DB: Database Connectivity

Version 5.2.1

Ryan Culpepper <ryanc@racket-lang . org>

February 2, 2012

A database interface for functional programmers.
(require db)

This library provides a high-level interface to several database systems. The following
database systems are currently supported:

* PostgreSQL versions 7.4 and later. This library implements the PostgreSQL wire
protocol, so no native client library is required.

* MySQL versions 5 and later. This library implements the MySQL wire protocol, so
no native client library is required.

¢ SQLite version 3. The SQLite native client library is required; see §6.5 “SQLite
Requirements”.

* ODBC. An ODBC Driver Manager and appropriate ODBC drivers are required; see
§6.6 “ODBC Requirements”. The following database systems are known to work with
this library via ODBC (see §6.7 “ODBC Status” for details): DB2, Oracle, and SQL
Server.

The query operations are functional in spirit: queries return results or raise exceptions rather
than stashing their state into a cursor object for later navigation and retrieval. Query param-
eters and result fields are automatically translated to and from appropriate Racket values.
Resources are managed automatically by the garbage collector and via custodians. Connec-
tions are internally synchronized, so multiple threads can use a connection simultaneously.

Acknowledgments Thanks to Dave Gurnell, Noel Welsh, Mike Burns, and Doug Orleans
for contributions to spgsql, the PostgreSQL-only predecessor of this library. The SQLite
support is based in part on code from Jay McCarthy’s sqlite package.

mailto:ryanc@racket-lang.org
http://www.postgresql.org
http://www.mysql.com
http://www.sqlite.org
http://www.ibm.com/software/data/db2/
http://www.oracle.com
http://www.microsoft.com/sqlserver/
http://www.microsoft.com/sqlserver/

1 Introduction

This section introduces this library’s basic features and discusses how to build a database-
backed web servlet.

1.1 Basic Features

The following annotated program demonstrates how to connect to a database and perform
simple queries. Some of the SQL syntax used below is PostgreSQL-specific, such as the
syntax of query parameters ($1 rather than 7).

> (require db)

First we create a connection. Replace user, db, and password below with the appropriate
values for your configuration (see §2.1 “Base Connections” for other connection examples):

> (define pgc
(postgresql-connect #:user user
#:database db
#:password password))

> pgc
(object:connection} ...)

Use query-exec method to execute a SQL statement for effect.

> (query-exec pgc
"create temporary table the_numbers (n integer, d var-
char(20))")

> (query-exec pgc
"insert into the_numbers values (0, ’nothing’)")

> (query-exec pgc
"insert into the_numbers values (1, ’the loneliest number’)")

> (query-exec pgc
"insert into the_numbers values (2, ’company’)")

The query function is a more general way to execute a statement. It returns a structure
encapsulating information about the statement’s execution. (But some of that information
varies from system to system and is subject to change.)

> (query pgc "insert into the_numbers values (3, ’a crowd’)")
(simple-result ’((command insert 0 1)))
> (query pgc "select n, d from the_numbers where n % 2 = 0")
(rows-result
’(((name . "n") (typeid . 23)) ((name . "d") (typeid . 1043)))
>(#(0 "nothing") #(2 "company")))

When the query is known to return rows and when the field descriptions are not needed, it is
more convenient to use the query-rows function.

> (query-rows pgc "select n, d from the_numbers where n 7 2 = 0")
>(#(0 "nothing") #(2 "company"))

Use query-row for queries that are known to return exactly one row.

> (query-row pgc "select * from the_numbers where n = 0")
*#(0 "nothing")

Similarly, use query-1ist for queries that produce rows of exactly one column.

> (query-list pgc "select d from the_numbers order by n")
>("nothing" "the loneliest number" "company" "a crowd")

When a query is known to return a single value (one row and one column), use query-
value.

> (query-value pgc "select count(*) from the_numbers")

4

> (query-value pgc "select d from the_numbers where n = 5")
query-value: query returned zero rows: "select d from

the_numbers where n = 5"

When a query may return zero or one rows, as the last example, use query-maybe-row or
query-maybe-value instead.

