
Continue: Web Applications in Racket
Version 5.2.1

Danny Yoo <dyoo@cs.wpi.edu>
and Jay McCarthy <jay@cs.byu.edu>

February 2, 2012

How do we make dynamic web applications? In this tutorial, we show how to use Racket
to achieve this goal. We explain how to start up a web server, how to generate dynamic
web content, and how to interact with the user. Our working example will be a simple web
journal—a “blog.”

This tutorial is intended for students who have read enough of How to Design Programs
to know how to use structures, higher-order functions, the local syntax, and a little bit of
mutation.

1

mailto:dyoo@cs.wpi.edu
mailto:jay@cs.byu.edu
http://www.htdp.org/

1 Getting Started

Everything you need in this tutorial is provided in Racket; we will be using the DrRacket
module language.

Enter the following into DrRacket’s Definitions window, then press the Run button.

#lang web-server/insta

(define (start request)

(response/xexpr

'(html

(head (title "My Blog"))

(body (h1 "Under construction")))))

If a web browser comes up with an “Under Construction” page, then clap your hands with
delight, because you’ve built your first web application! We haven’t yet gotten it to do much,
but we’ll get there. For now, press the Stop button to shut the server down.

2

http://racket-lang.org/

2 The Application

We want to motivate this tutorial by showing you how to develop a blog. Users of the blog
should be able to create new posts and add comments to existing posts. We’ll approach
the task iteratively, pointing out one or two pitfalls along the way. The game plan will be
approximately as follows:

• Show a static list of posts.

• Allow a user to add new posts to the system.

• Extend the model to let a user add comments to a post.

• Allow all users to share the same set of posts.

• Serialize our data structures to disk.

By the end of the tutorial, we’ll have a simple blogging application up and running.

3

3 Basic Blog

We begin by defining the necessary data structures. A post is:

(struct post (title body))

(struct post (title body))

title : string?

body : string?

Exercise. Make a few examples of posts.

Next we define a blog to be simply a list of posts:

blog : (listof post?)

Here, then, is a very simple example of a blog:

(define BLOG (list (post "First Post!"

"Hey, this is my first post!")))

Now let’s get our web application to show it.

4

4 Rendering HTML

When a web browser visits our blog’s URL, the browser constructs a request structure and
sends it across the network to our application. We need a function, which we’ll call start,
to consume such requests and produce responses to them. One basic kind of response is
to show an HTML page; this is done by the function response/xexpr, which takes an
X-expression representing the desired HTML. An X-expression is defined as

(define xexpr/c

(flat-rec-contract

xexpr

(or/c string?

(cons/c symbol? (listof xexpr))

(cons/c symbol?

(cons/c (listof (list/c symbol? string?))

(listof xexpr))))))

and the following examples illustrate how natural it is to use X-expressions to represent
HTML.

The first alternative in xexpr/c is string?. For example, the HTML hello is
represented as "hello". To guarantee valid HTML, strings are automatically es-
caped when output. Thus, the X-expression "Unfinished tag" is rendered as
the HTML Unfinished tag, and not as Unfinished tag. Similarly,
"<i>Finished\ntag</i>" is rendered as <i>Finished tag</i>, and
not as <i>Finished tag</i>.

The second alternative in xexpr/c is the recursive contract (cons/c symbol? (listof

xexpr)). For example, the HTML <p>This is an example</p> is represented by the
X-expression

'(p "This is an example").

And finally, the third alternative in xexpr/c allows for parameters in HTML tags. As ex-
amples, Past is represented by

'(a ((href "link.html")) "Past")

and <p>This is <div class="emph">another</div> example.</p> is represented
by

'(p "This is " (div ((class "emph")) "another") " example.").

We could also have produced these X-expressions “manually,” using cons and list, but that
can get notationally heavy. For example, the following Racket expressions both evaluate to
the same X-expression:

5

(list 'html (list 'head (list 'title "Some title"))

(list 'body (list 'p "This is a simple static page.")))

'(html (head (title "Some title"))

(body (p "This is a simple static page.")))

But the latter is much easier to read and type, because it uses a leading forward quote mark
to express the list structure concisely. This is how to construct static html responses with
aplomb! (For more on the extended list abbreviation form, see Section 13 of How to Design
Programs.)

It turns out, however, that this simple kind of list abbreviation cannot produce web content
that is dynamic. For if we try to inject expressions into an X-expression constructed by
simple list abbreviation, those expressions will be treated as part of the list structure, literally!
What we need instead is a notation that gives us the convenience of quoted list abbreviations,
but that also allows us to treat portions of the list structure as normal expressions. That is,
we would like to define a template whose placeholders can be expressed easily and filled in
dynamically.

Racket provides this templating functionality, in the form of a notation called quasiquote.
In quasiquotation a list is abbreviated not with a leading forward quote but with a leading
back quote. If we wish any subexpression of this backquoted list to be evaluated normally
(“unquoted”), then all we have to do is place a comma in front that subexpression. For
example:

; render-greeting: string -> response

; Consumes a name, and produces a dynamic response.

(define (render-greeting a-name)

(response/xexpr

`(html (head (title "Welcome"))

(body (p ,(string-append "Hello " a-name))))))

Exercise. Write a function that consumes a post and produces an X-expression representing
that content.

render-post : (post? . -> . xexpr/c)

As an example, we want:

(render-post (post "First post!" "This is a first post."))

to produce:

6

http://htdp.org/2003-09-26/Book/curriculum-Z-H-17.html#node_chap_13
http://htdp.org/
http://htdp.org/

'(div ((class "post")) "First post!" (p "This is a first post."))

Exercise. Revise render-post to show the number of comments attached to a post.

————

We will sometimes want to embed a list of X-expressions into another list that acts as a
template. For example, given the list of X-expressions '((li "Larry") (li "Curly")

(li "Moe")), we may want to create the single X-expression

'(ul (li "Larry") (li "Curly") (li "Moe"))

This can’t be done using plain unquoting, because placing a comma in front of '("Larry"
"Curly" "Moe") will unquote the entire list, yielding the malformed expression '(ul

((li "Larry") (li "Curly") (li "Moe"))).

Instead, we must splice the list in, like so: `(ul ,@((li "Larry") (li "Curly") (li

"Moe"))). The unquote-splicing form, ,@expression, allows us conveniently to splice a
list of X-expression fragments into a larger template list. To generalize the example, here
are two helper functions that convert any list of X-expressions into one X-expression repre-
senting an unordered, itemized HTML list:

; render-as-itemized-list: (listof xexpr) -> xexpr

; Consumes a list of items, and produces a rendering

; as an unordered list.

(define (render-as-itemized-list fragments)

`(ul ,@(map render-as-item fragments)))

; render-as-item: xexpr -> xexpr

; Consumes an xexpr, and produces a rendering

; as a list item.

(define (render-as-item a-fragment)

`(li ,a-fragment))

Exercise. Write a function render-posts that consumes a (listof post?) and produces
an X-expression for that content.

render-posts : ((listof post?) . -> . xexpr/c)

As examples,

(render-posts empty)

should produce

7

'(div ((class "posts")))

and

(render-posts (list (post "Post 1" "Body 1")

(post "Post 2" "Body 2")))

should produce

'(div ((class "posts"))

(div ((class "post")) "Post 1" "Body 1")

(div ((class "post")) "Post 2" "Body 2"))

————

Now that we have the render-posts function handy, let’s revisit our web application and
change our start function to return an interesting response.

#lang web-server/insta

; A blog is a (listof post)

; and a post is a (make-post title body)

(struct post (title body))

; BLOG: blog

; The static blog.

(define BLOG

(list (post "First Post" "This is my first post")

(post "Second Post" "This is another post")))

; start: request -> response

; Consumes a request, and produces a page that displays all of the

; web content.

(define (start request)

(render-blog-page BLOG request))

; render-blog-page: blog request -> response

; Consumes a blog and a request, and produces an HTML page

; of the content of the blog.

(define (render-blog-page a-blog request)

(response/xexpr

`(html (head (title "My Blog"))

(body (h1 "My Blog")

,(render-posts a-blog)))))

8

; render-post: post -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

(define (render-post a-post)

`(div ((class "post"))

,(post-title a-post)

(p ,(post-body a-post))))

; render-posts: blog -> xexpr

; Consumes a blog, produces an xexpr fragment

; of all its posts.

(define (render-posts a-blog)

`(div ((class "posts"))

,@(map render-post a-blog)))

If we press Run, we should see the blog posts in our web browser.

9

5 Inspecting Requests

Our application is still a bit too static: we build the page dynamically, but we don’t yet
provide a way for the user to create new posts. Let’s tackle that now, by providing a form
that lets the user add a new blog entry. When the user presses the submit button, we want
the new post to appear at the top of the page.

We haven’t yet done anything with the request object that we’ve been passing around. As
you may already have guessed, it isn’t really supposed to be ignored so much! When a
user fills out a web form and submits it, the user’s browser constructs a new request that
contains the form’s values, which we can extract on our end, using the function request-

bindings:

request-bindings : (request? . -> . bindings?)

To extract a single web form value from a set of bindings, Racket provides the function
extract-binding/single, which also takes the name of the corresponding field of the
web form:

extract-binding/single : (symbol? bindings? . -> . string?)

To verify that a set of bindings contains a particular field, use exists-binding?:

exists-binding? : (symbol? bindings? . -> . boolean?)

With these functions, we can design functions that consume requests and respond to them
usefully.

Exercise. Write a function can-parse-post? that consumes a set of bindings. It should
produce #t if there exist bindings both for the symbols 'title and 'body, and #f otherwise.

can-parse-post? : (bindings? . -> . boolean?)

