
The Racket Foreign Interface
Version 5.1.3

Eli Barzilay

August 15, 2011

(require ffi/unsafe)

The ffi/unsafe library enables the direct use of C-based APIs within Racket programs—
without writing any new C code. From the Racket perspective, functions and data with a
C-based API are foreign, hence the term foreign interface. Furthermore, since most APIs
consist mostly of functions, the foreign interface is sometimes called a foreign function in-
terface, abbreviated FFI.

1

Contents

1 Overview 4

2 Loading Foreign Libraries 5

3 C Types 8

3.1 Type Constructors . 8

3.2 Numeric Types . 9

3.3 Other Atomic Types . 10

3.4 String Types . 11

3.4.1 Primitive String Types . 11

3.4.2 Fixed Auto-Converting String Types 12

3.4.3 Variable Auto-Converting String Type 12

3.4.4 Other String Types . 13

3.5 Pointer Types . 13

3.6 Function Types . 15

3.6.1 Custom Function Types . 19

3.7 C Struct Types . 22

3.8 Enumerations and Masks . 26

4 Pointer Functions 28

4.1 Pointer Dereferencing . 29

4.2 Memory Management . 32

5 Derived Utilities 36

5.1 Safe Homogenous Vectors . 36

5.2 Safe C Vectors . 43

2

5.3 Tagged C Pointer Types . 45

5.4 Defining Bindings . 46

5.5 Allocation and Finalization . 48

5.6 Atomic Execution . 49

5.7 Speculatively Atomic Execution . 50

5.8 Objective-C FFI . 51

5.8.1 FFI Types and Constants . 52

5.8.2 Syntactic Forms and Procedures 53

5.8.3 Raw Runtime Functions . 56

5.8.4 Legacy Library . 60

5.9 File Security-Guard Checks . 60

5.10 Windows API Helpers . 61

6 Miscellaneous Support 62

7 Unexported Primitive Functions 65

Index 67

3

1 Overview

Although using the FFI requires writing no new C code, it provides very little insulation
against the issues that C programmers face related to safety and memory management. An
FFI programmer must be particularly aware of memory management issues for data that
spans the Racket–C divide. Thus, this manual relies in many ways on the information in
Inside: Racket C API, which defines how Racket interacts with C APIs in general.

Since using the FFI entails many safety concerns that Racket programmers can normally
ignore, the library name includes unsafe. Importing the library macro should be considered
as a declaration that your code is itself unsafe, therefore can lead to serious problems in
case of bugs: it is your responsibility to provide a safe interface. If your library provides an
unsafe interface, then it should have unsafe in its name, too.

For examples of common FFI usage patterns, see the defined interfaces in the "ffi" collec-
tion.

4

2 Loading Foreign Libraries

The FFI is normally used by extracting functions and other objects from shared objects
(a.k.a. shared libraries or dynamically loaded libraries). The ffi-lib function loads a
shared object.

(ffi-lib? v) → boolean?

v : any/c

Returns #t if v is the result of ffi-lib, #f otherwise.

(ffi-lib path [version]) → any

path : (or/c path-string? #f)

version : (or/c string? (listof (or/c string? #f)) #f) = #f

Returns a foreign-library value. Normally,

• path is a path without a version or suffix (i.e., without ".dll", ".so", or ".dylib");
and

• version is a list of versions to try in order with #f (i.e., no version) as the last element
of the list; for example, '("2" #f) indicates version 2 with a fallback to a versionless
library.

A string or #f version is equivalent to a list containing just the string or #f, and an empty
string (by itself or in a list) is equivalent to #f.

Beware of relying on versionless library names. On some platforms, versionless library
names are provided only by development packages. At the same time, other platforms may
require a versionless fallback. A list of version strings followed by #f is typically best for
version .

Assuming that path is not #f, the result from ffi-lib represents the library found by the
following search process:

• If path is not an absolute path, look in each directory reported by get-lib-search-

dirs. In each directory, try path with the first version in version , adding a suitable
suffix if path does not already end in the suffix, then try the second version in ver-

sion , etc. (If version is an empty list, no paths are tried in this step.)

• Try the same filenames again, but without converting the path to an absolute path,
which allows the operating system to use its own search paths. (If version is an
empty list, no paths are tried in this step.)

5

• Try path without adding any version or suffix, and without converting to an absolute
path.

• Try the version-adjusted filenames again, but relative to the current directory. (If ver-
sion is an empty list, no paths are tried in this step.)

• Try path without adding any version or suffix, but converted to an absolute path
relative to the current directory.

If none of the paths succeed, the error is reported from trying the first path from the second
bullet above or (if version is an empty list) from the third bullet above. A library file may
exist but fail to load for some reason; the eventual error message will unfortunately name
the fallback from the second or third bullet, since some operating systems offer no way to
determine why a given library path failed.

If path is #f, then the resulting foreign-library value represents all libraries loaded in the
current process, including libraries previously opened with ffi-lib. In particular, use #f to
access C-level functionality exported by the run-time system (as described in Inside: Racket
C API). The version argument is ignored when path is #f.

Due to the way the operating system performs dynamic binding, loaded libraries are associ-
ated with Racket (or DrRacket) for the duration of the process. Re-evaluating ffi-lib (or
hitting the Run button in DrRacket) will not force a re-load of the corresponding library.

(get-ffi-obj objname lib type [failure-thunk]) → any

objname : (or/c string? bytes? symbol?)

lib : (or/c ffi-lib? path-string? #f)

type : ctype?

failure-thunk : (or/c (-> any) #f) = #f

Looks for the given object name objname in the given lib library. If lib is not a foreign-
library value produced by ffi-lib, it is converted to one by calling ffi-lib. If objname
is found in lib , it is converted to Racket using the given type . Types are described in §3
“C Types”; in particular the get-ffi-obj procedure is most often used with function types
created with _fun.

Keep in mind that get-ffi-obj is an unsafe procedure; see §1 “Overview” for details.

If the object is not found, and failure-thunk is provided, it is used to produce a return
value. For example, a failure thunk can be provided to report a specific error if an object is
not found:

(define foo

(get-ffi-obj "foo" foolib (_fun _int -> _int)

(lambda ()

(error 'foolib

"installed foolib does not provide \"foo\""))))

6

The default (also when failure-thunk is provided as #f) is to raise an exception.

(set-ffi-obj! objname lib type new) → void?

objname : (or/c string? bytes? symbol?)

lib : (or/c ffi-lib? path-string? #f)

type : ctype?

new : any/c

Looks for objname in lib similarly to get-ffi-obj, but then it stores the given new value
into the library, converting it to a C value. This can be used for setting library customization
variables that are part of its interface, including Racket callbacks.

(make-c-parameter objname lib type) → (and/c (-> any)

(any/c -> void?))

objname : (or/c string? bytes? symbol?)

lib : (or/c ffi-lib? path-string? #f)

type : ctype?

Returns a parameter-like procedure that can either references the specified foreign value, or
set it. The arguments are handled as in get-ffi-obj.

A parameter-like function is useful in case Racket code and library code interact through a
library value. Although make-c-parameter can be used with any time, it is not recom-
mended to use this for foreign functions, since each reference through the parameter will
construct the low-level interface before the actual call.

(define-c id lib-expr type-expr)

Defines id behave like a Racket binding, but id is actually redirected through a parameter-
like procedure created by make-c-parameter. The id is used both for the Racket binding
and for the foreign object’s name.

(ffi-obj-ref objname lib [failure-thunk]) → any

objname : (or/c string? bytes? symbol?)

lib : (or/c ffi-lib? path-string? #f)

failure-thunk : (or/c (-> any) #f) = #f

Returns a pointer object for the specified foreign object. This procedure is for rare cases
where make-c-parameter is insufficient, because there is no type to cast the foreign object
to (e.g., a vector of numbers).

7

3 C Types

C types are the main concept of the FFI, either primitive types or user-defined types. The
FFI deals with primitive types internally, converting them to and from C types. A user type
is defined in terms of existing primitive and user types, along with conversion functions to
and from the existing types.

3.1 Type Constructors

(make-ctype type scheme-to-c c-to-scheme) → ctype?

type : ctype?

scheme-to-c : (or/c #f (any/c . -> . any))

c-to-scheme : (or/c #f (any/c . -> . any))

Creates a new C type value whose representation for foreign code is the same as type ’s. The
given conversions functions convert to and from the Racket representation of type . Either
conversion function can be #f, meaning that the conversion for the corresponding direction
is the identity function. If both functions are #f, type is returned.

(ctype? v) → boolean?

v : any/c

Returns #t if v is a C type, #f otherwise.

(ctype-sizeof type) → exact-nonnegative-integer?

type : ctype?

(ctype-alignof type) → exact-nonnegative-integer?

type : ctype?

Returns the size or alignment of a given type for the current platform.

(ctype->layout type)

→ (flat-rec-contract rep symbol? (listof rep))

type : ctype?

Returns a value to describe the eventual C representation of the type. It can be any of the
following symbols:

'int8 'uint8 'int16 'uint16 'int32 'uint32 'int64 'uint64

'float 'double 'bool 'void 'pointer 'fpointer

'bytes 'string/ucs-4 'string/utf-16

8

The result can also be a list, which describes a C struct whose element representations are
provided in order within the list.

(compiler-sizeof sym) → exact-nonnegative-integer?

sym : symbol?

Possible values for symbol are 'int, 'char, 'short, 'long, '*, 'void, 'float, 'dou-
ble. The result is the size of the correspond type according to the C sizeof operator for
the current platform. The compiler-sizeof operation should be used to gather informa-
tion about the current platform, such as defining alias type like _int to a known type like
_int32.

3.2 Numeric Types

_int8 : ctype?

_sint8 : ctype?

_uint8 : ctype?

_int16 : ctype?

_sint16 : ctype?

_uint16 : ctype?

_int32 : ctype?

_sint32 : ctype?

_uint32 : ctype?

_int64 : ctype?

_sint64 : ctype?

_uint64 : ctype?

The basic integer types at various sizes. The s or u prefix specifies a signed or an unsigned
integer, respectively; the ones with no prefix are signed.

_byte : ctype?

_sbyte : ctype?

_ubyte : ctype?

_short : ctype?

_sshort : ctype?

_ushort : ctype?

_int : ctype?

_sint : ctype?

_uint : ctype?

_word : ctype?

_sword : ctype?

_uword : ctype?

9

_long : ctype?

_slong : ctype?

_ulong : ctype?

_llong : ctype?

_sllong : ctype?

_ullong : ctype?

_intptr : ctype?

_sintptr : ctype?

_uintptr : ctype?

Aliases for basic integer types. The _byte aliases correspond to _int8. The _short and
_word aliases correspond to _int16. The _int aliases correspond to _int32. The _long

aliases correspond to either _int32 or _int64, depending on the platform. Similarly, the
_intptr aliases correspond to either _int32 or _int64, depending on the platform.

_fixnum : ctype?

_ufixnum : ctype?

For cases where speed matters and where you know that the integer is small enough, the
types _fixnum and _ufixnum are similar to _intptr and _uintptr but assume that the
quantities fit in Racket’s immediate integers (i.e., not bignums).

_fixint : ctype?

_ufixint : ctype?

Similar to _fixnum/_ufixnum, but based on _int/_uint instead of _intptr/_uintptr,
and coercions from C are checked to be in range.

_float : ctype?

_double : ctype?

_double* : ctype?

The _float and _double types represent the corresponding C types. Both single- and
double-precision Racket numbers are accepted for conversion via both _float and _dou-

ble, while both _float and _double coerce C values to double-precision Racket numbers.
The type _double* coerces any Racket real number to a C double.

3.3 Other Atomic Types

_bool : ctype?

Translates #f to a 0 _int, and any other value to 1.

10

_void : ctype?

Indicates a Racket #<void> return value, and it cannot be used to translate values to C. This
type cannot be used for function inputs.

3.4 String Types

3.4.1 Primitive String Types

The five primitive string types correspond to cases where a C representation matches
Racket’s representation without encodings.

The form _bytes form can be used type for Racket byte strings, which corresponds to C’s
char* type. In addition to translating byte strings, #f corresponds to the NULL pointer.

_string/ucs-4 : ctype?

A type for Racket’s native Unicode strings, which are in UCS-4 format. These correspond
to the C mzchar* type used by Racket. As usual, the types treat #f as NULL and vice versa.

