
DB: Database Connectivity
Version 5.2.1

Ryan Culpepper <ryanc@racket-lang.org>

February 2, 2012

A database interface for functional programmers.

(require db)

This library provides a high-level interface to several database systems. The following
database systems are currently supported:

• PostgreSQL versions 7.4 and later. This library implements the PostgreSQL wire
protocol, so no native client library is required.

• MySQL versions 5 and later. This library implements the MySQL wire protocol, so
no native client library is required.

• SQLite version 3. The SQLite native client library is required; see §6.5 “SQLite
Requirements”.

• ODBC. An ODBC Driver Manager and appropriate ODBC drivers are required; see
§6.6 “ODBC Requirements”. The following database systems are known to work with
this library via ODBC (see §6.7 “ODBC Status” for details): DB2, Oracle, and SQL
Server.

The query operations are functional in spirit: queries return results or raise exceptions rather
than stashing their state into a cursor object for later navigation and retrieval. Query param-
eters and result fields are automatically translated to and from appropriate Racket values.
Resources are managed automatically by the garbage collector and via custodians. Connec-
tions are internally synchronized, so multiple threads can use a connection simultaneously.

Acknowledgments Thanks to Dave Gurnell, Noel Welsh, Mike Burns, and Doug Orleans
for contributions to spgsql, the PostgreSQL-only predecessor of this library. The SQLite
support is based in part on code from Jay McCarthy’s sqlite package.

1

mailto:ryanc@racket-lang.org
http://www.postgresql.org
http://www.mysql.com
http://www.sqlite.org
http://www.ibm.com/software/data/db2/
http://www.oracle.com
http://www.microsoft.com/sqlserver/
http://www.microsoft.com/sqlserver/

1 Introduction

This section introduces this library’s basic features and discusses how to build a database-
backed web servlet.

1.1 Basic Features

The following annotated program demonstrates how to connect to a database and perform
simple queries. Some of the SQL syntax used below is PostgreSQL-specific, such as the
syntax of query parameters ($1 rather than ?).

> (require db)

First we create a connection. Replace user , db , and password below with the appropriate
values for your configuration (see §2.1 “Base Connections” for other connection examples):

> (define pgc

(postgresql-connect #:user user

#:database db

#:password password))

> pgc

(object:connection% ...)

Use query-exec method to execute a SQL statement for effect.

> (query-exec pgc

"create temporary table the_numbers (n integer, d var-

char(20))")

> (query-exec pgc

"insert into the_numbers values (0, 'nothing')")

> (query-exec pgc

"insert into the_numbers values (1, 'the loneliest number')")

> (query-exec pgc

"insert into the_numbers values (2, 'company')")

The query function is a more general way to execute a statement. It returns a structure
encapsulating information about the statement’s execution. (But some of that information
varies from system to system and is subject to change.)

2

> (query pgc "insert into the_numbers values (3, 'a crowd')")

(simple-result '((command insert 0 1)))

> (query pgc "select n, d from the_numbers where n % 2 = 0")

(rows-result

'(((name . "n") (typeid . 23)) ((name . "d") (typeid . 1043)))

'(#(0 "nothing") #(2 "company")))

When the query is known to return rows and when the field descriptions are not needed, it is
more convenient to use the query-rows function.

> (query-rows pgc "select n, d from the_numbers where n % 2 = 0")

'(#(0 "nothing") #(2 "company"))

Use query-row for queries that are known to return exactly one row.

> (query-row pgc "select * from the_numbers where n = 0")

'#(0 "nothing")

Similarly, use query-list for queries that produce rows of exactly one column.

> (query-list pgc "select d from the_numbers order by n")

'("nothing" "the loneliest number" "company" "a crowd")

When a query is known to return a single value (one row and one column), use query-

value.

> (query-value pgc "select count(*) from the_numbers")

4

> (query-value pgc "select d from the_numbers where n = 5")

query-value: query returned zero rows: "select d from
the_numbers where n = 5"

When a query may return zero or one rows, as the last example, use query-maybe-row or
query-maybe-value instead.

> (query-maybe-value pgc "select d from the_numbers where n = 5")

#f

The in-query function produces a sequence that can be used with Racket’s iteration forms:

> (for ([(n d) (in-query pgc "select * from the_numbers where n <

4")])

(printf "∼a is ∼a\n" n d))

3

0: nothing

1: the loneliest number

2: company

3: a crowd

> (for/fold ([sum 0]) ([n (in-query pgc "select n from

the_numbers")])

(+ sum n))

6

Errors in queries generally do not cause the connection to disconnect.

> (begin (with-handlers [(exn:fail?

(lambda (e) (printf "∼a∼n" (exn-

message e))))]

(query-value pgc "select NoSuchField from No-

SuchTable"))

(query-value pgc "select 'okay to proceed!'"))

query-value: relation "nosuchtable" does not exist (SQLSTATE

42P01)

"okay to proceed!"

Queries may contain parameters. The easiest way to execute a parameterized query is to
provide the parameters “inline” after the SQL statement in the query function call.

> (query-value pgc

"select d from the_numbers where n = $1" 2)

"company"

> (query-list pgc

"select n from the_numbers where n > $1 and n < $2" 0 3)

'(1 2)

Alternatively, a parameterized query may be prepared in advance and executed later. Pre-
pared statements can be executed multiple times with different parameter values.

> (define get-less-than-pst

(prepare pgc "select n from the_numbers where n < $1"))

> (query-list pgc get-less-than-pst 1)

'(0)

> (query-list pgc (bind-prepared-statement get-less-than-pst 2))

'(0 1)

When a connection’s work is done, it should be disconnected.

> (disconnect pgc)

4

1.2 Databases and Web Servlets

Using database connections in a web servlet is more complicated than in a stan-
dalone program. A single servlet is potentially used to serve many requests at once,
each in a separate request-handling thread. Furthermore, the use of send/suspend,
send/suspend/dispatch, etc means that there are many places where a servlet may start
and stop executing to service a request.

Why not use a single connection to handle all of a servlet’s requests? That is, create the
connection with the servlet instance and never disconnect it. Such a servlet would look
something like the following:

"bad-servlet.rkt"

#lang web-server

(require db)

(define db-conn (postgresql-connect))

(define (serve req)

.... db-conn)

The main problem with using one connection for all requests is that multiple threads access-
ing the same connection are not properly isolated. For example, if two threads both attempt
to start a new transaction, the second one will fail, because the first thread has already put
the connection into an “in transaction” state. And if one thread is accessing the connection
within a transaction and another thread issues a query, the second thread may see invalid
data or even disrupt the work of the first thread.

A secondary problem is performance. A connection can only perform a single query at a
time, whereas most database systems are capable of concurrent query processing.

The proper way to use database connections in a servlet is to create a connection for each
request and disconnect it when the request is handled. But since a request thread may start
and stop executing in many places (due to send/suspend, etc), inserting the code to connect
and disconnect at the proper places can be challenging and messy.

A better solution is to use a virtual connection, which creates a request-specific (that is,
thread-specific) “actual connection” by need and disconnects it when the request is handled
(that is, when the thread terminates). Different request-handling threads using the same vir-
tual connection are assigned different actual connection, so the threads are properly isolated.

"better-servlet.rkt"

#lang web-server

(require db)

(define db-conn

(virtual-connection

(lambda () (postgresql-connect))))

(define (serve req)

5

http://en.wikipedia.org/wiki/Isolation_%28database_systems%29

.... db-conn)

This solution preserves the simplicity of the naive solution and fixes the isolation problem
but at the cost of creating many short-lived database connections. That cost can be eliminated
by using a connection pool:

"best-servlet.rkt"

#lang web-server

(require db)

(define db-conn

(virtual-connection

(connection-pool

(lambda () (postgresql-connect)))))

(define (serve req)

.... db-conn)

By using a virtual connection backed by a connection pool, a servlet can achieve simplicity,
isolation, and performance.

6

2 Connections

This section describes functions for creating connections as well as administrative functions
for managing connections.

2.1 Base Connections

There are four kinds of base connection, and they are divided into two groups: wire-based
connections and FFI-based connections. PostgreSQL and MySQL connections are wire-
based, and SQLite and ODBC connections are FFI-based.

Wire-based connections communicate using ports, which do not cause other Racket threads
to block. In contrast, an FFI call causes all Racket threads to block until it completes, so
FFI-based connections can degrade the interactivity of a Racket program, particularly if
long-running queries are performed using the connection. This problem can be avoided by
creating the FFI-based connection in a separate place using the #:use-place keyword argu-
ment. Such a connection will not block all Racket threads during queries; the disadvantage
is the cost of creating and communicating with a separate place.

Base connections are made using the following functions.

(postgresql-connect

#:user user

#:database database

[#:server server

#:port port

#:socket socket

#:password password

#:allow-cleartext-password? allow-cleartext-password?

#:ssl ssl

#:ssl-context ssl-context

#:notice-handler notice-handler

#:notification-handler notification-handler])
→ connection?

user : string?

database : string?

server : string? = "localhost"

port : exact-positive-integer? = 5432

socket : (or/c path-string? 'guess #f) = #f

password : (or/c string? #f) = #f

allow-cleartext-password? : boolean? = #f

ssl : (or/c 'yes 'optional 'no) = 'no

ssl-context : ssl-client-context?

= (ssl-make-client-context 'sslv3)

7

notice-handler :
(or/c 'output 'error output-port?

(-> string? string? any))
= void

notification-handler :
(or/c 'output 'error output-port?

(-> string? any))

= void

Creates a connection to a PostgreSQL server. Only the database and user arguments are
mandatory.

By default, the connection is made via TCP to "localhost" at port 5432. To make a
different TCP connection, provide one or both of the server and port arguments.

