
Slideshow: Racket Figure and Presentation Tools
Version 5.1

Matthew Flatt
and Robert Bruce Findler

February 14, 2011

Slideshow is a library for creating presentation slides. Unlike Powerpoint, Slideshow pro-
vides no WYSIWYG interface for constructing slides. Instead, like SliTeX, a presentation
is generated by a program.

To get started, run the slideshow executable, and click the Run Tutorial link.

To learn more about why Slideshow is cool, see also “Slideshow: Functional Presentations”
[Findler06].

#lang slideshow

Most of the bindings defined in the manual are provided by the slideshow language, which
also re-exports all of racket except for printable<%> (due to backward-compatibility
issues).

1

Contents

1 Creating Slide Presentations 4

1.1 Slide Basics . 4

1.2 Staging Slides . 5

1.3 Display Size and Fonts . 6

1.4 Command-line Options . 7

1.5 Printing . 7

2 Making Pictures 9

2.1 Pict Datatype . 9

2.2 Basic Pict Constructors . 11

2.3 Pict Combiners . 18

2.4 Pict Drawing Adjusters . 21

2.5 Bounding-Box Adjusters . 23

2.6 Pict Finders . 25

2.7 More Pict Constructors . 26

2.7.1 Dingbats . 26

2.7.2 Balloon Annotations . 28

2.7.3 Face . 30

2.7.4 Flash . 32

2.8 Miscellaneous . 33

2.9 Rendering . 34

3 Making Slides 36

3.1 Primary Slide Functions . 36

3.2 Slide Registration . 40

2

3.3 Viewer Control . 41

3.4 Constants and Layout Variables . 42

3.5 Configuration . 43

3.6 Pict-Staging Helper . 46

3.7 Slides to Picts . 47

4 Typesetting Racket Code 48

5 Animations 54

5.1 Generating Animated Slides . 54

5.2 Animation Helpers . 56

5.3 Merging Animations . 57

5.4 Stretching and Squashing Time . 58

Index 61

3

1 Creating Slide Presentations

The slideshow module acts as a language that includes:

• all of racket;

• pict-creating functions from slideshow/pict; and

• slide-composing functions from slideshow/base.

The slideshow and slideshow/base module initialization also check the current-
command-line-arguments parameter to configure the slide mode (e.g., printing).

The rest of this section repeats information that is presented by the tutorial slideshow, which
can be viewed by running the slideshow executable and clicking the Run Tutorial link.

1.1 Slide Basics

The main Slideshow function is slide, which adds a slide to the presentation with a given
content. For example, the “Hello World” presentation can be defined by the following mod-
ule:

#lang slideshow

(slide
#:title "How to Say Hello"
(t "Hello World!"))

The t function in this example creates a pict containing the given text using the default font
and style.

Executing the above module pops up a slide-presentation window. Type Alt-q (or Meta-q)
to end the slides. Here are more controls:

Alt-q, Meta-q, or Cmd-q : end slide show
Esc : if confirmed, end show
Right arrow, Space, f, n, or click : next slide
Left arrow, Backspace, Delete, or b : previous slide
g : last slide
1 : first slide
Alt-g, Cmd-g, or Meta-g : select a slide
Alt-p, Cmd-p, or Meta-p : show/hide slide number
Alt-c, Cmd-c, or Meta-c : show/hide commentary
Alt-d, Cmd-d, or Meta-d : show/hide preview

4

Alt-m, Cmd-m, or Meta-m : show/hide mouse cursor
Shift with arrow : move window 1 pixel
Alt, Meta, or Cmd with arrow : move window 10 pixels

The slide function accepts any number of arguments. Each argument is a pict to be centered
on the slide. The picts are stacked vertically with gap-size separation between each pict,
and the total result is centered (as long as there’s a gap of at least (* 2 gap-size) between
the title and content).

#lang slideshow

(slide
#:title "How to Say Hello"
(t "Hello World!")
(t "Goodbye Dlrow!"))

Various functions format paragraphs and generate bulleted items for lists. For example, item
creates a bulleted paragraph that spans (by default) the middle 2/3 of the slide:

#lang slideshow

(slide
#:title "How to Say Hello"
(item "If you want to create an example, you"

"can always do something with" (bt "Hello World!"))
(item "It’s a bit silly, but a follow-up example"

"could be" (bt "Goodbye Dlrow!")))

As the example illustrates, the item function accepts a mixture of strings and picts, and it
formats them as a paragraph.

1.2 Staging Slides

The slide function creates a slide as a side effect. It can be put inside a function to abstract
over a slide:

#lang slideshow

(define (slide-n n)
(slide
#:title "How to Generalize Slides"
(item "This is slide number" (number->string n))))

(slide-n 1)
(slide-n 2)

5

(slide-n 3)

The slide function also has built-in support for some common multi-slide patterns. Each
element argument to slide is usually a pict, but there are a few other possibilities:

• If an element is ’next, then a slide is generated containing only the preceding ele-
ments, and then the elements are re-processed without the ’next. Multiple ’next
elements generate multiple slides.

• If an element is ’alts, then the next element must be a list of element lists. Each list
up to the last one is appended to the elements before ’alts and the resulting list of
elements is processed. The last lists is appended to the preceding elements along with
the remaining elements (after the list of lists) and the result is re-processed.

• A ’nothing element is ignored (useful as a result of a branching expression).

• A ’next! element is like ’next, except that it is preserved when condensing (via the
--condense flag).

• A ’alts∼ element is like ’alts, except that it is not preserved when condensing.

• A comment produced by comment is ignored, except when commentary is displayed.

Here’s an example to illustrate how ’next and ’alts work:

#lang slideshow

(slide
#:title "Example"
(item "First step")
’next
(item "Second step")
’next
’alts
(list (list (item "Tentative third step")

’next
(item "This isn’t working... back up"))

(list (item "Third step that works")))
’next
(item "Fourth step"))

1.3 Display Size and Fonts

Slideshow is configured for generating slides in 1024 by 768 pixel format. When the current
display has a different size as Slideshow is started, the Slideshow display still occupies the

6

entire screen, and pictures are scaled just before they are displayed. Thus, one picture unit
reliably corresponds to a “pixel” that occupies 1/1024 by 1/768 of the screen.

The text form for generating text pictures takes into account any expected scaling for the
display when measuring text. (All Slideshow text functions, such as t and item are built on
text.) In particular, scaling the picture causes a different font size to be used for drawing the
slide—rather than bitmap-scaling the original font—and changing the font size by a factor
of k does not necessarily scale all text dimensions equally by a factor of k—because, for
most devices, each character must have integer dimensions. Nevertheless, especially if you
use the current-expected-text-scale parameter, Slideshow is usually able to produce
good results when the slide is scaled.

More generally, different font sets on different platforms can change the way a slide is ren-
dered. For example, the tt font on one platform might be slightly wider than on another,
causing different line breaks, and so on. Beware.

Beware also of using bitmaps in slides when the presentation screen is not 1024 by 768. In
that case, consider using size-in-pixels (with the caveat that the resulting picture will
take up different amounts of the slide on different displays).

1.4 Command-line Options

(require slideshow/start)

The slideshow executable invokes the slideshow/start module, which inspects the
command line as reported by current-command-line-arguments to get another mod-
ule to provide the slide content. It also initializes variables like printing? and condense?
based on flags supplied on the command line.

Thus, if the above example is in "multi-step.rkt", then the command

slideshow multi-step.rkt

runs the slides.

The Slideshow executable accepts a number of command-line flags. Use the --help flag
to obtain a list of other flags.

1.5 Printing

The -p or --print command-line flag causes Slideshow to print slides instead of showing
them on the screen. Under Unix, the result is always PostScript. For all platforms, -P or
--ps generates PostScript.

7

PS-to-PDF converters vary on how well they handle landscape mode. Here’s a Ghostscript
command that converts slides reliably (when you replace "src.ps" and "dest.pdf" with
your file names):

gs -q -dAutoRotatePages=/None -dSAFER -dNOPAUSE -dBATCH -
sOutputFile=dest.pdf -sDEVICE=pdfwrite -c .setpdfwrite -c
"<</Orientation 3>> setpagedevice" -f src.ps

8

2 Making Pictures

(require slideshow/pict)

The slideshow/pict layer provides core functions for constructing pictures, and it is in-
dependent of the slide viewer. This layer can be used, for example, to generate a picture as
encapsulated PostScript for inclusion into a larger document. The slideshow/pict layer
is re-provided by the slideshow language.

2.1 Pict Datatype

A picture is a pict structure. Some functions, such as hline, create new simple picts. Other
functions, such as ht-append, build new picts out of existing picts. In the latter case, the
embedded picts retain their identity, so that offset-finding functions, such as lt-find, can
find the offset of an embedded pict in a larger pict.

In addition to its drawing part, a pict has the following bounding box structure:

w
a

d

h

That is, the bounding box has a width w and a height h. For a single text line, d is descent
below the baseline, and a+d=h. For multiple text lines (often created with a function like
vc-append), a is the ascent of the top line, and d is the descent of the bottom line, so a+d<h.
Many picts have d=0 and a=h.

In addition, a pict can have a last sub-pict that corresponds to the last item on the last line of
text, so that extra lines can be added to the last line. In particular, the last element is useful
for adding closing parentheses to a block of Racket code, where the last line of code not the
longest line in the block.

The size information for a pict is computed when the pict is created. This strategy supports
programs that create new picts though arbitrarily complex computations on the size and
shape of existing picts. The functions pict-width, pict-height, pict-descent, and
pict-ascent extract bounding-box information from a pict.

A pict is a convertible datatype through the file/convertible protocol. Supported con-
versions include ’png-bytes, ’eps-bytes, and ’pdf-bytes.

9

(struct pict (draw
width
height
ascent
descent
children
panbox
last)

#:extra-constructor-name make-pict)
draw : any/c
width : real?
height : real?
ascent : real?
descent : real?
children : (listof child?)
panbox : (or/c #f any/c)
last : (or/c #f pict-path?)

A pict structure is normally not created directly with make-pict. Instead, functions like
text, hline, and dc are used to construct a pict.

The draw field contains the pict’s drawing information in an internal format. Roughly, the
drawing information is a procedure that takes a dc<%> drawing context and an offset for the
pict’s top-left corner (i.e., it’s bounding box’s top left corner relative to the dc<%> origin).
The state of the dc<%> is intended to affect the pict’s drawing; for example, the pen and
brush will be set for a suitable default drawing mode, and the dc<%> scale will be set to
scale the resulting image. Use draw-pict (as opposed to pict-draw) to draw the picture.