Exercise. Write a function parse-post that consumes a set of bindings. Assuming that
the bindings structure has values for the symbols 'title and 'body, parse-post should
produce a post containing those values.

parse-post : (bindings? . -> . post?)

Now that we have these helper functions, we can extend our web application to handle form
input. We’ll add a small form at the bottom of the web page, and we’ll adjust our program
to handle the addition of new posts. So our new start method will check that the request
has a parsable post, will then try to extend the set of posts, and will finally display the new
set of blog posts:

10

#lang web-server/insta

; A blog is a (listof post)

; and a post is a (make-post title body)

(struct post (title body))

; BLOG: blog

; The static blog.

(define BLOG

(list (post "First Post" "This is my first post")

(post "Second Post" "This is another post")))

; start: request -> response

; Consumes a request and produces a page that displays all of the

; web content.

(define (start request)

(local [(define a-blog

(cond [(can-parse-post? (request-bindings request))

(cons (parse-post (request-bindings request))

BLOG)]

[else

BLOG]))]

(render-blog-page a-blog request)))

; can-parse-post?: bindings -> boolean

; Produces true if bindings contains values for 'title and 'body.

(define (can-parse-post? bindings)

(and (exists-binding? 'title bindings)

(exists-binding? 'body bindings)))

; parse-post: bindings -> post

; Consumes a bindings, and produces a post out of the bindings.

(define (parse-post bindings)

(post (extract-binding/single 'title bindings)

(extract-binding/single 'body bindings)))

; render-blog-page: blog request -> response

; Consumes a blog and a request, and produces an HTML page

; of the content of the blog.

(define (render-blog-page a-blog request)

(response/xexpr

`(html (head (title "My Blog"))

(body

(h1 "My Blog")

11

,(render-posts a-blog)

(form

(input ((name "title")))

(input ((name "body")))

(input ((type "submit"))))))))

; render-post: post -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

(define (render-post a-post)

`(div ((class "post"))

,(post-title a-post)

(p ,(post-body a-post))))

; render-posts: blog -> xexpr

; Consumes a blog, produces an xexpr fragment

; of all its posts.

(define (render-posts a-blog)

`(div ((class "posts"))

,@(map render-post a-blog)))

This solution seems to work, but it has a flaw! Try to add two new posts. What happens?

12

6 Advanced Control Flow

For the moment, let’s ignore the admittedly huge problem of having a blog that accepts only
one new blog entry. Don’t worry, we’ll fix this!

The more pressing problem right now is a higher-level one: although we do have a function,
start, that responds to requests directed at our application’s URL, that function has begun
to take on too much responsibility. In particular, start now handles two different kinds of
requests: those for showing a blog, and those for adding new blog posts. It has become a
kind of traffic cop — a dispatcher — for all of our web application’s behaviors, including
any new functionality we may want to add later. Life would be easier for start (and for us)
if different kinds of requests were instead directed automatically to different functions. Is
this possible in Racket?

Yes! The web server library provides a function, send/suspend/dispatch, that allows us
to create URLs that direct requests aimed at them to specific functions in our application.
We demonstrate with a dizzying example. In a new file, enter the following in DrRacket’s
Definitions window.

#lang web-server/insta

; start: request -> response

(define (start request)

(phase-1 request))

; phase-1: request -> response

(define (phase-1 request)

(local [(define (response-generator embed/url)

(response/xexpr

`(html

(body (h1 "Phase 1")

(a ((href ,(embed/url phase-2)))

"click me!")))))]

(send/suspend/dispatch response-generator)))

; phase-2: request -> response

(define (phase-2 request)

(local [(define (response-generator embed/url)

(response/xexpr

`(html

(body (h1 "Phase 2")

(a ((href ,(embed/url phase-1)))

"click me!")))))]

(send/suspend/dispatch response-generator)))

This is a web application that goes round and round. When a user first visits the application,

13

the user starts off in phase-1. The generated page has a hyperlink that, when clicked,
continues to phase-2. The user can click back, and falls back to phase-1, and the cycle
repeats.

Let’s look more closely at the send/suspend/dispatch mechanism.
send/suspend/dispatch consumes a response-generating function and gives it an-
other function, called embed/url, that we’ll use to build special URLs. What makes these
URLs special is this: when a web browser visits one of them, our web application restarts,
not from start, but from the handler that we associate with the URL. In the handler
phase-1, the use of embed/url associates the link with the handler phase-2, and vice
versa.

We can be even more sophisticated about the handlers associated with embed/url. Because
a handler is just a request-consuming function, it can be defined within a local and so can
see all the other variables in the scope of its definition. Here’s another loopy example:

#lang web-server/insta

; start: request -> response

(define (start request)

(show-counter 0 request))

; show-counter: number request -> doesn't return

; Displays a number that's hyperlinked: when the link is pressed,

; returns a new page with the incremented number.

(define (show-counter n request)

(local [(define (response-generator embed/url)

(response/xexpr

`(html (head (title "Counting example"))

(body

(a ((href ,(embed/url next-number-handler)))

,(number->string n))))))

(define (next-number-handler request)

(show-counter (+ n 1) request))]

(send/suspend/dispatch response-generator)))

This example shows that we can accumulate the results of an interaction. Even though the
user starts off by visiting and seeing zero, the handlers produced by next-number-handler
continue the interaction, accumulating a larger and larger number.

We’re going in circles now, so let’s move forward and return to our blog application. We’ll
adjust the form’s action so that it directs a submission request to a URL associated with a
separate handler, called insert-post-handler.

#lang web-server/insta

14

; A blog is a (listof post)

; and a post is a (make-post title body)

(struct post (title body))

; BLOG: blog

; The static blog.

(define BLOG

(list (post "First Post" "This is my first post")

(post "Second Post" "This is another post")))

; start: request -> doesn't return

; Consumes a request and produces a page that displays all of the

; web content.

(define (start request)

(render-blog-page BLOG request))

; parse-post: bindings -> post

; Extracts a post out of the bindings.

(define (parse-post bindings)

(post (extract-binding/single 'title bindings)

(extract-binding/single 'body bindings)))

; render-blog-page: blog request -> doesn't return

; Consumes a blog and a request, and produces an HTML page

; of the content of the blog.

(define (render-blog-page a-blog request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "My Blog"))

(body

(h1 "My Blog")

,(render-posts a-blog)

(form ((action

,(make-url insert-post-handler)))

(input ((name "title")))

(input ((name "body")))

(input ((type "submit"))))))))

(define (insert-post-handler request)

(render-blog-page

(cons (parse-post (request-bindings request))

a-blog)

request))]

(send/suspend/dispatch response-generator)))

15

; render-post: post -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

(define (render-post a-post)

`(div ((class "post"))

,(post-title a-post)

(p ,(post-body a-post))))

; render-posts: blog -> xexpr

; Consumes a blog, produces an xexpr fragment

; of all its posts.

(define (render-posts a-blog)

`(div ((class "posts"))

,@(map render-post a-blog)))

Note that the structure of the render-blog-page function is very similar to that of our last
show-counter example. The user can finally add and see multiple posts to the blog.

Unfortunately, our design still suffers from a problem, which can be seen by adding a few
posts to the system, and then visiting the web application’s URL in a new browser window.
What happens when you try this?

16

7 Share and Share Alike

The problem with our application is that each browser window keeps track of its own distinct
blog. For most people, this defeats the purpose of a blog, which is to share with others! When
we insert a new post, rather than creating a new blog value, we’d like to make a structural
change to the existing blog. (How to Design Programs, Chapter 41). So let’s add mutation
to the mix.

There’s one small detail we need to touch on: by default, structures in the web-server

language are immutable. To gain access to structure mutators, we’ll need to override this
default, by adding the #:mutable keyword to some of our structure definitions. In particular,
if we want to allow changes to a blog, we must change our definition of the blog structure to
the following:

(struct blog (posts) #:mutable)

(struct blog (posts))

posts : (listof post?)

A mutable structure provides functions that change its fields; in this case, we are provided
the structure mutator set-blog-posts!, which allows us to change the posts of a blog:

set-blog-posts! : (blog? (listof post?) . -> . void)

Exercise. Write a function blog-insert-post!

blog-insert-post! : (blog? post? . -> . void)

whose intended side effect is to extend a blog’s post.

————

We must now modify the web application to use our new data representation of a blog. Since
the blog is now referred to by the global variable BLOG, it no longer needs to be passed as a
parameter to handlers like render-blog-page. Here is our updated web application, after
adjustments that incorporate insert-blog-post!, and after a bit of variable cleanup:

#lang web-server/insta

; A blog is a (make-blog posts)

; where posts is a (listof post)

(struct blog (posts) #:mutable)

17

http://www.htdp.org/

; and post is a (make-post title body)

; where title is a string, and body is a string

(struct post (title body))

; BLOG: blog

; The initial BLOG.

(define BLOG

(blog

(list (post "First Post" "This is my first post")

(post "Second Post" "This is another post"))))

; blog-insert-post!: blog post -> void

; Consumes a blog and a post, adds the post at the top of the

blog.

(define (blog-insert-post! a-blog a-post)

(set-blog-posts! a-blog

(cons a-post (blog-posts a-blog))))

; start: request -> doesn't return

; Consumes a request and produces a page that displays

; all of the web content.

(define (start request)

(render-blog-page request))

; parse-post: bindings -> post

; Extracts a post out of the bindings.