> (query-maybe-value pgc "select d from the_numbers where n = 5")

#f
The in-query function produces a sequence that can be used with Racket’s iteration forms:

> (for ([(n d) (in-query pgc "select * from the_numbers where n <
4m1)

(printf "~a is ~a\n" n d))

0: nothing
1: the loneliest number
2: company
3: a crowd

\%

(for/fold ([sum 0]) ([n (in-query pgc "select n from
the_numbers'")])

(+ sum n))

Errors in queries generally do not cause the connection to disconnect.

> (begin (with-handlers [(exn:fail?
(lambda (e) (printf "~a~n" (exn-
message e))))]
(query-value pgc "select NoSuchField from No-
SuchTable"))
(query-value pgc "select ’okay to proceed!’"))
query-value: relation "nosuchtable" does not exist (SQLSTATE
42P01)

"okay to proceed!"

Queries may contain parameters. The easiest way to execute a parameterized query is to
provide the parameters “inline” after the SQL statement in the query function call.

> (query-value pgc
"select d from the_numbers where n = $1" 2)
"company"
> (query-list pgc
"select n from the_numbers where n > $1 and n < $2" 0 3)
7(12)

Alternatively, a parameterized query may be prepared in advance and executed later. Pre-
pared statements can be executed multiple times with different parameter values.

> (define get-less-than-pst

(prepare pgc '"select n from the_numbers where n < $1"))

> (query-list pgc get-less-than-pst 1)

?(0)

> (query-list pgc (bind-prepared-statement get-less-than-pst 2))
’(0 1)

When a connection’s work is done, it should be disconnected.

> (disconnect pgc)

1.2 Databases and Web Servlets

Using database connections in a web servlet is more complicated than in a stan-
dalone program. A single servlet is potentially used to serve many requests at once,
each in a separate request-handling thread. Furthermore, the use of send/suspend,
send/suspend/dispatch, etc means that there are many places where a servlet may start
and stop executing to service a request.

Why not use a single connection to handle all of a servlet’s requests? That is, create the
connection with the servlet instance and never disconnect it. Such a servlet would look
something like the following:

’ "bad-servlet.rkt"

#lang web-server
(require db)

(define db-conn (postgresql-connect))
(define (serve req)
db-conn)

The main problem with using one connection for all requests is that multiple threads access-
ing the same connection are not properly [isolated. For example, if two threads both attempt
to start a new transaction, the second one will fail, because the first thread has already put
the connection into an “in transaction” state. And if one thread is accessing the connection
within a transaction and another thread issues a query, the second thread may see invalid
data or even disrupt the work of the first thread.

A secondary problem is performance. A connection can only perform a single query at a
time, whereas most database systems are capable of concurrent query processing.

The proper way to use database connections in a servlet is to create a connection for each
request and disconnect it when the request is handled. But since a request thread may start
and stop executing in many places (due to send/suspend, etc), inserting the code to connect
and disconnect at the proper places can be challenging and messy.

A better solution is to use a virtual connection, which creates a request-specific (that is,
thread-specific) “actual connection” by need and disconnects it when the request is handled
(that is, when the thread terminates). Different request-handling threads using the same vir-
tual connection are assigned different actual connection, so the threads are properly isolated.

"better-servlet.rkt"

#lang web-server
(require db)
(define db-conn
(virtual-connection
(lambda () (postgresql-connect))))
(define (serve req)

http://en.wikipedia.org/wiki/Isolation_%28database_systems%29

db-conn)

This solution preserves the simplicity of the naive solution and fixes the isolation problem

but at the cost of creating many short-lived database connections. That cost can be eliminated
by using a connection pool:

"best-servlet.rkt"

#lang web-server
(require db)
(define db-conn

(virtual-connection

(connection-pool

(lambda () (postgresql-connect)))))
(define (serve req)
db-conn)

By using a virtual connection backed by a connection pool, a servlet can achieve simplicity,
isolation, and performance.

2 Connections

This section describes functions for creating connections as well as administrative functions
for managing connections.

2.1 Base Connections

There are four kinds of base connection, and they are divided into two groups: wire-based
connections and FFI-based connections. PostgreSQL and MySQL connections are wire-
based, and SQLite and ODBC connections are FFI-based.

