
Syntax: Meta-Programming Helpers
Version 5.1.3

August 15, 2011

1

Contents

1 Syntax Object Helpers 5

1.1 Deconstructing Syntax Objects . 5

1.2 Matching Fully-Expanded Expressions . 6

1.3 Hashing on bound-identifier=? and free-identifier=? 7

1.4 Identifier dictionaries . 10

1.4.1 Dictionaries for bound-identifier=? 10

1.4.2 Dictionaries for free-identifier=? 13

1.5 Rendering Syntax Objects with Formatting 14

1.6 Computing the Free Variables of an Expression 14

1.7 Replacing Lexical Context . 14

1.8 Helpers for Processing Keyword Syntax 15

1.9 Legacy Zodiac Interface . 20

2 Module-Processing Helpers 21

2.1 Reading Module Source Code . 21

2.2 Getting Module Compiled Code . 21

2.3 Resolving Module Paths to File Paths . 23

2.4 Simplifying Module Paths . 24

2.5 Inspecting Modules and Module Dependencies 25

3 Macro Transformer Helpers 26

3.1 Extracting Inferred Names . 26

3.2 Support for local-expand . 26

3.3 Parsing define-like Forms . 26

3.4 Flattening begin Forms . 27

2

3.5 Expanding define-struct-like Forms 27

3.6 Resolving include-like Paths . 32

3.7 Controlling Syntax Templates . 32

4 Reader Helpers 35

4.1 Raising exn:fail:read . 35

4.2 Module Reader . 36

5 Non-Module Compilation And Expansion 43

6 Trusting Standard Recertifying Transformers 45

7 Attaching Documentation to Exports 46

8 Parsing and specifying syntax 48

8.1 Introduction . 48

8.2 Examples . 55

8.2.1 Modules and reusable syntax classes 55

8.2.2 Optional keyword arguments . 57

8.2.3 Variants with uniform meanings 59

8.2.4 Variants with varied meanings . 61

8.2.5 More keyword arguments . 63

8.2.6 Contracts on macro sub-expressions 66

8.3 Parsing syntax . 66

8.4 Specifying syntax with syntax classes . 70

8.4.1 Pattern directives . 73

8.4.2 Pattern variables and attributes . 74

8.5 Syntax patterns . 76

3

8.5.1 Single-term patterns . 79

8.5.2 Head patterns . 88

8.5.3 Ellipsis-head patterns . 92

8.5.4 Action patterns . 94

8.6 Defining simple macros . 96

8.7 Literal sets and Conventions . 96

8.8 Library syntax classes and literal sets . 100

8.8.1 Syntax classes . 100

8.8.2 Literal sets . 102

8.9 Debugging and inspection tools . 102

8.10 Experimental . 103

8.10.1 Contracts for macro sub-expressions 103

8.10.2 Contracts for syntax classes . 104

8.10.3 Reflection . 104

8.10.4 Procedural splicing syntax classes 106

8.10.5 Ellipsis-head alternative sets . 107

8.10.6 Syntax class specialization . 108

9 Source Locations 110

9.1 Representations . 110

9.2 Quoting . 115

Index 119

4

1 Syntax Object Helpers

1.1 Deconstructing Syntax Objects

(require syntax/stx)

(stx-null? v) → boolean?

v : any/c

Returns #t if v is either the empty list or a syntax object representing the empty list (i.e.,
syntax-e on the syntax object returns the empty list).

(stx-pair? v) → boolean?

v : any/c

Returns #t if v is either a pair or a syntax object representing a pair (see syntax pair).

(stx-list? v) → boolean?

v : any/c

Returns #t if v is a list, or if it is a sequence of pairs leading to a syntax object such that
syntax->list would produce a list.

(stx->list stx-list) → (or/c list? #f)

stx-list : stx-list?

Produces a list by flatting out a trailing syntax object using syntax->list.

(stx-car v) → any

v : stx-pair?

Takes the car of a syntax pair.

(stx-cdr v) → any

v : stx-pair?

Takes the cdr of a syntax pair.

(stx-map proc stxl ...) → list?

proc : procedure?

5

stxl : stx-list?

Equivalent to (map proc (stx->list stxl) ...).

(module-or-top-identifier=? a-id b-id) → boolean?

a-id : identifier?

b-id : identifier?

Returns #t if a-id and b-id are free-identifier=?, or if a-id and b-id have the same
name (as extracted by syntax-e) and a-id has no binding other than at the top level.

This procedure is useful in conjunction with syntax-case* to match procedure names that
are normally bound by Racket. For example, the include macro uses this procedure to rec-
ognize build-path; using free-identifier=? would not work well outside of module,
since the top-level build-path is a distinct variable from the racket/base export (though
it’s bound to the same procedure, initially).

1.2 Matching Fully-Expanded Expressions

(require syntax/kerncase)

(kernel-syntax-case stx-expr trans?-expr clause ...)

A syntactic form like syntax-case*, except that the literals are built-in as the names of
the primitive Racket forms as exported by scheme/base; see §1.2.3.1 “Fully Expanded
Programs”.

The trans?-expr boolean expression replaces the comparison procedure, and instead se-
lects simply between normal-phase comparisons or transformer-phase comparisons. The
clauses are the same as in syntax-case*.

The primitive syntactic forms must have their normal bindings in the context of the kernel-
syntax-case expression. Beware that kernel-syntax-case does not work in a module
whose language is mzscheme, since the binding of if from mzscheme is different than the
primitive if.

(kernel-syntax-case* stx-expr trans?-expr (extra-id ...) clause ...)

A syntactic form like kernel-syntax-case, except that it takes an additional list of extra
literals that are in addition to the primitive Racket forms.

(kernel-syntax-case/phase stx-expr phase-expr clause ...)

6

Generalizes kernel-syntax-case to work at an arbitrary phase level, as indicated by
phase-expr .

(kernel-syntax-case*/phase stx-expr phase-expr (extra-id ..)

clause ...)

Generalizes kernel-syntax-case* to work at an arbitrary phase level, as indicated by
phase-expr .

(kernel-form-identifier-list) → (listof identifier?)

Returns a list of identifiers that are bound normally, for-syntax, and for-template to the
primitive Racket forms for expressions, internal-definition positions, and module-level and
top-level positions. This function is useful for generating a list of stopping points to provide
to local-expand.

In addition to the identifiers listed in §1.2.3.1 “Fully Expanded Programs”, the list includes
letrec-syntaxes+values, which is the core form for local expand-time binding and can
appear in the result of local-expand.

1.3 Hashing on bound-identifier=? and free-identifier=?

See also syntax/id-table for an implementation of identifier mappings using the
scheme/dict dictionary interface.

(require syntax/boundmap)

(make-bound-identifier-mapping) → bound-identifier-mapping?

Produces a hash-table-like value for storing a mapping from syntax identifiers to arbitrary
values.

The mapping uses bound-identifier=? to compare mapping keys, but also uses a hash
table based on symbol equality to make the mapping efficient in the common case (i.e.,
where non-equivalent identifiers are derived from different symbolic names).

(bound-identifier-mapping? v) → boolean?

v : any/c

Returns #t if v was produced by make-bound-identifier-mapping, #f otherwise.

7

(bound-identifier-mapping-get bound-map

id

[failure-thunk]) → any

bound-map : bound-identifier-mapping?

id : identifier?

failure-thunk : any/c

= (lambda () (raise (make-exn:fail)))

Like hash-table-get for bound-identifier mappings.

(bound-identifier-mapping-put! bound-map

id

v) → void?

bound-map : bound-identifier-mapping?

id : identifier?

v : any/c

Like hash-table-put! for bound-identifier mappings.

(bound-identifier-mapping-for-each bound-map

proc) → void?

bound-map : boud-identifier-mapping?

proc : (identifier? any/c . -> . any)

Like hash-table-for-each.

(bound-identifier-mapping-map bound-map

proc) → (listof any?)

bound-map : bound-identifier-mapping?

proc : (identifier? any/c . -> . any)

Like hash-table-map.

(make-free-identifier-mapping) → free-identifier-mapping?

Produces a hash-table-like value for storing a mapping from syntax identifiers to arbitrary
values.

The mapping uses free-identifier=? to compare mapping keys, but also uses a hash
table based on symbol equality to make the mapping efficient in the common case (i.e., where
non-equivalent identifiers are derived from different symbolic names at their definition sites).

8

(free-identifier-mapping? v) → boolean?

v : any/c

Returns #t if v was produced by make-free-identifier-mapping, #f otherwise.

(free-identifier-mapping-get free-map

id

[failure-thunk]) → any

free-map : free-identifier-mapping?

id : identifier?

failure-thunk : any/c

= (lambda () (raise (make-exn:fail)))

Like hash-table-get for free-identifier mappings.

(free-identifier-mapping-put! free-map id v) → void?

free-map : free-identifier-mapping?

id : identifier?

v : any/c

Like hash-table-put! for free-identifier mappings.

(free-identifier-mapping-for-each free-map

proc) → void?

free-map : free-identifier-mapping?

proc : (identifier? any/c . -> . any)

Like hash-table-for-each.

(free-identifier-mapping-map free-map proc) → (listof any?)

free-map : free-identifier-mapping?

proc : (identifier? any/c . -> . any)

Like hash-table-map.

(make-module-identifier-mapping) → module-identifier-mapping?

(module-identifier-mapping? v) → boolean?

v : any/c

9

(module-identifier-mapping-get module-map

id

[failure-thunk]) → any

module-map : module-identifier-mapping?

id : identifier?

failure-thunk : any/c

= (lambda () (raise (make-exn:fail)))

(module-identifier-mapping-put! module-map

id

v) → void?

module-map : module-identifier-mapping?

id : identifier?

v : any/c

(module-identifier-mapping-for-each module-map

proc) → void?

module-map : module-identifier-mapping?

proc : (identifier? any/c . -> . any)

(module-identifier-mapping-map module-map

proc) → (listof any?)

module-map : module-identifier-mapping?

proc : (identifier? any/c . -> . any)

The same as make-free-identifier-mapping, etc.

1.4 Identifier dictionaries

(require syntax/id-table)

This module provides functionality like that of syntax/boundmap but with more oper-
ations, standard names, implementation of the scheme/dict interface, and immutable
(functionally-updating) variants.

1.4.1 Dictionaries for bound-identifier=?

Bound-identifier tables implement the dictionary interface of scheme/dict. Consequently,
all of the appropriate generic functions (dict-ref, dict-map, etc) can be used on free-
identifier tables.

(make-bound-id-table [init-dict
#:phase phase]) → mutable-bound-id-table?

init-dict : dict? = null

phase : (or/c exact-integer? #f) = (syntax-local-phase-level)

10

(make-immutable-bound-id-table [init-dict
#:phase phase])

→ immutable-bound-id-table?

init-dict : dict? = null

phase : (or/c exact-integer? #f) = (syntax-local-phase-level)

Produces a dictionary mapping syntax identifiers to arbitrary values. The mapping uses
bound-identifier=? to compare keys, but also uses a hash table based on symbol equality
to make the mapping efficient in the common case. The two procedures produce mutable
and immutable dictionaries, respectively.

The identifiers are compared at phase level phase . The default value is generally appropriate
for identifier tables used by macros, but code that analyzes fully-expanded programs may
need to create identifier tables at multiple different phases.

The optional init-dict argument provides the initial mappings. It must be a dictionary,
and its keys must all be identifiers. If the init-dict dictionary has multiple distinct entries
whose keys are bound-identifier=?, only one of the entries appears in the new id-table,
and it is not specified which entry is picked.

(bound-id-table? v) → boolean?

v : any/c

Returns #t if v was produced by make-bound-id-table or make-immutable-bound-
id-table, #f otherwise.

(mutable-bound-id-table? v) → boolean?

v : any/c

(immutable-bound-id-table? v) → boolean?

v : any/c

Predicate for the mutable and immutable variants of bound-identifier tables, respectively.

(bound-id-table-ref table id [failure]) → any

table : bound-id-table?

id : identifier?

failure : any/c = (lambda () (raise (make-exn:fail)))

Like hash-ref for bound identifier tables. In particular, if id is not found, the failure

argument is applied if it is a procedure, or simply returned otherwise.

(bound-id-table-set! table id v) → void?

table : mutable-bound-id-table?

id : identifier?

11

v : any/c

Like hash-set! for mutable bound-identifier tables.

(bound-id-table-set table id v) → immutable-bound-id-table?

table : immutable-bound-id-table?

id : identifier?

v : any/c

Like hash-set for immutable bound-identifier tables.

(bound-id-table-remove! table id) → void?

table : mutable-bound-id-table?

id : identifier?

Like hash-remove! for mutable bound-identifier tables.

(bound-id-table-remove table id v) → immutable-bound-id-table?

table : immutable-bound-id-table?

id : identifier?

v : any/c

Like hash-remove for immutable bound-identifier tables.

(bound-id-table-map table proc) → list?

table : bound-id-table?

proc : (-> identifier? any/c any)

Like hash-map for bound-identifier tables.

(bound-id-table-for-each table proc) → void?

table : bound-id-table?

proc : (-> identifier? any/c any)

Like hash-for-each for bound-identifier tables.

(bound-id-table-count table) → exact-nonnegative-integer?

table : bound-id-table?

Like hash-count for bound-identifier tables.

12

1.4.2 Dictionaries for free-identifier=?

Free-identifier tables implement the dictionary interface of scheme/dict. Consequently,
all of the appropriate generic functions (dict-ref, dict-map, etc) can be used on free-
identifier tables.

(make-free-id-table [init-dict
#:phase phase]) → mutable-free-id-table?

init-dict : dict? = null

phase : (or/c exact-integer? #f) = (syntax-local-phase-level)

(make-immutable-free-id-table [init-dict
#:phase phase])

→ immutable-free-id-table?

init-dict : dict? = null

phase : (or/c exact-integer? #f) = (syntax-local-phase-level)

(free-id-table? v) → boolean?

v : any/c

(mutable-free-id-table? v) → boolean?

v : any/c

(immutable-free-id-table? v) → boolean?

v : any/c

(free-id-table-ref table id [failure]) → any

table : free-id-table?

id : identifier?

failure : any/c = (lambda () (raise (make-exn:fail)))

(free-id-table-set! table id v) → void?

table : mutable-free-id-table?

id : identifier?

v : any/c

(free-id-table-set table id v) → immutable-free-id-table?

table : immutable-free-id-table?

id : identifier?

v : any/c

(free-id-table-remove! table id) → void?

table : mutable-free-id-table?

id : identifier?

(free-id-table-remove table id v) → immutable-free-id-table?

table : immutable-free-id-table?

id : identifier?

v : any/c

(free-id-table-map table proc) → list?

table : free-id-table?

proc : (-> identifier? any/c any)

13

(free-id-table-for-each table proc) → void?

table : free-id-table?

proc : (-> identifier? any/c any)

(free-id-table-count table) → exact-nonnegative-integer?

table : free-id-table?

Like the procedures for bound-identifier tables (make-bound-id-table, bound-id-

table-ref, etc), but for free-identifier tables, which use free-identifier=? to compare
keys.

1.5 Rendering Syntax Objects with Formatting

(require syntax/to-string)

(syntax->string stx-list) → string?

stx-list : stx-list?

Builds a string with newlines and indenting according to the source locations in stx-list ;
the outer pair of parens are not rendered from stx-list .

1.6 Computing the Free Variables of an Expression

(require syntax/free-vars)

(free-vars expr-stx) → (listof identifier?)

expr-stx : syntax?

Returns a list of free lambda- and let-bound identifiers in expr-stx . The expression must
be fully expanded (see §1.2.3.1 “Fully Expanded Programs” and expand).

1.7 Replacing Lexical Context

(require syntax/strip-context)

(strip-context stx) → syntax?

stx : syntax?

Removes all lexical context from stx , preserving source-location information and proper-
ties.

14

(replace-context ctx-stx stx) → syntax?

ctx-stx : (or/c syntax? #f)

stx : syntax?

Uses the lexical context of ctx-stx to replace the lexical context of all parts of stx , pre-
serving source-location information and properties of stx .

1.8 Helpers for Processing Keyword Syntax

The syntax/keyword module contains procedures for parsing keyword options in macros.

(require syntax/keyword)

keyword-table = (dict-of keyword (listof check-procedure))

A keyword-table is a dictionary (dict?) mapping keywords to lists of check-procedures.
(Note that an association list is a suitable dictionary.) The keyword’s arity is the length of
the list of procedures.

Example:

> (define my-keyword-table

(list (list '#:a check-identifier)

(list '#:b check-expression check-expression)))

current-directory: ‘exists’ access denied for
/home/scheme/docs/pdf/

check-procedure = (syntax syntax -> any)

A check procedure consumes the syntax to check and a context syntax object for error re-
porting and either raises an error to reject the syntax or returns a value as its parsed repre-
sentation.

Example:

> (define (check-stx-string stx context-stx)

(unless (string? (syntax-e stx))

(raise-syntax-error #f "expected string" context-stx stx))

stx)

options = (listof (list keyword syntax-keyword any ...))

Parsed options are represented as an list of option entries. Each entry contains the keyword,
the syntax of the keyword (for error reporting), and the list of parsed values returned by the
keyword’s list of check procedures. The list contains the parsed options in the order they

15

appeared in the input, and a keyword that occurs multiple times in the input occurs multiple
times in the options list.

(parse-keyword-options stx

table

[#:context ctx

#:no-duplicates? no-duplicates?

#:incompatible incompatible

#:on-incompatible incompatible-handler

#:on-too-short too-short-handler

#:on-not-in-table not-in-table-handler])
→ options any/c

stx : syntax?

table : keyword-table
ctx : (or/c false/c syntax?) = #f

no-duplicates? : boolean? = #f

incompatible : (listof (listof keyword?)) = '()

incompatible-handler : (-> keyword? keyword?

options syntax? syntax?

(values options syntax?))

= (lambda (....) (error))

too-short-handler : (-> keyword? options syntax? syntax?

(values options syntax?))

= (lambda (....) (error))

not-in-table-handler : (-> keyword? options syntax? syntax?

(values options syntax?))

= (lambda (....) (error))

Parses the keyword options in the syntax stx (stx may be an improper syntax list). The
keyword options are described in the table association list. Each entry in table should be
a list whose first element is a keyword and whose subsequent elements are procedures for
checking the arguments following the keyword. The keyword’s arity (number of arguments)
is determined by the number of procedures in the entry. Only fixed-arity keywords are
supported.

Parsing stops normally when the syntax list does not have a keyword at its head (it may be
empty, start with a non-keyword term, or it may be a non-list syntax object). Two values are
returned: the parsed options and the rest of the syntax (generally either a syntax object or a
list of syntax objects).

A variety of errors and exceptional conditions can occur during the parsing process. The
following keyword arguments determine the behavior in those situations.

The #:context ctx argument is used to report all errors in parsing syntax. In addition,
ctx is passed as the final argument to all provided handler procedures. Macros using parse-
keyword-options should generally pass the syntax object for the whole macro use as ctx .

16

If no-duplicates? is a non-false value, then duplicate keyword options are not allowed. If
a duplicate is seen, the keyword’s associated check procedures are not called and an incom-
patibility is reported.

The incompatible argument is a list of incompatibility entries, where each entry is a list
of at least two keywords. If any keyword in the entry occurs after any other keyword in the
entry, an incompatibility is reported.

Note that including a keyword in an incompatibility entry does not prevent it from occurring
multiple times. To disallow duplicates of some keywords (as opposed to all keywords),
include those keywords in the incompatible list as being incompatible with themselves.
That is, include them twice:

; Disallow duplicates of only the #:foo keyword

(parse-keyword-options #:incompatible '((#:foo #:foo)))

When an incompatibility occurs, the incompatible-handler is tail-called with the two
keywords causing the incompatibility (in the order that they occurred in the syntax list, so
the keyword triggering the incompatibility occurs second), the syntax list starting with the
occurrence of the second keyword, and the context (ctx). If the incompatibility is due to a
duplicate, the two keywords are the same.

When a keyword is not followed by enough arguments according to its arity in table , the
too-short-handler is tail-called with the keyword, the options parsed thus far, the syntax
list starting with the occurrence of the keyword, and ctx .

When a keyword occurs in the syntax list that is not in table , the not-in-table-handler
is tail-called with the keyword, the options parsed thus far, the syntax list starting with the
occurrence of the keyword, and ctx .

Handlers typically escape—all of the default handlers raise errors—but if they return, they
should return two values: the parsed options and a syntax object; these are returned as the
results of parse-keyword-options.

Examples:

> (parse-keyword-options

#'(#:transparent #:property p (lambda (x) (f x)))

(list (list '#:transparent)

(list '#:inspector check-expression)

(list '#:property check-expression check-expression)))

current-directory: ‘exists’ access denied for
/home/scheme/docs/pdf/
> (parse-keyword-options

#'(#:transparent #:inspector (make-inspector))

(list (list '#:transparent)

(list '#:inspector check-expression)

17

(list '#:property check-expression check-expression))

#:context #'define-struct

#:incompatible '((#:transparent #:inspector)

(#:inspector #:inspector)

(#:inspector #:inspector)))

current-directory: ‘exists’ access denied for
/home/scheme/docs/pdf/

(parse-keyword-options/eol

stx

table

[#:context ctx

#:no-duplicates? no-duplicates?

#:incompatible incompatible

#:on-incompatible incompatible-handler

#:on-too-short too-short-handler

#:on-not-in-table not-in-table-handler

#:on-not-eol not-eol-handler])
→ options
stx : syntax?

table : keyword-table
ctx : (or/c false/c syntax?) = #f

no-duplicates? : boolean? = #f

incompatible : (listof (list keyword? keyword?)) = '()

incompatible-handler : (-> keyword? keyword?

options syntax? syntax?

(values options syntax?))

= (lambda (....) (error))

too-short-handler : (-> keyword? options syntax? syntax?

(values options syntax?))

= (lambda (....) (error))

not-in-table-handler : (-> keyword? options syntax? syntax?

(values options syntax?))