(define (parse-post bindings)

(post (extract-binding/single 'title bindings)

(extract-binding/single 'body bindings)))

; render-blog-page: request -> doesn't return

; Produces an HTML page of the content of the BLOG.

(define (render-blog-page request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "My Blog"))

(body

(h1 "My Blog")

,(render-posts)

(form ((action

,(make-url insert-post-handler)))

(input ((name "title")))

(input ((name "body")))

(input ((type "submit"))))))))

(define (insert-post-handler request)

18

(blog-insert-post!

BLOG (parse-post (request-bindings request)))

(render-blog-page request))]

(send/suspend/dispatch response-generator)))

; render-post: post -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

(define (render-post a-post)

`(div ((class "post"))

,(post-title a-post)

(p ,(post-body a-post))))

; render-posts: -> xexpr

; Consumes a blog, produces an xexpr fragment

; of all its posts.

(define (render-posts)

`(div ((class "posts"))

,@(map render-post (blog-posts BLOG))))

Now visit the blog from two separate browser windows and add posts from each of them.
You’ll be glad to see that both windows share the same blog!

19

8 Extending the Model

Next, let’s extend the application so that a post can include a list of comments. The data
definition becomes:

(struct post (title body comments)

#:mutable)

title : string?

body : string?

comments : (listof string?)

Exercise. Write the updated data structure definition for posts. Make sure to make the
structure mutable, since we intend to add comments to posts.

Exercise. Make up a few examples of posts.

Exercise. Define a function post-add-comment!

post-add-comment! : (post? string? . -> . void)

whose intended side effect is to add a new comment to the end of the post’s list of comments.

Exercise. Adjust render-post so that the produced fragment will include the comments in
an itemized list.

Exercise. Because we’ve extended post to include comments, you also need to adjust other,
post-manipulating parts of the application, such as uses of post.

————

Now that we’ve adjusted our functions to accommodate post’s new structure, our web ap-
plication should be runnable. The user may even see some of the fruits of our labor: if
the initial BLOG has a post with comments, the user should now see them. On the other
hand, something is obviously missing: the user is given no interface through which to add
comments!

20

9 Breaking Up the Display

How should we incorporate comments more fully into the user’s web experience? Seeing
all the posts and comments on one page may be a bit overwhelming, so maybe we should
hold off on showing the comments on the main blog page. Instead, let’s make a secondary
“detail” view of a post and present its comments there. Accordingly, the top-level view of a
blog will show only the title and body of a post, and the number of its comments.

So now we need a way to visit a post’s detail page. One way to do this is to hyperlink a
post’s title: if one wishes to see a post’s detail page, one should only have to click the post’s
title. In that post’s detail page, we can even add a form to let the user add new comments.
The page flow of this new version of our web application is then depicted simply as:

Each node (bubble) in this diagram corresponds to a request-consuming handler. As you
might expect, we’ll be using send/suspend/dispatch some more. Every arrow in the
diagram will be realized as a URL that we generate with embed/url.

This approach has a slightly messy consequence. Previously we rendered the list of posts
without any hyperlinks. But since any function that generates a special dispatching URL
must use embed/url to do so, we’ll need to adjust render-posts and render-post to
consume and use embed/url itself when it makes those hyperlinked titles.

We now have a pretty sophisticated web application, one that permits the creation of posts
and the addition of comments. Here is what it looks like:

#lang web-server/insta

; A blog is a (make-blog posts)

; where posts is a (listof post)

(struct blog (posts) #:mutable)

; and post is a (make-post title body comments)

; where title is a string, body is a string,

21

; and comments is a (listof string)

(struct post (title body comments) #:mutable)

; BLOG: blog

; The initial BLOG.

(define BLOG

(blog

(list (post "First Post"

"This is my first post"

(list "First comment!"))

(post "Second Post"

"This is another post"

(list)))))

; blog-insert-post!: blog post -> void

; Consumes a blog and a post, adds the post at the top of the

blog.

(define (blog-insert-post! a-blog a-post)

(set-blog-posts! a-blog

(cons a-post (blog-posts a-blog))))

; post-insert-comment!: post string -> void

; Consumes a post and a comment string. As a side-efect,

; adds the comment to the bottom of the post's list of comments.

(define (post-insert-comment! a-post a-comment)

(set-post-comments!

a-post

(append (post-comments a-post) (list a-comment))))

; start: request -> doesn't return

; Consumes a request, and produces a page that displays

; all of the web content.

(define (start request)

(render-blog-page request))

; render-blog-page: request -> doesn't return

; Produces an HTML page of the content of the

; BLOG.

(define (render-blog-page request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "My Blog"))

(body

(h1 "My Blog")

,(render-posts make-url)

22

(form ((action

,(make-url insert-post-handler)))

(input ((name "title")))

(input ((name "body")))

(input ((type "submit"))))))))

; parse-post: bindings -> post

; Extracts a post out of the bindings.

(define (parse-post bindings)

(post (extract-binding/single 'title bindings)

(extract-binding/single 'body bindings)

(list)))

(define (insert-post-handler request)

(blog-insert-post!

BLOG (parse-post (request-bindings request)))

(render-blog-page request))]

(send/suspend/dispatch response-generator)))

; render-post-detail-page: post request -> doesn't return

; Consumes a post and request, and produces a detail page

; of the post. The user will be able to insert new comments.

(define (render-post-detail-page a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Post Details"))

(body

(h1 "Post Details")

(h2 ,(post-title a-post))

(p ,(post-body a-post))

,(render-as-itemized-list

(post-comments a-post))

(form ((action

,(make-url insert-comment-handler)))

(input ((name "comment")))

(input ((type "submit"))))))))

(define (parse-comment bindings)

(extract-binding/single 'comment bindings))

(define (insert-comment-handler a-request)

(post-insert-comment!

a-post (parse-comment (request-bindings a-request)))

(render-post-detail-page a-post a-request))]

23

(send/suspend/dispatch response-generator)))

; render-post: post (handler -> string) -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

; The fragment contains a link to show a detailed view of the

post.

(define (render-post a-post make-url)

(local [(define (view-post-handler request)

(render-post-detail-page a-post request))]

`(div ((class "post"))

(a ((href ,(make-url view-post-handler)))

,(post-title a-post))

(p ,(post-body a-post))

(div ,(number->string (length (post-comments a-post)))

" comment(s)"))))

; render-posts: (handler -> string) -> xexpr

; Consumes a make-url, and produces an xexpr fragment

; of all its posts.

(define (render-posts make-url)

(local [(define (render-post/make-url a-post)

(render-post a-post make-url))]

`(div ((class "posts"))

,@(map render-post/make-url (blog-posts BLOG)))))

; render-as-itemized-list: (listof xexpr) -> xexpr

; Consumes a list of items, and produces a rendering as

; an unorderered list.

(define (render-as-itemized-list fragments)

`(ul ,@(map render-as-item fragments)))

; render-as-item: xexpr -> xexpr

; Consumes an xexpr, and produces a rendering

; as a list item.

(define (render-as-item a-fragment)

`(li ,a-fragment))

But it still suffers from a problem: once in a post-detail-page, the only way for the user
to return to the blog is to use the Back button! That’s disruptive, and it might allow the user
get “stuck” in a dark corner of the web application. To solve this problem, let’s improve the
page flow.

24

10 Adding a Back Button

Perhaps we should simply add a BACK link from the render-post-detail-page, one
that returns us to the top-level blog. Here’s the corresponding page flow diagram:

Exercise. Adjust render-post-detail-page to include another link that goes back to
render-blog-page.

And since a user may have a change of heart about a comment, let’s enrich the flow to give
the user a chance to back out of submitting one.

25

Note that, although this change may seem complicated, it doesn’t affect the general shape of
our handlers:

#lang web-server/insta

; A blog is a (make-blog posts)

; where posts is a (listof post)

(struct blog (posts) #:mutable)

; and post is a (make-post title body comments)

; where title is a string, body is a string,

; and comments is a (listof string)

(struct post (title body comments) #:mutable)

; BLOG: blog

; The initial BLOG.

(define BLOG

(blog

(list (post "First Post"

"This is my first post"

(list "First comment!"))

(post "Second Post"

"This is another post"

(list)))))

26

; blog-insert-post!: blog post -> void

; Consumes a blog and a post, adds the post at the top of the

blog.

(define (blog-insert-post! a-blog a-post)

(set-blog-posts! a-blog

(cons a-post (blog-posts a-blog))))

; post-insert-comment!: post string -> void

; Consumes a post and a comment string. As a side-efect,

; adds the comment to the bottom of the post's list of comments.

(define (post-insert-comment! a-post a-comment)

(set-post-comments!

a-post

(append (post-comments a-post) (list a-comment))))

; start: request -> doesn't return

; Consumes a request and produces a page that displays

; all of the web content.

(define (start request)

(render-blog-page request))

; render-blog-page: request -> doesn't return

; Produces an HTML page of the content of the

; BLOG.

(define (render-blog-page request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "My Blog"))

(body

(h1 "My Blog")

,(render-posts make-url)

(form ((action

,(make-url insert-post-handler)))

(input ((name "title")))

(input ((name "body")))

(input ((type "submit"))))))))

; parse-post: bindings -> post

; Extracts a post out of the bindings.

(define (parse-post bindings)

(post (extract-binding/single 'title bindings)

(extract-binding/single 'body bindings)

(list)))

27

(define (insert-post-handler request)

(blog-insert-post!

BLOG (parse-post (request-bindings request)))

(render-blog-page request))]

(send/suspend/dispatch response-generator)))

; render-post-detail-page: post request -> doesn't return

; Consumes a post and produces a detail page of the post.

