
Redex: Practical Semantics Engineering
Version 5.1.2

Robert Bruce Findler
and Casey Klein

August 3, 2011

PLT Redex consists of a domain-specific language for specifying reduction semantics, plus
a suite of tools for working with the semantics.

This is a reference manual for Redex. See http://redex.racket-lang.org/ for a gen-
tler overview. (See also the examples subdirectory in the redex collection.)

To load Redex use:

(require redex)

which provides all of the names documented in this library.

Alternatively, use the redex/reduction-semantics and redex/pict modules, which
provide only non-GUI functionality (i.e., everything except redex/gui), making them suit-
able for programs which should not depend on racket/gui/base.

1

http://redex.racket-lang.org/

Contents

1 Patterns 3

2 Terms 8

3 Languages 12

4 Reduction Relations 14

5 Metafunctions and Relations 20

6 Testing 24

7 GUI 35

8 Typesetting 43

8.1 Picts & PostScript . 43

8.2 Customization . 46

8.3 Removing the Pink Background . 52

Index 58

2

1 Patterns

(require redex/reduction-semantics)

This section covers Redex’s pattern language, used in many of Redex’s forms.

Note that pattern matching is caching (including caching the results of side-conditions). This
means that once a pattern has matched a given term, Redex assumes that it will always match
that term.

This is the grammar for the Redex pattern language. Non-terminal references are wrapped
with angle brackets; otherwise identifiers in the grammar are terminals.

pattern = any

| number

| natural

| integer

| real

| string

| variable

| (variable-except <id> ...)

| (variable-prefix <id>)

| variable-not-otherwise-mentioned

| hole

| symbol

| (name <id> <pattern>)

| (in-hole <pattern> <pattern>)

| (hide-hole <pattern>)

| (side-condition <pattern> guard)

| (cross <id>)

| (<pattern-sequence> ...)

| <racket-constant>

pattern-sequence = <pattern>

| ... ; literal ellipsis

| ..._id

• The any pattern matches any sexpression. This pattern may also be suffixed with an
underscore and another identifier, in which case they bind the full name (as if it were
an implicit name pattern) and match the portion before the underscore.

• The number pattern matches any number. This pattern may also be suffixed with an
underscore and another identifier, in which case they bind the full name (as if it were
an implicit name pattern) and match the portion before the underscore.

• The natural pattern matches any exact non-negative integer. This pattern may also

3

be suffixed with an underscore and another identifier, in which case they bind the
full name (as if it were an implicit name pattern) and match the portion before the
underscore.

• The integer pattern matches any exact integer. This pattern may also be suffixed
with an underscore and another identifier, in which case they bind the full name (as if
it were an implicit name pattern) and match the portion before the underscore.

• The real pattern matches any real number. This pattern may also be suffixed with an
underscore and another identifier, in which case they bind the full name (as if it were
an implicit name pattern) and match the portion before the underscore.

• The string pattern matches any string. This pattern may also be suffixed with an
underscore and another identifier, in which case they bind the full name (as if it were
an implicit name pattern) and match the portion before the underscore.

• The variable pattern matches any symbol. This pattern may also be suffixed with an
underscore and another identifier, in which case they bind the full name (as if it were
an implicit name pattern) and match the portion before the underscore.

• The variable-except pattern matches any symbol except those listed in its argu-
ment. This is useful for ensuring that keywords in the language are not accidentally
captured by variables.

• The variable-prefix pattern matches any symbol that begins with the given prefix.

• The variable-not-otherwise-mentioned pattern matches any symbol except
those that are used as literals elsewhere in the language.

• The hole pattern matches anything when inside the first argument to an in-hole pat-
tern. Otherwise, it matches only a hole.

• The symbol pattern stands for a literal symbol that must match exactly, unless it is the
name of a non-terminal in a relevant language or contains an underscore.

If it is a non-terminal, it matches any of the right-hand sides of that non-terminal. If
the non-terminal appears twice in a single pattern, then the match is constrained to
expressions that are the same, unless the pattern is part of a grammar, in which case
there is no constraint.

If the symbol is a non-terminal followed by an underscore, for example e_1, it is
implicitly the same as a name pattern that matches only the non-terminal, (name e_1

e) for the example. Accordingly, repeated uses of the same name are constrainted to
match the same expression.

If the symbol is a non-terminal followed by _!_, for example e_!_1, it is also treated
as a pattern, but repeated uses of the same pattern are constrained to be different. For
example, this pattern:

(e_!_1 e_!_1 e_!_1)

4

matches lists of three es, but where all three of them are distinct.

Unlike a _ pattern, the _!_ patterns do not bind names.

If _ names and _!_ are mixed, they are treated as separate. That is, this pattern (e_1

e_!_1) matches just the same things as (e e), but the second doesn’t bind any vari-
ables.

If the symbol otherwise has an underscore, it is an error.

• The pattern (name symbol pattern) matches pattern and binds using it to the
name symbol.

• The (in-hole pattern pattern) pattern matches the first pattern . This match
must include exactly one match against the second pattern . If there are zero matches
or more than one match, an exception is raised.

When matching the first argument of in-hole, the hole pattern matches any sexpres-
sion. Then, the sexpression that matched the hole pattern is used to match against the
second pattern.

• The (hide-hole pattern) pattern matches what the embedded pattern matches
but if the pattern matcher is looking for a decomposition, it ignores any holes found in
that pattern .

• The (side-condition pattern guard) pattern matches what the embedded
pattern matches, and then the guard expression is evaluated. If it returns #f, the
pattern fails to match, and if it returns anything else, the pattern matches. Any oc-
currences of name in the pattern (including those implicitly there via _ pattersn) are
bound using term-let in the guard.

• The (cross symbol) pattern is used for the compatible closure functions. If the
language contains a non-terminal with the same name as symbol, the pattern (cross

symbol) matches the context that corresponds to the compatible closure of that non-
terminal.

• The (pattern-sequence ...) pattern matches a sexpression list, where each
pattern-sequence element matches an element of the list. In addition, if a list pat-
tern contains an ellipsis, the ellipsis is not treated as a literal, instead it matches any
number of duplications of the pattern that came before the ellipses (including 0). Fur-
thermore, each (name symbol pattern) in the duplicated pattern binds a list of
matches to symbol, instead of a single match. (A nested duplicated pattern creates a
list of list matches, etc.) Ellipses may be placed anywhere inside the row of patterns,
except in the first position or immediately after another ellipses.

Multiple ellipses are allowed. For example, this pattern:

((name x a) ... (name y a) ...)

matches this sexpression:

(term (a a))

5

three different ways. One where the first a in the pattern matches nothing, and the
second matches both of the occurrences of a, one where each named pattern matches
a single a and one where the first matches both and the second matches nothing.

If the ellipses is named (ie, has an underscore and a name following it, like a variable
may), the pattern matcher records the length of the list and ensures that any other
occurrences of the same named ellipses must have the same length.

As an example, this pattern:

((name x a) ..._1 (name y a) ..._1)

only matches this sexpression:

(term (a a))

one way, with each named pattern matching a single a. Unlike the above, the two
patterns with mismatched lengths is ruled out, due to the underscores following the
ellipses.

Also, like underscore patterns above, if an underscore pattern begins with ..._!_,
then the lengths must be different.

Thus, with the pattern:

((name x a) ..._!_1 (name y a) ..._!_1)

and the expression

(term (a a))

two matches occur, one where x is bound to '() and y is bound to '(a a) and one
where x is bound to '(a a) and y is bound to '().

(redex-match lang pattern any)

(redex-match lang pattern)

If redex-match receives three arguments, it matches the pattern (in the language) against
its third argument. If it matches, this returns a list of match structures describing the matches
(see match? and match-bindings). If it fails, it returns #f.

If redex-match receives only two arguments, it builds a procedure for efficiently testing if
expressions match the pattern, using the language lang . The procedures accepts a single
expression and if the expresion matches, it returns a list of match structures describing the
matches. If the match fails, the procedure returns #f.

(match? val) → boolean?

6

val : any/c

Determines if a value is a match structure.

(match-bindings m) → (listof bind?)

m : match?

This returns a list of bind structs that binds the pattern variables in this match.

(struct bind (name exp)

#:extra-constructor-name make-bind)

name : symbol?

exp : any/c

Instances of this struct are returned by redex-match. Each bind associates a name with an
s-expression from the language, or a list of such s-expressions, if the (name ...) clause is
followed by an ellipsis. Nested ellipses produce nested lists.

(caching-enabled?) → boolean?

(caching-enabled? on?) → void?

on? : boolean?

When this parameter is #t (the default), Redex caches the results of pattern matching and
metafunction evaluation. There is a separate cache for each pattern and metafunction; when
one fills (see set-cache-size!), Redex evicts all of the entries in that cache.

Caching should be disabled when matching a pattern that depends on values other than the
in-scope pattern variables or evaluating a metafunction that reads or writes mutable external
state.

(set-cache-size! size) → void?

size : positive-integer?

Changes the size of the per-pattern and per-metafunction caches. The default size is 350.

7

2 Terms

Object language expressions in Redex are written using term. It is similar to Racket’s quote
(in many cases it is identical) in that it constructs lists as the visible representation of terms.

The grammar of terms is (note that an ellipsis stands for repetition unless otherwise indi-
cated):

term = identifier

| (term-sequence ...)

| ,racket-expression

| (in-hole term term)

| hole

| #t

| #f

| string

term-sequence = term

| ,@racket-expression

| ... ; literal ellipsis

• A term written identifier is equivalent to the corresponding symbol, unless the
identifier is bound by term-let (or in a pattern elsewhere) or is hole (as below).

• A term written (term-sequence ...) constructs a list of the terms constructed by
the sequence elements.

• A term written ,racket-expression evaluates the racket-expression and sub-
stitutes its value into the term at that point.

• A term written ,@racket-expression evaluates the racket-expression, which
must produce a list. It then splices the contents of the list into the expression at that
point in the sequence.

• A term written (in-hole tttterm tttterm) is the dual to the pattern in-hole –
it accepts a context and an expression and uses plug to combine them.

• A term written hole produces a hole.

• A term written as a literal boolean or a string produces the boolean or the string.

(term term)

This form is used for construction of a term.

It behaves similarly to quasiquote, except for a few special forms that are recognized
(listed below) and that names bound by term-let are implicitly substituted with the values

8

that those names were bound to, expanding ellipses as in-place sublists (in the same manner
as syntax-case patterns).