Wire-based connections communicate using ports, which do not cause other Racket threads
to block. In contrast, an FFI call causes all Racket threads to block until it completes, so
FFI-based connections can degrade the interactivity of a Racket program, particularly if
long-running queries are performed using the connection. This problem can be avoided by
creating the FFI-based connection in a separate place using the #: use-place keyword argu-
ment. Such a connection will not block all Racket threads during queries; the disadvantage
is the cost of creating and communicating with a separate place.

Base connections are made using the following functions.

(postgresql-connect
:user user
:database database
:server server
:port port
:socket socket
:password password
:allow-cleartext-password? allow-cleartext-password?
:ssl ssl
:ssl-context ssl-context
:notice-handler notice-handler
:notification-handler notification-handler])
— connection?

user : string?

database : string?

server : string? = "localhost"

port : exact-positive-integer? = 5432

socket : (or/c path-string? ’guess #f) = #f
password : (or/c string? #f) = #f
allow-cleartext-password? : boolean? = #f

ssl : (or/c ’yes ’optional ’no) = ’no
ssl-context : ssl-client-context?

= (ssl-make-client-context ’sslv3)

B T O TN T T T ETU T

(or/c ’output ’error output-port?

(-> string? string? any))

(or/c ’output ’error output-port?
(-> string? any))

notice-handler : = void

notification-handler :

= void

Creates a connection to a PostgreSQL server. Only the database and user arguments are
mandatory.

By default, the connection is made via TCP to "localhost" at port 5432. To make a
different TCP connection, provide one or both of the server and port arguments.

To connect via a local socket, specify the socket path as the socket argument. You must
not supply the socket argument if you have also supplied either of the TCP arguments. See
also §6.1 “Local Sockets for PostgreSQL and MySQL Servers” for notes on socket paths.
Supplying a socket argument of ’guess is the same as supplying (postgresql-guess-
socket-path). Sockets are only available under Linux (x86) and Mac OS X.

If the server requests password authentication, the password argument must be present;
otherwise an exception is raised. If the server does not request password authentication, the
password argument is ignored and may be omitted. A connection normally only sends pass-
word hashes (using the md5 authentication method). If the server requests a password sent
as cleartext (un-hashed), the connection is aborted unless allow-cleartext-password?
is true.

If the ss1 argument is either ’yes or ’optional, the connection attempts to negotiate an
SSL connection. If the server refuses SSL, the connection raises an exception if ss1 was
set to ’yes or continues with an unencrypted connection if ssl was set to ’optional.
By default, SSL provides encryption but does not verify the identity of the server (see this
explanation). Host verification can be required via the ss1-context argument; see ssl-
set-verify!. Some servers use SSL certificates to authenticate clients; see ssl-load-
certificate-chain! and ssl-load-private-key!. SSL may only be used with TCP
connections, not with local sockets.

The notice-handler is called on notice messages received asynchronously from the
server. A common example is notice of an index created automatically for a table’s primary
key. The notice-handler function takes two string arguments: the condition’s SQL-
STATE and a message. The notification-handler is called in response to an event
notification (see the LISTEN and NOTIFY statements); its argument is the name of the event
as a string. An output port may be supplied instead of a procedure, in which case a message
is printed to the given port. Finally, the symbol ’output causes the message to be printed
to the current output port, and ’error causes the message to be printed to the current error
port.

If the connection cannot be made, an exception is raised.

Examples:

http://www.postgresql.org/docs/9.0/static/libpq-ssl.html
http://www.postgresql.org/docs/9.0/static/libpq-ssl.html

> (postgresql-connect #:server "db.mysite.com"
#:port 5432
#:database "webappdb"
#:user "webapp"
#:password "ultrabecret")
(object:connection’ ...)
> (postgresql-connect #:user '"me"
#:database '"me"
#:password '"icecream")
(object:connection’ ...)
> (postgresql-connect ; Typical socket path
#:socket "/var/run/postgresql/.s.PGSQL.5432"
#:user '"me"
#:database "me")
(object:connection’ ...)
> (postgresql-connect #:socket ’guess ; or (postgresql-guess-
socket-path)
#:user '"me"
#:database "me")
(object:connection} ...)

I(postgresql—guess—socket—path) — path-string?

Attempts to guess the path for the socket based on conventional locations. This function
returns the first such path that exists in the filesystem. It does not check that the path is a
socket file, nor that the path is connected to a PostgreSQL server.

If none of the attempted paths exist, an exception is raised.