_string/utf-16 : ctype?

Unicode strings in UTF-16 format. As usual, the types treat #f as NULL and vice versa.

_path : ctype?

Simple char* strings, corresponding to Racket’s paths. As usual, the types treat #f as NULL
and vice versa.

Beware that changing the current directory via current-directory does not change the
OS-level current directory as seen by foreign library functions. Paths normally should
be converted to absolute form using path->complete-path (which uses the current-

directory parameter) before passing them to a foreign function.

_symbol : ctype?

Simple char* strings as Racket symbols (encoded in UTF-8). Return values using this type
are interned as symbols.

11

3.4.2 Fixed Auto-Converting String Types

_string/utf-8 : ctype?

_string/latin-1 : ctype?

_string/locale : ctype?

Types that correspond to (character) strings on the Racket side and char* strings on the C
side. The bridge between the two requires a transformation on the content of the string. As
usual, the types treat #f as NULL and vice versa.

_string*/utf-8 : ctype?

_string*/latin-1 : ctype?

_string*/locale : ctype?

Similar to _string/utf-8, etc., but accepting a wider range of values: Racket byte strings
are allowed and passed as is, and Racket paths are converted using path->bytes.

3.4.3 Variable Auto-Converting String Type

The _string/ucs-4 type is rarely useful when interacting with foreign code, while using
_bytes is somewhat unnatural, since it forces Racket programmers to use byte strings. Us-
ing _string/utf-8, etc., meanwhile, may prematurely commit to a particular encoding of
strings as bytes. The _string type supports conversion between Racket strings and char*

strings using a parameter-determined conversion.

_string : ctype?

Expands to a use of the default-_string-type parameter. The parameter’s value is con-
sulted when _string is evaluated, so the parameter should be set before any interface defi-
nition that uses _string.

(default-_string-type) → ctype?

(default-_string-type type) → void?

type : ctype?

A parameter that determines the current meaning of _string. It is initially set to
_string*/utf-8. If you change it, do so before interfaces are defined.

12

3.4.4 Other String Types

_file : ctype?

Like _path, but when values go from Racket to C, cleanse-path is used on the given
value. As an output value, it is identical to _path.

_bytes/eof : ctype?

Similar to the _bytes type, except that a foreign return value of NULL is translated to a
Racket eof value.

_string/eof : ctype?

Similar to the _string type, except that a foreign return value of NULL is translated to a
Racket eof value.

3.5 Pointer Types

_pointer : ctype?

Corresponds to Racket “C pointer” objects. These pointers can have an arbitrary Racket
object attached as a type tag. The tag is ignored by built-in functionality; it is intended to
be used by interfaces. See §5.3 “Tagged C Pointer Types” for creating pointer types that use
these tags for safety. A #f value is converted to NULL and vice versa.

The address referenced by a _pointer value must not refer to memory managed by the
garbage collector (unless the address corresponds to a value that supports interior pointers
and that is otherwise referenced to preserve the value from garbage collection). The refer-
ence is not traced or updated by the garbage collector.

The equal? predicate equates C pointers (including pointers for _gcpointer and possibly
containing an offset) when they refer to the same address.

_gcpointer : ctype?

Like _pointer, but for a value that can refer to memory managed by the garbage collector.

Although a _gcpointer can reference to memory that is not managed by the garbage col-
lector, beware of using an address that might eventually become managed by the garbage
collector. For example, if a reference is created by malloc with 'raw and released by free,

13

then the free may allow the memory formerly occupied by the reference to be used later by
the garbage collector.

_racket : ctype?

_scheme : ctype?

A type that can be used with any Racket object; it corresponds to the Scheme_Object* type
of Racket’s C API (see Inside: Racket C API). It is useful only for libraries that are aware of
Racket’s C API.

_fpointer : ctype?

Similar to _pointer, except that when an _fpointer is extracted from a pointer produced
by ffi-obj-ref, then a level of indirection is skipped. A level of indirection is similarly
skipped when extracting a pointer via get-ffi-obj. Like _pointer, _fpointer treats #f
as NULL and vice versa.

A type generated by _cprocedure builds on _fpointer, and normally _cprocedure

should be used instead of _fpointer.

(_or-null ctype) → ctype?

ctype : ctype?

Creates a type that is like ctype , but #f is converted to NULL and vice versa. The given
ctype must have the same C representation as _pointer, _gcpointer, or _fpointer.

(_gcable ctype) → ctype?

ctype : ctype?

Creates a type that is like ctype , but whose base representation is like _gcpointer in-
stead of _pointer. The given ctype must have a base representation like _pointer or
_gcpointer (and in the later case, the result is the ctype).

14

3.6 Function Types

(_cprocedure input-types

output-type

[#:abi abi

#:atomic? atomic?

#:async-apply async-apply

#:in-original-place? in-original-place?

#:save-errno save-errno

#:wrapper wrapper

#:keep keep]) → any

input-types : (list ctype?)

output-type : ctype?

abi : (or/c #f 'default 'stdcall 'sysv) = #f

atomic? : any/c = #f

async-apply : (or/c #f ((-> any) . -> . any)) = #f

in-original-place? : any/c = #f

save-errno : (or/c #f 'posix 'windows) = #f

wrapper : (or/c #f (procedure? . -> . procedure?)) = #f

keep : (or/c boolean? box? (any/c . -> . any/c)) = #t

A type constructor that creates a new function type, which is specified by the given input-

types list and output-type . Usually, the _fun syntax (described below) should be used
instead, since it manages a wide range of complicated cases.

The resulting type can be used to reference foreign functions (usually ffi-objs, but any
pointer object can be referenced with this type), generating a matching foreign callout object.
Such objects are new primitive procedure objects that can be used like any other Racket
procedure. As with other pointer types, #f is treated as a NULL function pointer and vice
versa.

A type created with _cprocedure can also be used for passing Racket procedures to foreign
functions, which will generate a foreign function pointer that calls the given Racket proce-
dure when it is used. There are no restrictions on the Racket procedure; in particular, its
lexical context is properly preserved.

The optional abi keyword argument determines the foreign ABI that is used. Supplying
#f or 'default indicates the platform-dependent default. The other possible values—
'stdcall and 'sysv (i.e., “cdecl”)—are currently supported only for 32-bit Windows;
using them on other platforms raises an exception. See also ffi/winapi.

If atomic? is true, then when a Racket procedure is given this procedure type and called
from foreign code, then the Racket process is put into atomic mode while evaluating the
Racket procedure body. In atomic mode, other Racket threads do not run, so the Racket code
must not call any function that potentially blocks on synchronization with other threads, or

15

else it may lead to deadlock. In addition, the Racket code must not perform any potentially
blocking operation (such as I/O), it must not raise an uncaught exception, it must not perform
any escaping continuation jumps, and its non-tail recursion must be minimal to avoid C-level
stack overflow; otherwise, the process may crash or misbehave.

If an async-apply procedure is provided, then a Racket procedure with the generated pro-
cedure type can be applied in a foreign thread (i.e., an OS-level thread other than the one
used to run Racket). The call in the foreign thread is transferred to the OS-level thread
that runs Racket, but the Racket-level thread (in the sense of thread) is unspecified; the
job of the provided async-apply procedure is to arrange for the callback procedure to be
run in a suitable Racket thread. The given async-apply procedure is applied to a thunk
that encapsulates the specific callback invocation, and the foreign OS-level thread blocks
until the thunk is called and completes; the thunk must be called exactly once, and the call-
back invocation must return normally. The given async-apply procedure itself is called in
atomic mode (see atomic? above). If the callback is known to complete quickly, requires
no synchronization, and works independent of the Racket thread in which it runs, then it
is safe for the given async-apply procedure to apply the thunk directly. Otherwise, the
given async-apply procedure must arrange for the thunk to be applied in a suitable Racket
thread sometime after the given async-apply procedure itself returns; if the thunk raises
an exception or synchronizes within an unsuitable Racket-level thread, it can deadlock or
otherwise damage the Racket process. Foreign-thread detection to trigger async-apply
works only when Racket is compiled with OS-level thread support, which is the default for
many platforms. If a callback with an async-apply is called from foreign code in the same
OS-level thread that runs Racket, then the async-apply wrapper is not used. The atomic? and

async-apply

arguments affect
callbacks into
Racket, while
in-original-place?

affects calls from
Racket into foreign
code.

If in-original-place? is true, then when a foreign procedure with the generated type
is called in any Racket place, the procedure is called from the original Racket place. Use
this mode for a foreign function that is not thread-safe at the C level, which means that it
is not place-safe at the Racket level. Callbacks from place-unsafe code back into Racket at
a non-original place typically will not work, since the place of the Racket code may have a
different allocator than the original place.

If save-errno is 'posix, then the value of errno is saved (specific to the current thread)
immediately after a foreign function returns. The saved value is accessible through saved-

errno. If save-errno is 'windows, then the value of GetLastError() is saved for later
use via saved-errno; the 'windows option is available only on Windows (on other plat-
forms saved-errno will return 0). If save-errno is #f, no error value is saved automat-
ically. The error-recording support provided by save-errno is needed because the Racket
runtime system may otherwise preempt the current Racket thread and itself call functions
that set error values.

The optional wrapper , if provided, is expected to be a function that can change a callout
procedure: when a callout is generated, the wrapper is applied on the newly created primi-
tive procedure, and its result is used as the new function. Thus, wrapper is a hook that can
perform various argument manipulations before the foreign function is invoked, and return
different results (for example, grabbing a value stored in an “output” pointer and returning

16

multiple values). It can also be used for callbacks, as an additional layer that tweaks argu-
ments from the foreign code before they reach the Racket procedure, and possibly changes
the result values too.

Sending Racket functions as callbacks to foreign code is achieved by translating them to a
foreign “closure,” which foreign code can call as plain C functions. Additional care must
be taken in case the foreign code might hold on to the callback function. In these cases you
must arrange for the callback value to not be garbage-collected, or the held callback will
become invalid. The optional keep keyword argument is used to achieve this. It can have
the following values:

• #t makes the callback value stay in memory as long as the converted function is. In
order to use this, you need to hold on to the original function, for example, have a
binding for it. Note that each function can hold onto one callback value (it is stored
in a weak hash table), so if you need to use a function in multiple callbacks you will
need to use one of the last two options below. (This is the default, as it is fine in most
cases.)

• #f means that the callback value is not held. This may be useful for a callback that is
only used for the duration of the foreign call — for example, the comparison function
argument to the standard C library qsort function is only used while qsort is work-
ing, and no additional references to the comparison function are kept. Use this option
only in such cases, when no holding is necessary and you want to avoid the extra cost.

• A box holding #f (or a callback value) — in this case the callback value will be stored
in the box, overriding any value that was in the box (making it useful for holding a
single callback value). When you know that it is no longer needed, you can “release”
the callback value by changing the box contents, or by allowing the box itself to be
garbage-collected. This is can be useful if the box is held for a dynamic extent that
corresponds to when the callback is needed; for example, you might encapsulate some
foreign functionality in a Racket class or a unit, and keep the callback box as a field in
new instances or instantiations of the unit.

• A box holding null (or any list) – this is similar to the previous case, except that new
callback values are consed onto the contents of the box. It is therefore useful in (rare)
cases when a Racket function is used in multiple callbacks (that is, sent to foreign
code to hold onto multiple times).

• Finally, if a one-argument function is provided as keep , it will be invoked with the
callback value when it is generated. This allows you to grab the value directly and use
it in any way.

(_fun fun-option ... maybe-args type-spec ... -> type-spec

maybe-wrapper)

17

fun-option = #:abi abi-expr

| #:save-errno save-errno-expr

| #:keep keep-expr

| #:atomic? atomic?-expr

| #:async-apply async-apply-expr

| #:in-original-place? in-original-place?-expr

maybe-args =
| (id ...) ::

| id ::

| (id id) ::

type-spec = type-expr

| (id : type-expr)

| (type-expr = value-expr)

| (id : type-expr = value-expr)

maybe-wrapper =
| -> output-expr

Creates a new function type. The _fun form is a convenient syntax for the _cprocedure

type constructor. In its simplest form, only the input type-exprs and the output type-
expr are specified, and each types is a simple expression, which creates a straightforward
function type.

For instance,

(_fun _int _string -> _int)

specifies a function that receives an integer and a string, and returns an integer.