To connect via a local socket, specify the socket path as the socket argument. You must
not supply the socket argument if you have also supplied either of the TCP arguments. See
also §6.1 “Local Sockets for PostgreSQL and MySQL Servers” for notes on socket paths.
Supplying a socket argument of 'guess is the same as supplying (postgresql-guess-

socket-path). Sockets are only available under Linux (x86) and Mac OS X.

If the server requests password authentication, the password argument must be present;
otherwise an exception is raised. If the server does not request password authentication, the
password argument is ignored and may be omitted. A connection normally only sends pass-
word hashes (using the md5 authentication method). If the server requests a password sent
as cleartext (un-hashed), the connection is aborted unless allow-cleartext-password?
is true.

If the ssl argument is either 'yes or 'optional, the connection attempts to negotiate an
SSL connection. If the server refuses SSL, the connection raises an exception if ssl was
set to 'yes or continues with an unencrypted connection if ssl was set to 'optional.
By default, SSL provides encryption but does not verify the identity of the server (see this
explanation). Host verification can be required via the ssl-context argument; see ssl-

set-verify!. Some servers use SSL certificates to authenticate clients; see ssl-load-

certificate-chain! and ssl-load-private-key!. SSL may only be used with TCP
connections, not with local sockets.

The notice-handler is called on notice messages received asynchronously from the
server. A common example is notice of an index created automatically for a table’s primary
key. The notice-handler function takes two string arguments: the condition’s SQL-
STATE and a message. The notification-handler is called in response to an event
notification (see the LISTEN and NOTIFY statements); its argument is the name of the event
as a string. An output port may be supplied instead of a procedure, in which case a message
is printed to the given port. Finally, the symbol 'output causes the message to be printed
to the current output port, and 'error causes the message to be printed to the current error
port.

If the connection cannot be made, an exception is raised.

Examples:

8

http://www.postgresql.org/docs/9.0/static/libpq-ssl.html
http://www.postgresql.org/docs/9.0/static/libpq-ssl.html

> (postgresql-connect #:server "db.mysite.com"

#:port 5432

#:database "webappdb"

#:user "webapp"

#:password "ultra5ecret")

(object:connection% ...)

> (postgresql-connect #:user "me"

#:database "me"

#:password "icecream")

(object:connection% ...)

> (postgresql-connect ; Typical socket path

#:socket "/var/run/postgresql/.s.PGSQL.5432"

#:user "me"

#:database "me")

(object:connection% ...)

> (postgresql-connect #:socket 'guess ; or (postgresql-guess-

socket-path)

#:user "me"

#:database "me")

(object:connection% ...)

(postgresql-guess-socket-path) → path-string?

Attempts to guess the path for the socket based on conventional locations. This function
returns the first such path that exists in the filesystem. It does not check that the path is a
socket file, nor that the path is connected to a PostgreSQL server.

If none of the attempted paths exist, an exception is raised.

(mysql-connect #:user user

[#:database database

#:server server

#:port port

#:socket socket

#:ssl ssl

#:ssl-context ssl-context

#:password password

#:notice-handler notice-handler]) → connection?

user : string?

database : (or/c string? #f) = #f

server : string? = "localhost"

port : exact-positive-integer? = 3306

socket : (or/c path-string? #f) = #f

ssl : (or/c 'yes 'optional 'no) = 'no

ssl-context : ssl-client-context?

= (ssl-make-client-context 'tls)

9

password : (or/c string? #f) = #f

notice-handler :
(or/c 'output 'error output-port?

(-> exact-nonnegative-integer? string? any))

= void

Creates a connection to a MySQL server. If database is #f, the connection is established
without setting the current database; it should be subsequently set with the USE SQL com-
mand.

The meaning of the other keyword arguments is similar to those of the postgresql-

connect function, except that the first argument to a notice-handler function is a
MySQL-specific integer code rather than a SQLSTATE string, and a socket argument of
'guess is the same as supplying (mysql-guess-socket-path).

If the connection cannot be made, an exception is raised.

Examples:

> (mysql-connect #:server "db.mysite.com"

#:port 3306

#:database "webappdb"

#:user "webapp"

#:password "ultra5ecret")

(object:connection% ...)

> (mysql-connect #:user "me"

#:database "me"

#:password "icecream")

(object:connection% ...)

> (mysql-connect ; Typical socket path

#:socket "/var/run/mysqld/mysqld.sock"

#:user "me"

#:database "me")

(object:connection% ...)

> (mysql-connect #:socket (mysql-guess-socket-path)

#:user "me"

#:database "me")

(object:connection% ...)

(mysql-guess-socket-path) → path-string?

Attempts to guess the path for the socket based on conventional locations. This function
returns the first such path that exists in the filesystem. It does not check that the path is a
socket file, nor that the path is connected to a MySQL server.

If none of the attempted paths exist, an exception is raised.

10

(sqlite3-connect #:database database

[#:mode mode

#:busy-retry-limit busy-retry-limit

#:busy-retry-delay busy-retry-delay

#:use-place use-place])
→ connection?

database : (or/c path-string? 'memory 'temporary)

mode : (or/c 'read-only 'read/write 'create) = 'read/write

busy-retry-limit : (or/c exact-nonnegative-integer? +inf.0)

= 10

busy-retry-delay : (and/c rational? (not/c negative?)) = 0.1

use-place : boolean? = #f

Opens the SQLite database at the file named by database , if database is a string or
path. If database is 'temporary, a private disk-based database is created. If database is
'memory, a private memory-based database is created.

If mode is 'read-only, the database is opened in read-only mode. If mode is 'read/write
(the default), the database is opened for reading and writing (if filesystem permissions per-
mit). The 'create mode is like 'read/write, except that if the given file does not exist, it
is created as a new database.

SQLite uses coarse-grained locking, and many internal operations fail with the
SQLITE_BUSY condition when a lock cannot be acquired. When an internal operation fails
because the database is busy, the connection sleeps for busy-retry-delay seconds and
retries the operation, up to busy-retry-limit additional times. If busy-retry-limit is
0, the operation is only attempted once. If after busy-retry-limit retries the operation
still does not succeed, an exception is raised.

If use-place is true, the actual connection is created in a distinct place for database con-
nections and a proxy is returned.

If the connection cannot be made, an exception is raised.

Examples:

> (sqlite3-connect #:database "/path/to/my.db")

(object:connection% ...)

> (sqlite3-connect #:database "relpath/to/my.db"

#:mode 'create)

(object:connection% ...)

11

http://www.sqlite.org/lockingv3.html

(odbc-connect

#:dsn dsn

[#:user user

#:password password

#:notice-handler notice-handler

#:strict-parameter-types? strict-parameter-types?

#:character-mode character-mode

#:use-place use-place])
→ connection?

dsn : string?

user : (or/c string? #f) = #f

password : (or/c string? #f) = #f

notice-handler :
(or/c output-port? 'output 'error

(-> string? string? any))
= void

strict-parameter-types? : boolean? = #f

character-mode : (or/c 'wchar 'utf-8 'latin-1) = 'wchar

use-place : boolean? = #f

Creates a connection to the ODBC Data Source named dsn . The user and password

arguments are optional, since that information may be incorporated into the data source
definition, or it might not be relevant to the data source’s driver. The notice-handler

argument behaves the same as in postgresql-connect.

If strict-parameter-types? is true, then the connection attempts to determine and en-
force specific types for query parameters. See §4.1.4 “ODBC Types” for more details.

By default, connections use ODBC’s SQL_C_WCHAR-based character encoding (as UTF-16)
to send and receive Unicode character data. Unfortunately, some drivers’ support for this
method is buggy. To use SQL_C_CHAR instead, set character-mode to 'utf-8 or 'latin-
1, depending on which encoding the driver uses.

See §6.7 “ODBC Status” for notes on specific ODBC drivers and recommendations for
connection options.

If use-place is true, the actual connection is created in a distinct place for database con-
nections and a proxy is returned.

If the connection cannot be made, an exception is raised.

(odbc-driver-connect

connection-string

[#:notice-handler notice-handler

#:strict-parameter-types? strict-parameter-types?

#:character-mode character-mode

#:use-place use-place])
→ connection?

connection-string : string?

12

notice-handler :
(or/c output-port? 'output 'error

(-> string? string? any))
= void

strict-parameter-types? : boolean? = #f

character-mode : (or/c 'wchar 'utf-8 'latin-1) = 'wchar

use-place : boolean? = #f

Creates a connection using an ODBC connection string containing a sequence of key-
word and value connection parameters. The syntax of connection strings is described in
SQLDriverConnect (see Comments section); supported attributes depend on the driver. The
other arguments are the same as in odbc-connect.

If the connection cannot be made, an exception is raised.

(odbc-data-sources) → (listof (list/c string? string?))

Returns a list of known ODBC Data Sources. Each data souce is represented by a list of
two strings; the first string is the name of the data source, and the second is the name of its
associated driver.

(odbc-drivers) → (listof (cons/c string? any/c))

Returns a list of known ODBC Drivers. Each driver is represented by a list, the first ele-
ment of which is the name of the driver. The contents of the rest of each entry is currently
undefined.

2.2 Connection Pooling

Creating a database connection can be a costly operation; it may involve steps such as pro-
cess creation and SSL negotiation. A connection pool helps reduce connection costs by
reusing connections.

(connection-pool connect

[#:max-connections max-connections

#:max-idle-connections max-idle-connections])
→ connection-pool?

connect : (-> connection?)

max-connections : (or/c (integer-in 1 10000) +inf.0) = +inf.0

max-idle-connections : (or/c (integer-in 1 10000) +inf.0) = 10

Creates a connection pool. The pool consists of up to max-connections , divided between
leased connections and up to max-idle-connections idle connections. The pool uses
connect to create new connections when needed; the connect function must return a fresh
connection each time it is called.