The panbox field is internal and initialized to #f.

The last field indicates a pict within the children list (transitively) that can be treated as
the last element of the last line in the pict. A #f value means that the pict is its own last
sub-pict.

(struct child (pict dx dy sx sy)
#:extra-constructor-name make-child)

pict : pict?
dx : real?
dy : real?
sx : real?
sy : real?

Records, for a pict constructed of other picts, the relative location and scale of one nested
pict.

10

A child structure is normally not created directly with make-child. Instead, functions like
hc-append create child structures when combining picts to create a new one.

2.2 Basic Pict Constructors

(dc draw w h) → pict?
draw : ((is-a?/c dc<%>) real? real? . -> . any)
w : real?
h : real?

(dc draw w h a d) → pict?
draw : ((is-a?/c dc<%>) real? real? . -> . any)
w : real?
h : real?
a : real?
d : real?

Creates an arbitrary self-rendering pict. The arguments to the rendering procedure will be a
device context and top-left location for drawing.

When the rendering procedure is called, the current pen and brush will be solid and in the
pict’s color (and linewidth), and the scale and offset of the dc will be set. The text mode will
be transparent, but the font and text colors are not guaranteed to be anything in particular.

(blank [size]) → pict?
size : real? = 0

(blank w h) → pict?
w : real?
h : real?

(blank w a d) → pict?
w : real?
a : real?
d : real?

(blank w h a d) → pict?
w : real?
h : real?
a : real?
d : real?

Creates a pict that draws nothing. The one-argument case supplies a value used for both the
width and height. In the one- and two-argument case, the ascent and descent are 0 for the
resulting pict’s bounding box; in the three-argument case, the height is computed by adding
the given ascent and descent.

11

(text content [style size angle]) → pict?
content : string?
style : text-style/c = null
size : (integer-in 1 255) = 12
angle : real? = 0

Creates a pict that draws text. For creating text picts within a slide presentation, see t. The
size of the resulting pict may depend on the value of dc-for-text-size.

The style argument must be one of the following:

• null — the default, same as ’default

• a font% object

• a font family symbol, such a ’roman (see font%)

• a font face string, such as "Helvetica" (see font%)

• (cons str sym) combining a face string and a font family (in case the face is un-
available; see font%)

• (cons ’bold style) for a valid style

• (cons ’italic style)

• (cons ’subscript style)

• (cons ’superscript style)

• (cons ’caps style)

• (cons ’combine style) — allows kerning and ligatures (the default, unless the
’modern family is specified)

• (cons ’no-combine style) — renders characters individually

If both ’combine and ’no-combine are specified, the first one takes precedence. If caps is
specified, the angle must be zero.

The given size is in pixels, but it is ignored if a font% object is provided in the text-style.

The angle is in radians, and positive values rotate counter-clockwise. For a non-zero an-
gle , the resulting pict’s bounding box covers the rotated text, and the descent is zero and
the ascent is the height.

(hline w h [#:segment seg-length]) → pict?
w : real?

12

h : real?
seg-length : (or/c #f real?) = #f

(vline w h [#:segment seg-length]) → pict?
w : real?
h : real?
seg-length : (or/c #f real?) = #f

Straight lines, centered within their bounding boxes.

(frame pict
[#:segment seg-length
#:color color
#:line-width width]) → pict?

pict : pict?
seg-length : (or/c #f real?) = #f
color : (or/c #f string? (is-a?/c color<%>)) = #f
width : (or/c #f real?) = #f

Frames a given pict. If the color or line width are provided, the override settings supplied by
the context.

(ellipse w h) → pict?
w : real?
h : real?

(circle diameter) → pict?
diameter : real?

(filled-ellipse w h) → pict?
w : real?
h : real?

(disk diameter) → pict?
diameter : real?

Unfilled and filled ellipses.

(rectangle w h) → pict?
w : real?
h : real?

(filled-rectangle w
h

[#:draw-border? draw-border?]) → pict?
w : real?
h : real?
draw-border? : any/c = #t

13

Unfilled and filled rectangles.

If draw-border? is #f, then the pen is set to be transparent before drawing the rectangle.

(rounded-rectangle w
h

[corner-radius
#:angle angle]) → pict?

w : real?
h : real?
corner-radius : real? = -0.25
angle : real? = 0

(filled-rounded-rectangle w
h

[corner-radius
#:angle angle]) → pict?

w : real?
h : real?
corner-radius : real? = -0.25
angle : real? = 0

Unfilled and filled rectangles with rounded corners. The corner-radius is used to deter-
mine how much rounding occurs in the corners. If it is a positive number, then it determines
the radius of a circle touching the edges in each corner, and the rounding of the rectangle
follow the edge of those circles. If it is a negative number, then the radius of the circles
in the corners is the absolute value of the corner-radius times the smaller of width and
height.

The angle determines how much the rectangle is rotated, in radians.

(bitmap img) → pict
img : (or/c path-string? (is-a?/c bitmap%))

A pict that display a bitmap. When a path is provided, the image is loaded with the ’un-
known/mask flag, which means that a mask bitmap is generated if the file contains a mask.

If the bitmap cannot be loaded, if the given bitmap% object is not valid, or if the bitmap-
draft-mode parameter is set to #t, the result pict draws the word “bitmap failed”.

(arrow size radians) → pict?
size : real?
radians : real?

(arrowhead size radians) → pict?
size : real?

14

radians : real?

Creates an arrow or arrowhead in the specific direction within a size by size pict. Points
on the arrow may extend slightly beyond the bounding box.

(pip-line dx dy size) → pict?
dx : real?
dy : real?
size : real?

(pip-arrow-line dx dy size) → pict?
dx : real?
dy : real?
size : real?

(pip-arrows-line dx dy size) → pict?
dx : real?
dy : real?
size : real?

Creates a line (with some number of arrowheads) as a zero-sized pict suitable for use with
pin-over. The 0-sized picture contains the starting point.

The size is used for the arrowhead size. Even though pip-line creates no arrowheads, it
accepts the size argument for consistency with the other functions.

(pin-line pict
src
find-src
dest
find-dest

[#:start-angle start-angle
#:end-angle end-angle
#:start-pull start-pull
#:end-pull end-pull
#:line-width line-width
#:color color
#:under? under?]) → pict?

pict : pict?
src : pict-path?
find-src : (pict? pict-path? . -> . (values real? real?))
dest : pict-path?
find-dest : (pict? pict-path? . -> . (values real? real?))
start-angle : (or/c real? #f) = #f
end-angle : (or/c real? #f) = #f
start-pull : real? = 1/4
end-pull : real? = 1/4

15

line-width : (or/c #f real?) = #f
color : (or/c #f string? (is-a?/c color%)) = #f
under? : any/c = #f

(pin-arrow-line arrow-size
pict
src
find-src
dest
find-dest

[#:start-angle start-angle
#:end-angle end-angle
#:start-pull start-pull
#:end-pull end-pull
#:line-width line-width
#:color color
#:under? under?
#:solid? solid?]
#:hide-arrowhead? any/c) → pict?

arrow-size : real?
pict : pict?
src : pict-path?
find-src : (pict? pict-path? . -> . (values real? real?))
dest : pict-path?
find-dest : (pict? pict-path? . -> . (values real? real?))
start-angle : (or/c real? #f) = #f
end-angle : (or/c real? #f) = #f
start-pull : real? = 1/4
end-pull : real? = 1/4
line-width : (or/c #f real?) = #f
color : (or/c #f string? (is-a?/c color%)) = #f
under? : any/c = #f
solid? : any/c = #t
any/c : #f

16

(pin-arrows-line arrow-size
pict
src
find-src
dest
find-dest

[#:start-angle start-angle
#:end-angle end-angle
#:start-pull start-pull
#:end-pull end-pull
#:line-width line-width
#:color color
#:under? under?
#:solid? solid?]
#:hide-arrowhead? any/c) → pict?

arrow-size : real?
pict : pict?
src : pict-path?
find-src : (pict? pict-path? . -> . (values real? real?))
dest : pict-path?
find-dest : (pict? pict-path? . -> . (values real? real?))
start-angle : (or/c real? #f) = #f
end-angle : (or/c real? #f) = #f
start-pull : real? = 1/4
end-pull : real? = 1/4
line-width : (or/c #f real?) = #f
color : (or/c #f string? (is-a?/c color%)) = #f
under? : any/c = #f
solid? : any/c = #t
any/c : #f

Adds a line or line-with-arrows onto pict , using one of the pict-finding functions (e.g.,
lt-find) to extract the source and destination of the line.

If under? is true, then the line and arrows are added under the existing pict drawing,
instead of on top. If solid? is false, then the arrowheads are hollow instead of filled.

The start-angle , end-angle , start-pull , and end-pull arguments control the curve
of the line:

• The start-angle and end-angle arguments specify the direction of curve at its
start and end positions; if either is #f, it defaults to the angle of a straight line from
the start position to end position.

• The start-pull and end-pull arguments specify a kind of momentum for the start-
ing and ending angles; larger values preserve the angle longer.

17

When the hide-arrowhead? argument is a true value, then space for the arrowhead is left
behind, but the arrowhead itself is not drawn.

The defaults produce a straight line.

text-style/c : contract?

A contract that matches the second argument of text.

(bitmap-draft-mode) → boolean?
(bitmap-draft-mode on?) → void?

on? : any/c

A parameter that determines whether bitmap loads/uses a bitmap.

2.3 Pict Combiners

(vl-append [d] pict ...) → pict?
d : real? = 0.0
pict : pict?

(vc-append [d] pict ...) → pict?
d : real? = 0.0
pict : pict?

(vr-append [d] pict ...) → pict?
d : real? = 0.0
pict : pict?

(ht-append [d] pict ...) → pict?
d : real? = 0.0
pict : pict?

(htl-append [d] pict ...) → pict?
d : real? = 0.0
pict : pict?

(hc-append [d] pict ...) → pict?
d : real? = 0.0
pict : pict?

(hbl-append [d] pict ...) → pict?
d : real? = 0.0
pict : pict?

(hb-append [d] pict ...) → pict?
d : real? = 0.0
pict : pict?