= (lambda (....) (error))

not-eol-handler : (-> options syntax? syntax?

options)
= (lambda (....) (error))

Like parse-keyword-options, but checks that there are no terms left over after parsing
all of the keyword options. If there are, not-eol-handler is tail-called with the options
parsed thus far, the leftover syntax, and ctx .

(options-select options keyword) → (listof list?)

options : options
keyword : keyword?

18

Selects the values associated with one keyword from the parsed options. The resulting list
has as many items as there were occurrences of the keyword, and each element is a list whose
length is the arity of the keyword.

(options-select-row options

keyword

#:default default) → any

options : options
keyword : keyword?

default : any/c

Like options-select, except that the given keyword must occur either zero or one times
in options . If the keyword occurs, the associated list of parsed argument values is returned.
Otherwise, the default list is returned.

(options-select-value options

keyword

#:default default) → any

options : options
keyword : keyword?

default : any/c

Like options-select, except that the given keyword must occur either zero or one times
in options . If the keyword occurs, the associated list of parsed argument values must have
exactly one element, and that element is returned. If the keyword does not occur in options ,
the default value is returned.

(check-identifier stx ctx) → identifier?

stx : syntax?

ctx : (or/c false/c syntax?)

A check-procedure that accepts only identifiers.

(check-expression stx ctx) → syntax?

stx : syntax?

ctx : (or/c false/c syntax?)

A check-procedure that accepts any non-keyword term. It does not actually check that the
term is a valid expression.

((check-stx-listof check) stx ctx) → (listof any/c)

check : check-procedure
stx : syntax?

19

ctx : (or/c false/c syntax?)

Lifts a check-procedure to accept syntax lists of whatever the original procedure accepted.

(check-stx-string stx ctx) → syntax?

stx : syntax?

ctx : (or/c false/c syntax?)

A check-procedure that accepts syntax strings.

(check-stx-boolean stx ctx) → syntax?

stx : syntax?

ctx : (or/c false/c syntax?)

A check-procedure that accepts syntax booleans.

1.9 Legacy Zodiac Interface

(require syntax/zodiac)

(require syntax/zodiac-unit)

(require syntax/zodiac-sig)

The interface is similar to Zodiac—enough to be useful for porting—but different in many
ways. See the source "zodiac-sig.rkt" for details. New software should not use this
compatibility layer.

20

2 Module-Processing Helpers

2.1 Reading Module Source Code

(require syntax/modread)

(with-module-reading-parameterization thunk) → any

thunk : (-> any)

Calls thunk with all reader parameters reset to their default values.

(check-module-form stx

expected-module-sym

source-v)

→ (or/c syntax? false/c)

stx : (or/c syntax? eof-object?)

expected-module-sym : symbol?

source-v : (or/c string? false/c)

Inspects stx to check whether evaluating it will declare a module—at least if module is
bound in the top-level to Racket’s module. The syntax object stx can contain a compiled
expression. Also, stx can be an end-of-file, on the grounds that read-syntax can produce
an end-of-file.

The expected-module-sym argument is currently ignored. In previous versions, the mod-
ule form stx was obliged to declare a module who name matched expected-module-sym .

If stx can declare a module in an appropriate top-level, then the check-module-form

procedure returns a syntax object that certainly will declare a module (adding explicit context
to the leading module if necessary) in any top-level. Otherwise, if source-v is not #f, a
suitable exception is raised using the write form of the source in the message; if source-v
is #f, #f is returned.

If stx is eof or eof wrapped as a syntax object, then an error is raised or #f is returned.

2.2 Getting Module Compiled Code

(require syntax/modcode)

21

(get-module-code path

[#:sub-path compiled-subdir0

compiled-subdir

#:compile compile-proc0

compile-proc

#:extension-handler ext-proc0

ext-proc

#:choose choose-proc

#:notify notify-proc

#:source-reader read-syntax-proc]) → any

path : path?

compiled-subdir0 : (and/c path-string? relative-path?)

= "compiled"

compiled-subdir : (and/c path-string? relative-path?)

= compiled-subdir0

compile-proc0 : (any/c . -> . any) = compile

compile-proc : (any/c . -> . any) = compile-proc0

ext-proc0 : (or/c false/c (path? boolean? . -> . any)) = #f

ext-proc : (or/c false/c (path? boolean? . -> . any))

= ext-proc0

choose-proc : (path? path? path?

. -> .

(or/c (symbols 'src 'zo 'so) false/c))

= (lambda (src zo so) #f)

notify-proc : (any/c . -> . any) = void

read-syntax-proc : (any/c input-port? . -> . (or/c syntax? eof-object?))

= read-syntax

Returns a compiled expression for the declaration of the module specified by path .

The compiled-subdir argument defaults to "compiled"; it specifies the sub-directory to
search for a compiled version of the module.

The compile-proc argument defaults to compile. This procedure is used to compile mod-
ule source if an already-compiled version is not available.

The ext-proc argument defaults to #f. If it is not #f, it must be a procedure of two
arguments that is called when a native-code version of path is should be used. In that case,
the arguments to ext-proc are the path for the extension, and a boolean indicating whether
the extension is a _loader file (#t) or not (#f).

The choose-proc argument is a procedure that takes three paths: a source path, a ".zo"

file path, and an extension path (for a non-_loader extension). Some of the paths may not
exist. The result should be either 'src, 'zo, 'so, or #f, indicating which variant should be
used or (in the case of #f) that the default choice should be used.

22

The default choice is computed as follows: if a ".zo" version of path is available and
newer than path itself (in one of the directories specified by compiled-subdir), then it is
used instead of the source. Native-code versions of path are ignored, unless only a native-
code non-_loader version exists (i.e., path itself does not exist). A _loader extension is
selected a last resort.

If an extension is preferred or is the only file that exists, it is supplied to ext-proc when
ext-proc is #f, or an exception is raised (to report that an extension file cannot be used)
when ext-proc is #f.

If notify-proc is supplied, it is called for the file (source, ".zo" or extension) that is
chosen.

If read-syntax-proc is provided, it is used to read the module from a source file (but not
from a bytecode file).

(moddep-current-open-input-file)

→ (path-string? . -> . input-port?)

(moddep-current-open-input-file proc) → void?

proc : (path-string? . -> . input-port?)

A parameter whose value is used like open-input-file to read a module source or ".zo"
file.

(struct exn:get-module-code exn:fail (path)

#:extra-constructor-name make-exn:get-module-code)

path : path?

An exception structure type for exceptions raised by get-module-code.

2.3 Resolving Module Paths to File Paths

(require syntax/modresolve)

(resolve-module-path module-path-v

rel-to-path-v) → path?

module-path-v : module-path?

rel-to-path-v : (or/c path-string? (-> any) false/c)

Resolves a module path to filename path. The module path is resolved relative to rel-to-

path-v if it is a path string (assumed to be for a file), to the directory result of calling the
thunk if it is a thunk, or to the current directory otherwise.

23

(resolve-module-path-index module-path-index

rel-to-path-v) → path?

module-path-index : module-path-index?

rel-to-path-v : (or/c path-string? (-> any) false/c)

Like resolve-module-path but the input is a module path index; in this case, the rel-

to-path-v base is used where the module path index contains the “self” index. If module-
path-index depends on the “self” module path index, then an exception is raised unless
rel-to-path-v is a path string.

2.4 Simplifying Module Paths

(require syntax/modcollapse)

(collapse-module-path module-path-v

rel-to-module-path-v)

→ (or/c path? module-path?)

module-path-v : module-path?

rel-to-module-path-v : any/c

Returns a “simplified” module path by combining module-path-v with rel-to-module-

path-v , where the latter must have the form '(lib) or a symbol, '(file

<string>), '(planet), a path, or a thunk to generate one of those.

The result can be a path if module-path-v contains a path element that is needed for the
result, or if rel-to-module-path-v is a non-string path that is needed for the result; oth-
erwise, the result is a module path in the sense of module-path?.

When the result is a 'lib or 'planet module path, it is normalized so that equivalent
module paths are represented by equal? results.

(collapse-module-path-index module-path-index

rel-to-module-path-v)

→ (or/c path? module-path?)

module-path-index : module-path-index?

rel-to-module-path-v : any/c

Like collapse-module-path, but the input is a module path index; in this case, the rel-
to-module-path-v base is used where the module path index contains the “self” index.

24

2.5 Inspecting Modules and Module Dependencies

(require syntax/moddep)

Re-exports syntax/modread, syntax/modcode, syntax/modcollapse, and syn-

tax/modresolve, in addition to the following:

(show-import-tree module-path-v) → void?

module-path-v : module-path?

A debugging aid that prints the import hierarchy starting from a given module path.

25

3 Macro Transformer Helpers

3.1 Extracting Inferred Names

(require syntax/name)

(syntax-local-infer-name stx) → any/c

stx : syntax?

Similar to syntax-local-name except that stx is checked for an 'inferred-name prop-
erty (which overrides any inferred name). If neither syntax-local-name nor 'inferred-
name produce a name, or if the 'inferred-name property value is #<void>, then a name
is constructed from the source-location information in stx , if any. If no name can be con-
structed, the result is #f.

3.2 Support for local-expand

(require syntax/context)

(build-expand-context v) → list?

v : (or/c symbol? list?)

Returns a list suitable for use as a context argument to local-expand for an internal-
definition context. The v argument represents the immediate context for expansion. The
context list builds on (syntax-local-context) if it is a list.

(generate-expand-context) → list?

Calls build-expand-context with a generated symbol.

3.3 Parsing define-like Forms

(require syntax/define)

(normalize-definition defn-stx

lambda-id-stx

[check-context?
opt+kws?]) → identifier? syntax?

defn-stx : syntax?

26

lambda-id-stx : identifier?

check-context? : boolean? = #t

opt+kws? : boolean? = #t

Takes a definition form whose shape is like define (though possibly with a different name)
and returns two values: the defined identifier and the right-hand side expression.

To generate the right-hand side, this function may need to insert uses of lambda. The
lambda-id-stx argument provides a suitable lambda identifier.

If the definition is ill-formed, a syntax error is raised. If check-context? is true, then a
syntax error is raised if (syntax-local-context) indicates that the current context is an
expression context. The default value of check-context? is #t.

If opt-kws? is #t, then arguments of the form [id expr], keyword id, and keyword

[id expr] are allowed, and they are preserved in the expansion.

3.4 Flattening begin Forms

(require syntax/flatten-begin)

(flatten-begin stx) → (listof syntax?)

stx : syntax?

Extracts the sub-expressions from a begin-like form, reporting an error if stx does not have
the right shape (i.e., a syntax list). The resulting syntax objects have annotations transferred
from stx using syntax-track-origin.

3.5 Expanding define-struct-like Forms

(require syntax/struct)

(parse-define-struct stx orig-stx) → identifier?

(or/c identifier? false/c)

(listof identifier?)

syntax?

stx : syntax?

orig-stx : syntax?

Parses stx as a define-struct form, but uses orig-stx to report syntax errors (under
the assumption that orig-stx is the same as stx , or that they at least share sub-forms).
The result is four values: an identifier for the struct type name, a identifier or #f for the

27

super-name, a list of identifiers for fields, and a syntax object for the inspector expression.

(build-struct-names name-id

field-ids

[#:constructor-name ctr-name]
omit-sel?

omit-set?

[src-stx])
→ (listof identifier?)

name-id : identifier?

field-ids : (listof identifier?)

ctr-name : (or/c identifier? #f) = #f

omit-sel? : boolean?

omit-set? : boolean?

src-stx : (or/c syntax? false/c) = #f

Generates the names bound by define-struct given an identifier for the struct type name
and a list of identifiers for the field names. The result is a list of identifiers:

• struct:name-id

• ctr-name , or make-name-id if ctr-name is #f

• name-id?

• name-id-field , for each field in field-ids .

• set-name-id-field! (getter and setter names alternate).

•

If omit-sel? is true, then the selector names are omitted from the result list. If omit-set?
is true, then the setter names are omitted from the result list.

The default src-stx is #f; it is used to provide a source location to the generated identifiers.

(build-struct-generation name-id

field-ids

[#:constructor-name ctr-name]
omit-sel?

omit-set?

[super-type
prop-value-list

immutable-k-list])
→ (listof identifier?)

name-id : identifier?

28

field-ids : (listof identifier?)

ctr-name : (or/c identifier? #f) = #f

omit-sel? : boolean?

omit-set? : boolean?

super-type : any/c = #f

prop-value-list : list? = empty

immutable-k-list : list? = empty

Takes the same arguments as build-struct-names and generates an S-expression for code
using make-struct-type to generate the structure type and return values for the identifiers
created by build-struct-names. The optional super-type , prop-value-list , and
immutable-k-list parameters take S-expression values that are used as the corresponding
arguments to make-struct-type.

(build-struct-generation* all-name-ids

name-id

field-ids

[#:constructor-name ctr-name]
omit-sel?

omit-set?

[super-type
prop-value-list

immutable-k-list])
→ (listof identifier?)

all-name-ids : (listof identifier?)

name-id : identifier?

field-ids : (listof identifier?)

ctr-name : (or/c identifier? #f) = #f

omit-sel? : boolean?

omit-set? : boolean?

super-type : any/c = #f

prop-value-list : list? = empty

immutable-k-list : list? = empty

Like build-struct-generation, but given the names produced by build-struct-

names, instead of re-generating them.

29

(build-struct-expand-info name-id

field-ids

[#:omit-constructor? no-ctr?

#:constructor-name ctr-name

#:omit-struct-type? no-type?]
omit-sel?

omit-set?

base-name

base-getters

base-setters) → any

name-id : identifier?

field-ids : (listof identifier?)

no-ctr? : any/c = #f

ctr-name : (or/c identifier? #f) = #f

no-type? : any/c = #f

omit-sel? : boolean?

omit-set? : boolean?

base-name : (or/c identifier? boolean?)

base-getters : (listof (or/c identifier? false/c))

base-setters : (listof (or/c identifier? false/c))

Takes mostly the same arguments as build-struct-names, plus a parent identifier/#t/#f
and a list of accessor and mutator identifiers (possibly ending in #f) for a parent type, and
generates an S-expression for expansion-time code to be used in the binding for the structure
name.

If no-ctr? is true, then the constructor name is omitted from the expansion-time informa-
tion. Similarly, if no-type? is true, then the structure-type name is omitted.

A #t for the base-name means no super-type, #f means that the super-type (if any) is
unknown, and an identifier indicates the super-type identifier.

(struct-declaration-info? v) → boolean?

v : any/c

Returns #t if x has the shape of expansion-time information for structure type declarations,
#f otherwise. See §4.6 “Structure Type Transformer Binding”.

30

(generate-struct-declaration orig-stx

name-id

super-id-or-false

field-id-list

current-context

make-make-struct-type

[omit-sel?
omit-set?]) → syntax?

orig-stx : syntax?

name-id : identifier?

super-id-or-false : (or/c identifier? false/c)

field-id-list : (listof identifier?)

current-context : any/c

make-make-struct-type : procedure?

omit-sel? : boolean? = #f

omit-set? : boolean? = #f

This procedure implements the core of a define-struct expansion.

The generate-struct-declaration procedure is called by a macro expander to generate
the expansion, where the name-id , super-id-or-false , and field-id-list arguments
provide the main parameters. The current-context argument is normally the result of
syntax-local-context. The orig-stx argument is used for syntax errors. The optional
omit-sel? and omit-set? arguments default to #f; a #t value suppresses definitions of
field selectors or mutators, respectively.

The make-struct-type procedure is called to generate the expression to actually create
the struct type. Its arguments are orig-stx , name-id-stx, defined-name-stxes, and
super-info. The first two are as provided originally to generate-struct-declaration,
the third is the set of names generated by build-struct-names, and the last is super-struct
info obtained by resolving super-id-or-false when it is not #f, #f otherwise.

The result should be an expression whose values are the same as the result of make-struct-
type. Thus, the following is a basic make-make-struct-type :

(lambda (orig-stx name-stx defined-name-stxes super-info)

#`(make-struct-type '#,name-stx

#,(and super-info (list-ref super-info 0))

#,(/ (- (length defined-name-stxes) 3) 2)

0 #f))

but an actual make-make-struct-type will likely do more.

31

3.6 Resolving include-like Paths

(require syntax/path-spec)

(resolve-path-spec path-spec-stx

source-stx

expr-stx

build-path-stx) → complete-path?

path-spec-stx : syntax?

source-stx : syntax?

expr-stx : syntax?

build-path-stx : syntax?

Resolves the syntactic path specification path-spec-stx as for include.

The source-stx specifies a syntax object whose source-location information determines
relative-path resolution. The expr-stx is used for reporting syntax errors. The build-

path-stx is usually #'build-path; it provides an identifier to compare to parts of path-
spec-stx to recognize the build-path keyword.

3.7 Controlling Syntax Templates

(require syntax/template)

(transform-template template-stx

#:save save-proc

#:restore-stx restore-proc-stx

[#:leaf-save leaf-save-proc

#:leaf-restore-stx leaf-restore-proc-stx

#:leaf-datum-stx leaf-datum-proc-stx

#:pvar-save pvar-save-proc

#:pvar-restore-stx pvar-restore-stx

#:cons-stx cons-proc-stx

#:ellipses-end-stx ellipses-end-stx

#:constant-as-leaf? constant-as-leaf?])
→ syntax?

template-stx : syntax?

save-proc : (syntax? . -> . any/c)

restore-proc-stx : syntax?

leaf-save-proc : (syntax? . -> . any/c) = save-proc

leaf-restore-proc-stx : syntax? = #'(lambda (data stx) stx)

leaf-datum-proc-stx : syntax? = #'(lambda (v) v)

32

pvar-save-proc : (identifier? . -> . any/c) = (lambda (x) #f)

pvar-restore-stx : syntax? = #'(lambda (d stx) stx)

cons-proc-stx : syntax? = cons

ellipses-end-stx : syntax? = #'values

constant-as-leaf? : boolean? = #f

Produces an representation of an expression similar to #`(syntax #,template-stx), but
functions like save-proc can collect information that might otherwise be lost by syntax

(such as properties when the syntax object is marshaled within bytecode), and run-time
functions like the one specified by restore-proc-stx can use the saved information or
otherwise process the syntax object that is generated by the template.

The save-proc is applied to each syntax object in the representation of the original template
(i.e., in template-stx). If constant-as-leaf? is #t, then save-proc is applied only
to syntax objects that contain at least one pattern variable in a sub-form. The result of
save-proc is provided back as the first argument to restore-proc-stx , which indicates
a function with a contract (-> any/c syntax any/c any/c); the second argument to
restore-proc-stx is the syntax object that syntax generates, and the last argument is
a datum that have been processed recursively (by functions such as restore-proc-stx)
and that normally would be converted back to a syntax object using the second argument’s
context, source, and properties. Note that save-proc works at expansion time (with respect
to the template form), while restore-proc-stx indicates a function that is called at run
time (for the template form), and the data that flows from save-proc to restore-proc-

stx crosses phases via quote.

The leaf-save-proc and leaf-restore-proc-stx procedures are analogous to save-

proc and restore-proc-stx , but they are applied to leaves, so there is no third argument
for recursively processed sub-forms. The function indicated by leaf-restore-proc-stx

should have the contract (-> any/c syntax? any/c).

The leaf-datum-proc-stx procedure is applied to leaves that are not syntax objects,
which can happen because pairs and the empty list are not always individually wrapped
as syntax objects. The function should have the contract (-> any/c any/c). When
constant-as-leaf? is #f, the only possible argument to the procedure is null.

The pvar-save and pvar-restore-stx procedures are analogous to save-proc and
restore-proc-stx , but they are applied to pattern variables. The pvar-restore-stx

procedure should have the contract (-> any/c syntax? any/c), where the second argu-
ment corresponds to the substitution of the pattern variable.

The cons-proc-stx procedure is used to build intermediate pairs, including pairs passed
to restore-proc-stx and pairs that do not correspond to syntax objects.

The ellipses-end-stx procedure is an extra filter on the syntax object that follows a
sequence of ... ellipses in the template. The procedure should have the contract (-> any/c

any/c).

33

The following example illustrates a use of transform-template to implement a syn-

tax/shape form that preserves the 'paren-shape property from the original template,
even if the template code is marshaled within bytecode.

(define-for-syntax (get-shape-prop stx)

(syntax-property stx 'paren-shape))

(define (add-shape-prop v stx datum)

(syntax-property (datum->syntax stx datum stx stx stx)

'paren-shape

v))

(define-syntax (syntax/shape stx)

(syntax-case stx ()

[(_ tmpl)

(transform-template #'tmpl

#:save get-shape-prop

#:restore-stx #'add-shape-prop)]))

34

4 Reader Helpers

4.1 Raising exn:fail:read

(require syntax/readerr)

(raise-read-error msg-string

source

line

col

pos

span) → any

msg-string : string?

source : any/c

line : (or/c number? false/c)

col : (or/c number? false/c)

pos : (or/c number? false/c)

span : (or/c number? false/c)

Creates and raises an exn:fail:read exception, using msg-string as the base error mes-
sage.

Source-location information is added to the error message using the last five arguments (if
the error-print-source-location parameter is set to #t). The source argument is an
arbitrary value naming the source location—usually a file path string. Each of the line , pos
arguments is #f or a positive exact integer representing the location within source-name

(as much as known), col is a non-negative exact integer for the source column (if known),
and span is #f or a non-negative exact integer for an item range starting from the indicated
position.

The usual location values should point at the beginning of whatever it is you were reading,
and the span usually goes to the point the error was discovered.

(raise-read-eof-error msg-string

source

line

col

pos

span) → any

msg-string : string?

source : any/c

line : (or/c number? false/c)

col : (or/c number? false/c)

35

pos : (or/c number? false/c)

span : (or/c number? false/c)

Like raise-read-error, but raises exn:fail:read:eof instead of exn:fail:read.

4.2 Module Reader
See also §17.3
“Defining new
#lang Languages”
in The Racket
Guide.

(require syntax/module-reader)

The syntax/module-reader library provides support for defining #lang readers. It is
normally used as a module language, though it may also be required to get make-meta-
reader. It provides all of the bindings of scheme/base other than #%module-begin.