(mysql-connect #:user user

:database database

iserver server

:port port

:socket socket

:ssl ssl

:ssl-context ssl-context

:password password

:notice-handler notice-handler]) — connection?

,_‘
HoH B B

user : string?
database : (or/c string? #f) = #f
server : string? = "localhost"
port : exact-positive-integer? = 3306
socket : (or/c path-string? #f) = #f
ssl : (or/c ’yes ’optional ’no) = ’no
ssl-context : ssl-client-context?
= (ssl-make-client-context ’tls)

password : (or/c string? #f) = #f

or/c ’output ’error output-port?
notice-handler : (ox/ P P P .
(-> exact-nonnegative-integer? string? any))

= void

Creates a connection to a MySQL server. If database is #f, the connection is established
without setting the current database; it should be subsequently set with the USE SQL com-
mand.

The meaning of the other keyword arguments is similar to those of the postgresql-
connect function, except that the first argument to a notice-handler function is a
MySQL-specific integer code rather than a SQLSTATE string, and a socket argument of
’guess is the same as supplying (mysql-guess-socket-path).

If the connection cannot be made, an exception is raised.
Examples:

> (mysql-connect #:server "db.mysite.com"

#:port 3306

#:database "webappdb"

#:user "webapp"

#:password "ultrabecret")
(object:connection’ ...)
> (mysql-connect #:user '"me"

#:database '"me"

#:password "icecream")
(object:connection’ ...)
> (mysql-connect ; Typical socket path

#:socket "/var/run/mysqld/mysqld.sock"

#:user '"me"

#:database "me")
(object:connection} ...)
> (mysql-connect #:socket (mysql-guess-socket-path)

#:user "me"

#:database "me")
(object:connectiony ...)

(mysql-guess-socket-path) — path-string?

Attempts to guess the path for the socket based on conventional locations. This function
returns the first such path that exists in the filesystem. It does not check that the path is a
socket file, nor that the path is connected to a MySQL server.

If none of the attempted paths exist, an exception is raised.

10

(sqlite3-connect #:database database
[#:mode mode
#:busy-retry-limit busy-retry-limit
#:busy-retry-delay busy-retry-delay
#:use-place use-place])
— connection?
database : (or/c path-string? ’memory ’temporary)

mode : (or/c ’read-only ’read/write ’create) = ’read/write
busy-retry-limit : (or/c exact-nonnegative-integer? +inf.0)
= 10

busy-retry-delay : (and/c rational? (not/c negative?)) = 0.1
use-place : boolean? = #f

Opens the SQLite database at the file named by database, if database is a string or
path. If database is ’temporary, a private disk-based database is created. If database is
’memory, a private memory-based database is created.

If mode is read-only, the database is opened in read-only mode. If mode is ’read/write
(the default), the database is opened for reading and writing (if filesystem permissions per-
mit). The ’create mode is like ’read/write, except that if the given file does not exist, it
is created as a new database.

SQLite uses coarse-grained locking, and many internal operations fail with the
SQLITE_BUSY condition when a lock cannot be acquired. When an internal operation fails
because the database is busy, the connection sleeps for busy-retry-delay seconds and
retries the operation, up to busy-retry-1imit additional times. If busy-retry-1imit is
0, the operation is only attempted once. If after busy-retry-1imit retries the operation
still does not succeed, an exception is raised.

If use-place is true, the actual connection is created in a distinct place for database con-
nections and a proxy is returned.

If the connection cannot be made, an exception is raised.
Examples:

> (sqlite3-connect #:database "/path/to/my.db")

(object:connection’ ...)

> (sqlite3-connect #:database "relpath/to/my.db"
#:mode ’create)

(object:connection} ...)

11

http://www.sqlite.org/lockingv3.html

(odbc-connect

:dsn dsn

:user user

:password password

:notice-handler notice-handler

:strict-parameter-types? strict-parameter-types?

:character-mode character-mode

:use-place use-place])

— connection?

dsn : string?

user : (or/c string? #f) = #f

password : (or/c string? #f) = #f

(or/c output-port? ’output ’error
(-> string? string? any))

strict-parameter-types? : boolean? = #f

character-mode : (or/c ’wchar ’utf-8 ’latin-1) = ’wchar

use-place : boolean? = #f

,_,
H oH H O H H

notice-handler : = void

Creates a connection to the ODBC Data Source named dsn. The user and password
arguments are optional, since that information may be incorporated into the data source
definition, or it might not be relevant to the data source’s driver. The notice-handler
argument behaves the same as in postgresql-connect.

