Honu

Version 5.1.1

April 30, 2011

Honu is a family of languages built on top of Racket. Honu syntax resembles Java. Like
Racket, however, Honu has no fixed syntax, because Honu supports extensibility through
macros and a base syntax of H-expressions, which are analogous to S-expressions.

The Honu language currently exists only as a undocumented prototype. Racket’s parsing and
printing of H-expressions is independent of the Honu language, however, so it is documented
here.

Contents

|1 H-expressions|

1 H-expressions

The Racket reader incorporates an H-expression reader, and Racket’s printer also supports
printing values in Honu syntax. The reader can be put into H-expression mode either by
including #hx in the input stream, or by calling read-honu or read-honu-syntax instead
of read or read-syntax. Similarly, print (or, more precisely, the default print handler)
produces Honu output when the print-honu parameter is set to #t.

When the reader encounters #hx, it reads a single H-expression, and it produces an S-
expression that encodes the H-expression. Except for atomic H-expressions, evaluating this
S-expression as Racket is unlikely to succeed. In other words, H-expressions are not in-
tended as a replacement for S-expressions to represent Racket code.

Honu syntax is normally used via #1lang honu, which reads H-expressions repeatedly until
an end-of-file is encountered, and processes the result as a module in the Honu language.

Ignoring whitespace, an H-expression is either

e anumber (see §1.1 “Numbers”);

e an identifier (see §1.2 “Identifiers”);
* astring (see §1.3 “Strings”);

* a character (see §1.4 “Characters”);

» a sequence of H-expressions between parentheses (see §1.5 “Parentheses, Brackets,
and Braces”);

* a sequence of H-expressions between square brackets (see §1.5 “Parentheses, Brack-
ets, and Braces”);

* a sequence of H-expressions between curly braces (see §1.5 “Parentheses, Brackets,
and Braces”);

¢ a comment followed by an H-expression (see §1.6 “Comments”);
* #; followed by two H-expressions (see §1.6 “Comments”);
* #hx followed by an H-expression;

* #sx followed by an S-expression (see §12.6 “The Reader”).

Within a sequence of H-expressions, a sub-sequence between angle brackets is represented
specially (see §1.5 “Parentheses, Brackets, and Braces”™).

Whitespace for H-expressions is as in Racket: any character for which char-whitespace?
returns true counts as a whitespace.

1.1 Numbers

The syntax for Honu numbers is the same as for Java. The S-expression encoding of a
particular H-expression number is the obvious Racket number.

1.2 Identifiers

The syntax for Honu identifiers is the union of Java identifiers plus ;, ,, and a set of operator
identifiers. An operator identifier is any combination of the following characters:

te=70<> Vo &x/~ |
The S-expression encoding of an H-expression identifier is the obvious Racket symbol.

Input is parsed to form maximally long identifiers. For example, the input int->int; is
parsed as four H-expressions represented by symbols: ’int, >->, >int,and ’ | ; |.

1.3 Strings

The syntax for an H-expression string is exactly the same as for an S-expression string, and
an H-expression string is represented by the obvious Racket string.

1.4 Characters

The syntax for an H-expression character is the same as for an H-expression string that
has a single content character, except that a ’ surrounds the character instead of ". The
S-expression representation of an H-expression character is the obvious Racket character.

1.5 Parentheses, Brackets, and Braces

A H-expression between (and), [and 1, or { and } is represented by a Racket list. The first
element of the list is ’#J,parens for a (...) sequence, ’#),brackets fora [...] sequence, or
*#)braces for a {...} sequence. The remaining elements are the Racket representations for
the grouped H-expressions in order.

In an H-expression sequence, when a < is followed by a >, and when nothing between the <
and > is an immediate symbol containing a =, &, or |, then the sub-sequence is represented
by a Racket list that starts with ’#%angles and continues with the elements of the sub-
sequence between the < and > (exclusive). This representation is applied recursively, so that
angle brackets can be nested.

An angle-bracketed sequence by itself is not a single H-expression, since the < by itself is
a single H-expression; the angle-bracket conversion is performed only when representing
sequences of H-expressions.

Symbols with a =, &, or | prevent angle-bracket formation because they correspond to oper-
ators that normally have lower or equal precedence compared to less-than and greater-than
operators.

1.6 Comments

An H-expression comment starts with either // or /*. In the former case, the comment
runs until a linefeed or return. In the second case, the comment runs until */, but /*...x/
comments can be nested. Comments are treated like whitespace.

A #; starts an H-expression comment, as in S-expressions. It is followed by an H-expression
to be treated as whitespace. Note that #; is equivalent to #sx#; #hx.

1.7 Honu Output Printing

Some Racket values have a standard H-expression representation. For values with no H-
expression representation but with a readable S-expression form, the Racket printer pro-
duces an S-expression prefixed with #sx. For values with neither an H-expression form nor
a readable S-expression form, then printer produces output of the form #<...>, as in Racket
mode. The print-honu parameter controls whether Racket’s printer produces Racket or
Honu output.

The values with H-expression forms are as follows:

* Every real number has an H-expression form, although the representation for an ex-
act, non-integer rational number is actually three H-expressions, where the middle
H-expression is /.

 Every character string is represented the same in H-expression form as its S-expression
form.

» Every character is represented like a single-character string, but (1) using a ’ as the
delimiter instead of ", and (2) protecting a ’ character content with a \ instead of
protecting " character content.

* A list is represented with the H-expression sequence 1ist ({v), ...), where each (v}
is the representation of each element of the list.

e A pair that is not a list is represented with the H-expression sequence
cons((v1), (v2)), where (vI) and (v2) are the representations of the pair elements.

* A vector’s representation depends on the value of the print-vector-length pa-
rameter. If it is #f, the vector is represented with the H-expression sequence
vectorN((v), ...), where each (v) is the representation of each element of the vector.
If print-vector-lengthis set to #t, the vector is represented with the H-expression
sequence vectorN((n), (v), ...), where (n) is the length of the vector and each (v)
is the representation of each element of the vector, and multiple instances of the same
value at the end of the vector are represented by a single (v).

* The empty list is represented as the H-expression null.
* True is represented as the H-expression true.

* False is represented as the H-expression false.

	1 H-expressions
	1.1 Numbers
	1.2 Identifiers
	1.3 Strings
	1.4 Characters
	1.5 Parentheses, Brackets, and Braces
	1.6 Comments
	1.7 Honu Output Printing

