The Typed Racket Reference

Version 5.1.1

Sam Tobin-Hochstadt

April 30, 2011

#lang typed/racket/base
#lang typed/racket

1 Type Reference

Any

Any Racket value. All other types are subtypes of Any.

Nothing

The empty type. No values inhabit this type, and any expression of this type will not evaluate
to a value.

1.1 Base Types

1.1.1 Numeric Types

Number

Complex

Float-Complex

Real

Float
Nonnegative-Float
Inexact-Real
Exact-Rational

Integer

Natural
Exact-Nonnegative-Integer
Exact-Positive-Integer
Fixnum
Nonnegative-Fixnum
Positive-Fixnum

Zero

These types represent the hierarchy of numbers of Racket. Integer includes only integers
that are exact numbers, corresponding to the predicate exact-integer?. "Real" includes
both exact and inexact reals. An "Inexact-Real" can be either 32- or 64-bit floating-point
numbers. "Float" is restricted to 64-bit floats, which are the default in Racket.

Examples:

> 7
- : Positive-Byte

vV N

8.3

: Positive-Flonum
.3

(/ 8 3)

: Positive-Exact-Rational
8/3

>0

- : Zero

0

> -12

- : Negative-Fixnum
-12

> 3+4i

- : Exact-Number
3+4i

vV 00 |

1.1.2 Other Base Types

Boolean
True

False
String
Keyword
Symbol
Void
Input-Port
Output-Port
Path
Path-String
Regexp
PRegexp
Bytes
Namespace
Null

EOF
Continuation-Mark-Set
Char

Thread

These types represent primitive Racket data.

Examples:

> #t

- : True

#t

> #f

- : False

#£

> "hello"

"hello"

> (current-input-port)
- : Input-Port

#<input-port:string>
> (current-output-port)
- : Output-Port
#<output-port:string>
> (string->path "/")
- : Path

#<path:/>

> #rx"axbx*"

- : Regexp

#rx"axbx"

> #px"axbx"

- : Regexp

#px"axbx"

> ’#Hbytesll

- : Bytes

#"bytes"

> (current-namespace)
- : Namespace
#<namespace:0>

> #\b

- : Char

#\b

> (thread (lambda () (addl 7)))
- : Thread

#<thread>

1.2 Singleton Types

Some kinds of data are given singleton types by default. In particular, symbols and keywords
have types which consist only of the particular symbol or keyword. These types are subtypes
of Symbol and Keyword, respectively.

Examples:

> #:foo
- : #:foo

#:foo0
> ’bar
- : ’bar
‘bar

1.3 Containers

The following base types are parameteric in their type arguments.

(Pair s t)
is the pair containing s as the car and t as the cdr
Examples:

> (cons 1 2)

- : (Pairof One Positive-Byte)
(1. 2)

> (cons 1 "one")

- : (Pairof One String)

(1 . "one")

(Listof t)

Homogenous lists of t

(List t ...)

is the type of the list with one element, in order, for each type provided to the List type
constructor.

(List t ... trest ... bound)

is the type of a list with one element for each of the ts, plus a sequence of elements corre-
sponding to trest, where bound must be an identifier denoting a type variable bound with

Examples:

> (list ’a ’b ’c)

- : (List ’a ’b ’c)

’(a b c)

> (map symbol->string (list ’a ’b ’c))

- : (Pairof String (Listof String))
b (lla" llb" UC")

(Boxof t)
A box of t

Example:

> (box "hello world")
- : (Boxof String)
‘#&"hello world"

(Syntaxof t)
Syntax
Identifier

A syntax object containing a t. Syntax is the type of any object constructable via datum-
>syntax. Identifier is (Syntaxof Symbol).

Example:

> #’here
- : (Syntaxof ’here)
#<syntax:27:0 here>

(Vectorof t)

Homogenous vectors of ¢

(Vector t ...)

is the type of the list with one element, in order, for each type provided to the Vector type
constructor.

Examples:

> (vector 1 2 3)

- : (Vector Integer Integer Integer)
#(1 2 3)

> #(a b c)

- : (Vector Symbol Symbol Symbol)
#(a b c)

(HashTable k v)

is the type of a hash table with key type k and value type v.

