
Scriblib: Extra Scribble Libraries
Version 5.1.1

April 30, 2011

1

Contents

1 Examples Using the GUI Toolbox 3

2 Figures 5

3 Bibliographies 7

4 Footnotes 11

5 Conditional Content 12

2

1 Examples Using the GUI Toolbox

(require scriblib/gui-eval)

The scriblib/gui-eval library support example evaluations that use racket/gui facili-
ties (as opposed to just racket/draw) to generate text and image results.

The trick is that racket/gui is not generally available when rendering documentation, be-
cause it requires a GUI context. Text and image output is rendered to an image file when the
MREVAL environment variable is set, so run the enclosing document once with the environ-
ment varibale to generate the images. Future runs (with the environment variable unset) use
the generated image.

(gui-interaction datum ...)

(gui-interaction

#:eval+opts the-eval get-predicate? get-render

get-get-width get-get-height

datum ...)

(gui-interaction-eval datum ...)

(gui-interaction-eval

#:eval+opts the-eval get-predicate? get-render

get-get-width get-get-height

datum ...)

(gui-interaction-eval-show datum ...)

(gui-interaction-eval-show

#:eval+opts the-eval get-predicate? get-render

get-get-width get-get-height

datum ...)

(gui-schemeblock+eval datum ...)

(gui-schemeblock+eval

#:eval+opts the-eval get-predicate? get-render

get-get-width get-get-height

datum ...)

(gui-schememod+eval datum ...)

(gui-schememod+eval

#:eval+opts the-eval get-predicate? get-render

get-get-width get-get-height

datum ...)

(gui-def+int datum ...)

(gui-def+int

#:eval+opts the-eval get-predicate? get-render

get-get-width get-get-height

datum ...)

3

(gui-defs+int datum ...)

(gui-defs+int

#:eval+opts the-eval get-predicate? get-render

get-get-width get-get-height

datum ...)

The first option of each of the above is like interaction, etc., but actually evaluating the
forms only when the MREVAL environment variable is set, and then in an evaluator that is
initialized with racket/gui/base and slideshow.

The second option of each allows you to specify your own evaluator via the the-eval

argument and then to specify four thunks that return functions for finding and rendering
graphical objects:

• get-predicate? : (-> (-> any/c boolean?)) Determines if a value is a
graphical object (and thus handled by the other operations)

• get-render : (-> (-> any/c (is-a?/c dc<%>) number? number?

void?)) Draws a graphical object (only called if the predicate returned #t;
the first argument will be the value for which the predicate holds).

• get-get-width : (-> (-> any/c number?)) Gets the width of a graphical ob-
ject (only called if the predicate returned #t; the first argument will be the value for
which the predicate holds).

• get-get-height : (-> (-> any/c number?)) Gets the height of a graphical
object (only called if the predicate returned #t; the first argument will be the value
for which the predicate holds).

4

2 Figures

(require scriblib/figure)

(figure tag caption pre-flow ...) → block?

tag : string?

caption : content?

pre-flow : pre-flow?

(figure* tag caption pre-flow ...) → block?

tag : string?

caption : content?

pre-flow : pre-flow?

(figure** tag caption pre-flow ...) → block?

tag : string?

caption : content?

pre-flow : pre-flow?

(figure-here tag caption pre-flow ...) → block?

tag : string?

caption : content?

pre-flow : pre-flow?

Creates a figure. The given tag is for use with figure-ref or Figure-ref. The caption
is an element. The pre-flow is decoded as a flow.

For HTML output, the figure and figure* functions center the figure content, while fig-
ure** allows the content to be wider than the document body. For two-column Latex output,
figure* and figure** generate a figure that spans columns.

For Latex output, figure-here generates a figure to be included at the position in the
output text where the figure-here occurs in the source text. For HTML output, all figure
variants place the figure where the use appears in the source text.

(figure-ref tag) → element?

tag : string?

Generates a reference to a figure, using a lowercase word “figure”.

(Figure-ref tag) → element?

tag : string?

Generates a reference to a figure, capitalizing the word “Figure”.

(Figure-target tag) → element?

5

tag : string?

Generates a new figure label. This function is normally not used directly, since it is used by
figure.

6

3 Bibliographies

(require scriblib/autobib)

(define-cite ∼cite-id citet-id generate-bibliography-id)

Binds ∼cite-id , citet-id , and generate-bibliography-id , which share state to ac-
cumulate and render citations.

The function bound to ∼cite-id produces a citation referring to one or more bibliography
entries with a preceding non-breaking space. It has the contract

((bib?) () (listof bib?) . ->* . element?)

The function bound to citet-id generates an element suitable for use as a noun—referring
to a document or its author—for one or more bibliography entries which share an author. It
has the contract

((bib?) () (listof bib?) . ->* . element?)

The function bound to generate-bibliography-id generates the section for the bibliog-
raphy. It has the contract

(() (#:tag [tag "doc-bibliography"]) null? . ->* . part?)

(bib? v) → boolean?

v : any/c

Returns #t if v is a value produced by make-bib or in-bib, #f otherwise.

(make-bib #:title title

[#:author author

#:is-book? is-book?

