
The Racket Graphical Interface Toolkit
Version 5.2.1

Matthew Flatt,
Robert Bruce Findler,

and John Clements

February 2, 2012

(require racket/gui/base)

The racket/gui/base library provides all of the class, interface, and procedure bindings
defined in this manual, in addition to the bindings of racket/draw and file/resource.

#lang racket/gui

The racket/gui language combines all bindings of the racket language and the
racket/gui/base and racket/draw modules.

The racket/gui toolbox is roughly organized into two parts:

• The windowing toolbox, for implementing windows, buttons, menus, text fields, and
other controls.

• The editor toolbox, for developing traditional text editors, editors that mix text and
graphics, or free-form layout editors (such as a word processor, HTML editor, or
icon-based file browser).

Both parts of the toolbox rely extensively on the racket/draw drawing library.

1

Contents

1 Windowing 8

1.1 Creating Windows . 8

1.2 Drawing in Canvases . 10

1.3 Core Windowing Classes . 11

1.4 Geometry Management . 14

1.4.1 Containees . 15

1.4.2 Containers . 16

1.4.3 Defining New Types of Containers 18

1.5 Mouse and Keyboard Events . 19

1.6 Event Dispatching and Eventspaces . 20

1.6.1 Event Types and Priorities . 21

1.6.2 Eventspaces and Threads . 22

1.6.3 Creating and Setting the Eventspace 22

1.6.4 Continuations and Event Dispatch 23

1.7 Animation in Canvases . 23

2 Windowing Classes 25

2.1 area<%> . 26

2.2 area-container<%> . 28

2.3 area-container-window<%> . 31

2.4 button% . 31

2.5 canvas<%> . 33

2.6 canvas% . 38

2.7 check-box% . 45

2

2.8 checkable-menu-item% . 47

2.9 choice% . 48

2.10 clipboard-client% . 50

2.11 clipboard<%> . 51

2.12 combo-field% . 53

2.13 control<%> . 55

2.14 column-control-event% . 56

2.15 control-event% . 57

2.16 cursor% . 58

2.17 dialog% . 59

2.18 event% . 62

2.19 frame% . 63

2.20 gauge% . 67

2.21 group-box-panel% . 68

2.22 grow-box-spacer-pane% . 70

2.23 horizontal-pane% . 70

2.24 horizontal-panel% . 71

2.25 key-event% . 72

2.26 labelled-menu-item<%> . 80

2.27 list-box% . 82

2.28 list-control<%> . 89

2.29 menu% . 91

2.30 menu-bar% . 91

2.31 menu-item<%> . 92

2.32 menu-item% . 93

3

2.33 menu-item-container<%> . 94

2.34 message% . 95

2.35 mouse-event% . 96

2.36 pane% . 102

2.37 panel% . 103

2.38 popup-menu% . 104

2.39 printer-dc% . 105

2.40 radio-box% . 106

2.41 selectable-menu-item<%> . 109

2.42 separator-menu-item% . 111

2.43 scroll-event% . 112

2.44 slider% . 113

2.45 subarea<%> . 115

2.46 subwindow<%> . 116

2.47 tab-panel% . 116

2.48 text-field% . 119

2.49 timer% . 122

2.50 top-level-window<%> . 123

2.51 vertical-pane% . 128

2.52 vertical-panel% . 129

2.53 window<%> . 131

3 Windowing Functions 140

3.1 Dialogs . 140

3.2 Eventspaces . 151

3.3 System Menus . 155

4

3.4 Global Graphics . 157

3.5 Fonts . 158

3.6 Miscellaneous . 159

4 Editors 167

4.1 Editor Structure and Terminology . 169

4.1.1 Administrators . 170

4.1.2 Styles . 171

4.2 File Format . 172

4.2.1 Encoding Snips . 172

4.2.2 Global Data: Headers and Footers 174

4.3 End of Line Ambiguity . 175

4.4 Flattened Text . 175

4.5 Caret Ownership . 176

4.6 Cut and Paste Time Stamps . 176

4.7 Clickbacks . 177

4.8 Internal Editor Locks . 177

4.9 Editors and Threads . 178

5 Snip and Style Classes 180

5.1 add-color<%> . 180

5.2 image-snip% . 181

5.3 mult-color<%> . 184

5.4 readable-snip<%> . 186

5.5 snip% . 186

5.6 snip-admin% . 199

5

5.7 snip-class% . 205

5.8 snip-class-list<%> . 207

5.9 string-snip% . 208

5.10 style<%> . 208

5.11 style-delta% . 212

5.12 style-list% . 223

5.13 tab-snip% . 226

6 Editor Classes 227

6.1 editor<%> . 227

6.2 editor-admin% . 265

6.3 editor-canvas% . 270

6.4 editor-data% . 276

6.5 editor-data-class% . 277

6.6 editor-data-class-list<%> . 278

6.7 editor-snip-editor-admin<%> . 279

6.8 editor-snip% . 279