Example:

> #hash((a . 1) (b . 2))
- : (HashTable Symbol Integer)
‘#hash((a . 1) (b . 2))

(Channelof t)
A channel on which only ts can be sent.
Example:

> (ann (make-channel) (Channelof Symbol))
- : (Channelof Symbol)
#<channel>

(Parameterof t)
(Parameterof s t)

A parameter of t. If two type arguments are supplied, the first is the type the parameter
accepts, and the second is the type returned.

Examples:

> current-input-port

- : (Parameterof Input-Port)
#<procedure:current-input-port>

> current-directory

- : (Parameterof Path-String Path)
#<procedure:current-directory>

(Promise t)
A promise of t.
Example:

> (delay 3)

- : (Promise Positive-Byte)
#<promise:eval:34:0>

Sexp

A recursive union containing types traversed by datum->syntax. Note that this is not the
type produced by read.

1.4 Other Type Constructors

(dom ... -> rng)
(dom ... rest * -> rng)
(dom ... rest ... bound -> rng)

(dom -> rng : pred)

is the type of functions from the (possibly-empty) sequence dom ... to the rng type. The
second form specifies a uniform rest argument of type rest, and the third form specifies a
non-uniform rest argument of type rest with bound bound. In the third form, the second
occurrence of . . . is literal, and bound must be an identifier denoting a type variable. In the
fourth form, there must be only one dom and pred is the type checked by the predicate.

Examples:

> (A: ([x : Number]) x)

- : (Complex -> Complex : ((! False @ 0) | (False @ 0)) (0))
#<procedure>

> (A: ([x : Number] y : String *) (length y))

- : (Complex String * -> Index)

#<procedure>

> ormap

- : (A1l (@acb...) ((@ab ... b ->c) (Listof a) (Listof b) ... b
-> c))

#<procedure:ormap>

> string?

- : (Any -> Boolean : String)

#<procedure:string?>

Ut ...
is the union of the types t

Example:

> (A: ([x : Reall)(if (> 0 x) "yes" ’mno))
- : (Real -> (U String ’no) : (Top | Bot))
#<procedure>

(case-lambda fun-ty ...)

is a function that behaves like all of the fun-tys, considered in order from first to last. The
fun-tys must all be function types constructed with ->.

Example:

> (: add-map : (case-lambda
[(Listof Integer) -> (Listof Integer)]
[(Listof Integer) (Listof Integer) -> (Listof Integer)]))

For the definition of add-map look into case-lambda:.

(t t1 t2 ...)

is the instantiation of the parametric type t at types t1 t2

(A11 (v ...) t)

is a parameterization of type t, with type variables v If t is a function type constructed
with ->, the outer pair of parentheses around the function type may be omitted.

Examples:

> (: list-lenght : (A1l (A) (Listof A) -> Natural))
> (define (list-lenght 1lst)
(if (null? 1st)
0
(addl (1list-lenght (cdr 1st)))))

(values t ...)

is the type of a sequence of multiple values, with types t This can only appear as the
return type of a function.

Example:

> (values 1 2 3)
(Values One Positive-Byte Positive-Byte)

W N =

v

where v is a number, boolean or string, is the singleton type containing only that value

(quote val)

where val is a Racket value, is the singleton type containing only that value

where 1 is an identifier can be a reference to a type name or a type variable

(Rec n t)
is a recursive type where n is bound to the recursive type in the body t
Examples:

> (define-type IntList (Rec List (Pair Integer (U List Null))))
> (define-type (List A) (Rec List (Pair A (U List Null))))

1.5 Other Types

(Option t)

Either t or #f

10

2 Special Form Reference

Typed Racket provides a variety of special forms above and beyond those in Racket. They
are used for annotating variables with types, creating new types, and annotating expressions.

2.1 Binding Forms

loop, £, a, and v are names, t is a type. e is an expression and body is a block.