; The user will be able to either insert new comments

; or go back to render-blog-page.

(define (render-post-detail-page a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Post Details"))

(body

(h1 "Post Details")

(h2 ,(post-title a-post))

(p ,(post-body a-post))

,(render-as-itemized-list

(post-comments a-post))

(form ((action

,(make-url insert-comment-handler)))

(input ((name "comment")))

(input ((type "submit"))))

(a ((href ,(make-url back-handler)))

"Back to the blog")))))

(define (parse-comment bindings)

(extract-binding/single 'comment bindings))

(define (insert-comment-handler request)

(render-confirm-add-comment-page

(parse-comment (request-bindings request))

a-post

request))

(define (back-handler request)

(render-blog-page request))]

(send/suspend/dispatch response-generator)))

; render-confirm-add-comment-page :

; comment post request -> doesn't return

; Consumes a comment that we intend to add to a post, as well

; as the request. If the user follows through, adds a comment

28

; and goes back to the display page. Otherwise, goes back to

; the detail page of the post.

(define (render-confirm-add-comment-page a-comment a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Add a Comment"))

(body

(h1 "Add a Comment")

"The comment: " (div (p ,a-comment))

"will be added to "

(div ,(post-title a-post))

(p (a ((href ,(make-url yes-handler)))

"Yes, add the comment."))

(p (a ((href ,(make-url cancel-handler)))

"No, I changed my mind!"))))))

(define (yes-handler request)

(post-insert-comment! a-post a-comment)

(render-post-detail-page a-post request))

(define (cancel-handler request)

(render-post-detail-page a-post request))]

(send/suspend/dispatch response-generator)))

; render-post: post (handler -> string) -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

; The fragment contains a link to show a detailed view of the

post.

(define (render-post a-post make-url)

(local [(define (view-post-handler request)

(render-post-detail-page a-post request))]

`(div ((class "post"))

(a ((href ,(make-url view-post-handler)))

,(post-title a-post))

(p ,(post-body a-post))

(div ,(number->string (length (post-comments a-post)))

" comment(s)"))))

; render-posts: (handler -> string) -> xexpr

; Consumes a make-url, produces an xexpr fragment

; of all its posts.

(define (render-posts make-url)

(local [(define (render-post/make-url a-post)

(render-post a-post make-url))]

29

`(div ((class "posts"))

,@(map render-post/make-url (blog-posts BLOG)))))

; render-as-itemized-list: (listof xexpr) -> xexpr

; Consumes a list of items, and produces a rendering as

; an unorderered list.

(define (render-as-itemized-list fragments)

`(ul ,@(map render-as-item fragments)))

; render-as-item: xexpr -> xexpr

; Consumes an xexpr, and produces a rendering

; as a list item.

(define (render-as-item a-fragment)

`(li ,a-fragment))

30

11 Decorating With Style!

Our web application is now functionally complete. But it’s visually lacking, so let’s try
to improve its appearance. One way to add visual panache to our web pages is to use a
cascading style sheet. For example, if we’d like to make all of our paragraphs green, we
might insert the following style declaration into a response.

'(style ((type "text/css")) "p { color: green }")

It is tempting to embed such declarations directly into our responses. But our source file
is already quite busy, and, as a matter of principle, we should separate logical representation
from visual presentation. So, rather than embed the .css in the HTML response directly, let’s
instead add a link reference to a separate .css file.

Up till now, all the content produced by our web application has come from a response-
generating handler. But this dynamic generation of HTML is not necessary for content that
doesn’t change. Examples of such static resources include images, documents, and .css files.
To serve them alongside our web applications, we inform the web server of a directory that
we have created specially for static files. The function static-files-path,

static-files-path : (path-string? -> void)

tells the web server to look in the given path whenever it receives a URL that looks like a
request for a static resource.

Exercise. Create a simple web application called "test-static.rkt" with the following
content:

#lang web-server/insta

(define (start request)

(response/xexpr

'(html (head (title "Testing"))

(link ((rel "stylesheet")

(href "/test-static.css")

(type "text/css")))

(body (h1 "Testing")

(h2 "This is a header")

(p "This is " (span ((class "hot")) "hot") ".")))))

(static-files-path "htdocs")

Make a subdirectory called "htdocs", rooted in the same directory as the "test-

static.rkt" source. Just to see that we can serve this .css page, create a very simple
.css file "test-static.css" in "htdocs/" with the following content:

body {

31

margin-left: 10%;

margin-right: 10%;

}

p { font-family: sans-serif }

h1 { color: green }

h2 { font-size: small }

span.hot { color: red }

Now run the application and look at the browser’s output. A Spartan web page should appear,
but it should still have some color in its cheeks.

————

Exercise. Improve the presentation of the blog web application by writing an external style
sheet that suits your tastes. Adjust all of the HTML response handlers to include a link to
the style sheet.

32

12 The Double Submit Bug

Our application has yet another subtle problem. To see it, bring the blog application up
again, and add a post. Then reload the page. Reload the page again.

What you are observing is the well known “double-submit” problem. Whenever a user
presses Reload, a request is sent to our application, and the problem is that some requests
make the application mutate data structures.

A common technique that web developers use to dodge the double-submission problem is to
redirect state-mutating requests to a different URL, one that is safe to reload. This trick is
implemented in Racket by the function redirect/get:

redirect/get : (-> request?)

Its immediate side effect is to force the user’s browser to follow a redirection to a safe URL,
and it gives us back that fresh new request.

For example, consider a toy application that lets the user add names to a roster:

#lang web-server/insta

; A roster is a (make-roster names)

; where names is a list of string.

(struct roster (names) #:mutable)

; roster-add-name!: roster string -> void

; Given a roster and a name, adds the name

; to the end of the roster.

(define (roster-add-name! a-roster a-name)

(set-roster-names! a-roster

(append (roster-names a-roster)

(list a-name))))

(define ROSTER (roster '("kathi" "shriram" "dan")))

; start: request -> doesn't return

(define (start request)

(show-roster request))

; show-roster: request -> doesn't return

(define (show-roster request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Roster"))

(body (h1 "Roster")

33

,(render-as-itemized-list

(roster-names ROSTER))

(form ((action

,(make-url add-name-handler)))

(input ((name "a-name")))

(input ((type "submit"))))))))

(define (parse-name bindings)

(extract-binding/single 'a-name bindings))

(define (add-name-handler request)

(roster-add-name!

ROSTER (parse-name (request-bindings request)))

(show-roster request))]

(send/suspend/dispatch response-generator)))

; render-as-itemized-list: (listof xexpr) -> xexpr

(define (render-as-itemized-list fragments)

`(ul ,@(map render-as-item fragments)))

; render-as-item: xexpr -> xexpr

(define (render-as-item a-fragment)

`(li ,a-fragment))

This application suffers from the same problem as our blog does: if the user adds a name,
and then presses reload, then the same name will be added twice.

We can fix this by changing a single expression; can you find it below?

#lang web-server/insta

; A roster is a (make-roster names)

; where names is a list of string.

(struct roster (names) #:mutable)

; roster-add-name!: roster string -> void

; Given a roster and a name, adds the name

; to the end of the roster.

(define (roster-add-name! a-roster a-name)

(set-roster-names! a-roster

(append (roster-names a-roster)

(list a-name))))

(define ROSTER (roster '("kathi" "shriram" "dan")))

; start: request -> doesn't return

(define (start request)

34

(show-roster request))

; show-roster: request -> doesn't return

(define (show-roster request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Roster"))

(body (h1 "Roster")

,(render-as-itemized-list

(roster-names ROSTER))

(form ((action

,(make-url add-name-handler)))

(input ((name "a-name")))

(input ((type "submit"))))))))

(define (parse-name bindings)

(extract-binding/single 'a-name bindings))

(define (add-name-handler request)

(roster-add-name!

ROSTER (parse-name (request-bindings request)))

(show-roster (redirect/get)))]

(send/suspend/dispatch response-generator)))

; render-as-itemized-list: (listof xexpr) -> xexpr

(define (render-as-itemized-list fragments)

`(ul ,@(map render-as-item fragments)))

; render-as-item: xexpr -> xexpr

(define (render-as-item a-fragment)

`(li ,a-fragment))

So the double-submit bug is easy to prevent: whenever you have handlers that mutate the
state of the system, use redirect/get when sending back your response.

Exercise. Use redirect/get to fix the double-submit bug in the blog application.

With these minor fixes, our blog application now looks like this:

#lang web-server/insta

; A blog is a (make-blog posts)

; where posts is a (listof post)

(struct blog (posts) #:mutable)

; and post is a (make-post title body comments)

; where title is a string, body is a string,

35

; and comments is a (listof string)

(struct post (title body comments) #:mutable)

; BLOG: blog

; The initial BLOG.

(define BLOG

(blog

(list (post "First Post"

"This is my first post"

(list "First comment!"))

(post "Second Post"

"This is another post"

(list)))))

; blog-insert-post!: blog post -> void

; Consumes a blog and a post, adds the post at the top of the

blog.

(define (blog-insert-post! a-blog a-post)

(set-blog-posts! a-blog

(cons a-post (blog-posts a-blog))))

; post-insert-comment!: post string -> void

; Consumes a post and a comment string. As a side-efect,

; adds the comment to the bottom of the post's list of comments.

(define (post-insert-comment! a-post a-comment)

(set-post-comments!

a-post

(append (post-comments a-post) (list a-comment))))

; start: request -> doesn't return

; Consumes a request and produces a page that displays

; all of the web content.