18

Creates a new pict as a column (for v...-append) or row (for h...-append) of other picts.
The optional d argument specifies amount of space to insert between each pair of pictures in
making the column or row.

Different procedures align pictures in the orthogonal direction in different ways. For exam-
ple, vl-append left-aligns all of the pictures.

The descent of the result corresponds to baseline that is lowest in the result among all of
the picts’ descent-specified baselines; similarly, the ascent of the result corresponds to the
highest ascent-specified baseline. If at least one pict is supplied, then the last element (as
reported by pict-last) for the result is (or (pict-last pict) pict) for the using
last supplied pict .

(lt-superimpose pict ...) → pict?
pict : pict?

(ltl-superimpose pict ...) → pict?
pict : pict?

(lc-superimpose pict ...) → pict?
pict : pict?

(lbl-superimpose pict ...) → pict?
pict : pict?

(lb-superimpose pict ...) → pict?
pict : pict?

(ct-superimpose pict ...) → pict?
pict : pict?

(ctl-superimpose pict ...) → pict?
pict : pict?

(cc-superimpose pict ...) → pict?
pict : pict?

(cbl-superimpose pict ...) → pict?
pict : pict?

(cb-superimpose pict ...) → pict?
pict : pict?

(rt-superimpose pict ...) → pict?
pict : pict?

(rtl-superimpose pict ...) → pict?
pict : pict?

(rc-superimpose pict ...) → pict?
pict : pict?

(rbl-superimpose pict ...) → pict?
pict : pict?

(rb-superimpose pict ...) → pict?
pict : pict?

Creates a new picture by superimposing a set of pictures. The name prefixes are alignment

19

indicators: horizontal alignment then vertical alignment.

The descent of the result corresponds to baseline that is lowest in the result among all of
the picts’ descent-specified baselines; similarly, the ascent of the result corresponds to the
highest ascent-specified baseline. The last element (as reported by pict-last) for the result
is the lowest, right-most among the last-element picts of the pict arguments, as determined
by comparing the last-element bottom-right corners.

(pin-over base dx dy pict) → pict?
base : pict?
dx : real?
dy : real?
pict : pict?

(pin-over base find-pict find pict) → pict?
base : pict?
find-pict : pict-path?
find : (pict? pict-path? . -> . (values real? real?))
pict : pict?

Creates a pict with the same bounding box, ascent, and descent as base , but with pict
placed on top. The dx and dy arguments specify how far right and down the second pict’s
corner is from the first pict’s corner. Alternately, the find-pict and find arguments find
a point in base for find-pict ; the find procedure should be something like lt-find.

(pin-under base dx dy pict) → pict?
base : pict?
dx : real?
dy : real?
pict : pict?

(pin-under base find-pict find pict) → pict?
base : pict?
find-pict : pict?
find : (pict? pict? . -> . (values real? real?))
pict : pict?

Like pin-over, but pict is drawn before base in the resulting combination.

(table ncols
picts
col-aligns
row-aligns
col-seps
row-seps) → pict?

ncols : exact-positive-integer?

20

picts : (listof pict?)
col-aligns : (table-list-of (pict? pict? -> pict?))
row-aligns : (table-list-of (pict? pict? -> pict?))
col-seps : (table-list-of real?)
row-seps : (table-list-of real?)

Creates a table given a list of picts. The picts list is a concatenation of the table’s rows
(which means that a Racket list call can be formatted to reflect the shape of the output
table).

The col-aligns , row-aligns , col-seps , and row-seps arguments are “lists” specify-
ing the row and columns alignments separation between rows and columns. For c columns
and r rows, the first two should have c and r superimpose procedures, and the last two should
have c-1 and r-1 numbers, respectively. The lists can be “improper” (i.e., ending in a number
instead of an empty list), in which case the non-pair cdr is used as the value for all remaining
list items that were expected. The col-aligns and row-aligns procedures are used to su-
perimpose all of the cells in a column or row; this superimposition determines the total width
or height of the column or row, and also determines the horizontal or vertical placement of
each cell in the column or row.

2.4 Pict Drawing Adjusters

(scale pict factor) → pict?
pict : pict?
factor : real?

(scale pict w-factor h-factor) → pict?
pict : pict?
w-factor : real?
h-factor : real?

Scales a pict drawing, as well as its bounding-box. The drawing is scaled by adjusting the
destination dc<%>’s scale while drawing the original pict .

(ghost pict) → pict?
pict : pict?

Creats a container picture that doesn’t draw the child picture, but uses the child’s size.

(linewidth w pict) → pict?
w : real?
pict : pict?

21

Selects a specific pen width for drawing, which applies to pen drawing for pict that does
not already use a specific pen width.

(colorize pict color) → pict?
pict : pict?
color : (or/c string?

(is-a?/c color%)
(list (integer-in 0 255)

(integer-in 0 255)
(integer-in 0 255)))

Selects a specific color drawing, which applies to drawing in pict that does not already
use a specific color. The black-and-white parameter causes all non-white colors to be
converted to black.

(cellophane pict opacity) → pict?
pict : pict?
opacity : (real-in 0 1)

Makes the given pict semi-transparent, where an opacity of 0 is fully transparent, and an
opacity of 1 is fully opaque. See set-alpha for information about the contexts and cases
when semi-transparent drawing works.

(clip pict) → pict
pict : pict?

Clips a pict’s drawing to its bounding box.

(inset/clip pict amt) → pict?
pict : pict?
amt : real?

(inset/clip pict h-amt v-amt) → pict?
pict : pict?
h-amt : real?
v-amt : real?

(inset/clip pict l-amt t-amt r-amt b-amt) → pict?
pict : pict?
l-amt : real?
t-amt : real?
r-amt : real?
b-amt : real?

Insets and clips the pict’s drawing to its bounding box. Usually, the inset amounts are nega-
tive.

22

(scale/improve-new-text pict-expr scale-expr)
(scale/improve-new-text pict-expr x-scale-expr y-scale-expr)

Like the scale procedure, but also sets current-expected-text-scale while evaluating
pict-expr .

(black-and-white) → boolean?
(black-and-white on?) → void?

on? : any/c

A parameter that determines whether colorize uses color or black-and-white colors.

2.5 Bounding-Box Adjusters

(inset pict amt) → pict?
pict : pict?
amt : real?

(inset pict h-amt v-amt) → pict?
pict : pict?
h-amt : real?
v-amt : real?

(inset pict l-amt t-amt r-amt b-amt) → pict?
pict : pict?
l-amt : real?
t-amt : real?
r-amt : real?
b-amt : real?

Extends pict ’s bounding box by adding the given amounts to the corresponding sides;
ascent and descent are extended, too.

(clip-descent pict) → pict?
pict : pict?

Truncates pict ’s bounding box by removing the descent part.

(lift-above-baseline pict amt) → pict?
pict : pict?
amt : real?

23

Lifts pict relative to its baseline, extending the bounding-box height if necessary.

(drop-below-ascent pict amt) → pict?
pict : pict?
amt : real?

Drops pict relative to its ascent line, extending the bounding-box height if necessary.

(baseless pict) → pict?
pict : pict?

Makes the descent 0 and the ascent the same as the height.

(refocus pict sub-pict) → pict?
pict : pict?
sub-pict : pict?

Assuming that sub-pict can be found within pict , shifts the overall bounding box to that
of sub-pict (but preserving all the drawing of pict). The last element, as reported by
pict-last is also set to (or (pict-last sub-pict) sub-pict).

(panorama pict) → pict?
pict : pict?

Shifts the given pict’s bounding box to enclose the bounding boxes of all sub-picts (even
laundered picts).

(use-last pict sub-pict) → pict?
pict : pict?
sub-pict : pict-path?

Returns a pict like pict , but with the last element (as reported by pict-last) set to sub-
pict . The sub-pict must exist as a sub-pict (or path of sub-picts) within pict .

(use-last* pict sub-pict) → pict?
pict : pict?
sub-pict : pict-path?

Propagates the last element of sub-pict to pict .

That is, use-last* is like use-last, but the last element of sub-pict is used as the new
last element for pict , instead of sub-pict itself—unless (pict-last sub-pict) is #f,

24

in which case sub-pict is used as the last element of pict .

2.6 Pict Finders

(lt-find pict find) → real? real?
pict : pict?
find : pict-path?

(ltl-find pict find) → real? real?
pict : pict?
find : pict-path?

(lc-find pict find) → real? real?
pict : pict?
find : pict-path?

(lbl-find pict find) → real? real?
pict : pict?
find : pict-path?

(lb-find pict find) → real? real?
pict : pict?
find : pict-path?

(ct-find pict find) → real? real?
pict : pict?
find : pict-path?

(ctl-find pict find) → real? real?
pict : pict?
find : pict-path?

(cc-find pict find) → real? real?
pict : pict?
find : pict-path?

(cbl-find pict find) → real? real?
pict : pict?
find : pict-path?

(cb-find pict find) → real? real?
pict : pict?
find : pict-path?

(rt-find pict find) → real? real?
pict : pict?
find : pict-path?

(rtl-find pict find) → real? real?
pict : pict?
find : pict-path?

(rc-find pict find) → real? real?
pict : pict?
find : pict-path?

25

(rbl-find pict find) → real? real?
pict : pict?
find : pict-path?

(rb-find pict find) → real? real?
pict : pict?
find : pict-path?

Locates a pict designated by find is within pict . If find is a pict, then the pict must
have been created as some combination involving find .

If find is a list, then the first element of find must be within pict , the second element of
find must be within the second element, and so on.

(pict-path? v) → boolean?
v : any/c

Returns #t if v is a pict or a non-empty list of picts.

(launder pict) → pict?
pict : pict?

Creates a pict that has the same drawing and bounding box of pict , but which hides all of its
sub-picts so that they cannot be found with functions like lt-find. If pict has a last-line
pict, then the laundered pict has a fresh last-line pict with the same shape and location.

2.7 More Pict Constructors

2.7.1 Dingbats

(cloud w h [color]) → pict?
w : real?
h : real?
color : (or/c string? (is-a?/c color%)) = "gray"

Creates a fluffy cloud.

(file-icon w h color [shaded?]) → pict?
w : real?
h : real?
color : (or/c string? (is-a?/c color%) any/c)
shaded? : any/c = #f

26

Creates a Mac-like file icon, optionally shaded. If color is not a string or color% object, it
is treated as a boolean, in which case true means "gray" and false means "white".

