
Data Structures
Version 5.1.1

April 30, 2011

(require data)

This manual documents data structure libraries available in the data collection.

1

1 Imperative Queues

(require data/queue)

This module provides a simple mutable queue representation, first-in/first-out only. Opera-
tions on queues mutate it in a thread-unsafe way.

(make-queue) → queue/c

Produces an empty queue.

(enqueue! q v) → void?

q : queue/c

v : any/c

Adds an element to the back of a queue.

(dequeue! q) → any/c

q : nonempty-queue/c

Removes an element from the front of a nonempty queue, and returns that element.

Examples:

(define q (make-queue))

> (enqueue! q 1)

> (dequeue! q)

1

> (enqueue! q 2)

> (enqueue! q 3)

> (dequeue! q)

2

> (dequeue! q)

3

(queue->list queue) → (listof any/c)

queue : queue/c

Returns an immutable list containing the elements of the queue in the order the elements
were added.

Examples:

(define queue (make-queue))

2

> (enqueue! queue 8)

> (enqueue! queue 9)

> (enqueue! queue 0)

> (queue->list queue)

'(8 9 0)

(queue-length queue) → integer?

queue : queue/c

Returns the number of elements in the queue.

Examples:

(define queue (make-queue))

> (queue-length queue)

0

> (enqueue! queue 5)

> (enqueue! queue 12)

> (queue-length queue)

2

> (dequeue! queue)

5

> (queue-length queue)

1

(queue-empty? q) → boolean?

q : queue/c

Recognizes whether a queue is empty or not.

Examples:

(define q (make-queue))

> (queue-empty? q)

#t

> (enqueue! q 1)

> (queue-empty? q)

#f

> (dequeue! q)

1

> (queue-empty? q)

#t

(queue? v) → boolean?

v : any/c

This predicate recognizes queues.

3

Examples:

> (queue? (make-queue))

#t

> (queue? 'not-a-queue)

#f

(in-queue queue) → sequence?

queue : queue?

Returns a sequence whose elements are the elements of queue .

queue/c : flat-contract?

nonempty-queue/c : flat-contract?

These contracts recognize queues; the latter requires the queue to contain at least one value.

4

2 Growable Vectors

(require data/gvector)

A growable vector (gvector) is a mutable sequence whose length can change over time. A
gvector also acts as a dictionary (dict? from racket/dict), where the keys are zero-based
indexes and the values are the elements of the gvector. A gvector can be extended by adding
an element to the end, and it can be shrunk by removing any element, although removal can
take time linear in the number of elements in the gvector.

Two gvectors are equal? if they contain the same number of elements and if the contain
equal elements at each index.

(make-gvector [#:capacity capacity]) → gvector?

capacity : exact-positive-integer? = 10

Creates a new empty gvector with an initial capacity of capacity .

(gvector elem ...) → gvector?

elem : any/c

Creates a new gvector containing each elem in order.

(gvector? x) → boolean?

x : any/c

Returns #t if x is a gvector, #f otherwise.

(gvector-ref gv index [default]) → any/c

gv : gvector?

index : exact-nonnegative-integer?

default : any/c = (error)

Returns the element at index index , if index is less than (gvector-count gv). Other-
wise, default is invoked if it is a procedure, returned otherwise.

(gvector-add! gv value ...) → void?

gv : gvector?

value : any/c

Adds each value to the end of the gvector gv .

5

(gvector-set! gv index value) → void?

gv : gvector?

index : (and/c exact-nonnegative-integer?

(</c (+ 1 (gvector-count gv))))

value : any/c

Sets the value at index index to be value . If index is (gvector-count gv)—that
is, one more than the greatest used index—the effect is the same as (gvector-add! gv

value).

(gvector-remove! gv index) → void?

gv : gvector?

index : (and/c exact-nonnegative-integer?

(</c (gvector-count gv)))

Removes the item at index , shifting items at higher indexes down. Takes time proportional
to (- (gvector-count gv) index).

(gvector-count gv) → exact-nonnegative-integer?

gv : gvector?

Returns the number of items in gv .

(gvector->vector gv) → vector?

gv : gvector?

Returns a vector of length (gvector-count gv) containing the elements of gv in order.

(in-gvector gv) → sequence?

gv : gvector?