In its full form, the _fun syntax provides an IDL-like language that can be used to create
a wrapper function around the primitive foreign function. These wrappers can implement
complex foreign interfaces given simple specifications. The full form of each of the type
specifications can include an optional label and an expression. If a = value-expr is pro-
vided, then the resulting function will be a wrapper that calculates the argument for that
position itself, meaning that it does not expect an argument for that position. The expression
can use previous arguments if they were labeled with id :. In addition, the result of a func-
tion call need not be the value returned from the foreign call: if the optional output-expr
is specified, or if an expression is provided for the output type, then this specifies an expres-
sion that will be used as a return value. This expression can use any of the previous labels,
including a label given for the output which can be used to access the actual foreign return
value.

In rare cases where complete control over the input arguments is needed, the wrapper’s argu-
ment list can be specified as args, in any form (including a “rest” argument). Identifiers in
this place are related to type labels, so if an argument is there is no need to use an expression.

18

For example,

(_fun (n s) :: (s : _string) (n : _int) -> _int)

specifies a function that receives an integer and a string, but the foreign function receives the
string first.

(function-ptr ptr-or-proc fun-type) → cpointer?

ptr-or-proc : (or cpointer? procedure?)

fun-type : ctype?

Casts ptr-or-proc to a function pointer of type fun-type .

3.6.1 Custom Function Types

The behavior of the _fun type can be customized via custom function types, which are
pieces of syntax that can behave as C types and C type constructors, but they can interact
with function calls in several ways that are not possible otherwise. When the _fun form
is expanded, it tries to expand each of the given type expressions, and ones that expand
to certain keyword-value lists interact with the generation of the foreign function wrapper.
This expansion makes it possible to construct a single wrapper function, avoiding the costs
involved in compositions of higher-order functions.

Custom function types are macros that expand to a sequence (key: val ...), where each
key: is from a short list of known keys. Each key interacts with generated wrapper functions
in a different way, which affects how its corresponding argument is treated:

• type: specifies the foreign type that should be used, if it is #f then this argument does
not participate in the foreign call.

• expr: specifies an expression to be used for arguments of this type, removing it from
wrapper arguments.

• bind: specifies a name that is bound to the original argument if it is required later
(e.g., _box converts its associated value to a C pointer, and later needs to refer back to
the original box).

• 1st-arg: specifies a name that can be used to refer to the first argument of the foreign
call (good for common cases where the first argument has a special meaning, e.g., for
method calls).

• prev-arg: similar to 1st-arg:, but refers to the previous argument.

• pre: a pre-foreign code chunk that is used to change the argument’s value.

19

• post: a similar post-foreign code chunk.

• keywords: specifies keyword/value expressions that will be used with the surround-
ing _fun form. (Note: the keyword/value sequence follows keywords:, not paren-
thesized.)

The pre: and post: bindings can be of the form (id => expr) to use the existing value.
Note that if the pre: expression is not (id => expr), then it means that there is no input
for this argument to the _fun-generated procedure. Also note that if a custom type is used
as an output type of a function, then only the post: code is used.

Most custom types are meaningful only in a _fun context, and will raise a syntax error if
used elsewhere. A few such types can be used in non-_fun contexts: types which use only
type:, pre:, post:, and no others. Such custom types can be used outside a _fun by
expanding them into a usage of make-ctype, using other keywords makes this impossible,
because it means that the type has specific interaction with a function call.

(define-fun-syntax id transformer-expr)

Binds id as a custom function type as well as a syntax transformer (i.e, macro). The type
is expanded by applying the procedure produced by transformer-expr to a use of the
custom function type.

For instance, the following defines a new type that automatically coerces the input number
to an inexact form which is compatible with the _float type.

(define-fun-syntax _float*

(syntax-id-rules (_float*)

[(_float*) (type: _float pre: (x => (+ 0.0 x)))]))

(_fun _float* -> _bool)

_?

A custom function type that is a marker for expressions that should not be sent to the foreign
function. Use this to bind local values in a computation that is part of an ffi wrapper interface,
or to specify wrapper arguments that are not sent to the foreign function (e.g., an argument
that is used for processing the foreign output).

(_ptr mode type-expr)

mode = i

| o

| io

20

Creates a C pointer type, where mode indicates input or output pointers (or both). The mode
can be one of the following:

• i — indicates an input pointer argument: the wrapper arranges for the function call to
receive a value that can be used with the type and to send a pointer to this value to
the foreign function. After the call, the value is discarded.

• o — indicates an output pointer argument: the foreign function expects a pointer to a
place where it will save some value, and this value is accessible after the call, to be
used by an extra return expression. If _ptr is used in this mode, then the generated
wrapper does not expect an argument since one will be freshly allocated before the
call.

• io — combines the above into an input/output pointer argument: the wrapper gets
the Racket value, allocates and set a pointer using this value, and then references the
value after the call. The “_ptr” name can be confusing here: it means that the foreign
function expects a pointer, but the generated wrapper uses an actual value. (Note that
if this is used with structs, a struct is created when calling the function, and a copy
of the return value is made too—which is inefficient, but ensures that structs are not
modified by C code.)

For example, the _ptr type can be used in output mode to create a foreign function wrapper
that returns more than a single argument. The following type:

(_fun (i : (_ptr o _int))

-> (d : _double)

-> (values d i))

creates a function that calls the foreign function with a fresh integer pointer, and use the
value that is placed there as a second return value.

_box

A custom function type similar to a (_ptr io type) argument, where the input is ex-
pected to be a box holding an appropriate value, which is unboxed on entry and modified
accordingly on exit.

(_list mode type maybe-len)

mode = i

| o

| io

maybe-len =
| len-expr

21

A custom function type that is similar to _ptr, except that it is used for converting lists
to/from C vectors. The optional maybe-len argument is needed for output values where it
is used in the post code, and in the pre code of an output mode to allocate the block. In either
case, it can refer to a previous binding for the length of the list which the C function will
most likely require.

(_vector mode type maybe-len)

A custom function type like _list, except that it uses Racket vectors instead of lists.

(_bytes o len-expr)

_bytes

A custom function type that can be used by itself as a simple type for a byte string as a C
pointer. Alternatively, the second form is for a pointer return value, where the size should be
explicitly specified.

There is no need for other modes: input or input/output would be just like _bytes, since the
string carries its size information (there is no real need for the o part of the syntax, but it is
present for consistency with the above macros).

3.7 C Struct Types

(make-cstruct-type types [abi alignment]) → ctype?

types : (listof ctype?)

abi : (or/c #f 'default 'stdcall 'sysv) = #f

alignment : (or/c #f 1 2 4 8 16) = #f

The primitive type constructor for creating new C struct types. These types are actually new
primitive types; they have no conversion functions associated. The corresponding Racket
objects that are used for structs are pointers, but when these types are used, the value that
the pointer refers to is used, rather than the pointer itself. This value is basically made of a
number of bytes that is known according to the given list of types list.

If alignment is #f, then the natural alignment of each type in types is used for its align-
ment within the struct type. Otherwise, alignment is used for all struct type members.

(_list-struct [#:alignment alignment]
type ...+) → ctype?

alignment : (or/c #f 1 2 4 8 16) = #f

type : ctype?

22

A type constructor that builds a struct type using make-cstruct-type function and wraps
it in a type that marshals a struct as a list of its components. Note that space for structs must
to be allocated; the converter for a _list-struct type immediately allocates and uses a
list from the allocated space, so it is inefficient. Use define-cstruct below for a more
efficient approach.

(define-cstruct id/sup ([field-id type-expr] ...) alignment)

id/sup = _id

| (_id super-id)

alignment =
| #:alignment alignment-expr

Defines a new C struct type, but unlike _list-struct, the resulting type deals with C
structs in binary form, rather than marshaling them to Racket values. The syntax is similar
to define-struct, providing accessor functions for raw struct values (which are pointer
objects). The new type uses pointer tags to guarantee that only proper struct objects are
used. The _id must start with _.

The resulting bindings are as follows:

• _id : the new C type for this struct.

• _id-pointer: a pointer type that should be used when a pointer to values of this
struct are used.

• id?: a predicate for the new type.

• id-tag: the tag string object that is used with instances.

• make-id : a constructor, which expects an argument for each type.

• id-field-id : an accessor function for each field-id ; if the field has a cstruct
type, then the result of the accessor is a pointer to the field within the enclosing struc-
ture, rather than a copy of the field.

• set-id-field-id! : a mutator function for each field-id .

• id : structure-type information compatible with struct-out or match (but not
define-struct); currently, this information is correct only when no super-id is
specified.

Objects of the new type are actually C pointers, with a type tag that is a list that contains
the string form of id . Since structs are implemented as pointers, they can be used for a
_pointer input to a foreign function: their address will be used. To make this a little safer,
the corresponding cpointer type is defined as _id-pointer. The _id type should not be

23

used when a pointer is expected, since it will cause the struct to be copied rather than use the
pointer value, leading to memory corruption.

If the first field is itself a cstruct type, its tag will be used in addition to the new tag. This
feature supports common cases of object inheritance, where a sub-struct is made by having
a first field that is its super-struct. Instances of the sub-struct can be considered as instances
of the super-struct, since they share the same initial layout. Using the tag of an initial cstruct
field means that the same behavior is implemented in Racket; for example, accessors and
mutators of the super-cstruct can be used with the new sub-cstruct. See the example below.

Providing a super-id is shorthand for using an initial field named super-id and using
_super-id as its type. Thus, the new struct will use _super-id ’s tag in addition to its
own tag, meaning that instances of _id can be used as instances of _super-id . Aside from
the syntactic sugar, the constructor function is different when this syntax is used: instead
of expecting a first argument that is an instance of _super-id , the constructor will expect
arguments for each of _super-id ’s fields, in addition for the new fields. This adjustment
of the constructor is, again, in analogy to using a supertype with define-struct.

Note that structs are allocated as atomic blocks, which means that the garbage collector ig-
nores their content. Thus, struct fields can hold only non-pointer values, pointers to memory
outside the GC’s control, and otherwise-reachable pointers to immobile GC-managed values
(such as those allocated with malloc and 'internal or 'internal-atomic).

As an example, consider the following C code:

typedef struct { int x; char y; } A;

typedef struct { A a; int z; } B;

A* makeA() {

A *p = malloc(sizeof(A));

p->x = 1;

p->y = 2;

return p;

}

B* makeB() {

B *p = malloc(sizeof(B));

p->a.x = 1;

p->a.y = 2;

p->z = 3;

return p;

}

char gety(A* a) {

return a->y;

}

24

Using the simple _list-struct, you might expect this code to work:

(define makeB

(get-ffi-obj 'makeB "foo.so"

(_fun -> (_list-struct (_list-struct _int _byte) _int))))

(makeB) ; should return '((1 2) 3)

The problem here is that makeB returns a pointer to the struct rather than the struct itself.
The following works as expected:

(define makeB

(get-ffi-obj 'makeB "foo.so" (_fun -> _pointer)))

(ptr-ref (makeB) (_list-struct (_list-struct _int _byte) _int))

As described above, _list-structs should be used in cases where efficiency is not an
issue. We continue using define-cstruct, first define a type for A which makes it possible
to use makeA:

(define-cstruct _A ([x _int] [y _byte]))

(define makeA

(get-ffi-obj 'makeA "foo.so"

(_fun -> _A-pointer))) ; using _A is a memory-corrupting bug!

(define a (makeA))

(list a (A-x a) (A-y a))

; produces an A containing 1 and 2

Using gety is also simple:

(define gety

(get-ffi-obj 'gety "foo.so"

(_fun _A-pointer -> _byte)))

(gety a) ; produces 2

We now define another C struct for B, and expose makeB using it:

(define-cstruct _B ([a _A] [z _int]))

(define makeB

(get-ffi-obj 'makeB "foo.so"

(_fun -> _B-pointer)))

(define b (makeB))

We can access all values of b using a naive approach:

(list (A-x (B-a b)) (A-y (B-a b)) (B-z b))

25

but this is inefficient as it allocates and copies an instance of A on every access. Inspecting
the tags (cpointer-tag b) we can see that A’s tag is included, so we can simply use its
accessors and mutators, as well as any function that is defined to take an A pointer:

(list (A-x b) (A-y b) (B-z b))

(gety b)

Constructing a B instance in Racket requires allocating a temporary A struct:

(define b (make-B (make-A 1 2) 3))

To make this more efficient, we switch to the alternative define-cstruct syntax, which
creates a constructor that expects arguments for both the super fields and the new ones:

(define-cstruct (_B _A) ([z _int]))

(define b (make-B 1 2 3))

3.8 Enumerations and Masks

Although the constructors below are describes as procedures, they are implemented as syn-
tax, so that error messages can report a type name where the syntactic context implies one.