6.9 editor-stream-in% . 286

6.10 editor-stream-in-base% . 288

6.11 editor-stream-in-bytes-base% . 289

6.12 editor-stream-out% . 290

6.13 editor-stream-out-base% . 291

6.14 editor-stream-out-bytes-base% . 292

6.15 editor-wordbreak-map% . 293

6.16 keymap% . 294

6.17 pasteboard% . 302

6

6.18 text% . 319

7 Editor Functions 358

8 WXME Decoding 366

8.1 Snip Class Mapping . 370

8.1.1 Nested Editors . 371

8.1.2 Images . 372

8.2 DrRacket Comment Boxes . 373

8.3 DrRacket XML Boxes . 373

8.4 DrRacket Racket Boxes . 374

8.5 DrRacket Text Boxes . 375

8.6 DrRacket Fractions . 375

8.7 DrRacket Teachpack Images . 375

8.8 DrRacket Test-Case Boxes . 376

9 Preferences 378

10 Dynamic Loading 379

11 Startup Actions 380

12 Platform Dependencies 381

Index 382

7

1 Windowing

The windowing toolbox provides the basic building blocks of GUI programs, including
frames (top-level windows), modal dialogs, menus, buttons, check boxes, text fields, and
radio buttons—all as classes. See §13 “Classes

and Objects” for an
introduction to
classes and
interfaces in
Racket.

1.1 Creating Windows

To create a new top-level window, instantiate the frame% class:

; Make a frame by instantiating the frame% class

(define frame (new frame% [label "Example"]))

; Show the frame by calling its show method

(send frame show #t)

The built-in classes provide various mechanisms for handling GUI events. For example,
when instantiating the button% class, supply an event callback procedure to be invoked
when the user clicks the button. The following example program creates a frame with a text
message and a button; when the user clicks the button, the message changes:

; Make a frame by instantiating the frame% class

(define frame (new frame% [label "Example"]))

; Make a static text message in the frame

(define msg (new message% [parent frame]

[label "No events so far..."]))

; Make a button in the frame

(new button% [parent frame]

[label "Click Me"]

; Callback procedure for a button click:

(callback (lambda (button event)

(send msg set-label "Button click"))))

; Show the frame by calling its show method

(send frame show #t)

Programmers never implement the GUI event loop directly. Instead, the windowing system
automatically pulls each event from an internal queue and dispatches the event to an appro-
priate window. The dispatch invokes the window’s callback procedure or calls one of the
window’s methods. In the above program, the windowing system automatically invokes the
button’s callback procedure whenever the user clicks Click Me.

8

If a window receives multiple kinds of events, the events are dispatched to methods of the
window’s class instead of to a callback procedure. For example, a drawing canvas receives
update events, mouse events, keyboard events, and sizing events; to handle them, derive a
new class from the built-in canvas% class and override the event-handling methods. The
following expression extends the frame created above with a canvas that handles mouse and
keyboard events:

; Derive a new canvas (a drawing window) class to handle events

(define my-canvas%

(class canvas% ; The base class is canvas%

; Define overriding method to handle mouse events

(define/override (on-event event)

(send msg set-label "Canvas mouse"))

; Define overriding method to handle keyboard events

(define/override (on-char event)

(send msg set-label "Canvas keyboard"))

; Call the superclass init, passing on all init args

(super-new)))

; Make a canvas that handles events in the frame

(new my-canvas% [parent frame])

After running the above code, manually resize the frame to see the new canvas. Moving the
cursor over the canvas calls the canvas’s on-event method with an object representing a
motion event. Clicking on the canvas calls on-event. While the canvas has the keyboard
focus, typing on the keyboard invokes the canvas’s on-char method.