Returns a sequence whose elements are the elements of gv . Mutation of gv while the se-
quence is running changes the elements produced by the sequence. To obtain a sequence
from a snapshot of gv , use (in-vector (gvector->vector gv)) instead.

(for/gvector (for-clause ...) body ...+)

(for*/gvector (for-clause ...) body ...+)

Analogous to for/list and for*/list, but constructs a gvector instead of a list.

Unlike for/list, the body may return zero or multiple values; all returned values are added
to the gvector, in order, on each iteration.

6

3 Orders and Ordered Dictionaries

(require data/order)

This library defines orders and the ordered dictionary generic interface.

ordering/c : flat-contract?

Contract for orderings, represented by the symbols '=, '<, and '>.

prop:ordered-dict : (struct-type-property/c

(vector-immutableof e/c e/c s/c s/c s/c s/c))

Struct-type property for defining new ordered dictionary types. The value associated with
prop:ordered-dict should be an immutable vector of six procedures, two “extrema” pro-
cedures and four “search” procedures. The extrema procedures must satisfy e/c and the
search procedures must satisfy s/c :

e/c = (->i ([d ordered-dict?])

[_ (d) (or/c #f (dict-iter-contract d))])

s/c = (->i ([d ordered-dict?]

[k (d) (dict-key-contract d)])

[_ (d) (or/c #f (dict-iter-contract d))])

The procedures are implementations of the following generic functions:

• dict-iterate-least

• dict-iterate-greatest

• dict-iterate-least/>?

• dict-iterate-least/>=?

• dict-iterate-greatest/<?

• dict-iterate-greatest/<=?

A struct type that implements prop:ordered-dict must also implement prop:dict.

(ordered-dict? x) → boolean?

x : any/c

Returns #t if x is an instance of a struct implementing the ordered dictionary interface (via
prop:ordered-dict).

7

(dict-iterate-least dict) → any/c

dict : ordered-dict?

(dict-iterate-greatest dict) → any/c

dict : ordered-dict?

Returns the position of the least (greatest) key in the ordered dictionary dict . If dict is
empty, #f is returned.

(dict-iterate-least/>? dict key) → any/c

dict : ordered-dict?

key : any/c

(dict-iterate-least/>=? dict key) → any/c

dict : ordered-dict?

key : any/c

(dict-iterate-greatest/<? dict key) → any/c

dict : ordered-dict?

key : any/c

(dict-iterate-greatest/<=? dict key) → any/c

dict : ordered-dict?

key : any/c

Returns the position of the least key greater than key , the least key greater than or equal to
key , the greatest key less than key , and the greatest key less than or equal to key , respec-
tively. If no key satisfies the criterion, #f is returned.

(order name domain-contract comparator)

→ (and/c order? procedure?)

name : symbol?

domain-contract : contract?

comparator : (-> any/c any/c ordering/c)

(order name domain-contract =? <? [>?]) → (and/c order? procedure?)

name : symbol?

domain-contract : contract?

=? : (-> any/c any/c boolean?)

<? : (-> any/c any/c boolean?)

>? : (-> any/c any/c boolean?) = (lambda (x y) (<? y x))

Produces a named order object encapsulating a domain contract and a comparator function.
If a single procedure is given, it is used directly as the comparator. If two or three procedures
are given, they are used to construct the comparator.

The domain-contract is not applied to the comparison function; rather, clients of the order
are advised to incorporate the domain contracts into their own contracts. For example, when

8

a splay-tree (see data/splay-tree) is constructed with an order, it applies the domain-
contract to its keys. Thus the contract is checked once per dictionary procedure call, rather
than on every comparison.

An order object is applicable as a procedure; it behaves as its comparator.

Examples:

> (define string-order (order 'string-order string? string=? string<?))

> (string-order "abc" "acdc")

'<

> (string-order "x" 12)

string=?: expects type <string> as 2nd argument, given: 12;
other arguments were: "x"

(order? x) → boolean?

x : any/c

Returns #t if x is an order object, #f otherwise.

(order-comparator ord) → (-> any/c any/c ordering/c)

ord : order?

Extracts the comparator function from an order object.

(order-domain-contract ord) → contract?

ord : order?

Extracts the domain contract from an order object.

(order-=? ord) → (-> any/c any/c boolean?)

ord : order?

(order-<? ord) → (-> any/c any/c boolean?)

ord : order?

Returns a procedure representing the order’s equality relation or less-than relation, respec-
tively.

real-order : order?

