
PLoT: Graph Plotting
Version 5.1.3

Alexander Friedman
and Jamie Raymond

August 15, 2011

PLoT (a.k.a. PLTplot) provides a basic interface for producing common types of plots such
as line and vector field plots as well as an advanced interface for producing customized plot
types. Additionally, plots and plot-items are first-class values and can be generated in and
passed to other programs.

1

Contents

1 Quick Start 3

1.1 Overview . 3

1.2 Basic Plotting . 3

1.3 Curve Fitting . 4

1.4 Creating Custom Plots . 5

2 Plotting 7

2.1 Plotting . 7

2.2 Curve Fitting . 11

2.3 Miscellaneous Functions . 12

3 Customizing Plots 14

2

1 Quick Start

1.1 Overview

PLoT (aka PLTplot) provides a basic interface for producing common types of plots such
as line and vector field plots as well as an advanced interface for producing customized plot
types. Additionally, plots and plot-items are first-class values and can be generated in and
passed to other programs.

1.2 Basic Plotting

After loading the correct module using (require plot) try

(plot (line (lambda (x) x)))

Any other function using the contract (-> real? real?) can be plotted using the same
form. To plot multiple items, use the functions mix and mix* to combine the items to be
plotted.

(plot (mix (line (lambda (x) (sin x)))

(line (lambda (x) (cos x)))))

The display area and appearance of the plot can be changed by adding brackets argu-
ment/value pairs after the first argument.

(plot (line (lambda (x) (sin x)))

#:x-min -1 #:x-max 1 #:title "Sin(x)")

The appearance of each individual plot item can be altered by adding argument/value pairs
after the data.

(plot (line (lambda (x) x)

#:color 'green #:width 3))

Besides plotting lines from functions in 2-D, the plotter can also render a variety of other
data in several ways:

• Discrete data, such as

(define data (list (vector 1 1 2)

(vector 2 2 2)))

3

can be interpreted in several ways:

– As points: (plot (points data))

– As error data: (plot (error-bars data))

• A function of two variables, such as

(define 3dfun (lambda (x y) (* (sin x) (sin y))))

can be plotted on a 2d graph

– Using contours to represent height (z)

(plot (contour 3dfun))

– Using color shading

(plot (shade 3dfun))

– Using a gradient field

(plot (vector-field (gradient 3dfun)))

or in a 3d box

– Displaying only the top of the surface

(plot3d (surface 3dfun))

1.3 Curve Fitting

The plot library uses a non-linear, least-squares fit algorithm to fit parameterized functions
to given data.

To fit a particular function to a curve:

• Set up the independent and dependent variable data. The first item in each vector is
the independent variable, the second is the result. The last item is the weight of the
error; we can leave it as 1 since all the items weigh the same.

(define data '(#(0 3 1)

#(1 5 1)

#(2 7 1)

#(3 9 1)

#(4 11 1)))

4

• Set up the function to be fitted using fit. This particular function looks like a line. The
independent variables must come before the parameters.

(define fit-fun

(lambda (x m b) (+ b (* m x))))

• If possible, come up with some guesses for the values of the parameters. The guesses
can be left as one, but each parameter must be named.

• Do the fit; the details of the function are described in §2.2 “Curve Fitting”.

(define fitted

(fit fit-fun

'((m 1) (b 1))

data))

• View the resulting parameters; for example,

(fit-result-final-params fitted)

will produce (2.0 3.0).

• For some visual feedback of the fit result, plot the function with the new parameters.
For convenience, the structure that is returned by the fit command has already the
function.

(plot (mix (points data)

(line (fit-result-function fitted)))

#:y-max 15)

A more realistic example can be found in "demos/fit-demo-2.rkt" in the "plot" col-
lection.

1.4 Creating Custom Plots

Defining custom plots is simple: a plot-item (that is passed to plot or mix) is just a function
that acts on a view. Both the 2-D and 3-D view snip have several drawing functions defined
that the plot-item can call in any order. The full details of the view interface can be found in
§3 “Customizing Plots”.

For example, if we wanted to create a constructor that creates plot-items that draw dashed
lines given a (-> real? real?) function, we could do the following:

(require plot/extend)

5

(define (dashed-line fun

#:x-min [x-min -5]

#:x-max [x-max 5]

#:samples [samples 100]

#:segments [segments 20]

#:color [color 'red]

#:width [width 1])

(let* ((dash-size (/ (- x-max x-min) segments))

(x-lists (build-list

(/ segments 2)

(lambda (index)

(x-values

(/ samples segments)

(+ x-min (* 2 index dash-size))

(+ x-min (* (add1 (* 2 index))

dash-size)))))))

(lambda (2dview)

(send 2dview set-line-color color)

(send 2dview set-line-width width)

(for-each

(lambda (dash)

(send 2dview plot-line

(map (lambda (x) (vector x (fun x))) dash)))

x-lists))))

Plot a test case using dashed-line:

(plot (dashed-line (lambda (x) x) #:color 'blue))

6

2 Plotting

(require plot)

The plot library provides the ability to make basic plots, fit curves to data, and some useful
miscellaneous functions.