(define (start request)

(render-blog-page request))

; render-blog-page: request -> doesn't return

; Produces an HTML page of the content of the

; BLOG.

(define (render-blog-page request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "My Blog"))

(body

(h1 "My Blog")

,(render-posts make-url)

36

(form ((action

,(make-url insert-post-handler)))

(input ((name "title")))

(input ((name "body")))

(input ((type "submit"))))))))

; parse-post: bindings -> post

; Extracts a post out of the bindings.

(define (parse-post bindings)

(post (extract-binding/single 'title bindings)

(extract-binding/single 'body bindings)

(list)))

(define (insert-post-handler request)

(blog-insert-post!

BLOG (parse-post (request-bindings request)))

(render-blog-page (redirect/get)))]

(send/suspend/dispatch response-generator)))

; render-post-detail-page: post request -> doesn't return

; Consumes a post and produces a detail page of the post.

; The user will be able to either insert new comments

; or go back to render-blog-page.

(define (render-post-detail-page a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Post Details"))

(body

(h1 "Post Details")

(h2 ,(post-title a-post))

(p ,(post-body a-post))

,(render-as-itemized-list

(post-comments a-post))

(form ((action

,(make-url insert-comment-handler)))

(input ((name "comment")))

(input ((type "submit"))))

(a ((href ,(make-url back-handler)))

"Back to the blog")))))

(define (parse-comment bindings)

(extract-binding/single 'comment bindings))

(define (insert-comment-handler request)

(render-confirm-add-comment-page

37

(parse-comment (request-bindings request))

a-post

request))

(define (back-handler request)

(render-blog-page request))]

(send/suspend/dispatch response-generator)))

; render-confirm-add-comment-page :

; comment post request -> doesn't return

; Consumes a comment that we intend to add to a post, as well

; as the request. If the user follows through, adds a comment

; and goes back to the display page. Otherwise, goes back to

; the detail page of the post.

(define (render-confirm-add-comment-page a-comment a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Add a Comment"))

(body

(h1 "Add a Comment")

"The comment: " (div (p ,a-comment))

"will be added to "

(div ,(post-title a-post))

(p (a ((href ,(make-url yes-handler)))

"Yes, add the comment."))

(p (a ((href ,(make-url cancel-handler)))

"No, I changed my mind!"))))))

(define (yes-handler request)

(post-insert-comment! a-post a-comment)

(render-post-detail-page a-post (redirect/get)))

(define (cancel-handler request)

(render-post-detail-page a-post request))]

(send/suspend/dispatch response-generator)))

; render-post: post (handler -> string) -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

; The fragment contains a link to show a detailed view of the

post.

(define (render-post a-post make-url)

(local [(define (view-post-handler request)

(render-post-detail-page a-post request))]

38

`(div ((class "post"))

(a ((href ,(make-url view-post-handler)))

,(post-title a-post))

(p ,(post-body a-post))

(div ,(number->string (length (post-comments a-post)))

" comment(s)"))))

; render-posts: (handler -> string) -> xexpr

; Consumes a make-url, produces an xexpr fragment

; of all its posts.

(define (render-posts make-url)

(local [(define (render-post/make-url a-post)

(render-post a-post make-url))]

`(div ((class "posts"))

,@(map render-post/make-url (blog-posts BLOG)))))

; render-as-itemized-list: (listof xexpr) -> xexpr

; Consumes a list of items, and produces a rendering as

; an unorderered list.

(define (render-as-itemized-list fragments)

`(ul ,@(map render-as-item fragments)))

; render-as-item: xexpr -> xexpr

; Consumes an xexpr, and produces a rendering

; as a list item.

(define (render-as-item a-fragment)

`(li ,a-fragment))

39

13 Abstracting the Model

If we “turn off the lights” by closing the program, the state of our application disappears
into the ether. How do we get our ephemeral state to stick around? Before we tackle this
problem, note that it does not apply to all of the application’s state, for we have no long-term
interest in things like requests. What we do care about saving is our model of the blog.

If we look closely at our web application program, we see a seam between the model of our
blog, and the web application that uses that model. Let’s isolate the model; it’s all the stuff
near the top:

(struct blog (posts) #:mutable)

(struct post (title body comments) #:mutable)

(define BLOG ...)

(define (blog-insert-post! ...) ...)

(define (post-insert-comment! ...) ...)

In realistic web applications, the model and the web application are separated by a wall of
abstraction. In theory, this separation allows us to make isolated changes in future without
breaking the entire system. So let’s start separating. First we’ll rip the model out into a
separate file, and then we’ll look into making the model persistent.

Create a new file called "model.rkt" with the following content.

#lang racket

; A blog is a (make-blog posts)

; where posts is a (listof post)

(struct blog (posts) #:mutable)

; and post is a (make-post title body comments)

; where title is a string, body is a string,

; and comments is a (listof string)

(struct post (title body comments) #:mutable)

; BLOG: blog

; The initial BLOG.

(define BLOG

(blog

(list (post "First Post"

"This is my first post"

(list "First comment!"))

(post "Second Post"

"This is another post"

(list)))))

40

; blog-insert-post!: blog post -> void

; Consumes a blog and a post, adds the post at the top of the

blog.

(define (blog-insert-post! a-blog a-post)

(set-blog-posts!

a-blog

(cons a-post (blog-posts a-blog))))

; post-insert-comment!: post string -> void

; Consumes a post and a comment string. As a side-efect,

; adds the comment to the bottom of the post's list of comments.

(define (post-insert-comment! a-post a-comment)

(set-post-comments!

a-post

(append (post-comments a-post) (list a-comment))))

(provide (all-defined-out))

This is essentially a cut-and-paste of the lines we identified as our model. It’s written in
the racket language because the model shouldn’t need to worry about web-server stuff.
There’s one additional expression that looks a little odd at first:

(provide (all-defined-out))

It tells Racket to grant other files access to everything that’s defined in the "model.rkt"

file.

Now we go back to our web application and change it to use this model, by replacing the
deleted model code with the expression

(require "model.rkt")

which hooks our web application module up to the "model.rkt" module.

#lang web-server/insta

(require "model.rkt")

; start: request -> doesn't return

; Consumes a request and produces a page that displays

; all of the web content.

(define (start request)

(render-blog-page request))

41

; render-blog-page: request -> doesn't return

; Produces an HTML page of the content of the

; BLOG.

(define (render-blog-page request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "My Blog"))

(body

(h1 "My Blog")

,(render-posts make-url)

(form ((action

,(make-url insert-post-handler)))

(input ((name "title")))

(input ((name "body")))

(input ((type "submit"))))))))

; parse-post: bindings -> post

; Extracts a post out of the bindings.

(define (parse-post bindings)

(post (extract-binding/single 'title bindings)

(extract-binding/single 'body bindings)

(list)))

(define (insert-post-handler request)

(blog-insert-post!

BLOG (parse-post (request-bindings request)))

(render-blog-page (redirect/get)))]

(send/suspend/dispatch response-generator)))

; render-post-detail-page: post request -> doesn't return

; Consumes a post and produces a detail page of the post.

; The user will be able to either insert new comments

; or go back to render-blog-page.

(define (render-post-detail-page a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Post Details"))

(body

(h1 "Post Details")

(h2 ,(post-title a-post))

(p ,(post-body a-post))

,(render-as-itemized-list

(post-comments a-post))

(form ((action

,(make-url insert-comment-handler)))

42

(input ((name "comment")))

(input ((type "submit"))))

(a ((href ,(make-url back-handler)))

"Back to the blog")))))

(define (parse-comment bindings)

(extract-binding/single 'comment bindings))

(define (insert-comment-handler request)

(render-confirm-add-comment-page

(parse-comment (request-bindings request))

a-post

request))

(define (back-handler request)

(render-blog-page request))]

(send/suspend/dispatch response-generator)))

; render-confirm-add-comment-page :

; comment post request -> doesn't return

; Consumes a comment that we intend to add to a post, as well

; as the request. If the user follows through, adds a comment

; and goes back to the display page. Otherwise, goes back to

; the detail page of the post.

(define (render-confirm-add-comment-page a-comment a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Add a Comment"))

(body

(h1 "Add a Comment")

"The comment: " (div (p ,a-comment))

"will be added to "

(div ,(post-title a-post))

(p (a ((href ,(make-url yes-handler)))

"Yes, add the comment."))

(p (a ((href ,(make-url cancel-handler)))

"No, I changed my mind!"))))))

(define (yes-handler request)

(post-insert-comment! a-post a-comment)

(render-post-detail-page a-post (redirect/get)))

(define (cancel-handler request)

(render-post-detail-page a-post request))]

43

(send/suspend/dispatch response-generator)))

; render-post: post (handler -> string) -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

; The fragment contains a link to show a detailed view of the

post.

(define (render-post a-post make-url)

(local [(define (view-post-handler request)

(render-post-detail-page a-post request))]

`(div ((class "post"))

(a ((href ,(make-url view-post-handler)))

,(post-title a-post))

(p ,(post-body a-post))

(div ,(number->string (length (post-comments a-post)))

" comment(s)"))))

; render-posts: (handler -> string) -> xexpr

; Consumes a make-url, produces an xexpr fragment

; of all its posts.

(define (render-posts make-url)

(local [(define (render-post/make-url a-post)

(render-post a-post make-url))]

`(div ((class "posts"))

,@(map render-post/make-url (blog-posts BLOG)))))

; render-as-itemized-list: (listof xexpr) -> xexpr

; Consumes a list of items, and produces a rendering as

; an unorderered list.