The order of the real numbers. The domain of real-order excludes +nan.0 but includes
+inf.0 and -inf.0. The standard numeric comparisons (=, <) are used; exact 1 is equal to
inexact 1.0.

9

Examples:

> (real-order 1.0 1)

'=

> (real-order 5 7)

'<

> (real-order 9.0 3.4)

'>

> (real-order 1 +inf.0)

'<

> (real-order 5 -inf.0)

'>

datum-order : order?

An ad hoc order that encompasses many built-in Racket data types. The datum-order

comparator orders values of the same data type according to the data type’s natural order:
string=?, string<? for strings, for example (but see the warning about numbers below).
Different data types are ordered arbitrarily but contiguously; for example, all strings sort
before all vectors, or vice versa. Programs should not rely on the ordering of different data
types.

The order is designed so that lists, vectors, and prefab structs are ordered lexicographically.

Warning! The datum-order is not compatible with the standard numeric order; all exact
numbers are ordered before all inexact numbers. This allows 1 to be considered distinct from
1.0, for example.

The following built-in data types are currently supported: numbers, strings, bytes, keywords,
symbols, booleans, characters, null, pairs, vectors, boxes, and prefab structs.

Examples:

> (datum-order 1 2)

'<

> (datum-order 8 5.0)

'<

> (datum-order 3+5i 3+2i)

'>

> (datum-order '(a #:b c) '(a #:c d c))

'<

> (datum-order "apricot" "apple")

'>

> (datum-order '#(1 2 3) '#(1 2))

'>

> (datum-order '#(1 2 3) '#(1 3))

'<

10

> (datum-order 'apple (box "candy"))

'<

11

4 Splay Trees

(require data/splay-tree)

Splay trees are an efficient data structure for mutable dictionaries with totally ordered keys.
They were described in the paper “Self-Adjusting Binary Search Trees” by Daniel Sleator
and Robert Tarjan in Journal of the ACM 32(3) pp652-686.

A splay-tree is a ordered dictionary (dict? and ordered-dict?).

(make-splay-tree [ord
#:key-contract key-contract

#:value-contract value-contract]) → splay-tree?

ord : order? = datum-order

key-contract : contract? = any/c

value-contract : contract? = any/c

Makes a new empty splay-tree. The splay tree uses ord to order keys; in addition, the
domain contract of ord is combined with key-contract to check keys.

Examples:

> (define splay-tree

(make-splay-tree (order 'string-order string? string=? string<?)))

> (splay-tree-set! splay-tree "dot" 10)

> (splay-tree-set! splay-tree "cherry" 500)

> (dict-map splay-tree list)

'(("cherry" 500) ("dot" 10))

> (splay-tree-ref splay-tree "dot")

10

> (splay-tree-remove! splay-tree "cherry")

> (splay-tree-count splay-tree)

1

> (splay-tree-set! splay-tree 'pear 3)

contract violation: expected <string?>, given: ’pear
contract on splay-tree-set! from

(file
/var/tmp/racket/collects/data/splay-tree.rkt)

blaming top-level
contract:

(->i
((s splay-tree?) (key (s) ...) (v (s) ...))
(_r void?))

at: <collects>/data/splay-tree.rkt:1112.2

12

(make-adjustable-splay-tree [#:key-contract key-contract

#:value-contract value-contract])
→ splay-tree?

key-contract : contract? = any/c

value-contract : contract? = any/c

Makes a new empty splay-tree that permits only exact integers as keys (in addition to
any constraints imposed by key-contract). The resulting splay tree answers true to
adjustable-splay-tree? and supports efficient key adjustment.

Examples:

> (define splay-tree (make-adjustable-splay-tree))

> (splay-tree-set! splay-tree 3 'apple)

> (splay-tree-set! splay-tree 6 'cherry)

> (dict-map splay-tree list)

'((3 apple) (6 cherry))

> (splay-tree-ref splay-tree 3)

'apple

> (splay-tree-remove! splay-tree 6)

> (splay-tree-count splay-tree)

1

(splay-tree? x) → boolean?

x : any/c

Returns #t if x is a splay-tree, #f otherwise.

(adjustable-splay-tree? x) → boolean?

x : any/c

Returns #t if x is a splay-tree that supports key adjustment; see splay-tree-contract!

and splay-tree-expand!.