(#%module-begin module-path)

(#%module-begin module-path reader-option ... form)

(#%module-begin reader-option ... form)

reader-option = #:read read-expr

| #:read-syntax read-syntax-expr

| #:whole-body-readers? whole?-expr

| #:wrapper1 wrapper1-expr

| #:wrapper2 wrapper2-expr

| #:language lang-expr

| #:info info-expr

| #:language-info language-info-expr

read-expr : (input-port? . -> . any/c)

read-syntax-expr : (any/c input-port? . -> . any/c)

whole-expr : any/c

wrapper1-expr : (or/c ((-> any/c) . -> . any/c)

((-> any/c) boolean? . -> . any/c))

wrapper2-expr : (or/c (input-port? (input-port? . -> . any/c)

. -> . any/c)

(input-port? (input-port? . -> . any/c)

boolean? . -> . any/c))

info-expr : (symbol? any/c (symbol? any/c . -> . any/c) . -> . any/c)

module-info-expr : (or/c (vector/c module-path? symbol? any/c) #f)

lang-expr : (or/c module-path?

(and/c syntax? (compose module-path? syntax->datum))

procedure?)

36

In its simplest form, the body of a module written with syntax/module-reader contains
just a module path, which is used in the language position of read modules. For example, a
module something/lang/reader implemented as

(module reader syntax/module-reader

module-path)

creates a reader such that a module source

#lang something

....

is read as

(module name-id module-path

(#%module-begin))

Keyword-based reader-options allow further customization, as listed below. Additional
forms are as in the body of scheme/base module; they can import bindings and define
identifiers used by the reader-options.

• #:read and #:read-syntax (both or neither must be supplied) specify alternate
readers for parsing the module body—replacements read and read-syntax, respec-
tively. Normally, the replacements for read and read-syntax are applied repeatedly
to the module source until eof is produced, but see also #:whole-body-readers?.

For example, a language built on the Honu reader could be implemented with:

(module reader syntax/module-reader

module-path

#:read read-honu

#:read-syntax read-honu-syntax)

See also #:wrapper1 and #:wrapper2, which support simple parameterization of
readers rather than wholesale replacement.

• #:whole-body-readers? specified as true indicates that the #:read and #:read-

syntax functions each produce a list of S-expressions or syntax objects for the module
content, so that each is applied just once to the input stream.

If the resulting list contains a single form that starts with the symbol '#%module-
begin (or a syntax object whose datum is that symbol), then the first item is used as
the module body; otherwise, a '#%module-begin (symbol or identifier) is added to
the beginning of the list to form the module body.

37

• #:wrapper1 specifies a function that controls the dynamic context in which the read
and read-syntax functions are called. A #:wrapper1-specified function must ac-
cept a thunk, and it normally calls the thunk to produce a result while parameteriz-
ing the call. Optionally, a #:wrapper1-specified function can accept a boolean that
indicates whether it is used in read (#f) or read-syntax (#t) mode.

For example, a language like scheme/base but with case-insensitive reading of sym-
bols and identifiers can be implemented as

(module reader syntax/module-reader

scheme/base

#:wrapper1 (lambda (t)

(parameterize ([read-case-sensitive #f])

(t))))

Using a readtable, you can implement languages that are extensions of plain S-
expressions.

• #:wrapper2 is like #:wrapper1, but a #:wrapper2-specified function receives the
input port to be read, and the function that it receives accepts an input port (usually, but
not necessarily the same input port). A #:wrapper2-specified function can optionally
accept an boolean that indicates whether it is used in read (#f) or read-syntax (#t)
mode.

• #:info specifies an implementation of reflective information that is used by external
tools to manipulate the source of modules in the language something . For example,
DrRacket uses information from #:info to determine the style of syntax coloring that
it should use for editing a module’s source.

The #:info specification should be a function of three arguments: a symbol indicating
the kind of information requested (as defined by external tools), a default value that
normally should be returned if the symbol is not recognized, and a default-filtering
function that takes the first two arguments and returns a result.

The expression after #:info is placed into a context where language-module

and language-data are bound. The language-module identifier is bound to the
module-path that is used for the read module’s language as written directly or as de-
termined through #:language. The language-data identifier is bound to the second
result from #:language, or #f by default.

The default-filtering function passed to the #:info function is intended to pro-
vide support for information that syntax/module-reader can provide automati-
cally. Currently, it recognizes only the 'module-language key, for which it returns
language-module; it returns the given default value for any other key.

In the case of the DrRacket syntax-coloring example, DrRacket supplies 'color-

lexer as the symbol argument, and it supplies #f as the default. The default-filtering
argument (i.e., the third argument to the #:info function) currently just returns the
default for 'color-lexer.

38

• #:language-info specifies an implementation of reflective information that is used
by external tools to manipulate the module in the language something in its ex-
panded, compiled, or declared form (as opposed to source). For example, when
Racket starts a program, it uses information attached to the main module to initial-
ize the run-time environment.

Since the expanded/compiled/declared form exists at a different time than when the
source is read, a #:language-info specification is a vector that indicates an im-
plementation of the reflective information, instead of a direct implementation as a
function like #:info. The first element of the vector is a module path, the second is a
symbol corresponding to a function exported from the module, and the last element is
a value to be passed to the function. The last value in the vector must be one that can
be written with write and read back with read. When the exported function indicated
by the first two vector elements is called with the value from the last vector element,
the result should be a function or two arguments: a symbol and a default value. The
symbol and default value are used as for the #:info function (but without an extra
default-filtering function).

The value specified by #:language-info is attached to the module form that is
parsed from source through the 'module-language syntax property. See module for
more information.

The expression after #:language-info is placed into a context where language-

module are language-data are bound, the same as for #:info.

In the case of the Racket run-time configuration example, Racket uses the
#:language-info vector to obtain a function, and then it passes 'configure-

runtime to the function to obtain information about configuring the runtime envi-
ronment. See also §17.1.5 “Language Run-Time Configuration”.

• #:language allows the language of the read module to be computed dynamically
and based on the program source, instead of using a constant module-path . (Either
#:language or module-path must be provided, but not both.)

This value of the #:language option can be either a module path (possibly as a syntax
object) that is used as a module language, or it can be a procedure. If it is a procedure
it can accept either

– 0 arguments;

– 1 argument: an input port; or

– 5 arguments: an input port, a syntax object whose datum is a module path for
the enclosing module as it was referenced through #lang or #reader, a starting
line number (positive exact integer) or #f, a column number (non-negative exact
integer) or #f, and a position number (positive exact integer) or #f.

The result can be either

– a single value, which is a module path or a syntax object whose datum is a
module path, to be used like module-path ; or

39

– two values, where the first is like a single-value result and the second can be any
value.

The second result, which defaults to #f if only a single result is produced, is made
available to the #:info and #:module-info functions through the language-data
binding. For example, it can be a specification derived from the input stream that
changes the module’s reflective information (such as the syntax-coloring mode or the
output-printing styles).

As another example, the following reader defines a “language” that ignores the contents of
the file, and simply reads files as if they were empty:

(module ignored syntax/module-reader

scheme/base

#:wrapper1 (lambda (t) (t) '()))

Note that the wrapper still performs the read, otherwise the module loader would complain
about extra expressions.

As a more useful example, the following module language is similar to at-exp, where the
first datum in the file determines the actual language (which means that the library specifi-
cation is effectively ignored):

(module reader syntax/module-reader

-ignored-

#:wrapper2

(lambda (in rd stx?)

(let* ([lang (read in)]

[mod (parameterize ([current-readtable

(make-at-readtable)])

(rd in))]

[mod (if stx? mod (datum->syntax #f mod))]

[r (syntax-case mod ()

[(module name lang* . body)

(with-syntax ([lang (datum->syntax

#'lang* lang #'lang*)])

(syntax/loc mod (module name lang . body)))])])

(if stx? r (syntax->datum r))))

(require scribble/reader))

The ability to change the language position in the resulting module expression can be useful
in cases such as the above, where the base language module is chosen based on the input.
To make this more convenient, you can omit the module-path and instead specify it via
a #:language expression. This expression can evaluate to a datum or syntax object that
is used as a language, or it can evaluate to a thunk. In the latter case, the thunk is invoked

40

to obtain such a datum before reading the module body begins, in a dynamic extent where
current-input-port is the source input. A syntax object is converted using syntax-

>datum when a datum is needed (for read instead of read-syntax). Using #:language,
the last example above can be written more concisely:

(module reader syntax/module-reader

#:language read

#:wrapper2 (lambda (in rd stx?)

(parameterize ([current-readtable

(make-at-readtable)])

(rd in)))

(require scribble/reader))

For such cases, however, the alternative reader constructor make-meta-reader implements
a might tightly controlled reading of the module language.

(make-meta-reader self-sym

path-desc-str

[#:read-spec read-spec]
module-path-parser

convert-read

convert-read-syntax

convert-get-info)

→ procedure? procedure? procedure?

self-sym : symbol?

path-desc-str : string?

read-spec : (input-port? . -> . any/c) = (lambda (in))

module-path-parser : (any/c . -> . (or/c module-path? #f))

convert-read : (procedure? . -> . procedure?)

convert-read-syntax : (procedure? . -> . procedure?)

convert-get-info : (procedure? . -> . procedure?)

Generates procedures suitable for export as read (see read and #lang), read-syntax (see
read-syntax and #lang), and get-info (see read-language and #lang), respectively,
where the procedures chains to another language that is specified in an input stream. The at-exp,

reader, and
planet languages
are implemented
using this function.

The generated functions expect a target language description in the input stream that is pro-
vided to read-spec . The default read-spec extracts a non-empty sequence of bytes af-
ter one or more space and tab bytes, stopping at the first whitespace byte or end-of-file
(whichever is first), and it produces either such a byte string or #f. If read-spec produces
#f, a reader exception is raised, and path-desc-str is used as a description of the expected
language form in the error message. The reader

language supplies
read for
read-spec . The
at-exp and
planet languages
use the default
read-spec .

The result of read-spec is converted to a module path using module-path-parser . If
module-path-parser produces #f, a reader exception is raised in the same way as when

41

read-spec produces a #f. The planet languages supply a module-path-parser that
converts a byte string to a module path.

If loading the module produced by module-path-parser succeeds, then the loaded mod-
ule’s read, read-syntax, or get-info export is passed to convert-read , convert-
read-syntax , or convert-get-info , respectively. The at-exp

language supplies
convert-read and
convert-read-syntax

to add
@-expression
support to the
current readtable
before chaining to
the given
procedures.

The procedures generated by make-meta-reader are not meant for use with the
syntax/module-reader language; they are meant to be exported directly.

(wrap-read-all mod-path

in

read

mod-path-stx

src

line

col

pos) → any/c

mod-path : module-path?

in : input-port?

read : (input-port . -> . any/c)

mod-path-stx : syntax?

src : (or/c syntax? #f)

line : number?

col : number?

pos : number?

This function is deprecated; the syntax/module-reader language can be adapted using
the various keywords to arbitrary readers; please use it instead.

Repeatedly calls read on in until an end of file, collecting the results in order into lst , and
derives a name-id from (object-name in). The last five arguments are used to construct
the syntax object for the language position of the module. The result is roughly

`(module ,name-id ,mod-path ,@lst)

42

5 Non-Module Compilation And Expansion

(require syntax/toplevel)

(expand-syntax-top-level-with-compile-time-evals stx) → syntax?

stx : syntax?

Expands stx as a top-level expression, and evaluates its compile-time portion for the benefit
of later expansions.

The expander recognizes top-level begin expressions, and interleaves the evaluation and
expansion of of the begin body, so that compile-time expressions within the begin body
affect later expansions within the body. (In other words, it ensures that expanding a begin

is the same as expanding separate top-level expressions.)

The stx should have a context already, possibly introduced with namespace-syntax-

introduce.

(expand-top-level-with-compile-time-evals stx) → syntax?

stx : syntax?

Like expand-syntax-top-level-with-compile-time-evals, but stx is first given
context by applying namespace-syntax-introduce to it.

(expand-syntax-top-level-with-compile-time-evals/flatten stx)

→ (listof syntax?)

stx : syntax?

Like expand-syntax-top-level-with-compile-time-evals, except that it returns a
list of syntax objects, none of which have a begin. These syntax objects are the flattened
out contents of any begins in the expansion of stx .

(eval-compile-time-part-of-top-level stx) → void?

stx : syntax?

Evaluates expansion-time code in the fully expanded top-level expression represented by
stx (or a part of it, in the case of begin expressions). The expansion-time code might affect
the compilation of later top-level expressions. For example, if stx is a require expression,
then namespace-require/expansion-time is used on each require specification in the
form. Normally, this function is used only by expand-top-level-with-compile-time-

evals.

(eval-compile-time-part-of-top-level/compile stx)

43

→ (listof compiled-expression?)

stx : syntax?

Like eval-compile-time-part-of-top-level, but the result is compiled code.

44

6 Trusting Standard Recertifying Transformers

(require syntax/trusted-xforms)

The syntax/trusted-xforms library has no exports. It exists only to require other mod-
ules that perform syntax transformations, where the other transformations must use syntax-
recertify. An application that wishes to provide a less powerful code inspector to a sub-
program should generally attach syntax/trusted-xforms to the sub-program’s names-
pace so that things like the class system from scheme/class work properly.

45

7 Attaching Documentation to Exports

(require syntax/docprovide)

(provide-and-document doc-label-id doc-row ...)

doc-row = (section-string (name type-datum doc-string ...) ...)

| (all-from prefix-id module-path doc-label-id)

| (all-from-except prefix-id module-path doc-label-id id ...)

name = id

| (local-name-id external-name-id)

A form that exports names and records documentation information.

The doc-label-id identifier is used as a key for accessing the documentation through
lookup-documentation. The actual documentation is organized into “rows”, each with a
section title.

A row has one of the following forms:

• (section-string (name type-datum doc-string ...) ...)

Creates a documentation section whose title is section-string , and pro-
vides/documents each name . The type-datum is arbitrary, for use by clients that
call lookup-documentation. The doc-strings are also arbitrary documentation
information, usually concatenated by clients.

A name is either an identifier or a renaming sequence (local-name-id extenal-

name-id).

Multiple rows with the same section name will be merged in the documentation output.
The final order of sections matches the order of the first mention of each section.

• (all-from prefix-id module-path doc-label-id)

• (all-from-except prefix-id module-path doc-label-id id ...)

Merges documentation and provisions from the specified module into the current one;
the prefix-id is used to prefix the imports into the current module (so they can
be re-exported). If ids are provided, the specified ids are not re-exported and their
documentation is not merged.

(lookup-documentation module-path-v

label-sym) → any

module-path-v : module-path?

label-sym : symbol?

46

Returns documentation for the specified module and label. The module-path-v argument
is a quoted module path, like the argument to dynamic-require. The label-sym identifies
a set of documentation using the symbol as a label identifier in provide-and-document.

47

8 Parsing and specifying syntax

The syntax/parse library provides a framework for writing macros and processing syntax.
The library provides a powerful language of syntax patterns, used by the pattern-matching
form syntax-parse and the specification form define-syntax-class. Macros that use
syntax-parse automatically generate error messages based on descriptions and messages
embedded in the macro’s syntax patterns.

(require syntax/parse)

8.1 Introduction

This section provides an introduction to writing robust macros with syntax-parse and
syntax classes.

As a running example we use the following task: write a macro named mylet that has the
same syntax and behavior as Racket’s let form. The macro should produce good error
messages when used incorrectly.

Here is the specification of mylet’s syntax:

(mylet ([var-id rhs-expr] ...) body ...+)

(mylet loop-id ([var-id rhs-expr] ...) body ...+)

For simplicity, we handle only the first case for now. We return to the second case later in
the introduction.

The macro can be implemented very simply using define-syntax-rule:

> (define-syntax-rule (mylet ([var rhs] ...) body ...)

((lambda (var ...) body ...) rhs ...))

When used correctly, the macro works, but it behaves very badly in the presence of errors. In
some cases, the macro merely fails with an uninformative error message; in others, it blithely
accepts illegal syntax and passes it along to lambda, with strange consequences:

> (mylet ([a 1] [b 2]) (+ a b))

3

> (mylet (b 2) (sub1 b))

mylet: use does not match pattern: (mylet ((var rhs) ...)
body ...) at: (mylet (b 2) (sub1 b))
> (mylet ([1 a]) (add1 a))

48

lambda: not an identifier, identifier with default, or
keyword at: 1
> (mylet ([#:x 1] [y 2]) (* x y))

struct eval:145:0: expects 0 arguments plus an argument
with keyword #:x, given 2: 1 2

These examples of illegal syntax are not to suggest that a typical programmer would make
such mistakes attempting to use mylet. At least, not often, not after an initial learning curve.
But macros are also used by inexpert programmers and as targets of other macros (or code
generators), and many macros are far more complex than mylet. Macros must validate
their syntax and report appropriate errors. Furthermore, the macro writer benefits from the
machine-checked specification of syntax in the form of more readable, maintainable code.

We can improve the error behavior of the macro by using syntax-parse. First, we import
syntax-parse into the transformer environment, since we will use it to implement a macro
transformer.

> (require (for-syntax syntax/parse))

The following is the syntax specification above transliterated into a syntax-parse macro
definition. It behaves no better than the version using define-syntax-rule above.

> (define-syntax (mylet stx)

(syntax-parse stx

[(_ ([var-id rhs-expr] ...) body ...+)

#'((lambda (var-id ...) body ...) rhs-expr ...)]))

One minor difference is the use of ...+ in the pattern; ... means match zero or more
repetitions of the preceding pattern; ...+ means match one or more. Only ... may be used
in the template, however.

The first step toward validation and high-quality error reporting is annotating each of the
macro’s pattern variables with the syntax class that describes its acceptable syntax. In mylet,
each variable must be an identifier (id for short) and each right-hand side must be an
expr (expression). An annotated pattern variable is written by concatenating the pattern
variable name, a colon character, and the syntax class name. For an alternative to

the “colon” syntax,
see the ∼var
pattern form.

> (define-syntax (mylet stx)

(syntax-parse stx

[(_ ((var:id rhs:expr) ...) body ...+)

#'((lambda (var ...) body ...) rhs ...)]))

Note that the syntax class annotations do not appear in the template (i.e., var, not var:id).

The syntax class annotations are checked when we use the macro.

49

> (mylet ([a 1] [b 2]) (+ a b))

3

> (mylet (["a" 1]) (add1 a))

mylet: expected identifier at: "a"

The expr syntax class does not actually check that the term it matches is a valid expression—
that would require calling that macro expander. Instead, expr just means not a keyword.

> (mylet ([a #:whoops]) 1)

mylet: expected expression at: #:whoops

Also, syntax-parse knows how to report a few kinds of errors without any help:

> (mylet ([a 1 2]) (* a a))

mylet: unexpected term at: 2

There are other kinds of errors, however, that this macro does not handle gracefully:

> (mylet (a 1) (+ a 2))

mylet: bad syntax at: (mylet (a 1) (+ a 2))

It’s too much to ask for the macro to respond, “This expression is missing a pair of paren-
theses around (a 1).” The pattern matcher is not that smart. But it can pinpoint the source
of the error: when it encountered a it was expecting what we might call a “binding pair,” but
that term is not in its vocabulary yet.

To allow syntax-parse to synthesize better errors, we must attach descriptions to the pat-
terns we recognize as discrete syntactic categories. One way of doing that is by defining new
syntax classes: Another way is the

∼describe pattern
form.> (define-syntax (mylet stx)

(define-syntax-class binding

#:description "binding pair"

(pattern (var:id rhs:expr)))

(syntax-parse stx

[(_ (b:binding ...) body ...+)

#'((lambda (b.var ...) body ...) b.rhs ...)]))

Note that we write b.var and b.rhs now. They are the nested attributes formed from the
annotated pattern variable b and the attributes var and rhs of the syntax class binding.

50

Now the error messages can talk about “binding pairs.”

> (mylet (a 1) (+ a 2))

mylet: expected binding pair at: a

Errors are still reported in more specific terms when possible:

> (mylet (["a" 1]) (+ a 2))

mylet: expected identifier at: "a"

There is one other constraint on the legal syntax of mylet. The variables bound by the
different binding pairs must be distinct. Otherwise the macro creates an illegal lambda
form:

> (mylet ([a 1] [a 2]) (+ a a))

lambda: duplicate argument name at: a

Constraints such as the distinctness requirement are expressed as side conditions, thus:

> (define-syntax (mylet stx)

(define-syntax-class binding

#:description "binding pair"

(pattern (var:id rhs:expr)))

(syntax-parse stx

[(_ (b:binding ...) body ...+)

#:fail-when (check-duplicate-identifier

(syntax->list #'(b.var ...)))

"duplicate variable name"

#'((lambda (b.var ...) body ...) b.rhs ...)]))

> (mylet ([a 1] [a 2]) (+ a a))

mylet: duplicate variable name at: a

The #:fail-when keyword is followed by two expressions: the condition and the error
message. When the condition evaluates to anything but #f, the pattern fails. Additionally, if
the condition evaluates to a syntax object, that syntax object is used to pinpoint the cause of
the failure.

51

Syntax classes can have side conditions, too. Here is the macro rewritten to include another
syntax class representing a “sequence of distinct binding pairs.”

> (define-syntax (mylet stx)

(define-syntax-class binding

#:description "binding pair"

(pattern (var:id rhs:expr)))

(define-syntax-class distinct-bindings

#:description "sequence of distinct binding pairs"

(pattern (b:binding ...)

#:fail-when (check-duplicate-identifier

(syntax->list #'(b.var ...)))

"duplicate variable name"

#:with (var ...) #'(b.var ...)

#:with (rhs ...) #'(b.rhs ...)))

(syntax-parse stx

[(_ bs:distinct-bindings . body)

#'((lambda (bs.var ...) . body) bs.rhs ...)]))