For example,

(term-let ([body '(+ x 1)]

[(expr ...) '(+ - (values * /))]

[((id ...) ...) '((a) (b) (c d))])

(term (let-values ([(id ...) expr] ...) body)))

evaluates to

'(let-values ([(a) +]

[(b) -]

[(c d) (values * /)])

(+ x 1))

It is an error for a term variable to appear in an expression with an ellipsis-depth different
from the depth with which it was bound by term-let. It is also an error for two term-let-
bound identifiers bound to lists of different lengths to appear together inside an ellipsis.

hole

Recognized specially within term. A hole form is an error elsewhere.

in-hole

Recognized specially within reduction-relation. An in-hole form is an error else-
where.

(term-let ([tl-pat expr] ...) body)

tl-pat = identifier

| (tl-pat-ele ...)

tl-pat-ele = tl-pat

| tl-pat ... ; a literal ellipsis

Matches each given id pattern to the value yielded by evaluating the corresponding expr
and binds each variable in the id pattern to the appropriate value (described below). These
bindings are then accessible to the term syntactic form.

Note that each ellipsis should be the literal symbol consisting of three dots (and the ... else-
where indicates repetition as usual). If tl-pat is an identifier, it matches any value and

9

binds it to the identifier, for use inside term. If it is a list, it matches only if the value being
matched is a list value and only if every subpattern recursively matches the corresponding
list element. There may be a single ellipsis in any list pattern; if one is present, the pattern
before the ellipses may match multiple adjacent elements in the list value (possibly none).

This form is a lower-level form in Redex, and not really designed to be used directly. For
let-like forms that use Redex’s full pattern matching facilities, see redex-let, redex-
let*, term-match, term-match/single.

(redex-let language ([pattern expression] ...) body ...+)

Like term-let but the left-hand sides are Redex patterns, interpreted according to the spec-
ified language. It is a syntax error for two left-hand sides to bind the same pattern variable.

This form raises an exception recognized by exn:fail:redex? if any right-hand side does
not match its left-hand side in exactly one way.

In some contexts, it may be more efficient to use term-match/single (lifted out of the
context).

(redex-let* language ([pattern expression] ...) body ...+)

The let* analog of redex-let.

(term-match language [pattern expression] ...)

This produces a procedure that accepts term (or quoted) expressions and checks them against
each pattern. The function returns a list of the values of the expression where the pattern
matches. If one of the patterns matches multiple times, the expression is evaluated multiple
times, once with the bindings in the pattern for each match.

When evaluating a term-match expression, the patterns are compiled in an effort to speed
up matching. Using the procedural result multiple times to avoid compiling the patterns
multiple times.

(term-match/single language [pattern expression] ...)

This produces a procedure that accepts term (or quoted) expressions and checks them against
each pattern. The function returns the expression behind the first sucessful match. If that
pattern produces multiple matches, an error is signaled. If no patterns match, an error is
signaled.

Raises an exception recognized by exn:fail:redex? if no clauses match or if one of the
clauses matches multiple ways.

10

When evaluating a term-match/single expression, the patterns are compiled in an effort
to speed up matching. Using the procedural result multiple times to avoid compiling the
patterns multiple times.

(plug context expression) → any

context : any/c

expression : any/c

The first argument to this function is an sexpression to plug into. The second argument is the
sexpression to replace in the first argument. It returns the replaced term. This is also used
when a term sub-expression contains in-hole.

(variable-not-in t var) → symbol?

t : any/c

var : symbol?

This helper function accepts an sexpression and a variable. It returns a variable not in the
sexpression with a prefix the same as the second argument.

(variables-not-in t vars) → (listof symbol?)

t : any/c

vars : (listof symbol?)

This function, like variable-not-in, makes variables that do no occur in its first argument, but
it returns a list of such variables, one for each variable in its second argument.

Does not expect the input symbols to be distinct, but does produce variables that are always
distinct.

(exn:fail:redex? v) → boolean?

v : any/c

Returns #t if its argument is a Redex exception record, and #f otherwise.

11

3 Languages

(define-language lang-name

non-terminal-def ...)

non-terminal-def = (non-terminal-name ...+ ::= pattern ...+)

| (non-terminal-name pattern ...+)

| ((non-terminal-name ...+) pattern ...+)

This form defines the grammar of a language. It allows the definition of recursive pat-
terns, much like a BNF, but for regular-tree grammars. It goes beyond their expressive
power, however, because repeated name patterns and side-conditions can restrict matches in
a context-sensitive way.

A non-terminal-def comprises one or more non-terminal names (considered aliases) fol-
lowed by one or more productions.

For example, the following defines lc-lang as the grammar of the lambda calculus:

(define-language lc-lang

(e (e e ...)

x

v)

(c (v ... c e ...)

hole)

(v (lambda (x ...) e))

(x variable-not-otherwise-mentioned))

with non-terminals e for the expression language, x for variables, c for the evaluation con-
texts and v for values.

::=

A non-terminal’s names and productions may be separated by the keyword ::=. Use of the
::= keyword outside a language definition is a syntax error.

(define-extended-language extended-lang base-lang

non-terminal-def ...)

non-terminal-def = (non-terminal-name ...+ ::= pattern ...+)

| (non-terminal-name pattern ...+)

| ((non-terminal-name ...+) pattern ...+)

This form extends a language with some new, replaced, or extended non-terminals. For

12

example, this language:

(define-extended-language lc-num-lang

lc-lang

(v ; extend the previous `v' non-terminal

+

number)

(x (variable-except lambda +)))

extends lc-lang with two new alternatives for the v non-terminal, carries forward the e and
c non-terminals, and replaces the x non-terminal with a new one (which happens to be
equivalent to the one that would have been inherited).

The four-period ellipses indicates that the new language’s non-terminal has all of the alter-
natives from the original language’s non-terminal, as well as any new ones. If a non-terminal
occurs in both the base language and the extension, the extension’s non-terminal replaces the
originals. If a non-terminal only occurs in either the base language, then it is carried forward
into the extension. And, of course, extend-language lets you add new non-terminals to the
language.

If a language is has a group of multiple non-terminals defined together, extending any one
of those non-terminals extends all of them.

(language-nts lang) → (listof symbol?)

lang : compiled-lang?

Returns the list of non-terminals (as symbols) that are defined by this language.

(compiled-lang? l) → boolean?

l : any/c

Returns #t if its argument was produced by language, #f otherwise.

13

4 Reduction Relations

(reduction-relation language domain base-arrow

reduction-case ...

shortcuts)

domain =
| #:domain pattern

base-arrow =
| #:arrow base-arrow-name

reduction-case = (arrow-name pattern term extras ...)

extras = rule-name

| (fresh fresh-clause ...)

| (side-condition racket-expression)

| (where pattern term)

| (side-condition/hidden racket-expression)

| (where/hidden pattern term)

shortcuts =
| with shortcut ...

shortcut = [(old-arrow-name pattern term)

(new-arrow-name identifier identifier)]

rule-name = identifier

| string

| (computed-name racket-expression)

fresh-clause = var

| ((var1 ...) (var2 ...))

Defines a reduction relation casewise, one case for each of the reduction-case clauses.

The optional domain clause provides a contract for the relation, in the form of a pattern that
defines the relation’s domain and codomain.

The arrow-name in each reduction-case clause is either base-arrow-name (default
-->) or an arrow name defined by shortcuts (described below). In either case, the pattern
refers to language and binds variables in the corresponding term. Following the pattern
and term can be the name of the reduction rule and declarations of fresh variables and side-
conditions.

14

For example, the expression

(reduction-relation

lc-lang

(--> (in-hole c_1 ((lambda (variable_i ...) e_body) v_i ...))

(in-hole c_1 ,(foldl lc-subst

(term e_body)

(term (v_i ...))

(term (variable_i ...))))

beta-v))

defines a reduction relation for the lc-lang grammar.

A rule’s name (used in typesetting, the stepper, traces, and apply-reduction-

relation/tag-with-names) can be given as a literal (an identifier or a string) or as an
expression that computes a name using the values of the bound pattern variables (much like
the rule’s right-hand side). Some operations require literal names, so a rule definition may
provide both a literal name and a computed name. In particular, only rules that include a
literal name may be replaced using extend-reduction-relation, used as breakpoints
in the stepper, and selected using render-reduction-relation-rules. The output of
apply-reduction-relation/tag-with-names, traces, and the stepper prefers the
computed name, if it exists. Typesetting a rule with a computed name shows the expression
that computes the name only when the rule has no literal name or when it would not typeset
in pink due to with-unquote-rewriters in the context; otherwise, the literal name (or
nothing) is shown.

Fresh variable clauses generate variables that do not occur in the term being reduced. If the
fresh-clause is a variable, that variable is used both as a binding in the term and as the
prefix for the freshly generated variable. (The variable does not have to be a non-terminal in
the language of the reduction relation.)

The second form of fresh-clauses generates a sequence of variables. In that case, the
ellipses are literal ellipses; that is, you must actually write ellipses in your rule. The variable
var1 is like the variable in first case of a fresh-clause ; namely it is used to determine
the prefix of the generated variables and it is bound in the right-hand side of the reduction
rule, but unlike the single-variable fresh clause, it is bound to a sequence of variables. The
variable var2 is used to determine the number of variables generated and var2 must be
bound by the left-hand side of the rule.

The expressions within side-condition clauses and side-condition/hidden clauses
are collected with and and used as guards on the case being matched. The argument to
each side-condition should be a Racket expression, and the pattern variables in the pat-

tern are bound in that expression. A side-condition/hidden clause is the same as
a side-condition clause, except that the condition is not rendered when typesetting via
redex/pict.

Each where clause acts as a side condition requiring a successful pattern match, and it

15

can bind pattern variables in the side-conditions (and where clauses) that follow and in the
metafunction result. The bindings are the same as bindings in a term-let expression. A
where/hidden clause is the same as a where clause, but the clause is not rendered when
typesetting via redex/pict.

Each shortcut clause defines arrow names in terms of base-arrow-name and earlier
shortcut definitions. The left- and right-hand sides of a shortcut definition are iden-
tifiers, not patterns and terms. These identifiers need not correspond to non-terminals in
language .

For example, this expression

(reduction-relation

lc-num-lang

(==> ((lambda (variable_i ...) e_body) v_i ...)

,(foldl lc-subst

(term e_body)

(term (v_i ...))

(term (variable_i ...))))

(==> (+ number_1 ...)

,(apply + (term (number_1 ...))))

with

[(--> (in-hole c_1 a) (in-hole c_1 b))

(==> a b)])

defines reductions for the lambda calculus with numbers, where the ==> shortcut is defined
by reducing in the context c.

A fresh clause in reduction-case defined by shortcut refers to the entire term, not just
the portion matched by the left-hand side of shortcut’s use.

(extend-reduction-relation reduction-relation language more ...)