13

http://msdn.microsoft.com/en-us/library/ms715433%28v=VS.85%29.aspx

Examples:

> (define pool

(connection-pool

(lambda () (displayln "connecting!") (sqlite3-connect))

#:max-idle-connections 1))

> (define c1 (connection-pool-lease pool))

connecting!

> (define c2 (connection-pool-lease pool))

connecting!

> (disconnect c1)

> (define c3 (connection-pool-lease pool)) ; reuses actual conn.

from c1

See also virtual-connection for a mechanism that eliminates the need to explicitly call
connection-pool-lease and disconnect.

(connection-pool? x) → boolean?

x : any/c

Returns #t if x is a connection pool, #f otherwise.

(connection-pool-lease pool [release]) → connection?

pool : connection-pool?

release : (or/c evt? custodian?) = (current-thread)

Obtains a connection from the connection pool, using an existing idle connection in pool if
one is available. If no idle connection is available and the pool contains fewer than its maxi-
mum allowed connections, a new connection is created; otherwise an exception is raised.

Calling disconnect on the connection obtained causes the connection to be released back
to the connection pool. The connection is also released if release becomes available, if it
is a synchronizable event, or if release is shutdown, if it is a custodian. The default for
release is the current thread, so the resulting connection is released when the thread that
requested it terminates.

When a connection is released, it is kept as an idle connection if pool ’s idle connection
limit would not be exceeded; otherwise, it is disconnected. In either case, if the connection
is in a transaction, the transaction is rolled back.

14

2.3 Virtual Connections

A virtual connection creates actual connections on demand and automatically releases them
when they are no longer needed.

(virtual-connection connect) → connection?

connect : (or/c (-> connection?) connection-pool?)

Creates a virtual connection that creates actual connections on demand using the connect

function, or by calling (connection-pool-lease connect) if connect is a connection
pool. A virtual connection encapsulates a mapping of threads to actual connections. When
a query function is called with a virtual connection, the current thread’s associated actual
connection is used to execute the query. If there is no actual connection associated with the
current thread, one is obtained by calling connect . An actual connection is disconnected
when its associated thread dies.

Virtual connections are especially useful in contexts such as web servlets, where each request
is handled in a fresh thread. A single global virtual connection can be defined, freeing each
servlet request from explicitly opening and closing its own connections. In particular, a
virtual connection backed by a connection pool combines convenience with efficiency:

Example:

> (define the-connection

(virtual-connection (connection-pool (lambda ()))))

The resulting virtual connection leases a connection from the pool on demand for each
servlet request thread and releases it when the thread terminates (that is, when the request
has been handled).

When given a connection produced by virtual-connection, connected? indicates
whether there is an actual connection associated with the current thread. Likewise, dis-
connect causes the current actual connection associated with the thread (if there is one) to
be disconnected, but the connection will be recreated if a query function is executed.

Examples:

> (define c

(virtual-connection

(lambda ()

(printf "connecting!\n")

(postgresql-connect))))

> (connected? c)

#f

> (query-value c "select 1")

15

connecting!

1

> (connected? c)

#t

> (void (thread (lambda () (displayln (query-value c "select

2")))))

connecting!

2

> (disconnect c)

> (connected? c)

#f

> (query-value c "select 3")

connecting!

3

Connections produced by virtual-connection may not be used with the prepare func-
tion. However, they may still be used to execute parameterized queries expressed as strings
or encapsulated via virtual-statement.

Examples:

> (prepare c "select 2 + $1")

prepare: cannot prepare statement with virtual connection
> (query-value c "select 2 + $1" 2)

4

> (define pst (virtual-statement "select 2 + $1"))

> (query-value c pst 3)

5

2.4 Kill-safe Connections

(kill-safe-connection c) → connection?

c : connection?

Creates a proxy for connection c . All queries performed through the proxy are kill-safe; that
is, if a thread is killed during a call to a query function such as query, the connection will
not become locked or damaged. (Connections are normally thread-safe but not kill-safe.)

Note: A kill-safe connection whose underlying connection uses ports to communicate with
a database server is not protected from a custodian shutting down its ports.

16

2.5 Data Source Names

A DSN (data source name) is a symbol associated with a connection specification in a DSN
file. They are inspired by, but distinct from, ODBC’s DSNs.

(struct data-source (connector args extensions)

#:mutable)

connector : (or/c 'postgresql 'mysql 'sqlite3 'odbc)

args : list?

extensions : (listof (list/c symbol? any/c))

Represents a data source. The connector field determines which connection function is
used to create the connection. The args field is a partial list of arguments passed to the
connection function; additional arguments may be added when dsn-connect is called. The
extensions field contains additional information about a connection; for example, this
library’s testing framework uses it to store SQL dialect flags.

Data sources can also be created using the postgresql-data-source, etc auxiliary func-
tions.

(dsn-connect dsn

[#:dsn-file dsn-file]
arg ...

#:<kw> kw-arg ...) → connection?

dsn : (or/c symbol? data-source?)

dsn-file : path-string? = (current-dsn-file)

arg : any/c

kw-arg : any/c

Makes a connection using the connection information associated with dsn in dsn-file .
The given args and kw-args are added to those specified by dsn to form the complete
arguments supplied to the connect function.

If dsn-file does not exist, or if it contains no entry for dsn , an exception is raised. If dsn
is a data-source, then dsn-file is ignored.

Examples:

> (put-dsn 'pg

(postgresql-data-source #:user "me"

#:database "mydb"

#:password "icecream"))

> (dsn-connect 'pg)

(object:connection% ...)

> (dsn-connect 'pg #:notice-handler (lambda (code msg)))

(object:connection% ...)

17

(current-dsn-file) → path-string?

(current-dsn-file x) → void?

x : path-string?

A parameter holding the location of the default DSN file. The initial value is a file located
immediately within (find-system-path 'prefs-dir).

(get-dsn dsn [default #:dsn-file dsn-file])
→ (or/c data-source? any/c)

dsn : symbol?

default : any/c = #f

dsn-file : path-string? = (current-dsn-file)

Returns the data-source associated with dsn in dsn-file .

If dsn-file does not exist, an exception is raised. If dsn-file does not have an entry for
dsn , default is called if it is a function or returned otherwise.

(put-dsn dsn ds [#:dsn-file dsn-file]) → void?

dsn : symbol?

ds : (or/c data-source? #f)

dsn-file : path-string? = (current-dsn-file)

Associates dsn with the given data source ds in dsn-file , replacing the previous associa-
tion, if one exists.

18

(postgresql-data-source

[#:user user

#:database database

#:server server

#:port port

#:socket socket

#:password password

#:allow-cleartext-password? allow-cleartext-password?

#:ssl ssl

#:notice-handler notice-handler

#:notification-handler notification-handler])
→ data-source?

user : string? = absent
database : string? = absent
server : string? = absent
port : exact-positive-integer? = absent
socket : (or/c path-string? 'guess #f) = absent
password : (or/c string? #f) = absent
allow-cleartext-password? : boolean? = absent
ssl : (or/c 'yes 'optional 'no) = absent
notice-handler : (or/c 'output 'error) = absent
notification-handler : (or/c 'output 'error) = absent

(mysql-data-source [#:user user

#:database database

#:server server

#:port port

#:socket socket

#:ssl ssl

#:password password

#:notice-handler notice-handler])
→ data-source?

user : string? = absent
database : (or/c string? #f) = absent
server : string? = absent
port : exact-positive-integer? = absent
socket : (or/c path-string? 'guess #f) = absent
ssl : (or/c 'yes 'optional 'no) = absent
password : (or/c string? #f) = absent
notice-handler : (or/c 'output 'error) = absent

19

(sqlite3-data-source [#:database database

#:mode mode

#:busy-retry-limit busy-retry-limit

#:busy-retry-delay busy-retry-delay

#:use-place use-place])
→ data-source?

database : (or/c path-string? 'memory 'temporary) = absent
mode : (or/c 'read-only 'read/write 'create) = absent
busy-retry-limit : (or/c exact-nonnegative-integer? +inf.0)

= absent
busy-retry-delay : (and/c rational? (not/c negative?))

= absent
use-place : boolean? = absent
(odbc-data-source

[#:dsn dsn

#:database database

#:user user

#:password password

#:notice-handler notice-handler

#:strict-parameter-types? strict-parameter-types?

#:character-mode character-mode])
→ data-source?

dsn : (or/c string? #f) = absent
database : (or/c string? #f) = absent
user : (or/c string? #f) = absent
password : (or/c string? #f) = absent
notice-handler : (or/c 'output 'error) = absent
strict-parameter-types? : boolean? = absent
character-mode : (or/c 'wchar 'utf-8 'latin-1) = absent

Analogues of postgresql-connect, mysql-connect, sqlite3-connect, and odbc-

connect, respectively, that return a data-source describing the (partial) connection in-
formation. All arguments are optional, even those that are mandatory in the corresponding
connection function; the missing arguments must be supplied when dsn-connect is called.

2.6 Mangaging Connections

(connection? x) → boolean?

x : any/c

Returns #t if x is a connection, #f otherwise.

(disconnect connection) → void?

connection : connection?

20

Closes the connection.

(connected? connection) → boolean?

connection : connection?

Returns #t if connection is connected, #f otherwise.

(connection-dbsystem connection) → dbsystem?

connection : connection?

Gets an object encapsulating information about the database system of connection .

(dbsystem? x) → boolean?

x : any/c

Predicate for objects representing database systems.

(dbsystem-name sys) → symbol?

sys : dbsystem?

Returns a symbol that identifies the database system. Currently one of the following:

• 'postgresql

• 'mysql

• 'sqlite3

• 'odbc

(dbsystem-supported-types sys) → (listof symbol?)

sys : dbsystem?