Here we’ve introduced the #:with clause. A #:with clause matches a pattern with a com-
puted term. Here we use it to bind var and rhs as attributes of distinct-bindings.
By default, a syntax class only exports its patterns’ pattern variables as attributes, not their
nested attributes. The alternative

would be to
explicitly declare
the attributes of
distinct-bindings

to include the
nested attributes
b.var and b.rhs,
using the
#:attribute

option. Then the
macro would refer
to bs.b.var and
bs.b.rhs.

Alas, so far the macro only implements half of the functionality offered by Racket’s let.
We must add the “named-let” form. That turns out to be as simple as adding a new clause:

> (define-syntax (mylet stx)

(define-syntax-class binding

#:description "binding pair"

(pattern (var:id rhs:expr)))

(define-syntax-class distinct-bindings

#:description "sequence of distinct binding pairs"

(pattern (b:binding ...)

#:fail-when (check-duplicate-identifier

(syntax->list #'(b.var ...)))

"duplicate variable name"

#:with (var ...) #'(b.var ...)

#:with (rhs ...) #'(b.rhs ...)))

52

(syntax-parse stx

[(_ bs:distinct-bindings body ...+)

#'((lambda (bs.var ...) body ...) bs.rhs ...)]

[(_ loop:id bs:distinct-bindings body ...+)

#'(letrec ([loop (lambda (bs.var ...) body ...)])

(loop bs.rhs ...))]))

We are able to reuse the distinct-bindings syntax class, so the addition of the “named-
let” syntax requires only three lines.

But does adding this new case affect syntax-parse’s ability to pinpoint and report errors?

> (mylet ([a 1] [b 2]) (+ a b))

3

> (mylet (["a" 1]) (add1 a))

mylet: expected identifier at: "a"
> (mylet ([a #:whoops]) 1)

mylet: expected expression at: #:whoops
> (mylet ([a 1 2]) (* a a))

mylet: unexpected term at: 2
> (mylet (a 1) (+ a 2))

mylet: expected binding pair at: a
> (mylet ([a 1] [a 2]) (+ a a))

mylet: duplicate variable name at: a

The error reporting for the original syntax seems intact. We should verify that the named-let
syntax is working, that syntax-parse is not simply ignoring that clause.

> (mylet loop ([a 1] [b 2]) (+ a b))

3

> (mylet loop (["a" 1]) (add1 a))

mylet: expected identifier at: "a"
> (mylet loop ([a #:whoops]) 1)

mylet: expected expression at: #:whoops
> (mylet loop ([a 1 2]) (* a a))

mylet: unexpected term at: 2
> (mylet loop (a 1) (+ a 2))

mylet: expected binding pair at: a
> (mylet loop ([a 1] [a 2]) (+ a a))

mylet: duplicate variable name at: a

How does syntax-parse decide which clause the programmer was attempting, so it can
use it as a basis for error reporting? After all, each of the bad uses of the named-let syntax

53

are also bad uses of the normal syntax, and vice versa. And yet the macro doen not produce
errors like “mylet: expected sequence of distinct binding pairs at: loop.”

The answer is that syntax-parse records a list of all the potential errors (including ones
like loop not matching distinct-binding) along with the progress made before each
error. Only the error with the most progress is reported.

For example, in this bad use of the macro,

> (mylet loop (["a" 1]) (add1 a))

mylet: expected identifier at: "a"

there are two potential errors: expected distinct-bindings at loop and expected iden-

tifier at "a". The second error occurs further in the term than the first, so it is reported.

For another example, consider this term:

> (mylet (["a" 1]) (add1 a))

mylet: expected identifier at: "a"

Again, there are two potential errors: expected identifier at (["a" 1]) and expected
identifier at "a". They both occur at the second term (or first argument, if you prefer),
but the second error occurs deeper in the term. Progress is based on a left-to-right traversal
of the syntax.

A final example: consider the following:

> (mylet ([a 1] [a 2]) (+ a a))

mylet: duplicate variable name at: a

There are two errors again: duplicate variable name at ([a 1] [a 2]) and expected iden-
tifier at ([a 1] [a 2]). Note that as far as syntax-parse is concerned, the progress
associated with the duplicate error message is the second term (first argument), not the sec-
ond occurrence of a. That’s because the check is associated with the entire distinct-

bindings pattern. It would seem that both errors have the same progress, and yet only
the first one is reported. The difference between the two is that the first error is from a
post-traversal check, whereas the second is from a normal (i.e., pre-traversal) check. A
post-traveral check is considered to have made more progress than a pre-traversal check of
the same term; indeed, it also has greater progress than any failure within the term.

It is, however, possible for multiple potential errors to occur with the same progress. Here’s
one example:

54

> (mylet "not-even-close")

mylet: expected identifier or expected sequence of distinct
binding pairs at: "not-even-close"

In this case syntax-parse reports both errors.

Even with all of the annotations we have added to our macro, there are still some misuses
that defy syntax-parse’s error reporting capabilities, such as this example:

> (mylet)

mylet: bad syntax at: (mylet)

The philosophy behind syntax-parse is that in these situations, a generic error such as
“bad syntax” is justified. The use of mylet here is so far off that the only informative error
message would include a complete recapitulation of the syntax of mylet. That is not the
role of error messages, however; it is the role of documentation.

This section has provided an introduction to syntax classes, side conditions, and progress-
ordered error reporting. But syntax-parse has many more features. Continue to the §8.2
“Examples” section for samples of other features in working code, or skip to the subsequent
sections for the complete reference documentation.

8.2 Examples

This section provides an extended introduction to syntax/parse as a series of worked
examples.

8.2.1 Modules and reusable syntax classes

As demonstrated in the §8.1 “Introduction”, the simplest place to define a syntax class is
within the macro definition that uses it. But this location, of course, limits the scope of the
syntax class to the one client macro. Creating reusable syntax classes is slightly complicated,
however, by the Racket phase level separation. A syntax class defined within a module
cannot be used by macros in the same module; it is defined at the wrong phase.

> (module phase-mismatch-mod racket

(require syntax/parse (for-syntax syntax/parse))

(define-syntax-class foo

(pattern (a b c)))

(define-syntax (macro stx)

(syntax-parse stx

55

[(_ f:foo) #'(+ f.a f.b f.c)])))

syntax-parse: not defined as syntax class at: foo

In the module above, the syntax class foo is defined at phase level 0. The reference to foo

within macro, however, is at phase level 1, being the implementation of a macro transformer.
(Needing to require syntax/parse twice, once normally and once for-syntax is another
sign of the phase level incompatibility.) The only way to define reusable syntax classes that
can be used within macros is to define them in a separate module and require that module
for-syntax.

> (module stxclass-mod racket

(require syntax/parse)

(define-syntax-class foo

(pattern (a b c)))

(provide foo))

> (module macro-mod racket

(require (for-syntax syntax/parse

'stxclass-mod))

(define-syntax (macro stx)

(syntax-parse stx

[(_ f:foo) #'(+ f.a f.b f.c)]))

(provide macro))

> (require 'macro-mod)

> (macro (1 2 3))

6

If the syntax classes refer to keywords, or if they compute expressions via syntax templates,
then the module containing the syntax classes must generally require the keywords or bind-
ings used in the syntax templates for-template.

> (module arith-keywords-mod racket

(define-syntax plus (syntax-rules ()))

(define-syntax times (syntax-rules ()))

(provide plus times))

> (module arith-stxclass-mod racket

(require syntax/parse

(for-template 'arith-keywords-mod

racket))

(define-syntax-class arith

#:literals (plus times)

(pattern n:nat

#:with expr #'n)

(pattern (plus a:arith b:arith)

#:with expr #'(+ a.expr b.expr))

(pattern (times a:arith b:arith)

56

#:with expr #'(* a.expr b.expr)))

(provide arith))

> (module arith-macro-mod racket

(require (for-syntax syntax/parse

'arith-stxclass-mod)

'arith-keywords-mod)

(define-syntax (arith-macro stx)

(syntax-parse stx

[(_ a:arith)

#'(values 'a.expr a.expr)]))

(provide arith-macro

(all-from-out 'arith-keywords-mod)))

> (require 'arith-macro-mod)

> (arith-macro (plus 1 (times 2 3)))

'(+ 1 (* 2 3))

7

In 'arith-stxclass-mod, the module 'arith-keywords-mod must be required for-

template because the keywords are used in phase-0 expressions. Likewise, the module
racket must be required for-template because the syntax class contains syntax templates
involving + and * (and, in fact, the implicit #%app syntax). All of these identifiers (the
keywords plus and times; the procedures + and *; and the implicit syntax #%app) must
be bound at “absolute” phase level 0. Since the module 'arith-stxclass-mod is required
with a phase level offset of 1 (that is, for-syntax), it must compensate with a phase level
offset of -1, or for-template.

8.2.2 Optional keyword arguments

This section explains how to write a macro that accepts (simple) optional keyword argu-
ments. We use the example mycond, which is like Racket’s cond except that it takes an
optional keyword argument that controls what happens if none of the clauses match.

Optional keyword arguments are supported via head patterns. Unlike normal patterns, which
match one term, head patterns can match a variable number of subterms in a list. Some
important head-pattern forms are ∼seq, ∼or, and ∼optional.

Here’s one way to do it:

> (define-syntax (mycond stx)

(syntax-parse stx

[(mycond (∼or (∼seq #:error-on-fallthrough who:expr) (∼seq))
clause ...)

(with-syntax ([error? (if (attribute who) #'#t #'#f)]

[who (or (attribute who) #'#f)])

#'(mycond* error? who clause ...))]))

57

> (define-syntax mycond*

(syntax-rules ()

[(mycond error? who [question answer] . clauses)

(if question answer (mycond* error? who . clauses))]

[(mycond #t who)

(error who "no clauses matched")]

[(mycond #f _)

(void)]))

We cannot write #'who in the macro’s right-hand side, because the who attribute does not
receive a value if the keyword argument is omitted. Instead we must write (attribute

who), which produces #f if matching did not assign a value to the attribute.

> (mycond [(even? 13) 'blue]

[(odd? 4) 'red])

> (mycond #:error-on-fallthrough 'myfun

[(even? 13) 'blue]

[(odd? 4) 'red])

myfun: no clauses matched

There’s a simpler way of writing the ∼or pattern above:

(∼optional (∼seq #:error-on-fallthrough who:expr))

Yet another way is to introduce a splicing syntax class, which is like an ordinary syntax class
but for head patterns.

> (define-syntax (mycond stx)

(define-splicing-syntax-class maybe-fallthrough-option

(pattern (∼seq #:error-on-fallthough who:expr)

#:with error? #'#t)

(pattern (∼seq)
#:with error? #'#f

#:with who #'#f))

(syntax-parse stx

[(mycond fo:maybe-fallthrough-option clause ...)

#'(mycond* fo.error? fo.who clause ...)]))

Defining a splicing syntax class also makes it easy to eliminate the case analysis we did
before using attribute by defining error? and who as attributes within both of the syntax
class’s variants. (This is possible to do in the inline pattern version too, using ∼and and
∼parse, just less convenient.) Splicing syntax classes also closely parallel the style of
grammars in macro documentation.

58

8.2.3 Variants with uniform meanings

Syntax classes not only validate syntax, they also extract some measure of meaning from it.
From the perspective of meaning, there are essentially two kinds of syntax class. In the first,
all of the syntax class’s variants have the same kind of meaning. In the second, variants may
have different kinds of meaning. This section discusses the first kind, syntax classes with In other words,

some syntax
classes’ meanings
are products and
others’ meanings
are sums.

uniform meanings. The next section discusses §8.2.4 “Variants with varied meanings”.

If all of a syntax class’s variants express the same kind of information, that information can
be cleanly represented via attributes, and it can be concisely processed using ellipses.

One example of a syntax class with uniform meaning: the init-decl syntax of the class
macro. Here is the specification of init-decl:

init-decl = id

| (maybe-renamed)

| (maybe-renamed default-expr)

maybe-renamed = id

| (internal-id external-id)

The init-decl syntax class has three variants, plus an auxiliary syntax class that has two
variants of its own. But all forms of init-decl ultimately carry just three pieces of infor-
mation: an internal name, an external name, and a default configuration of some sort. The
simpler syntactic variants are just abbreviations for the full information.

The three pieces of information determine the syntax class’s attributes. It is useful to declare
the attributes explicitly using the #:attributes keyword; the declaration acts both as in-
code documentation and as a check on the variants.

(define-syntax-class init-decl

#:attributes (internal external default)

__)

Next we fill in the syntactic variants, deferring the computation of the attributes:

(define-syntax-class init-decl

#:attributes (internal external default)

(pattern ???:id

__)

(pattern (???:maybe-renamed)

__)

(pattern (???:maybe-renamed ???:expr)

__))

We perform a similar analysis of maybe-renamed:

59

(define-syntax-class maybe-renamed

#:attributes (internal external)

(pattern ???:id

__)

(pattern (???:id ???:id)

__))

Here’s one straightforward way of matching syntactic structure with attributes for maybe-
renamed:

(define-syntax-class maybe-renamed

#:attributes (internal external)

(pattern internal:id

#:with external #'internal)

(pattern (internal:id external:id)))

Given that definition of maybe-renamed, we can fill in most of the definition of init-decl:

(define-syntax-class init-decl

#:attributes (internal external default)

(pattern internal:id

#:with external #:internal

#:with default ???)

(pattern (mr:maybe-renamed)

#:with internal #'mr.internal

#:with external #'mr.external

#:with default ???)

(pattern (mr:maybe-renamed default0:expr)

#:with internal #'mr.internal

#:with external #'mr.external

#:with default ???))

At this point we realize we have not decided on a representation for the default configura-
tion. In fact, it is an example of syntax with varied meanings (aka sum or disjoint union).
The following section discusses representation options in greater detail; for the sake of com-
pleteness, we present one of them here.

There are two kinds of default configuration. One indicates that the initialization argument
is optional, with a default value computed from the given expression. The other indicates
that the initialization argument is mandatory. We represent the variants as a (syntax) list
containing the default expression and as the empty (syntax) list, respectively. More precisely:

(define-syntax-class init-decl

#:attributes (internal external default)

(pattern internal:id

60

#:with external #:internal

#:with default #'())

(pattern (mr:maybe-renamed)

#:with internal #'mr.internal

#:with external #'mr.external

#:with default #'())

(pattern (mr:maybe-renamed default0:expr)

#:with internal #'mr.internal

#:with external #'mr.external

#:with default #'(default0)))

Another way to look at this aspect of syntax class design is as the algebraic factoring of
sums-of-products (concrete syntax variants) into products-of-sums (attributes and abstract
syntax variants). The advantages of the latter form are the “dot” notation for data extrac-
tion, avoiding or reducing additional case analysis, and the ability to concisely manipulate
sequences using ellipses.

8.2.4 Variants with varied meanings

As explained in the previous section, the meaning of a syntax class can be uniform, or it
can be varied; that is, different instances of the syntax class can carry different kinds of
information. This section discusses the latter kind of syntax class.

A good example of a syntax class with varied meanings is the for-clause of the for family
of special forms.

for-clause = [id seq-expr]

| [(id ...) seq-expr]

| #:when guard-expr

The first two variants carry the same kind of information; both consist of identifiers to bind
and a sequence expression. The third variant, however, means something totally different:
a condition that determines whether to continue the current iteration of the loop, plus a
change in scoping for subsequent seq-exprs. The information of a for-clause must be
represented in a way that a client macro can do further case analysis to distinguish the “bind
variables from a sequence” case from the “skip or continue this iteration and enter a new
scope” case.

This section discusses two ways of representing varied kinds of information.

61

Syntactic normalization

One approach is based on the observation that the syntactic variants already constitute a
representation of the information they carry. So why not adapt that representation, removing
redundancies and eliminating simplifying the syntax to make subsequent re-parsing trivial.

(define-splicing-syntax-class for-clause

#:attribute (norm)

(pattern [var:id seq:expr]

#:with norm #'[(var) seq])

(pattern [(var:id ...) seq:expr]

#:with norm #'[(var ...) seq])

(pattern (∼seq #:when guard:expr)

#:with norm #'[#:when guard]))

First, note that since the #:when variant consists of two separate terms, we define for-

clause as a splicing syntax class. Second, that kind of irregularity is just the sort of thing
we’d like to remove so we don’t have to deal with it again later. Thus we represent the
normalized syntax as a single term beginning with either a sequence of identifiers (the first
two cases) or the keyword #:when (the third case). The two normalized cases are easy to
process and easy to tell apart. We have also taken the opportunity to desugar the first case
into the second.

A normalized syntactic representation is most useful when the subsequent case analysis is
performed by syntax-parse or a similar form.

Non-syntax-valued attributes

When the information carried by the syntax is destined for complicated processing by Racket
code, it is often better to parse it into an intermediate representation using idiomatic Racket
data structures, such as lists, hashes, structs, and even objects.

Thus far we have only used syntax pattern variables and the #:with keyword to bind at-
tribues, and the values of the attributes have always been syntax. To bind attributes to values
other than syntax, use the #:attr keyword.

; A ForClause is either

; - (bind-clause (listof identifier) syntax)

; - (when-clause syntax)

(struct bind-clause (vars seq-expr))

(struct when-clause (guard))

(define-splicing-syntax-class for-clause

#:attributes (ast)

62

(pattern [var:id seq:expr]

#:attr ast (bind-clause (list #'var) #'seq))

(pattern [(var:id ...) seq:expr]

#:attr ast (bind-clause (syntax->list #'(var ...))

#'seq))

(pattern (∼seq #:when guard:expr)

#:attr ast (when-clause #'guard)))

Be careful! If we had used #:with instead of #:attr, the #f would have been coerced to a
syntax object before being matched against the pattern default.

Attributes with non-syntax values cannot be used in syntax templates. Use the attribute

form to get the value of an attribute.

8.2.5 More keyword arguments

This section shows how to express the syntax of struct’s optional keyword arguments using
syntax-parse patterns.

The part of struct’s syntax that is difficult to specify is the sequence of struct options. Let’s
get the easy part out of the way first.

> (define-splicing-syntax-class maybe-super

(pattern (∼seq super:id))

(pattern (∼seq)))
> (define-syntax-class field-option

(pattern #:mutable)

(pattern #:auto))

> (define-syntax-class field

(pattern field:id

#:with (option ...) '())

(pattern [field:id option:field-option ...]))

Given those auxiliary syntax classes, here is a first approximation of the main pattern, in-
cluding the struct options:

(struct name:id super:maybe-super (field:field ...)

(∼or (∼seq #:mutable)

(∼seq #:super super-expr:expr)

(∼seq #:inspector inspector:expr)

(∼seq #:auto-value auto:expr)

(∼seq #:guard guard:expr)

(∼seq #:property prop:expr prop-val:expr)

63

(∼seq #:transparent)

(∼seq #:prefab)

(∼seq #:constructor-name constructor-name:id)

(∼seq #:extra-constructor-name extra-constructor-name:id)

(∼seq #:omit-define-syntaxes)

(∼seq #:omit-define-values))

...)

The fact that expr does not match keywords helps in the case where the programmer omits
a keyword’s argument; instead of accepting the next keyword as the argument expression,
syntax-parse reports that an expression was expected.

There are two main problems with the pattern above:

• There’s no way to tell whether a zero-argument keyword like #:mutable was seen.

• Some options, like #:mutable, should appear at most once.

The first problem can be remedied using ∼and patterns to bind a pattern variable to the
keyword itself, as in this sub-pattern:

(∼seq (∼and #:mutable mutable-kw))

The second problem can be solved using repetition constraints:

(struct name:id super:maybe-super (field:field ...)

(∼or (∼optional (∼seq (∼and #:mutable) mutable-kw))

(∼optional (∼seq #:super super-expr:expr))

(∼optional (∼seq #:inspector inspector:expr))

(∼optional (∼seq #:auto-value auto:expr))

(∼optional (∼seq #:guard guard:expr))

(∼seq #:property prop:expr prop-val:expr)

(∼optional (∼seq (∼and #:transparent transparent-kw)))

(∼optional (∼seq (∼and #:prefab prefab-kw)))

(∼optional (∼seq #:constructor-name constructor-name:id))

(∼optional
(∼seq #:extra-constructor-name extra-constructor-name:id))

(∼optional
(∼seq (∼and #:omit-define-syntaxes omit-def-stxs-kw)))

(∼optional (∼seq (∼and #:omit-define-values omit-def-vals-

kw))))

...)

64

The ∼optional repetition constraint indicates that an alternative can appear at most once.
(There is a ∼once form that means it must appear exactly once.) In struct’s keyword
options, only #:property may occur any number of times.

There are still some problems, though. Without additional help,∼optional does not report
particularly good errors. We must give it the language to use, just as we had to give descrip-
tions to sub-patterns via syntax classes. Also, some related options are mutually exclusive,
such as #:inspector, #:transparent, and #:prefab.

(struct name:id super:maybe-super (field:field ...)

(∼or (∼optional
(∼or (∼seq #:inspector inspector:expr)

(∼seq (∼and #:transparent transparent-kw))

(∼seq (∼and #:prefab prefab-kw)))

#:name "#:inspector, #:transparent, or #:prefab option")

(∼optional (∼seq (∼and #:mutable) mutable-kw)

#:name "#:mutable option")

(∼optional (∼seq #:super super-expr:expr)

#:name "#:super option")

(∼optional (∼seq #:auto-value auto:expr)

#:name "#:auto-value option")

(∼optional (∼seq #:guard guard:expr)

#:name "#:guard option")

(∼seq #:property prop:expr prop-val:expr)

(∼optional (∼seq #:constructor-name constructor-name:id)

#:name "#:constructor-name option")

(∼optional
(∼seq #:extra-constructor-name extra-constructor-name:id)

#:name "#:extra-constructor-name option")

(∼optional (∼seq (∼and #:omit-define-syntaxes omit-def-

stxs-kw))

#:name "#:omit-define-syntaxes option")

(∼optional (∼seq (∼and #:omit-define-values omit-def-vals-

kw))

#:name "#:omit-define-values option"))

...)

Here we have grouped the three incompatible options together under a single ∼optional
constraint. That means that at most one of any of those options is allowed. We have given
names to the optional clauses. See ∼optional for other customization options.