(_enum symbols [basetype #:unknown unknown]) → ctype?

symbols : list?

basetype : ctype? = _ufixint

unknown : any/c = (lambda (x) (error))

Takes a list of symbols and generates an enumeration type. The enumeration maps between
a symbol in the given symbols list and corresponding integers, counting from 0.

The list symbols can also set the values of symbols by putting '= and an exact integer after
the symbol. For example, the list '(x y = 10 z) maps 'x to 0, 'y to 10, and 'z to 11.

The basetype argument specifies the base type to use.

The unknown argument specifies the result of converting an unknown integer from the for-
eign side: it can be a one-argument function to be applied on the integer, or a value to return
instead. The default is to throw an exception.

(_bitmask symbols [basetype]) → ctype?

symbols : (or symbol? list?)

basetype : ctype? = _uint

26

Similar to _enum, but the resulting mapping translates a list of symbols to a number and back,
using bitwise-ior. A single symbol is equivalent to a list containing just the symbol. The
default basetype is _uint, since high bits are often used for flags.

27

4 Pointer Functions

(cpointer? v) → boolean?

v : any/c

Returns #t if v is a C pointer or a value that can be used as a pointer: #f (used as a NULL

pointer), byte strings (used as memory blocks), or some additional internal objects (ffi-
objs and callbacks, see §7 “Unexported Primitive Functions”). Returns #f for other values.

(ptr-equal? cptr1 cptr2) → boolean?

cptr1 : cpointer?

cptr2 : cpointer?

Compares the values of the two pointers. Two different Racket pointer objects can contain
the same pointer.

If the values are both C pointers—as opposed to #f, a byte string, ffi-obj, or callback—
this comparison is the same as equal?.

(ptr-add cptr offset [type]) → cpointer?

cptr : cpointer?

offset : exact-integer?

type : ctype? = _byte

Returns a cpointer that is like cptr offset by offset instances of ctype.

The resulting cpointer keeps the base pointer and offset separate. The two pieces are com-
bined at the last minute before any operation on the pointer, such as supplying the pointer to
a foreign function. In particular, the pointer and offset are not combined until after all alloca-
tion leading up to a foreign-function call; if the called function does not itself call anything
that can trigger a garbage collection, it can safely use pointers that are offset into the middle
of a GCable object.

(offset-ptr? cptr) → boolean?

cptr : cpointer?

A predicate for cpointers that have an offset, such as pointers that were created using ptr-

add. Returns #t even if such an offset happens to be 0. Returns #f for other cpointers and
non-cpointers.

(ptr-offset cptr) → exact-integer?

cptr : cpointer?

28

Returns the offset of a pointer that has an offset. The resulting offset is always in bytes.

4.1 Pointer Dereferencing

(set-ptr-offset! cptr offset [ctype]) → void?

cptr : cpointer?

offset : exact-integer?

ctype : ctype? = _byte

Sets the offset component of an offset pointer. The arguments are used in the same way as
ptr-add. If cptr has no offset, the exn:fail:contract exception is raised.

(ptr-add! cptr offset [ctype]) → void?

cptr : cpointer?

offset : exact-integer?

ctype : ctype? = _byte

Like ptr-add, but destructively modifies the offset contained in a pointer. The same opera-
tion could be performed using ptr-offset and set-ptr-offset!.

(ptr-ref cptr type [offset]) → any

cptr : cpointer?

type : ctype?

offset : exact-nonnegative-integer? = 0

(ptr-ref cptr type abs-tag offset) → any

cptr : cpointer?

type : ctype?

abs-tag : (one-of/c 'abs)

offset : exact-nonnegative-integer?

(ptr-set! cptr type val) → void?

cptr : cpointer?

type : ctype?

val : any/c

(ptr-set! cptr type offset val) → void?

cptr : cpointer?

type : ctype?

offset : exact-nonnegative-integer?

val : any/c

(ptr-set! cptr type abs-tag offset val) → void?

cptr : cpointer?

type : ctype?

abs-tag : (one-of/c 'abs)

29

offset : exact-nonnegative-integer?

val : any/c

The ptr-ref procedure returns the object referenced by cptr , using the given type . The
ptr-set! procedure stores the val in the memory cptr points to, using the given type

for the conversion.

In each case, offset defaults to 0 (which is the only value that should be used with ffi-

obj objects, see §7 “Unexported Primitive Functions”). If an offset index is non-0, the
value is read or stored at that location, considering the pointer as a vector of types — so
the actual address is the pointer plus the size of type multiplied by offset . In addition,
a 'abs flag can be used to use the offset as counting bytes rather then increments of the
specified type .

Beware that the ptr-ref and ptr-set! procedure do not keep any meta-information on
how pointers are used. It is the programmer’s responsibility to use this facility only when
appropriate. For example, on a little-endian machine:

> (define block (malloc _int 5))

> (ptr-set! block _int 0 196353)

> (map (lambda (i) (ptr-ref block _byte i)) '(0 1 2 3))

(1 255 2 0)

In addition, ptr-ref and ptr-set! cannot detect when offsets are beyond an object’s
memory bounds; out-of-bounds access can easily lead to a segmentation fault or memory
corruption.

(memmove cptr src-cptr count [type]) → void?

cptr : cpointer?

src-cptr : cpointer?

count : exact-nonnegative-integer?

type : ctype? = _byte

(memmove cptr offset src-cptr count [type]) → void?

cptr : cpointer?

offset : exact-integer?

src-cptr : cpointer?

count : exact-nonnegative-integer?

type : ctype? = _byte

(memmove cptr

offset

src-cptr

src-offset

count

[type]) → void?

cptr : cpointer?

offset : exact-integer?

30

src-cptr : cpointer?

src-offset : exact-integer?

count : exact-nonnegative-integer?

type : ctype? = _byte

Copies to cptr from src-cptr . The destination pointer can be offset by an optional off-
set , which is in type instances. The source pointer can be similarly offset by src-offset .
The number of bytes copied from source to destination is determined by count , which is in
type instances when supplied.

(memcpy cptr src-cptr count [type]) → void?

cptr : cpointer?

src-cptr : cpointer?

count : exact-nonnegative-integer?

type : ctype? = _byte

(memcpy cptr offset src-cptr count [type]) → void?

cptr : cpointer?

offset : exact-integer?

src-cptr : cpointer?

count : exact-nonnegative-integer?

type : ctype? = _byte

(memcpy cptr

offset

src-cptr

src-offset

count

[type]) → void?

cptr : cpointer?

offset : exact-integer?

src-cptr : cpointer?

src-offset : exact-integer?

count : exact-nonnegative-integer?

type : ctype? = _byte

Like memmove, but the result is undefined if the destination and source overlap.

(memset cptr byte count [type]) → void?

cptr : cpointer?

byte : byte?

count : exact-nonnegative-integer?

type : ctype? = _byte

(memset cptr offset byte count [type]) → void?

cptr : cpointer?

offset : exact-integer?

31

byte : byte?

count : exact-nonnegative-integer?

type : ctype? = _byte

Similar to memmove, but the destination is uniformly filled with byte (i.e., an exact integer
between 0 and 255 inclusive). When a type argument is present, the result is that of a call
to memset with no type argument and the count multiplied by the size associated with the
type .

(cpointer-tag cptr) → any

cptr : cpointer?

Returns the Racket object that is the tag of the given cptr pointer.

(set-cpointer-tag! cptr tag) → void?

cptr : cpointer?

tag : any/c

Sets the tag of the given cptr . The tag argument can be any arbitrary value; other pointer
operations ignore it. When a cpointer value is printed, its tag is shown if it is a symbol, a
byte string, a string. In addition, if the tag is a pair holding one of these in its car, the car

is shown (so that the tag can contain other information).

4.2 Memory Management

For general information on C-level memory management with Racket, see Inside: Racket C
API.

(malloc bytes-or-type

[type-or-bytes
cptr

mode

fail-mode]) → cpointer?

bytes-or-type : (or/c exact-nonnegative-integer? ctype?)

type-or-bytes : (or/c exact-nonnegative-integer? ctype?)

= absent
cptr : cpointer? = absent
mode : (one-of/c 'nonatomic 'stubborn 'uncollectable

'eternal 'interior 'atomic-interior

'raw)

= absent

fail-mode : (one-of/c 'failok) = absent

Allocates a memory block of a specified size using a specified allocation. The result is a

32

cpointer to the allocated memory. Although not reflected above, the four arguments can
appear in any order since they are all different types of Racket objects; a size specification is
required at minimum:

• If a C type bytes-or-type is given, its size is used to the block allocation size.

• If an integer bytes-or-type is given, it specifies the required size in bytes.

• If both bytes-or-type and type-or-bytes are given, then the allocated size is for
a vector of values (the multiplication of the size of the C type and the integer).

• If a cptr pointer is given, its content is copied to the new block.

• A symbol mode argument can be given, which specifies what allocation function to
use. It should be one of 'nonatomic (uses scheme_malloc from Racket’s C API),
'atomic (scheme_malloc_atomic), 'stubborn (scheme_malloc_stubborn),
'uncollectable (scheme_malloc_uncollectable), 'eternal

(scheme_malloc_eternal), 'interior (scheme_malloc_allow_interior),
'atomic-interior (scheme_malloc_atomic_allow_interior), or 'raw (uses
the operating system’s malloc, creating a GC-invisible block).

• If an additional 'failok flag is given, then scheme_malloc_fail_ok is used to
wrap the call.

If no mode is specified, then 'nonatomic allocation is used when the type is a _gcpointer-
or _scheme-based type, and 'atomic allocation is used otherwise.

(free cptr) → void

cptr : cpointer?

Uses the operating system’s free function for 'raw-allocated pointers, and for pointers that
a foreign library allocated and we should free. Note that this is useful as part of a finalizer
(see below) procedure hook (e.g., on the Racket pointer object, freeing the memory when
the pointer object is collected, but beware of aliasing).

(end-stubborn-change cptr) → void?

cptr : cpointer?

Uses scheme_end_stubborn_change on the given stubborn-allocated pointer.

(malloc-immobile-cell v) → cpointer?

v : any/c

Allocates memory large enough to hold one arbitrary (collectable) Racket value, but that is
not itself collectable or moved by the memory manager. The cell is initialized with v ; use

33

the type _scheme with ptr-ref and ptr-set! to get or set the cell’s value. The cell must
be explicitly freed with free-immobile-cell.

(free-immobile-cell cptr) → void?

cptr : cpointer?

Frees an immobile cell created by malloc-immobile-cell.

(register-finalizer obj finalizer) → void?

obj : any/c

finalizer : (any/c . -> . any)

Registers a finalizer procedure finalizer-proc with the given obj , which can be any
Racket (GC-able) object. The finalizer is registered with a will executor; see make-will-

executor. The finalizer is invoked when obj is about to be collected. (This is done by a
thread that is in charge of triggering these will executors.)

Finalizers are mostly intended to be used with cpointer objects (for freeing unused memory
that is not under GC control), but it can be used with any Racket object—even ones that
have nothing to do with foreign code. Note, however, that the finalizer is registered for the
Racket object. If you intend to free a pointer object, then you must be careful to not register
finalizers for two cpointers that point to the same address. Also, be careful to not make the
finalizer a closure that holds on to the object.

For example, suppose that you’re dealing with a foreign function that returns a C string that
you should free. Here is an attempt at creating a suitable type:

(define bytes/free

(make-ctype _pointer

#f ; a Racket bytes can be used as a pointer

(lambda (x)

(let ([b (make-byte-string x)])

(register-finalizer x free)

b))))

The above code is wrong: the finalizer is registered for x, which is no longer needed once
the byte string is created. Changing this to register the finalizer for b correct this problem,
but then free will be invoked on it instead of on x. In an attempt to fix this, we will be
careful and print out a message for debugging:

(define bytes/free

(make-ctype _pointer

#f ; a Racket bytes can be used as a pointer

(lambda (x)

(let ([b (make-byte-string x)])

34

(register-finalizer b

(lambda (ignored)

(printf "Releasing ∼s\n" b)

(free x)))

b))))

but we never see any printout. The problem is that the finalizer is a closure that keeps
a reference to b. To fix this, you should use the input argument to the finalizer. Simply
changing ignored to b will solve this problem. (Removing the debugging message also
avoids the problem, since the finalization procedure would then not close over b.)