(standard-fish w
h

[#:direction direction
#:color color
#:eye-color eye-color
#:open-mouth open-mouth]) → pict?

w : real?
h : real?
direction : (or/c ’left ’right) = ’left
color : (or/c string? (is-a?/c color%)) = "blue"
eye-color : (or/c string? (is-a?/c color%) #f) = "black"
open-mouth : (or/c boolean? real?) = #f

Creates a fish swimming either ’left or ’right. If eye-color is #f, no eye is drawn.

The open-mouth argument can be either #f (mouth closed), #t (mouth fully open), or a
number: 0.0 is closed, 1.0 is fully open, and numbers in between are partially open.

(jack-o-lantern size
[pumpkin-color
face-color]) → pict?

size : real?
pumpkin-color : (or/c string? (is-a?/c color%)) = "orange"
face-color : (or/c string? (is-a?/c color%)) = "black"

Creates a jack-o-lantern; use the same pumpkin and face color to get a plain pumpkin. The
size determines the width.

(angel-wing w h left?) → pict?
w : real?
h : real?
left? : any/c

Creates an angel wing, left or right, or any size. The color and pen width for drawing the
wing outline is the current one.

(desktop-machine scale [style]) → pict?
scale : real?
style : (listof symbol?) = null

Produces a picture of ancient desktop computer. The scale argument scales the size relative

27

to the base size of 120 by 115.

The style can include any of the following:

• ’plt — include a Racket logo on the machine’s screen

• ’binary — put 1s and 0s on the machine’s screen

• ’devil — like ’binary, and also give the machine horns and a tail

2.7.2 Balloon Annotations

(require slideshow/balloon)

The slideshow/balloon library provides functions for creating and placing cartoon-
speech balloons.

(wrap-balloon pict
spike
dx
dy

[color
corner-radius]) → balloon?

pict : pict?
spike : (or/c ’n ’s ’e ’w ’ne ’se ’sw ’nw)
dx : real?
dy : real?
color : (or/c string? (is-a?/c color%)) = balloon-color
corner-radius : (and/c real? (not/c negative?)) = 32

Superimposes pict on top of a balloon that wraps it.

The spike argument indicates the corner from which a spike protrudes from the balloon
(i.e., the spike that points to whatever the balloon is about). For example, ’n means “north,”,
which is a spike in the top middle of the balloon.

The dx and dy arguments specify how far the spike should protrude. For a ’w spike, dx
should be negative, etc.

The color argument is the background color for the balloon.

The corner-radius argument determines the radius of the cicle used to roun the balloon’s
corners. As usual, if it is less than 1, then it acts as a ratio of the balloon’s width or height.

The result is a balloon, not a pict. The balloon-pict function extracts a pict whose bound-
ing box does not include the spike, but includes the rest of the image, and the balloon-

28

point-x and balloon-point-y functions extract the location of the spike point. More
typically, the pin-balloon function is used to add a balloon to a pict.

(pip-wrap-balloon pict
spike
dx
dy

[color
corner-radius]) → pict?

pict : pict?
spike : (or/c ’n ’s ’e ’w ’ne ’se ’sw ’nw)
dx : real?
dy : real?
color : (or/c string? (is-a?/c color%)) = balloon-color
corner-radius : (and/c real? (not/c negative?)) = 32

Like wrap-balloon, but produces a zero-sized pict suitable for use with pin-over.

(pin-balloon balloon base x y) → pict?
balloon : balloon?
base : pict?
x : real?
y : real?

(pin-balloon balloon base at-pict find) → pict?
balloon : balloon?
base : pict?
at-pict : pict-path?
find : (pict? pict-path? . -> . (values real? real?))

Superimposes the pict in balloon onto base to produce a new pict. The balloon is posi-
tioned so that its spike points to the location specified by either x and y (numbers) or at the
position determined by combining base and at-pict with find . The find function uses
its arguments like lt-find.

The resulting pict has the same bounding box, descent, and ascent as base , even if the
balloon extends beyond the bounding box.

(balloon w h corner-radius spike dx dy [color]) → balloon?
w : real?
h : real?
corner-radius : (and/c real? (not/c negative?))
spike : (or/c ’n ’s ’e ’w ’ne ’se ’sw ’nw)
dx : real?
dy : real?

29

color : (or/c string? (is-a?/c color%)) = balloon-color

Creates a balloon, much like wrap-balloon except that the balloon’s width is w and its
height is h .

(balloon? v) → boolean?
v : any/c

(make-balloon pict x y) → balloon?
pict : pict?
x : real?
y : real?

(balloon-pict balloon) → pict?
balloon : balloon?

(balloon-point-x balloon) → real?
balloon : balloon?

(balloon-point-y balloon) → real?
balloon : balloon?

A balloon encapsulates a pict and the position of the balloon’s spike relative to the balloon’s
top-left corner.

balloon-color : (or/c string? (is-a?/c color%))

The default background color for a balloon.

2.7.3 Face

(require slideshow/face)

The slideshow/face library provides functions for a kind of Mr. Potatohead-style face
library.

default-face-color : (or/c string (is-a?/c color%))

Orange.

(face mood [color]) → pict?
mood : symbol?
color : (or/c string (is-a?/c color%)) = default-face-color

Returns a pict for a pre-configured face with the given base color. The built-in configurations,
selected by mood-symbol, are as follows:

30

• ’unhappy — (face* ’none ’plain #t default-face-color 6)

• ’sortof-unhappy — (face* ’worried ’grimace #t default-face-color
6)

• ’sortof-happy — (face* ’worried ’medium #f default-face-color 6)

• ’happy — (face* ’none ’plain #f default-face-color 6)

• ’happier — (face* ’none ’large #f default-face-color 3)

• ’embarrassed — (face* ’worried ’medium #f default-face-color 3)

• ’badly-embarrassed — (face* ’worried ’medium #t default-face-
color 3)

• ’unhappier — (face* ’normal ’large #t default-face-color 3)

• ’happiest — (face* ’normal ’huge #f default-face-color 0 -3)

• ’unhappiest — (face* ’normal ’huge #t default-face-color 0 -3)

• ’mad — (face* ’angry ’grimace #t default-face-color 0)

• ’mean — (face* ’angry ’narrow #f default-face-color 0)

• ’surprised — (face* ’worried ’oh #t default-face-color -4 -3 2)

(face* eyebrow-kind
mouth-kind
frown?
color
eye-inset
eyebrow-dy
pupil-dx
pupil-dy

[#:eyebrow-shading? eyebrow-on?
#:mouth-shading? mouth-on?
#:eye-shading? eye-on?
#:tongue-shading? tongue-on?
#:face-background-shading? face-bg-on?
#:teeth? teeth-on?]) → pict?

eyebrow-kind : (or/c ’none ’normal ’worried ’angry)
mouth-kind : (or/c ’plain ’smaller ’narrow ’medium ’large

’huge ’grimace ’oh ’tongue)
frown? : any/c
color : (or/c string (is-a?/c color%))
eye-inset : real?
eyebrow-dy : real?

31

pupil-dx : real?
pupil-dy : real?
eyebrow-on? : any/c = #t
mouth-on? : any/c = #t
eye-on? : any/c = #t
tongue-on? : any/c = #t
face-bg-on? : any/c = #t
teeth-on? : any/c = #t

Returns a pict for a face:

• eyebrow-kind determines the eyebrow shape.

• mouth-kind determines the mouth shape, combined with frown?.

• frown? determines whether the mouth is up or down.

• color determines the face color.

• eye-inset adjusts the eye size; recommend values are between 0 and 10.

• eyebrow-dy adjusts the eyebrows; recommend values: between -5 and 5.

• pupil-dx adjusts the pupil; recommend values are between -10 and 10.

• pupil-dy adjusts the pupil; recommend values are between -15 and 15.

The #:eyebrow-shading? through #:face-background-shading? arguments control
whether a shading is used for on a particular feature in the face (shading tends to look worse
than just anti-aliasing when the face is small). The #:teeth? argument controls the visibility
of the teeth for some mouth shapes.

2.7.4 Flash

(require slideshow/flash)

(filled-flash width
height

[n-points
spike-fraction
rotation]) → pict?

width : real?
height : real?
n-points : exact-positive-integer? = 10
spike-fraction : (real-in 0 1) = 0.25

32

rotation : real? = 0

Returns a pict for a “flash”: a spiky oval, like the yellow background that goes behind a
“new!” logo on web pages or a box of cereal.

The height and width arguments determine the size of the oval in which the flash is drawn,
prior to rotation. The actual height and width may be smaller if points is not a multiple of
4, and the actual height and width will be different if the flash is rotated.

The n-points argument determines the number of points on the flash.

The spike-fraction argument determines how big the flash spikes are compared to the
bounding oval.

The rotation argument specifies an angle in radians for counter-clockwise rotation.

The flash is drawn in the default color.

(outline-flash width
height

[n-points
spike-fraction
rotation]) → pict?

width : real?
height : real?
n-points : exact-positive-integer? = 10
spike-fraction : (real-in 0 1) = 0.25
rotation : real? = 0

Like filled-flash, but drawing only the outline.

2.8 Miscellaneous

(hyperlinkize pict) → pict?
pict : pict?

Adds an underline and blue color. The pict ’s height and descent are extended.

(scale-color factor color) → (is-a?/c color%)
factor : real?
color : (or/c string (is-a?/c color%))

Scales a color, making it brighter or darker. If the factor is less than 1, the color is darkened

33

by multiplying the RGB components by the factor. If the factor is greater tham 1, the color
is lightened by dividing the gap between the RGB components and 255 by the factor.

(color-series dc
max-step
step-delta
start
end
proc
set-pen?
set-brush?) → void?

dc : (is-a?/c dc<%>)
max-step : exact-nonnegative-integer?
step-delta : (and/c exact? positive?)
start : (or/c string? (is-a?/c color%))
end : (or/c string? (is-a?/c color%))
proc : (exact? . -> . any)
set-pen? : any/c
set-brush? : any/c

Calls a proc multiple times, gradually changing the pen and/or brush color for each call. For
the first call, the current pen and/or brush color matches start ; for the last call, it matches
racket[end]; and for intermediate calls, the color is an intermediate color.

The max-step and step-delta arguments should be exact numbers; the procedure is
called with each number from 0 to max-step inclusive using a step-delta increment.

