to persistence can work surprisingly well for simple applications. But as our
application’s needs grow, we will have to deal with concurrency issues, the lack of a simply
query language over our data model, etc. So, in the next section, we’ll talk about how to use
an SQL database to store our blog model.

52

15 Using an SQL database

Our next task is to employ an SQL database for the blog model. We’ll be using SQLite with
the (planet jaymccarthy/sqlite:4) PLaneT package. We add the following to the top
of our model:

(require (prefix-in sqlite: (planet jaymccarthy/sqlite:4)))

We now have the following bindings:

sqlite:db? : (any/c . -> . boolean?)

sqlite:open : (path? . -> . sqlite:db?)

sqlite:exec/ignore : (sqlite:db? string? . -> . void)

sqlite:select : (sqlite:db? string? . -> . (listof (vectorof (or/c integer? number? string? bytes? false/c))))

sqlite:insert : (sqlite:db? string? . -> . integer?)

The first thing we should do is decide on the relational structure of our model. We will use
the following tables:

CREATE TABLE posts (id INTEGER PRIMARY KEY, title TEXT, body TEXT)

CREATE TABLE comments (pid INTEGER, content TEXT)

Each post will have an identifier, a title, and a body. This is the same as our old Racket
structure, except we’ve added the identifier. (Actually, there was always an identifier—the
memory pointer—but now we have to make it explicit in the database.)

Each comment is tied to a post by the post’s identifier and has textual content. We could
have chosen to serialize comments with write and add a new TEXT column to the posts
table to store the value. By adding a new comments table, we are more in accord with the
relational style.

A blog structure will simply be a container for the database handle:

(struct blog (db))

db : sqlite:db?

53

Exercise. Write the blog structure definition. (It does not need to be mutable or serializ-
able.)

We can now write the code to initialize a blog structure:

; initialize-blog! : path? -> blog?

; Sets up a blog database (if it doesn't exist)

(define (initialize-blog! home)

(define db (sqlite:open home))

(define the-blog (blog db))

(with-handlers ([exn? void])

(sqlite:exec/ignore db

(string-append

"CREATE TABLE posts "

"(id INTEGER PRIMARY KEY,"

"title TEXT, body TEXT)"))

(blog-insert-post!

the-blog "First Post" "This is my first post")

(blog-insert-post!

the-blog "Second Post" "This is another post")

(sqlite:exec/ignore

db "CREATE TABLE comments (pid INTEGER, content TEXT)")

(post-insert-comment!

the-blog (first (blog-posts the-blog))

"First comment!"))

the-blog)

sqlite:open will create a database if one does not already exist at the home path. But, we
still need to initialize the database with the table definitions and initial data.

We used blog-insert-post! and post-insert-comment! to initialize the database.
Let’s see their implementation:

; blog-insert-post!: blog? string? string? -> void

; Consumes a blog and a post, adds the post at the top of the blog.

(define (blog-insert-post! a-blog title body)

(sqlite:insert

(blog-db a-blog)

(format "INSERT INTO posts (title, body) VALUES ('∼a', '∼a')"
title body)))

; post-insert-comment!: blog? post string -> void

; Consumes a blog, a post and a comment string. As a side-effect,

; adds the comment to the bottom of the post's list of comments.

(define (post-insert-comment! a-blog p a-comment)

54

(sqlite:insert

(blog-db a-blog)

(format

"INSERT INTO comments (pid, content) VALUES ('∼a', '∼a')"
(post-id p) a-comment)))

Exercise. Find the security hole common to these two functions.

————

A user could submit a post with a title like, "null', 'null') and INSERT

INTO accounts (username, password) VALUES ('ur','hacked" and get our sim-
ple sqlite:insert to make two INSERTs instead of one.

This is called an SQL injection attack. It can be resolved by using prepared statements that
let SQLite do the proper quoting for us. Refer to the SQLite package documentation for
usage.

————

In post-insert-comment!, we used post-id, but we have not yet defined the new post

structure. It seems like a post should be represented by an integer id, because the post table
contains an integer as the identifying value.

However, we cannot tell from this structure what blog this posts belongs to, and therefore,
what database; so, we could not extract the title or body values, since we do not know what
to query. Therefore, we should associate the blog with each post:

(struct post (blog id))

blog : blog?

id : integer?

Exercise. Write the structure definition for posts.

The only function that creates posts is blog-posts:

; blog-posts : blog -> (listof post?)

; Queries for the post ids

(define (blog-posts a-blog)

(local [(define (row->post a-row)

(post

a-blog

(vector-ref a-row 0)))

(define rows (sqlite:select

55

(blog-db a-blog)

"SELECT id FROM posts"))]

(cond [(empty? rows)

empty]

[else

(map row->post (rest rows))])))

sqlite:select returns a list of vectors. The first element of the list is the name of the
columns. Each vector has one element for each column. Each element is a string represen-
tation of the value.