(make-sized-byte-string cptr length) → bytes?

cptr : cpointer?

length : exact-nonnegative-integer?

Returns a byte string made of the given pointer and the given length. No copying is done.
This can be used as an alternative to make pointer values accessible in Racket when the size
is known.

If cptr is an offset pointer created by ptr-add, the offset is immediately added to the
pointer. Thus, this function cannot be used with ptr-add to create a substring of a Racket
byte string, because the offset pointer would be to the middle of a collectable object (which
is not allowed).

35

5 Derived Utilities

5.1 Safe Homogenous Vectors

(require ffi/vector)

Homogenous vectors are similar to C vectors (see §5.2 “Safe C Vectors”), except that they
define different types of vectors, each with a hard-wired type. An exception is the u8 family
of bindings, which are just aliases for byte-string bindings; for example, make-u8vector is
an alias for make-bytes.

(make-u8vector len) → u8vector?

len : exact-nonnegative-integer?

(u8vector val ...) → u8vector?

val : number?

(u8vector? v) → boolean?

v : any/c

(u8vector-length vec) → exact-nonnegative-integer?

vec : u8vector?

(u8vector-ref vec k) → number?

vec : u8vector?

k : exact-nonnegative-integer?

(u8vector-set! vec k val) → void?

vec : u8vector?

k : exact-nonnegative-integer?

val : number?

(list->u8vector lst) → u8vector?

lst : (listof number?)

(u8vector->list vec) → (listof number?)

vec : u8vector?

(u8vector->cpointer vec) → cpointer?

vec : u8vector?

Like _cvector, but for vectors of _byte elements. These are aliases for byte operations,
where u8vector->cpointer is the identity function.

(_u8vector mode maybe-len)

_u8vector

Like _cvector, but for vectors of _uint8 elements.

(make-s8vector len) → s8vector?

len : exact-nonnegative-integer?

36

(s8vector val ...) → s8vector?

val : number?

(s8vector? v) → boolean?

v : any/c

(s8vector-length vec) → exact-nonnegative-integer?

vec : s8vector?

(s8vector-ref vec k) → number?

vec : s8vector?

k : exact-nonnegative-integer?

(s8vector-set! vec k val) → void?

vec : s8vector?

k : exact-nonnegative-integer?

val : number?

(list->s8vector lst) → s8vector?

lst : (listof number?)

(s8vector->list vec) → (listof number?)

vec : s8vector?

(s8vector->cpointer vec) → cpointer?

vec : s8vector?

Like make-vector, etc., but for _int8 elements. The s8vector->cpointer function
extracts a plain pointer to the underlying array.

(_s8vector mode maybe-len)

_s8vector

Like _cvector, but for vectors of _int8 elements.

(make-s16vector len) → s16vector?

len : exact-nonnegative-integer?

(s16vector val ...) → s16vector?

val : number?

(s16vector? v) → boolean?

v : any/c

(s16vector-length vec) → exact-nonnegative-integer?

vec : s16vector?

(s16vector-ref vec k) → number?

vec : s16vector?

k : exact-nonnegative-integer?

(s16vector-set! vec k val) → void?

vec : s16vector?

k : exact-nonnegative-integer?

val : number?

(list->s16vector lst) → s16vector?

37

lst : (listof number?)

(s16vector->list vec) → (listof number?)

vec : s16vector?

(s16vector->cpointer vec) → cpointer?

vec : s16vector?

Like make-vector, etc., but for _int16 elements. The s16vector->cpointer function
extracts a plain pointer to the underlying array.

(_s16vector mode maybe-len)

_s16vector

Like _cvector, but for vectors of _int16 elements.

(make-u16vector len) → u16vector?

len : exact-nonnegative-integer?

(u16vector val ...) → u16vector?

val : number?

(u16vector? v) → boolean?

v : any/c

(u16vector-length vec) → exact-nonnegative-integer?

vec : u16vector?

(u16vector-ref vec k) → number?

vec : u16vector?

k : exact-nonnegative-integer?

(u16vector-set! vec k val) → void?

vec : u16vector?

k : exact-nonnegative-integer?

val : number?

(list->u16vector lst) → u16vector?

lst : (listof number?)

(u16vector->list vec) → (listof number?)

vec : u16vector?

(u16vector->cpointer vec) → cpointer?

vec : u16vector?

Like make-vector, etc., but for _uint16 elements. The u16vector->cpointer function
extracts a plain pointer to the underlying array.

(_u16vector mode maybe-len)

_u16vector

Like _cvector, but for vectors of _uint16 elements.

38

(make-s32vector len) → s32vector?

len : exact-nonnegative-integer?

(s32vector val ...) → s32vector?

val : number?

(s32vector? v) → boolean?

v : any/c

(s32vector-length vec) → exact-nonnegative-integer?

vec : s32vector?

(s32vector-ref vec k) → number?

vec : s32vector?

k : exact-nonnegative-integer?

(s32vector-set! vec k val) → void?

vec : s32vector?

k : exact-nonnegative-integer?

val : number?

(list->s32vector lst) → s32vector?

lst : (listof number?)

(s32vector->list vec) → (listof number?)

vec : s32vector?

(s32vector->cpointer vec) → cpointer?

vec : s32vector?

Like make-vector, etc., but for _int32 elements. The s32vector->cpointer function
extracts a plain pointer to the underlying array.

(_s32vector mode maybe-len)

_s32vector

Like _cvector, but for vectors of _int32 elements.

(make-u32vector len) → u32vector?

len : exact-nonnegative-integer?

(u32vector val ...) → u32vector?

val : number?

(u32vector? v) → boolean?

v : any/c

(u32vector-length vec) → exact-nonnegative-integer?

vec : u32vector?

(u32vector-ref vec k) → number?

vec : u32vector?

k : exact-nonnegative-integer?

(u32vector-set! vec k val) → void?

vec : u32vector?

39

k : exact-nonnegative-integer?

val : number?

(list->u32vector lst) → u32vector?

lst : (listof number?)

(u32vector->list vec) → (listof number?)

vec : u32vector?

(u32vector->cpointer vec) → cpointer?

vec : u32vector?

Like make-vector, etc., but for _uint32 elements. The u32vector->cpointer function
extracts a plain pointer to the underlying array.

(_u32vector mode maybe-len)

_u32vector

Like _cvector, but for vectors of _uint32 elements.

(make-s64vector len) → s64vector?

len : exact-nonnegative-integer?

(s64vector val ...) → s64vector?

val : number?

(s64vector? v) → boolean?

v : any/c

(s64vector-length vec) → exact-nonnegative-integer?

vec : s64vector?

(s64vector-ref vec k) → number?

vec : s64vector?

k : exact-nonnegative-integer?

(s64vector-set! vec k val) → void?

vec : s64vector?

k : exact-nonnegative-integer?

val : number?

(list->s64vector lst) → s64vector?

lst : (listof number?)

(s64vector->list vec) → (listof number?)

vec : s64vector?

(s64vector->cpointer vec) → cpointer?

vec : s64vector?

Like make-vector, etc., but for _int64 elements. The s64vector->cpointer function
extracts a plain pointer to the underlying array.

(_s64vector mode maybe-len)

_s64vector

40

Like _cvector, but for vectors of _int64 elements.

(make-u64vector len) → u64vector?

len : exact-nonnegative-integer?

(u64vector val ...) → u64vector?

val : number?

(u64vector? v) → boolean?

v : any/c

(u64vector-length vec) → exact-nonnegative-integer?

vec : u64vector?

(u64vector-ref vec k) → number?

vec : u64vector?

k : exact-nonnegative-integer?

(u64vector-set! vec k val) → void?

vec : u64vector?

k : exact-nonnegative-integer?

val : number?

(list->u64vector lst) → u64vector?

lst : (listof number?)

(u64vector->list vec) → (listof number?)

vec : u64vector?

(u64vector->cpointer vec) → cpointer?

vec : u64vector?

Like make-vector, etc., but for _uint64 elements. The u64vector->cpointer function
extracts a plain pointer to the underlying array.

(_u64vector mode maybe-len)

_u64vector

Like _cvector, but for vectors of _uint64 elements.

(make-f32vector len) → f32vector?

len : exact-nonnegative-integer?

(f32vector val ...) → f32vector?

val : number?

(f32vector? v) → boolean?

v : any/c

(f32vector-length vec) → exact-nonnegative-integer?

vec : f32vector?

(f32vector-ref vec k) → number?

vec : f32vector?

k : exact-nonnegative-integer?

(f32vector-set! vec k val) → void?

41

vec : f32vector?

k : exact-nonnegative-integer?

val : number?

(list->f32vector lst) → f32vector?

lst : (listof number?)

(f32vector->list vec) → (listof number?)

vec : f32vector?

(f32vector->cpointer vec) → cpointer?

vec : f32vector?

Like make-vector, etc., but for _float elements. The f32vector->cpointer function
extracts a plain pointer to the underlying array.

(_f32vector mode maybe-len)

_f32vector

Like _cvector, but for vectors of _float elements.

(make-f64vector len) → f64vector?

len : exact-nonnegative-integer?

(f64vector val ...) → f64vector?

val : number?

(f64vector? v) → boolean?

v : any/c

(f64vector-length vec) → exact-nonnegative-integer?

vec : f64vector?

(f64vector-ref vec k) → number?

vec : f64vector?

k : exact-nonnegative-integer?

(f64vector-set! vec k val) → void?

vec : f64vector?

k : exact-nonnegative-integer?

val : number?

(list->f64vector lst) → f64vector?

lst : (listof number?)

(f64vector->list vec) → (listof number?)

vec : f64vector?

(f64vector->cpointer vec) → cpointer?

vec : f64vector?

Like make-vector, etc., but for _double* elements. The f64vector->cpointer function
extracts a plain pointer to the underlying array.

(_f64vector mode maybe-len)

42

_f64vector

Like _cvector, but for vectors of _double* elements.

5.2 Safe C Vectors

(require ffi/cvector)

(require ffi/unsafe/cvector)

The ffi/unsafe/cvector library exports the bindings of this section. The ffi/cvector
library exports the same bindings, except for the unsafe make-cvector* operation.

The cvector form can be used as a type C vectors (i.e., a pointer to a memory block).

(_cvector mode type maybe-len)

_cvector

Like _bytes, _cvector can be used as a simple type that corresponds to a pointer that is
managed as a safe C vector on the Racket side. The longer form behaves similarly to the
_list and _vector custom types, except that _cvector is more efficient; no Racket list or
vector is needed.

(make-cvector type length) → cvector?

type : ctype?

length : exact-nonnegative-integer?

Allocates a C vector using the given type and length . The resulting vector is not guaran-
teed to contain any particular values.

(cvector type val ...) → cvector?

type : ctype?

val : any/c

Creates a C vector of the given type , initialized to the given list of vals.

(cvector? v) → boolean?

v : any/c

Returns #t if v is a C vector, #f otherwise.

(cvector-length cvec) → exact-nonnegative-integer?

cvec : cvector?

43

Returns the length of a C vector.

(cvector-type cvec) → ctype?

cvec : cvector?

Returns the C type object of a C vector.

(cvector-ptr cvec) → cpointer?

cvec : cvector?

Returns the pointer that points at the beginning block of the given C vector.

(cvector-ref cvec k) → any

cvec : cvector?

k : exact-nonnegative-integer?

References the k th element of the cvec C vector. The result has the type that the C vector
uses.

(cvector-set! cvec k val) → void?

cvec : cvector?

k : exact-nonnegative-integer?

val : any

Sets the k th element of the cvec C vector to val . The val argument should be a value that
can be used with the type that the C vector uses.

(cvector->list cvec) → list?

cvec : cvector?

Converts the cvec C vector object to a list of values.

(list->cvector lst type) → cvector?

lst : list?

type : ctype?

Converts the list lst to a C vector of the given type .