2.9 Rendering

(dc-for-text-size) → (or/c #f (is-a?/c dc<%>))
(dc-for-text-size dc) → void?

dc : (or/c #f (is-a?/c dc<%>))

A parameter that is used to determine the bounding box of picts created with text.

The drawing context installed in this parameter need not be the same as the ultimate drawing
context, but it should measure text in the same way. Under normal circumstances, font
metrics are the same for all drawing contexts, so the default value of dc-for-text-size is
a bitmap-dc% that draws to a 1-by-1 bitmap.

(draw-pict pict dc x y) → void?
pict : pict?

34

dc : (is-a?/c dc<%>)
x : real?
y : real?

Draws pict to dc , with its top-left corner at offset (x , y).

(make-pict-drawer pict)
→ ((is-a?/c dc<%>) real? real? . -> . void?)
pict : pict?

Generates a pict-drawer procedure for multiple renderings of pict . Using the generated
procedure can be faster than repeated calls to draw-pict.

(show-pict pict [w h]) → void?
pict : pict?
w : (or/c #f exact-nonnegative-integer?) = #f
h : (or/c #f exact-nonnegative-integer?) = #f

Opens a frame that displays pict . The frame adds one method, set-pict, which takes
a pict to display. The optional w and h arguments specify a minimum size for the frame’s
drawing area.

(current-expected-text-scale) → (list real? real?)
(current-expected-text-scale scales) → void?

scales : (list real? real?)

A parameter used to refine text measurements to better match an expected scaling of the
image. The scale/improve-new-text form sets this parameter while also scaling the
resulting pict.

35

3 Making Slides

(require slideshow/base)

The slideshow/base module, which is re-provided by slideshow, provides the functions
for creating slides.

3.1 Primary Slide Functions

(slide [#:title title
#:name name
#:layout layout
#:inset inset
#:timeout secs
#:condense? condense?]
element ...) → void?

title : (or/c #f string? pict?) = #f
name : (or/c #f string?) = title
layout : (or/c ’auto ’center ’top ’tall) = ’auto
inset : slide-inset? = (make-slide-inset 0 0 0 0)
secs : (or/c #f real?) = #f
condense? : any/c = (and timeout #t)
element : (flat-rec-contract elem/c

(or/c pict?
’next ’next! ’alts ’alts∼ ’nothing
comment?
(listof (listof elem/c))))

Creates and registers a slide. See §1.2 “Staging Slides” for information about elements.

When this function is first called in non-printing mode, then the viewer window is opened.
Furthermore, each call to the function yields, so that the viewer window can be refreshed,
and so the user can step through slides.

If title is not #f, then a title is shown for the slide. The name is used in the slide-navigation
dialog, and it defaults to title .

If layout is ’top, then the content is top-aligned, with (* 2 gap-size) space between
the title and the content. The ’tall layout is similar, but with only gap-size. The ’center
mode centers the content (ignoring space consumed by the title). The ’auto mode is like
’center, except when title is non-#f and when the space between the title and content
would be less than (* 2 gap-size), in which case it behaves like ’top.

36

The inset argument supplies an inset that makes the slide-viewing window smaller when
showing the slide. See make-slide-inset for more information.

If secs argument for #:timeout is not #f, then the viewer automatically advances from
this slide to the next after secs seconds, and manual advancing skips this slide.

If condense? is ture, then in condense mode (as specified by the -c command-line flag),
the slide is not created and registered.

(t str) → pict?
str : string?

The normal way to make plain text. Returns (text str (current-main-font)
(current-font-size)).

(it str) → pict?
str : string?

The normal way to make italic text. Returns (text str (cons ’italic (current-
main-font)) (current-font-size)).

(bt str) → pict?
str : string?

The normal way to make bold text. Returns (text str (cons ’bold (current-main-
font)) (current-font-size)).

(bit str) → pict?
str : string?

Bold-italic text. Returns (text str (list* ’bold ’italic (current-main-
font)) (current-font-size)).

(tt str) → pict?
str : string?

The normal way to make monospaced text. Returns (text str ‘(bold . mod-
ern) (current-font-size)).

(rt str) → pict?
str : string?

The normal way to make serif text. Returns (text str ’roman (current-font-

37

size)).

(titlet str) → pict?
str : string?

Creates title text. Returns ((current-titlet) str).

(para [#:width width
#:align align
#:fill? fill?
#:decode? decode?]
element ...) → pict?

width : real? = (current-para-width)
align : (or/c ’left ’center ’right) = ’left
fill? : any/c = #t
decode? : any/c = #t
element : (flat-rec-contract elem/c

(or/c string? pict? (listof elem/c)))

Generates a paragraph pict that is no wider than width units, and that is exactly width units
if fill? is true. If fill? is #f, then the result pict is as wide as the widest line.

Each list within elements is spliced into the sequence of string and pict elements. If
decode? is true, then strings among the elements are decoded by performing the following
substitutions: ---→ —, --→ –, ‘‘→ “, ’’→ ”, ’→ ’. In addition, to better work with
at-exp notation, if an element is "\n", then it is dropped along with any spaces at the start
of the next element.

Strings are split at spaces for word-wrapping to fit the page, and a space is added between
elements. If a string element starts with one of the following punctuation marks (after de-
coding), however, no space is added before the string:

- ’ , . : ; ? !) ” ’

The align argument specifies how to align lines within the paragraph.

See the spacing between lines is determined by the current-line-sep parameter.

(item [#:width width
#:bullet blt
#:align align
#:fill? fill?
#:decode? decode?]
element ...) → pict?

width : real? = (current-para-width)

38

blt : pict? = bullet
align : (or/c ’left ’center ’right) = ’left
fill? : any/c = #t
decode? : any/c = #t
element : (flat-rec-contract elem/c

(or/c string? pict? (listof elem/c)))

Like para, but with blt followed by (/ gap-size 2) space appended horizontally to the
resulting paragraph, aligned with the top line. The paragraph width of blt plus (/ gap-
size 2) is subtracted from the maximum width of the paragraph.

(subitem [#:width width
#:bullet blt
#:align align
#:fill? fill?
#:decode? decode?]
element ...) → pict?

width : real? = (current-para-width)
blt : pict? = o-bullet
align : (or/c ’left ’center ’right) = ’left
fill? : any/c = #t
decode? : any/c = #t
element : (flat-rec-contract elem/c

(or/c string? pict? (listof elem/c)))

Like item, but an additional (* 2 gap-size) is subtracted from the paragraph width and
added as space to the left of the pict. Also, o-bullet is the default bullet, instead of bullet.

(clickback pict thunk) → pict?
pict : pict?
thunk : (-> any)

Creates a pict that embeds the given one, and is the same size as the given pict, but that when
clicked during a presentation calls thunk .

(size-in-pixels pict) → pict?
pict : pict?

Scales pict so that it is displayed on the screen as (pict-width pict) pixels wide and
(pict-height pict) pixels tall. The result is pict when using a 1024 by 768 display.

(make-outline name title subitems ...) → (symbol? . -> . void?)
name : (or/c symbol? (listof symbol?))

39

title : (or/c string? pict?)
subitems : (or/c #f null?

(symbol? . -> . pict?))

Returns a function that takes a symbol and generates an outline slide.

The ... above applies to all three arguments together. Each trio of arguments defines a
section for the outline:

• The section name is either a symbol or a list of symbols. When the outline func-
tion is called later to make an outline, the given symbol is compared to the section’s
symbol(s), and the section is marked as current if the symbol matches.

• The title is used as the displayed name of the section.

• The subitems are displayed when the section is active. It can be #f or null (for his-
torical reasons) if no subitems are to be displayed. Otherwise, it should be a function
that takes a symbol (the same one passed to the outline maker) and produces a pict.

(comment text ...) → comment?
text : (or/c string? pict?)

Combines strings and picts to be used as a slide element for (usually hidden) commentary.
Use the result as an argument to slide.

(comment? v) → boolean?
v : any/c

Returns #t if v is a comment produced by comment.

3.2 Slide Registration

(most-recent-slide) → slide?

Returns a slide structure that be supplied re-slide to make a copy of the slide.

(retract-most-recent-slide) → slide?

Cancels the most recently created slide, and also returns a slide structure that be supplied to
re-slide to restore the slide (usually in a later position).

40

(re-slide slide [pict]) → void?
slide : slide?
pict : pict? = (blank)

Re-inserts a slide, lt-superimposeing the given additional pict .

(slide? v) → boolean?
v : any/c

Returns #t if v is a slide produced by most-recent-slide or retract-most-recent-
slide.

3.3 Viewer Control

(start-at-recent-slide) → void?

Sets the starting slide for the talk to the most recently created slide. If this function is used
multiple times, the last use overrides the earlier uses.

(enable-click-advance! on?) → void?
on? : any/c

Enables or disables slide advance as a result of a mouse click.

(set-use-background-frame! on?) → void?
on? : any/c

Enables or disables the creation of a background frame, which is typically useful only when
make-slide-inset is used are active. The last enable/disable before the first slide regis-
tration takes effect once and for all.

(set-page-numbers-visible! on?) → void?
on? : any/c

Determines whether slide numbers are initially visible in the viewer.

(current-page-number-font) → (is-a?/c font%)
(current-page-number-font font) → void?

font : (is-a?/c font%)

41

Parameter that determines the font used to draw the page number (if visible).

(current-page-number-color) → (or/c string? (is-a?/c color%))
(current-page-number-color color) → void?

color : (or/c string? (is-a?/c color%))

Parameter that determines the color used to draw the page number (if visible).

(current-page-number-adjust) → (-> number? string? string?)
(current-page-number-adjust proc) → void?

proc : (-> number? string? string?)

Parameter that controls the precise text that appears to indicate the page numbers (if visible).
The input to the function is the default string and the slide number, and the result is what is
drawn in the bottom right corner. The default parameter value just returns its first argument.

3.4 Constants and Layout Variables

gap-size : 24

A width commonly used for layout.

bullet : pict?

A filled bullet used by default by item.

o-bullet : pict?

A hollow bullet used by default by subitem.

client-w

Produces the width of the display area, minus margins. The result of the form changes if
the margin is adjusted via set-margin!.

client-h

Produces the height of the display area, minus margins, but including the title area). The
result of the form changes if the margin is adjusted via set-margin!.