If strict-parameter-types? is true, then the connection attempts to determine and en-
force specific types for query parameters. See §4.1.4 “ODBC Types” for more details.

By default, connections use ODBC’s SQL_C_WCHAR-based character encoding (as UTF-16)
to send and receive Unicode character data. Unfortunately, some drivers’ support for this
method is buggy. To use SQL_C_CHAR instead, set character-mode to utf-8or >latin-
1, depending on which encoding the driver uses.

See §6.7 “ODBC Status” for notes on specific ODBC drivers and recommendations for
connection options.

If use-place is true, the actual connection is created in a distinct place for database con-
nections and a proxy is returned.

If the connection cannot be made, an exception is raised.

(odbc-driver-connect
connection-string
[#:notice-handler notice-handler
#:strict-parameter-types? strict-parameter-types?
#:character-mode character-mode
#:use-place use-place])
— connection?
connection-string : string?

12

(or/c output-port? ’output ’error

(-> string? string? any))
strict-parameter-types? : boolean? = #f
character-mode : (or/c ’wchar ’utf-8 ’latin-1) = ’wchar
use-place : boolean? = #f

notice-handler : = void

Creates a connection using an ODBC connection string containing a sequence of key-
word and value connection parameters. The syntax of connection strings is described in
SQLDriverConnect| (see Comments section); supported attributes depend on the driver. The
other arguments are the same as in odbc-connect.

If the connection cannot be made, an exception is raised.

(odbc-data-sources) — (listof (list/c string? string?))

Returns a list of known ODBC Data Sources. Each data souce is represented by a list of
two strings; the first string is the name of the data source, and the second is the name of its
associated driver.

(odbc-drivers) — (listof (cons/c string? any/c))

Returns a list of known ODBC Drivers. Each driver is represented by a list, the first ele-
ment of which is the name of the driver. The contents of the rest of each entry is currently
undefined.

2.2 Connection Pooling

Creating a database connection can be a costly operation; it may involve steps such as pro-
cess creation and SSL negotiation. A connection pool helps reduce connection costs by
reusing connections.

(connection-pool connect
[#:max-connections max-connections
#:max-idle-connections max-idle-connections])
— connection-pool?
connect : (-> connection?)
max-connections : (or/c (integer-in 1 10000) +inf.0) = +inf.0
max-idle-connections : (or/c (integer-in 1 10000) +inf.0) = 10

Creates a connection pool. The pool consists of up to max-connections, divided between
leased connections and up to max-idle-connections idle connections. The pool uses
connect to create new connections when needed; the connect function must return a fresh
connection each time it is called.

13

http://msdn.microsoft.com/en-us/library/ms715433%28v=VS.85%29.aspx

Examples:

> (define pool
(connection-pool
(lambda () (displayln "connecting!") (sqlite3-connect))
#:max-idle-connections 1))

> (define cl (connection-pool-lease pool))
connecting!

> (define c2 (connection-pool-lease pool))
connecting!

> (disconnect c1)

> (define c3 (connection-pool-lease pool)) ; reuses actual conn.
from ci1

See also virtual-connection for a mechanism that eliminates the need to explicitly call
connection-pool-lease and disconnect

(connection-pool? x) — boolean?
x : any/c

Returns #t if x is a connection pool, #f otherwise.

(connection-pool-lease pool [release]) — connection?
pool : connection-pool?
release : (or/c evt? custodian?) = (current-thread)

Obtains a connection from the connection pool, using an existing idle connection in pool if
one is available. If no idle connection is available and the pool contains fewer than its maxi-
mum allowed connections, a new connection is created; otherwise an exception is raised.

Calling disconnect on the connection obtained causes the connection to be released back
to the connection pool. The connection is also released if release becomes available, if it
is a synchronizable event, or if release is shutdown, if it is a custodian. The default for
release is the current thread, so the resulting connection is released when the thread that
requested it terminates.