#:location location

#:date date

#:url url]) → bib?

title : any/c

author : any/c = #f

is-book? : any/c = #f

location : any/c = #f

date : any/c = #f

url : string? = #f

7

Produces a value that represents a document to cite. Except for is-book? and url , the
arguments are used as elements, except that #f means that the information is not supplied.
Functions like proceedings-location, author-name, and authors help produce ele-
ments in a standard format.

An element produced by a function like author-name tracks first, last names, and name
suffixes separately, so that names can be ordered and rendered correctly. When a string is
provided as an author name, the last non-empty sequence of alphabetic characters or - after
a space is treated as the author name, and the rest is treated as the first name.

(in-bib orig where) → bib?

orig : bib?

where : string?

Extends a bib value so that the rendered citation is suffixed with where , which might be a
page or chapter number.

(proceedings-location location

[#:pages pages

#:series series

#:volume volume]) → element?

location : any/c

pages : (or (list/c any/c any/c) #f) = #f

series : any/c = #f

volume : any/c = #f

Combines elements to generate an element that is suitable for describing a paper’s location
within a conference or workshop proceedings.

(journal-location title

[#:pages pages

#:number number

#:volume volume]) → element?

title : any/c

pages : (or (list/c any/c any/c) #f) = #f

number : any/c = #f

volume : any/c = #f

Combines elements to generate an element that is suitable for describing a paper’s location
within a journal.

(book-location [#:edition edition

#:publisher publisher]) → element?

8

edition : any/c = #f

publisher : any/c = #f

Combines elements to generate an element that is suitable for describing a book’s location.

(techrpt-location [#:institution institution]
#:number number) → element?

institution : edition = any/c

number : any/c

Combines elements to generate an element that is suitable for describing a technical report’s
location.

(dissertation-location [#:institution institution

#:degree degree]) → element?

institution : edition = any/c

degree : any/c = "PhD"

Combines elements to generate an element that is suitable for describing a dissertation.

(author-name first last [#:suffix suffix]) → element?

first : any/c

last : any/c

suffix : any/c = #f

Combines elements to generate an element that is suitable for describing an author’s name,
especially where the last name is not merely a sequence of ASCII alphabet letters or where
the name has a suffix (such as “Jr.”).

(authors name ...) → element?

name : any/c

Combines multiple author elements into one, so that it is rendered and alphabetized appro-
priately. If a name is a string, it is parsed in the same way as by make-bib.

(org-author-name name) → element?

name : any/c

Converts an element for an organization name to one suitable for use as a bib-value author.

(other-authors) → element?

Generates an element that is suitable for use as a “others” author. When combined with

9

another author element via authors, the one created by other-authors renders as “et al.”

(editor name) → element?

name : name/c

Takes an author-name element and create one that represents the editor of a collection. If a
name is a string, it is parsed in the same way as by make-bib.

10

4 Footnotes

(require scriblib/footnote)

(note pre-content ...) → element?

pre-content : pre-content?

Creates a margin note for HTML and a footnote for Latex/PDF output.

(define-footnote footnote-id footnote-part-id)

Binds footnote-id to a form like note that generates a footnote in HTML output as well
as Latex/PDF output. To trigger the HTML output of the footnotes that are registered through
footnote-id , the function bound to footnote-part-id must be called at a position that
corresponds the bottom of the HTML page. (The generated section will not show a title or
appear in a table of contents; it will look like a footnote area.)

Beware that any content passed to footnote-id will occur twice in at least an intermediate
form of the document, and perhaps also in the rendered form of the document. Consequently,
the content passed to footnote-id should not bind link targets or include other one-time
declarations.

11

5 Conditional Content

(require scriblib/render-cond)

As much as possible, Scribble documents should be independent of the target format for
rendering the document. To customize generated output, use styes plus “back end” config-
urations for each target format (see §7.9 “Extending and Configuring Scribble Output” in
Scribble: Racket Documentation Tool).

As a last resort, the cond-element and cond-block forms support varying the document
content depending on the target format. More precisely, they generate parts of a document
where content is delayed until the traverse pass of document rendering. Format detection
relies on the 'scribble:current-render-mode registration that is accessible through a
traverse-element or traverse-block.

The syntax of cond-element and cond-block is based on SRFI-0.

(cond-element [feature-requirement body ...+])

(cond-element [feature-requirement body ...+] [else body ...+])

feature-requirement = identifier

| (not feature-requirement)

| (and feature-requirement ...)

| (or feature-requirement ...)

Generates a traverse-element whose replacement content is produced by the body of
one of the first matching cond-element clause.

A feature-requirement can be any identifier; a useful identifier is one whose symbol
form can appear in a 'scribble:current-render-mode list. The identifier matches when
its symbol form is in the 'scribble:current-render-mode list. Typically, the identifier
is html, latex, or text to indicate the corresponding rendering target.

A (not feature-requirement) test matches when feature-requirement does not
match, and so on. An else clause always matches. If no else clause is present and no
clause matches, then the exn:fail:contract exception is raised. Similarly, if the result
of the selected body is not content according to content?, then the exn:fail:contract
exception is raised.

(cond-block [feature-requirement body ...+])

(cond-block [feature-requirement body ...+] [else body ...+])

Like cond-element, but generates a traverse-block where the selected body must pro-
duce a block according to block?.

12

	1 Examples Using the GUI Toolbox
	2 Figures
	3 Bibliographies
	4 Footnotes
	5 Conditional Content