At this point we can write the functions that operate on posts:

; post-title : post -> string?

; Queries for the title

(define (post-title a-post)

(vector-ref

(second

(sqlite:select

(blog-db (post-blog a-post))

(format

"SELECT title FROM posts WHERE id = '∼a'"
(post-id a-post))))

0))

Exercise. Write the definition of post-body.

Exercise. Write the definition of post-comments. (Hint: Use blog-posts as a template,
not post-title.)

————

The only change that we need to make to the application is to require the new model. The
interface is exactly the same!

————

Our model is now:

#lang racket

(require (prefix-in sqlite: (planet jaymccarthy/sqlite:4)))

; A blog is a (make-blog db)

56

; where db is an sqlite database handle

(struct blog (db))

; A post is a (make-post blog id)

; where blog is a blog and id is an integer?

(struct post (blog id))

; initialize-blog! : path? -> blog?

; Sets up a blog database (if it doesn't exist)

(define (initialize-blog! home)

(define db (sqlite:open home))

(define the-blog (blog db))

(with-handlers ([exn? void])

(sqlite:exec/ignore db

(string-append

"CREATE TABLE posts "

"(id INTEGER PRIMARY KEY,"

"title TEXT, body TEXT)"))

(blog-insert-post!

the-blog "First Post" "This is my first post")

(blog-insert-post!

the-blog "Second Post" "This is another post")

(sqlite:exec/ignore

db "CREATE TABLE comments (pid INTEGER, content TEXT)")

(post-insert-comment!

the-blog (first (blog-posts the-blog))

"First comment!"))

the-blog)

; blog-posts : blog -> (listof post?)

; Queries for the post ids

(define (blog-posts a-blog)

(local [(define (row->post a-row)

(post

a-blog

(vector-ref a-row 0)))

(define rows (sqlite:select

(blog-db a-blog)

"SELECT id FROM posts"))]

(cond [(empty? rows)

empty]

[else

(map row->post (rest rows))])))

; post-title : post -> string?

; Queries for the title

57

(define (post-title a-post)

(vector-ref

(second

(sqlite:select

(blog-db (post-blog a-post))

(format "SELECT title FROM posts WHERE id = '∼a'"
(post-id a-post))))

0))

; post-body : post -> string?

; Queries for the body

(define (post-body p)

(vector-ref

(second

(sqlite:select

(blog-db (post-blog p))

(format "SELECT body FROM posts WHERE id = '∼a'"
(post-id p))))

0))

; post-comments : post -> (listof string?)

; Queries for the comments

(define (post-comments p)

(local [(define (row->comment a-row)

(vector-ref a-row 0))

(define rows

(sqlite:select

(blog-db (post-blog p))

(format

"SELECT content FROM comments WHERE pid = '∼a'"
(post-id p))))]

(cond

[(empty? rows) empty]

[else (map row->comment (rest rows))])))

; blog-insert-post!: blog? string? string? -> void

; Consumes a blog and a post, adds the post at the top of the blog.

(define (blog-insert-post! a-blog title body)

(sqlite:insert

(blog-db a-blog)

(format "INSERT INTO posts (title, body) VALUES ('∼a', '∼a')"
title body)))

; post-insert-comment!: blog? post string -> void

; Consumes a blog, a post and a comment string. As a side-efect,

; adds the comment to the bottom of the post's list of comments.

58

(define (post-insert-comment! a-blog p a-comment)

(sqlite:insert

(blog-db a-blog)

(format

"INSERT INTO comments (pid, content) VALUES ('∼a', '∼a')"
(post-id p) a-comment)))

(provide blog? blog-posts

post? post-title post-body post-comments

initialize-blog!

blog-insert-post! post-insert-comment!)

And our application is:

#lang web-server/insta

(require "model-3.rkt")

....

59

16 Using Formlets

We’ll now go back to the application code. One of the poor design choices we made earlier
is the loose connection between the names of form elements in the display and in the form
processing code:

; render-blog-page: blog request -> doesnt'

; Send an HTML page of the content of the

; blog.

(define (render-blog-page a-blog request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "My Blog"))

(body

(h1 "My Blog")

,(render-posts a-blog make-url)

(form ((action

,(make-url insert-post-handler)))

; "title" is used here

(input ((name "title")))

(input ((name "body")))

(input ((type "submit"))))))))

(define (insert-post-handler request)

(define bindings (request-bindings request))

(blog-insert-post!

a-blog

; And "title" is used here.