Note that there are other constraints that we have not represented in the pattern. For example,
#:prefab is also incompatible with both #:guard and #:property. Repetition constraints
cannot express arbitrary incompatibility relations. The best way to handle such contraints is
with a side condition using #:fail-when.

65

8.2.6 Contracts on macro sub-expressions

Just as procedures often expect certain kinds of values as arguments, macros often have
expectations about the expressions they are given. And just as procedures express those
expectations via contracts, so can macros, using the expr/c syntax class.

For example, here is a macro myparameterize that behaves like parameterize but en-
forces the parameter? contract on the parameter expressions.

> (define-syntax (myparameterize stx)

(syntax-parse stx

[(_ ((p v:expr) ...) body:expr)

#:declare p (expr/c #'parameter?

#:name "parameter argument")

#'(parameterize ((p.c v) ...) body)]))

> (myparameterize ((current-input-port

(open-input-string "(1 2 3)")))

(read))

'(1 2 3)

> (myparameterize (('whoops 'something))

'whatever)

parameter argument of myparameterize: self-contract
violation, expected <parameter?>, given: ’whoops

contract from program, blaming program
contract: parameter?

at: eval:126.0

Important: Make sure when using expr/c to use the c attribute. If the macro above had
used p in the template, the expansion would have used the raw, unchecked expressions. The
expr/c syntax class does not change how pattern variables are bound; it only computes an
attribute that represents the checked expression.

8.3 Parsing syntax

This section describes syntax-parse, the syntax/parse library’s facility for parsing syn-
tax. Both syntax-parse and the specification facility, syntax classes, use a common lan-
guage of syntax patterns, which is described in detail in §8.5 “Syntax patterns”.

Two parsing forms are provided: syntax-parse and syntax-parser.

(syntax-parse stx-expr parse-option ... clause ...+)

66

parse-option = #:context context-expr

| #:literals (literal ...)

| #:literal-sets (literal-set ...)

| #:conventions (convention-id ...)

| #:local-conventions (convention-rule ...)

| #:disable-colon-notation

literal = literal-id

| (pattern-id literal-id)

| (pattern-id literal-id #:phase phase-expr)

literal-set = literal-set-id

| (literal-set-id literal-set-option ...)

literal-set-option = #:at context-id

| #:phase phase-expr

clause = (syntax-pattern pattern-directive ... expr ...+)

stx-expr : syntax?

context-expr : syntax?

phase-expr : (or/c exact-integer? #f)

Evaluates stx-expr , which should produce a syntax object, and matches it against the
clauses in order. If some clause’s pattern matches, its attributes are bound to the corre-
sponding subterms of the syntax object and that clause’s side conditions and expr is evalu-
ated. The result is the result of expr .

Each clause consists of a syntax pattern, an optional sequence of pattern directives, and a
non-empty sequence of body expressions.

If the syntax object fails to match any of the patterns (or all matches fail the corresponding
clauses’ side conditions), a syntax error is raised.

The following options are supported:

#:context context-expr

context-expr : syntax?

When present, context-expr is used in reporting parse failures; otherwise
stx-expr is used.

Examples:

> (syntax-parse #'(a b 3)

67

[(x:id ...) 'ok])

a: expected identifier at: 3
> (syntax-parse #'(a b 3)

#:context #'(lambda (a b 3) (+ a b))

[(x:id ...) 'ok])

lambda: expected identifier at: 3

#:literals (literal ...)

literal = literal-id

| (pattern-id literal-id)

| (pattern-id literal-id #:phase phase-expr)

phase-expr : (or/c exact-integer? #f) Unlike
syntax-case,
syntax-parse

requires all literals
to have a binding.
To match identifiers
by their symbolic
names, use the
∼datum pattern
form instead.

The #:literals option specifies identifiers that should be treated as liter-
als rather than pattern variables. An entry in the literals list has two com-
ponents: the identifier used within the pattern to signify the positions to be
matched (pattern-id), and the identifier expected to occur in those positions
(literal-id). If the entry is a single identifier, that identifier is used for both
purposes.

If the #:phase option is given, then the literal is compared at phase phase-

expr . Specifically, the binding of the literal-id at phase phase-expr must
match the input’s binding at phase phase-expr .

#:literal-sets (literal-set ...)

literal-set = literal-set-id

| (literal-set-id literal-set-option ...)

literal-set-option = #:at lctx

| #:phase phase-expr

phase-expr : (or/c exact-integer? #f)

Many literals can be declared at once via one or more literal sets, imported with
the #:literal-sets option. See literal sets for more information.

If the #:at keyword is given, the lexical context of the lctx term is used to
determine which identifiers in the patterns are treated as literals; this option is
useful primarily for macros that generate syntax-parse expressions.

#:conventions (conventions-id ...)

68

Imports conventions that give default syntax classes to pattern variables that do
not explicitly specify a syntax class.

#:local-conventions (convention-rule ...)

Uses the conventions specified. The advantage of #:local-conventions over
#:conventions is that local conventions can be in the scope of syntax-class
parameter bindings. See the section on conventions for examples.

#:disable-colon-notation

Suppresses the “colon notation” for annotated pattern variables.

Examples:

> (syntax-parse #'(a b c)

[(x:y ...) 'ok])

syntax-parse: not defined as syntax class at: y
> (syntax-parse #'(a b c) #:disable-colon-notation

[(x:y ...) 'ok])

'ok

(syntax-parser parse-option ... clause ...+)

Like syntax-parse, but produces a matching procedure. The procedure accepts a single
argument, which should be a syntax object.

(define/syntax-parse syntax-pattern pattern-directive ... stx-expr)

stx-expr : syntax?

Definition form of syntax-parse. That is, it matches the syntax object result of stx-
expr against syntax-pattern and creates pattern variable definitions for the attributes of
syntax-pattern .

Examples:

> (define/syntax-parse ((∼seq kw:keyword arg:expr) ...)

#'(#:a 1 #:b 2 #:c 3))

> #'(kw ...)

#<syntax:123:0 (#:a #:b #:c)>

Compare with define/with-syntax, a similar definition form that uses the simpler
syntax-case patterns.

69

8.4 Specifying syntax with syntax classes

Syntax classes provide an abstraction mechanism for syntax patterns. Built-in syntax classes
are supplied that recognize basic classes such as identifier and keyword. Programmers
can compose basic syntax classes to build specifications of more complex syntax, such as
lists of distinct identifiers and formal arguments with keywords. Macros that manipulate the
same syntactic structures can share syntax class definitions.

(define-syntax-class name-id stxclass-option ...

stxclass-variant ...+)

(define-syntax-class (name-id . kw-formals) stxclass-option ...

stxclass-variant ...+)

stxclass-option = #:attributes (attr-arity-decl ...)

| #:description description-expr

| #:opaque

| #:commit

| #:no-delimit-cut

| #:literals (literal-entry ...)

| #:literal-sets (literal-set ...)

| #:conventions (convention-id ...)

| #:local-conventions (convention-rule ...)

| #:disable-colon-notation

attr-arity-decl = attr-name-id

| (attr-name-id depth)

stxclass-variant = (pattern syntax-pattern pattern-directive ...)

description-expr : (or/c string? #f)

Defines name-id as a syntax class, which encapsulates one or more single-term patterns.

A syntax class may have formal parameters, in which case they are bound as variables in
the body. Syntax classes support optional arguments and keyword arguments using the same
syntax as lambda. The body of the syntax-class definition contains a non-empty sequence
of pattern variants.

The following options are supported:

#:attributes (attr-arity-decl ...)

attr-arity-decl = attr-id

| (attr-id depth)

70

Declares the attributes of the syntax class. An attribute arity declaration con-
sists of the attribute name and optionally its ellipsis depth (zero if not explicitly
specified).

If the attributes are not explicitly listed, they are inferred as the set of all pattern
variables occurring in every variant of the syntax class. Pattern variables that
occur at different ellipsis depths are not included, nor are nested attributes from
annotated pattern variables.

#:description description-expr

description-expr : (or/c string? #f)

The description argument is evaluated in a scope containing the syntax
class’s parameters. If the result is a string, it is used in error messages involving
the syntax class. For example, if a term is rejected by the syntax class, an error
of the form "expected description" may be synthesized. If the result is #f,
the syntax class is skipped in the search for a description to report.

If the option is not given absent, the name of the syntax class is used instead.

#:opaque

Indicates that errors should not be reported with respect to the internal structure
of the syntax class.

#:commit

Directs the syntax class to “commit” to the first successful match. When a
variant succeeds, all choice points within the syntax class are discarded. See
also ∼commit.

#:no-delimit-cut

By default, a cut (∼!) within a syntax class only discards choice points within
the syntax class. That is, the body of the syntax class acts as though it is wrapped
in a ∼delimit-cut form. If #:no-delimit-cut is specified, a cut may af-
fect choice points of the syntax class’s calling context (another syntax class’s
patterns or a syntax-parse form).

It is an error to use both #:commit and #:no-delimit-cut.

#:literals (literal-entry)

71

#:literal-sets (literal-set ...)

#:conventions (convention-id ...)

Declares the literals and conventions that apply to the syntax class’s variant pat-
terns and their immediate #:with clauses. Patterns occuring within subexpres-
sions of the syntax class (for example, on the right-hand side of a #:fail-when
clause) are not affected.

These options have the same meaning as in syntax-parse.

Each variant of a syntax class is specified as a separate pattern-form whose syntax pattern
is a single-term pattern.

(define-splicing-syntax-class name-id stxclass-option ...

stxclass-variant ...+)

(define-splicing-syntax-class (name-id kw-formals) stxclass-option ...

stxclass-variant ...+)

Defines name-id as a splicing syntax class, analogous to a syntax class but encapsulating
head patterns rather than single-term patterns.

The options are the same as for define-syntax-class.

Each variant of a splicing syntax class is specified as a separate pattern-form whose syntax
pattern is a head pattern.

(pattern syntax-pattern pattern-directive ...)

Used to indicate a variant of a syntax class or splicing syntax class. The variant accepts
syntax matching the given syntax pattern with the accompanying pattern directives.

When used within define-syntax-class, syntax-pattern should be a single-term pat-
tern; within define-splicing-syntax-class, it should be a head pattern.

The attributes of the variant are the attributes of the pattern together with all attributes bound
by #:with clauses, including nested attributes produced by syntax classes associated with
the pattern variables.

72

8.4.1 Pattern directives

Both the parsing forms and syntax class definition forms support pattern directives for an-
notating syntax patterns and specifying side conditions. The grammar for pattern directives
follows:

pattern-directive = #:declare pattern-id syntax-class-id

| #:declare pattern-id (syntax-class-id arg ...)

| #:with syntax-pattern expr

| #:attr attr-arity-decl expr

| #:fail-when condition-expr message-expr

| #:fail-unless condition-expr message-expr

| #:when condition-expr

| #:do [def-or-expr ...]

#:declare pvar-id syntax-class-id

#:declare pvar-id (syntax-class-id arg ...)

The first form is equivalent to using the pvar-id:syntax-class-id form in
the pattern (but it is illegal to use both for the same pattern variable).

The second form allows the use of parameterized syntax classes, which cannot
be expressed using the “colon” notation. The args are evaluated outside the
scope of any of the attribute bindings from pattern that the #:declare direc-
tive applies to. Keyword arguments are supported, using the same syntax as in
#%app.

#:with syntax-pattern stx-expr

Evaluates the stx-expr in the context of all previous attribute bindings and
matches it against the pattern. If the match succeeds, the pattern’s attributes
are added to environment for the evaluation of subsequent side conditions. If
the #:with match fails, the matching process backtracks. Since a syntax object
may match a pattern in several ways, backtracking may cause the same clause
to be tried multiple times before the next clause is reached.

#:attr attr-arity-decl expr

Evaluates the expr in the context of all previous attribute bindings and binds it
to the given attribute. The value of expr need not be syntax.

73

#:fail-when condition-expr message-expr

message-expr : (or/c string? #f)

Evaluates the condition-expr in the context of all previous attribute bindings.
If the value is any true value (not #f), the matching process backtracks (with the
given message); otherwise, it continues. If the value of the condition expression
is a syntax object, it is indicated as the cause of the error.

If the message-expr produces a string it is used as the failure message; other-
wise the failure is reported in terms of the enclosing descriptions.

#:fail-unless condition-expr message-expr

message-expr : (or/c string? #f)

Like #:fail-when with the condition negated.

#:when condition-expr

Evaluates the condition-expr in the context of all previous attribute bindings.
If the value is #f, the matching process backtracks. In other words, #:when is
like #:fail-unless without the message argument.

#:do [def-or-expr ...]

Takes a sequence of definitions and expressions, which may be intermixed, and
evaluates them in the scope of all previous attribute bindings. The names bound
by the definitions are in scope in the expressions of subsequent patterns and
clauses.

There is currently no way to bind attributes using a #:do block. It is an error to
shadow an attribute binding with a definition in a #:do block.

8.4.2 Pattern variables and attributes

An attribute is a name bound by a syntax pattern. An attribute can be a pattern variable
itself, or it can be a nested attribute bound by an annotated pattern variable. The name of
a nested attribute is computed by concatenating the pattern variable name with the syntax
class’s exported attribute’s name, separated by a dot (see the example below).

Attribute names cannot be used directly as expressions; that is, attributes are not variables.
Instead, an attribute’s value can be gotten using the attribute special form.

74

(attribute attr-id)

Returns the value associated with the attribute named attr-id . If attr-id is not bound as
an attribute, an error is raised.

The value of an attribute need not be syntax. Non-syntax-valued attributes can be used to
return a parsed representation of a subterm or the results of an analysis on the subterm. A
non-syntax-valued attribute should be bound using the #:attr directive or a∼bind pattern.

Examples:

> (define-syntax-class table

(pattern ((key value) ...)

#:attr hash

(for/hash ([k (syntax->datum #'(key ...))]

[v (syntax->datum #'(value ...))])

(values k v))))

> (syntax-parse #'((a 1) (b 2) (c 3))

[t:table

(attribute t.hash)])

'#hash((b . 2) (a . 1) (c . 3))

A syntax-valued attribute is an attribute whose value is a syntax object or a syntax list of the
appropriate ellipsis depth. Syntax-valued attributes can be used within syntax, quasisyn-
tax, etc as part of a syntax template. If a non-syntax-valued attribute is used in a syntax
template, a runtime error is signalled.

Examples:

> (syntax-parse #'((a 1) (b 2) (c 3))

[t:table

#'(t.key ...)])

#<syntax:115:0 (a b c)>

> (syntax-parse #'((a 1) (b 2) (c 3))

[t:table

#'t.hash])

t.hash: attribute is bound to non-syntax value: ’#hash((b .
2) (a . 1) (c . 3)) at: t.hash

Every attribute has an associated ellipsis depth that determines how it can be used in a syntax
template (see the discussion of ellipses in syntax). For a pattern variable, the ellipsis depth
is the number of ellipses the pattern variable “occurs under” in the pattern. For a nested
attribute the depth is the sum of the pattern variable’s depth and the depth of the attribute in
the syntax class. Consider the following code:

(define-syntax-class quark

75

(pattern (a b ...)))

(syntax-parse some-term

[(x (y:quark ...) ... z:quark)

some-code])

The syntax class quark exports two attributes: a at depth 0 and b at depth 1. The syntax-
parse pattern has three pattern variables: x at depth 0, y at depth 2, and z at depth 0. Since x
and y are annotated with the quark syntax class, the pattern also binds the following nested
attributes: y.a at depth 2, y.b at depth 3, z.a at depth 0, and z.b at depth 1.

An attribute’s ellipsis nesting depth is not a guarantee that its value has that level of list
nesting. In particular, ∼or and∼optional patterns may result in attributes with fewer than
expected levels of list nesting.

Example:

> (syntax-parse #'(1 2 3)

[(∼or (x:id ...) _)

(attribute x)])

#f

8.5 Syntax patterns

The grammar of syntax patterns used by syntax/parse facilities is given in the following
table. There are four main kinds of syntax pattern:

• single-term patterns, abbreviated S-pattern

• head patterns, abbreviated H-pattern

• ellipsis-head patterns, abbreviated EH-pattern

• action patterns, abbreviated A-pattern

A fifth kind, list patterns (abbreviated L-pattern), is a just a syntactically restricted subset
of single-term patterns.

When a special form in this manual refers to syntax-pattern (eg, the description of the
syntax-parse special form), it means specifically single-term pattern.

S-pattern = pvar-id

| pvar-id:syntax-class-id

| literal-id

| (∼vars- id)

| (∼vars+ id syntax-class-id)

76

| (∼vars+ id (syntax-class-id arg ...))

| (∼literal literal-id)

| atomic-datum

| (∼datum datum)

| (H-pattern . S-pattern)

| (A-pattern . S-pattern)

| (EH-pattern S-pattern)

| (H-pattern ...+ . S-pattern)

| (∼ands proper-S/A-pattern ...+)

| (∼ors S-pattern ...+)

| (∼not S-pattern)

| #(pattern-part ...)

| #s(prefab-struct-key pattern-part ...)

| #&S-pattern

| (∼rest S-pattern)

| (∼describes maybe-opaque expr S-pattern)

| (∼commits S-pattern)

| (∼delimit-cuts S-pattern)

| A-pattern

L-pattern = ()

| (A-pattern . L-pattern)

| (H-pattern . L-pattern)

| (EH-pattern L-pattern)

| (H-pattern ...+ . L-pattern)

| (∼rest L-pattern)

H-pattern = pvar-id:splicing-syntax-class-id

| (∼varh id splicing-syntax-class-id)

| (∼varh id (splicing-syntax-class-id arg ...))

| (∼seq . L-pattern)

| (∼andh proper-H/A-pattern ...+)

| (∼orh H-pattern ...+)

| (∼optionalh H-pattern maybe-optional-option)

| (∼describeh maybe-opaque expr H-pattern)

| (∼commith H-pattern)

| (∼delimit-cuth H-pattern)

| (∼peek H-pattern)

| (∼peek-not H-pattern)

| proper-S-pattern

EH-pattern = (∼oreh EH-pattern ...)

| (∼once H-pattern once-option ...)

| (∼optionaleh H-pattern optional-option ...)

| (∼between H min-number max-number between-option)

77

| H-pattern

A-pattern = ∼!
| (∼bind [attr-arity-decl expr] ...)

| (∼fail maybe-fail-condition maybe-message-expr)

| (∼parse S-pattern stx-expr)

| (∼anda A-pattern ...+)

| (∼do defn-or-expr ...)

proper-S-pattern = a S-pattern that is not a A-pattern

proper-H-pattern = a H-pattern that is not a S-pattern

The following pattern keywords can be used in multiple pattern variants:

∼var

One of ∼vars-, ∼vars+, or ∼varh.

∼and

One of ∼ands, ∼andh, or ∼anda:

• ∼anda if all of the conjuncts are action patterns

• ∼andh if any of the conjuncts is a proper head pattern

• ∼ands otherwise

∼or

One of ∼ors, ∼orh, or ∼oreh:

• ∼oreh if the pattern occurs directly before ellipses (...) or immediately within an-
other ∼oreh pattern

• ∼orh if any of the disjuncts is a proper head pattern

• ∼ors otherwise

∼describe

One of ∼describes or ∼describeh:

78

• ∼describeh if the subpattern is a proper head pattern

• ∼describes otherwise

∼commit

One of ∼commits or ∼commith:

• ∼commith if the subpattern is a proper head pattern

• ∼commits otherwise

∼delimit-cut

One of ∼delimit-cuts or ∼delimit-cuth:

• ∼delimit-cuth if the subpattern is a proper head pattern

• ∼delimit-cuts otherwise

∼optional

One of ∼optionalh or ∼optionaleh:

• ∼optionaleh if it is an immediate disjunct of a ∼oreh pattern

• ∼optionalh otherwise

8.5.1 Single-term patterns

A single-term pattern (abbreviated S-pattern) is a pattern that describes a single term.
These are like the traditional patterns used in syntax-rules and syntax-case, but with
additional variants that make them more expressive.

“Single-term” does not mean “atomic”; a single-term pattern can have complex structure,
and it can match terms that have many parts. For example, (17 ...) is a single-term pattern
that matches any term that is a proper list of repeated 17 numerals.

A proper single-term pattern is one that is not an action pattern.

The list patterns (for “list pattern”) are single-term patterns having a restricted structure that
guarantees that they match only terms that are proper lists.

79

Here are the variants of single-term pattern:

id

An identifier can be either a pattern variable, an annotated pattern variable, or a
literal:

• If id is the “pattern” name of an entry in the literals list, it is a literal
pattern that behaves like (∼literal id).
Examples:

> (syntax-parse #'(define x 12)

#:literals (define)

[(define var:id body:expr) 'ok])

'ok

> (syntax-parse #'(lambda x 12)

#:literals (define)

[(define var:id body:expr) 'ok])

lambda: expected the identifier ‘define’ at: lambda
> (syntax-parse #'(define x 12)

#:literals ([def define])

[(def var:id body:expr) 'ok])

'ok

> (syntax-parse #'(lambda x 12)

#:literals ([def define])

[(def var:id body:expr) 'ok])

lambda: expected the identifier ‘define’ at: lambda

• If id is of the form pvar-id:syntax-class-id (that is, two names
joined by a colon character), it is an annotated pattern variable, and the
pattern is equivalent to (∼var pvar-id syntax-class-id).
Examples:

> (syntax-parse #'a

[var:id (syntax-e #'var)])

'a

> (syntax-parse #'12

[var:id (syntax-e #'var)])

?: expected identifier at: 12
> (define-syntax-class two

#:attributes (x y)

(pattern (x y)))

> (syntax-parse #'(a b)

[t:two (syntax->datum #'(t t.x t.y))])

'((a b) a b)

80

> (syntax-parse #'(a b)

[t

#:declare t two

(syntax->datum #'(t t.x t.y))])

'((a b) a b)

• Otherwise, id is a pattern variable, and the pattern is equivalent to (∼var
id).