When a connection is released, it is kept as an idle connection if pool’s idle connection
limit would not be exceeded; otherwise, it is disconnected. In either case, if the connection
is in a transaction, the transaction is rolled back.

14

2.3 Virtual Connections

A virtual connection creates actual connections on demand and automatically releases them
when they are no longer needed.

(virtual-connection connect) — connection?
connect : (or/c (-> connection?) connection-pool?)

Creates a virtual connection that creates actual connections on demand using the connect
function, or by calling (connection-pool-lease connect) if connect is a connection
pool. A virtual connection encapsulates a mapping of threads to actual connections. When
a query function is called with a virtual connection, the current thread’s associated actual
connection is used to execute the query. If there is no actual connection associated with the
current thread, one is obtained by calling connect. An actual connection is disconnected
when its associated thread dies.

Virtual connections are especially useful in contexts such as web servlets, where each request
is handled in a fresh thread. A single global virtual connection can be defined, freeing each
servlet request from explicitly opening and closing its own connections. In particular, a
virtual connection backed by a connection pool combines convenience with efficiency:

Example:

> (define the-connection
(virtual-connection (connection-pool (lambda ()))))

The resulting virtual connection leases a connection from the pool on demand for each
servlet request thread and releases it when the thread terminates (that is, when the request
has been handled).

When given a connection produced by virtual-connection, connected? indicates
whether there is an actual connection associated with the current thread. Likewise, dis-
connect causes the current actual connection associated with the thread (if there is one) to
be disconnected, but the connection will be recreated if a query function is executed.

Examples:

> (define c
(virtual-connection
(lambda ()
(printf "connecting!\n")
(postgresql-connect))))

> (connected? c)

#f
> (query-value c '"select 1")

15

connecting!

1

> (connected? c)

#t

> (void (thread (lambda () (displayln (query-value c "select
2")))))

connecting!

2

> (disconnect c)

> (connected? c)

#f

> (query-value c "select 3")
connecting!

3

Connections produced by virtual-connection may not be used with the prepare func-
tion. However, they may still be used to execute parameterized queries expressed as strings
or encapsulated via virtual-statement.

Examples:

> (prepare c "select 2 + $1")

prepare: cannot prepare statement with virtual connection

> (query-value c "select 2 + $1" 2)

4

> (define pst (virtual-statement "select 2 + $1"))

\4

(query-value c pst 3)

2.4 Kill-safe Connections

(kill-safe-connection ¢) — connection?
c : connection?

Creates a proxy for connection c. All queries performed through the proxy are kill-safe; that
is, if a thread is killed during a call to a query function such as query, the connection will
not become locked or damaged. (Connections are normally thread-safe but not kill-safe.)

Note: A kill-safe connection whose underlying connection uses ports to communicate with
a database server is not protected from a custodian shutting down its ports.

16

2.5 Data Source Names

A DSN (data source name) is a symbol associated with a connection specification in a DSN
file. They are inspired by, but distinct from, ODBC’s DSNs.

(struct data-source (connector args extensions)
#:mutable)
connector : (or/c ’postgresql ’mysql ’sqlite3 ’odbc)
args : list?
extensions : (listof (list/c symbol? any/c))

Represents a data source. The connector field determines which connection function is
used to create the connection. The args field is a partial list of arguments passed to the
connection function; additional arguments may be added when dsn-connect is called. The
extensions field contains additional information about a connection; for example, this
library’s testing framework uses it to store SQL dialect flags.

Data sources can also be created using the postgresql-data-source, etc auxiliary func-
tions.

(dsn-connect dsn
[#:dsn-file dsn-file]

arg ...
#:<kw> kw-arg ...) — connection?
dsn : (or/c symbol? data-source?)
dsn-file : path-string? = (current-dsn-file)

arg : any/c
kw-arg : any/c

Makes a connection using the connection information associated with dsn in dsn-file.
The given args and kw-args are added to those specified by dsn to form the complete
arguments supplied to the connect function.

If dsn-file does not exist, or if it contains no entry for dsn, an exception is raised. If dsn
is a data-source, then dsn-file is ignored.

Examples:

> (put-dsn ’pg
(postgresql-data-source #:user "me"
#:database "mydb"
#:password "icecream"))

> (dsn-connect ’pg)

(object:connection’ ...)
> (dsn-connect ’pg #:notice-handler (lambda (code msg)))
(object:connectiony, ...)