(define (render-as-itemized-list fragments)

`(ul ,@(map render-as-item fragments)))

; render-as-item: xexpr -> xexpr

; Consumes an xexpr, and produces a rendering

; as a list item.

(define (render-as-item a-fragment)

`(li ,a-fragment))

44

14 A Persistent Model

Now that the model resides in a separate module, we can more easily modify it and, in
particular, can make it persistent.

The first step is to make the model structures serializable. Earlier, we made the structures
mutable by adding #:mutable to their definitions. Similarly, when the keyword #:prefab

is added to the definition of a structure, Racket understands that the structure can be “pre-
viously fabricated,” that is, created before the program started running—which is exactly
what we want when restoring the blog data from disk. Our blog structure definition now
looks like:

(struct blog (posts) #:mutable #:prefab)

blog structures can now be read from the outside world with read and written to it with
write. But we also need to make sure that everything inside a blog structure is also (tran-
sitively) marked as #:prefab.

Exercise. Write the new structure definition for posts.

At this point, we can read and write the blog to disk. So let’s do it. First, we’ll add to the
model a path pointing to where the blog resides on disk:

(struct blog (home posts)

#:mutable)

home : string?

posts : (listof post?)

Notice that we will need to convert the path into a string. Why didn’t we just make the blog
structure contain paths? Answer: They can’t be used with read and write.

Exercise. Write the new structure definition for blogs.

Next we create a function that allows our application to initialize the blog:

; initialize-blog! : path? -> blog

; Reads a blog from a path, if not present, returns default

(define (initialize-blog! home)

(local [(define (log-missing-exn-handler exn)

(blog

(path->string home)

(list (post "First Post"

"This is my first post"

(list "First comment!"))

(post "Second Post"

"This is another post"

45

(list)))))

(define the-blog

(with-handlers ([exn? log-missing-exn-handler])

(with-input-from-file home read)))]

(set-blog-home! the-blog (path->string home))

the-blog))

initialize-blog! takes a path and tries to read from it. If the path contains a blog

structure, then read will parse it, because blogs are #:prefab. If there is no file at the
path, or if the file has some spurious data, then read or with-input-from-file will throw
an exception. with-handlers supplies an exception handler that reacts to any error by
returning the default blog structure. After the-blog is bound to the newly read (or default)
structure, we set the home to the correct path.

Next we need a function to save the model to the disk:

; save-blog! : blog -> void

; Saves the contents of a blog to its home

(define (save-blog! a-blog)

(local [(define (write-to-blog)

(write a-blog))]

(with-output-to-file (blog-home a-blog)

write-to-blog

#:exists 'replace)))

save-blog! writes the model to its home; by supplying an #:exists clause to with-

output-to-file, it ensures that the old contents on disk will be overwritten.

This function can now be used to save the blog structure whenever it is modified by the user.
Since modifications are made only by the model, only blog-insert-post! and post-

insert-comment! will need to be updated.

Exercise. Change blog-insert-post! and post-insert-comment! to call save-

blog!.

————

You may have noticed a problem when trying to update post-insert-comment!: the func-
tion has no blog to pass to save-blog!. We will therefore need to give it a blog argument
and change the application appropriately. While we’re at it, let’s change blog-insert-

post! to accept the contents of the post structure, rather the structure itself. This improves
the model’s interface, by making it more abstract:

blog-insert-post! : (blog? string? string? . -> . void)

46

post-insert-comment! : (blog? post? string? . -> . void)

Exercise. Write the new definitions of blog-insert-post! and post-insert-

comment!. Remember to call save-blog!.

In the previous iteration of the model, we used (provide (all-defined-out)) to expose
all of the model’s definitions. This transgresses the principle of abstraction, which tells us
to hide implementation details like private functions and internal data structures. We’ll con-
form to that principle now, by using a form of provide that names the exposed definitions
explicitly.

For example, if we wanted to limit the module’s exposure to the functions blog-insert-
post! and post-insert-comment!, we could do this:

(provide blog-insert-post!

post-insert-comment!)

But this is exposing too little! So let’s change the provide line in the model to:

(provide blog? blog-posts

post? post-title post-body post-comments

initialize-blog!

blog-insert-post! post-insert-comment!)

Since these nine functions are all we need from the module, this degree of exposure is just
right.

————

The last step is to change the application. We need to call initialize-blog! to read in
the blog structure, and, since there is no longer a a BLOG export, we need to pass the returned
blog value around the application.

First, change start to call initialize-blog! with a path in our home directory:

(define (start request)

(render-blog-page

(initialize-blog!

(build-path (current-directory)

"the-blog-data.db"))

request))

47

Exercise. Thread the blog structure through the application appropriately to give blog-

insert-post! and post-insert-comment! the correct values. You’ll also need to change
how render-blog-page adds new posts.

————

Our model is now:

#lang racket

; A blog is a (make-blog home posts)

; where home is a string, posts is a (listof post)

(struct blog (home posts) #:mutable #:prefab)

; and post is a (make-post blog title body comments)

; where title is a string, body is a string,

; and comments is a (listof string)

(struct post (title body comments) #:mutable #:prefab)

; initialize-blog! : path? -> blog

; Reads a blog from a path, if not present, returns default

(define (initialize-blog! home)

(local [(define (log-missing-exn-handler exn)

(blog

(path->string home)

(list (post "First Post"

"This is my first post"

(list "First comment!"))

(post "Second Post"

"This is another post"

(list)))))

(define the-blog

(with-handlers ([exn? log-missing-exn-handler])

(with-input-from-file home read)))]

(set-blog-home! the-blog (path->string home))

the-blog))

; save-blog! : blog -> void

; Saves the contents of a blog to its home

(define (save-blog! a-blog)

(local [(define (write-to-blog)

(write a-blog))]

(with-output-to-file (blog-home a-blog)

write-to-blog

#:exists 'replace)))

48

; blog-insert-post!: blog string string -> void

; Consumes a blog and a post, adds the post at the top of the

blog.

(define (blog-insert-post! a-blog title body)

(set-blog-posts!

a-blog

(cons (post title body empty) (blog-posts a-blog)))

(save-blog! a-blog))

; post-insert-comment!: blog post string -> void

; Consumes a blog, a post and a comment string. As a side-efect,

; adds the comment to the bottom of the post's list of comments.

(define (post-insert-comment! a-blog a-post a-comment)

(set-post-comments!

a-post

(append (post-comments a-post) (list a-comment)))

(save-blog! a-blog))

(provide blog? blog-posts

post? post-title post-body post-comments

initialize-blog!

blog-insert-post! post-insert-comment!)

And our application is:

#lang web-server/insta

(require "model-2.rkt")

; start: request -> doesn't return

; Consumes a request and produces a page that displays

; all of the web content.

(define (start request)

(render-blog-page

(initialize-blog!

(build-path (current-directory)

"the-blog-data.db"))

request))

; render-blog-page: blog request -> doesn't return

; Produces an HTML page of the content of the

; blog.

(define (render-blog-page a-blog request)

(local [(define (response-generator make-url)

(response/xexpr

49

`(html (head (title "My Blog"))

(body

(h1 "My Blog")

,(render-posts a-blog make-url)

(form ((action

,(make-url insert-post-handler)))

(input ((name "title")))

(input ((name "body")))

(input ((type "submit"))))))))

(define (insert-post-handler request)

(define bindings (request-bindings request))

(blog-insert-post!

a-blog

(extract-binding/single 'title bindings)

(extract-binding/single 'body bindings))

(render-blog-page a-blog (redirect/get)))]

(send/suspend/dispatch response-generator)))

; render-post-detail-page: post request -> doesn't return

; Consumes a post and produces a detail page of the post.

; The user will be able to either insert new comments

; or go back to render-blog-page.

(define (render-post-detail-page a-blog a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Post Details"))

(body

(h1 "Post Details")

(h2 ,(post-title a-post))

(p ,(post-body a-post))

,(render-as-itemized-list

(post-comments a-post))

(form ((action

,(make-url insert-comment-handler)))

(input ((name "comment")))

(input ((type "submit"))))

(a ((href ,(make-url back-handler)))

"Back to the blog")))))

(define (parse-comment bindings)

(extract-binding/single 'comment bindings))

(define (insert-comment-handler request)

(render-confirm-add-comment-page

50

a-blog

(parse-comment (request-bindings request))

a-post

request))

(define (back-handler request)

(render-blog-page a-blog request))]

(send/suspend/dispatch response-generator)))

; render-confirm-add-comment-page :

; blog comment post request -> doesn't return

; Consumes a comment that we intend to add to a post, as well

; as the request. If the user follows through, adds a comment

; and goes back to the display page. Otherwise, goes back to

; the detail page of the post.

(define (render-confirm-add-comment-page a-blog a-comment

a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Add a Comment"))

(body

(h1 "Add a Comment")

"The comment: " (div (p ,a-comment))

"will be added to "

(div ,(post-title a-post))

(p (a ((href ,(make-url yes-handler)))

"Yes, add the comment."))

(p (a ((href ,(make-url cancel-handler)))

"No, I changed my mind!"))))))

(define (yes-handler request)

(post-insert-comment! a-blog a-post a-comment)

(render-post-detail-page a-blog a-

post (redirect/get)))

(define (cancel-handler request)

(render-post-detail-page a-blog a-post request))]

(send/suspend/dispatch response-generator)))

; render-post: post (handler -> string) -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

; The fragment contains a link to show a detailed view of the

post.