2.1 Plotting

The plot and plot3d functions generate plots that can be viewed in the DrRacket interac-
tions window.

(plot data

[#:width width

#:height height

#:x-min x-min

#:x-max x-max

#:y-min y-min

#:y-max y-max

#:x-label x-label

#:y-label y-label

#:title title

#:fgcolor fgcolor

#:bgcolor bgcolor

#:lncolor lncolor

#:out-file out-file]) → (is-a?/c image-snip%)

data : ((is-a?/c 2d-view%) . -> . void?)

width : real? = 400

height : real? = 400

x-min : real? = -5

x-max : real? = 5

y-min : real? = -5

y-max : real? = 5

x-label : string? = "X axis"

y-label : string? = "Y axis"

title : string? = ""

fgcolor : (list/c byte? byte? byte) = '(0 0 0)

bgcolor : (list/c byte? byte? byte) = '(255 255 255)

lncolor : (list/c byte? byte? byte) = '(255 0 0)

out-file : (or/c path-string? output-port? #f) = #f

Plots data in 2-D, where data is generated by functions like points or lines.

7

A data value is represented as a procedure that takes a 2d-view% instance and adds plot
information to it.

The result is a image-snip% for the plot. If an #:out-file path or port is provided, the
plot is also written as a PNG image to the given path or port.

(plot3d data

[#:width width

#:height height

#:x-min x-min

#:x-max x-max

#:y-min y-min

#:y-max y-max

#:z-min z-min

#:z-max z-max

#:alt alt

#:az az

#:x-label x-label

#:y-label y-label

#:z-label z-label

#:title title

#:fgcolor fgcolor

#:bgcolor bgcolor

#:lncolor lncolor]) → (is-a?/c image-snip%)

data : ((is-a?/c 3d-view%) . -> . void?)

width : real? = 400

height : real? = 400

x-min : real? = -5

x-max : real? = 5

y-min : real? = -5

y-max : real? = 5

z-min : real? = -5

z-max : real? = 5

alt : real? = 30

az : real? = 45

x-label : string? = "X axis"

y-label : string? = "Y axis"

z-label : string? = "Z axis"

title : string? = ""

fgcolor : (list/c byte? byte? byte) = '(0 0 0)

bgcolor : (list/c byte? byte? byte) = '(255 255 255)

lncolor : (list/c byte? byte? byte) = '(255 0 0)

Plots data in 3-D, where data is generated by a function like surface. The arguments alt
and az set the viewing altitude (in degrees) and the azimuth (also in degrees), respectively.

8

A 3-D data value is represented as a procedure that takes a 3d-view% instance and adds
plot information to it.

(points vecs [#:sym sym #:color color])
→ ((is-a?/c 2d-view%) . -> . void?)

vecs : (listof (vector/c real? real?))

sym : (or/c character? integer? symbol?) = 'fullsquare

color : plot-color? = 'black

Creates 2-D plot data (to be provided to plot) given a list of points specifying locations.
The sym argument determines the appearance of the points. It can be a symbol, an ASCII
character, or a small integer (between -1 and 127). The following symbols are known:
'pixel, 'dot, 'plus, 'asterisk, 'circle, 'times, 'square, 'triangle, 'oplus,
'odot, 'diamond, '5star, '6star, 'fullsquare, 'bullet, 'full5star, 'circle1,
'circle2, 'circle3, 'circle4, 'circle5, 'circle6, 'circle7, 'circle8, 'left-
arrow, 'rightarrow, 'uparrow, 'downarrow.

(line f

[#:samples samples

#:width width

#:color color

#:mode mode

#:mapping mapping

#:t-min t-min

#:t-max t-min]) → ((is-a?/c 2d-view%) . -> . void?)

f : (real? . -> . (or/c real? (vector real? real?)))

samples : exact-nonnegative-integer? = 150

width : exact-positive-integer? = 1

color : plot-color? = 'red

mode : (one-of/c 'standard 'parametric) = 'standard

mapping : (or-of/c 'cartesian 'polar) = 'cartesian

t-min : real? = -5

t-min : real? = 5

Creates 2-D plot data to draw a line.

The line is specified in either functional, i.e. y = f (x), or parametric, i.e. x,y = f (t), mode.
If the function is parametric, the mode argument must be set to 'parametric. The t-min

and t-max arguments set the parameter when in parametric mode.