17

(current-dsn-file) — path-string?
(current-dsn-file x) — void?
x . path-string?

A parameter holding the location of the default DSN file. The initial value is a file located
immediately within (find-system-path ’prefs-dir).

(get-dsn dsn [default #:dsn-file dsn-file])
— (or/c data-source? any/c)

dsn : symbol?

default : any/c = #f

dsn-file : path-string? = (current-dsn-file)

Returns the data-source associated with dsn in dsn-file.

If dsn-file does not exist, an exception is raised. If dsn-file does not have an entry for
dsn, default is called if it is a function or returned otherwise.

(put-dsn dsn ds [#:dsn-file dsn-file]) — void?
dsn : symbol?
ds : (or/c data-source? #f)
dsn-file : path-string? = (current-dsn-file)

Associates dsn with the given data source ds in dsn-file, replacing the previous associa-
tion, if one exists.

18

(postgresql-data-source

[#:
:database database

:server server

:port port

:socket socket

:password password

:allow-cleartext-password? allow-cleartext-password?
:ssl ssl

+

H oH HF HH HH R

user user

:notice-handler notice-handler
:notification-handler notification-handler])

— data-source?
user : string? = absent
database : string? = absent
server : string? = absent
port : exact-positive-integer? = absent
socket : (or/c path-string? ’guess #f) = absent
password : (or/c string? #f) = absent
allow-cleartext-password? : boolean? = absent
ssl : (or/c ’yes ’optional ’no) = absent
notice-handler : (or/c ’output ’error) = absent
notification-handler : (or/c ’output ’error) = absent
(mysql-data-source [#:user user

:database database

:server server

:port port

:socket socket

:ssl ssl

:password password
:notice-handler notice-handler])

H OH H H O O H

— data-source?

user : string? = absent

database : (or/c string? #f) = absent

server : string? = absent

port : exact-positive-integer? = absent

socket : (or/c path-string? ’guess #f) = absent
ssl : (or/c ’yes ’optional ’no) = absent
password : (or/c string? #f) = absent
notice-handler : (or/c ’output ’error) = absent

19

(sqlite3-data-source [#:database database
#:mode mode
#:busy-retry-limit busy-retry-limit
#:busy-retry-delay busy-retry-delay
#:use-place use-place])
— data-source?
database : (or/c path-string? ’memory ’temporary) = absent
mode : (or/c ’read-only ’read/write ’create) = absent

busy-retry-limit : (or/c exact-nonnegative-integer? +inf.0)
= absent

busy-retry-delay : (and/c rational? (not/c negative?))
= absent

use-place : boolean? = absent
(odbc-data-source
:dsn dsn
:database database
:user user
:password password
:notice-handler notice-handler
:strict-parameter-types? strict-parameter-types?
:character-mode character-mode])
— data-source?
dsn : (or/c string? #f) = absent
database : (or/c string? #f) = absent
user : (or/c string? #f) = absent
password : (or/c string? #f) = absent
notice-handler : (or/c ’output ’error) = absent
strict-parameter-types? : boolean? = absent
character-mode : (or/c ’wchar ’utf-8 ’latin-1) = absent

,_,
H OH HF HH R

Analogues of postgresql-connect, mysql-connect, sqlite3-connect, and odbc-
connect, respectively, that return a data-source describing the (partial) connection in-
formation. All arguments are optional, even those that are mandatory in the corresponding
connection function; the missing arguments must be supplied when dsn-connect is called.

2.6 Mangaging Connections

(connection? x) — boolean?
x : any/c

Returns #t if x is a connection, #f otherwise.

(disconnect connection) — void?
connection : connection?

20

Closes the connection.

(connected? connection) — boolean?
connection : connection?

Returns #t if connection is connected, #f otherwise.

(connection-dbsystem connection) — dbsystem?
connection : connection?

Gets an object encapsulating information about the database system of connection.
(dbsystem? x) — boolean?
x : any/c
Predicate for objects representing database systems.
(dbsystem-name sys) — symbol?
sys : dbsystem?

Returns a symbol that identifies the database system. Currently one of the following:

* ’postgresql
* ‘mysql
* ’sqlite3

* ’odbc

(dbsystem-s