(make-cvector* cptr type length) → cvector?

cptr : any/c

type : ctype?

length : exact-nonnegative-integer?

44

Constructs a C vector using an existing pointer object. This operation is not safe, so it is
intended to be used in specific situations where the type and length are known.

5.3 Tagged C Pointer Types

The unsafe cpointer-has-tag? and cpointer-push-tag! operations manage tags to
distinguish pointer types.

(_cpointer tag

[ptr-type
scheme-to-c

c-to-scheme]) → ctype

tag : any/c

ptr-type : ctype? = xpointer

scheme-to-c : (any/c . -> . any/c) = values

c-to-scheme : (any/c . -> . any/c) = values

(_cpointer/null tag

[ptr-type
scheme-to-c

c-to-scheme]) → ctype

tag : any/c

ptr-type : ctype? = xpointer

scheme-to-c : (any/c . -> . any/c) = values

c-to-scheme : (any/c . -> . any/c) = values

Construct a kind of a pointer that gets a specific tag when converted to Racket, and accept
only such tagged pointers when going to C. An optional ptr-type can be given to be used
as the base pointer type, instead of _pointer.

Pointer tags are checked with cpointer-has-tag? and changed with cpointer-push-

tag! which means that other tags are preserved. Specifically, if a base ptr-type is given
and is itself a _cpointer, then the new type will handle pointers that have the new tag in
addition to ptr-type ’s tag(s). When the tag is a pair, its first value is used for printing, so
the most recently pushed tag which corresponds to the inheriting type will be displayed.

Note that tags are compared with eq? (or memq), which means an interface can hide its value
from users (e.g., not provide the cpointer-tag accessor), which makes such pointers un-
fake-able.

_cpointer/null is similar to _cpointer except that it tolerates NULL pointers both going
to C and back. Note that NULL pointers are represented as #f in Racket, so they are not
tagged.

45

(define-cpointer-type _id)

(define-cpointer-type _id scheme-to-c-expr)

(define-cpointer-type _id scheme-to-c-expr c-to-scheme-expr)

A macro version of _cpointer and _cpointer/null, using the defined name for a tag
string, and defining a predicate too. The _id must start with _.

The optional expression produces optional arguments to _cpointer.

In addition to defining _id to a type generated by _cpointer, _id/null is bound to a type
produced by _cpointer/null type. Finally, id? is defined as a predicate, and id-tag is
defined as an accessor to obtain a tag. The tag is the string form of id .

(cpointer-has-tag? cptr tag) → boolean?

cptr : any/c

tag : any/c

(cpointer-push-tag! cptr tag) → void

cptr : any/c

tag : any/c

These two functions treat pointer tags as lists of tags. As described in §4 “Pointer Func-
tions”, a pointer tag does not have any role, except for Racket code that uses it to distinguish
pointers; these functions treat the tag value as a list of tags, which makes it possible to
construct pointer types that can be treated as other pointer types, mainly for implementing
inheritance via upcasts (when a struct contains a super struct as its first element).

The cpointer-has-tag? function checks whether if the given cptr has the tag . A pointer
has a tag tag when its tag is either eq? to tag or a list that contains (in the sense of memq)
tag .

The cpointer-push-tag! function pushes the given tag value on cptr ’s tags. The main
properties of this operation are: (a) pushing any tag will make later calls to cpointer-has-

tag? succeed with this tag, and (b) the pushed tag will be used when printing the pointer
(until a new value is pushed). Technically, pushing a tag will simply set it if there is no tag
set, otherwise push it on an existing list or an existing value (treated as a single-element list).

5.4 Defining Bindings

(require ffi/unsafe/define)

(define-ffi-definer define-id ffi-lib-expr

option ...)

46

option = #:provide provide-id

| #:define core-define-id

| #:default-make-fail default-make-fail-expr

Binds define-id as a definition form to extract bindings from the library produced by
ffi-lib-expr . The syntax of define-id is

(define-id id type-expr

bind-option ...)

bind-option = #:c-id c-id

| #:wrap wrap-expr

| #:make-fail make-fail-expr

| #:fail fail-expr

A define-id form binds id by extracting a binding with the name c-id from the library
produced by ffi-lib-expr , where c-id defaults to id. The other options support further
wrapping and configuration:

• Before the extracted result is bound as id , it is passed to the result of wrap-expr ,
which defaults to values. Expressions such as (allocator delete) or (deallo-
cator) are useful as wrap-exprs.

• The #:make-fail and #:fail options are mutually exclusive; if make-fail-expr
is provided, it is applied to 'id to obtain the last argument to get-ffi-obj; if fail-
expr is provided, it is supplied directly as the last argument to get-ffi-obj. The
make-not-available function is useful as make-fail-expr to cause a use of id
to report an error when it is applied if c-id was not found in the foreign library.

If provide-id is provided to define-ffi-definer, then define-id also provides its
binding using provide-id . The provide-protected form is usually a good choice for
provide-id .

If core-define-id is provided to define-ffi-definer, then code-define-id is used
in place of define in the expansion of define-id for each binding.

If default-make-fail-expr is provided to define-ffi-definer, it serves as the de-
fault #:make-fail value for define-id .

For example,

(define-ffi-definer define-gtk gtk-lib)

binds define-gtk to extract FFI bindings from gtk-lib, so that gtk_rc_parse could be
bound as

47

(define-gtk gtk_rc_parse (_fun _path -> _void))

If gtk_rc_parse is not found, then define-gtk reports an error immediately. If define-
gtk is instead defined with

(define-ffi-definer define-gtk gtk-lib

#:default-make-fail make-not-available)

then if gtk_rc_parse is not found in gtk-lib, an error is reported only when
gtk_rc_parse is called.

(make-not-available name) → (#:rest list? -> any/c)

name : symbol?

Returns a procedure that takes any number of arguments and reports an error message from
name . This function is intended for using with #:make-fail or #:default-make-fail
in define-ffi-definer

(provide-protected provide-spec ...)

Equivalent to (provide (protect-out provide-spec ...)). The provide-

protected identifier is useful with #:provide in define-ffi-definer.

5.5 Allocation and Finalization

(require ffi/unsafe/alloc)

The ffi/unsafe/alloc library provides utilities for ensuring that values allocated through
foreign functions are reliably deallocated.

((allocator dealloc) alloc) → procedure?

dealloc : (any/c . -> . any)

alloc : procedure?

Produces a procedure that behaves like alloc , but the result of alloc is given a final-
izer that calls dealloc on the result if it is not otherwise freed through a deallocator (as
designated with deallocator). In addition, alloc is called in atomic mode (see start-

atomic); its result is received and registered in atomic mode, so that the result is reliably
freed.

The dealloc procedure itself need not be specifically designated a deallocator (via deal-

locator). If a deallocator is called explicitly, it need not be the same as dealloc .

48

((deallocator [get-arg]) dealloc) → procedure?

get-arg : (list? . -> . any/c) = car

dealloc : procedure?

((releaser [get-arg]) dealloc) → procedure?

get-arg : (list? . -> . any/c) = car

dealloc : procedure?

Produces a procedure that behaves like dealloc . The dealloc procedure is called in
atomic mode (see start-atomic), and the reference count on one of its arguments is decre-
mented; if the reference count reaches zero, no finalizer associated by an allocator- or
referencer-wrapped procedure is invoked when the value becomes inaccessible.

The optional get-arg procedure determines which of dealloc ’s arguments correspond to
the released object; get-arg receives a list of arguments passed to dealloc , so the default
car selects the first one.

The releaser procedure is a synonym for deallocator.

((retainer release [get-arg]) retain) → procedure?

release : (any/c . -> . any)

get-arg : (list? . -> . any/c) = car

retain : procedure?

Produces a procedure that behaves like retain . The procedure is called in atomic mode
(see start-atomic), and the reference count on one of its arguments is incremented, with
release recorded as the corresponding release procedure to be called by the finalizer on
the retained object (unless some deallocator, as wrapped by deallocate, is explicitly called
first).

The optional get-arg procedure determines which of retain ’s arguments correspond to
the retained object; get-arg receives a list of arguments passed to retain , so the default
car selects the first one.

The release procedure itself need not be specifically designated a deallocator (via deal-

locator). If a deallocator is called explicitly, it need not be the same as release .

5.6 Atomic Execution

(require ffi/unsafe/atomic)

(start-atomic) → void?

(end-atomic) → void?

49

Disables and enables context switches and delivery of break exceptions at the level of Racket
threads. Calls to start-atomic and end-atomic can be nested.

Using call-as-atomic is somewhat safer, in that call-as-atomic correctly catches ex-
ceptions and re-raises them after exiting atomic mode. For simple uses where exceptions
need not be handled, however, start-atomic and end-atomic are faster.

(start-breakable-atomic) → void?

(end-breakable-atomic) → void?

Like start-atomic and end-atomic, but the delivery of break exceptions is not sus-
pended. To ensure that a call to start-atomic is reliably paired with a call to end-atomic,
use dynamic-wind pre- and post thunks or some other context where breaks are disabled.
These variants are not faster than plan start-atomic and end-atomic.

(call-as-atomic thunk) → any

thunk : (-> any)

Calls thunk in atomic mode. If thunk raises and exception, the exception is caught and
re-raised after exiting atomic mode.

When call-as-atomic is used in the dynamic extent of call-as-atomic, then thunk is
simply called directly (as a tail call).

(call-as-nonatomic thunk) → any

thunk : (-> any)

Within the dynamic extent of a call-as-atomic, calls thunk in non-atomic mode. Beware
that the current thread maybe suspended or terminated by other threads during thunk , in
which case the call never returns.

When used not in the dynamic extent of call-as-atomic, call-as-nonatomic raises
exn:fail:contract.

5.7 Speculatively Atomic Execution

(require ffi/unsafe/try-atomic)

The ffi/unsafe/try-atomic supports atomic execution that can be suspended and re-
sumed in non-atomic mode if it takes too long or if some external event causes the attempt
to be abandoned.

(call-as-nonatomic-retry-point thunk) → any

50

thunk : (-> any)

Calls thunk in atomic mode (see start-atomic and end-atomic) while allowing thunk

to use try-atomic. Any incomplete computations started with try-atomic are run non-
atomically after thunk returns. The result of thunk is used as the result of call-as-
nonatomic-retry-point.

(try-atomic thunk

default-val

[#:should-give-up? give-up-proc

#:keep-in-order? keep-in-order?]) → any

thunk : (-> any)

default-val : any/c

give-up-proc : (-> any/c) = run-200-milliseconds

keep-in-order? : any/c = #t

Within the dynamic extent of a call-as-nonatomic-retry-point call, attempts to run
thunk in the existing atomic mode. The give-up-proc procedure is called periodically to
determine whether atomic mode should be abandoned; the default give-up-proc returns
true after 200 milliseconds. If atomic mode is abandoned, the computation is suspended,
and default-val is returned, instead. The computation is resumed later by the enclosing
call-as-nonatomic-retry-point call.

If keep-in-order? is true, then if try-atomic is called after an earlier computation was
suspended for the same call-as-nonatomic-retry-point call, then thunk is immedi-
ately enqueued for completion by call-as-nonatomic-retry-point and default-val

is returned.

The give-up-proc callback is polled only at points where the level of atomic-mode nesting
(see start-atomic, start-breakable-atomic, and call-as-atomic) is the same as at
the point of calling try-atomic.

If thunk aborts the current continuation using (default-continuation-prompt-tag),
the abort is suspended the resumed by the enclosing call-as-nonatomic-retry-point.
Escapes to the context of the call to thunk using any other prompt tag or continuation are
blocked (using dynamic-wind) and simply return (void) from thunk .

5.8 Objective-C FFI

(require ffi/unsafe/objc)

The ffi/unsafe/objc library builds on ffi/unsafe to support interaction with
Objective-C.

51

http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC/

The library supports Objective-C interaction in two layers. The upper layer provides syntac-
tic forms for sending messages and deriving subclasses. The lower layer is a think wrapper
on the Objective-C runtime library functions. Even the upper layer is unsafe and relatively
low-level compared to normal Racket libraries, because argument and result types must be
declared in terms of FFI C types (see §3.1 “Type Constructors”).

5.8.1 FFI Types and Constants

_id : ctype?

The type of an Objective-C object, an opaque pointer.

_Class : ctype?

The type of an Objective-C class, which is also an _id.

_Protocol : ctype?