(error-bars vecs [#:color color])
→ ((is-a?/c 2d-view%) . -> . void?)

vecs : (listof (vector/c real? real? real?))

color : plot-color? = 'black

9

Creates 2-D plot data for error bars given a list of vectors. Each vector specifies the center
of the error bar (x,y) as the first two elements and its magnitude as the third.

(vector-field f

[#:width width

#:color color

#:style style])
→ ((is-a?/c 2d-view%) . -> . void?)

f : ((vector real? real?) . -> . (vector real? real?))

width : exact-positive-integer? = 1

color : plot-color? = 'red

style : (one-of/c 'scaled 'normalized 'read) = 'scaled

Creates 2-D plot data to draw a vector-field from a vector-valued function.

(contour f

[#:samples samples

#:width width

#:color color

#:levels levels]) → ((is-a?/c 2d-view%) . -> . void?)

f : (real? real? . -> . real?)

samples : exact-nonnegative-integer? = 50

width : exact-positive-integer? = 1

color : plot-color? = 'black

levels : (or/c exact-nonnegative-integer?

(listof real?))

= 10

Creates 2-D plot data to draw contour lines, rendering a 3-D function a 2-D graph cotours
(respectively) to represent the value of the function at that position.

(shade f [#:samples samples #:levels levels])
→ ((is-a?/c 2d-view%) . -> . void?)

f : (real? real? . -> . real?)

samples : exact-nonnegative-integer? = 50

levels : (or/c exact-nonnegative-integer?

(listof real?))

= 10

Creates 2-D plot data to draw like contour, except using shading instead of contour lines.

(surface f

[#:samples samples

#:width width

#:color color]) → ((is-a?/c 3d-view%) . -> . void?)

10

f : (real? real? . -> . real?)

samples : exact-nonnegative-integer? = 50

width : exact-positive-integer? = 1

color : plot-color? = 'black

Creates 3-D plot data to draw a 3-D surface in a 2-D box, showing only the top of the surface.

(mix data ...+) → (any/c . -> . void?)

data : (any/c . -> . void?)

Creates a procedure that calls each data on its argument in order. Thus, this function can
composes multiple plot datas into a single data.

(plot-color? v) → boolean?

v : any/c

Returns #t if v is one of the following symbols, #f otherwise:

'white 'black 'yellow 'green 'aqua 'pink

'wheat 'grey 'blown 'blue 'violet 'cyan

'turquoise 'magenta 'salmon 'red

2.2 Curve Fitting

PLoT uses the standard Non-Linear Least Squares fit algorithm for curve fitting. The code
that implements the algorithm is public domain, and is used by the gnuplot package.

(fit f guess-list data) → fit-result?

f : (real? -> . real?)

guess-list : (list/c (list symbol? real?))

data : (or/c (list-of (vector/c real? real? real?))

(list-of (vector/c real? real? real? real?)))

Attempts to fit a fittable function to the data that is given. The guess-list should be a set
of arguments and values. The more accurate your initial guesses are, the more likely the fit
is to succeed; if there are no good values for the guesses, leave them as 1.

11

(struct fit-result (rms

variance

names

final-params

std-error

std-error-percent

function)

#:extra-constructor-name make-fit-result)

rms : real?

variance : real?

names : (listof symbol?)

final-params : (listof real?)

std-error : (listof real?)

std-error-percent : (listof real?)

function : (real? -> . real?)

The params field contains an associative list of the parameters specified in fit and their
values. Note that the values may not be correct if the fit failed to converge. For a visual test,
use the function field to get the function with the parameters in place and plot it along with
the original data.

2.3 Miscellaneous Functions

(derivative f [h]) → (real? . -> . real?)

f : (real? . -> . real?)

h : real? = 1e-06

Creates a function that evaluates the numeric derivative of f . The given h is the divisor used
in the calculation.

(gradient f [h])
→ ((vector/c real? real?) . -> . (vector/c real? real?))

f : (real? real? . -> . real?)

h : real? = 1e-06

Creates a vector-valued function that the numeric gradient of f .

(make-vec fx fy)

→ ((vector/c real? real?) . -> . (vector/c real? real?))

fx : (real? real? . -> . real?)

fy : (real? real? . -> . real?)

12

Creates a vector-values function from two parts.

13

3 Customizing Plots

(require plot/extend)

The plot/extend module allows you to create your own constructors, further customize
the appearance of the plot windows, and in general extend the package.

(sample-size sample-count x-min x-max) → real?

sample-count : exact-positive-integer?

x-min : number

x-max : number

Given sample-count , x-min , and x-max , returns the size of each sample.