Returns a list of symbols identifying types supported by the database system. See §4.1 “SQL
Type Conversions”.

2.7 System-specific Modules

The db module exports all of the functions listed in this manual except those described in
§5 “Utilities”. The database system-specific connection modules are loaded lazily to avoid
unnecessary dependencies on foreign libraries.

The following modules provide subsets of the bindings described in this manual.

21

(require db/base)

Provides all generic connection operations (those described in §2.6 “Mangaging Connec-
tions” and §3 “Queries”) and SQL data support (§4 “SQL Types and Conversions”).

(require db/postgresql)

Provides only postgresql-connect and postgresql-guess-socket-path.

(require db/mysql)

Provides only mysql-connect and mysql-guess-socket-path.

(require db/sqlite3)

Provides only sqlite3-connect. In contrast to db, this module immediately attempts to
load the SQLite native library when required, and it raises an exception if it cannot be found.

(require db/odbc)

Provides only odbc-connect, odbc-driver-connect, odbc-data-sources, and odbc-

drivers. In contrast to db, this module immediately attempts to load the ODBC native
library when required, and it raises an exception if it cannot be found.

22

3 Queries

This library provides a high-level functional query API, unlike many other database libraries,
which present a stateful, iteration-based interface to queries. When a query function is in-
voked, it either returns a result or, if the query caused an error, raises an exception. Different
query functions impose different constraints on the query results and offer different mecha-
nisms for processing the results.

Errors In most cases, a query error does not cause the connection to be disconnected. Specif-
ically, the following kinds of errors should never cause a connection to be disconnected:

• SQL syntax errors, such as references to undefined tables, columns, or operations, etc

• SQL runtime errors, such as integrity constraint violations

• violations of a specialized query function’s expectations, such as using query-value

with a query that returns multiple columns

• supplying the wrong number or wrong types of parameters to a prepared query, exe-
cuting a prepared query with the wrong connection, etc

The following kinds of errors may cause a connection to be disconnected:

• changing communication settings, such as changing the connection’s character encod-
ing

• communication failures and internal errors in the library

See §3.5 “Transactions” for information on how errors can affect the transaction status.

Character encoding This library is designed to interact with database systems using the
UTF-8 character encoding. The connection functions attempt to negotiate UTF-8 commu-
nication at the beginning of every connection, but some systems also allow the character
encoding to be changed via SQL commands (eg, SET NAMES). If this happens, the client
might be unable to reliably communicate with the database, and data might get corrupted
in transmission. Avoid changing a connection’s character encoding. When possible, the
connection will observe the change and automatically disconnect with an error.

Synchronization Connections are internally synchronized: it is safe to perform concurrent
queries on the same connection object from different threads. Connections are not kill-safe:
killing a thread that is using a connection—or shutting down the connection’s managing
custodian—may leave the connection locked, causing future operations to block indefinitely.
See §2.4 “Kill-safe Connections” for a way to make kill-safe connections.

23

3.1 Statements

All query functions require both a connection and a statement, which is one of the following:

• a string containing a single SQL statement

• a prepared statement produced by prepare

• a virtual statement produced by virtual-statement

• a statement-binding value produced by bind-prepared-statement

• an instance of a struct type that implements prop:statement

A SQL statement may contain parameter placeholders that stand for SQL scalar values.
The parameter values must be supplied when the statement is executed; the parameterized
statement and parameter values are sent to the database back end, which combines them
correctly and safely.

Use parameters instead of Racket string interpolation (eg, format or string-append) to
avoid SQL injection, where a string intended to represent a SQL scalar value is interpreted
as—possibly malicious—SQL code instead.

The syntax of placeholders varies depending on the database system. For example:

PostgreSQL: select * from the_numbers where n > $1;

MySQL, ODBC: select * from the_numbers where n > ?;

SQLite: supports both syntaxes (plus others)

(statement? x) → boolean?

x : any/c

Returns #t if x is a statement, #f otherwise.

3.2 Simple Queries

The simple query API consists of a set of functions specialized to various types of queries.
For example, query-value is specialized to queries that return exactly one row of exactly
one column.

If a statement takes parameters, the parameter values are given as additional arguments im-
mediately after the SQL statement. Only a statement given as a string, prepared statement,
or virtual statement can be given “inline” parameters; if the statement is a statement-binding,
no inline parameters are permitted.

24

http://xkcd.com/327/

The types of parameters and returned fields are described in §4 “SQL Types and Conver-
sions”.

(query-exec connection stmt arg ...) → void?

connection : connection?

stmt : statement?

arg : any/c

Executes a SQL statement for effect.

Examples:

> (query-exec c "insert into some_table values (1, 'a')")

> (query-exec pgc "delete from some_table where n = $1" 42)

(query-rows connection

stmt

arg ...

[#:group grouping-fields

#:group-mode group-mode]) → (listof vector?)

connection : connection?

stmt : statement?

arg : any/c

grouping-fields : (or/c (vectorof string?) (listof (vectorof string?)))

= null

group-mode : (listof (or/c 'preserve-null-rows 'list)) = null

Executes a SQL query, which must produce rows, and returns the list of rows (as vectors)
from the query.

Examples:

> (query-rows pgc "select * from the_numbers where n = $1" 2)

'(#(2 "company"))

> (query-rows c "select 17")

'(#(17))

If grouping-fields is not empty, the result is the same as if group-rows had been called
on the result rows.

(query-list connection stmt arg ...) → list?

connection : connection?

stmt : statement?

arg : any/c

25

Executes a SQL query, which must produce rows of exactly one column, and returns the list
of values from the query.

Examples:

> (query-list c "select n from the_numbers where n < 2")

'(0 1)

> (query-list c "select 'hello'")

'("hello")

(query-row connection stmt arg ...) → vector?

connection : connection?

stmt : statement?

arg : any/c

Executes a SQL query, which must produce exactly one row, and returns its (single) row
result as a vector.

Examples:

> (query-row myc "select * from the_numbers where n = ?" 2)

'#(2 "company")

> (query-row c "select 17")

'#(17)

(query-maybe-row connection stmt arg ...) → (or/c vector? #f)

connection : connection?

stmt : statement?

arg : any/c

Like query-row, but the query may produce zero rows; in that case, #f is returned.

Examples:

> (query-maybe-row pgc "select * from the_numbers where n =

$1" 100)

#f

> (query-maybe-row c "select 17")

'#(17)

(query-value connection stmt arg ...) → any/c

connection : connection?

stmt : statement?

arg : any/c

Executes a SQL query, which must produce exactly one row of exactly one column, and
returns its single value result.

26

Examples:

> (query-value pgc "select timestamp 'epoch'")

(sql-timestamp 1970 1 1 0 0 0 0 #f)

> (query-value pgc "select s from the_numbers where n = $1" 3)

"a crowd"

(query-maybe-value connection stmt arg ...) → (or/c any/c #f)

connection : connection?

stmt : statement?

arg : any/c

Like query-value, but the query may produce zero rows; in that case, #f is returned.

Examples:

> (query-value myc "select s from some_table where n = ?" 100)

#f

> (query-value c "select 17")

17

(in-query connection stmt arg ...) → sequence?

connection : connection?

stmt : statement?

arg : any/c

Executes a SQL query, which must produce rows, and returns a sequence. Each step in the
sequence produces as many values as the rows have columns.

Examples:

> (for/list ([n (in-query pgc "select n from the_numbers where n <

2")])

n)

'(0 1)

> (for ([(n d)

(in-query pgc "select * from the_numbers where n <

$1" 4)])

(printf "∼a is ∼a\n" n d))

0: nothing

1: the loneliest number

2: company

3: a crowd

An in-query application can provide better performance when it appears directly in a for
clause. In addition, it may perform stricter checks on the number of columns returned by the
query based on the number of variables in the clause’s left-hand side:

27

Example:

> (for ([n (in-query pgc "select * from the_numbers")])

(displayln n))

in-query: query returned 2 columns (expected 1): "select *
from the_numbers"

3.3 General Query Support

A general query result is either a simple-result or a rows-result.

(struct simple-result (info))

info : any/c

Represents the result of a SQL statement that does not return a relation, such as an INSERT

or DELETE statement.

The info field is usually an association list, but do not rely on its contents; it varies based on
database system and may change in future versions of this library (even new minor versions).

(struct rows-result (headers rows))

headers : (listof any/c)

rows : (listof vector?)

Represents the result of SQL statement that results in a relation, such as a SELECT query.

The headers field is a list whose length is the number of columns in the result rows. Each
header is usually an association list containing information about the column, but do not rely
on its contents; it varies based on the database system and may change in future version of
this library (even new minor versions).

(query connection stmt arg ...)

→ (or/c simple-result? rows-result?)

connection : connection?

stmt : statement?

arg : any/c

Executes a query, returning a structure that describes the results. Unlike the more specialized
query functions, query supports both rows-returning and effect-only queries.

(group-rows result

#:group grouping-fields

[#:group-mode group-mode]) → rows-result?

result : rows-result?

grouping-fields : (or/c (vectorof string?) (listof (vectorof string?)))

group-mode : (listof (or/c 'preserve-null-rows 'list)) = null

28

If grouping-fields is a vector, the elements must be names of fields in result , and
result ’s rows are regrouped using the given fields. Each grouped row contains N+1 fields;
the first N fields are the grouping-fields , and the final field is a list of “residual rows”
over the rest of the fields. A residual row of all NULLs is dropped (for convenient processing
of OUTER JOIN results) unless group-mode includes 'preserve-null-rows. If group-
mode contains 'list, there must be exactly one residual field, and its values are included
without a vector wrapper (similar to query-list).