(∼var pvar-id)

A pattern variable. If pvar-id has no syntax class (by #:convention), the
pattern variable matches anything. The pattern variable is bound to the matched
subterm, unless the pattern variable is the wildcard (_), in which case no binding
occurs.

If pvar-id does have an associated syntax class, it behaves like an annotated
pattern variable with the implicit syntax class inserted.

(∼var pvar-id syntax-class-use)

syntax-class-use = syntax-class-id

| (syntax-class-id arg ...)

An annotated pattern variable. The pattern matches only terms accepted by
syntax-class-id (parameterized by the arg-exprs, if present).

In addition to binding pvar-id , an annotated pattern variable also binds nested
attributes from the syntax class. The names of the nested attributes are formed
by prefixing pvar-id. (that is, pvar-id followed by a “dot” character) to the
name of the syntax class’s attribute.

If pvar-id is _, no attributes are bound.

Examples:

> (syntax-parse #'a

[(∼var var id) (syntax-e #'var)])

'a

> (syntax-parse #'12

[(∼var var id) (syntax-e #'var)])

?: expected identifier at: 12
> (define-syntax-class two

#:attributes (x y)

(pattern (x y)))

> (syntax-parse #'(a b)

[(∼var t two) (syntax->datum #'(t t.x t.y))])

'((a b) a b)

81

> (define-syntax-class (nat-less-than n)

(pattern x:nat #:when (< (syntax-e #'x) n)))

> (syntax-parse #'(1 2 3 4 5)

[((∼var small (nat-less-than 4)) ... large:nat ...)

(list #'(small ...) #'(large ...))])

'(#<syntax:65:0 (1 2 3)> #<syntax:65:0 (4 5)>)

(∼literal literal-id)

A literal identifier pattern. Matches any identifier free-identifier=? to
literal-id .

Examples:

> (syntax-parse #'(define x 12)

[((∼literal define) var:id body:expr) 'ok])

'ok

> (syntax-parse #'(lambda x 12)

[((∼literal define) var:id body:expr) 'ok])

lambda: expected the identifier ‘define’ at: lambda

atomic-datum

Numbers, strings, booleans, keywords, and the empty list match as literals.

Examples:

> (syntax-parse #'(a #:foo bar)

[(x #:foo y) (syntax->datum #'y)])

'bar

> (syntax-parse #'(a foo bar)

[(x #:foo y) (syntax->datum #'y)])

a: expected the literal #:foo at: foo

(∼datum datum)

Matches syntax whose S-expression contents (obtained by syntax->datum) is
equal? to the given datum .

Examples:

> (syntax-parse #'(a #:foo bar)

[(x (∼datum #:foo) y) (syntax->datum #'y)])

'bar

> (syntax-parse #'(a foo bar)

[(x (∼datum #:foo) y) (syntax->datum #'y)])

a: expected the literal #:foo at: foo

82

The ∼datum form is useful for recognizing identifiers symbolically, in contrast
to the ∼literal form, which recognizes them by binding.

Examples:

> (syntax-parse (let ([define 'something-

else]) #'(define x y))

[((∼datum define) var:id e:expr) 'yes]

[_ 'no])

'yes

> (syntax-parse (let ([define 'something-

else]) #'(define x y))

[((∼literal define) var:id e:expr) 'yes]

[_ 'no])

'no

(H-pattern . S-pattern)

Matches any term that can be decomposed into a list prefix matching H-

pattern and a suffix matching S-pattern .

Note that the pattern may match terms that are not even improper lists; if the
head pattern can match a zero-length head, then the whole pattern matches what-
ever the tail pattern accepts.

The first pattern can be a single-term pattern, in which case the whole pattern
matches any pair whose first element matches the first pattern and whose rest
matches the second.

See head patterns for more information.

(A-pattern . S-pattern)

Performs the actions specified by A-pattern , then matches any term that
matches S-pattern .

Pragmatically, one can throw an action pattern into any list pattern. Thus, (x
y z) is a pattern matching a list of three terms, and (x y ∼! z) is a pattern
matching a list of three terms, with a cut performed after the second one. In
other words, action patterns “don’t take up space.”

See action patterns for more information.

(EH-pattern S-pattern)

Matches any term that can be decomposed into a list head matching some num-
ber of repetitions of the EH-pattern alternatives (subject to its repetition con-
straints) followed by a list tail matching S-pattern .

83

In other words, the whole pattern matches either the second pattern (which need
not be a list) or a term whose head matches one of the alternatives of the first
pattern and whose tail recursively matches the whole sequence pattern.

See ellipsis-head patterns for more information.

(H-pattern ...+ . S-pattern)

Like an ellipses (...) pattern, but requires at one occurrence of the head pattern
to be present.

That is, the following patterns are equivalent:

• (H ...+ . S)

• ((∼between H 1 +inf.0) S)

Examples:

> (syntax-parse #'(1 2 3)

[(n:nat ...+) 'ok])

'ok

> (syntax-parse #'()

[(n:nat ...+) 'ok]

[_ 'none])

'none

(∼and S/A-pattern ...)

Matches any term that matches all of the subpatterns.

The subpatterns can contain a mixture of single-term patterns and action pat-
terns, but must contain at least one single-term pattern.

Attributes bound in subpatterns are available to subsequent subpatterns. The
whole pattern binds all of the subpatterns’ attributes.

One use for ∼and-patterns is preserving a whole term (including its lexical
context, source location, etc) while also examining its structure. Syntax classes
are useful for the same purpose, but ∼and can be lighter weight.

Examples:

> (define-syntax (import stx)

(raise-syntax-error #f "illegal use of import" stx))

> (define (check-imports stx))

> (syntax-parse #'(m (import one two))

#:literals (import)

[(_ (∼and import-clause (import i ...)))

(let ([bad (check-imports

(syntax->list #'(i ...)))])

84

(when bad

(raise-syntax-error

#f "bad import" #'import-clause bad))

'ok)])

'ok

(∼or S-pattern ...)

Matches any term that matches one of the included patterns. The alternatives
are tried in order.

The whole pattern binds all of the subpatterns’ attributes. An attribute that is
not bound by the “chosen” subpattern has a value of #f. The same attribute may
be bound by multiple subpatterns, and if it is bound by all of the subpatterns, it
is sure to have a value if the whole pattern matches.

Examples:

> (syntax-parse #'a

[(∼or x:id y:nat) (values (attribute x) (attribute y))])

#<syntax:79:0 a>

#f

> (syntax-parse #'(a 1)

[(∼or (x:id y:nat) (x:id)) (values #'x (attribute y))])

#<syntax:80:0 a>

#<syntax:80:0 1>

> (syntax-parse #'(b)

[(∼or (x:id y:nat) (x:id)) (values #'x (attribute y))])

#<syntax:81:0 b>

#f

(∼not S-pattern)

Matches any term that does not match the subpattern. None of the subpattern’s
attributes are bound outside of the ∼not-pattern.

Example:

> (syntax-parse #'(x y z => u v)

#:literals (=>)

[((∼and before (∼not =>)) ... => after ...)

(list #'(before ...) #'(after ...))])

'(#<syntax:82:0 (x y z)> #<syntax:82:0 (u v)>)

#(pattern-part ...)

Matches a term that is a vector whose elements, when considered as a list, match
the single-term pattern corresponding to (pattern-part ...).

85

Examples:

> (syntax-parse #'#(1 2 3)

[#(x y z) (syntax->datum #'z)])

3

> (syntax-parse #'#(1 2 3)

[#(x y ...) (syntax->datum #'(y ...))])

'(2 3)

> (syntax-parse #'#(1 2 3)

[#(x ∼rest y) (syntax->datum #'y)])

'(2 3)

#s(prefab-struct-key pattern-part ...)

Matches a term that is a prefab struct whose key is exactly the given key and
whose sequence of fields, when considered as a list, match the single-term pat-
tern corresponding to (pattern-part ...).

Examples:

> (syntax-parse #'#s(point 1 2 3)

[#s(point x y z) 'ok])

'ok

> (syntax-parse #'#s(point 1 2 3)

[#s(point x y ...) (syntax->datum #'(y ...))])

'(2 3)

> (syntax-parse #'#s(point 1 2 3)

[#s(point x ∼rest y) (syntax->datum #'y)])

'(2 3)

#&S-pattern

Matches a term that is a box whose contents matches the inner single-term pat-
tern.

Example:

> (syntax-parse #'#&5

[#&n:nat 'ok])

'ok

(∼rest S-pattern)

Matches just like S-pattern . The ∼rest pattern form is useful in positions
where improper (“dotted”) lists are not allowed by the reader, such as vector
and structure patterns (see above).

86

Examples:

> (syntax-parse #'(1 2 3)

[(x ∼rest y) (syntax->datum #'y)])

'(2 3)

> (syntax-parse #'#(1 2 3)

[#(x ∼rest y) (syntax->datum #'y)])

'(2 3)

(∼describe maybe-opaque expr S-pattern)

maybe-opaque =
| #:opaque

expr : (or/c string? #f)

The ∼describe pattern form annotates a pattern with a description, a string
expression that is evaluated in the scope of all prior attribute bindings. If pars-
ing the inner pattern fails, then the description is used to synthesize the error
message.

A ∼describe pattern has no effect on backtracking.

(∼commit S-pattern)

The ∼commit pattern form affects backtracking in two ways:

• If the pattern succeeds, then all choice points created within the subpattern
are discarded, and a failure after the ∼commit pattern backtracks only to
choice points before the ∼commit pattern, never one within it.

• A cut (∼!) within a ∼commit pattern only eliminates choice-points
created within the ∼commit pattern. In this sense, it acts just like
∼delimit-cut.

(∼delimit-cut S-pattern)

The ∼delimit-cut pattern form affects backtracking in the following way:

• A cut (∼!) within a∼delimit-cut pattern only eliminates choice-points
created within the ∼delimit-cut pattern.

A-pattern

An action pattern is considered a single-term pattern when there is no ambiguity;
it matches any term.

87

8.5.2 Head patterns

A head pattern (abbreviated H-pattern) is a pattern that describes some number of terms
that occur at the head of some list (possibly an improper list). A head pattern’s usefulness
comes from being able to match heads of different lengths, such as optional forms like
keyword arguments.

A proper head pattern is a head pattern that is not a single-term pattern.

Here are the variants of head pattern:

pvar-id:splicing-syntax-class-id

Equivalent to (∼var pvar-id splicing-syntax-class-id).

(∼var pvar-id splicing-syntax-class-use)

splicing-syntax-class-use = splicing-syntax-class-id

| (splicing-syntax-class-id arg ...)

Pattern variable annotated with a splicing syntax class. Similar to a normal
annotated pattern variable, except matches a head pattern.

(∼seq . L-pattern)

Matches a sequence of terms whose elements, if put in a list, would match L-

pattern .

Example:

> (syntax-parse #'(1 2 3 4)

[((∼seq 1 2 3) 4) 'ok])

'ok

See also the section on ellipsis-head patterns for more interesting examples of
∼seq.

(∼and H-pattern ...)

Like the single-term pattern version, ∼ands, but matches a sequence of terms
instead.

Example:

88

> (syntax-parse #'(#:a 1 #:b 2 3 4 5)

[((∼and (∼seq (∼seq k:keyword e:expr) ...)

(∼seq keyword-stuff ...))

positional-stuff ...)

(syntax->datum #'((k ...) (e ...) (keyword-

stuff ...)))])

'((#:a #:b) (1 2) (#:a 1 #:b 2))

The head pattern variant of ∼and requires that all of the subpatterns be proper
head patterns (not single-term patterns). This is to prevent typos like the follow-
ing, a variant of the previous example with the second ∼seq omitted:

Examples:

> (syntax-parse #'(#:a 1 #:b 2 3 4 5)

[((∼and (∼seq (∼seq k:keyword e:expr) ...)

(keyword-stuff ...))

positional-stuff ...)

(syntax->datum #'((k ...) (e ...) (keyword-

stuff ...)))])

syntax-parse: single-term pattern not allowed after head
pattern at: (keyword-stuff ...)
; If the example above were allowed, it would be equiva-

lent to this:

> (syntax-parse #'(#:a 1 #:b 2 3 4 5)

[((∼and (∼seq (∼seq k:keyword e:expr) ...)

(∼seq (keyword-stuff ...)))

positional-stuff ...)

(syntax->datum #'((k ...) (e ...) (keyword-

stuff ...)))])

?: expected keyword at: 3

(∼or H-pattern ...)

Like the single-term pattern version, ∼ors, but matches a sequence of terms
instead.

Examples:

> (syntax-parse #'(m #:foo 2 a b c)

[(_ (∼or (∼seq #:foo x) (∼seq)) y:id ...)

(attribute x)])

#<syntax:96:0 2>

> (syntax-parse #'(m a b c)

[(_ (∼or (∼seq #:foo x) (∼seq)) y:id ...)

(attribute x)])

#f

89

(∼optional H-pattern maybe-optional-option)

maybe-optional-option =
| #:defaults ([attr-arity-decl expr] ...)

attr-arity-decl = attr-id

| (attr-id depth)

Matches either the given head subpattern or an empty sequence of terms. If
the #:defaults option is given, the subsequent attribute bindings are used if
the subpattern does not match. The default attributes must be a subset of the
subpattern’s attributes.

Examples:

> (syntax-parse #'(m #:foo 2 a b c)

[(_ (∼optional (∼seq #:foo x) #:defaults ([x #'#f])) y:id ...)

(attribute x)])

#<syntax:98:0 2>

> (syntax-parse #'(m a b c)

[(_ (∼optional (∼seq #:foo x) #:defaults ([x #'#f])) y:id ...)

(attribute x)])

#<syntax:99:0 #f>

> (syntax-parse #'(m a b c)

[(_ (∼optional (∼seq #:foo x)) y:id ...)

(attribute x)])

#f

> (syntax-parse #'(m #:syms a b c)

[(_ (∼optional (∼seq #:nums n:nat ...) #:defaults ([(n 1) null]))

(∼optional (∼seq #:syms s:id ...) #:defaults ([(s 1) null])))

#'((n ...) (s ...))])

#<syntax:101:0 (() (a b c))>

(∼describe expr H-pattern)

Like the single-term pattern version, ∼describes, but matches a head pattern
instead.

(∼commit H-pattern)

Like the single-term pattern version, ∼commits, but matches a head pattern
instead.

(∼delimit-cut H-pattern)

90

Like the single-term pattern version, ∼delimit-cuts, but matches a head pat-
tern instead.

(∼peek H-pattern)

Matches the H-pattern but then resets the matching position, so the ∼peek
pattern consumes no input. Used to look ahead in a sequence.

Examples:

> (define-splicing-syntax-class nf-id ; non-final id

(pattern (∼seq x:id (∼peek another:id))))

> (syntax-parse #'(a b c 1 2 3)

[(n:nf-id ... rest ...)

(printf "nf-ids are ∼s\n" (syntax-

>datum #'(n.x ...)))

(printf "rest is ∼s\n" (syntax-

>datum #'(rest ...)))])

nf-ids are (a b)

rest is (c 1 2 3)

(∼peek-not H-pattern)

Like ∼peek, but succeeds if the subpattern fails and fails if the subpattern suc-
ceeds. On success, the ∼peek-not resets the matching position, so the pattern
consumes no input. Used to look ahead in a sequence. None of the subpattern’s
attributes are bound outside of the ∼peek-not-pattern.

Examples:

> (define-splicing-syntax-class final ; final term

(pattern (∼seq x (∼peek-not _))))

> (syntax-parse #'(a b c)

[((∼or f:final o:other) ...)

(printf "finals are ∼s\n" (syntax-

>datum #'(f.x ...)))

(printf "others are ∼s\n" (syntax-

>datum #'(o ...)))])

syntax-parse: not defined as syntax class at: other

S-pattern

Matches a sequence of one element, which must be a term matching S-

pattern .

91

8.5.3 Ellipsis-head patterns

An ellipsis-head pattern (abbreviated EH-pattern) is pattern that describes some number
of terms, like a head pattern, but also places contraints on the number of times it occurs
in a repetition. They are useful for matching, for example, keyword arguments where the
keywords may come in any order. Multiple alternatives are grouped together via ∼oreh.

Examples:

> (define parser1

(syntax-parser

[((∼or (∼once (∼seq #:a x) #:name "#:a keyword")

(∼optional (∼seq #:b y) #:name "#:b keyword")

(∼seq #:c z)) ...)

'ok]))

> (parser1 #'(#:a 1))

'ok

> (parser1 #'(#:b 2 #:c 3 #:c 25 #:a 'hi))

'ok

> (parser1 #'(#:a 1 #:a 2))

?: too many occurrences of #:a keyword at: ()

The pattern requires exactly one occurrence of the #:a keyword and argument, at most
one occurrence of the #:b keyword and argument, and any number of #:c keywords and
arguments. The “pieces” can occur in any order.

Here are the variants of ellipsis-head pattern:

(∼or EH-pattern ...)

Matches if any of the inner EH-pattern alternatives match.

(∼once H-pattern once-option ...)

once-option = #:name name-expr

| #:too-few too-few-message-expr

| #:too-many too-many-message-expr

name-expr : (or/c string? #f)

too-few-message-expr : (or/c string? #f)

too-many-message-expr : (or/c string? #f)

Matches if the inner H-pattern matches. This pattern must be matched exactly
once in the match of the entire repetition sequence.

92

If the pattern is not matched in the repetition sequence, then the ellipsis pat-
tern fails with the message either too-few-message-expr or "missing re-

quired occurrence of name-expr".

If the pattern is chosen more than once in the repetition sequence, then the el-
lipsis pattern fails with the message either too-many-message-expr or "too
many occurrences of name-expr".

(∼optional H-pattern optional-option ...)

optional-option = #:name name-expr

| #:too-many too-many-message-expr

| #:defaults ([attr-id expr] ...)

name-expr : (or/c string? #f)

too-many-message-expr : (or/c string? #f)

Matches if the inner H-pattern matches. This pattern may be used at most
once in the match of the entire repetition.

If the pattern is matched more than once in the repetition sequence, then the el-
lipsis pattern fails with the message either too-many-message-expr or "too
many occurrences of name-expr".

If the #:defaults option is given, the following attribute bindings are used if
the subpattern does not match at all in the sequence. The default attributes must
be a subset of the subpattern’s attributes.

(∼between H-pattern min-number max-number between-option ...)

reps-option = #:name name-expr

| #:too-few too-few-message-expr

| #:too-many too-many-message-expr

name-expr : (or/c syntax? #f)

too-few-message-expr : (or/c syntax? #f)

Matches if the inner H-pattern matches. This pattern must be matched at least
min-number and at most max-number times in the entire repetition.

If the pattern is matched too few times, then the ellipsis pattern fails with
the message either too-few-message-expr or "too few occurrences of

name-expr".

If the pattern is chosen too many times, then the ellipsis pattern fails with
the message either too-many-message-expr or "too few occurrences

of name-expr".

93

8.5.4 Action patterns

An action pattern (abbreviated A-pattern) does not describe any syntax; rather, it has an
effect such as the binding of attributes or the modification of the matching process.

∼!
The cut operator, written ∼!, eliminates backtracking choice points and com-
mits parsing to the current branch of the pattern it is exploring.

Common opportunities for cut-patterns come from recognizing special forms
based on keywords. Consider the following expression:

> (syntax-parse #'(define-values a 123)

#:literals (define-values define-syntaxes)

[(define-values (x:id ...) e) 'define-values]

[(define-syntaxes (x:id ...) e) 'define-syntaxes]

[e 'expression])

'expression

Given the ill-formed term (define-values a 123), the expression tries the
first clause, fails to match a against the pattern (x:id ...), and then back-
tracks to the second clause and ultimately the third clause, producing the value
'expression. But the term is not an expression; it is an ill-formed use of
define-values. The proper way to write the syntax-parse expression fol-
lows:

> (syntax-parse #'(define-values a 123)

#:literals (define-values define-syntaxes)

[(define-values ∼! (x:id ...) e) 'define-values]

[(define-syntaxes ∼! (x:id ...) e) 'define-syntaxes]

[e 'expression])

define-values: bad syntax at: (define-values a 123)

Now, given the same term, syntax-parse tries the first clause, and since the
keyword define-values matches, the cut-pattern commits to the current pat-
tern, eliminating the choice points for the second and third clauses. So when the
clause fails to match, the syntax-parse expression raises an error.

The effect of a ∼! pattern is delimited by the nearest enclosing ∼delimit-
cut or ∼commit pattern. If there is no enclosing ∼describe pattern but the
cut occurs within a syntax class definition, then only choice points within the
syntax class definition are discarded. A∼! pattern is not allowed within a∼not
pattern unless there is an intervening ∼delimit-cut or ∼commit pattern.

94

(∼bind [attr-arity-decl expr] ...)

attr-arity-decl = attr-name-id

| (attr-name-id depth)

Evaluates the exprs and binds them to the given attr-ids as attributes.

(∼fail maybe-fail-condition maybe-message-expr)

maybe-fail-condition =
| #:when condition-expr

| #:unless condition-expr

maybe-message-expr =
| message-expr

message-expr : (or/c string? #f)

If the condition is absent, or if the #:when condition evaluates to a true value, or
if the #:unless condition evaluates to #f, then the pattern fails with the given
message. If the message is omitted, the default value #f is used, representing
“no message.”

Fail patterns can be used together with cut patterns to recognize specific ill-
formed terms and address them with custom failure messages.

(∼parse S-pattern stx-expr)

stx-expr : syntax?

Evaluates stx-expr to a syntax object and matches it against S-pattern .

(∼and A-pattern ...+)

Performs the actions of each A-pattern .

(∼do defn-or-expr ...)

Takes a sequence of definitions and expressions, which may be intermixed, and
evaluates them in the scope of all previous attribute bindings. The names bound
by the definitions are in scope in the expressions of subsequent patterns and
clauses.

There is currently no way to bind attributes using a ∼do pattern. It is an error
to shadow an attribute binding with a definition in a ∼do block.