This form extends the reduction relation in its first argument with the rules specified in more .
They should have the same shape as the rules (including the with clause) in an ordinary
reduction-relation .

If the original reduction-relation has a rule with the same name as one of the rules specified
in the extension, the old rule is removed.

In addition to adding the rules specified to the existing relation, this form also reinterprets
the rules in the original reduction, using the new language.

(union-reduction-relations r ...) → reduction-relation?

16

r : reduction-relation?

Combines all of the argument reduction relations into a single reduction relation that steps
when any of the arguments would have stepped.

(reduction-relation->rule-names r) → (listof symbol?)

r : reduction-relation?

Returns the names of the reduction relation’s named clauses.

(compatible-closure reduction-relation lang non-terminal)

This accepts a reduction, a language, the name of a non-terminal in the language and returns
the compatible closure of the reduction for the specified non-terminal.

(context-closure reduction-relation lang pattern)

This accepts a reduction, a language, a pattern representing a context (ie, that can be used
as the first argument to in-hole; often just a non-terminal) in the language and returns the
closure of the reduction in that context.

(reduction-relation? v) → boolean?

v : any/c

Returns #t if its argument is a reduction-relation, and #f otherwise.

(apply-reduction-relation r t) → (listof any/c)

r : reduction-relation?

t : any/c

This accepts reduction relation, a term, and returns a list of terms that the term reduces to.

(apply-reduction-relation/tag-with-names r

t)

→ (listof (list/c (union false/c string?) any/c))

r : reduction-relation?

t : any/c

Like apply-reduction-relation, but the result indicates the names of the reductions that
were used.

17

(apply-reduction-relation* r

t

[#:cache-all? cache-all?])
→ (listof any/c)

r : reduction-relation?

t : any/c

cache-all? : boolean? = (current-cache-all?)

Accepts a reduction relation and a term. Starting from t , it follows every reduction path and
returns all of the terms that do not reduce further. If there are infinite reduction sequences
that do not repeat, this function will not terminate (it does terminate if the only infinite
reduction paths are cyclic).

If the cache-all? argument is #t, then apply-reduction-relation* keeps a cache of
all visited terms when traversing the graph and does not revisit any of them. This cache can,
in some cases, use a lot of memory, so it is off by default and the cycle checking happens by
keeping track only of the current path it is traversing through the reduction graph.

(current-cache-all?) → boolean?

(current-cache-all? cache-all?) → void?

cache-all? : boolean?

Controls the behavior of apply-reduction-relation* and test-->>’s cycle checking.
See apply-reduction-relation* for more details.

Examples:

> (define-language empty-lang)

> (define R

(reduction-relation

empty-lang

(--> 0 1)

(--> 0 2)

(--> 2 3)

(--> 3 3)))

> (apply-reduction-relation R 0)

'(2 1)

> (apply-reduction-relation* R 0)

'(1)

-->

Recognized specially within reduction-relation. A --> form is an error elsewhere.

18

fresh

Recognized specially within reduction-relation. A fresh form is an error elsewhere.

with

Recognized specially within reduction-relation. A with form is an error elsewhere.

19

5 Metafunctions and Relations

(define-metafunction language

metafunction-contract

[(name pattern ...) term extras ...]

...)

metafunction-contract =
| id : pattern ... -> range

range = pattern

| pattern or range

| pattern ∨ range

| pattern ∪ range

extras = (side-condition racket-expression)

| (side-condition/hidden racket-expression)

| (where pat term)

| (where/hidden pat term)

The define-metafunction form builds a function on sexpressions according to the pattern
and right-hand-side expressions. The first argument indicates the language used to resolve
non-terminals in the pattern expressions. Each of the rhs-expressions is implicitly wrapped
in term .

The side-condition, hidden-side-condition, where, and where/hidden clauses be-
have as in the reduction-relation form.

Raises an exception recognized by exn:fail:redex? if no clauses match, if one of the
clauses matches multiple ways (and that leads to different results for the different matches),
or if the contract is violated.

Note that metafunctions are assumed to always return the same results for the same inputs,
and their results are cached, unless caching-enabled? is set to #f. Accordingly, if a
metafunction is called with the same inputs twice, then its body is only evaluated a single
time.

As an example, these metafunctions finds the free variables in an expression in the lc-lang
above:

(define-metafunction lc-lang

free-vars : e -> (x ...)

[(free-vars (e_1 e_2 ...))

(∪ (free-vars e_1) (free-vars e_2) ...)]

[(free-vars x) (x)]

[(free-vars (lambda (x ...) e))

20

(- (free-vars e) (x ...))])

The first argument to define-metafunction is the grammar (defined above). Following that
are three cases, one for each variation of expressions (e in lc-lang). The free variables of an
application are the free variables of each of the subterms; the free variables of a variable is
just the variable itself, and the free variables of a lambda expression are the free variables of
the body, minus the bound parameters.

Here are the helper metafunctions used above.

(define-metafunction lc-lang

∪ : (x ...) ... -> (x ...)

[(∪ (x_1 ...) (x_2 ...) (x_3 ...) ...)

(∪ (x_1 ... x_2 ...) (x_3 ...) ...)]

[(∪ (x_1 ...))

(x_1 ...)]

[(∪) ()])

(define-metafunction lc-lang

- : (x ...) (x ...) -> (x ...)

[(- (x ...) ()) (x ...)]

[(- (x_1 ... x_2 x_3 ...) (x_2 x_4 ...))

(- (x_1 ... x_3 ...) (x_2 x_4 ...))

(side-condition (not (memq (term x_2) (term (x_3 ...)))))]

[(- (x_1 ...) (x_2 x_3 ...))

(- (x_1 ...) (x_3 ...))])

Note the side-condition in the second case of -. It ensures that there is a unique match for
that case. Without it, (term (- (x x) x)) would lead to an ambiguous match.

(define-metafunction/extension f language

metafunction-contract

[(g pattern ...) term extras ...]

...)

Defines a metafunction g as an extension of an existing metafunction f . The metafunction
g behaves as if f ’s clauses were appended to its definition (with occurrences of f changed
to g in the inherited clauses).

For example, define-metafunction/extension may be used to extend the free-vars
function above to the forms introduced by the language lc-num-lang.

(define-metafunction/extension free-vars lc-num-lang

free-vars-num : e -> (x ...)

[(free-vars-num number)

21

()]

[(free-vars-num (+ e_1 e_2))

(∪ (free-vars-num e_1)

(free-vars-num e_2))])

(in-domain? (metafunction-name term ...))

Returns #t if the inputs specified to metafunction-name are legtimate inputs according to
metafunction-name ’s contract, and #f otherwise.

(define-relation language

relation-contract

[(name pattern ...) term ...] ...)

relation-contract =
| id ⊂ pat x ... x pat

| id ⊆ pat × ... × pat

The define-relation form builds a relation on sexpressions according to the pattern and
right-hand-side expressions. The first argument indicates the language used to resolve non-
terminals in the pattern expressions. Each of the rhs-expressions is implicitly wrapped in
term .

Relations are like metafunctions in that they are called with arguments and return results
(unlike in, say, prolog, where a relation definition would be able to synthesize some of the
arguments based on the values of others).

Unlike metafunctions, relations check all possible ways to match each case, looking for a
true result and if none of the clauses match, then the result is #f. If there are multiple
expressions on the right-hand side of a relation, then all of them must be satisfied in order
for that clause of the relation to be satisfied.

The contract specification for a relation restricts the patterns that can be used as input to a
relation. For each argument to the relation, there should be a single pattern, using x or × to
separate the argument contracts.

Note that relations are assumed to always return the same results for the same inputs, and
their results are cached, unless caching-enable? is set to #f. Accordingly, if a relation is
called with the same inputs twice, then its right-hand sides are evaluated only once.

(current-traced-metafunctions) → (or/c 'all (listof symbol?))

(current-traced-metafunctions traced-metafunctions) → void?

traced-metafunctions : (or/c 'all (listof symbol?))

22

Controls which metafunctions are currently being traced. If it is 'all, all of them are.
Otherwise, the elements of the list name the metafunctions to trace.

The tracing looks just like the tracing done by the racket/trace library, except that the
first column printed by each traced call indicate if this call to the metafunction is cached.
Specifically, a c is printed in the first column if the result is just returned from the cache and
a space is printed if the metafunction call is actually performed.

Defaults to '().

23

6 Testing

(test-equal e1 e2)

Tests to see if e1 is equal to e2 .

(test-->> rel-expr option ... e1-expr e2-expr ...)

option = #:cycles-ok

| #:equiv pred-expr

| #:pred pred-expr

rel-expr : reduction-relation?

pred-expr : (--> any/c any)

e1-expr : any/c

e2-expr : any/c

Tests to see if the term e1-expr , reduces to the terms e2-expr under rel-expr , using
pred-expr to determine equivalence.

If #:pred is specified, it is applied to each reachable term until one of the terms fails to
satify the predicate (i.e., the predicate returns #f). If that happens, then the test fails and a
message is printed with the term that failed to satisfy the predicate.

This test uses apply-reduction-relation*, so it does not terminate when the resulting
reduction graph is infinite, although it does terminate if there are cycles in the (finite) graph.

If #:cycles-ok is not supplied then any cycles detected are treated as a test failure. If a
pred-expr is supplied, then it is used to compare the expected and actual results.

(test--> rel-expr option ... e1-expr e2-expr ...)

option = #:equiv pred-expr

rel-expr : reduction-relation?

pred-expr : (--> any/c any/c anyc)

e1-expr : any/c

e2-expr : any/c

Tests to see if the term e1-expr , reduces to the terms e2-expr in a single rel-expr step,
using pred-expr to determine equivalence.

24

Examples:

> (define-language L

(i integer))

> (define R

(reduction-relation

L

(--> i i)

(--> i ,(add1 (term i)))))

> (define (mod2=? i j)

(= (modulo i 2) (modulo j 2)))

> (test--> R #:equiv mod2=? 7 1)

FAILED :9.0
expected: 1

actual: 8
actual: 7

> (test--> R #:equiv mod2=? 7 1 0)

> (test-results)

1 test failed (out of 2 total).

(test-->>∃ option ... rel-expr start-expr goal-expr)

option = #:steps steps-expr

rel-expr : reduction-relation?

start-expr : any/c

goal-expr : (or/c (-> any/c any/c)

(not/c procedure?))

steps-expr : (or/c natural-number/c +inf.0)

Tests to see if the term start-expr reduces according to the reduction relation rel-expr

to a term specified by goal-expr in steps-expr or fewer steps (default 1,000). The
specification goal-expr may be either a predicate on terms or a term itself.

test-->>E

An alias for test-->>∃.