Examples:

> (define vehicles-result

(rows-result

'(((name . "type")) ((name . "maker")) ((name . "model")))

`(#("car" "honda" "civic")

#("car" "ford" "focus")

#("car" "ford" "pinto")

#("bike" "giant" "boulder")

#("bike" "schwinn" ,sql-null))))

> (group-rows vehicles-result

#:group '(#("type")))

(rows-result

'(((name . "type")) ((grouped ((name . "maker")) ((name .

"model")))))

'(#("car" (#("honda" "civic") #("ford" "focus") #("ford"

"pinto")))

#("bike" (#("giant" "boulder") #("schwinn" #<sql-null>)))))

The grouping-fields argument may also be a list of vectors; in that case, the grouping
process is repeated for each set of grouping fields. The grouping fields must be distinct.

Example:

> (group-rows vehicles-result

#:group '(#("type") #("maker"))

#:group-mode '(list))

(rows-result

'(((name . "type"))

((grouped ((name . "maker")) ((grouped ((name . "model")))))))

'(#("car" (#("honda" ("civic")) #("ford" ("focus" "pinto"))))

#("bike" (#("giant" ("boulder")) #("schwinn" ())))))

3.4 Prepared Statements

A prepared statement is the result of a call to prepare.

29

Any server-side or native-library resources associated with a prepared statement are released
when the prepared statement is garbage-collected or when the connection that owns it is
closed; prepared statements do not need to be (and cannot be) explicitly closed.

(prepare connection stmt) → prepared-statement?

connection : connection?

stmt : (or/c string? virtual-statement?)

Prepares a statement. The resulting prepared statement is tied to the connection that prepared
it; attempting to execute it with another connection will trigger an exception. The prepared
statement holds its connection link weakly; a reference to a prepared statement will not keep
a connection from being garbage collected.

(prepared-statement? x) → boolean?

x : any/c

Returns #t if x is a prepared statement created by prepare, #f otherwise.

(prepared-statement-parameter-types pst)

→ (listof (list/c boolean? (or/c symbol? #f) any/c))

pst : prepared-statement?

Returns a list with one element for each of the prepared statement’s parameters. Each ele-
ment is itself a list of the following form:

(list supported? type typeid)

The supported? field indicates whether the type is supported by this library; the type field
is a symbol corresponding to an entry in one of the tables in §4.1 “SQL Type Conversions”;
and the typeid field is a system-specific type identifier. The type description list format
may be extended with additional information in future versions of this library.

(prepared-statement-result-types pst)

→ (listof (list/c boolean? (or/c symbol? #f) any/c))

pst : prepared-statement?

If pst is a rows-returning statement (eg, SELECT), returns a list of type descriptions as
described above, identifying the SQL types (or pseudotypes) of the result columns. If pst
is not a rows-returning statement, the function returns the empty list.

(bind-prepared-statement pst params) → statement-binding?

pst : prepared-statement?

params : (listof any/c)

Creates a statement-binding value pairing pst with params , a list of parameter arguments.
The result can be executed with query or any of the other query functions, but it must be
used with the same connection that created pst .

30

Example:

> (let* ([get-name-pst

(prepare pgc "select d from the_numbers where n = $1")]

[get-name2

(bind-prepared-statement get-name-pst (list 2))]

[get-name3

(bind-prepared-statement get-name-pst (list 3))])

(list (query-value pgc get-name2)

(query-value pgc get-name3)))

'("company" "a crowd")

Most query functions perform the binding step implicitly.

(statement-binding? x) → boolean?

x : any/c

Returns #t if x is a statement created by bind-prepared-statement, #f otherwise.

(virtual-statement gen) → virtual-statement?

gen : (or/c string? (-> dbsystem? string?))

Creates a virtual statement, stmt , which encapsulates a weak mapping of connections to
prepared statements. When a query function is called with stmt and a connection, the weak
hash is consulted to see if the statement has already been prepared for that connection. If so,
the prepared statement is used; otherwise, the statement is prepared and stored in the table.

The gen argument must be either a SQL string or a function that accepts a databse sys-
tem object and produces a SQL string. The function variant allows the SQL syntax to be
dynamically customized for the database system in use.

Examples:

> (define pst

(virtual-statement

(lambda (dbsys)

(case (dbsystem-name dbsys)

((postgresql) "select n from the_numbers where n < $1")

((sqlite3) "select n from the_numbers where n < ?")

(else (error "unknown system"))))))

> (query-list pgc pst 3)

'(1 2)

> (query-list slc pst 3)

'(1 2)

(virtual-statement? x) → boolean?

x : any/c

31

Returns #t if x is a virtual statement created by virtual-statement, #f otherwise.

3.5 Transactions

The functions described in this section provide a consistent interface to transactions.

A managed transaction is one created via either start-transaction or call-with-

transaction. In contrast, an unmanaged transaction is one created by evaluating a SQL
statement such as START TRANSACTION. A nested transaction is a transaction created within
the extent of an existing transaction. If a nested transaction is committed, its changes are pro-
moted to the enclosing transaction, which may itself be committed or rolled back. If a nested
transaction is rolled back, its changes are discarded, but the enclosing transaction remains
open. Nested transactions are implemented via SQL SAVEPOINT, RELEASE SAVEPOINT,
and ROLLBACK TO SAVEPOINT.

ODBC connections must use managed transactions exclusively; using transaction-changing
SQL may cause these functions to behave incorrectly and may cause additional problems in
the ODBC driver. ODBC connections do not support nested transactions.

PostgreSQL, MySQL, and SQLite connections must not mix managed and unmanaged trans-
actions. For example, calling start-transaction and then executing a ROLLBACK state-
ment is not allowed. Note that in MySQL, some SQL statements have implicit transaction
effects. For example, in MySQL a CREATE TABLE statement implicitly commits the cur-
rent transaction. These statements also must not be used within managed transactions. (In
contrast, PostgreSQL and SQLite both support transactional DDL.)

Errors Query errors may affect an open transaction in one of three ways:

1. the transaction remains open and unchanged

2. the transaction is automatically rolled back

3. the transaction becomes an invalid transaction; all subsequent queries will fail until
the transaction is rolled back

To avoid the silent loss of information, this library attempts to avoid behavior (2) completely
by marking transactions as invalid instead (3). Invalid transactions can be identified using
the needs-rollback? function. The following list is a rough guide to what errors cause
which behaviors:

• All errors raised by checks performed by this library, such as parameter arity and type
errors, leave the transaction open and unchanged (1).

• All errors originating from PostgreSQL cause the transaction to become invalid (3).

32

http://dev.mysql.com/doc/refman/5.0/en/implicit-commit.html
http://dev.mysql.com/doc/refman/5.0/en/implicit-commit.html

• Most errors originating from MySQL leave the transaction open and unchanged (1),
but a few cause the transaction to become invalid (3). In the latter cases, the underlying
behavior of MySQL is to roll back the transaction but leave it open (see the MySQL
documentation). This library detects those cases and marks the transaction invalid
instead.

• Most errors originating from SQLite leave the transaction open and unchanged (1), but
a few cause the transaction to become invalid (3). In the latter cases, the underlying
behavior of SQLite is to roll back the transaction (see the SQLite documentation).
This library detects those cases and marks the transaction invalid instead.

• All errors originating from an ODBC driver cause the transaction to become invalid
(3). The underlying behavior of ODBC drivers varies widely, and ODBC provides no
mechanism to detect when an existing transaction has been rolled back, so this library
intercepts all errors and marks the transaction invalid instead.

If a nested transaction marked invalid is rolled back, the enclosing transaction is typically
still valid.

If a transaction is open when a connection is disconnected, it is implicitly rolled back.

(start-transaction c

[#:isolation isolation-level]) → void?

c : connection?

isolation-level :

(or/c 'serializable

'repeatable-read

'read-committed

'read-uncommitted

#f)

= #f

Starts a transaction with isolation isolation-level . If isolation-level is #f, the
isolation is database-dependent; it may be a default isolation level or it may be the isolation
level of the previous transaction.

If c is already in a transaction, isolation-level must be #f, and a nested transaction is
opened.

(commit-transaction c) → void?

c : connection?

Attempts to commit the current transaction, if one is open. If the transaction cannot be
commited (for example, if it is invalid), an exception is raised.

If the current transaction is a nested transaction, the nested transaction is closed, its changes
are incorporated into the enclosing transaction, and the enclosing transaction is resumed.

If no transaction is open, this function has no effect.

33

http://dev.mysql.com/doc/refman/5.1/en/innodb-error-handling.html
http://dev.mysql.com/doc/refman/5.1/en/innodb-error-handling.html
http://www.sqlite.org/lang_transaction.html

(rollback-transaction c) → void?

c : connection?

Rolls back the current transaction, if one is open.

If the current transaction is a nested transaction, the nested transaction is closed, its changes
are abandoned, and the enclosing transaction is resumed.

If no transaction is open, this function has no effect.

(in-transaction? c) → boolean?

c : connection?

Returns #t if c has an open transaction (managed or unmanaged), #f otherwise.

(needs-rollback? c) → boolean?

c : connection?

Returns #t if c is in an invalid transaction. All queries executed using c will fail un-
til the transaction is rolled back (either using rollback-transaction, if the transaction
was created with start-transaction, or when the procedure passed to call-with-

transaction returns).

(call-with-transaction c

proc

[#:isolation isolation-level]) → any

c : connection?

proc : (-> any)

isolation-level :

(or/c 'serializable

'repeatable-read

'read-committed

'read-uncommitted

#f)

= #f

Calls proc in the context of a new transaction with isolation level isolation-level . If
proc completes normally, the transaction is committed and proc ’s results are returned.
If proc raises an exception (or if the implicit commit at the end raises an exception), the
transaction is rolled back and the exception is re-raised.