(let: ([v : t el ...) . body)
(let: loop : t0O ([v : t el ...) . body)

Local bindings, like 1et, each with associated types. In the second form, t0 is the type of
the result of 1oop (and thus the result of the entire expression as well as the final expression
in body). Type annotations are optional.

Examples:

> (: filter-even : (Listof Natural) (Listof Natural) -> (Listof Natural))
> (define (filter-even lst accum)
(if (null? 1st)
accum
(let: ([first : Natural (car 1lst)]
[rest : (Listof Natural) (cdr 1st)])
(if (even? first)
(filter-even rest (cons first accum))
(filter-even rest accum)))))
> (filter-even (list 1 2 3 4 5 6) null)
- : (Listof Exact-Nonnegative-Integer)
(6 4 2)

Examples:

> (: filter-even-loop : (Listof Natural) -> (Listof Natural))
> (define (filter-even-loop lst)
(let: loop : (Listof Natural)
([accum : (Listof Natural) null]
[1st : (Listof Natural) lst])
(cond
[(null? 1st) accum]
[(even? (car 1st)) (loop (cons (car 1lst) accum) (cdr 1lst))]
[else (loop accum (cdr 1st))1)))
> (filter-even-loop (list 1 2 3 4))
- : (Listof Exact-Nonnegative-Integer)
(4 2)

11

(letrec: ([v : t el ...) . body)

(let*: ([v : t el ...) . body)

(let-values: ([([v : t] ...) el ...) . body)
(letrec-values: ([([v : t] ...) el ...) . body)
(let*-values: ([([v : t] ...) el ...) . body)

Type-annotated versions of letrec, let*, let-values, letrec-values, and let*-
values. As with let:, type annotations are optional.

(let/cc: v : t . body)
(let/ec: v : t . body)

Type-annotated versions of let/cc and let/ec.

2.2 Anonymous Functions

(lambda: formals . body)

formals = ([v : t] ...)
| ([v : t] ... v it *)
| ([v : t] ... v it o...)

A function of the formal arguments v, where each formal argument has the associated type.
If a rest argument is present, then it has type (Listof t).

(\: formals . body)

An alias for the same form using lambda:.

(plambda: (a ...) formals . body)

A polymorphic function, abstracted over the type variables a. The type variables a are
bound in both the types of the formal, and in any type expressions in the body .

(case-lambda: [formals body] ...)
A function of multiple arities. Note that each formals must have a different arity.

Example:

12

> (define add-map
(case-lambda:
[([1st : (Listof Integer)])
(map addl 1st)]
[([1stl : (Listof Integer)]
[1st2 : (Listof Integer)])
(map + 1stl 1st2)]1))

For the type declaration of add-map look at case-lambda.

(pcase-lambda: (a ...) [formals body] ...)

A polymorphic function of multiple arities.

(opt-lambda: formals . body)

formals = ([v : t] ... [v : t default] ...)
| (v : t] ... [v : t default] ... v ot %)
| (v : t] ... [v : t default] ... v it o...)

A function with optional arguments.

(popt-lambda: (a ...) formals . body)

A polymorphic function with optional arguments.

2.3 Loops

(for: type-ann-maybe (for-clause ...)
expr ...+)

type-ann-maybe
| : Void

= [id : t seg-expr]
| [id seq-expr]
| #:when guard

for:-clause

Like for, but each id having the associated type t. Since the return type is always Void,
annotating the return type of a for form is optional. Unlike for, multi-valued seq-exprs
are not supported. Type annotations in clauses are optional for all for: variants.

13

(for/list: : u (for:-clause ...) expr ...+)
(for/or: : u (for:-clause ...) expr ...+)

These behave like their non-annotated counterparts, with the exception that #: when clauses
can only appear as the last for:-clause. The last expr of the body must have type u.

(for/lists: : u ([id : t]l ...)

(for:-clause ...)
expr ...+)
(for/fold: : u ([id : t init-expr] ...)
(for:-clause ...)
expr ...+)

These behave like their non-annotated counterparts. Unlike the above, #: when clauses can
be used freely with these.