The type of an Objective-C protocol, which is also an _id.

_SEL : ctype?

The type of an Objective-C selector, an opaque pointer.

_BOOL : ctype?

The Objective-C boolean type. Racket values are converted for C in the usual way: #f is
false and any other value is true. C values are converted to Racket booleans.

YES : boolean?

Synonym for #t

NO : boolean?

Synonym for #f

52

http://developer.apple.com/DOCUMENTATION/Cocoa/Reference/ObjCRuntimeRef/index.html

5.8.2 Syntactic Forms and Procedures

(tell result-type obj-expr method-id)

(tell result-type obj-expr arg ...)

result-type =
| #:type ctype-expr

arg = method-id arg-expr

| method-id #:type ctype-expr arg-expr

Sends a message to the Objective-C object produced by obj-expr . When a type is omitted
for either the result or an argument, the type is assumed to be _id, otherwise it must be
specified as an FFI C type (see §3.1 “Type Constructors”).

If a single method-id is provided with no arguments, then method-id must not end with
:; otherwise, each method-id must end with :.

Examples:

> (tell NSString alloc)

#<cpointer:id>

> (tell (tell NSString alloc)

initWithUTF8String: #:type _string "Hello")

#<cpointer:id>

(tellv obj-expr method-id)

(tellv obj-expr arg ...)

Like tell, but with a result type _void.

(import-class class-id ...)

Defines each class-id to the class (a value with FFI type _Class) that is registered with
the string form of class-id . The registered class is obtained via objc_lookUpClass.

Example:

> (import-class NSString)

(import-protocol protocol-id ...)

Defines each protocol-id to the protocol (a value with FFI type _Protocol) that is
registered with the string form of protocol-id . The registered class is obtained via
objc_getProtocol.

53

Example:

> (import-protocol NSCoding)

(define-objc-class class-id superclass-expr

maybe-mixins

maybe-protocols

[field-id ...]

method)

maybe-mixins =
| #:mixins (mixin-expr ...)

maybe-protocols =
| #:protocols (protocol-expr ...)

method = (mode result-ctype-expr (method-id) body ...+)

| (mode result-ctype-expr (arg ...+) body ...+)

mode = +

| -

| +a

| -a

arg = method-id [ctype-expr arg-id]

Defines class-id as a new, registered Objective-C class (of FFI type _Class). The
superclass-expr should produce an Objective-C class or #f for the superclass. An op-
tional #:mixins clause can specify mixins defined with define-objc-mixin. An optional
#:protocols clause can specify Objective-C protocols to be implemented by the class.

Each field-id is an instance field that holds a Racket value and that is initialized to #f

when the object is allocated. The field-ids can be referenced and set! directly when
the method bodys. Outside the object, they can be referenced and set with get-ivar and
set-ivar!.

Each method adds or overrides a method to the class (when mode is - or -a) to be called
on instances, or it adds a method to the meta-class (when mode is + or +a) to be called on
the class itself. All result and argument types must be declared using FFI C types (see §3.1
“Type Constructors”). When mode is +a or -a, the method is called in atomic mode (see
_cprocedure).

If a method is declared with a single method-id and no arguments, then method-id must
not end with :. Otherwise, each method-id must end with :.

If the special method dealloc is declared for mode -, it must not call the superclass method,
because a (super-tell dealloc) is added to the end of the method automatically. In

54

addition, before (super-tell dealloc), space for each field-id within the instance is
deallocated.

Example:

> (define-objc-class MyView NSView

[bm] ; <- one field

(- _racket (swapBitwmap: [_racket new-bm])

(begin0 bm (set! bm new-bm)))

(- _void (drawRect: [_NSRect exposed-rect])

(super-tell drawRect: exposed-rect)

(draw-bitmap-region bm exposed-rect))

(- _void (dealloc)

(when bm (done-with-bm bm))))

(define-objc-mixin (class-id superclass-id)

maybe-mixins

maybe-protocols

[field-id ...]

method)

Like define-objc-class, but defines a mixin to be combined with other method defini-
tions through either define-objc-class or define-objc-mixin. The specified field-

ids are not added by the mixin, but must be a subset of the field-ids declared for the
class to which the methods are added.

self

When used within the body of a define-objc-class or define-objc-mixin method,
refers to the object whose method was called. This form cannot be used outside of a define-
objc-class or define-objc-mixin method.

(super-tell result-type method-id)

(super-tell result-type arg ...)

When used within the body of a define-objc-class or define-objc-mixin method,
calls a superclass method. The result-type and arg sub-forms have the same syntax as
in tell. This form cannot be used outside of a define-objc-class or define-objc-
mixin method.

(get-ivar obj-expr field-id)

Extracts the Racket value of a field in a class created with define-objc-class.

55

(set-ivar! obj-expr field-id value-expr)

Sets the Racket value of a field in a class created with define-objc-class.

(selector method-id)

Returns a selector (of FFI type _SEL) for the string form of method-id .

Example:

> (tellv button setAction: #:type _SEL (selector terminate:))

(objc-is-a? obj cls) → boolean?

obj : _id

cls : _Class

Check whether obj is an instance of the Objective-C class cls .

5.8.3 Raw Runtime Functions

(objc_lookUpClass s) → (or/c _Class #f)

s : string?

Finds a registered class by name.

(objc_getProtocol s) → (or/c _Protocol #f)

s : string?

Finds a registered protocol by name.

(sel_registerName s) → _SEL

s : string?

Interns a selector given its name in string form.

(objc_allocateClassPair cls s extra) → _Class

cls : _Class

s : string?

extra : integer?

Allocates a new Objective-C class.

56

(objc_registerClassPair cls) → void?

cls : _Class

Registers an Objective-C class.

(object_getClass obj) → _Class

obj : _id

Returns the class of an object (or the meta-class of a class).

(class_addMethod cls

sel

imp

type

type-encoding) → boolean?

cls : _Class

sel : _SEL

imp : procedure?

type : ctype?

type-encoding : string?

Adds a method to a class. The type argument must be a FFI C type (see §3.1 “Type Con-
structors”) that matches both imp and the not Objective-C type string type-encoding .

(class_addIvar cls

name

size

log-alignment

type-encoding) → boolean?

cls : _Class

name : string?

size : exact-nonnegative-integer?

log-alignment : exact-nonnegative-integer?

type-encoding : string?

Adds an instance variable to an Objective-C class.

(object_getInstanceVariable obj name) → _Ivar any/c

obj : _id

name : string?

Gets the value of an instance variable whose type is _pointer.

57

(object_setInstanceVariable obj name val) → _Ivar

obj : _id

name : string?

val : any/c

Sets the value of an instance variable whose type is _pointer.

_Ivar : ctype?

The type of an Objective-C instance variable, an opaque pointer.

((objc_msgSend/typed types) obj sel arg) → any/c

types : (vector/c result-ctype arg-ctype ...)

obj : _id

sel : _SEL

arg : any/c

Calls the Objective-C method on _id named by sel . The types vector must contain one
more than the number of supplied args; the first FFI C type in type is used as the result
type.

((objc_msgSendSuper/typed types)

super

sel

arg) → any/c

types : (vector/c result-ctype arg-ctype ...)

super : _objc_super

sel : _SEL

arg : any/c

Like objc_msgSend/typed, but for a super call.

(make-objc_super id super) → _objc_super

id : _id

super : _Class

_objc_super : ctype?

Constructor and FFI C type use for super calls.

58

Contents

59

5.8.4 Legacy Library

(require ffi/objc)

The ffi/objc library is a deprecated entry point to ffi/unsafe/objc. It exports only safe
operations directly, and unsafe operations are imported using objc-unsafe!.

(objc-unsafe!)

Analogous to (unsafe!), makes unsafe bindings of ffi/unsafe/objc available in the
importing module.

5.9 File Security-Guard Checks

(require ffi/file)

(security-guard-check-file who path perms) → void?

who : symbol?

path : path-string?

perms : (listof (or/c 'read 'write 'execute 'delete 'exists))

Checks whether (current-security-guard) permits access to the file specified by path

with the permissions perms . See make-security-guard for more information on perms .

The symbol who should be the name of the function on whose behalf the security check is
performed; it is passed to the security guard to use in access-denied errors.

(_file/guard perms [who]) → ctype?

perms : (listof (or/c 'read 'write 'execute 'delete 'exists))

who : symbol? = '_file/guard

Like _file and _path, but conversion from Racket to C first completes the path using
path->complete-path then cleanses it using cleanse-path, then checks that the current
security guard grants access on the resulting complete path with perms . As an output value,
identical to _path.

_file/r : ctype?

_file/rw : ctype?

Equivalent to (_file/guard '(read)) and (_file/guard '(read write)), respec-
tively.

60

5.10 Windows API Helpers

(require ffi/winapi)

win64? : boolean?

Indicates whether the current platform is 64-bit Windows: #t if so, #f otherwise.

winapi : (or/c 'stdcall 'default)

Suitable for use as an ABI specification for a Windows API function: 'stdcall on 32-bit
Windows, 'default on 64-bit Windows or any other platform.

61

6 Miscellaneous Support

(regexp-replaces objname substs) → string?

objname : (or/c string? bytes? symbol?)

substs : (listof (list regexp? string?))

A function that is convenient for many interfaces where the foreign library has some naming
convention that you want to use in your interface as well. The objname argument can be
any value that will be used to name the foreign object; it is first converted into a string, and
then modified according to the given substs list in sequence, where each element in this
list is a list of a regular expression and a substitution string. Usually, regexp-replace* is
used to perform the substitution, except for cases where the regular expression begins with
a ^ or ends with a $, in which case regexp-replace is used.

For example, the following makes it convenient to define Racket bindings such as foo-bar
for foreign names like MyLib_foo_bar:

(define mylib (ffi-lib "mylib"))

(define-syntax defmyobj

(syntax-rules (:)

[(_ name : type ...)

(define name

(get-ffi-obj

(regexp-replaces 'name '((#rx"-" "_")

(#rx"^" "MyLib_")))

mylib (_fun type ...)))]))

(defmyobj foo-bar : _int -> _int)

(list->cblock lst type) → any

lst : list?

type : ctype?

Allocates a memory block of an appropriate size, and initializes it using values from lst and
the given type . The lst must hold values that can all be converted to C values according
to the given type .

(vector->cblock vec type) → any

vec : vector?

type : type?

Like list->cblock, but for Racket vectors.

(vector->cpointer vec) → cpointer?

62

vec : vector?

Returns a pointer to an array of _scheme values, which is the internal representation of vec .

(flvector->cpointer flvec) → cpointer?

flvec : flvector?

Returns a pointer to an array of _double values, which is the internal representation of
flvec .

(saved-errno) → exact-integer?

Returns the value most recently saved (in the current thread) after a foreign call with a non-
#f #:save-errno option (see _fun and _cprocedure).

(lookup-errno sym) → exact-integer?

sym : (or/c 'EINTR 'EEXIST 'EAGAIN)

Returns a platform-specific value corresponding to a Posix errno symbol. The set of sup-
ported symbols is likely to expand in the future.

(cast v from-type to-type) → any/c

v : any/c

from-type : ctype?

to-type : ctype?

Converts v from a value matching from-type to a value matching to-type , where
(ctype-sizeof from-type) matches (ctype-sizeof to-type).

The conversion is equivalent to

(let ([p (malloc from-type)])

(ptr-set! p from-type v)

(ptr-ref p to-type))

(cblock->list cblock type length) → list?

cblock : any/c

type : ctype?

length : exact-nonnegative-integer?

Converts C cblock , which is a vector of types, to a Racket list. The arguments are the
same as in the list->cblock. The length must be specified because there is no way to
know where the block ends.

63

(cblock->vector cblock type length) → vector?

cblock : any/c

type : ctype?

length : exact-nonnegative-integer?

Like cblock->vector, but for Racket vectors.

64

7 Unexported Primitive Functions

Parts of the ffi/unsafe library are implemented by the Racket built-in '#%foreign mod-
ule. The '#%foreign module is not intended for direct use, but it exports the following
procedures. If you find any of these useful, please let us know.

(ffi-obj objname lib) → any

objname : (or/c string? bytes? symbol?)

lib : (or/c ffi-lib? path-string? #f)

Pulls out a foreign object from a library, returning a Racket value that can be used as a
pointer. If a name is provided instead of a foreign-library value, ffi-lib is used to create a
library object.