(extract-binding/single 'title bindings)

(extract-binding/single 'body bindings))

(render-blog-page a-blog (redirect/get)))]

(send/suspend/dispatch response-generator)))

The Racket Web framework provides formlets to abstract both the display and the processing
associated with a form, leaving the names in the HTML implicit.

Here is a formlet for render-blog-page:

; new-post-formlet : formlet (values string? string?)

; A formlet for requesting a title and body of a post

(define new-post-formlet

(formlet

(#%# ,{input-string . => . title}

,{input-string . => . body})

(values title body)))

60

The first argument of formlet is a quoted X-expression that will be rendered when the
formlet is, but with two caveats: #%# represents a list of X-expressions and ,{=> formlet

id} embeds the formlet formlet in this formlet and names the result of its processing stage
id .

The second argument of formlet is the processing stage of the formlet where all the identi-
fiers on the right-hand side of => are bound to the results of processing of the sub-formlets.

There are two functions that operate on formlets:

• formlet-display takes a formlet and returns its rendering as a list of X-expressions.
This will generate unique names for its form elements.

• formlet-process takes a formlet and a request and returns its processing. This
automatically extracts the bindings from the request using the names generated by
formlet-display.

In new-post-formlet we used input-string, a library formlet that renders as
`(input ([type "text"] [name ,fresh_name])) and is processed as (extract-

binding/single fresh_name (request-bindings request)). Thus, (formlet-

dispay new-post-formlet) returns:

(list '(input ([type "text"] [name "input_0"]))

'(input ([type "text"] [name "input_1"])))

And (formlet-process new-post-formlet request) where request binds "in-

put_0" to "Title" and "input_1" to "Body" will return (values "Title" "Body").

We can use new-post-formlet in render-blog-page as follows:

; render-blog-page: blog request -> doesn't

; Sends an HTML page of the content of the

; blog.

(define (render-blog-page a-blog request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "My Blog"))

(body

(h1 "My Blog")

,(render-posts a-blog make-url)

(form ([action

,(make-url insert-post-handler)])

,@(formlet-display new-post-formlet)

(input ([type "submit"])))))))

(define (insert-post-handler request)

61

(define-values (title body)

(formlet-process new-post-formlet request))

(blog-insert-post! a-blog title body)

(render-blog-page a-blog (redirect/get)))]

(send/suspend/dispatch response-generator)))

Exercise. Write a formlet and use it in render-post-detail-page.

————

Our application is now:

#lang web-server/insta

(require web-server/formlets

"model-3.rkt")

; start: request -> doesn't

; Consumes a request and produces a page that displays

; all of the web content.

(define (start request)

(render-blog-page

(initialize-blog!

(build-path (current-directory)

"the-blog-data.sqlite"))

request))

; new-post-formlet : formlet (values string? string?)

; A formlet for requesting a title and body of a post

(define new-post-formlet

(formlet

(#%# ,{input-string . => . title}

,{input-string . => . body})

(values title body)))

; render-blog-page: blog request -> doesn't

; Produces an HTML page of the content of the

; blog.

(define (render-blog-page a-blog request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "My Blog"))

(body

(h1 "My Blog")

62

,(render-posts a-blog make-url)

(form ([action

,(make-url insert-post-handler)])

,@(formlet-display new-post-formlet)

(input ([type "submit"])))))))

(define (insert-post-handler request)

(define-values (title body)

(formlet-process new-post-formlet request))

(blog-insert-post! a-blog title body)

(render-blog-page a-blog (redirect/get)))]

(send/suspend/dispatch response-generator)))

; new-comment-formlet : formlet string

; A formlet for requesting a comment

(define new-comment-formlet

input-string)

; render-post-detail-page: post request -> doesn't

; Consumes a post and produces a detail page of the post.

; The user will be able to either insert new comments

; or go back to render-blog-page.

(define (render-post-detail-page a-blog a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Post Details"))

(body

(h1 "Post Details")

(h2 ,(post-title a-post))

(p ,(post-body a-post))

,(render-as-itemized-list

(post-comments a-post))

(form ([action

,(make-url insert-comment-handler)])

,@(formlet-display new-comment-formlet)

(input ([type "submit"])))

(a ([href ,(make-url back-handler)])

"Back to the blog")))))

(define (insert-comment-handler request)

(render-confirm-add-comment-page

a-blog

(formlet-process new-comment-formlet request)

a-post

request))

63

(define (back-handler request)

(render-blog-page a-blog request))]

(send/suspend/dispatch response-generator)))

; render-confirm-add-comment-page :

; blog comment post request -> doesn't

; Consumes a comment that we intend to add to a post, as well

; as the request. If the user follows through, adds a comment

; and goes back to the display page. Otherwise, goes back to

; the detail page of the post.