95

Example:

> (syntax-parse #'(1 2 3)

[(a b (∼do (printf "a was ∼s\n" #'a)) c:id) 'ok])

a was #<syntax:112:0 1>

?: expected identifier at: 3

8.6 Defining simple macros

(require syntax/parse/define)

(define-simple-macro (macro-id . pattern) pattern-directive ...

template)

Defines a macro named macro-id ; equivalent to the following:

(define-syntax (macro-id stx)

(syntax-parse stx

[(macro-id . pattern) pattern-directive ... #'template]))

Examples:

> (define-simple-macro (fn x:id rhs:expr) (lambda (x) rhs))

> ((fn x x) 17)

17

> (fn 1 2)

fn: expected identifier at: 1
> (define-simple-macro (fn2 x y rhs)

#:declare x id

#:declare y id

#:declare rhs expr

(lambda (x y) rhs))

> ((fn2 a b (+ a b)) 3 4)

7

> (fn2 a #:b 'c)

fn2: expected identifier at: #:b

8.7 Literal sets and Conventions

Sometimes the same literals are recognized in a number of different places. The most com-
mon example is the literals for fully expanded programs, which are used in many analysis
and transformation tools. Specifying literals individually is burdensome and error-prone. As
a remedy, syntax/parse offers literal sets. A literal set is defined via define-literal-
set and used via the #:literal-set option of syntax-parse.

96

(define-literal-set id maybe-phase maybe-imports (literal ...))

literal = literal-id

| (pattern-id literal-id)

maybe-phase =
| #:for-template

| #:for-syntax

| #:for-label

| #:phase phase-level

maybe-imports =
| #:literal-sets (imported-litset-id ...)

Defines id as a literal set. Each literal can have a separate pattern-id and literal-

id . The pattern-id determines what identifiers in the pattern are treated as literals. The
literal-id determines what identifiers the literal matches. If the #:literal-sets option
is present, the contents of the given imported-litset-ids are included.

Examples:

> (define-literal-set def-litset

(define-values define-syntaxes))

> (syntax-parse #'(define-syntaxes (x) 12)

#:literal-sets (def-litset)

[(define-values (x:id ...) e:expr) 'v]

[(define-syntaxes (x:id ...) e:expr) 's])

's

The literals in a literal set always refer to the bindings at phase phase-level relative to the
enclosing module. If the #:for-template option is given, phase-level is -1; #:for-
syntax means 1, and #:for-label means #f. If no phase keyword option is given, then
phase-level is 0.

For example:

Examples:

> (module common racket/base

(define x 'something)

(provide x))

> (module lits racket/base

(require syntax/parse 'common)

(define-literal-set common-lits (x))

(provide common-lits))

97

In the literal set common-lits, the literal x always recognizes identifiers bound to the vari-
able x defined in module 'common.

The following module defines an equivalent literal set, but imports the 'common module
for-template instead:

Example:

> (module lits racket/base

(require syntax/parse (for-template 'common))

(define-literal-set common-lits #:for-template (x))

(provide common-lits))

When a literal set is used with the #:phase phase-expr option, the literals’ fixed bindings
are compared against the binding of the input literal at the specified phase. Continuing the
example:

Examples:

> (require syntax/parse 'lits (for-syntax 'common))

> (syntax-parse #'x #:literal-sets ([common-lits #:phase 1])

[x 'yes]

[_ 'no])

'yes

The occurrence of x in the pattern matches any identifier whose binding at phase 1 is the x

from module 'common.

(literal-set->predicate litset-id)

Given the name of a literal set, produces a predicate that recognizes identifiers in the literal
set. The predicate takes one required argument, an identifier id , and one optional argument,
the phase phase at which to examine the binding of id ; the phase argument defaults to
(syntax-local-phase-level).

Examples:

> (define kernel? (literal-set->predicate kernel-literals))

> (kernel? #'lambda)

#f

> (kernel? #'#%plain-lambda)

#t

> (kernel? #'define-values)

#t

> (kernel? #'define-values 4)

#f

98

(define-conventions name-id convention-rule ...)

convention-rule = (name-pattern syntax-class)

name-pattern = exact-id

| name-rx

syntax-class = syntax-class-id

| (syntax-class-id expr ...)

Defines conventions that supply default syntax classes for pattern variables. A pattern vari-
able that has no explicit syntax class is checked against each id-pattern, and the first one
that matches determines the syntax class for the pattern. If no id-pattern matches, then
the pattern variable has no syntax class.

Examples:

> (define-conventions xyz-as-ids

[x id] [y id] [z id])

> (syntax-parse #'(a b c 1 2 3)

#:conventions (xyz-as-ids)

[(x ... n ...) (syntax->datum #'(x ...))])

'(a b c)

> (define-conventions xn-prefixes

[#rx"^x" id]

[#rx"^n" nat])

> (syntax-parse #'(a b c 1 2 3)

#:conventions (xn-prefixes)

[(x0 x ... n0 n ...)

(syntax->datum #'(x0 (x ...) n0 (n ...)))])

'(a (b c) 1 (2 3))

Local conventions, introduced with the #:local-conventions keyword argument of
syntax-parse and syntax class definitions, may refer to local bindings:

Examples:

> (define-syntax-class (nat> bound)

(pattern n:nat

#:fail-unless (> (syntax-e #'n) bound)

(format "expected number > ∼s" bound)))

> (define-syntax-class (natlist> bound)

#:local-conventions ([N (nat> bound)])

(pattern (N ...)))

> (define (parse-natlist> bound x)

(syntax-parse x

99

#:local-conventions ([NS (natlist> bound)])

[NS 'ok]))

> (parse-natlist> 0 #'(1 2 3))

'ok

> (parse-natlist> 5 #'(8 6 4 2))

?: expected number > 5 at: 4

8.8 Library syntax classes and literal sets

8.8.1 Syntax classes

expr

Matches anything except a keyword literal (to distinguish expressions from the start of a
keyword argument sequence). The term is not otherwise inspected, since it is not feasible to
check if it is actually a valid expression.

identifier

boolean

str

char

keyword

number

integer

exact-integer

exact-nonnegative-integer

exact-positive-integer

Match syntax satisfying the corresponding predicates.

id

Alias for identifier.

nat

Alias for exact-nonnegative-integer.

(static predicate description) → (attributes value)

predicate : (-> any/c any/c)

description : (or/c string? #f)

100

The static syntax class matches an identifier that is bound in the syntactic environment to
static information (see syntax-local-value) satisfying the given predicate . If the term
does not match, the description argument is used to describe the expected syntax.

When used outside of the dynamic extent of a macro transformer (see syntax-

transforming?), matching fails.

The attribute value contains the value the name is bound to.

(expr/c contract-expr

[#:positive pos-blame

#:negative neg-blame

#:name expr-name

#:macro macro-name

#:context ctx]) → (attributes c)

contract-expr : syntax?

pos-blame : (or/c syntax? string? module-path-index? 'from-macro 'use-site 'unknown)

= 'use-site

neg-blame : (or/c syntax? string? module-path-index? 'from-macro 'use-site 'unknown)

= 'from-macro

expr-name : (or/c identifier? string? symbol?) = #f

macro-name : (or/c identifier? string? symbol?) = #f

ctx : (or/c syntax? #f) = determined automatically

Accepts an expression (expr) and computes an attribute c that represents the expression
wrapped with the contract represented by contract-expr .

The contract’s positive blame represents the obligations of the expression being wrapped.
The negative blame represents the obligations of the macro imposing the contract—the ulti-
mate user of expr/c. By default, the positive blame is taken as the module currently being
expanded, and the negative blame is inferred from the definition site of the macro (itself
inferred from the context argument), but both blame locations can be overridden.

The pos-blame and neg-blame arguments are turned into blame locations as follows:

• If the argument is a string, it is used directly as the blame label.

• If the argument is syntax, its source location is used to produce the blame label.

• If the argument is a module path index, its resolved module path is used.

• If the argument is 'from-macro, the macro is inferred from either the macro-name

argument (if macro-name is an identifier) or the context argument, and the module
where it is defined is used as the blame location. If neither an identifier macro-name
nor a context argument is given, the location is "unknown".

• If the argument is 'use-site, the module being expanded is used.

101

• If the argument is 'unknown, the blame label is "unknown".

The macro-name argument is used to determine the macro’s binding, if it is an identifier. If
expr-name is given, macro-name is also included in the contract error message. If macro-
name is omitted or #f, but context is a syntax object, then macro-name is determined
from context.

If expr-name is not #f, it is used in the contract’s error message to describe the expression
the contract is applied to.

The context argument is used, when necessary, to infer the macro name for the negative
blame party and the contract error message. The context should be either an identifier or a
syntax pair with an identifer in operator position; in either case, that identifier is taken as the
macro ultimately requesting the contract wrapping.

See §8.2.6 “Contracts on macro sub-expressions” for an example.

Important: Make sure when using expr/c to use the c attribute. The expr/c syntax class
does not change how pattern variables are bound; it only computes an attribute that represents
the checked expression.

8.8.2 Literal sets

kernel-literals

Literal set containing the identifiers for fully-expanded code (§1.2.3.1 “Fully Expanded Pro-
grams”). The set contains all of the forms listed by kernel-form-identifier-list, plus
module, #%plain-module-begin, #%require, and #%provide.

Note that the literal-set uses the names #%plain-lambda and #%plain-app, not lambda
and #%app.

8.9 Debugging and inspection tools

(require syntax/parse/debug)

The following special forms are for debugging syntax classes.

(syntax-class-attributes syntax-class-id)

Returns a list of the syntax class’s attributes. Each attribute entry consists of the attribute’s
name and ellipsis depth.

102

(syntax-class-arity syntax-class-id)

(syntax-class-keywords syntax-class-id)

Returns the syntax class’s arity and keywords, respectively. Compare with procedure-

arity and procedure-keywords.

(syntax-class-parse syntax-class-id stx-expr arg ...)

stx-expr : syntax?

Runs the parser for the syntax class (parameterized by the arg-exprs) on the syntax object
produced by stx-expr . On success, the result is a list of vectors representing the attribute
bindings of the syntax class. Each vector contains the attribute name, depth, and associated
value. On failure, the result is some internal representation of the failure.

(debug-parse stx-expr S-pattern ...+)

stx-expr : syntax?

Tries to match stx-expr against the S-patterns. If matching succeeds, the symbol 'suc-
cess is returned. Otherwise, an S-expression describing the failure is returned.

The failure S-expression shows both the raw set of failures (unsorted) and the failures with
maximal progress. The maximal failures are divided into equivalence classes based on their
progress (progress is a partial order); that is, failures within an equivalence class have the
same progress and, in principle, pinpoint the same term as the problematic term. Multiple
equivalence classes only arise from ∼parse patterns (or equivalently, #:with clauses) that
match computed terms or ∼fail (#:fail-when, etc) clauses that allow a computed term
to be pinpointed.

8.10 Experimental

The following facilities are experimental.

8.10.1 Contracts for macro sub-expressions

(require syntax/parse/experimental/contract)

This module is deprecated; it reprovides expr/c for backward compatibility.

103

8.10.2 Contracts for syntax classes

(require syntax/parse/experimental/provide)

(provide-syntax-class/contract

[syntax-class-id syntax-class-contract] ...)

syntax-class-contract = (syntax-class/c (mandatory-arg ...))

| (syntax-class/c (mandatory-arg ...)

(optional-arg ...))

arg = contract-expr

| keyword contract-expr

contract-expr : contract?

Provides the syntax class (or splicing syntax class) syntax-class-id with the given con-
tracts imposed on its formal parameters.

syntax-class/c

Keyword recognized by provide-syntax-class/contract.

8.10.3 Reflection

(require syntax/parse/experimental/reflect)

A syntax class can be reified into a run-time value, and a reified syntax class can be used in
a pattern via the ∼reflect and ∼splicing-reflect pattern forms.

(reify-syntax-class syntax-class-id)

Reifies the syntax class named syntax-class-id as a run-time value. The same form also
handles splicing syntax classes. Syntax classes with the #:no-delimit-cut option cannot
be reified.

(reified-syntax-class? x) → boolean?

x : any/c

(reified-splicing-syntax-class? x) → boolean?

x : any/c

104

Returns #t if x is a reified (normal) syntax class or a reified splicing syntax class, respec-
tively.

(reified-syntax-class-attributes r)

→ (listof (list/c symbol? exact-nonnegative-integer?))

r : (or/c reified-syntax-class? reified-splicing-syntax-class?)

Returns the reified syntax class’s attributes.

(reified-syntax-class-arity r) → procedure-arity?

r : (or/c reified-syntax-class? reified-splicing-syntax-class?)

(reified-syntax-class-keywords r)

→ (listof keyword?) (listof keyword?)

r : (or/c reified-syntax-class? reified-splicing-syntax-class?)

Returns the reified syntax class’s arity and keywords, respectively. Compare with
procedure-arity and procedure-keywords.

(reified-syntax-class-curry r

arg ...

#:<kw> kw-arg ...)

→ (or/c reified-syntax-class? reified-splicing-syntax-class?)

r : (or/c reified-syntax-class? reified-splicing-syntax-class?)

arg : any/c

kw-arg : any/c

Partially applies the reified syntax class to the given arguments. If more arguments are given
than the reified syntax class accepts, an error is raised.

S-pattern =

| (∼reflect var-id (reified-expr arg-expr ...) maybe-attrs)

H-pattern =

| (∼splicing-reflect var-id (reified-expr arg-expr ...)

maybe-attrs)

(∼reflect var-id (reified-expr arg-expr ...) maybe-attrs)

maybe-attrs =
| #:attributes (attr-arity-decl ...)

Like ∼var, except that the syntax class position is an expression evaluating to
a reified syntax object, not a syntax class name, and the attributes bound by the
reified syntax class (if any) must be specified explicitly.

105

(∼splicing-reflect var-id (reified-expr arg-expr ...) maybe-attrs)

Like ∼reflect but for reified splicing syntax classes.

Examples:

> (define-syntax-class (nat> x)

#:description (format "natural number greater than ∼s" x)

#:attributes (diff)

(pattern n:nat

#:when (> (syntax-e #'n) x)

#:with diff (- (syntax-e #'n) x)))

> (define-syntax-class (nat/mult x)

#:description (format "natural number multiple of ∼s" x)

#:attributes (quot)

(pattern n:nat

#:when (zero? (remainder (syntax-e #'n) x))

#:with quot (quotient (syntax-e #'n) x)))

> (define r-nat> (reify-syntax-class nat>))

> (define r-nat/mult (reify-syntax-class nat/mult))

> (define (partition/r stx r n)

(syntax-parse stx

[((∼or (∼reflect yes (r n)) no) ...)

#'((yes ...) (no ...))]))

> (partition/r #'(1 2 3 4 5) r-nat> 3)

#<syntax:6:0 ((4 5) (1 2 3))>

> (partition/r #'(1 2 3 4 5) r-nat/mult 2)

#<syntax:6:0 ((2 4) (1 3 5))>

> (define (bad-attrs r)

(syntax-parse #'6

[(∼reflect x (r 3) #:attributes (diff))

#'x.diff]))

> (bad-attrs r-nat>)

#<syntax 3>

> (bad-attrs r-nat/mult)

reflect-syntax-class: reified syntax-class is missing
declared attribute ‘diff’

8.10.4 Procedural splicing syntax classes

(require syntax/parse/experimental/splicing)

106

(define-primitive-splicing-syntax-class (name-id param-id ...)

maybe-description maybe-attrs

parser-expr)

parser : (-> syntax?

(->* () ((or/c string? #f) -> any))

(cons/c exact-positive-integer? list?))

Defines a splicing syntax via a procedural parser.

The parser procedure is given two arguments, the syntax to parse and a failure procedure.
To signal a successful parse, the parser procedure returns a list of N+1 elements, where N is
the number of attributes declared by the splicing syntax class. The first element is the size
of the prefix consumed. The rest of the list contains the values of the attributes.

To indicate failure, the parser calls the failure procedure with an optional message argument.

8.10.5 Ellipsis-head alternative sets

(require syntax/parse/experimental/eh)

Unlike single-term patterns and head patterns, ellipsis-head patterns cannot be encapsulated
by syntax classes, since they describe not only sets of terms but also repetition constraints.

This module provides ellipsis-head alternative sets, reusable encapsulations of ellipsis-head
patterns.

(define-eh-alternative-set name eh-alternative ...)

alternative = (pattern EH-pattern)

Defines name as an ellipsis-head alternative set. Using name (via ∼eh-var) in an ellipsis-
head pattern is equivalent to including each of the alternatives in the pattern via ∼oreh,
except that the attributes bound by the alternatives are prefixed with the name given to∼eh-
var.

Unlike syntax classes, ellipsis-head alternative sets must be defined before they are refer-
enced.

EH-pattern =

| (∼eh-var name eh-alternative-set-id)

(∼eh-var name eh-alternative-set-id)

107

Includes the alternatives of eh-alternative-set-id , prefixing their at-
tributes with name .

Examples:

> (define-eh-alternative-set options

(pattern (∼once (∼seq #:a a:expr) #:name "#:a option"))

(pattern (∼seq #:b b:expr)))

> (define (parse/options stx)

(syntax-parse stx

[(_ (∼eh-var s options) ...)

#'(s.a (s.b ...))]))

> (parse/options #'(m #:a 1 #:b 2 #:b 3))

#<syntax:13:0 (1 (2 3))>

> (parse/options #'(m #:a 1 #:a 2))

m: too many occurrences of #:a option at: ()
> (define (parse/more-options stx)

(syntax-parse stx

[(_ (∼or (∼eh-var s options)

(∼seq #:c c1:expr c2:expr))

...)

#'(s.a (s.b ...) ((c1 c2) ...))]))

> (parse/more-options #'(m #:a 1 #:b 2 #:c 3 4 #:c 5 6))

#<syntax:16:0 (1 (2) ((3 4) (5 6)))>

> (define-eh-alternative-set ext-options

(pattern (∼eh-var s options))

(pattern (∼seq #:c c1 c2)))

> (syntax-parse #'(m #:a 1 #:b 2 #:c 3 4 #:c 5 6)

[(_ (∼eh-var x ext-options) ...)

#'(x.s.a (x.s.b ...) ((x.c1 x.c2) ...))])

#<syntax:19:0 (1 (2) ((3 4) (5 6)))>

8.10.6 Syntax class specialization

(require syntax/parse/experimental/specialize)

(define-syntax-class/specialize header syntax-class-use)

header = id

| (id . kw-formals)

syntax-class-use = target-stxclass-id

| (target-stxclass-id arg ...)

108

Defines id as a syntax class with the same attributes, options (eg, #:commit, #:no-

delimit-cut), and patterns as target-stxclass-id but with the given args supplied.

Examples:

> (define-syntax-class/specialize nat>10 (nat> 10))

> (syntax-parse #'(11 12) [(n:nat>10 ...) 'ok])

'ok

> (syntax-parse #'(8 9) [(n:nat>10 ...) 'ok])

?: expected natural number greater than 10 at: 8

109

9 Source Locations

There are two libraries in this collection for dealing with source locations; one for manipu-
lating representations of them, and the other for quoting the location of a particular piece of
source code.

9.1 Representations

(require syntax/srcloc)

This module defines utilities for manipulating representations of source locations, including
both srcloc structures and all the values accepted by datum->syntax’s third argument:
syntax objects, lists, vectors, and #f.

(source-location? x) → boolean?

x : any/c

(source-location-list? x) → boolean?

x : any/c

(source-location-vector? x) → boolean?

x : any/c

These functions recognize valid source location representations. The first, source-

location?, recognizes srcloc structures, syntax objects, lists, and vectors with appro-
priate structure, as well as #f. The latter predicates recognize only valid lists and vectors,
respectively.

Examples:

> (source-location? #f)

#t

> (source-location? #'here)

#t

> (source-location? (make-srcloc 'here 1 0 1 0))

#t

> (source-location? (make-srcloc 'bad 1 #f 1 0))

#f

> (source-location? (list 'here 1 0 1 0))

#t

> (source-location? (list* 'bad 1 0 1 0 'tail))

#f

> (source-location? (vector 'here 1 0 1 0))

#t

> (source-location? (vector 'bad 0 0 0 0))

#f

110

(check-source-location! name x) → void?

name : symbol?

x : any/c

This procedure checks that its input is a valid source location. If it is, the procedure returns
(void). If it is not, check-source-location! raises a detailed error message in terms of
name and the problem with x .

Examples:

> (check-source-location! 'this-example #f)

> (check-source-location! 'this-example #'here)

> (check-source-location! 'this-example (make-srcloc 'here 1 0 1 0))

> (check-source-location! 'this-example (make-srcloc 'bad 1 #f 1 0))

this-example: expected a source location with line number
and column number both numeric or both #f; got 1 and #f
respectively: (srcloc ’bad 1 #f 1 0)
> (check-source-location! 'this-example (list 'here 1 0 1 0))

> (check-source-location! 'this-example (list* 'bad 1 0 1 0 'tail))

this-example: expected a source location (a list of 5
elements); got an improper list: ’(bad 1 0 1 0 . tail)
> (check-source-location! 'this-example (vector 'here 1 0 1 0))

> (check-source-location! 'this-example (vector 'bad 0 0 0 0))

this-example: expected a source location with a positive
line number or #f (second element); got line number 0:
’#(bad 0 0 0 0)

(build-source-location loc ...) → srcloc?

loc : source-location?

(build-source-location-list loc ...) → source-location-list?

loc : source-location?

(build-source-location-vector loc ...) → source-location-vector?

loc : source-location?

(build-source-location-syntax loc ...) → syntax?

loc : source-location?

These procedures combine multiple (zero or more) source locations, merging locations
within the same source and reporting #f for locations that span sources. They also convert
the result to the desired representation: srcloc, list, vector, or syntax object, respectively.