If call-with-transaction is called within a transaction, isolation-level must be #f,
and it creates a nested transaction. Within the extent of a call to call-with-transaction,
transactions must be properly nested. In particular:

• Calling either commit-transaction or rollback-transaction when the open
transaction was created by call-with-transaction causes an exception to be
raised.

34

• If a further nested transaction is open when proc completes (that is, created by an un-
matched start-transaction call), an exception is raised and the nested transaction
created by call-with-transaction is rolled back.

3.6 SQL Errors

SQL errors are represented by the exn:fail:sql exception type.

(struct exn:fail:sql exn:fail (sqlstate info)

#:extra-constructor-name make-exn:fail:sql)

sqlstate : string?

info : (listof (cons/c symbol? any/c))

Represents a SQL error originating from the database server or native library. The sqlstate
field contains the SQLSTATE code (a five-character string) of the error; refer to the database
system’s documentation for the definitions of SQLSTATE codes. The info field contains
all information available about the error as an association list. The available keys vary, but
the 'message key is typically present; its value is a string containing the error message.

Example:

> (with-handlers ([exn:fail:sql? exn:fail:sql-info])

(query pgc "select * from nosuchtable"))

'((severity . "ERROR")

(code . "42P01")

(message . "relation \"nosuchtable\" does not exist")

...)

Errors originating from the db library, such as arity and contract errors, type conversion
errors, etc, are not represented by exn:fail:sql. SQLite errors are not represented via
exn:fail:sql, because SQLite does not provide SQLSTATE error codes.

3.7 Database Catalog Information

(list-tables c [#:schema schema]) → (listof string?)

c : connection?

schema : (or/c 'search-or-current 'search 'current)

= 'search-or-current

Returns a list of unqualified names of tables (and views) defined in the current database.

If schema is 'search, the list contains all tables in the current schema search path (with
the possible exception of system tables); if the search path cannot be determined, an excep-
tion is raised. If schema is 'current, the list contains all tables in the current schema. If

35

schema is 'search-or-current (the default), the search path is used if it can be deter-
mined; otherwise the current schema is used. The schema search path cannot be determined
for ODBC-based connections.

(table-exists? c

table-name

[#:schema schema

#:case-sensitive? case-sensitive?]) → boolean?

c : connection?

table-name : string?

schema : (or/c 'search-or-current 'search 'current)

= 'search-or-current

case-sensitive? : any/c = #f

Indicates whether a table (or view) named table-name exists. The meaning of the schema
argument is the same as for list-tables, and the case-sensitive? argument controls
how table names are compared.

3.8 Creating New Kinds of Statements

prop:statement :
(struct-type-property/c

(-> any/c connection? statement?))

A struct type property for creating new kinds of statements. The property value is applied to
the struct instance and a connection, and it must return a statement.

36

4 SQL Types and Conversions

Connections automatically convert query results to appropriate Racket types. Likewise,
query parameters are accepted as Racket values and converted to the appropriate SQL type.

Examples:

> (query-value pgc "select count(*) from the_numbers")

4

> (query-value pgc "select false")

#f

> (query-value pgc "select 1 + $1" 2)

3

If a query result contains a column with a SQL type not supported by this library, an excep-
tion is raised. As a workaround, cast the column to a supported type:

Examples:

> (query-value pgc "select inet '127.0.0.1'")

query-value: unsupported type: inet (typeid 869)
> (query-value pgc "select cast(inet '127.0.0.1' as varchar)")

"127.0.0.1/32"

The exception for unsupported types in result columns is raised when the query is exe-
cuted, not when it is prepared; for parameters it is raised when the parameter values are
supplied. Thus even unexecutable prepared statements can be inspected using prepared-

statement-parameter-types and prepared-statement-result-types.

4.1 SQL Type Conversions

This section describes the correspondences between SQL types and Racket types for the
supported database systems.

4.1.1 PostgreSQL Types

This section applies to connections created with postgresql-connect.

The following table lists the PostgreSQL types known to this library, along with their corre-
sponding Racket representations.

PostgreSQL type pg_type.typname Racket type
'boolean bool boolean?

37

'char1 char char?

'smallint int2 exact-integer?

'integer int4 exact-integer?

'bigint int8 exact-integer?

'real float4 real?

'double float8 real?

'decimal numeric number?

'character bpchar string?

'varchar varchar string?

'text text string?

'bytea bytea bytes?

'date date sql-date?

'time time sql-time?

'timetz timetz sql-time?

'timestamp timestamp sql-timestamp?

'timestamptz timestamptz sql-timestamp?

'interval interval sql-interval?

'bit bit sql-bits?

'varbit varbit sql-bits?

'point point point?

'lseg lseg line?

'path path pg-path?

'box box pg-box?

'polygon polygon polygon?

'circle circle pg-circle?

The 'char1 type, written "char" in PostgreSQL’s SQL syntax (the quotation marks are
significant), is one byte, essentially a tiny integer written as a character.

A SQL value of type decimal is converted to either an exact rational or +nan.0. When
converting Racket values to SQL decimal, exact rational values representable by finite dec-
imal strings are converted without loss of precision. (Precision may be lost, of course, if the
value is then stored in a database field of lower precision.) Other real values are converted to
decimals with a loss of precision. In PostgreSQL, numeric and decimal refer to the same
type.

Examples:

> (query-value pgc "select real '+Infinity'")

+inf.0

> (query-value pgc "select numeric '12345678901234567890'")

12345678901234567890

The geometric types such as 'point are represented by structures defined in the
db/util/geometry and db/util/postgresql modules.

PostgreSQL user-defined domains are supported in query results if the underlying type is

38

supported. Recordset headers and prepared-statement-result-types report them in
terms of the underlying type. Parameters with user-defined domain types are not currently
supported. As a workaround, cast the parameter to the underlying type. For example,
if the type of $1 is a domain whose underlying type is integer, then replace $1 with
($1::integer).

For each type in the table above, the corresponding array type is also supported, using the
pg-array structure. Use the = ANY syntax with an array parameter instead of dynamically
constructing a SQL IN expression:

Examples:

> (query-value pgc "select 1 in (1, 2, 3)")

#t

> (query-value pgc "select 1 = any ($1::integer[])"

(list->pg-array (list 1 2 3)))

#t

A list may be provided for an array parameter, in which case it is automatically converted
using list->pg-array. The type annotation can be dropped when the array type can be
inferred from the left-hand side.

Examples:

> (query-value pgc "select 1 = any ($1)" (list 1 2 3))

#t

> (query-value pgc "select $1::integer = any ($2)"

1 (list 1 2 3))

#t

> (query-value pgc "select $1 = any ($2)" ; what type are we

using?

1 (list 1 2 3))

query-value: cannot convert to PostgreSQL string type: 1

PostgreSQL defines many other types, such as network addresses and row types. These are
currently not supported, but support may be added in future versions of this library.

4.1.2 MySQL Types

This section applies to connections created with mysql-connect.

The following table lists the MySQL types known to this library, along with their corre-
sponding Racket representations.

MySQL type Racket type
'integer exact-integer?

39

http://www.postgresql.org/docs/8.2/static/arrays.html
http://www.postgresql.org/docs/8.2/static/functions-comparisons.html#AEN14122

'tinyint exact-integer?

'smallint exact-integer?

'mediumint exact-integer?

'bigint exact-integer?

'real real?

'double real?

'decimal exact?

'varchar string?

'var-string string? or bytes?, but see below
'date sql-date?

'time sql-time? or sql-day-time-interval?
'datetime sql-timestamp?

'blob bytes?

'tinyblob bytes?

'mediumblob bytes?

'longblob bytes?

'bit sql-bits?

'geometry geometry2d?

MySQL does not report specific parameter types for prepared queries, instead assigning
them the type var-string. Consequently, conversion of Racket values to var-string pa-
rameters accepts strings, numbers (rational?—no infinities or NaN), bytes, SQL date/time
structures (sql-date?, sql-time?, sql-timestamp?, and sql-day-time-interval?),
bits (sql-bits?), and geometric values (geometry2d?).

The MySQL time type represents time intervals, which may not correspond to times of
day (for example, the interval may be negative or larger than 24 hours). In conversion from
MySQL results to Racket values, those time values that represent times of day are converted
to sql-time values; the rest are represented by sql-interval values.

The MySQL enum and set types are not supported. As a workaround, cast them to/from
either integers or strings.

4.1.3 SQLite Types

This section applies to connections created with sqlite3-connect.

The following table lists the SQLite types known to this library, along with their correspond-
ing Racket representations.

Unlike PostgreSQL and MySQL, SQLite does not enforce declared type constraints (with
the exception of integer primary key) on columns. Rather, every SQLite value has an
associated “storage class”.

40

SQLite storage class Racket type
integer exact-integer?

real real?

text string?

blob bytes?

SQLite does not report specific parameter and result types for prepared queries. Instead,
they are assigned the pseudotype 'any. Conversion of Racket values to parameters accepts
strings, bytes, and real numbers.

An exact integer that cannot be represented as a 64-bit signed integer is converted as real,
not integer.

Examples:

> (expt 2 80)

1208925819614629174706176

> (query-value slc "select ?" (expt 2 80))

1.2089258196146292e+24

4.1.4 ODBC Types

This section applies to connections created with odbc-connect or odbc-driver-

connect.

The following table lists the ODBC types known to this library, along with their correspond-
ing Racket representations.

ODBC type Racket type
'character string?

'varchar string?

'longvarchar string?

'numeric rational?

'decimal rational?

'integer exact-integer?

'tinyint exact-integer?

'smallint exact-integer?

'bigint exact-integer?

'float real?

'real real?

'double real?

'date sql-date?

'time sql-time?

'datetime sql-timestamp?

41

'timestamp sql-timestamp?