(splay-tree-ref s key [default]) → any

s : splay-tree?

key : any/c

default : any/c = (lambda () (error))

(splay-tree-set! s key value) → void?

s : splay-tree?

key : any/c

value : any/c

13

(splay-tree-remove! s key) → void?

s : splay-tree?

key : any/c

(splay-tree-count s) → exact-nonnegative-integer?

s : splay-tree?

(splay-tree-iterate-first s) → (or/c #f splay-tree-iter?)

s : splay-tree?

(splay-tree-iterate-next s iter) → (or/c #f splay-tree-iter?)

s : splay-tree?

iter : splay-tree-iter?

(splay-tree-iterate-key s iter) → any/c

s : splay-tree?

iter : splay-tree-iter?

(splay-tree-iterate-value s iter) → any/c

s : splay-tree?

iter : splay-tree-iter?

Implementations of dict-ref, dict-set!, dict-remove!, dict-count, dict-

iterate-first, dict-iterate-next, dict-iterate-key, and dict-iterate-

value, respectively.

(splay-tree-remove-range! s from to) → void?

s : splay-tree?

from : any/c

to : any/c

Removes all keys in [from , to); that is, all keys greater than or equal to from and less than
to .

This operation takes O(N) time, or O(log N) time if (adjustable-splay-tree? s).

(splay-tree-contract! s from to) → void?

s : adjustable-splay-tree?

from : exact-integer?

to : exact-integer?

Like splay-tree-remove-range!, but also decreases the value of all keys greater than or
equal to to by (- to from).

This operation is only allowed on adjustable splay trees, and it takes O(log N) time.

(splay-tree-expand! s from to) → void?

s : adjustable-splay-tree?

from : exact-integer?

14

to : exact-integer?

Increases the value of all keys greater than or equal to from by (- to from).

This operation is only allowed on adjustable splay trees, and it takes O(log N) time.

(splay-tree-iterate-least s) → (or/c #f splay-tree-iter?)

s : splay-tree

(splay-tree-iterate-greatest s) → (or/c #f splay-tree-iter?)

s : splay-tree

(splay-tree-iterate-least/>? s key) → (or/c #f splay-tree-iter?)

s : splay-tree?

key : any/c

(splay-tree-iterate-least/>=? s key)

→ (or/c #f splay-tree-iter?)

s : splay-tree?

key : any/c

(splay-tree-iterate-greatest/<? s key)

→ (or/c #f splay-tree-iter?)

s : splay-tree?

key : any/c

(splay-tree-iterate-greatest/<=? s key)

→ (or/c #f splay-tree-iter?)

s : splay-tree?

key : any/c

Implementations of dict-iterate-least, dict-iterate-greatest, dict-iterate-
least/>?, dict-iterate-least/>=?, dict-iterate-greatest/<?, and dict-

iterate-greatest/<=?, respectively.

(splay-tree-iter? x) → boolean?

x : any/c

Returns #t if x represents a position in a splay-tree, #f otherwise.

(splay-tree->list s) → (listof pair?)

s : splay-tree?

Returns an association list with the keys and values of s , in order.

15

5 Skip Lists

(require data/skip-list)

Skip lists are a simple, efficient data structure for mutable dictionaries with totally ordered
keys. They were described in the paper “Skip Lists: A Probabilistic Alternative to Balanced
Trees” by William Pugh in Communications of the ACM, June 1990, 33(6) pp668-676.

A skip-list is an ordered dictionary (dict? and ordered-dict?). It also supports exten-
sions of the dictionary interface for iterator-based search and mutation.

(make-skip-list [ord
#:key-contract key-contract

#:value-contract value-contract]) → skip-list?

ord : order? = datum-order

key-contract : contract? = any/c

value-contract : contract? = any/c

Makes a new empty skip-list. The skip-list uses ord to order keys; in addition, the domain
contract of ord is combined with key-contract to check keys.

Examples:

> (define skip-list (make-skip-list real-order))

> (skip-list-set! skip-list 3 'apple)

> (skip-list-set! skip-list 6 'cherry)

> (dict-map skip-list list)

'((3 apple) (6 cherry))

> (skip-list-ref skip-list 3)

'apple

> (skip-list-remove! skip-list 6)

> (skip-list-count skip-list)

1

(make-adjustable-skip-list [#:key-contract key-contract

#:value-contract value-contract])
→ adjustable-skip-list?

key-contract : contract? = any/c

value-contract : contract? = any/c

Makes a new empty skip-list that permits only exact integers as keys (in addition to any con-
straints imposed by key-contract). The resulting skip-list answers true to adjustable-

skip-list? and supports key adjustment.