The windowing system dispatches GUI events sequentially; that is, after invoking an event-
handling callback or method, the windowing system waits until the handler returns before
dispatching the next event. To illustrate the sequential nature of events, extend the frame
again, adding a Pause button:

(new button% [parent frame]

[label "Pause"]

[callback (lambda (button event) (sleep 5))])

After the user clicks Pause, the entire frame becomes unresponsive for five seconds; the
windowing system cannot dispatch more events until the call to sleep returns. For more
information about event dispatching, see §1.6 “Event Dispatching and Eventspaces”.

In addition to dispatching events, the GUI classes also handle the graphical layout of win-
dows. Our example frame demonstrates a simple layout; the frame’s elements are lined up
top-to-bottom. In general, a programmer specifies the layout of a window by assigning each
GUI element to a parent container. A vertical container, such as a frame, arranges its chil-
dren in a column, and a horizontal container arranges its children in a row. A container can

9

be a child of another container; for example, to place two buttons side-by-side in our frame,
create a horizontal panel for the new buttons:

(define panel (new horizontal-panel% [parent frame]))

(new button% [parent panel]

[label "Left"]

[callback (lambda (button event)

(send msg set-label "Left click"))])

(new button% [parent panel]

[label "Right"]

[callback (lambda (button event)

(send msg set-label "Right click"))])

For more information about window layout and containers, see §1.4 “Geometry Manage-
ment”.

1.2 Drawing in Canvases

The content of a canvas is determined by its on-paint method, where the default on-paint
calls the paint-callback function that is supplied when the canvas is created. The on-

paint method receives no arguments and uses the canvas’s get-dc method to obtain a
drawing context (DC) for drawing; the default on-paint method passes the canvas and this
DC on to the paint-callback function. Drawing operations of the racket/draw toolbox
on the DC are reflected in the content of the canvas onscreen.

For example, the following program creates a canvas that displays large, friendly letters:

(define frame (new frame%

[label "Example"]

[width 300]

[height 300]))

(new canvas% [parent frame]

[paint-callback

(lambda (canvas dc)

(send dc set-scale 3 3)

(send dc set-text-foreground "blue")

(send dc draw-text "Don't Panic!" 0 0))])

(send frame show #t)

The background color of a canvas can be set through the set-canvas-background method.
To make the canvas transparent (so that it takes on its parent’s color and texture as its initial
content), supply 'transparent in the style argument when creating the canvas.

See §1 “Overview” in The Racket Drawing Toolkit for an overview of drawing with the

10

racket/draw library. For more advanced information on canvas drawing, see §1.7 “Anima-
tion in Canvases”.

1.3 Core Windowing Classes

The fundamental graphical element in the windowing toolbox is an area. The following
classes implement the different types of areas in the windowing toolbox:

• Containers — areas that can contain other areas:

– frame% — a frame is a top-level window that the user can move and resize.

– dialog% — a dialog is a modal top-level window; when a dialog is shown, other
top-level windows are disabled until the dialog is dismissed.

– panel% — a panel is a subcontainer within a container. The toolbox provides
three subclasses of panel%: vertical-panel%, horizontal-panel%, and
tab-panel%.

– pane% — a pane is a lightweight panel. It has no graphical representation or
event-handling capabilities. The pane% class has three subclasses: vertical-
pane%, horizontal-pane%, and grow-box-spacer-pane%.

• Containees — areas that must be contained within other areas:

– panel% — a panel is a containee as well as a container.

– pane% — a pane is a containee as well as a container.

– canvas% — a canvas is a subwindow for drawing on the screen.

– editor-canvas% — an editor canvas is a subwindow for displaying a text ed-
itor or pasteboard editor. The editor-canvas% class is documented with the
editor classes in §4 “Editors”.

– Controls — containees that the user can manipulate:

* message% — a message is a static text field or bitmap with no user interac-
tion.

* button% — a button is a clickable control.

* check-box% — a check box is a clickable control; the user clicks the control
to set or remove its check mark.