42

full-page

Produces an empty pict that is the same size as the client area, which is like (blank
client-w client-h).

titleless-page

Produces an empty pict that is the same size as the client area minus the title area in
’top layout mode, which is like (blank client-w (- client-h title-h (* 2 gap-
size))).

margin

Produces a number that corresponds to the current margin, which surrounds every side of
the slide. The client area for a slide corresponds to the display area (which is always 1024
by 768) minus this margin on each side. The default margin is 20.

The margin can be adjusted via set-margin!.

title-h

Produces a number that corresponds to the height of a title created by titlet.

If titlet is changed via the current-titlet parameter, the title height should be updated
via set-title-h!.

printing? : boolean?

The value is #t if slides are being generated for printed output, #f for normal on-screen
display. Printing mode is normally triggered via the --print or --ps command-line flag.

condense? : boolean?

The value is #t if slides are being generated in condensed mode, #f for normal mode.
Condensed mode is normally triggered via the --condense command-line flag.

3.5 Configuration

(current-font-size) → exact-nonnegative-integer?
(current-font-size n) → void?

43

n : exact-nonnegative-integer?

Parameter that determines he font size used by t, para, etc. The default size is 32.

(current-main-font) → text-style/c
(current-main-font style) → void?

style : text-style/c

Parameter that determines the font size used by t, para, etc. The default is platform-specific;
possible initial values include ’swiss, "Verdana", and "Gill Sans".

(current-line-sep) → exact-nonnegative-integer?
(current-line-sep n) → void?

n : exact-nonnegative-integer?

Parameter that controls the amount of space used between lines by para, item, and
subitem.

(current-para-width) → exact-nonnegative-integer?
(current-para-width n) → void?

n : exact-nonnegative-integer?

Parameter that controls the width of a pict created by para, item, and subitem.

(current-title-color) → (or/c string? (is-a?/c color%))
(current-title-color color) → void?

color : (or/c string? (is-a?/c color%))

Parameter used by the default current-titlet to colorize the title. The default is
"black".

(current-slide-assembler) → ((or/c string? #f)
exact-nonnegative-integer?
pict?
. -> .
pict?)

(current-slide-assembler proc) → void?
proc : ((or/c string? #f)

exact-nonnegative-integer?
pict?
. -> .
pict?)

44

Parameter whose value is a function for assembling slide content into a single pict; the
assembling function takes a string for the title (or #f), a separation for the title (if any) and
pict, and a pict for the slide content (not counting the title).

The result is of the assembler is ct-superimposed with the client area, but the result pict
might draw outside the client region to paint the screen margins, too.

The default assembler uses titlet to turn a title string (if any) to a pict. See also current-
titlet and set-title-h!,.

The slide assembler is not responsible for adding page numbers to the slide; that job belongs
to the viewer. See also current-page-number-font, current-page-number-color,
and set-page-numbers-visible!.

(current-titlet) → (string? . -> . pict?)
(current-titlet proc) → void?

proc : (string? . -> . pict?)

Parameter to configure titlet. The default is

(lambda (s)
(colorize (text s (current-main-font) 40)

(current-title-color)))

If this parameter is changed such that the result is a different height, then set-title-h!
should be called to update the value produced by title-h, titleless-page, etc.

(set-margin! amt) → void?
amt : real?

Changes the margin that surrounds the client area. See also margin.

(set-title-h! amt) → void?
amt : real?

Changes the expected height of a title, which adjusts title-h, client-h, full-page, and
titleless-page.

(make-slide-inset left-inset
top-inset
right-inset
bottom-inset) → slide-inset?

left-inset : exact-nonnegative-integer?
top-inset : exact-nonnegative-integer?

45

right-inset : exact-nonnegative-integer?
bottom-inset : exact-nonnegative-integer?

Creates a slide inset, which describes a number of pixels to inset the viewer for a slide on
each side.

(slide-inset? v) → boolean?
v : any/c

Returns #t if v is a slide inset created by make-slide-inset, #f otherwise.

3.6 Pict-Staging Helper

(require slideshow/step)

The slideshow/step library provides syntax for breaking a complex slide into steps that
are more complex than can be handled with ’next and ’alts in a slide sequence.

(with-steps (id ...) body ...)

Evaluates the bodys once for each id , skipping an id if its name ends with ∼ and
condense? is true. The results of the last body for each iteration are collected into a list,
which is the result of the with-steps form.

Within the bodys, several keywords are bound non-hygienically (using the first body ’s lex-
ical context):

• (only? id) — returns #t during the id step (i.e., during the evaluation of the bodys
for id), #f otherwise.

• (vonly id) — returns the identity function during the id step, ghost otherwise.

• (only id then-expr) returns the result of then-expr during the id step, values
otherwise.

• (only id then-expr else-expr) returns the result of then-expr during the id
step, the result of else-expr otherwise.

• (before? id) — returns #t before the id step, #f starting for the id and afterward.

• (vbefore id), (before id then-expr), or (before id then-expr else-
expr) — analogous to vonly and only.

• (after? id) — returns #t after the id step, #f through the id step.

46

• (vafter id), (after id then-expr), or (after id then-expr else-
expr) — analogous to vonly and only.

• (between? a-id b-id) — returns #t starting from the a-id step through the b-
id step, #f otherwise.

• (vbetween a-id b-id), (between a-id b-id then-expr), or (between a-
id b-id then-expr else-expr) — analogous to vonly and only.

• (between-excel? a-id b-id) — returns #t starting from the a-id step through
steps before the b-id step, #f for the b-id step and afterward.

• (vbetween-excl a-id b-id), (between-excl a-id b-id then-expr), or
(between-excl a-id b-id then-expr else-expr) — analogous to vonly
and only.

(with-steps∼ (id ...) body ...)

Like with-steps, but when condense? is true, then expr is evaluated only for the last id
(independent of whether the name fo the last id name ends in ∼).

3.7 Slides to Picts

(require slideshow/slides-to-picts)

(get-slides-as-picts path
width
height
condense?

[stop-after]) → (listof pict?)
path : path-string?
width : real?
height : real?
condense? : any/c
stop-after : (or/c #f exact-nonnegative-integer?) = #f

Executes the Slideshow program indicated by path in a fresh namespace, and returns a
list of picts for the slides. Each pict has the given width and height , and condense?
determines whether the Slideshow program is executed in condense mode.

If stop-after is not #f, then the list is truncated after stop-after slides are converted to
picts.

47

4 Typesetting Racket Code

(require slideshow/code)

The slideshow/code library provides utilities for typesetting Racket code as a pict.

(typeset-code stx) → pict?
stx : syntax?

Produces a pict for code in the given syntax object. The source-location information of the
syntax object determines the line breaks, line indenting, and space within a row. Empty rows
are ignored.

Beware that if you use read-syntax on a file port, you may have to turn on line counting
via port-count-lines! for the code to typeset properly. Also beware that when a source
file containing a syntax or quote-syntax form is compiled, source location information
is omitted from the compiled syntax object.

Normally, typeset-code is used through the code syntactic form, which works properly
with compilation, and that escapes to pict-producing code via unsyntax. See also define-
code.

Embedded picts within stx are used directly. Row elements are combined using and op-
erator like htl-append, so use code-align (see below) as necessary to add an ascent to
ascentless picts. More precisely, creation of a line of code uses pict-last to determine
the end point of the element most recently added to a line; the main effect is that closing
parentheses are attached in the right place when a multi-line pict is embedded in stx .

An identifier that starts with _ is italicized in the pict, and the _ is dropped, unless the code-
italic-underscore-enabled parameter is set to #f. Also, unless code-scripts-
enabled is set to #f, _ and ^ in the middle of a word create superscripts and subscripts,
respectively (like TeX); for example foo^4_ok is displayed as the identifier foo with a 4
superscript and an ok subscript.

Further, uses of certain identifiers in stx typeset specially:

• code:blank — produces a space.

• (code:comment s ...) — produces a comment block, with each s on its own line,
where each s must be a string or a pict.

• (code:line datum ...) — typesets the datum sequence, which is mostly useful
for the top-level sequence, since typeset-code accepts only one argument.

• (code:contract datum ...) — like code:line, but every datum is colored as a
comment, and a ; is prefixed to every line.

48

• (code:template datum ...) — like code:line, but a ; is prefixed to every line.

• $ — typesets as a vertical bar (for no particularly good reason).

(code datum ...)

The macro form of typeset-code. Within a datum , unsyntax can be used to escape to an
expression.

For more information, see typeset-code and define-code, since code is defined as

(define-code code typeset-code)

(current-code-font) → text-style/c
(current-code-font style) → void?

style : text-style/c

Parameter for a base font used to typeset text. The default is ‘(bold . modern). For even
more control, see current-code-tt.

(current-code-tt) → (string? . -> . pict?)
(current-code-tt proc) → void?

proc : (string? . -> . pict?)

Parameter for a one-argument procedure to turn a string into a pict, used to typeset text. The
default is

(lambda (s) (text s (current-code-font) (current-font-size)))

This procedure is not used to typeset subscripts or other items that require font changes,
where current-code-font is used directly.

(current-code-line-sep) → real?
(current-code-line-sep amt) → void?

amt : real?

A parameter that determines the spacing between lines of typeset code. The default is 2.

(current-comment-color) → (or/c string? (is-a?/c color%))
(current-comment-color color) → void?

color : (or/c string? (is-a?/c color%))

A parameter for the color of comments.

49

(current-keyword-color) → (or/c string? (is-a?/c color%))
(current-keyword-color color) → void?

color : (or/c string? (is-a?/c color%))

A parameter for the color of syntactic-form names. See current-keyword-list.

(current-id-color) → (or/c string? (is-a?/c color%))
(current-id-color color) → void?

color : (or/c string? (is-a?/c color%))

A parameter for the color of identifiers that are not syntactic form names or constants.

(current-literal-color) → (or/c string? (is-a?/c color%))
(current-literal-color color) → void?

color : (or/c string? (is-a?/c color%))

A parameter for the color of literal values, such as strings and numbers. See also current-
literal-list

(current-const-color) → (or/c string? (is-a?/c color%))
(current-const-color color) → void?

color : (or/c string? (is-a?/c color%))

A parameter for the color of constant names. See current-const-list.

(current-base-color) → (or/c string? (is-a?/c color%))
(current-base-color color) → void?

color : (or/c string? (is-a?/c color%))

A parameter for the color of everything else.

(current-reader-forms) → (listof symbol?)
(current-reader-forms syms) → void?

syms : (listof symbol?)