51

(define (render-post a-blog a-post make-url)

(local [(define (view-post-handler request)

(render-post-detail-page a-blog a-post request))]

`(div ((class "post"))

(a ((href ,(make-url view-post-handler)))

,(post-title a-post))

(p ,(post-body a-post))

(div ,(number->string (length (post-comments a-post)))

" comment(s)"))))

; render-posts: blog (handler -> string) -> xexpr

; Consumes a make-url, produces an xexpr fragment

; of all its posts.

(define (render-posts a-blog make-url)

(local [(define (render-post/make-url a-post)

(render-post a-blog a-post make-url))]

`(div ((class "posts"))

,@(map render-post/make-url (blog-posts a-blog)))))

; render-as-itemized-list: (listof xexpr) -> xexpr

; Consumes a list of items, and produces a rendering as

; an unorderered list.

(define (render-as-itemized-list fragments)

`(ul ,@(map render-as-item fragments)))

; render-as-item: xexpr -> xexpr

; Consumes an xexpr, and produces a rendering

; as a list item.

(define (render-as-item a-fragment)

`(li ,a-fragment))

————

This approach to persistence can work surprisingly well for simple applications. But as our
application’s needs grow, we will have to deal with concurrency issues, the lack of a simple
query language over our data model, etc. So, in the next section, we’ll explain how to use an
SQL database to store our blog model.

52

15 Using an SQL database

To employ an SQL database, we use the following bindings from the db library:
connection?, sqlite3-connect, table-exists?, query-exec, query-list, and
query-value. Import them by adding the following to the top of the model:

(require db)

Next, we define a relational structure for our model using the following tables:

CREATE TABLE posts (id INTEGER PRIMARY KEY, title TEXT, body TEXT)

CREATE TABLE comments (pid INTEGER, content TEXT)

Like the Racket structure, a post in the database has a title and a body, but it also has an
identifier. (Actually, the Racket structure had an identifier as well—the memory pointer—
but the database requires it to be explicit.)

As for the comments, each has some textual content and is connected to a post via identifier.
We could have chosen to serialize comments with write and add a new TEXT column to
the posts table to store the value. But a separate comments table conforms better to relational
style.

A blog structure is now simply a container for the database handle:

(struct blog (db))

db : connection?

Exercise. Write the blog structure definition. It does not need to be mutable or serializable.

We can now write the code to initialize a blog structure:

; initialize-blog! : path? -> blog?

; Sets up a blog database (if it doesn't exist)

(define (initialize-blog! home)

(define db (sqlite3-connect #:database home #:mode 'create))

(define the-blog (blog db))

(unless (table-exists? db "posts")

(query-exec db

(string-append

"CREATE TABLE posts "

"(id INTEGER PRIMARY KEY, title TEXT, body TEXT)"))

(blog-insert-post!

the-blog "First Post" "This is my first post")

(blog-insert-post!

the-blog "Second Post" "This is another post"))

53

(unless (table-exists? db "comments")

(query-exec db

"CREATE TABLE comments (pid INTEGER, content TEXT)")

(post-insert-comment!

the-blog (first (blog-posts the-blog))

"First comment!"))

the-blog)

Given the 'create flag, sqlite3-connect creates a database if one does not already exist
at the home path.

We still need to initialize the database with the table definitions and initial data. Previously
we used blog-insert-post! and post-insert-comment! for this purpose; here are their
new implementations:

; blog-insert-post!: blog? string? string? -> void

; Consumes a blog and a post, adds the post at the top of the

blog.

(define (blog-insert-post! a-blog title body)

(query-exec

(blog-db a-blog)

"INSERT INTO posts (title, body) VALUES (?, ?)"

title body))

; post-insert-comment!: blog? post string -> void

; Consumes a blog, a post and a comment string. As a side-effect,

; adds the comment to the bottom of the post's list of comments.

(define (post-insert-comment! a-blog p a-comment)

(query-exec

(blog-db a-blog)

"INSERT INTO comments (pid, content) VALUES (?, ?)"

(post-id p) a-comment))

————

Note that the SQL queries above use the SQL placeholder, ?, to perform string substi-
tution. If they had performed it with format and ∼a instead, a malicious user could
submit a post with a title like "null', 'null') and INSERT INTO accounts (user-

name,\npassword) VALUES ('ur','hacked" and get query-exec to make two IN-
SERTs instead of one. This is called an SQL injection attack.

SQL placeholders prevent such attacks by ensuring that the query is submitted as-is to
SQLite, which then parses it and applies the arguments. This approach ensures that the
arguments are treated strictly as data.

————

54

In post-insert-comment! we use post-id but we have not yet defined the new post

structure. Since the post table schema uses an integer as identifier, it would seem sufficient
to do the same for the post structure. However, a structure so defined would not indicate
which blog, and consequently which database, a post belongs to. We would thus be unable
to extract the title or body values.

The solution, of course, is to associate the blog with each post:

(struct post (blog id))

blog : blog?

id : integer?

Exercise. Write the structure definition for posts.

The only function that creates posts is blog-posts:

; blog-posts : blog -> (listof post?)

; Queries for the post ids

(define (blog-posts a-blog)

(local [(define (id->post an-id)

(post a-blog an-id))]

(map id->post

(query-list

(blog-db a-blog)

"SELECT id FROM posts"))))

query-list can be used for queries that return a single column (e.g., "SELECT id FROM

posts"), and it returns a list of that column’s values.

At this point we can write the functions that operate on posts:

; post-title : post -> string?

; Queries for the title

(define (post-title a-post)

(query-value

(blog-db (post-blog a-post))

"SELECT title FROM posts WHERE id = ?"

(post-id a-post)))

query-value is used with queries that return a single value (that is, one row and one col-
umn).

Exercise. Write the definition of post-body.

Exercise. Write the definition of post-comments. (Hint: Use blog-posts as a template,
not post-title.)

55

————

The only change that we need to make to the application is to require the new model. Note
that its interface remains unchanged!

————

Our model is now:

#lang racket

(require db)

; A blog is a (make-blog db)

; where db is an sqlite connection

(struct blog (db))

; A post is a (make-post blog id)

; where blog is a blog and id is an integer?

(struct post (blog id))

; initialize-blog! : path? -> blog?

; Sets up a blog database (if it doesn't exist)

(define (initialize-blog! home)

(define db (sqlite3-connect #:database home #:mode 'create))

(define the-blog (blog db))

(unless (table-exists? db "posts")

(query-exec db

(string-append

"CREATE TABLE posts "

"(id INTEGER PRIMARY KEY, title TEXT, body TEXT)"))

(blog-insert-post!

the-blog "First Post" "This is my first post")

(blog-insert-post!

the-blog "Second Post" "This is another post"))

(unless (table-exists? db "comments")

(query-exec db

"CREATE TABLE comments (pid INTEGER, content TEXT)")

(post-insert-comment!

the-blog (first (blog-posts the-blog))

"First comment!"))

the-blog)

; blog-posts : blog -> (listof post?)

; Queries for the post ids

(define (blog-posts a-blog)

56

(local [(define (id->post an-id)

(post a-blog an-id))]

(map id->post

(query-list

(blog-db a-blog)

"SELECT id FROM posts"))))

; post-title : post -> string?

; Queries for the title

(define (post-title a-post)

(query-value

(blog-db (post-blog a-post))

"SELECT title FROM posts WHERE id = ?"

(post-id a-post)))

; post-body : post -> string?

; Queries for the body

(define (post-body p)

(query-value

(blog-db (post-blog p))

"SELECT body FROM posts WHERE id = ?"

(post-id p)))

; post-comments : post -> (listof string?)

; Queries for the comments

(define (post-comments p)

(query-list

(blog-db (post-blog p))

"SELECT content FROM comments WHERE pid = ?"

(post-id p)))

; blog-insert-post!: blog? string? string? -> void

; Consumes a blog and a post, adds the post at the top of the

blog.

(define (blog-insert-post! a-blog title body)

(query-exec

(blog-db a-blog)

"INSERT INTO posts (title, body) VALUES (?, ?)"

title body))

; post-insert-comment!: blog? post string -> void

; Consumes a blog, a post and a comment string. As a side-efect,

; adds the comment to the bottom of the post's list of comments.

(define (post-insert-comment! a-blog p a-comment)

(query-exec

(blog-db a-blog)

57

"INSERT INTO comments (pid, content) VALUES (?, ?)"

(post-id p) a-comment))

(provide blog? blog-posts

post? post-title post-body post-comments

initialize-blog!

blog-insert-post! post-insert-comment!)

And our application is:

#lang web-server/insta

(require "model-3.rkt")

....

58

16 Using Formlets

Now let’s go back to the application code. One of our poor design choices is to have made
a loose connection between the name used to identify a form element in the rendering code,
and the name used for it in the extracting code:

; render-blog-page: blog request -> doesnt'

; Send an HTML page of the content of the

; blog.

(define (render-blog-page a-blog request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "My Blog"))

(body

(h1 "My Blog")

,(render-posts a-blog make-url)

(form ((action

,(make-url insert-post-handler)))

; "title" is used here

(input ((name "title")))

(input ((name "body")))

(input ((type "submit"))))))))

(define (insert-post-handler request)

(define bindings (request-bindings request))

(blog-insert-post!

a-blog

; And "title" is used here.

(extract-binding/single 'title bindings)

(extract-binding/single 'body bindings))

(render-blog-page a-blog (redirect/get)))]

(send/suspend/dispatch response-generator)))

The Racket Web framework provides formlets to abstract these names away, by adjusting
them automatically in the HTML, and by presenting the following interface for the display
and processing of forms:

• formlet-display takes a formlet and returns its rendering as a list of X-expressions.
This will generate unique names for its form elements.