Examples:

> (define-language L

(n natural))

> (define succ-mod8

(reduction-relation

L

25

(--> n ,(modulo (add1 (term n)) 8))))

> (test-->>∃ succ-mod8 6 2)

> (test-->>∃ succ-mod8 6 even?)

> (test-->>∃ succ-mod8 6 8)

FAILED :16.0
term 8 not reachable from 6
> (test-->>∃ #:steps 6 succ-mod8 6 5)

FAILED :17.0
term 5 not reachable from 6 (within 6 steps)
> (test-results)

2 tests failed (out of 4 total).

(test-predicate p? e)

Tests to see if the value of e matches the predicate p?.

(test-results) → void?

Prints out how many tests passed and failed, and resets the counters so that next time this
function is called, it prints the test results for the next round of tests.

(make-coverage subject)

subject = metafunction

| relation-expr

Constructs a structure (recognized by coverage?) to contain per-case test coverage of the
supplied metafunction or reduction relation. Use with relation-coverage and covered-

cases.

(coverage? v) → boolean?

v : any/c

Returns #t for a value produced by make-coverage and #f for any other.

(relation-coverage) → (listof coverage?)

(relation-coverage tracked) → void?

tracked : (listof coverage?)

Redex populates the coverage records in tracked (default null), counting the times that
tests exercise each case of the associated metafunction and relations.

(covered-cases c) → (listof (cons/c string? natural-number/c))

26

c : coverage?

Extracts the coverage information recorded in c , producing an association list mapping
names (or source locations, in the case of metafunctions or unnamed reduction-relation
cases) to application counts.

Examples:

> (define-language empty-lang)

> (define-metafunction empty-lang

[(plus number_1 number_2)

,(+ (term number_1) (term number_2))])

> (define equals

(reduction-relation

empty-lang

(--> (+) 0 "zero")

(--> (+ number) number)

(--> (+ number_1 number_2 number ...)

(+ (plus number_1 number_2)

number ...)

"add")))

> (let ([equals-coverage (make-coverage equals)]

[plus-coverage (make-coverage plus)])

(parameterize ([relation-coverage (list equals-coverage

plus-coverage)])

(apply-reduction-relation* equals (term (+ 1 2 3)))

(values (covered-cases equals-coverage)

(covered-cases plus-coverage))))

'(("add" . 2) ("eval:21:0" . 1) ("zero" . 0))

'(("eval:20:0" . 2))

(generate-term term-spec size-expr kw-args ...)

(generate-term term-spec)

term-spec = language pattern

| #:source metafunction

| #:source relation-expr

kw-args = #:attempt-num attempts-expr

| #:retries retries-expr

size-expr : natural-number/c

attempt-num-expr : natural-number/c

retries-expr : natural-number/c

In its first form, generate-term produces a random term according to term-spec , which

27

is either a language and a pattern, the name of a metafunction, or an expression producing
a reduction relation. In the first of these cases, the produced term matches the given pattern
(interpreted according to the definition of the given language). In the second and third cases,
the produced term matches one of the clauses of the specified metafunction or reduction
relation.

In its second form, generate-term produces a procedure for constructing terms according
to term-spec . This procedure expects size-expr (below) as its sole positional argument
and allows the same optional keyword arguments as the first form. The second form may be
more efficient when generating many terms.

The argument size-expr bounds the height of the generated term (measured as the height
of its parse tree).

Examples:

> (define-language L

(n number))

> (generate-term L (+ n_1 n_2) 5)

'(+ 1 0)

> (define R

(reduction-relation

L

(--> (one-clause n) ())

(--> (another-clause n) ())))

> (random-seed 0)

> (generate-term #:source R 5)

'(another-clause 2)

> (define R-left-hand-sides

(generate-term #:source R))

> (R-left-hand-sides 0)

'(one-clause 1)

> (R-left-hand-sides 1)

'(another-clause 1)

> (define-metafunction L

[(F one-clause n) ()]

[(F another-clause n) ()])

> (generate-term #:source F 5)

'(another-clause 2)

The optional keyword argument attempt-num-expr (default 1) provides coarse grained
control over the random decisions made during generation; increasing attempt-num-expr

tends to increase the complexity of the result. For example, the absolute values of numbers
chosen for integer patterns increase with attempt-num-expr.

The random generation process does not actively consider the constraints imposed by side-
condition or _!_ patterns; instead, it uses a “guess and check” strategy in which it freely gen-

28

erates candidate terms then tests whether they happen to satisfy the constraints, repeating as
necessary. The optional keyword argument retries-expr (default 100) bounds the num-
ber of times that generate-term retries the generation of any pattern. If generate-term
is unable to produce a satisfying term after retries-expr attempts, it raises an exception
recognized by exn:fail:redex:generation-failure?.

(redex-check language pattern property-expr kw-arg ...)

kw-arg = #:attempts attempts-expr

| #:source metafunction

| #:source relation-expr

| #:retries retries-expr

| #:print? print?-expr

| #:attempt-size attempt-size-expr

| #:prepare prepare-expr

property-expr : any/c

attempts-expr : natural-number/c

relation-expr : reduction-relation?

retries-expr : natural-number/c

print?-expr : any/c

attempt-size-expr : (-> natural-number/c natural-number/c)

prepare-expr : (-> any/c any/c)

Searches for a counterexample to property-expr , interpreted as a predicate universally
quantified over the pattern variables bound by pattern. redex-check constructs and tests
a candidate counterexample by choosing a random term t that matches pattern then eval-
uating property-expr using the match-bindings produced by matching t against pat-
tern.

redex-check generates at most attempts-expr (default (default-check-attempts))
random terms in its search. The size and complexity of these terms tend to increase with
each failed attempt. The #:attempt-size keyword determines the rate at which terms
grow by supplying a function that bounds term size based on the number of failed attempts
(see generate-term’s size-expr argument). By default, the bound grows according to
the default-attempt-size function.

When print?-expr produces any non-#f value (the default), redex-check prints the test
outcome on current-output-port. When print?-expr produces #f, redex-check
prints nothing, instead

• returning a counterexample structure when the test reveals a counterexample,

• returning #t when all tests pass, or

29

• raising a exn:fail:redex:test when checking the property raises an exception.

The optional #:prepare keyword supplies a function that transforms each generated ex-
ample before redex-check checks property-expr . This keyword may be useful when
property-expr takes the form of a conditional, and a term chosen freely from the gram-
mar is unlikely to satisfy the conditional’s hypothesis. In some such cases, the prepare

keyword can be used to increase the probability that an example satifies the hypothesis.

When passed a metafunction or reduction relation via the optional #:source argument,
redex-check distributes its attempts across the left-hand sides of that metafunction/relation
by using those patterns, rather than pattern, as the basis of its generation. It is an error if
any left-hand side generates a term that does not match pattern.

Examples:

> (define-language empty-lang)

> (random-seed 0)

> (redex-check

empty-lang

((number_1 ...)

(number_2 ...))

(equal? (reverse (append (term (number_1 ...))

(term (number_2 ...))))

(append (reverse (term (number_1 ...)))

(reverse (term (number_2 ...))))))

redex-check: counterexample found after 5 attempts:

((1 0) (0))

> (redex-check

empty-lang

((number_1 ...)

(number_2 ...))

(equal? (reverse (append (term (number_1 ...))

(term (number_2 ...))))

(append (reverse (term (number_2 ...)))

(reverse (term (number_1 ...)))))

#:attempts 200)

redex-check: no counterexamples in 200 attempts

> (let ([R (reduction-relation

empty-lang

(--> (Σ) 0)

(--> (Σ number) number)

(--> (Σ number_1 number_2 number_3 ...)

(Σ ,(+ (term number_1) (term number_2))

number_3 ...)))])

(redex-check

empty-lang

30

(Σ number ...)

(printf "∼s\n" (term (number ...)))

#:attempts 3

#:source R))

()

(1)

(3 0)

redex-check: no counterexamples in 1 attempt (with each clause)

> (redex-check

empty-lang

number

(begin

(printf "checking ∼s\n" (term number))

(positive? (term number)))

#:prepare (λ (n)

(printf "preparing ∼s; " n)

(add1 (abs n)))

#:attempts 3)

preparing 0; checking 1

preparing 0; checking 1

preparing 1; checking 2

redex-check: no counterexamples in 3 attempts

(struct counterexample (term)

#:extra-constructor-name make-counterexample

#:transparent)

term : any/c

Produced by redex-check, check-reduction-relation, and check-metafunction

when testing falsifies a property.

(struct exn:fail:redex:test exn:fail:redex (source term)

#:extra-constructor-name make-exn:fail:redex:test)

source : exn:fail?

term : any/c

Raised by redex-check, check-reduction-relation, and check-metafunction

when testing a property raises an exception. The exn:fail:redex:test-source compo-
nent contains the exception raised by the property, and the exn:fail:redex:test-term

component contains the term that induced the exception.

(check-reduction-relation relation property kw-args ...)

31

kw-arg = #:attempts attempts-expr

| #:retries retries-expr

| #:print? print?-expr

| #:attempt-size attempt-size-expr

| #:prepare prepare-expr

property : (-> any/c any/c)

attempts-expr : natural-number/c

retries-expr : natural-number/c

print?-expr : any/c

attempt-size-expr : (-> natural-number/c natural-number/c)

prepare-expr : (-> any/c any/c)

Tests relation as follows: for each case of relation , check-reduction-relation
generates attempts random terms that match that case’s left-hand side and applies prop-
erty to each random term.

This form provides a more convenient notation for

(redex-check L any (property (term any))

#:attempts (* n attempts)

#:source relation)

when relation is a relation on L with n rules.

(check-metafunction metafunction property kw-args ...)

kw-arg = #:attempts attempts-expr

| #:retries retries-expr

| #:print? print?-expr

| #:attempt-size attempt-size-expr

| #:prepare prepare-expr

property : (-> (listof any/c) any/c)

attempts-expr : natural-number/c

retries-expr : natural-number/c

print?-expr : any/c

attempt-size-expr : (-> natural-number/c natural-number/c)

prepare-expr : (-> (listof any/c) (listof any/c))

Like check-reduction-relation but for metafunctions. check-metafunction calls
property with lists containing arguments to the metafunction. Similarly, prepare-expr

32

produces and consumes argument lists.

Examples:

> (define-language empty-lang)

> (random-seed 0)

> (define-metafunction empty-lang

Σ : number ... -> number

[(Σ) 0]

[(Σ number) number]

[(Σ number_1 number_2 number_3 ...)

(Σ ,(+ (term number_1) (term number_2)) number_3 ...)])