Parameter for a list of symbols indicating which built-in reader forms should be used. The
default is ’’quasiquote. Remove a symbol to suppress the corresponding reader output.

(code-align pict) → pict?
pict : pict?

Adjusts the ascent of pict so that its bottom aligns with the baseline for text; use this

50

function when pict has no ascent.

(current-keyword-list) → (listof string?)
(current-keyword-list names) → void?

names : (listof string?)

A list of strings to color as syntactic-form names. The default includes all of the forms
provided by racket/base and all of the forms provided by mzscheme.

(current-const-list) → (listof string?)
(current-const-list names) → void?

names : (listof string?)

A list of strings to color as constant names. The default is null.

(current-literal-list) → (listof string?)
(current-literal-list names) → void?

names : (listof string?)

A list of strings to color as literals, in addition to literals such as strings. The default is null.

racket/base-const-list : (listof string?)

A list of strings that could be used to initialize the current-const-list parameter.

mzscheme-const-list : (listof string?)

A list of strings that could be used to initialize the current-const-list parameter.

(code-colorize-enabled) → boolean?
(code-colorize-enabled on?) → void?

on? : any/c

A parameter to enable or disable all code coloring. The default is #t.

(code-colorize-quote-enabled) → boolean?
(code-colorize-quote-enabled on?) → void?

on? : any/c

A parameter to control whether under a quote is colorized as a literal (as in this documen-
tation). The default is #t.

51

(code-italic-underscore-enabled) → boolean?
(code-italic-underscore-enabled on?) → void?

on? : any/c

A parameter to control whether _-prefixed identifiers are italicized (dropping the _). The
default is #t.

(code-scripts-enabled) → boolean?
(code-scripts-enabled on?) → void?

on? : any/c

A parameter to control whether TeX-style subscripts and subscripts are recognized in an
identifier.

(define-code code-id typeset-code-id)
(define-code code-id typeset-code-id escape-id)

Defines code-id as a macro that uses typeset-code-id , which is a function with the
same input as typeset-code. The escape-id form defaults to unsyntax.

The resulting code-id syntactic form takes a sequence of datums:

(code-id datum ...)

It produces a pict that typesets the sequence. Source-location information for the datum
determines the layout of code in the resulting pict. The code-id is expanded in such a
way that source location is preserved during compilation (so typeset-code-id receives a
syntax object with source locations intact).

If a datum contains (escape-id expr)—perhaps as #,expr when escape-id is un-
syntax—then the expr is evaluated and the result datum is spliced in place of the escape-
id form in datum . If the result is not a syntax object, it is given the source location of the
escape-id form. A pict value intected this way as a datum is rendered as itself.

(define-exec-code (pict-id runnable-id string-id)
datum ...)

Binds pict-id to the result of (code datum ...), except that if an identifier _ appears
anywhere in a datum , then the identifier and the following expression are not included for
code.

Meanwhile, runnable-id is bound to a syntax object that wraps the datums in a begin.
In this case, _s are removed from the datums, but not the following expression. Thus, an
_ identifier is used to comment out an expression from the pict, but have it present in the

52

syntax object for evaluation.

The string-id is bound to a string representation of the code that is in the pict. This string
is useful for copying to the clipboard with (send the-clipboard set-clipboard-
string string-id 0).

(define-exec-code/scale scale-expr (pict-id runnable-id string-id)
datum ...)

Like define-exec-code, but with a scale to use via scale/improve-new-text when
generating the pict.

comment-color : (or/c string? (is-a?/c color%))
keyword-color : (or/c string? (is-a?/c color%))
id-color : (or/c string? (is-a?/c color%))
literal-color : (or/c string? (is-a?/c color%))

For backward compatibility, the default values for current-comment-color, etc.

(code-pict-bottom-line-pict pict) → (or/c pict? #f)
pict : pict?

The same as pict-last, provided for backward compatibility.

(pict->code-pict pict bl-pict) → pict?
pict : pict?
bl-pict : (or/c pict? #f)

Mainly for backward compatibility: returns (if bl-pict (use-last pict (or
(pict-last bl-pict) bl-pict))).

53

5 Animations

(require slideshow/play)

The slideshow/play module provides tools for generating animations as multiple, auto-
matically advanced slides.

Many of the tools are based on a function that takes a number between 0.0 and 1.0 inclusive
and produces a pict. The pict produced for the input 0.0 is the starting image of the anima-
tion, and the pict produced for 1.0 is the ending image, while intermediate values produced
intermediate images. For example,

(lambda (n)
(cellophane (t "Hello") n))

corresponds to an animation that fades in the word “Hello.”

5.1 Generating Animated Slides

(play gen
[#:steps steps
#:delay delay-secs
#:skip-first? skip-first?
#:title title
#:name name
#:layout layout]) → void?

gen : ((real-in 0.0 1.0) . -> . pict?)
steps : exact-positive-integer? = 10
delay-secs : real? = 0.05
skip-first? : any/c = #f
title : (or/c string? pict? #f

((real-in 0.0 1.0) . -> . (or/c string? pict? #f)))
= #f

name : (or/c string? #f
((real-in 0.0 1.0) . -> . (or/c string? #f)))

= title
layout : (or/c ’auto ’center ’top ’tall) = ’auto

Generates steps+1 slides by calling gen on equally-spaced values from 0.0 (inclusve) to
1.0 (exclusive). Except for the first of the slides, each slide has a timeout of delay-secs ,
so that the next slide appears automatically.

Normally, play is called via play-n, which effectively calls gen on 1.0 without a timeout

54

to complete the animation and stop the auto-advance of slides. The play-n function also
manages with multi-step animations.

If skip-first? is #f, then one fewer slide is generated, because gen is not called on 0.0.

The title , name , and layout arguments are passed on to slide, at least when title
and/or name are not functions. When title or name is a function, the function is applied
to the value used to produce the slide content, and the resulting title or name is passed on to
slide.

In condensed mode (i.e., when condense? is #t), any slide that would be registered with a
timeout is instead skipped.

(play-n gen*
[#:steps steps
#:delay delay-secs
#:skip-first? skip-first?
#:skip-last? skip-last?
#:title title
#:name name
#:layout layout]) → void?

gen* : (() (listof (real-in 0.0 1.0)) . ->* . pict?)
steps : (or/c exact-positive-integer?

(improper-listof exact-positive-integer?))
= 10

delay-secs : real? = 0.05
skip-first? : any/c = #f
skip-last? : any/c = #f
title : (or/c string? pict? #f

((real-in 0.0 1.0) . -> . (or/c string? pict? #f)))
= #f

name : (or/c string? #f
((real-in 0.0 1.0) . -> . (or/c string? #f)))

= title
layout : (or/c ’auto ’center ’top ’tall) = ’auto

Generates a sequence of slides by calling gen* with, for each of its arguments, numbers
from 0.0 to 1.0. If gen* accepts n arguments, then result is a sequence of animations with
a pause (i.e., not auto-advanced) between each of n segments.

If gen* accepts a single argument, then play-n is like play, except that gen* is also called
with 1.0 to generate a slide with no timeout. If gen* accepts multiple arguments, then slides
are generated by calling gen* with the first argument varying from 0.0 to 1.0 while all other
arguments are 0.0. Then, the first argument is held at 1.0 while the second argument varies
from 0.0 to 1.0, and so on.

For example,

55

(play-n
(lambda (n1 n2)
(cellophane (t "Hello")

(* n1 (- 1.0 n2)))))

generates an animation to fade in the word “Hello,” and then pauses for a manual advance,
and then fades “Hello” back out.

If skip-first? is #t, then the very first slide of the sequence is skipped. Similarly, if
skip-last? is #t, then the last slide of the sequence is skipped.

The steps argument controls how many steps happen in each phase on the animation. If
it is a number, then that number is used for each phase. If it is a pair of two numbers, then
the first number is used for the first phase, and the second number is used for the rest of
the phases. Similarly, if it is (cons num_1 (cons num_2 num_3)), num_1 and num_2 are
used for the first two phases and num_3 is used for the rest.

The delay-msecs, title , name , and layout arguments are passed on to play for each
of the n segments of animation.

(animate-slide element ...)
→ (() (listof (real-in 0.0 1.0)) . ->* . pict?)
element : (flat-rec-contract elem/c

(or/c pict? ’next ’alts
(listof (listof elem/c))))

Accepts slide content similar to slide with ’next and ’alts and produces a procedure
suitable for use with play-n. The result is similar to using slide, but with fades for ’next
and ’alts transitions (to better fit the style, perhaps, of surrounding animations).

5.2 Animation Helpers

(fade-pict n p1 p2 [#:combine combine]) → pict?
n : (real-in 0.0 1.0)
p1 : pict?
p2 : pict?
combine : (pict? pict? . -> . pict?) = cc-superimpose

Interpolates p1 and p2 , where the result with n as 0.0 is p1 , and the result with n as 1.0 is
p2 . For intermediate points, p1 fades out while p2 fades in as n changes from 0.0 to 1.0.
At the same time, the width and height of the generated pict are intermediate between p1
and p2 , and the relative baselines and last pict correspondingly morph within the bounding
box.

56

The combine argument determines how p1 and p2 are aligned for morphing. For example,
if p1 and p2 both contain multiple lines of text with the same line height but different number
of lines, then using ctl-superimpose would keep the ascent line in a fixed location relative
to the top of the resulting pict as the rest of the shape morphs around it.

(fade-around-pict n p1 make-p2) → pict?
n : (real-in 0.0 1.0)
p1 : pict?
make-p2 : (pict? . -> . pict?)

Similar to fade-pict, but the target is not a fixed p2 , but instead a function make-p2 that
takes a laundered ghost of p1 and places it into a larger scene. Also, p1 does not fade out
as n increases; instead, p1 is placed wherever its ghost appears in the result of make-p2 .

For example,

(lambda (n)
(fade-around-pict n

(code x)
(lambda (g) (code (+ #,x 1)))))

animates the wrapping of x with a (+ 1) form.

(slide-pict base p p-from p-to n) → pict?
base : pict?
p : pict?
p-from : pict?
p-to : pict?
n : (in-real 0.0 1.0)

Pins p onto base , sliding from p-from to p-to (which are picts within base) as n goes
from 0.0 to 1.0. The top-left locations of p-from and p-to determine the placement of
the top-left of p .

The p-from and p-to picts are typically laundered ghosts of p within base , but they
can be any picts within base .