(define (render-confirm-add-comment-page a-blog a-comment

a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Add a Comment"))

(body

(h1 "Add a Comment")

"The comment: " (div (p ,a-comment))

"will be added to "

(div ,(post-title a-post))

(p (a ([href ,(make-url yes-handler)])

"Yes, add the comment."))

(p (a ([href ,(make-url cancel-handler)])

"No, I changed my mind!"))))))

(define (yes-handler request)

(post-insert-comment! a-blog a-post a-comment)

(render-post-detail-page a-blog a-post (redirect/get)))

(define (cancel-handler request)

(render-post-detail-page a-blog a-post request))]

(send/suspend/dispatch response-generator)))

; render-post: post (handler -> string) -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

; The fragment contains a link to show a detailed view of the post.

(define (render-post a-blog a-post make-url)

(local [(define (view-post-handler request)

(render-post-detail-page a-blog a-post request))]

`(div ([class "post"])

(a ([href ,(make-url view-post-handler)])

,(post-title a-post))

64

(p ,(post-body a-post))

(div ,(number->string (length (post-comments a-post)))

" comment(s)"))))

; render-posts: blog (handler -> string) -> xexpr

; Consumes a make-url, produces an xexpr fragment

; of all its posts.

(define (render-posts a-blog make-url)

(local [(define (render-post/make-url a-post)

(render-post a-blog a-post make-url))]

`(div ([class "posts"])

,@(map render-post/make-url (blog-posts a-blog)))))

; render-as-itemized-list: (listof xexpr) -> xexpr

; Consumes a list of items, and produces a rendering as

; an unorderered list.

(define (render-as-itemized-list fragments)

`(ul ,@(map render-as-item fragments)))

; render-as-item: xexpr -> xexpr

; Consumes an xexpr, and produces a rendering

; as a list item.

(define (render-as-item a-fragment)

`(li ,a-fragment))

65

17 Leaving DrRacket

So far, to run our application, we’ve been pressing Run in DrRacket. If we were to actually
deploy an application, we’d need to do this differently.

The simplest way to do this is to use web-server/servlet-env.

First, change the first lines in your application from

#lang web-server/insta

to

#lang racket

(require web-server/servlet)

(provide/contract (start (request? . -> . response?)))

Second, add the following at the bottom of your application:

(require web-server/servlet-env)

(serve/servlet start

#:launch-browser? #f

#:quit? #f

#:listen-ip #f

#:port 8000

#:extra-files-paths

(list (build-path your-path-here "htdocs"))

#:servlet-path

"/servlets/APPLICATION.rkt")

You can change the value of the #:port parameter to use a different port.

#:listen-ip is set to #f so that the server will listen on all available IPs.

You should change your-path-here to be the path to the parent of your htdocs directory.

You should change "APPLICATION.rkt" to be the name of your application.

Third, to run your server, you can either press Run in DrRacket, or type

racket -t <file.rkt>

(With your own file name, of course.) Both of these will start a Web server for your applica-
tion.

66

————

serve/servlet takes other options and there are more advanced ways of starting the Web
Server, but you’ll have to refer to the Racket Web Server Reference Manual for details.

67

18 Using HTTPS

This final task that we’ll cover is using the server in HTTPS mode. This requires an SSL
certificate and private key. This is very platform specific, but we will provide the details for
using OpenSSL on UNIX:

openssl genrsa -des3 -out private-key.pem 1024

This will generate a new private key, but it will have a passphrase on it. You can remove this
via:

openssl rsa -in private-key.pem -out private-key.pem

chmod 400 private-key.pem

Now, we generate a self-signed certificate:

openssl req -new -x509 -nodes -sha1 -days 365 -key private-key.pem

> server-cert.pem

(Each certificate authority has different instructions for generating certificate signing re-
quests.)

We can now start the server with:

plt-web-server --ssl

The Web Server will start on port 443 (which can be overridden with the -p option) using
the "private-key.pem" and "server-cert.pem" we’ve created.

68

19 Moving Forward

As you move forward on your own applications, you may find many useful packages on
PLaneT. There are interfaces to other databases. Many tools for generating HTML, XML,
and Javascript output. Etc. There is also an active community of users on the Racket mailing
list. We welcome new users!

69

	1 Getting Started
	2 The Application
	3 Basic Blog
	4 Rendering HTML
	5 Inspecting Requests
	6 Advanced Control Flow
	7 Share and Share Alike
	8 Extending the Model
	9 Breaking Up the Display
	10 Adding a Back Button
	11 Decorating With Style!
	12 The Double Submit Bug
	13 Abstracting the Model
	14 A Persistent Model
	15 Using an SQL database
	16 Using Formlets
	17 Leaving DrRacket
	18 Using HTTPS
	19 Moving Forward