> (check-metafunction Σ (λ (args) (printf "∼s\n" args)) #:attempts 2)

()

()

(0)

(0)

(2 1)

(0 1)

check-metafunction: no counterexamples in 2 attempts (with each

clause)

(default-attempt-size n) → natural-number/c

n : natural-number/c

The default value of the #:attempt-size argument to redex-check and the other ran-
domized testing forms, this procedure computes an upper bound on the size of the next test
case from the number of previously attempted tests n . Currently, this procedure computes
the base 5 logarithm, but that behavior may change in future versions.

(default-check-attempts) → natural-number/c

(default-check-attempts attempts) → void?

attempts : natural-number/c

Determines the default value for redex-check’s optional #:attempts argument. By de-
fault, attempts is 1,000.

(redex-pseudo-random-generator) → pseudo-random-generator?

(redex-pseudo-random-generator generator) → void?

generator : pseudo-random-generator?

generate-term and the randomized testing forms (e.g., redex-check) use the parameter
generator to construct random terms. The parameter’s initial value is (current-pseudo-
random-generator).

33

(exn:fail:redex:generation-failure? v) → boolean?

v : any/c

Recognizes the exceptions raised by generate-term, redex-check, etc. when those forms
are unable to produce a term matching some pattern.

Debugging PLT Redex Programs

It is easy to write grammars and reduction rules that are subtly wrong. Typically such mis-
takes result in examples that get stuck when viewed in a traces window.

The best way to debug such programs is to find an expression that looks like it should reduce,
but doesn’t, then try to find out which pattern is failing to match. To do so, use the redex-
match form.

In particular, first check if the term in question matches the your system’s main non-terminal
(typically the expression or program non-terminal). If it does not match, simplify the term
piece by piece to determine whether the problem is in the term or the grammar.

If the term does match your system’s main non-terminal, determine by inspection which
reduction rules should apply. For each such rule, repeat the above term-pattern debugging
procedure, this time using the rule’s left-hand side pattern instead of the system’s main non-
terminal. In addition to simplifying the term, also consider simplifying the pattern.

If the term matches the left-hand side, but the rule does not apply, then one of the rule’s
side-condition or where clauses is not satisfied. Using the bindings reported by redex-

match, check each side-condition expression and each where pattern-match to discover
which clause is preventing the rule’s application.

34

7 GUI

(require redex/gui)

This section describes the GUI tools that Redex provides for exploring reduction sequences.

(traces reductions

expr

[#:multiple? multiple?

#:pred pred

#:pp pp

#:colors colors

#:racket-colors? racket-colors?

#:scheme-colors? scheme-colors?

#:filter term-filter

#:x-spacing x-spacing

#:y-spacing y-spacing

#:layout layout

#:edge-labels? edge-label-font

#:edge-label-font edge-label-font

#:graph-pasteboard-mixin graph-pasteboard-mixin])
→ void?

reductions : reduction-relation?

expr : (or/c any/c (listof any/c))

multiple? : boolean? = #f

pred : (or/c (-> sexp any)

(-> sexp term-node? any))

= (lambda (x) #t)

pp : (or/c (any -> string)

(any output-port number (is-a?/c text%) -> void))

= default-pretty-printer

colors : (listof

(cons/c string?

(and/c (listof (or/c string? (is-a?/c color%)))

(lambda (x) (<= 0 (length x) 6)))))

= '()

racket-colors? : boolean? = #t

scheme-colors? : boolean? = racket-colors?

term-filter : (-> any/c (or/c #f string?) any/c)

= (lambda (x y) #t)

x-spacing : number? = 15

y-spacing : number? = 15

layout : (-> (listof term-node?) void) = void

edge-label-font : boolean? = #t

edge-label-font : (or/c #f (is-a?/c font%)) = #f

35

graph-pasteboard-mixin : (make-mixin-contract graph-pasteboard<%>)

= values

This function opens a new window and inserts each expression in expr (if multiple? is
#t – if multiple? is #f, then expr is treated as a single expression). Then, it reduces the
terms until at least reduction-steps-cutoff (see below) different terms are found, or no
more reductions can occur. It inserts each new term into the gui. Clicking the reduce button
reduces until reduction-steps-cutoff more terms are found.

The pred function indicates if a term has a particular property. If it returns #f, the term
is displayed with a pink background. If it returns a string or a color% object, the term is
displayed with a background of that color (using the-color-database to map the string
to a color). If it returns any other value, the term is displayed normally. If the pred function
accepts two arguments, a term-node corresponding to the term is passed to the predicate.
This lets the predicate function explore the (names of the) reductions that led to this term,
using term-node-children, term-node-parents, and term-node-labels.

The pred function may be called more than once per node. In particular, it is called each
time an edge is added to a node. The latest value returned determines the color.

The pp function is used to specially print expressions. It must either accept one or four
arguments. If it accepts one argument, it will be passed each term and is expected to return
a string to display the term.

If the pp function takes four arguments, it should render its first argument into the port (its
second argument) with width at most given by the number (its third argument). The final
argument is the text where the port is connected – characters written to the port go to the end
of the editor.

The colors argument, if provided, specifies a list of reduction-name/color-list pairs. The
traces gui will color arrows drawn because of the given reduction name with the given color
instead of using the default color.

The cdr of each of the elements of colors is a list of colors, organized in pairs. The first
two colors cover the colors of the line and the border around the arrow head, the first when
the mouse is over a graph node that is connected to that arrow, and the second for when
the mouse is not over that arrow. Similarly, the next colors are for the text drawn on the
arrow and the last two are for the color that fills the arrow head. If fewer than six colors
are specified, the specified colors are used and then defaults are filled in for the remaining
colors.

The racket-colors? argument (along with scheme-colors?, retained for backward com-
patibility), controls the coloring of each window. When racket-colors? is #t (and
scheme-colors? is #t too), traces colors the contents according to DrRacket’s Racket-
mode color scheme; otherwise, traces uses a black color scheme.

The term-filter function is called each time a new node is about to be inserted into the

36

graph. If the filter returns false, the node is not inserted into the graph.

The x-spacing and y-spacing control the amount of space put between the snips in the
default layout.

The layout argument is called (with all of the terms) when new terms are inserted into the
window. In general, it is called after new terms are inserted in response to the user clicking
on the reduce button, and after the initial set of terms is inserted. See also term-node-set-

position!.

If edge-labels? is #t (the default), then edge labels are drawn; otherwise not.

The edge-label-font argument is used as the font on the edge labels. If #f is suppled,
the dc<%> object’s default font is used.

The traces library uses an instance of the mrlib/graph library’s graph-pasteboard<%>
interface to layout the graphs. Sometimes, overriding one of its methods can help give finer-
grained control over the layout, so the graph-pasteboard-mixin is applied to the class
before it is instantiated. Also note that all of the snips inserted into the editor by this library
have a get-term-node method which returns the snip’s term-node.

(traces/ps reductions

expr

file

[#:multiple? multiple?

#:pred pred

#:pp pp

#:colors colors

#:filter term-filter

#:layout layout

#:x-spacing x-spacing

#:y-spacing y-spacing

#:edge-labels? edge-label-font

#:edge-label-font edge-label-font

#:graph-pasteboard-mixin graph-pasteboard-mixin]
#:post-process post-process)

→ void?

reductions : reduction-relation?

expr : (or/c any/c (listof any/c))

file : (or/c path-string? path?)

multiple? : boolean? = #f

pred : (or/c (-> sexp any)

(-> sexp term-node? any))

= (lambda (x) #t)

pp : (or/c (any -> string)

(any output-port number (is-a?/c text%) -> void))

= default-pretty-printer

37

colors : (listof

(cons/c string?

(and/c (listof (or/c string? (is-a?/c color%)))

(lambda (x) (<= 0 (length x) 6)))))

= '()

term-filter : (-> any/c (or/c #f string?) any/c)

= (lambda (x y) #t)

layout : (-> (listof term-node?) void) = void

x-spacing : number? = 15

y-spacing : number? = 15

edge-label-font : boolean? = #t

edge-label-font : (or/c #f (is-a?/c font%)) = #f

graph-pasteboard-mixin : (make-mixin-contract graph-pasteboard<%>)

= values

post-process : (-> (is-a?/c graph-pasteboard<%>) any/c)

This function behaves just like the function traces, but instead of opening a window to
show the reduction graph, it just saves the reduction graph to the specified file .

All of the arguments behave like the arguments to traces, with the exception of the post-
process argument. It is called just before the PostScript is created with the graph paste-
board.

(stepper reductions t [pp]) → void?

reductions : reduction-relation?

t : any/c

pp : (or/c (any -> string)

(any output-port number (is-a?/c text%) -> void))

= default-pretty-printer

This function opens a stepper window for exploring the behavior of the term t in the reduc-
tion system given by reductions .

The pp argument is the same as to the traces function but is here for backwards compat-
ibility only and should not be changed for most uses, but instead adjusted with pretty-

print-parameters. Specifically, the highlighting shown in the stepper window can be
wrong if default-pretty-printer does not print sufficiently similarly to how pretty-

print prints (when adjusted by pretty-print-parameters’s behavior, of course).

(stepper/seed reductions seed [pp]) → void?

reductions : reduction-relation?

seed : (cons/c any/c (listof any/c))

pp : (or/c (any -> string)

(any output-port number (is-a?/c text%) -> void))

= default-pretty-printer

38

Like stepper, this function opens a stepper window, but it seeds it with the reduction-
sequence supplied in seed .

(term-node-children tn) → (listof term-node?)

tn : term-node?

Returns a list of the children (ie, terms that this term reduces to) of the given node.

Note that this function does not return all terms that this term reduces to – only those that
are currently in the graph.

(term-node-parents tn) → (listof term-node?)

tn : term-node?

Returns a list of the parents (ie, terms that reduced to the current term) of the given node.

Note that this function does not return all terms that reduce to this one – only those that are
currently in the graph.

(term-node-labels tn) → (listof (or/c false/c string?))

tn : term-node

Returns a list of the names of the reductions that led to the given node, in the same order
as the result of term-node-parents. If the list contains #f, that means that the corresponding
step does not have a label.

(term-node-set-color! tn color) → void?

tn : term-node?

color : (or/c string? (is-a?/c color%) false/c)

Changes the highlighting of the node; if its second argument is #f, the coloring is removed,
otherwise the color is set to the specified color% object or the color named by the string.
The color-database<%> is used to convert the string to a color% object.

(term-node-color tn) → (or/c string? (is-a?/c color%) false/c)

tn : term-node?

Returns the current highlighting of the node. See also term-node-set-color!.

(term-node-set-red! tn red?) → void?

tn : term-node?

red? : boolean?