(scale-vectors vecs

x-sample-size

y-sample-size) → (listof vector?)

vecs : (listof vector?)

x-sample-size : real?

y-sample-size : real?

Scales vectors, causing them to fit in their boxes.

(x-values sample-count x-min x-max) → (listof real?)

sample-count : exact-positive-integer?

x-min : number

x-max : number

Given samples, x-min , and x-max , returns a list of xs spread across the range.

(normalize-vector vec

x-sample-size

y-sample-size) → vector?

vec : vector?

x-sample-size : real?

y-sample-size : real?

Normalizes vec based on x-sample-size and y-sample-size .

(normalize-vectors vecs

x-sample-size

y-sample-size) → (listof vector?)

14

vecs : (listof vector?)

x-sample-size : real?

y-sample-size : real?

Normalizes vecs based on x-sample-size and y-sample-size .

(make-column x ys) → (listof (vector/c real? real?))

x : real?

ys : (listof real?)

Given an x and a list of ys, produces a list of points pairing the x with each of the ys.

(xy-list sample-count x-min x-max y-min y-max)

→ (listof (listof (vector/c real? real?)))

sample-count : exact-positive-integer?

x-min : real?

x-max : real?

y-min : real?

y-max : real?

Makes a list of all the positions on the graph.

(zgrid f xs ys) → (listof (listof real?))

f : (real? real? . -> . real?)

xs : (listof real?)

ys : (listof real?)

Given a function that consumes x and y to produce z , a list of xs, and a list of ys, produces
a list of z column values.

plot-view% : class?

superclass: image-snip%

(send a-plot-view get-x-min) → real?

Returns the minimum plottable x coordinate.

(send a-plot-view get-y-min) → real?

Returns the minimum plottable y coordinate.

(send a-plot-view get-x-max) → real?

Returns the maximum plottable x coordinate.

15

(send a-plot-view get-y-max) → real?

Returns the maximum plottable y coordinate.

(send a-plot-view set-line-color color) → void?

color : plot-color?

Sets the drawing color.

(send a-plot-view set-line-width width) → void?

width : real?

Sets the drawing line width.

2d-view% : class?

superclass: plot-view%

Provides an interface to drawing 2-D plots. An instance of 2d-view% is created by plot,
and the following methods can be used to adjust it.

(send a-2d-view set-labels x-label

y-label

title) → void?

x-label : string?

y-label : string?

title : string?

Sets the axis labels and title.

(send a-2d-view plot-vector head tail) → void?

head : (vector/c real? real?)

tail : (vector/c real? real?)

Plots a single vector.

(send a-2d-view plot-vectors vecs) → void?

vecs : (listof (list/c (vector/c real? real?)

(vector/c real? real?)))

Plots a set of vectors.

(send a-2d-view plot-points points sym) → void?

points : (listof (vector/c real? real?))

sym : (or/c character? integer? symbol?)

Plots points using a specified symbol. See points for possible values for sym

16

(send a-2d-view plot-line points) → void?

points : (listof (vector/c real? real?))

Plots a line given a set of points.

(send a-2d-view plot-contours grid

xs

ys

levels) → void?

grid : (listof (listof real?))

xs : (listof real?)

ys : (listof real?)

levels : (listof real?)

Plots a grid representing a 3-D function using contours to distinguish levels.

(send a-2d-view plot-shades grid

xs

ys

levels) → void?

grid : (listof (listof real?))

xs : (listof real?)

ys : (listof real?)

levels : (listof real?)

Plots a grid representing a 3-D function using shades to show levels.

3d-view% : class?

superclass: plot-view%

Provides an interface to drawing 3-D plots. An instance of 3d-view% is created by plot3d,
and the following methods can be used to adjust it.

(send a-3d-view plot-surface xs ys zs) → void?

xs : (listof real?)

ys : (listof real?)

zs : (listof real?)

Plots a grid representing a 3d function in a 3d box, showing only the top of the
surface.

(send a-3d-view plot-line xs ys zs) → void?

xs : (listof real?)

ys : (listof real?)

17

zs : (listof real?)

Plots a line in 3-D space.

(send a-3d-view get-z-min) → real?

Returns the minimum plottable z coordinate.

(send a-3d-view get-z-max) → real?

Returns the maximum plottable z coordinate.

(send a-3d-view get-alt) → real?

Returns the altitude (in degrees) from which the 3-D box is viewed.

(send a-3d-view get-az) → real?

Returns the azimuthal angle.

18

	1 Quick Start
	1.1 Overview
	1.2 Basic Plotting
	1.3 Curve Fitting
	1.4 Creating Custom Plots

	2 Plotting
	2.1 Plotting
	2.2 Curve Fitting
	2.3 Miscellaneous Functions

	3 Customizing Plots