(for*: type-ann-maybe (for-clause ...)
expr ...+)

(forx/lists: : u ([id : t] ...)
(for:-clause ...)
expr ...+)

(forx/fold: : u ([id : t init-expr] ...)
(for:-clause ...)
expr ...+)

These behave like their non-annotated counterparts.

(do: : u ([id : t init-expr step-expr-maybel ...)
(stop?-expr finish-expr ...)
expr ...+)

step-expr-maybe =
| step-expr

Like do, but each id having the associated type t, and the final body expr having the type
u. Type annotations are optional.

2.4 Definitions

(define: v : t e)
(define: (f . formals) : t . body)

14

(define: (a ...) (f . formals) : t . body)

These forms define variables, with annotated types. The first form defines v with type t and
value e. The second and third forms defines a function £ with appropriate types. In most
cases, use of : is preferred to use of define:.

Examples:

> (define: foo : Integer 10)
> (define: (add [first : Integer]
[rest : Integer]) : Integer
(+ first rest))
> (define: (A) (poly-app [func : (A A -> A)]
[first : A]
[rest : Al) : A
(func first rest))

2.5 Structure Definitions

(struct: maybe-type-vars name-spec ([f : t] ...) options ...)

maybe-type-vars =

(v ...)

name-spec = name
name parent

options = #:transparent
| #:mutable

Defines a structure with the name name, where the fields £ have types t, similar to the
behavior of struct. When parent is present, the structure is a substructure of parent.
When maybe-type-vars is present, the structure is polymorphic in the type variables v.

Options provided have the same meaning as for the struct form.

(define-struct: maybe-type-vars name-spec ([f : t] ...) options ...)

15

maybe-type-vars =

| (v ...

name-spec = name
(name parent)

options = #:transparent
| #:mutable

Legacy version of struct:, corresponding to define-struct.

(define-struct/exec: name-spec ([f : t] ...) [e : proc-tl)

name-spec = name
| (name parent)

Like define-struct:, but defines a procedural structure. The procdure e is used as the
value for prop:procedure, and must have type proc-t.

2.6 Names for Types

(define-type name t)
(define-type (name v ...) t)

The first form defines name as type, with the same meaning as t. The second form is
equivalent to (define-type name (A1l (v ...) t)). Type names may refer to other
types defined in the same module, but cycles among them are prohibited.

Examples:

> (define-type IntStr (U Integer String))
> (define-type (ListofPairs A) (Listof (Pair A A)))

2.7 Generating Predicates Automatically

(define-predicate name t)

Defines name as a predicate for the type t. name has the type (Any -> Boolean : t).t
may not contain function types.

16

2.8 Type Annotation and Instantiation

(: v t)

This declares that v has type t. The definition of v must appear after this declaration. This
can be used anywhere a definition form may be used.

Examples:

> (: varl Integer)
> (: var2 String)

(provide: [v t] ...)
This declares that the vs have the types t, and also provides all of the vs.

#{v : t} This declares that the variable v has type t. This is legal only for binding occur-
rences of v.

(ann e t)

Ensure that e has type t, or some subtype. The entire expression has type t. This is legal
only in expression contexts.

#{e :: t} Thisisidenticalto (ann e t).

(inst e t ...)

Instantiate the type of e with types t e must have a polymorphic type with the appro-
priate number of type variables. This is legal only in expression contexts.

Example:

> (foldl (inst cons Integer Integer) null (list 1 2 3 4))
- : (Listof Integer)
’(4321)

Examples:

> (: fold-1list : (A1l (A) (Listof A) -> (Listof A)))
> (define (fold-list 1lst)
(foldl (inst cons A A) null 1st))
> (fold-list (list 1" "2m m3m nqm))
- : (Listof String)
b (l|4|l l|3l| "2" ||1l|)

#{e @ t ...} Thisisidenticalto (inst e t ...).

17

2.9 Require

Here, m is a module spec, pred is an identifier naming a predicate, and r is an optionally-
renamed identifier.

(require/typed m rt-clause ...)

rt-clause = [r t]
| [struct name ([f : t] ...)]
| [struct (name parent) ([f : t] ...)]
|

[opaque t pred]
This form requires identifiers from the module m, giving them the specified types.
The first form requires r, giving it type t.