39

Changes the highlighting of the node; if its second argument is #t, the term is colored pink,
if it is #f, the term is not colored specially.

(term-node-expr tn) → any

tn : term-node?

Returns the expression in this node.

(term-node-set-position! tn x y) → void?

tn : term-node?

x : (and/c real? positive?)

y : (and/c real? positive?)

Sets the position of tn in the graph to (x ,y).

(term-node-x tn) → real

tn : term-node?

Returns the x coordinate of tn in the window.

(term-node-y tn) → real

tn : term-node?

Returns the y coordinate of tn in the window.

(term-node-width tn) → real

tn : term-node?

Returns the width of tn in the window.

(term-node-height tn) → real?

tn : term-node?

Returns the height of tn in the window.

(term-node? v) → boolean?

v : any/c

Recognizes term nodes.

(reduction-steps-cutoff) → number?

40

(reduction-steps-cutoff cutoff) → void?

cutoff : number?

A parameter that controls how many steps the traces function takes before stopping.

(initial-font-size) → number?

(initial-font-size size) → void?

size : number?

A parameter that controls the initial font size for the terms shown in the GUI window.

(initial-char-width) → (or/c number? (-> any/c number?))

(initial-char-width width) → void?

width : (or/c number? (-> any/c number?))

A parameter that determines the initial width of the boxes where terms are displayed (mea-
sured in characters) for both the stepper and traces.

If its value is a number, then the number is used as the width for every term. If its value is a
function, then the function is called with each term and the resulting number is used as the
width.

(dark-pen-color) → (or/c string? (is-a?/c color<%>))

(dark-pen-color color) → void?

color : (or/c string? (is-a?/c color<%>))

(dark-brush-color) → (or/c string? (is-a?/c color<%>))

(dark-brush-color color) → void?

color : (or/c string? (is-a?/c color<%>))

(light-pen-color) → (or/c string? (is-a?/c color<%>))

(light-pen-color color) → void?

color : (or/c string? (is-a?/c color<%>))

(light-brush-color) → (or/c string? (is-a?/c color<%>))

(light-brush-color color) → void?

color : (or/c string? (is-a?/c color<%>))

(dark-text-color) → (or/c string? (is-a?/c color<%>))

(dark-text-color color) → void?

color : (or/c string? (is-a?/c color<%>))

(light-text-color) → (or/c string? (is-a?/c color<%>))

(light-text-color color) → void?

color : (or/c string? (is-a?/c color<%>))

These six parameters control the color of the edges in the graph.

The dark colors are used when the mouse is over one of the nodes that is connected to this
edge. The light colors are used when it isn’t.

41

The pen colors control the color of the line. The brush colors control the color used to fill
the arrowhead and the text colors control the color used to draw the label on the edge.

(pretty-print-parameters) → (-> (-> any/c) any/c)

(pretty-print-parameters f) → void?

f : (-> (-> any/c) any/c)

A parameter that is used to set other pretty-print parameters.

Specifically, whenever default-pretty-printer prints something it calls f with a thunk
that does the actual printing. Thus, f can adjust pretty-print’s parameters to adjust how
printing happens.

(default-pretty-printer v port width text) → void?

v : any/c

port : output-port?

width : exact-nonnegative-integer?

text : (is-a?/c text%)

This is the default value of pp used by traces and stepper and it uses pretty-print.

This function uses the value of pretty-print-parameters to adjust how it prints.

It sets the pretty-print-columns parameter to width , and it sets pretty-print-size-
hook and pretty-print-print-hook to print holes and the symbol 'hole to match the
way they are input in a term expression.

42

8 Typesetting

(require redex/pict)

The redex/pict library provides functions designed to automatically typeset grammars,
reduction relations, and metafunction written with plt redex.

Each grammar, reduction relation, and metafunction can be saved in a .ps file (as encapsu-
lated postscript), or can be turned into a pict for viewing in the REPL or using with Slideshow
(see Slideshow: Figure and Presentation Tools).

8.1 Picts & PostScript

This section documents two classes of operations, one for direct use of creating postscript
figures for use in papers and for use in DrRacket to easily adjust the typesetting: render-
term, render-language, render-reduction-relation, render-relation, render-
metafunctions, and render-lw, and one for use in combination with other libraries
that operate on picts term->pict, language->pict, reduction-relation->pict,
metafunction->pict, and lw->pict. The primary difference between these functions
is that the former list sets dc-for-text-size and the latter does not.

(render-term lang term file) → (if file void? pict?)

lang : compiled-lang?

term : any/c

file : (or/c #f path-string?)

Renders the term term . If file is #f, it produces a pict; if file is a path, it saves En-
capsulated PostScript in the provided filename. See render-language for details on the
construction of the pict.

(term->pict lang term) → pict?

lang : compiled-lang?

term : any/c

Produces a pict like render-term, but without adjusting dc-for-text-size.

This function is primarily designed to be used with Slideshow or with other tools that com-
bine picts together.

(render-language lang [file #:nts nts]) → (if file void? pict?)

lang : compiled-lang?

file : (or/c false/c path-string?) = #f

43

nts : (or/c false/c (listof (or/c string? symbol?)))

= (render-language-nts)

Renders a language. If file is #f, it produces a pict; if file is a path, it saves Encapsulated
PostScript in the provided filename. See render-language-nts for information on the
nts argument.

This function parameterizes dc-for-text-size to install a relevant dc: a bitmap-dc% or
a post-script-dc%, depending on whether file is a path.

See language->pict if you are using Slideshow or are otherwise setting dc-for-text-

size.

(language->pict lang [#:nts nts]) → pict?

lang : compiled-lang?

nts : (or/c false/c (listof (or/c string? symbol?)))

= (render-language-nts)

Produce a pict like render-language, but without adjusting dc-for-text-size.

This function is primarily designed to be used with Slideshow or with other tools that com-
bine picts together.

(render-reduction-relation rel

[file
#:style style])

→ (if file void? pict?)

rel : reduction-relation?

file : (or/c false/c path-string?) = #f

style : reduction-rule-style/c = (rule-pict-style)

Renders a reduction relation. If file is #f, it produces a pict; if file is a path, it saves
Encapsulated PostScript in the provided filename. See rule-pict-style for information
on the style argument.

This function parameterizes dc-for-text-size to install a relevant dc: a bitmap-dc%

or a post-script-dc%, depending on whether file is a path. See also reduction-

relation->pict.

The following forms of arrows can be typeset:

--> -+> ==> -> => ..> >-> ∼∼> ∼> :-> :�> c-> �>>

>� �< >>� �<<

(reduction-relation->pict r [#:style style]) → pict?

44

r : reduction-relation?

style : reduction-rule-style/c = (rule-pict-style)

Produces a pict like render-reduction-relation, but without setting dc-for-text-

size.

This function is primarily designed to be used with Slideshow or with other tools that com-
bine picts together.

(render-metafunction metafunction-name)

(render-metafunction metafunction-name filename)

(render-metafunctions metafunction-name ...)

(render-metafunctions metafunction-name ... #:file filename)

If provided with one argument, render-metafunction produces a pict that renders prop-
erly in the definitions window in DrRacket. If given two arguments, it writes postscript into
the file named by filename (which may be either a string or bytes).

Similarly, render-metafunctions accepts multiple metafunctions and renders them to-
gether, lining up all of the clauses together.

This function sets dc-for-text-size. See also metafunction->pict and
metafunctions->pict.

(metafunction->pict metafunction-name)

This produces a pict, but without setting dc-for-text-size. It is suitable for use in
Slideshow or other libraries that combine picts.

(metafunctions->pict metafunction-name ...)

Like metafunction->pict, this produces a pict, but without setting dc-for-text-size

and is suitable for use in Slideshow or other libraries that combine picts. Like render-

metafunctions, it accepts multiple metafunctions and renders them together.

(render-relation relation-name)

(render-relation relation-name filename)

If provided with one argument, render-relation produces a pict that renders properly in
the definitions window in DrRacket. If given two arguments, it writes postscript into the file
named by filename (which may be either a string or bytes).

This function sets dc-for-text-size. See also relation->pict.

45

(relation->pict relation-name)

This produces a pict, but without setting dc-for-text-size. It is suitable for use in
Slideshow or other libraries that combine picts.

8.2 Customization

(render-language-nts) → (or/c false/c (listof symbol?))

(render-language-nts nts) → void?

nts : (or/c false/c (listof symbol?))

The value of this parameter controls which non-terminals render-language and
language->pict render by default. If it is #f (the default), all non-terminals are rendered.
If it is a list of symbols, only the listed symbols are rendered.

See also language-nts.

(extend-language-show-union) → boolean?

(extend-language-show-union show?) → void?

show? : boolean?

If this is #t, then a language constructed with extend-language is shown as if the language
had been constructed directly with language. If it is #f, then only the last extension to the
language is shown (with four-period ellipses, just like in the concrete syntax).

Defaults to #f.

Note that the #t variant can look a little bit strange if are used and the original version
of the language has multi-line right-hand sides.

(render-reduction-relation-rules)

→ (or/c false/c (listof (or/c symbol? string? exact-nonnegative-integer?)))

(render-reduction-relation-rules rules) → void?

rules : (or/c false/c (listof (or/c symbol? string? exact-nonnegative-integer?)))

This parameter controls which rules in a reduction relation will be rendered. The strings and
symbols match the names of the rules and the integers match the position of the rule in the
original definition.

(rule-pict-style) → reduction-rule-style/c

(rule-pict-style style) → void?

46

style : reduction-rule-style/c

This parameter controls the style used by default for the reduction relation. It can be 'hor-
izontal, where the left and right-hand sides of the reduction rule are beside each other or
'vertical, where the left and right-hand sides of the reduction rule are above each other.
The 'compact-vertical style moves the reduction arrow to the second line and uses less
space between lines. The 'vertical-overlapping-side-conditions variant, the side-
conditions don’t contribute to the width of the pict, but are just overlaid on the second line
of each rule. The 'horizontal-left-align style is like the 'horizontal style, but the
left-hand sides of the rules are aligned on the left, instead of on the right.

reduction-rule-style/c : flat-contract?

A contract equivalent to

(symbols 'vertical

'compact-vertical

'vertical-overlapping-side-conditions

'horizontal)

(arrow-space) → natural-number/c

(arrow-space space) → void?

space : natural-number/c

This parameter controls the amount of extra horizontal space around the reduction relation
arrow. Defaults to 0.

(label-space) → natural-number/c

(label-space space) → void?

space : natural-number/c

This parameter controls the amount of extra space before the label on each rule, except in
the 'vertical and 'vertical-overlapping-side-conditions modes, where it has no
effect. Defaults to 0.