'binary bytes?

'varbinary bytes?

'longvarbinary bytes?

'bit1 boolean?

Not all ODBC drivers provide specific parameter type information for prepared queries.
Some omit parameter type information entirely or, worse, assign all parameters a single type
such as varchar. To avoid enforcing irrelevant type constraints in the last case, connec-
tions only attempt to fetch and enforce parameter types when the connection is made using
the #:strict-parameter-type? option. Otherwise, the connection assigns all parameters
the type 'unknown. (The 'unknown type is also used when specific parameter types are re-
quested but are not available.) Conversion of Racket values to 'unknown parameters accepts
strings, bytes, numbers (rational?—no infinities or NaN), booleans, and SQL date/time
structures (sql-date?, sql-time?, and sql-timestamp?).

The ODBC type 'bit1 represents a single bit, unlike the standard SQL bit(N) type.

Interval types are not currently supported on ODBC.

4.2 SQL Data

This section describes data types for representing various SQL types that have no existing
appropriate counterpart in Racket.

4.2.1 SQL NULL

SQL NULL is translated into the unique sql-null value.

sql-null : sql-null?

A special value used to represent NULL values in query results. The sql-null value may be
recognized using eq?.

Example:

> (query-value c "select NULL")

#<sql-null>

(sql-null? x) → boolean?

x : any/c

Returns #t if x is sql-null; #f otherwise.

42

(sql-null->false x) → any/c

x : any/c

Returns #f if x is sql-null; otherwise returns x .

Examples:

> (sql-null->false "apple")

"apple"

> (sql-null->false sql-null)

#f

> (sql-null->false #f)

#f

(false->sql-null x) → any/c

x : any/c

Returns sql-null if x is #f; otherwise returns x .

Examples:

> (false->sql-null "apple")

"apple"

> (false->sql-null #f)

#<sql-null>

4.2.2 Dates and Times

The DATE, TIME (WITH TIME ZONE and without), TIMESTAMP (WITH TIME ZONE and with-
out), and INTERVAL SQL types are represented by the following structures.

See also §5.1 “Datetime Type Utilities” for more functions on datetime values.

(struct sql-date (year month day))

year : exact-integer?

month : (integer-in 0 12)

day : (integer-in 0 31)

Represents a SQL date.

Dates with zero-valued month or day components are a MySQL extension.

(struct sql-time (hour minute second nanosecond tz))

hour : exact-nonnegative-integer?

43

minute : exact-nonnegative-integer?

second : exact-nonnegative-integer?

nanosecond : exact-nonnegative-integer?

tz : (or/c exact-integer? #f)

(struct sql-timestamp (year

month

day

hour

minute

second

nanosecond

tz))

year : exact-nonnegative-integer?

month : exact-nonnegative-integer?

day : exact-nonnegative-integer?

hour : exact-nonnegative-integer?

minute : exact-nonnegative-integer?

second : exact-nonnegative-integer?

nanosecond : exact-nonnegative-integer?

tz : (or/c exact-integer? #f)

Represents SQL times and timestamps.

The tz field indicates the time zone offset as the number of seconds east of GMT (as in SRFI
19). If tz is #f, the time or timestamp does not carry time zone information.

The sql-time and sql-timestamp structures store fractional seconds to nanosecond pre-
cision for compatibility with SRFI 19. Note, however, that database systems generally do
not support nanosecond precision; PostgreSQL, for example, only supports microsecond
precision.

Examples:

> (query-value pgc "select date '25-dec-1980'")

(sql-date 1980 12 25)

> (query-value pgc "select time '7:30'")

(sql-time 7 30 0 0 #f)

> (query-value pgc "select timestamp 'epoch'")

(sql-timestamp 1970 1 1 0 0 0 0 #f)

> (query-value pgc "select timestamp with time zone 'epoch'")

(sql-timestamp 1969 12 31 19 0 0 0 -18000)

Examples:

44

> (query-value myc "select date('1980-12-25')")

(sql-date 1980 12 25)

> (query-value myc "select time('7:30')")

(sql-time 7 30 0 0 #f)

> (query-value myc "select from_unixtime(0)")

(sql-timestamp 1969 12 31 19 0 0 0 #f)

(struct sql-interval (years

months

days

hours

minutes

seconds

nanoseconds))

years : exact-integer?

months : exact-integer?

days : exact-integer?

hours : exact-integer?

minutes : exact-integer?

seconds : exact-integer?

nanoseconds : exact-integer?

Represents lengths of time. Intervals are normalized to satisfy the following constraints:

• years and months have the same sign

• months ranges from -11 to 11

• days, hours, minutes, seconds, and nanoseconds all have the same sign

• hours ranges from -23 to 23

• minutes and seconds range from -59 to 59

• nanoseconds ranges from (- (sub1 #e1e9)) to (sub1 #e1e9)

That is, an interval consists of two groups of components: year-month and day-time, and
normalization is done only within groups. In fact, the SQL standard recognizes those
two types of intervals separately (see sql-year-month-interval? and sql-day-time-

interval?, below), and does not permit combining them. Intervals such as 1 month 3

days are a PostgreSQL extension.

(sql-year-month-interval? x) → boolean?

x : any/c

Returns #t if x is a sql-interval value where the days, hours, minutes, seconds, and
nanoseconds fields are zero.

45

(sql-day-time-interval? x) → boolean?

x : any/c

Returns #t if x is a sql-interval value where the years and months fields are zero.

(sql-interval->sql-time interval [failure]) → any

interval : sql-interval?

failure : any/c = (lambda () (error))

If interval is a day-time interval that represents a time of day, returns the corresponding
sql-time value. In particular, the following must be true:

• hours, minutes, seconds, and nanoseconds must all be non-negative

• hours must be between 0 and 23

The corresponding constraints on minutes, etc are enforced by the constructor.

If interval is out of range, the failure value is called, if it is a procedure, or returned,
otherwise.

(sql-time->sql-interval time) → sql-day-time-interval?

time : sql-time?

Converts time to an interval. If time has time-zone information, it is ignored.

4.2.3 Bits

The BIT and BIT VARYING (VARBIT) SQL types are represented by sql-bits values.

(make-sql-bits len) → sql-bits?

len : exact-nonnegative-integer?

Creates a new sql-bits value containing len zeros.

(sql-bits? v) → boolean?

v : any/c

Returns #t if v is a sql-bits value, #f otherwise.

(sql-bits-length b) → exact-nonnegative-integer?

b : sql-bits?

46

Returns the number of bits stored in b .

(sql-bits-ref b i) → boolean?

b : sql-bits?

i : exact-nonnegative-integer?

Returns the bit stored by b at index i as a boolean.

(sql-bits-set! b i v) → void?

b : sql-bits?

i : exact-nonnegative-integer?

v : boolean?

Updates b , setting the bit at index i to v .

(sql-bits->list b) → (listof boolean?)

b : sql-bits?

(sql-bits->string b) → string?

b : sql-bits?

(list->sql-bits lst) → sql-bits?

lst : (listof boolean?)

(string->sql-bits s) → sql-bits?

s : string?

Converts a sql-bits value to or from its representation as a list or string.

Examples:

> (sql-bits->list (string->sql-bits "1011"))

'(#t #f #t #t)

> (sql-bits->string (query-value pgc "select B'010110111'"))

"010110111"

47

5 Utilities

The bindings described in this section are provided by the specific modules below, not by db

or db/base.

5.1 Datetime Type Utilities

(require db/util/datetime)

(sql-datetime->srfi-date t) → srfi:date?

t : (or/c sql-date? sql-time? sql-timestamp?)

(srfi-date->sql-date d) → sql-date?

d : srfi:date?

(srfi-date->sql-time d) → sql-time?

d : srfi:date?

(srfi-date->sql-time-tz d) → sql-time?

d : srfi:date?

(srfi-date->sql-timestamp d) → sql-timestamp?

d : srfi:date?

(srfi-date->sql-timestamp-tz d) → sql-timestamp?

d : srfi:date?

Converts between this library’s date and time values and SRFI 19’s date values (see
srfi/19). SRFI dates store more information than SQL dates and times, so converting
a SQL time to a SRFI date, for example, puts zeroes in the year, month, and day fields.

Examples:

> (sql-datetime->srfi-date

(query-value pgc "select time '7:30'"))

(tm:date 0 0 30 7 0 0 0 0)

> (sql-datetime->srfi-date

(query-value pgc "select date '25-dec-1980'"))

(tm:date 0 0 0 0 25 12 1980 0)

> (sql-datetime->srfi-date

(query-value pgc "select timestamp 'epoch'"))

(tm:date 0 0 0 0 1 1 1970 0)

(sql-day-time-interval->seconds interval) → rational?

interval : sql-day-time-interval?

Returns the length of interval in seconds.

48

5.2 Geometric Types

(require db/util/geometry)

The following structures and functions deal with geometric values based on the OpenGIS
(ISO 19125) model.

Note: Geometric columns defined using the PostGIS extension to PostgreSQL are not di-
rectly supported. Instead, data should be exchanged in the Well-Known Binary format;
conversion of the following structures to and from WKB format is supported by the wkb-

>geometry and geometry->wkb functions.

(struct point (x y))

x : real?

y : real?

Represents an OpenGIS Point.

(struct line-string (points))

points : (listof point?)

Represents an OpenGIS LineString.

(struct polygon (exterior interior))

exterior : linear-ring?

interior : (listof linear-ring?)

Represents an OpenGIS Polygon.

(struct multi-point (elements))

elements : (listof point?)

Represents an OpenGIS MultiPoint, a collection of points.

(struct multi-line-string (elements))

elements : (listof line-string?)

Represents an OpenGIS MultiLineString, a collection of line-strings.

(struct multi-polygon (elements))

elements : (listof polygon?)