The second and third forms require the struct with name name with fields £ ..., where
each field has type t. The third form allows a parent structure type to be specified. The
parent type must already be a structure type known to Typed Racket, either built-in or via
require/typed. The structure predicate has the appropriate Typed Racket filter type so
that it may be used as a predicate in if expressions in Typed Racket.

Examples:

> (module UNTYPED racket/base
(define n 100)

(define-struct IntTree
(elem left right))

(provide n (struct-out IntTree)))
> (module TYPED typed/racket
(require/typed ’UNTYPED
[n Natural]
[struct IntTree
([elem : Integerl]
[left : IntTreel
[right : IntTreel)]))

The fourth case defines a new type t. pred, imported from module m, is a predicate for
this type. The type is defined as precisely those values to which pred produces #t. pred
must have type (Any -> Boolean). Opaque types must be required lexically before they
are used.

In all cases, the identifiers are protected with contracts which enforce the specified types. If
this contract fails, the module m is blamed.

18

Some types, notably polymorphic types constructed with A11, cannot be converted to con-
tracts and raise a static error when used in a require/typed form. Here is an example of
using case-lambda in require/typed

(require/typed racket/base
[file-or-directory-modify-seconds
(case-lambda
[String -> Exact-Nonnegative-Integer]
[String (Option Exact-Nonnegative-Integer)
->
(U Exact-Nonnegative-Integer Void)]
[String (Option Exact-Nonnegative-
Integer) (-> Any)
->

Any1)1)

file-or-directory-modify-seconds has some arguments which are optional. So we
need to use case-lambda.

19

3 Libraries Provided With Typed Racket

The typed/racket language corresponds to the racket language—that is, any identifier
provided by racket, such as modulo is available by default in typed/racket.

#lang typed/racket
(modulo 12 2)
The typed/racket/base language corresponds to the racket/base language.

Some libraries have counterparts in the typed collection, which provide the same exports as
the untyped versions. Such libraries include srfi/14, net/url, and many others.

#lang typed/racket

(require typed/srfi/14)

(char-set= (string->char-set "hello")
(string->char-set "olleh"))

To participate in making more libraries available, please visit here,

Other libraries can be used with Typed Racket via require/typed.

#lang typed/racket
(require/typed version/check

[check-version (-> (U Symbol (Listof Any)))l)
(check-version)

20

http://www.ccs.neu.edu/home/samth/adapt/

4 Utilities

Typed Racket provides some additional utility functions to facilitate typed programming.

(assert v) — A

v : (U #f A)
(assert v p?) — B
v :A

p?: (A -> Any : B)

Verifies that the argument satisfies the constraint. If no predicate is provided, simply checks
that the value is not #£.

Examples:

> (define: x : (U #f Number) (string->number "7"))

> X

- : (U Zero One Byte-Larger-Than-One Positive-Index-Not-Byte
Positive-Fixnum-Not-Index Negative-Fixnum Positive-Integer-
Not-Fixnum Negative-Integer-Not-Fixnum Positive-Rational-Not-
Integer Negative-Rational-Not-Integer Flonum-Positive-Zero Flonum-
Negative-Zero Float-Nan Positive-Flonum Negative-Float Single-
Flonum-Positive-Zero Single-Flonum-Negative-Zero Single-Flonum-Nan
Positive-Single-Flonum Negative-Single-Flonum Exact-Number-Not-Real
Float-Complex Single-Flonum-Complex False)

7

\2

(assert x)
: Complex

(define: y : (U String Number) 0)

y

- : (U String Zero One Byte-Larger-Than-One Positive-Index-Not-
Byte Positive-Fixnum-Not-Index Negative-Fixnum Positive-Integer-
Not-Fixnum Negative-Integer-Not-Fixnum Positive-Rational-Not-
Integer Negative-Rational-Not-Integer Flonum-Positive-Zero Flonum-
Negative-Zero Float-Nan Positive-Flonum Negative-Float Single-
Flonum-Positive-Zero Single-Flonum-Negative-Zero Single-Flonum-Nan
Positive-Single-Flonum Negative-Single-Flonum Exact-Number-Not-Real
Float-Complex Single-Flonum-Complex)

vV VvV N1

0

> (assert y number?)
- : Complex

0

> (assert y boolean?)
Assertion failed

21

(with-asserts ([id maybe-pred] ...) body ...+)

maybe-pred =
| predicate

Guard the body with assertions. If any of the assertions fail, the program errors. These
assertions behave like assert.