5.3 Merging Animations

(sequence-animations gen ...)
→ ((real-in 0.0 1.0) . ->* . pict?)
gen : ((real-in 0.0 1.0) . ->* . pict?)

57

Converts a list of gen functions into a single function that uses each gen in sequence.

(reverse-animations gen ...) → ((real-in 0.0 1.0) . ->* . pict?)
gen : ((real-in 0.0 1.0) . ->* . pict?)

Converts a list of gen functions into a single function that run (sequence-animations
gen ...) in reverse.

5.4 Stretching and Squashing Time

(fast-start n) → (in-real 0.0 1.0)
n : (in-real 0.0 1.0)

(fast-end n) → (in-real 0.0 1.0)
n : (in-real 0.0 1.0)

(fast-edges n) → (in-real 0.0 1.0)
n : (in-real 0.0 1.0)

(fast-middle n) → (in-real 0.0 1.0)
n : (in-real 0.0 1.0)

Monotonically but non-uniformly maps n with fixed points at 0.0 and 1.0.

The fast-start mapping is convex, so that

(slide-pict base p p1 p2 (fast-start n))

appears to move quickly away from p1 and then slowly as it approaches p2 , assuming that
n increases uniformly.

The fast-end mapping is concave, so that

(slide-pict base p p1 p2 (fast-start n))

appears to move slowly away from p1 and then quicly as it approaches p2 , assuming that n
increases uniformly.

The fast-edges mapping is convex at first and concave at the end, so that

(slide-pict base p p1 p2 (fast-start n))

appears to move quickly away from p1 , then more slowly, and then quickly again near p2 ,
assuming that n increases uniformly.

The fast-middle mapping is concave at first and convex at the end, so that

(slide-pict base p p1 p2 (fast-start n))

58

appears to move slowly away from p1 , then more quickly, and then slowly again near p2 ,
assuming that n increases uniformly.

(split-phase n) → (in-real 0.0 1.0) (in-real 0.0 1.0)
n : (in-real 0.0 1.0)

Splits the progression of n from 0.0 to 1.0 into a progression from (values 0.0 0.0) to
(values 1.0 0.0) and then (values 1.0 0.0) to (values 1.0 1.0).

59

Bibliography

[Findler06] Robert Bruce Findler and Matthew Flatt, “Slideshow: Functional Pre-
sentations,” Journal of Functional Programming, 16(4-5), pp. 583–
619, 2006. http://www.cs.utah.edu/plt/publications/jfp05-
ff.pdf

60

http://www.cs.utah.edu/plt/publications/jfp05-ff.pdf
http://www.cs.utah.edu/plt/publications/jfp05-ff.pdf

Index
angel-wing, 27
animate-slide, 56
Animation Helpers, 56
Animations, 54
arrow, 14
arrowhead, 14
balloon, 29
Balloon Annotations, 28
balloon-color, 30
balloon-pict, 30
balloon-point-x, 30
balloon-point-y, 30
balloon?, 30
baseless, 24
Basic Pict Constructors, 11
bit, 37
bitmap, 14
bitmap-draft-mode, 18
black-and-white, 23
blank, 11
bounding box, 9
Bounding-Box Adjusters, 23
bt, 37
bullet, 42
cb-find, 25
cb-superimpose, 19
cbl-find, 25
cbl-superimpose, 19
cc-find, 25
cc-superimpose, 19
cellophane, 22
child, 10
child-dx, 10
child-dy, 10
child-pict, 10
child-sx, 10
child-sy, 10
child?, 10
circle, 13
clickback, 39

client-h, 42
client-w, 42
clip, 22
clip-descent, 23
cloud, 26
code, 49
code-align, 50
code-colorize-enabled, 51
code-colorize-quote-enabled, 51
code-italic-underscore-enabled, 52
code-pict-bottom-line-pict, 53
code-scripts-enabled, 52
code:blank, 48
code:comment, 48
code:contract, 48
code:line, 48
code:template, 49
color-series, 34
colorize, 22
Command-line Options, 7
comment, 40
comment-color, 53
comment?, 40
condense?, 43
Configuration, 43
Constants and Layout Variables, 42
Creating Slide Presentations, 4
ct-find, 25
ct-superimpose, 19
ctl-find, 25
ctl-superimpose, 19
current-base-color, 50
current-code-font, 49
current-code-line-sep, 49
current-code-tt, 49
current-comment-color, 49
current-const-color, 50
current-const-list, 51
current-expected-text-scale, 35
current-font-size, 43
current-id-color, 50
current-keyword-color, 50

61

current-keyword-list, 51
current-line-sep, 44
current-literal-color, 50
current-literal-list, 51
current-main-font, 44
current-page-number-adjust, 42
current-page-number-color, 42
current-page-number-font, 41
current-para-width, 44
current-reader-forms, 50
current-slide-assembler, 44
current-title-color, 44
current-titlet, 45
dc, 11
dc-for-text-size, 34
default-face-color, 30
define-code, 52
define-exec-code, 52
define-exec-code/scale, 53
desktop-machine, 27
Dingbats, 26
disk, 13
Display Size and Fonts, 6
draw-pict, 34
drop-below-ascent, 24
ellipse, 13
enable-click-advance!, 41
Face, 30
face, 30
face*, 31
fade-around-pict, 57
fade-pict, 56
fast-edges, 58
fast-end, 58
fast-middle, 58
fast-start, 58
file-icon, 26
filled-ellipse, 13
filled-flash, 32
filled-rectangle, 13
filled-rounded-rectangle, 14
Flash, 32

frame, 13
full-page, 43
gap-size, 42
Generating Animated Slides, 54
get-slides-as-picts, 47
ghost, 21
hb-append, 18
hbl-append, 18
hc-append, 18
hline, 12
ht-append, 18
htl-append, 18
hyperlinkize, 33
id-color, 53
inset, 23
inset/clip, 22
it, 37
item, 38
jack-o-lantern, 27
keyword-color, 53
launder, 26
lb-find, 25
lb-superimpose, 19
lbl-find, 25
lbl-superimpose, 19
lc-find, 25
lc-superimpose, 19
lift-above-baseline, 23
linewidth, 21
literal-color, 53
lt-find, 25
lt-superimpose, 19
ltl-find, 25
ltl-superimpose, 19
make-balloon, 30
make-child, 10
make-outline, 39
make-pict, 10
make-pict-drawer, 35
make-slide-inset, 45
Making Pictures, 9
Making Slides, 36

62

margin, 43
Merging Animations, 57
Miscellaneous, 33
More Pict Constructors, 26
most-recent-slide, 40
Mr. Potatohead, 30
mzscheme-const-list, 51
o-bullet, 42
outline-flash, 33
panorama, 24
para, 38
pict, 10
Pict Combiners, 18
Pict Datatype, 9
Pict Drawing Adjusters, 21
Pict Finders, 25
pict->code-pict, 53
pict-ascent, 10
pict-children, 10
pict-descent, 10
pict-draw, 10
pict-height, 10
pict-last, 10
pict-panbox, 10
pict-path?, 26
Pict-Staging Helper, 46
pict-width, 10
pict?, 10
pin-arrow-line, 16
pin-arrows-line, 17
pin-balloon, 29
pin-line, 15
pin-over, 20
pin-under, 20
pip-arrow-line, 15
pip-arrows-line, 15
pip-line, 15
pip-wrap-balloon, 29
play, 54
play-n, 55
Primary Slide Functions, 36
Printing, 7

printing?, 43
racket/base-const-list, 51
rb-find, 26
rb-superimpose, 19
rbl-find, 26
rbl-superimpose, 19
rc-find, 25
rc-superimpose, 19
re-slide, 41
rectangle, 13
refocus, 24
Rendering, 34
retract-most-recent-slide, 40
reverse-animations, 58
rounded-rectangle, 14
rt, 37
rt-find, 25
rt-superimpose, 19
rtl-find, 25
rtl-superimpose, 19
scale, 21
scale-color, 33
scale/improve-new-text, 23
sequence-animations, 57
set-margin!, 45
set-page-numbers-visible!, 41
set-title-h!, 45
set-use-background-frame!, 41
show-pict, 35
size-in-pixels, 39
slide, 36
Slide Basics, 4
Slide Registration, 40
slide-inset?, 46
slide-pict, 57
slide?, 41
Slides to Picts, 47
slideshow, 1
slideshow/balloon, 28
slideshow/base, 36
slideshow/code, 48
slideshow/face, 30

63

slideshow/flash, 32
slideshow/pict, 9
slideshow/play, 54
slideshow/slides-to-picts, 47
slideshow/start, 7
slideshow/step, 46
Slideshow: Racket Figure and Presentation

Tools, 1
split-phase, 59
Staging Slides, 5
standard-fish, 27
start-at-recent-slide, 41
Stretching and Squashing Time, 58
struct:child, 10
struct:pict, 10
subitem, 39
t, 37
table, 20
text, 12
text-style/c, 18
title-h, 43
titleless-page, 43
titlet, 38
tt, 37
typeset-code, 48
Typesetting Racket Code, 48
use-last, 24
use-last*, 24
vc-append, 18
Viewer Control, 41
vl-append, 18
vline, 13
vr-append, 18
with-steps, 46
with-steps∼, 47
wrap-balloon, 28

64

	1 Creating Slide Presentations
	1.1 Slide Basics
	1.2 Staging Slides
	1.3 Display Size and Fonts
	1.4 Command-line Options
	1.5 Printing

	2 Making Pictures
	2.1 Pict Datatype
	2.2 Basic Pict Constructors
	2.3 Pict Combiners
	2.4 Pict Drawing Adjusters
	2.5 Bounding-Box Adjusters
	2.6 Pict Finders
	2.7 More Pict Constructors
	2.7.1 Dingbats
	2.7.2 Balloon Annotations
	2.7.3 Face
	2.7.4 Flash

	2.8 Miscellaneous
	2.9 Rendering

	3 Making Slides
	3.1 Primary Slide Functions
	3.2 Slide Registration
	3.3 Viewer Control
	3.4 Constants and Layout Variables
	3.5 Configuration
	3.6 Pict-Staging Helper
	3.7 Slides to Picts

	4 Typesetting Racket Code
	5 Animations
	5.1 Generating Animated Slides
	5.2 Animation Helpers
	5.3 Merging Animations
	5.4 Stretching and Squashing Time

	Index