(ffi-obj? x) → boolean?

x : any/c

(ffi-obj-lib obj) → ffi-lib?

obj : ffi-obj?

(ffi-obj-name obj) → string?

obj : ffi-obj?

A predicate for objects returned by ffi-obj, and accessor functions that return its corre-
sponding library object and name. These values can also be used as C pointer objects.

(ctype-basetype type) → (or/c ctype? #f)

type : ctype?

(ctype-scheme->c type) → procedure?

type : ctype?

(ctype-c->scheme type) → procedure?

type : ctype?

Accessors for the components of a C type object, made by make-ctype. The ctype-

basetype selector returns a symbol for primitive types that names the type, a list of ctypes
for cstructs, and another ctype for user-defined ctypes.

(ffi-call ptr in-types out-type [abi]) → any

ptr : any/c

in-types : (listof ctype?)

out-type : ctype?

abi : (or/c symbol/c #f) = #f

The primitive mechanism that creates Racket “callout” values. The given ptr (any pointer
value, including ffi-obj values) is wrapped in a Racket-callable primitive function that

65

uses the types to specify how values are marshaled.

The optional abi argument determines the foreign ABI that is used. #f or 'default will
use a platform-dependent default; other possible values are 'stdcall and 'sysv (the lat-
ter corresponds to “cdecl”). This is especially important on Windows, where most system
functions are 'stdcall, which is not the default.

(ffi-callback proc

in-types

out-type

[abi
atomic?]) → ffi-callback?

proc : any/c

in-types : any/c

out-type : any/c

abi : (or/c symbol/c #f) = #f

atomic? : any/c = #f

The symmetric counterpart of ffi-call. It receives a Racket procedure and creates a call-
back object, which can also be used as a pointer. This object can be used as a C-callable
function, which invokes proc using the types to specify how values are marshaled.

(ffi-callback? x) → boolean?

x : any/c

A predicate for callback values that are created by ffi-callback.

66

Index
_?, 20
_bitmask, 26
_bool, 10
_BOOL, 52
_box, 21
_byte, 9
_bytes, 22
_bytes/eof, 13
_Class, 52
_cpointer, 45
_cpointer/null, 45
_cprocedure, 15
_cvector, 43
_double, 10
_double*, 10
_enum, 26
_f32vector, 42
_f64vector, 42
_file, 13
_file/guard, 60
_file/r, 60
_file/rw, 60
_fixint, 10
_fixnum, 10
_float, 10
_fpointer, 14
_fun, 17
_gcable, 14
_gcpointer, 13
_id, 52
_int, 9
_int16, 9
_int32, 9
_int64, 9
_int8, 9
_intptr, 10
_Ivar, 58
_list, 21
_list-struct, 22
_llong, 10

_long, 10
_objc_super, 58
_or-null, 14
_path, 11
_pointer, 13
_Protocol, 52
_ptr, 20
_racket, 14
_s16vector, 38
_s32vector, 39
_s64vector, 40
_s8vector, 37
_sbyte, 9
_scheme, 14
_SEL, 52
_short, 9
_sint, 9
_sint16, 9
_sint32, 9
_sint64, 9
_sint8, 9
_sintptr, 10
_sllong, 10
_slong, 10
_sshort, 9
_string, 12
_string*/latin-1, 12
_string*/locale, 12
_string*/utf-8, 12
_string/eof, 13
_string/latin-1, 12
_string/locale, 12
_string/ucs-4, 11
_string/utf-16, 11
_string/utf-8, 12
_sword, 9
_symbol, 11
_u16vector, 38
_u32vector, 40
_u64vector, 41
_u8vector, 36
_ubyte, 9

67

_ufixint, 10
_ufixnum, 10
_uint, 9
_uint16, 9
_uint32, 9
_uint64, 9
_uint8, 9
_uintptr, 10
_ullong, 10
_ulong, 10
_ushort, 9
_uword, 9
_vector, 22
_void, 11
_word, 9
Allocation and Finalization, 48
allocator, 48
'atomic, 33
Atomic Execution, 49
'atomic-interior, 33
C Struct Types, 22
C Types, 8
C types, 8
call-as-atomic, 50
call-as-nonatomic, 50
call-as-nonatomic-retry-point, 50
cast, 63
cblock->list, 63
cblock->vector, 64
class_addIvar, 57
class_addMethod, 57
compiler-sizeof, 9
cpointer-has-tag?, 46
cpointer-push-tag!, 46
cpointer-tag, 32
cpointer?, 28
ctype->layout, 8
ctype-alignof, 8
ctype-basetype, 65
ctype-c->scheme, 65
ctype-scheme->c, 65
ctype-sizeof, 8

ctype?, 8
Custom Function Types, 19
custom function types, 19
cvector, 43
cvector->list, 44
cvector-length, 43
cvector-ptr, 44
cvector-ref, 44
cvector-set!, 44
cvector-type, 44
cvector?, 43
deallocator, 49
default-_string-type, 12
define-c, 7
define-cpointer-type, 46
define-cstruct, 23
define-ffi-definer, 46
define-fun-syntax, 20
define-objc-class, 54
define-objc-mixin, 55
Defining Bindings, 46
Derived Utilities, 36
dynamically loaded libraries, 5
end-atomic, 49
end-breakable-atomic, 50
end-stubborn-change, 33
Enumerations and Masks, 26
errno, 16
'eternal, 33
f32vector, 41
f32vector->cpointer, 42
f32vector->list, 42
f32vector-length, 41
f32vector-ref, 41
f32vector-set!, 41
f32vector?, 41
f64vector, 42
f64vector->cpointer, 42
f64vector->list, 42
f64vector-length, 42
f64vector-ref, 42
f64vector-set!, 42

68

f64vector?, 42
'failok, 33
FFI, 1
FFI Types and Constants, 52
ffi-call, 65
ffi-callback, 66
ffi-callback?, 66
ffi-lib, 5
ffi-lib?, 5
ffi-obj, 65
ffi-obj-lib, 65
ffi-obj-name, 65
ffi-obj-ref, 7
ffi-obj?, 65
ffi/cvector, 43
ffi/file, 60
ffi/objc, 60
ffi/unsafe, 1
ffi/unsafe/alloc, 48
ffi/unsafe/atomic, 49
ffi/unsafe/cvector, 43
ffi/unsafe/define, 46
ffi/unsafe/objc, 51
ffi/unsafe/try-atomic, 50
ffi/vector, 36
ffi/winapi, 61
File Security-Guard Checks, 60
Fixed Auto-Converting String Types, 12
flvector->cpointer, 63
free, 33
free-immobile-cell, 34
Function Types, 15
function-ptr, 19
get-ffi-obj, 6
get-ivar, 55
GetLastError, 16
import-class, 53
import-protocol, 53
'interior, 33
Legacy Library, 60
list->cblock, 62
list->cvector, 44

list->f32vector, 42
list->f64vector, 42
list->s16vector, 37
list->s32vector, 39
list->s64vector, 40
list->s8vector, 37
list->u16vector, 38
list->u32vector, 40
list->u64vector, 41
list->u8vector, 36
Loading Foreign Libraries, 5
lookup-errno, 63
make-c-parameter, 7
make-cstruct-type, 22
make-ctype, 8
make-cvector, 43
make-cvector*, 44
make-f32vector, 41
make-f64vector, 42
make-not-available, 48
make-objc_super, 58
make-s16vector, 37
make-s32vector, 39
make-s64vector, 40
make-s8vector, 36
make-sized-byte-string, 35
make-u16vector, 38
make-u32vector, 39
make-u64vector, 41
make-u8vector, 36
malloc, 32
malloc-immobile-cell, 33
memcpy, 31
memmove, 30
Memory Management, 32
memset, 31
Miscellaneous Support, 62
NO, 52
'nonatomic, 33
Numeric Types, 9
objc-is-a?, 56
objc-unsafe!, 60

69

objc_allocateClassPair, 56
objc_getProtocol, 56
objc_lookUpClass, 56
objc_msgSend/typed, 58
objc_msgSendSuper/typed, 58
objc_registerClassPair, 57
object_getClass, 57
object_getInstanceVariable, 57
object_setInstanceVariable, 58
Objective-C FFI, 51
offset-ptr?, 28
Other Atomic Types, 10
Other String Types, 13
Overview, 4
Pointer Dereferencing, 29
Pointer Functions, 28
Pointer Types, 13
Primitive String Types, 11
provide-protected, 48
ptr-add, 28
ptr-add!, 29
ptr-equal?, 28
ptr-offset, 28
ptr-ref, 29
ptr-set!, 29
'raw, 33
Raw Runtime Functions, 56
regexp-replaces, 62
register-finalizer, 34
releaser, 49
retainer, 49
s16vector, 37
s16vector->cpointer, 38
s16vector->list, 38
s16vector-length, 37
s16vector-ref, 37
s16vector-set!, 37
s16vector?, 37
s32vector, 39
s32vector->cpointer, 39
s32vector->list, 39
s32vector-length, 39

s32vector-ref, 39
s32vector-set!, 39
s32vector?, 39
s64vector, 40
s64vector->cpointer, 40
s64vector->list, 40
s64vector-length, 40
s64vector-ref, 40
s64vector-set!, 40
s64vector?, 40
s8vector, 37
s8vector->cpointer, 37
s8vector->list, 37
s8vector-length, 37
s8vector-ref, 37
s8vector-set!, 37
s8vector?, 37
Safe C Vectors, 43
Safe Homogenous Vectors, 36
saved-errno, 63
security-guard-check-file, 60
sel_registerName, 56
selector, 56
self, 55
set-cpointer-tag!, 32
set-ffi-obj!, 7
set-ivar!, 56
set-ptr-offset!, 29
shared libraries, 5
shared objects, 5
Speculatively Atomic Execution, 50
start-atomic, 49
start-breakable-atomic, 50
String Types, 11
'stubborn, 33
super-tell, 55
Syntactic Forms and Procedures, 53
Tagged C Pointer Types, 45
tell, 53
tellv, 53
The Racket Foreign Interface, 1
try-atomic, 51

70

Type Constructors, 8
u16vector, 38
u16vector->cpointer, 38
u16vector->list, 38
u16vector-length, 38
u16vector-ref, 38
u16vector-set!, 38
u16vector?, 38
u32vector, 39
u32vector->cpointer, 40
u32vector->list, 40
u32vector-length, 39
u32vector-ref, 39
u32vector-set!, 39
u32vector?, 39
u64vector, 41
u64vector->cpointer, 41
u64vector->list, 41
u64vector-length, 41
u64vector-ref, 41
u64vector-set!, 41
u64vector?, 41
u8vector, 36
u8vector->cpointer, 36
u8vector->list, 36
u8vector-length, 36
u8vector-ref, 36
u8vector-set!, 36
u8vector?, 36
'uncollectable, 33
Unexported Primitive Functions, 65
Variable Auto-Converting String Type, 12
vector->cblock, 62
vector->cpointer, 62
win64?, 61
winapi, 61
Windows API Helpers, 61
YES, 52

71

	1 Overview
	2 Loading Foreign Libraries
	3 C Types
	3.1 Type Constructors
	3.2 Numeric Types
	3.3 Other Atomic Types
	3.4 String Types
	3.4.1 Primitive String Types
	3.4.2 Fixed Auto-Converting String Types
	3.4.3 Variable Auto-Converting String Type
	3.4.4 Other String Types

	3.5 Pointer Types
	3.6 Function Types
	3.6.1 Custom Function Types

	3.7 C Struct Types
	3.8 Enumerations and Masks

	4 Pointer Functions
	4.1 Pointer Dereferencing
	4.2 Memory Management

	5 Derived Utilities
	5.1 Safe Homogenous Vectors
	5.2 Safe C Vectors
	5.3 Tagged C Pointer Types
	5.4 Defining Bindings
	5.5 Allocation and Finalization
	5.6 Atomic Execution
	5.7 Speculatively Atomic Execution
	5.8 Objective-C FFI
	5.8.1 FFI Types and Constants
	5.8.2 Syntactic Forms and Procedures
	5.8.3 Raw Runtime Functions
	5.8.4 Legacy Library

	5.9 File Security-Guard Checks
	5.10 Windows API Helpers

	6 Miscellaneous Support
	7 Unexported Primitive Functions
	Index