22

5 Typed Racket Syntax Without Type Checking

#lang typed/racket/mno-check
#lang typed/racket/base/no-check

On occasions where the Typed Racket syntax is useful, but actual typechecking is
not desired, the typed/racket/mno-check and typed/racket/base/no-check lan-
guages are useful. They provide the same bindings and syntax as typed/racket and
typed/racket/base, but do no type checking.

Examples:

#lang typed/racket/no-check
(: x Number)
(define x "not-a-number")

23

6 Typed Regions

The with-type for allows for localized Typed Racket regions in otherwise untyped code.

(with-type result-spec fv-clause body ...+)
(with-type export-spec fv-clause body ...+)

fv-clause

#:freevars ([id fv-typel ...)
result-spec = #:result type
export-spec = ([export-id export-typel] ...)

The first form, an expression, checks that body ...+ has the type type. If the last expres-
sion in body ...+ returns multiple values, type must be a type of the form (values t
. ..). Uses of the result values are appropriately checked by contracts generated from type.

The second form, which can be used as a definition, checks that each of the export-ids
has the specified type. These types are also enforced in the surrounding code with contracts.

The ids are assumed to have the types ascribed to them; these types are converted to con-
tracts and checked dynamically.

Examples:

> (with-type #:result Number 3)
3
> ((with-type #:result (Number -> Number)
(lambda: ([x : Number]) (addl x)))
#£)
contract violation: expected <Number>, given: #f
contract from (region typed-region), blaming top-level
contract: (-> Number Number)
> (let ([x "hello"])
(with-type #:result String
#:freevars ([x String])
(string-append x ", world")))
"hello, world"
> (let ([x ’hellol)
(with-type #:result String
#:freevars ([x String])
(string-append x ", world")))
self-contract violation: expected <String>, given: 'hello
contract on x from top-level, blaming top-level

24

contract: String
at: eval:5.0
> (with-type ([fun (Number -> Number)]
[val Number])
(define (fun x) x)
(define val 17))
> (fun val)
17

25

7 Optimization in Typed Racket

Typed Racket provides a type-driven optimizer that rewrites well-typed programs to poten-
tially make them faster. It should in no way make your programs slower or unsafe.

Typed Racket’s optimizer is turned on by default. If you want to deactivate it (for debugging,
for instance), you must add the #:no-optimize keyword when specifying the language of
your program:

#lang typed/racket #:no-optimize

ISee §5 “Optimization in Typed Racket” in the guide for tips to get the most out of the optimizer.

26

8 Legacy Forms

The following forms are provided by Typed Racket for backwards compatibility.

define-type-alias

Equivalent to define-type.

require/opaque-type

Similar to using the opaque keyword with require/typed.

require-typed-struct
Similar to using the struct keyword with require/typed.
#lang typed-scheme

Equivalent to the

#lang typed/racket/base

language.

27

	1 Type Reference
	1.1 Base Types
	1.1.1 Numeric Types
	1.1.2 Other Base Types

	1.2 Singleton Types
	1.3 Containers
	1.4 Other Type Constructors
	1.5 Other Types

	2 Special Form Reference
	2.1 Binding Forms
	2.2 Anonymous Functions
	2.3 Loops
	2.4 Definitions
	2.5 Structure Definitions
	2.6 Names for Types
	2.7 Generating Predicates Automatically
	2.8 Type Annotation and Instantiation
	2.9 Require

	3 Libraries Provided With Typed Racket
	4 Utilities
	5 Typed Racket Syntax Without Type Checking
	6 Typed Regions
	7 Optimization in Typed Racket
	8 Legacy Forms