(skip-list? v) → boolean?

16

v : any/c

Returns #t if v is a skip-list, #f otherwise.

(adjustable-skip-list? v) → boolean?

v : any/c

Returns #t if v is a skip-list that supports key adjustment; see skip-list-contract! and
skip-list-expand!.

(skip-list-ref skip-list key [default]) → any/c

skip-list : skip-list?

key : any/c

default : any/c = (lambda () (error))

(skip-list-set! skip-list key value) → void?

skip-list : skip-list?

key : any/c

value : any/c

(skip-list-remove! skip-list key) → void?

skip-list : skip-list?

key : any/c

(skip-list-count skip-list) → exact-nonnegative-integer?

skip-list : skip-list?

(skip-list-iterate-first skip-list) → (or/c skip-list-iter? #f)

skip-list : skip-list?

(skip-list-iterate-next skip-list iter)

→ (or/c skip-list-iter? #f)

skip-list : skip-list?

iter : skip-list-iter?

(skip-list-iterate-key skip-list iter) → any/c

skip-list : skip-list?

iter : skip-list-iter?

(skip-list-iterate-value skip-list iter) → any/c

skip-list : skip-list?

iter : skip-list-iter?

Implementations of dict-ref, dict-set!, dict-remove!, dict-count, dict-

iterate-first, dict-iterate-next, dict-iterate-key, and dict-iterate-

value, respectively.

(skip-list-remove-range! skip-list from to) → void?

skip-list : skip-list?

from : any/c

to : any/c

17

Removes all keys in [from , to); that is, all keys greater than or equal to from and less than
to .

(skip-list-contract! skip-list from to) → void?

skip-list : adjustable-skip-list?

from : exact-integer?

to : exact-integer?

Like skip-list-remove-range!, but also decreases the value of all keys greater than or
equal to to by (- to from).

This operation takes time proportional to the number of elements with keys greater than or
equal to to .

(skip-list-expand! skip-list from to) → void?

skip-list : adjustable-skip-list?

from : exact-integer?

to : exact-integer?

Increases the value of all keys greater than or equal to from by (- to from).

This operation takes time proportional to the number of elements with keys greater than or
equal to from .

(skip-list-iterate-least/>? skip-list key)

→ (or/c skip-list-iter? #f)

skip-list : skip-list?

key : any/c

(skip-list-iterate-least/>=? skip-list key)

→ (or/c skip-list-iter? #f)

skip-list : skip-list?

key : any/c

(skip-list-iterate-greatest/<? skip-list

key)

→ (or/c skip-list-iter? #f)

skip-list : skip-list?

key : any/c

(skip-list-iterate-greatest/<=? skip-list

key)

→ (or/c skip-list-iter? #f)

skip-list : skip-list?

key : any/c

Implementations of dict-iterate-least, dict-iterate-greatest, dict-iterate-

18

least/>?, dict-iterate-least/>=?, dict-iterate-greatest/<?, and dict-

iterate-greatest/<=?, respectively.

(skip-list-iter? v) → boolean?

v : any/c

Returns #t if v represents a position in a skip-list, #f otherwise.

(skip-list->list skip-list) → (listof pair?)

skip-list : skip-list?

Returns an association list with the keys and values of skip-list , in order.

19

6 Interval Maps

(require data/interval-map)

An interval-map is a mutable data structure that maps half-open intervals of exact integers to
values. An interval-map is queried at a discrete point, and the result of the query is the value
mapped to the interval containing the point.

Internally, interval-maps use a splay-tree (data/splay-tree) of intervals for efficient query
and update, including efficient contraction and expansion of intervals.

Interval-maps implement the dictionary (racket/dict) interface to a limited extent. Only
dict-ref and the iteration-based methods (dict-iterate-first, dict-map, etc) are
supported. For the iteration-based methods, the mapping’s keys are considered the pairs of
the start and end positions of the mapping’s intervals.