(metafunction-pict-style)

→ (or/c 'left-right

'up-down

'left-right/vertical-side-conditions

'up-down/vertical-side-conditions

'left-right/compact-side-conditions

'up-down/compact-side-conditions

'left-right/beside-side-conditions)

(metafunction-pict-style style) → void?

47

style : (or/c 'left-right

'up-down

'left-right/vertical-side-conditions

'up-down/vertical-side-conditions

'left-right/compact-side-conditions

'up-down/compact-side-conditions

'left-right/beside-side-conditions)

This parameter controls the style used for typesetting metafunctions. The 'left-right

style means that the results of calling the metafunction are displayed to the right of the
arguments and the 'up-down style means that the results are displayed below the arguments.

The 'left-right/vertical-side-conditions and 'up-down/vertical-side-

conditions variants format side conditions each on a separate line, instead of all on the
same line.

The 'left-right/compact-side-conditions and 'up-down/compact-side-

conditions variants move side conditions to separate lines to avoid making the rendered
form wider than it would be otherwise.

The 'left-right/beside-side-conditions variant is like 'left-right, except it
puts the side-conditions on the same line, instead of on a new line below the case.

(delimit-ellipsis-arguments?) → any/c

(delimit-ellipsis-arguments? delimit?) → void?

delimit? : any/c

This parameter controls the typesetting of metafunction definitions and applications. When
it is non-#f (the default), commas precede ellipses that represent argument sequences; when
it is #f no commas appear in those positions.

(linebreaks) → (or/c #f (listof boolean?))

(linebreaks breaks) → void?

breaks : (or/c #f (listof boolean?))

This parameter controls which cases in the metafunction are rendered on two lines and which
are rendered on one.

If its value is a list, the length of the list must match the number of cases and each boolean
indicates if that case has a linebreak or not.

This influences the 'left/right styles only.

(metafunction-cases)

48

→ (or/c #f (and/c (listof (and/c integer?

(or/c zero? positive?)))

pair?))

(metafunction-cases cases) → void?

cases : (or/c #f (and/c (listof (and/c integer?

(or/c zero? positive?)))

pair?))

This parameter controls which cases in a metafunction are rendered. If it is #f (the default),
then all of the cases appear. If it is a list of numbers, then only the selected cases appear
(counting from 0).

(label-style) → text-style/c

(label-style style) → void?

style : text-style/c

(grammar-style) → text-style/c

(grammar-style style) → void?

style : text-style/c

(paren-style) → text-style/c

(paren-style style) → void?

style : text-style/c

(literal-style) → text-style/c

(literal-style style) → void?

style : text-style/c

(metafunction-style) → text-style/c

(metafunction-style style) → void?

style : text-style/c

(non-terminal-style) → text-style/c

(non-terminal-style style) → void?

style : text-style/c

(non-terminal-subscript-style) → text-style/c

(non-terminal-subscript-style style) → void?

style : text-style/c

(non-terminal-superscript-style) → text-style/c

(non-terminal-superscript-style style) → void?

style : text-style/c

(default-style) → text-style/c

(default-style style) → void?

style : text-style/c

These parameters determine the font used for various text in the picts. See text in the texpict
collection for documentation explaining text-style/c. One of the more useful things it
can be is one of the symbols 'roman, 'swiss, or 'modern, which are a serif, sans-serif, and
monospaced font, respectively. (It can also encode style information, too.)

49

The label-style is used for the reduction rule label names. The literal-style is used
for names that aren’t non-terminals that appear in patterns. The metafunction-style is
used for the names of metafunctions. The paren-style is used for the parentheses (includ-
ing “[”, “]”, “{”, and “}”, as well as “(” and “)”), but not for the square brackets used for
in-hole decompositions, which use the default-style. The grammar-style is used for
the “::=” and “|” in grammars.

The non-terminal-style parameter is used for the names of non-terminals. Two parame-
ters style the text in the (optional) "underscore" component of a non-terminal reference. The
first, non-terminal-subscript-style, applies to the segment between the underscore
and the first caret (^) to follow it; the second, non-terminal-superscript-style, ap-
plies to the segment following that caret. For example, in the non-terminal reference x_y^z,
x has style non-terminal-style, y has style non-terminal-subscript-style, and z

has style non-terminal-superscript-style.

The default-style is used for parenthesis, the dot in dotted lists, spaces, the "where" and
"fresh" in side-conditions, and other places where the other parameters aren’t used.

(label-font-size) → (and/c (between/c 1 255) integer?)

(label-font-size size) → void?

size : (and/c (between/c 1 255) integer?)

(metafunction-font-size) → (and/c (between/c 1 255) integer?)

(metafunction-font-size size) → void?

size : (and/c (between/c 1 255) integer?)

(default-font-size) → (and/c (between/c 1 255) integer?)

(default-font-size size) → void?

size : (and/c (between/c 1 255) integer?)

These parameters control the various font sizes. The default-font-size is used for all of the
font sizes except labels and metafunctions.

(reduction-relation-rule-separation)

→ (parameter/c (and/c integer? positive? exact?))

(reduction-relation-rule-separation sep) → void?

sep : (parameter/c (and/c integer? positive? exact?))

Controls the amount of space between clauses in a reduction relation. Defaults to 4.

(curly-quotes-for-strings) → boolean?

(curly-quotes-for-strings on?) → void?

on? : boolean?

Controls if the open and close quotes for strings are turned into “ and ” or are left as merely
".

50

Defaults to #t.

(current-text) → (-> string? text-style/c number? pict?)

(current-text proc) → void?

proc : (-> string? text-style/c number? pict?)

This parameter’s function is called whenever Redex typesets some part of a grammar, reduc-
tion relation, or metafunction. It defaults to slideshow’s text function.

(arrow->pict arrow) → pict?

arrow : symbol?

Returns the pict corresponding to arrow .

(set-arrow-pict! arrow proc) → void?

arrow : symbol?

proc : (-> pict?)

This functions sets the pict for a given reduction-relation symbol. When typesetting a reduc-
tion relation that uses the symbol, the thunk will be invoked to get a pict to render it. The
thunk may be invoked multiple times when rendering a single reduction relation.

(white-bracket-sizing)

→ (-> string? number? (values number? number? number? number?))

(white-bracket-sizing proc) → void?

proc : (-> string? number? (values number? number? number? number?))

This parameter is used when typesetting metafunctions to determine how to create the [[]]
characters. Rather than using those characters directly (since glyphs tend not to be available
in PostScript fonts), they are created by combining two ‘[’ characters or two ‘]’ characters
together.

The procedure accepts a string that is either "[" or "]", and returns four numbers. The
first two numbers determine the offset (from the left and from the right respectively) for the
second square bracket, and the second two two numbers determine the extra space added (to
the left and to the right respectively).

The default value of the parameter is:

(λ (str size)

(let ([inset-amt (floor/even (max 4 (* size 1/2)))])

(cond

[(equal? str "[")

(values inset-amt

51

0

0

(/ inset-amt 2))]

[else

(values 0

inset-amt

(/ inset-amt 2)

0)])))

where floor/even returns the nearest even number below its argument. This means that
for sizes 9, 10, and 11, inset-amt will be 4, and for 12, 13, 14, and 15, inset-amt will be
6.

(horizontal-bar-spacing)

→ (parameter/c exact-nonnegative-integer?)

(horizontal-bar-spacing space) → void?

space : (parameter/c exact-nonnegative-integer?)

Controls the amount of space around the horizontal bar when rendering a relation (that was
created by define-relation). Defaults to 4.

(relation-clauses-combine)

→ (parameter/c (-> (listof pict?) pict?))

(relation-clauses-combine combine) → void?

combine : (parameter/c (-> (listof pict?) pict?))

combine is called with the list of picts that are obtained by rendering a relation; it should
put them together into a single pict. It defaults to (λ (l) (apply vc-append 20 l))

8.3 Removing the Pink Background

When reduction rules, a metafunction, or a grammar contains unquoted Racket code or side-
conditions, they are rendered with a pink background as a guide to help find them and pro-
vide alternative typesettings for them. In general, a good goal for a PLT Redex program
that you intend to typeset is to only include such things when they correspond to standard
mathematical operations, and the Racket code is an implementation of those operations.

To replace the pink code, use:

(with-unquote-rewriter proc expression)

It installs proc the current unqoute rewriter and evaluates expression. If that expression

52

computes any picts, the unquote rewriter specified is used to remap them.

The proc should be a function of one argument. It receives a lw struct as an argument and
should return another lw that contains a rewritten version of the code.

(with-atomic-rewriter name-symbol

string-or-thunk-returning-pict

expression)

This extends the current set of atomic-rewriters with one new one that rewrites the value of
name-symbol to string-or-pict-returning-thunk (applied, in the case of a thunk), during the
evaluation of expression.

name-symbol is expected to evaluate to a symbol. The value of string-or-thunk-returning-
pict is used whever the symbol appears in a pattern.

(with-compound-rewriter name-symbol

proc

expression)

This extends the current set of compound-rewriters with one new one that rewrites the value
of name-symbol via proc, during the evaluation of expression.

name-symbol is expected to evaluate to a symbol. The value of proc is called with a
(listof lw), and is expected to return a new (listof (or/c lw? string? pict?)),
rewritten appropriately.

The list passed to the rewriter corresponds to the lw for the sequence that has name-symbol’s
value at its head.

The result list is constrained to have at most 2 adjacent non-lws. That list is then transformed
by adding lw structs for each of the non-lws in the list (see the description of lw below for
an explanation of logical-space):

• If there are two adjacent lws, then the logical space between them is filled with whites-
pace.

• If there is a pair of lws with just a single non-lw between them, a lw will be created
(containing the non-lw) that uses all of the available logical space between the lws.

• If there are two adjacent non-lws between two lws, the first non-lw is rendered right
after the first lw with a logical space of zero, and the second is rendered right before
the last lw also with a logical space of zero, and the logical space between the two lws
is absorbed by a new lw that renders using no actual space in the typeset version.

53

(struct lw (e

line

line-span

column

column-span

unq?

metafunction?)

#:constructor-name make-lw

#:mutable)

e : (or/c string?

symbol?

pict?

(listof (or/c (symbols 'spring) lw?)))

line : exact-positive-integer?

line-span : exact-positive-integer?

column : exact-positive-integer?

column-span : exact-positive-integer?

unq? : boolean?

metafunction? : boolean?

The lw data structure corresponds represents a pattern or a Racket expression that is to
be typeset. The functions listed above construct lw structs, select fields out of them, and
recognize them. The lw binding can be used with copy-struct.