• formlet-process takes a formlet and a request and processes the formlet, i.e., ex-
tracts the bindings from the request using the names generated by formlet-display.

59

A formlet is created using the formlet syntax. For example, here is a formlet for render-
blog-page:

; new-post-formlet : formlet (values string? string?)

; A formlet for requesting a title and body of a post

(define new-post-formlet

(formlet

(#%# ,{input-string . => . title}

,{input-string . => . body})

(values title body)))

The first argument in the formlet syntax determines how formlet-display should dis-
play the formlet. It is a quoted X-expression, with two important differences:

• #%# introduces a list of X-expressions

• ,{=> formlet id} embeds the formlet formlet as a subformlet and it attaches the
name id to the result of processing this subformlet.

For example, input-string is itself a library formlet that yields a string, and ,{=>

input-string title} embeds input-string in new-post-formlet and asso-
ciates the name title to that string.

input-string is rendered as `(input ([type "text"] [name

,fresh_name])), so (formlet-dispay new-post-formlet) is rendered
as:

(list '(input ([type "text"] [name "input_0"]))

'(input ([type "text"] [name "input_1"])))

The second argument of formlet determines how formlet-process should process the
formlet. That is, it specifies how to group and order the results of processing the formlet’s
subformlets: the identifiers on the right-hand side of => are bound to the results of processing
the subformlets.

For example, input-string is processed as (extract-binding/single fresh_name

(request-bindings request)). Thus, if request binds "input_0" to "Title" and
"input_1" to "Body", then (formlet-process new-post-formlet request) returns
(values "Title" "Body").

Finally, here is how to use new-post-formlet in render-blog-page:

; render-blog-page: blog request -> doesn't return

; Sends an HTML page of the content of the

; blog.

(define (render-blog-page a-blog request)

(local [(define (response-generator make-url)

60

(response/xexpr

`(html (head (title "My Blog"))

(body

(h1 "My Blog")

,(render-posts a-blog make-url)

(form ([action

,(make-url insert-post-handler)])

,@(formlet-display new-post-formlet)

(input ([type "submit"])))))))

(define (insert-post-handler request)

(define-values (title body)

(formlet-process new-post-formlet request))

(blog-insert-post! a-blog title body)

(render-blog-page a-blog (redirect/get)))]

(send/suspend/dispatch response-generator)))

Exercise. Write a formlet and use it in render-post-detail-page.

————

Our application is now:

#lang web-server/insta

(require web-server/formlets

"model-3.rkt")

; start: request -> doesn't return

; Consumes a request and produces a page that displays

; all of the web content.

(define (start request)

(render-blog-page

(initialize-blog!

(build-path (current-directory)

"the-blog-data.sqlite"))

request))

; new-post-formlet : formlet (values string? string?)

; A formlet for requesting a title and body of a post

(define new-post-formlet

(formlet

(#%# ,{input-string . => . title}

,{input-string . => . body})

61

(values title body)))

; render-blog-page: blog request -> doesn't return

; Produces an HTML page of the content of the

; blog.

(define (render-blog-page a-blog request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "My Blog"))

(body

(h1 "My Blog")

,(render-posts a-blog make-url)

(form ([action

,(make-url insert-post-handler)])

,@(formlet-display new-post-formlet)

(input ([type "submit"])))))))

(define (insert-post-handler request)

(define-values (title body)

(formlet-process new-post-formlet request))

(blog-insert-post! a-blog title body)

(render-blog-page a-blog (redirect/get)))]

(send/suspend/dispatch response-generator)))

; new-comment-formlet : formlet string

; A formlet for requesting a comment

(define new-comment-formlet

input-string)

; render-post-detail-page: post request -> doesn't return

; Consumes a post and produces a detail page of the post.

; The user will be able to either insert new comments

; or go back to render-blog-page.

(define (render-post-detail-page a-blog a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Post Details"))

(body

(h1 "Post Details")

(h2 ,(post-title a-post))

(p ,(post-body a-post))

,(render-as-itemized-list

(post-comments a-post))

(form ([action

,(make-url insert-comment-handler)])

62

,@(formlet-display new-comment-formlet)

(input ([type "submit"])))

(a ([href ,(make-url back-handler)])

"Back to the blog")))))

(define (insert-comment-handler request)

(render-confirm-add-comment-page

a-blog

(formlet-process new-comment-formlet request)

a-post

request))

(define (back-handler request)

(render-blog-page a-blog request))]

(send/suspend/dispatch response-generator)))

; render-confirm-add-comment-page :

; blog comment post request -> doesn't return

; Consumes a comment that we intend to add to a post, as well

; as the request. If the user follows through, adds a comment

; and goes back to the display page. Otherwise, goes back to

; the detail page of the post.

(define (render-confirm-add-comment-page a-blog a-comment

a-post request)

(local [(define (response-generator make-url)

(response/xexpr

`(html (head (title "Add a Comment"))

(body

(h1 "Add a Comment")

"The comment: " (div (p ,a-comment))

"will be added to "

(div ,(post-title a-post))

(p (a ([href ,(make-url yes-handler)])

"Yes, add the comment."))

(p (a ([href ,(make-url cancel-handler)])

"No, I changed my mind!"))))))

(define (yes-handler request)

(post-insert-comment! a-blog a-post a-comment)

(render-post-detail-page a-blog a-

post (redirect/get)))

(define (cancel-handler request)

(render-post-detail-page a-blog a-post request))]

63

(send/suspend/dispatch response-generator)))

; render-post: post (handler -> string) -> xexpr

; Consumes a post, produces an xexpr fragment of the post.

; The fragment contains a link to show a detailed view of the

post.

(define (render-post a-blog a-post make-url)

(local [(define (view-post-handler request)

(render-post-detail-page a-blog a-post request))]

`(div ([class "post"])

(a ([href ,(make-url view-post-handler)])

,(post-title a-post))

(p ,(post-body a-post))

(div ,(number->string (length (post-comments a-post)))

" comment(s)"))))

; render-posts: blog (handler -> string) -> xexpr

; Consumes a make-url, produces an xexpr fragment

; of all its posts.

(define (render-posts a-blog make-url)

(local [(define (render-post/make-url a-post)

(render-post a-blog a-post make-url))]

`(div ([class "posts"])

,@(map render-post/make-url (blog-posts a-blog)))))

; render-as-itemized-list: (listof xexpr) -> xexpr

; Consumes a list of items, and produces a rendering as

; an unorderered list.

(define (render-as-itemized-list fragments)

`(ul ,@(map render-as-item fragments)))

; render-as-item: xexpr -> xexpr

; Consumes an xexpr, and produces a rendering

; as a list item.

(define (render-as-item a-fragment)

`(li ,a-fragment))

64

17 Leaving DrRacket

We’ve been in the habit of pressing the Run button to run our application in DrRacket. But
if we were actually to deploy an application, we’d need to launch it by a different method.

The simplest alternative is to use web-server/servlet-env. First, change the first lines
in your application from

#lang web-server/insta

to

#lang racket

(require web-server/servlet)

(provide/contract (start (request? . -> . response?)))

Second, add the following at the bottom of your application:

(require web-server/servlet-env)

(serve/servlet start

#:launch-browser? #f

#:quit? #f

#:listen-ip #f

#:port 8000

#:extra-files-paths

(list (build-path your-path-here "htdocs"))

#:servlet-path

"/servlets/APPLICATION.rkt")

Regarding the parameters of serve/servlet:

• You can change the value of the #:port parameter to use a different port.

• #:listen-ip is set to #f so that the server will listen on all available IPs.

• You should change your-path-here to be the path to the parent of your htdocs
directory.

• You should change "APPLICATION.rkt" to be the name of your application.

Third, to run your server, you can either press Run in DrRacket, or type

65

racket -t <file.rkt>

(using your own file name, of course). Both of these will start a Web server for your appli-
cation.

————

serve/servlet takes other parameters and there are more advanced ways of starting the
Web Server, but you’ll have to refer to the Racket Web Server Reference Manual for details.

66

18 Using HTTPS

Finally, here are instructions for using the server in HTTPS mode. This requires an SSL
certificate and a private key. It is also very platform-specific, but here are the details for
using OpenSSL on UNIX:

openssl genrsa -des3 -out private-key.pem 1024

This will generate a new private key, but with a passphrase, which you can remove as follows:

openssl rsa -in private-key.pem -out private-key.pem

chmod 400 private-key.pem

Now we generate a self-signed certificate:

openssl req -new -x509 -nodes -sha1 -days 365 -key private-key.pem

> server-cert.pem

(Each certificate authority has a different way of generating certificate-signing requests.)

We can now start the server with:

plt-web-server --ssl

The Web Server will start on port 443 (which can be overridden with the -p option) using
the "private-key.pem" and "server-cert.pem" we’ve created.

67

19 Moving Forward

As you move forward with your own applications, you may find many PLaneT packages
to be useful. There are interfaces to other databases, many tools for generating output in
HTML, XML, Javascript, etc.

There is also an active community of users on the Racket mailing list. We welcome new
users!

68

	1 Getting Started
	2 The Application
	3 Basic Blog
	4 Rendering HTML
	5 Inspecting Requests
	6 Advanced Control Flow
	7 Share and Share Alike
	8 Extending the Model
	9 Breaking Up the Display
	10 Adding a Back Button
	11 Decorating With Style!
	12 The Double Submit Bug
	13 Abstracting the Model
	14 A Persistent Model
	15 Using an SQL database
	16 Using Formlets
	17 Leaving DrRacket
	18 Using HTTPS
	19 Moving Forward