Examples:

> (define r (make-interval-map))

> (interval-map-set! r 1 5 'apple)

> (interval-map-set! r 6 10 'pear)

> (interval-map-set! r 3 7 'banana)

> (dict-map r list)

'(((1 . 3) apple) ((3 . 7) banana) ((7 . 10) pear))

(make-interval-map [#:key-contract key-contract

#:value-contract value-contract])
→ interval-map?

key-contract : contract? = any/c

value-contract : contract? = any/c

Makes a new empty interval-map.

(interval-map? v) → boolean?

v : any/c

Returns #t if v is an interval-map, #f otherwise.

(interval-map-ref interval-map

position

[default]) → any/c

interval-map : interval-map?

position : exact-integer?

default : any/c = (lambda () (error))

20

Return the value associated with position in interval-map . If no mapping is found,
default is applied if it is a procedure, or returned otherwise.

(interval-map-set! interval-map

start

end

value) → void?

interval-map : interval-map?

start : exact-integer?

end : exact-integer?

value : any/c

Updates interval-map , associating every position in [start , end) with value .

Existing interval mappings contained in [start , end) are destroyed, and partly overlap-
ping intervals are truncated. See interval-map-update*! for an updating procedure that
preserves distinctions within [start , end).

(interval-map-update*! interval-map

start

end

updater

[default]) → void?

interval-map : interval-map?

start : exact-integer?

end : exact-integer?

updater : (-> any/c any/c)

default : any/c = (lambda () (error))

Updates interval-map , associating every position in [start , end) with the result of ap-
plying updater to the position’s previously associated value, or to the default value pro-
duced by default if no mapping exists.

Unlike interval-map-set!, interval-map-update*! preserves existing distinctions
within [start , end).

(interval-map-remove! interval-map

start

end) → void?

interval-map : interval-map?

start : (or/c exact-integer? -inf.0)

end : (or/c exact-integer? +inf.0)

Removes the value associated with every position in [start , end).

21

(interval-map-contract! interval-map

start

end) → void?

interval-map : interval-map?

start : exact-integer?

end : exact-integer?

Contracts interval-map ’s domain by removing all mappings on the interval [start , end)
and decreasing intervals initally after end by (- end start).

If start is not less than end , an exception is raised.

(interval-map-expand! interval-map

start

end) → void?

interval-map : interval-map?

start : exact-integer?

end : exact-integer?

Expands interval-map ’s domain by introducing a gap [start , end) and increasing inter-
vals initially after start by (- end start).

If start is not less than end , an exception is raised.

(interval-map-cons*! interval-map

start

end

v

[default]) → void?

interval-map : interval-map?

start : any/c

end : any/c

v : any/c

default : any/c = null

Same as the following:

(interval-map-update*! interval-map start end

(lambda (old) (cons v old))

default)

(interval-map-iter? v) → boolean?

22

v : any/c

Returns #t if v represents a position in an interval-map, #f otherwise.

23

7 Binary Heaps

(require data/heap)

Binary heaps are a simple implementation of priority queues.

(make-heap <=?) → heap?

<=? : (-> any/c any/c any/c)

Makes a new empty heap using <=? to order elements.

(heap? x) → boolean?

x : any/c

Returns #t if x is a heap, #f otherwise.

(heap-count h) → exact-nonnegative-integer?

h : heap?

Returns the number of elements in the heap.

(heap-add! h v ...) → void?

h : heap?

v : any/c

Adds each v to the heap.

(heap-add-all! h v) → void?

h : heap?

v : (or/c list? vector? heap?)

Adds each element contained in v to the heap, leaving v unchanged.

(heap-min h) → any/c

h : heap?

Returns the least element in the heap h , according to the heap’s ordering. If the heap is
empty, an exception is raised.

(heap-remove-min! h) → void?

h : heap?

24

Removes the least element in the heap h . If the heap is empty, an exception is raised.

(vector->heap <=? items) → heap?

<=? : (-> any/c any/c any/c)

items : vector?

Builds a heap with the elements from items . The vector is not modified.

(heap->vector h) → vector?

h : heap?

Returns a vector containing the elements of heap h in the heap’s order. The heap is not
modified.

(heap-copy h) → heap?

h : heap?

Makes a copy of heap h .

(heap-sort! <=? v) → void?

<=? : (-> any/c any/c any/c)

v : vector?

Sorts vector v using the comparison function <=?.

25

	1 Imperative Queues
	2 Growable Vectors
	3 Orders and Ordered Dictionaries
	4 Splay Trees
	5 Skip Lists
	6 Interval Maps
	7 Binary Heaps