The values of the unq? and metafunction? fields, respectively, indicate whether the lw

represents an unquoted expression or a metafunction application. See to-lw for the mean-
ings of the other fields.

(build-lw e line line-span column column-span) → lw?

e : (or/c string?

symbol?

pict?

(listof (or/c (symbols 'spring) lw?)))

line : exact-positive-integer?

line-span : exact-positive-integer?

column : exact-positive-integer?

column-span : exact-positive-integer?

Like make-lw but specialized for constructing lws that do not represent unquoted expres-
sions or metafunction applications.

(to-lw arg)

This form turns its argument into lw structs that contain all of the spacing information just

54

as it would appear when being used to typeset.

Each sub-expression corresponds to its own lw, and the element indicates what kind of
subexpression it is. If the element is a list, then the lw corresponds to a parenthesized se-
quence, and the list contains a lw for the open paren, one lw for each component of the
sequence and then a lw for the close parenthesis. In the case of a dotted list, there will also
be a lw in the third-to-last position for the dot.

For example, this expression:

(a)

becomes this lw (assuming the above expression appears as the first thing in the file):

(build-lw (list (build-lw "(" 0 0 0 1)

(build-lw 'a 0 0 1 1)

(build-lw ")" 0 0 2 1))

0 0 0 3)

If there is some whitespace in the sequence, like this one:

(a b)

then there is no lw that corresponds to that whitespace; instead there is a logical gap between
the lws.

(build-lw (list (build-lw "(" 0 0 0 1)

(build-lw 'a 0 0 1 1)

(build-lw 'b 0 0 3 1)

(build-lw ")" 0 0 4 1))

0 0 0 5)

In general, identifiers are represented with symbols and parenthesis are represented with
strings and picts can be inserted to render arbitrary pictures.

The line, line-span, column, and column-span correspond to the logical spacing for the redex
program, not the actual spacing that will be used when they are rendered. The logical spacing
is only used when determining where to place typeset portions of the program. In the absence
of any rewriters, these numbers correspond to the line and column numbers in the original
program.

The line and column are absolute numbers from the beginning of the file containing the
expression. The column number is not necessarily the column of the open parenthesis in
a sequence – it is the leftmost column that is occupied by anything in the sequence. The
line-span is the number of lines, and the column span is the number of columns on the last
line (not the total width).

55

When there are multiple lines, lines are aligned based on the logical space (ie, the
line/column & line-span/column-span) fields of the lws. As an example, if this is the original
pattern:

(all good boys

deserve fudge)

then the leftmost edges of the words "good" and "deserve" will be lined up underneath each
other, but the relative positions of "boys" and "fudge" will be determined by the natural size
of the words as they rendered in the appropriate font.

When 'spring appears in the list in the e field of a lw struct, then it absorbs all of the space
around it. It is also used by to-lw when constructing the picts for unquoted strings. For
example, this expression

,x

corresponds to these structs:

(build-lw (list (build-lw "" 1 0 9 0)

'spring

(build-lw x 1 0 10 1))

1 0 9 2)

and the 'spring causes there to be no space between the empty string and the x in the
typeset output.

(to-lw/stx stx) → lw?

stx : syntax?

This is the runtime variant on to-lw; it accepts a syntax object and returns the corresponding
lw structs. It only uses the location information in the syntax object, so metafunctions will
not be rendered properly.

(render-lw language/nts lw) → pict?

language/nts : (or/c (listof symbol?) compiled-lang?)

lw : lw?

Produces a pict that corresponds to the lw object argument, using language/nts to deter-
mine which of the identifiers in the lw argument are non-terminals.

This function sets dc-for-text-size. See also lw->pict.

(lw->pict language/ntw lw) → pict?

56

language/ntw : (or/c (listof symbol?) compiled-lang?)

lw : lw?

Produces a pict that corresponds to the lw object argument, using language/nts to deter-
mine which of the identifiers in the lw argument are non-terminals.

This does not set the dc-for-text-size parameter. See also render-lw.

(just-before stuff lw) → lw?

stuff : (or/c pict? string? symbol?)

lw : lw?

(just-after stuff lw) → lw?

stuff : (or/c pict? string? symbol?)

lw : lw?

These two helper functions build new lws whose contents are the first argument, and whose
line and column are based on the second argument, making the new loc wrapper be either
just before or just after that argument. The line-span and column-span of the new lw is
always zero.

57

Index
-->, 18
::=, 12
any, 3
apply-reduction-relation, 17
apply-reduction-relation*, 18
apply-reduction-relation/tag-

with-names, 17
arrow->pict, 51
arrow-space, 47
bind, 7
bind-exp, 7
bind-name, 7
bind?, 7
build-lw, 54
caching-enabled?, 7
check-metafunction, 32
check-reduction-relation, 31
compatible-closure, 17
compiled-lang?, 13
context-closure, 17
counterexample, 31
counterexample-term, 31
counterexample?, 31
coverage?, 26
covered-cases, 26
cross, 5
curly-quotes-for-strings, 50
current-cache-all?, 18
current-text, 51
current-traced-metafunctions, 22
Customization, 46
dark-brush-color, 41
dark-pen-color, 41
dark-text-color, 41
Debugging PLT Redex Programs, 34
default-attempt-size, 33
default-check-attempts, 33
default-font-size, 50
default-pretty-printer, 42
default-style, 49

define-extended-language, 12
define-language, 12
define-metafunction, 20
define-metafunction/extension, 21
define-relation, 22
delimit-ellipsis-arguments?, 48
exn:fail:redex:generation-

failure?, 34
exn:fail:redex:test, 31
exn:fail:redex:test-source, 31
exn:fail:redex:test-term, 31
exn:fail:redex:test?, 31
exn:fail:redex?, 11
extend-language-show-union, 46
extend-reduction-relation, 16
fresh, 19
generate-term, 27
grammar-style, 49
GUI, 35
hide-hole, 5
hole, 9
hole, 4
horizontal-bar-spacing, 52
in-domain?, 22
in-hole, 9
in-hole, 5
initial-char-width, 41
initial-font-size, 41
integer, 4
just-after, 57
just-before, 57
label-font-size, 50
label-space, 47
label-style, 49
language->pict, 44
language-nts, 13
Languages, 12
lc-lang, 12
light-brush-color, 41
light-pen-color, 41
light-text-color, 41
linebreaks, 48

58

literal-style, 49
lw, 54
lw->pict, 56
lw-column, 54
lw-column-span, 54
lw-e, 54
lw-line, 54
lw-line-span, 54
lw-metafunction?, 54
lw-unq?, 54
lw?, 54
make-bind, 7
make-counterexample, 31
make-coverage, 26
make-exn:fail:redex:test, 31
make-lw, 54
match-bindings, 7
match?, 6
metafunction->pict, 45
metafunction-cases, 48
metafunction-font-size, 50
metafunction-pict-style, 47
metafunction-style, 49
Metafunctions and Relations, 20
metafunctions->pict, 45
name, 5
natural, 3
non-terminal-style, 49
non-terminal-subscript-style, 49
non-terminal-superscript-style, 49
number, 3
paren-style, 49
pattern, 3
pattern-sequence, 5
Patterns, 3
Picts & PostScript, 43
plug, 11
pretty-print-parameters, 42
real, 4
redex, 1
Redex Pattern, variable-prefix, 4
Redex Pattern, variable-not-otherwise-

mentioned, 4
Redex Pattern, variable-except, 4
Redex Pattern, variable, 4
Redex Pattern, symbol, 4
Redex Pattern, string, 4
Redex Pattern, side-condition, 5
Redex Pattern, real, 4
Redex Pattern, pattern-sequence, 5
Redex Pattern, number, 3
Redex Pattern, natural, 3
Redex Pattern, name, 5
Redex Pattern, integer, 4
Redex Pattern, in-hole, 5
Redex Pattern, hole, 4
Redex Pattern, hide-hole, 5
Redex Pattern, cross, 5
Redex Pattern, any, 3
redex-check, 29
redex-let, 10
redex-let*, 10
redex-match, 6
redex-pseudo-random-generator, 33
redex/gui, 35
redex/pict, 43
redex/reduction-semantics, 3
Redex: Practical Semantics Engineering, 1
Reduction Relations, 14
reduction-relation, 14
reduction-relation->pict, 44
reduction-relation->rule-names, 17
reduction-relation-rule-

separation, 50
reduction-relation?, 17
reduction-rule-style/c, 47
reduction-steps-cutoff, 40
relation->pict, 46
relation-clauses-combine, 52
relation-coverage, 26
Removing the Pink Background, 52
render-language, 43
render-language-nts, 46
render-lw, 56

59

render-metafunction, 45
render-metafunctions, 45
render-reduction-relation, 44
render-reduction-relation-rules, 46
render-relation, 45
render-term, 43
rule-pict-style, 46
set-arrow-pict!, 51
set-cache-size!, 7
set-lw-column!, 54
set-lw-column-span!, 54
set-lw-e!, 54
set-lw-line!, 54
set-lw-line-span!, 54
set-lw-metafunction?!, 54
set-lw-unq?!, 54
side-condition, 5
side-condition clause, 15
side-condition/hidden clause, 15
stepper, 38
stepper/seed, 38
string, 4
struct:bind, 7
struct:counterexample, 31
struct:exn:fail:redex:test, 31
struct:lw, 54
symbol, 4
term, 8
term, 8
term->pict, 43
term-let, 9
term-match, 10
term-match/single, 10
term-node-children, 39
term-node-color, 39
term-node-expr, 40
term-node-height, 40
term-node-labels, 39
term-node-parents, 39
term-node-set-color!, 39
term-node-set-position!, 40
term-node-set-red!, 39

term-node-width, 40
term-node-x, 40
term-node-y, 40
term-node?, 40
Terms, 8
test-->, 24
test-->>, 24
test-->>E, 25
test-->>∃, 25
test-equal, 24
test-predicate, 26
test-results, 26
Testing, 24
to-lw, 54
to-lw/stx, 56
traces, 35
traces/ps, 37
Typesetting, 43
union-reduction-relations, 16
variable, 4
variable-except, 4
variable-not-in, 11
variable-not-otherwise-mentioned, 4
variable-prefix, 4
variables-not-in, 11
where clause, 15
where/hidden clause, 16
white-bracket-sizing, 51
with, 19
with-atomic-rewriter, 53
with-compound-rewriter, 53
with-unquote-rewriter, 52

60

	1 Patterns
	2 Terms
	3 Languages
	4 Reduction Relations
	5 Metafunctions and Relations
	6 Testing
	7 GUI
	8 Typesetting
	8.1 Picts & PostScript
	8.2 Customization
	8.3 Removing the Pink Background

	Index