Examples:

> (build-source-location)

(srcloc #f #f #f #f #f)

> (build-source-location-list)

111

'(#f #f #f #f #f)

> (build-source-location-vector)

'#(#f #f #f #f #f)

> (build-source-location-syntax)

#<syntax ()>

> (build-source-location #f)

(srcloc #f #f #f #f #f)

> (build-source-location-list #f)

'(#f #f #f #f #f)

> (build-source-location-vector #f)

'#(#f #f #f #f #f)

> (build-source-location-syntax #f)

#<syntax ()>

> (build-source-location (list 'here 1 2 3 4))

(srcloc 'here 1 2 3 4)

> (build-source-location-list (make-srcloc 'here 1 2 3 4))

'(here 1 2 3 4)

> (build-source-location-vector (make-srcloc 'here 1 2 3 4))

'#(here 1 2 3 4)

> (build-source-location-syntax (make-srcloc 'here 1 2 3 4))

#<syntax:1:2 ()>

> (build-source-location (list 'here 1 2 3 4) (vector 'here 5 6 7 8))

(srcloc 'here 1 2 3 12)

> (build-source-location-list (make-srcloc 'here 1 2 3 4) (vector 'here 5 6 7 8))

'(here 1 2 3 12)

> (build-source-location-vector (make-srcloc 'here 1 2 3 4) (vector 'here 5 6 7 8))

'#(here 1 2 3 12)

> (build-source-location-syntax (make-srcloc 'here 1 2 3 4) (vector 'here 5 6 7 8))

#<syntax:1:2 ()>

> (build-source-location (list 'here 1 2 3 4) (vector 'there 5 6 7 8))

(srcloc #f #f #f #f #f)

> (build-source-location-list (make-srcloc 'here 1 2 3 4) (vector 'there 5 6 7 8))

'(#f #f #f #f #f)

> (build-source-location-vector (make-srcloc 'here 1 2 3 4) (vector 'there 5 6 7 8))

'#(#f #f #f #f #f)

> (build-source-location-syntax (make-srcloc 'here 1 2 3 4) (vector 'there 5 6 7 8))

#<syntax ()>

(source-location-known? loc) → boolean?

loc : source-location?

This predicate reports whether a given source location contains more information than sim-
ply #f.

Examples:

112

> (source-location-known? #f)

#f

> (source-location-known? (make-srcloc #f #f #f #f #f))

#f

> (source-location-known? (make-srcloc 'source 1 2 3 4))

#t

> (source-location-known? (list #f #f #f #f #f))

#f

> (source-location-known? (vector 'source #f #f #f #f))

#t

> (source-location-known? (datum->syntax #f null #f))

#t

> (source-location-known? (datum->syntax #f null (list 'source #f #f #f #f)))

#t

(source-location-source loc) → any/c

loc : source-location?

(source-location-line loc)

→ (or/c orexact-positive-integer? #f)

loc : source-location?

(source-location-column loc)

→ (or/c exact-nonnegative-integer? #f)

loc : source-location?

(source-location-position loc)

→ (or/c exact-positive-integer? #f)

loc : source-location?

(source-location-span loc)

→ (or/c exact-nonnegative-integer? #f)

loc : source-location?

These accessors extract the fields of a source location.

Examples:

> (source-location-source #f)

#f

> (source-location-line (make-srcloc 'source 1 2 3 4))

1

> (source-location-column (list 'source 1 2 3 4))

2

> (source-location-position (vector 'source 1 2 3 4))

3

> (source-location-span (datum->syntax #f null (list 'source 1 2 3 4)))

4

(source-location-end loc)

113

→ (or/c exact-nonnegative-integer? #f)

loc : source-location?

This accessor produces the end position of a source location (the sum of its position and
span, if both are numbers) or #f.

Examples:

> (source-location-end #f)

#f

> (source-location-end (make-srcloc 'source 1 2 3 4))

7

> (source-location-end (list 'source 1 2 3 #f))

#f

> (source-location-end (vector 'source 1 2 #f 4))

#f

(update-source-location loc

#:source source

#:line line

#:column column

#:position position

#:span span) → source-location?

loc : source-location?

source : any/c

line : (or/c exact-nonnegative-integer? #f)

column : (or/c exact-positive-integer? #f)

position : (or/c exact-nonnegative-integer? #f)

span : (or/c exact-positive-integer? #f)

Produces a modified version of loc , replacing its fields with source , line , column , po-
sition , and/or span , if given.

Examples:

> (update-source-location #f #:source 'here)

'(here #f #f #f #f)

> (update-source-location (list 'there 1 2 3 4) #:line 20 #:column 79)

'(there 20 79 3 4)

> (update-source-location (vector 'everywhere 1 2 3 4) #:position #f #:span #f)

'#(everywhere 1 2 #f #f)

(source-location->string loc) → string?

loc : source-location?

(source-location->prefix loc) → string?

loc : source-location?

114

These procedures convert source locations to strings for use in error messages. The first
produces a string describing the source location; the second appends ": " to the string if it
is non-empty.

Examples:

> (source-location->string (make-srcloc 'here 1 2 3 4))

"here:1.2"

> (source-location->string (make-srcloc 'here #f #f 3 4))

"here::3-7"

> (source-location->string (make-srcloc 'here #f #f #f #f))

"here"

> (source-location->string (make-srcloc #f 1 2 3 4))

":1.2"

> (source-location->string (make-srcloc #f #f #f 3 4))

"::3-7"

> (source-location->string (make-srcloc #f #f #f #f #f))

""

> (source-location->prefix (make-srcloc 'here 1 2 3 4))

"here:1.2: "

> (source-location->prefix (make-srcloc 'here #f #f 3 4))

"here::3-7: "

> (source-location->prefix (make-srcloc 'here #f #f #f #f))

"here: "

> (source-location->prefix (make-srcloc #f 1 2 3 4))

":1.2: "

> (source-location->prefix (make-srcloc #f #f #f 3 4))

"::3-7: "

> (source-location->prefix (make-srcloc #f #f #f #f #f))

""

9.2 Quoting

(require syntax/location)

This module defines macros that evaluate to various aspects of their own source location.

Note: The examples below illustrate the use of these macros and the representation of their
output. However, due to the mechanism by which they are generated, each example is con-
sidered a single character and thus does not have realistic line, column, and character posi-
tions.

Furthermore, the examples illustrate the use of source location quoting inside macros, and
the difference between quoting the source location of the macro definition itself and quoting
the source location of the macro’s arguments.

115

(quote-srcloc)

(quote-srcloc form)

(quote-srcloc form #:module-source expr)

Quotes the source location of form as a srcloc structure, using the location of the whole
(quote-srcloc) expression if no expr is given. Uses relative directories for paths found
within the collections tree, the user’s collections directory, or the PLaneT cache.

Examples:

> (quote-srcloc)

(srcloc 'eval 2 0 2 1)

> (define-syntax (not-here stx) #'(quote-srcloc))

> (not-here)

(srcloc 'eval 3 0 3 1)

> (not-here)

(srcloc 'eval 3 0 3 1)

> (define-syntax (here stx) #`(quote-srcloc #,stx))

> (here)

(srcloc 'eval 7 0 7 1)

> (here)

(srcloc 'eval 8 0 8 1)

(quote-source-file)

(quote-source-file form)

(quote-line-number)

(quote-line-number form)

(quote-column-number)

(quote-column-number form)

(quote-character-position)

(quote-character-position form)

(quote-character-span)

(quote-character-span form)

Quote various fields of the source location of form , or of the whole macro application if no
form is given.

Examples:

> (list (quote-source-file)

(quote-line-number)

(quote-column-number)

(quote-character-position)

(quote-character-span))

'(eval 2 0 2 1)

116

> (define-syntax (not-here stx)

#'(list (quote-source-file)

(quote-line-number)

(quote-column-number)

(quote-character-position)

(quote-character-span)))

> (not-here)

'(eval 3 0 3 1)

> (not-here)

'(eval 3 0 3 1)

> (define-syntax (here stx)

#`(list (quote-source-file #,stx)

(quote-line-number #,stx)

(quote-column-number #,stx)

(quote-character-position #,stx)

(quote-character-span #,stx)))

> (here)

'(eval 7 0 7 1)

> (here)

'(eval 8 0 8 1)

(quote-module-name)

Quotes the name of the module in which the form is compiled as a path or symbol, or
'top-level when used outside of a module. To produce a name suitable for use in printed
messages, apply path->relative-string/library when the result is a path.

Examples:

> (module A racket

(require syntax/location)

(define-syntax-rule (name) (quote-module-name))

(define a-name (name))

(provide (all-defined-out)))

> (require 'A)

> a-name

'A

> (module B racket

(require syntax/location)

(require 'A)

(define b-name (name))

(provide (all-defined-out)))

> (require 'B)

> b-name

'B

> (quote-module-name)

117

'top-level

> [current-namespace (module->namespace ''A)]

> (quote-module-name)

'A

(quote-module-path)

This form is deprecated, as it does not produce module paths that reliably indicate col-
lections or PLaneT packages. Please use quote-module-name and path->relative-

string/library to produce human-readable module names in printed messages.

Quotes the name of the module in which the form is compiled as a module path using quote

or file, or produces 'top-level when used outside of a module.

Examples:

> (module A racket

(require syntax/location)

(define-syntax-rule (path) (quote-module-path))

(define a-path (path))

(provide (all-defined-out)))

> (require 'A)

> a-path

''A

> (module B racket

(require syntax/location)

(require 'A)

(define b-path (path))

(provide (all-defined-out)))

> (require 'B)

> b-path

''B

> (quote-module-path)

'top-level

> [current-pathspace (module->pathspace ''A)]

reference to undefined identifier: current-pathspace
> (quote-module-path)

'top-level

118

Index
#%module-begin, 36
...+, 84
action pattern, 94
Action patterns, 94
annotated pattern variable, 81
Attaching Documentation to Exports, 46
attribute, 75
attribute, 74
boolean, 100
bound-id-table-count, 12
bound-id-table-for-each, 12
bound-id-table-map, 12
bound-id-table-ref, 11
bound-id-table-remove, 12
bound-id-table-remove!, 12
bound-id-table-set, 12
bound-id-table-set!, 11
bound-id-table?, 11
bound-identifier-mapping-for-each,

8
bound-identifier-mapping-get, 8
bound-identifier-mapping-map, 8
bound-identifier-mapping-put!, 8
bound-identifier-mapping?, 7
build-expand-context, 26
build-source-location, 111
build-source-location-list, 111
build-source-location-syntax, 111
build-source-location-vector, 111
build-struct-expand-info, 30
build-struct-generation, 28
build-struct-generation*, 29
build-struct-names, 28
char, 100
check-expression, 19
check-identifier, 19
check-module-form, 21
check-procedure, 15
check-source-location!, 111
check-stx-boolean, 20

check-stx-listof, 19
check-stx-string, 20
collapse-module-path, 24
collapse-module-path-index, 24
Computing the Free Variables of an Expres-

sion, 14
Contracts for macro sub-expressions, 103
Contracts for syntax classes, 104
Contracts on macro sub-expressions, 66
Controlling Syntax Templates, 32
conventions, 99
cut, 94
debug-parse, 103
Debugging and inspection tools, 102
Deconstructing Syntax Objects, 5
define-conventions, 99
define-eh-alternative-set, 107
define-literal-set, 97
define-primitive-splicing-syntax-

class, 107
define-simple-macro, 96
define-splicing-syntax-class, 72
define-syntax-class, 70
define-syntax-class/specialize, 108
define/syntax-parse, 69
Defining simple macros, 96
Dictionaries for bound-identifier=?, 10
Dictionaries for free-identifier=?, 13
ellipsis depth, 75
Ellipsis-head alternative sets, 107
ellipsis-head alternative sets, 107
ellipsis-head pattern, 92
Ellipsis-head patterns, 92
eval-compile-time-part-of-top-

level, 43
eval-compile-time-part-of-top-

level/compile, 43
exact-integer, 100
exact-nonnegative-integer, 100
exact-positive-integer, 100
Examples, 55
exn:get-module-code, 23

119

exn:get-module-code-path, 23
exn:get-module-code?, 23
expand-syntax-top-level-with-

compile-time-evals, 43
expand-syntax-top-level-with-

compile-time-evals/flatten, 43
expand-top-level-with-compile-

time-evals, 43
Expanding define-struct-like Forms, 27
Experimental, 103
expr, 100
expr/c, 101
Extracting Inferred Names, 26
flatten-begin, 27
Flattening begin Forms, 27
free-id-table-count, 14
free-id-table-for-each, 14
free-id-table-map, 13
free-id-table-ref, 13
free-id-table-remove, 13
free-id-table-remove!, 13
free-id-table-set, 13
free-id-table-set!, 13
free-id-table?, 13
free-identifier-mapping-for-each, 9
free-identifier-mapping-get, 9
free-identifier-mapping-map, 9
free-identifier-mapping-put!, 9
free-identifier-mapping?, 9
free-vars, 14
generate-expand-context, 26
generate-struct-declaration, 31
get-module-code, 22
Getting Module Compiled Code, 21
Hashing on bound-identifier=? and
free-identifier=?, 7

head pattern, 88
Head patterns, 88
Helpers for Processing Keyword Syntax, 15
id, 100
identifier, 100
Identifier dictionaries, 10

immutable-bound-id-table?, 11
immutable-free-id-table?, 13
incompatibility, 17
Inspecting Modules and Module Dependen-

cies, 25
integer, 100
Introduction, 48
kernel-form-identifier-list, 7
kernel-literals, 102
kernel-syntax-case, 6
kernel-syntax-case*, 6
kernel-syntax-case*/phase, 7
kernel-syntax-case/phase, 6
keyword, 100
keyword-table, 15
Legacy Zodiac Interface, 20
Library syntax classes and literal sets, 100
list patterns, 79
literal, 82
Literal sets, 102
literal sets, 96
Literal sets and Conventions, 96
literal-set->predicate, 98
lookup-documentation, 46
Macro Transformer Helpers, 26
make-bound-id-table, 10
make-bound-identifier-mapping, 7
make-exn:get-module-code, 23
make-free-id-table, 13
make-free-identifier-mapping, 8
make-immutable-bound-id-table, 11
make-immutable-free-id-table, 13
make-meta-reader, 41
make-module-identifier-mapping, 9
Matching Fully-Expanded Expressions, 6
moddep-current-open-input-file, 23
Module Reader, 36
module-identifier-mapping-for-

each, 10
module-identifier-mapping-get, 10
module-identifier-mapping-map, 10
module-identifier-mapping-put!, 10

120

module-identifier-mapping?, 9
module-or-top-identifier=?, 6
Module-Processing Helpers, 21
Modules and reusable syntax classes, 55
More keyword arguments, 63
mutable-bound-id-table?, 11
mutable-free-id-table?, 13
nat, 100
nested attributes, 81
Non-Module Compilation And Expansion,

43
Non-syntax-valued attributes, 62
normalize-definition, 26
number, 100
Optional keyword arguments, 57
options, 15
options-select, 18
options-select-row, 19
options-select-value, 19
parse-define-struct, 27
parse-keyword-options, 16
parse-keyword-options/eol, 18
Parsing and specifying syntax, 48
Parsing define-like Forms, 26
Parsing syntax, 66
pattern, 72
Pattern directives, 73
pattern directives, 73
pattern variable, 81
Pattern variables and attributes, 74
pattern-directive, 73
Procedural splicing syntax classes, 106
proper head pattern, 88
proper single-term pattern, 79
provide-and-document, 46
provide-syntax-class/contract, 104
quote-character-position, 116
quote-character-span, 116
quote-column-number, 116
quote-line-number, 116
quote-module-name, 117
quote-module-path, 118

quote-source-file, 116
quote-srcloc, 116
Quoting, 115
raise-read-eof-error, 35
raise-read-error, 35
Raising exn:fail:read, 35
Reader Helpers, 35
Reading Module Source Code, 21
Reflection, 104
reified-splicing-syntax-class?, 104
reified-syntax-class-arity, 105
reified-syntax-class-attributes,

105
reified-syntax-class-curry, 105
reified-syntax-class-keywords, 105
reified-syntax-class?, 104
reify-syntax-class, 104
Rendering Syntax Objects with Formatting,

14
replace-context, 15
Replacing Lexical Context, 14
Representations, 110
resolve-module-path, 23
resolve-module-path-index, 24
resolve-path-spec, 32
Resolving include-like Paths, 32
Resolving Module Paths to File Paths, 23
show-import-tree, 25
Simplifying Module Paths, 24
single-term pattern, 79
Single-term patterns, 79
Source Locations, 110
source-location->prefix, 114
source-location->string, 114
source-location-column, 113
source-location-end, 113
source-location-known?, 112
source-location-line, 113
source-location-list?, 110
source-location-position, 113
source-location-source, 113
source-location-span, 113

121

source-location-vector?, 110
source-location?, 110
Specifying syntax with syntax classes, 70
splicing syntax class, 72
static, 100
str, 100
strip-context, 14
struct-declaration-info?, 30
struct:exn:get-module-code, 23
stx->list, 5
stx-car, 5
stx-cdr, 5
stx-list?, 5
stx-map, 5
stx-null?, 5
stx-pair?, 5
Support for local-expand, 26
Syntactic normalization, 62
syntax class, 70
Syntax class specialization, 108
Syntax classes, 100
Syntax Object Helpers, 5
Syntax patterns, 76
syntax patterns, 76
syntax->string, 14
syntax-class-arity, 103
syntax-class-attributes, 102
syntax-class-keywords, 103
syntax-class-parse, 103
syntax-class/c, 104
syntax-local-infer-name, 26
syntax-parse, 66
syntax-parser, 69
syntax/boundmap, 7
syntax/context, 26
syntax/define, 26
syntax/docprovide, 46
syntax/flatten-begin, 27
syntax/free-vars, 14
syntax/id-table, 10
syntax/kerncase, 6
syntax/keyword, 15

syntax/location, 115
syntax/modcode, 21
syntax/modcollapse, 24
syntax/moddep, 25
syntax/modread, 21
syntax/modresolve, 23
syntax/module-reader, 36
syntax/name, 26
syntax/parse, 48
syntax/parse/debug, 102
syntax/parse/define, 96
syntax/parse/experimental/contract,

103
syntax/parse/experimental/eh, 107
syntax/parse/experimental/provide,

104
syntax/parse/experimental/reflect,

104
syntax/parse/experimental/specialize,

108
syntax/parse/experimental/splicing,

106
syntax/path-spec, 32
syntax/readerr, 35
syntax/srcloc, 110
syntax/strip-context, 14
syntax/struct, 27
syntax/stx, 5
syntax/template, 32
syntax/to-string, 14
syntax/toplevel, 43
syntax/trusted-xforms, 45
syntax/zodiac, 20
syntax/zodiac-sig, 20
syntax/zodiac-unit, 20
Syntax: Meta-Programming Helpers, 1
transform-template, 32
Trusting Standard Recertifying Transform-

ers, 45
update-source-location, 114
Variants with uniform meanings, 59
Variants with varied meanings, 61
with-module-reading-

122

parameterization, 21
wrap-read-all, 42
∼!, 94
∼and, 78
∼between, 93
∼bind, 95
∼commit, 79
∼datum, 82
∼delimit-cut, 79
∼describe, 78
∼do, 95
∼eh-var, 107
∼fail, 95
∼literal, 82
∼not, 85
∼once, 92
∼optional, 79
∼or, 78
∼parse, 95
∼peek, 91
∼peek-not, 91
∼reflect, 105
∼rest, 86
∼seq, 88
∼splicing-reflect, 106
∼var, 78

123

	1 Syntax Object Helpers
	1.1 Deconstructing Syntax Objects
	1.2 Matching Fully-Expanded Expressions
	1.3 Hashing on IdentifierColorbluebound-identifier=? and IdentifierColorbluefree-identifier=?
	1.4 Identifier dictionaries
	1.4.1 Dictionaries for IdentifierColorbluebound-identifier=?
	1.4.2 Dictionaries for IdentifierColorbluefree-identifier=?

	1.5 Rendering Syntax Objects with Formatting
	1.6 Computing the Free Variables of an Expression
	1.7 Replacing Lexical Context
	1.8 Helpers for Processing Keyword Syntax
	1.9 Legacy Zodiac Interface

	2 Module-Processing Helpers
	2.1 Reading Module Source Code
	2.2 Getting Module Compiled Code
	2.3 Resolving Module Paths to File Paths
	2.4 Simplifying Module Paths
	2.5 Inspecting Modules and Module Dependencies

	3 Macro Transformer Helpers
	3.1 Extracting Inferred Names
	3.2 Support for IdentifierColorbluelocal-expand
	3.3 Parsing IdentifierColorblackdefine-like Forms
	3.4 Flattening IdentifierColorblackbegin Forms
	3.5 Expanding IdentifierColorblackdefine-struct-like Forms
	3.6 Resolving IdentifierColorinclude-like Paths
	3.7 Controlling Syntax Templates

	4 Reader Helpers
	4.1 Raising IdentifierColorblueexn:fail:read
	4.2 Module Reader

	5 Non-Module Compilation And Expansion
	6 Trusting Standard Recertifying Transformers
	7 Attaching Documentation to Exports
	8 Parsing and specifying syntax
	8.1 Introduction
	8.2 Examples
	8.2.1 Modules and reusable syntax classes
	8.2.2 Optional keyword arguments
	8.2.3 Variants with uniform meanings
	8.2.4 Variants with varied meanings
	8.2.5 More keyword arguments
	8.2.6 Contracts on macro sub-expressions

	8.3 Parsing syntax
	8.4 Specifying syntax with syntax classes
	8.4.1 Pattern directives
	8.4.2 Pattern variables and attributes

	8.5 Syntax patterns
	8.5.1 Single-term patterns
	8.5.2 Head patterns
	8.5.3 Ellipsis-head patterns
	8.5.4 Action patterns

	8.6 Defining simple macros
	8.7 Literal sets and Conventions
	8.8 Library syntax classes and literal sets
	8.8.1 Syntax classes
	8.8.2 Literal sets

	8.9 Debugging and inspection tools
	8.10 Experimental
	8.10.1 Contracts for macro sub-expressions
	8.10.2 Contracts for syntax classes
	8.10.3 Reflection
	8.10.4 Procedural splicing syntax classes
	8.10.5 Ellipsis-head alternative sets
	8.10.6 Syntax class specialization

	9 Source Locations
	9.1 Representations
	9.2 Quoting

	Index