49

Represents an OpenGIS MultiPolygon, a collection of polygons.

(struct geometry-collection (elements))

elements : (listof geometry2d?)

Represents an OpenGIS GeometryCollection, a collection of arbitrary geometric values.

(geometry2d? x) → boolean?

x : any/c

Returns #t if x is a point, line-string, polygon, multi-point, multi-line-string,
multi-polygon, or geometry-collection; #f othewise.

(line? x) → boolean?

x : any/c

Returns #t if x is a line-string consisting of exactly two points (cf OpenGIS Line); #f
otherwise.

(linear-ring? x) → boolean?

x : any/c

Returns #t if x is a line-string whose first and last points are equal (cf OpenGIS Lin-

earRing); #f otherwise.

(geometry->wkb g #:big-endian? big-endian?) → bytes?

g : geometry2d?

big-endian? : (system-big-endian?)

Returns the Well-Known Binary (WKB) encoding of the geometric value g . The big-

endian? argument determines the byte order used (the WKB format includes byte-order
markers, so a robust client should accept either encoding).

(wkb->geometry b) → geometry2d?

b : bytes?

Decodes the Well-Known Binary (WKB) representation of a geometric value.

5.3 PostgreSQL-specific Types

(require db/util/postgresql)

50

(struct pg-array (dimensions

dimension-lengths

dimension-lower-bounds

contents))

dimensions : exact-nonnegative-integer?

dimension-lengths : (listof exact-positive-integer?)

dimension-lower-bounds : (listof exact-integer?)

contents : vector?

Represents a PostrgreSQL array. The dimension-lengths and dimension-lower-

bounds fields are both lists of dimensions elements. By default, PostgreSQL array indexes
start with 1 (not 0), so dimension-lower-bounds is typically a list of 1s.

(pg-array-ref arr index ...+) → any/c

arr : pg-array?

index : exact-integer?

Returns the element of arr at the given position. There must be as many index arguments
as the dimension of arr . Recall that PostgreSQL array indexes usually start with 1, not 0.

(pg-array->list arr) → list?

arr : pg-array?

Returns a list of arr ’s contents. The dimension of arr must be 1; otherwise an error is
raised.

(list->pg-array lst) → pg-array?

lst : list?

Returns a pg-array of dimension 1 with the contents of lst .

(struct pg-box (ne sw))

ne : point?

sw : point?

(struct pg-path (closed? points))

closed? : boolean?

points : (listof point?)

(struct pg-circle (center radius))

center : point?

radius : real?

These structures represent certain of PostgreSQL’s built-in geometric types that have no
appropriate analogue in the OpenGIS model: box, path, and circle. The point, lseg, and

51

polygon PostgreSQL built-in types are represented using point, line-string (line?),
and polygon structures.

Note: PostgreSQL’s built-in geometric types are distinct from those provided by the PostGIS
extension library (see §5.2 “Geometric Types”).

52

6 Notes

This section discusses issues related to specific database systems.

6.1 Local Sockets for PostgreSQL and MySQL Servers

PostgreSQL and MySQL servers are sometimes configured by default to listen only on local
sockets (also called “unix domain sockets”). This library provides support for communica-
tion over local sockets on Linux (x86 and x86-64) and Mac OS X. If local socket communi-
cation is not available, the server must be reconfigured to listen on a TCP port.

The socket file for a PostgreSQL server is located in the directory specified by
the unix_socket_directory variable in the postgresql.conf server configuration
file. For example, on Ubuntu 11.04 running PostgreSQL 8.4, the socket directory is
/var/run/postgresql and the socket file is /var/run/postgresql/.s.PGSQL.5432.
Common socket paths may be searched automatically using the postgresql-guess-

socket-path function.

The socket file for a MySQL server is located at the path specified by the socket variable
in the my.cnf configuration file. For example, on Ubuntu 11.04 running MySQL 5.1, the
socket is located at /var/run/mysqld/mysqld.sock. Common socket paths for MySQL
can be searched using the mysql-guess-socket-path function.

6.2 PostgreSQL Database Character Encoding

In most cases, a database’s character encoding is irrelevant, since the connect function al-
ways requests translation to Unicode (UTF-8) when creating a connection. If a PostgreSQL
database’s character encoding is SQL_ASCII, however, PostgreSQL will not honor the con-
nection encoding; it will instead send untranslated octets, which will cause corrupt data or
internal errors in the client connection.

To convert a PostgreSQL database from SQL_ASCII to something sensible, pg_dump the
database, recode the dump file (using a utility such as iconv), create a new database with
the desired encoding, and pg_restore from the recoded dump file.

6.3 PostgreSQL Authentication

PostgreSQL supports a large variety of authentication mechanisms, controlled by the
pg_hba.conf server configuration file. This library currently supports only cleartext and
md5-hashed passwords, and it does not send cleartext passwords unless explicitly ordered
to (see postgresql-connect). These correspond to the md5 and password authentication

53

http://www.postgresql.org/docs/8.4/static/auth-pg-hba-conf.html

methods in the parlance of pg_hba.conf, respectively. On Linux, ident authentication is
automatically supported for local sockets, but not TCP sockets. The gss, sspi, krb5, pam,
and ldap methods are not supported.

6.4 MySQL Authentication

As of version 5.5.7, MySQL supports authentication plugins. The only plugins
currently supported by this library are mysql_native_password (the default) and
mysql_old_password, which corresponds to the password authentication mechanisms
used since version 4.1 and before 4.1, respectively.

6.5 SQLite Requirements

SQLite support requires the appropriate native library.

• On Windows, the library is sqlite3.dll. It is included in the Racket distribution.

• On Mac OS X, the library is libsqlite3.0.dylib, which is included (in /usr/lib)
in Mac OS X version 10.4 onwards.

• On Linux, the library is libsqlite3.so.0. It is included in the libsqlite3-0

package in Debian/Ubuntu and in the sqlite package in Red Hat.

6.6 ODBC Requirements

ODBC requires the appropriate driver manager native library as well as driver native libraries
for each database system you want use ODBC to connect to.

• On Windows, the driver manager is odbc32.dll, which is included automatically
with Windows.

• On Mac OS X, the driver manager is libiodbc.2.dylib (iODBC), which is included
(in /usr/lib) in Mac OS X version 10.2 onwards.

• On Linux, the driver manager is libodbc.so.1 (unixODBC—iODBC is not sup-
ported). It is available from the unixodbc package in Debian/Ubuntu and in the
unixODBC package in Red Hat.

In addition, you must install the appropriate ODBC Drivers and configure Data Sources.
Refer to the ODBC documentation for the specific database system for more information.

54

http://dev.mysql.com/doc/mysql-security-excerpt/5.5/en/pluggable-authentication.html
http://www.iodbc.org
http://www.unixodbc.org

6.7 ODBC Status

ODBC support is experimental. The behavior of ODBC connections can vary widely de-
pending on the driver in use and even the configuration of a particular data source.

The following sections describe the configurations that this library has been tested with.

Reports of success or failure on other platforms or with other drivers would be appreciated.

6.7.1 DB2 ODBC Driver

The driver from IBM DB2 Express-C v9.7 has been tested on Ubuntu 11.04 (32-bit only).

For a typical installation where the instance resides at /home/db2inst1,
set the following option in the Driver configuration: Driver =

/home/db2inst1/sqllib/lib32/libdb2.so. (The path would presumably be dif-
ferent for a 64-bit installation.)

The DB2 driver does not seem to accept a separate argument for the database to connect to;
it must be the same as the Data Source name.

6.7.2 Oracle ODBC Driver

The driver from Oracle Database 10g Release 2 Express Edition has been tested on Ubuntu
11.04 (32-bit only).

It seems the ORACLE_HOME and LD_LIBRARY_PATH environment variables must be set ac-
cording to the oracle_env.{csh,sh} script for the driver to work.

Columns of type TIME can cause a memory error (ie, Racket crashes). This seems to be due
to a bug in Oracle’s ODBC driver, but I do not yet have a workaround.

6.7.3 SQL Server ODBC Driver

Basic SQL Server support has been verified on Windows (32-bit only), but the automated
test suite has not yet been adapted and run.

55

http://forums.oracle.com/forums/thread.jspa?threadID=572661

	1 Introduction
	1.1 Basic Features
	1.2 Databases and Web Servlets

	2 Connections
	2.1 Base Connections
	2.2 Connection Pooling
	2.3 Virtual Connections
	2.4 Kill-safe Connections
	2.5 Data Source Names
	2.6 Mangaging Connections
	2.7 System-specific Modules

	3 Queries
	3.1 Statements
	3.2 Simple Queries
	3.3 General Query Support
	3.4 Prepared Statements
	3.5 Transactions
	3.6 SQL Errors
	3.7 Database Catalog Information
	3.8 Creating New Kinds of Statements

	4 SQL Types and Conversions
	4.1 SQL Type Conversions
	4.1.1 PostgreSQL Types
	4.1.2 MySQL Types
	4.1.3 SQLite Types
	4.1.4 ODBC Types

	4.2 SQL Data
	4.2.1 SQL NULL
	4.2.2 Dates and Times
	4.2.3 Bits

	5 Utilities
	5.1 Datetime Type Utilities
	5.2 Geometric Types
	5.3 PostgreSQL-specific Types

	6 Notes
	6.1 Local Sockets for PostgreSQL and MySQL Servers
	6.2 PostgreSQL Database Character Encoding
	6.3 PostgreSQL Authentication
	6.4 MySQL Authentication
	6.5 SQLite Requirements
	6.6 ODBC Requirements
	6.7 ODBC Status
	6.7.1 DB2 ODBC Driver
	6.7.2 Oracle ODBC Driver
	6.7.3 SQL Server ODBC Driver