* radio-box% — a radio box is a collection of mutually exclusive radio but-
tons; when the user clicks a radio button, it is selected and the radio box’s
previously selected radio button is deselected.

* choice% — a choice item is a pop-up menu of text choices; the user selects
one item in the control.

* list-box% — a list box is a scrollable lists of text choices; the user selects
one or more items in the list (depending on the style of the list box).

11

* text-field% — a text field is a box for simple text entry.

* combo-field% — a combo field combines a text field with a pop-up menu
of choices.

* slider% — a slider is a dragable control that selects an integer value within
a fixed range.

* gauge% — a gauge is an output-only control (the user cannot change the
value) for reporting an integer value within a fixed range.

As suggested by the above listing, certain areas, called containers, manage certain other
areas, called containees. Some areas, such as panels, are both containers and containees.

Most areas are windows, but some are non-windows. A window, such as a panel, has a
graphical representation, receives keyboard and mouse events, and can be disabled or hidden.
In contrast, a non-window, such as a pane, is useful only for geometry management; a non-
window does not receive mouse events, and it cannot be disabled or hidden.

Every area is an instance of the area<%> interface. Each container is also an instance of
the area-container<%> interface, whereas each containee is an instance of subarea<%>.
Windows are instances of window<%>. The area-container<%>, subarea<%>, and win-

dow<%> interfaces are subinterfaces of area<%>.

The following diagram shows more of the type hierarchy under area<%>:

area<%>

______________________|_______________

| | |

subarea<%> window<%> area-container<%>

|____ _______|__________ |

| | | |

subwindow<%> area-container-window<%>

________|________ |

| | |

control<%> canvas<%> top-level-window<%>

The diagram below extends the one above to show the complete type hierarchy under
area<%>. (Some of the types are represented by interfaces, and some types are represented
by classes. In principle, every area type should be represented by an interface, but whenever
the windowing toolbox provides a concrete implementation, the corresponding interface is
omitted from the toolbox.) To avoid intersecting lines, the hierarchy is drawn for a cylin-
drical surface; lines from subarea<%> and subwindow<%> wrap from the left edge of the
diagram to the right edge.

area<%>

_____________________|_______________

| | |

subarea<%> window<%> area-container<%>

12

<<<____|____ _____|__________ __|___ ___________________<<<

| | | | | |

subwindow<%> | | | |

<<<______________|___________ | | | | _<<<

| | | | pane% |

control<%> | | | |- horizontal-pane% |

|- message% | | | |- vertical-pane% |

|- button% | | | |

|- check-box% | area-container-window<%> |

|- slider% | | |

|- gauge% | | __________________|

|- text-field% | | |

|- combo-field% | |-------- panel%

|- radio-box% | | |- horizontal-panel%

|- list-control<%> | | |- vertical-panel%

|- choice% | | |- tab-panel%

|- list-box% | | |- group-box-

panel%

| |

| |- top-level-window<%>

| |- frame%

canvas<%> |- dialog%

|- canvas%

|- editor-canvas%

Menu bars, menus, and menu items are graphical elements, but not areas (i.e., they do not
have all of the properties that are common to areas, such as an adjustable graphical size).
Instead, the menu classes form a separate container–containee hierarchy:

• Menu Item Containers

– menu-bar% — a menu bar is a top-level collection of menus that are associated
with a frame.

– menu% — a menu contains a set of menu items. The menu can appear in a menu
bar, in a popup menu, or as a submenu in another menu.

– popup-menu%— a popup menu is a top-level menu that is dynamically displayed
in a canvas or editor canvas.

• Menu Items

– separator-menu-item% — a separator is an unselectable line in a menu or
popup menu.

– menu-item% — a plain menu item is a selectable text item in a menu. When the
item is selected, its callback procedure is invoked.

– checkable-menu-item% — a checkable menu item is a text item in a menu; the
user selects a checkable menu item to toggle a check mark next to the item.

13

– menu% — a menu is a menu item as well as a menu item container.

The following diagram shows the complete type hierarchy for the menu system:

menu-item<%> menu-item-container<%>

| |

|- separator-menu-item% _____|___

|- labelled-menu-item<%> | |- menu-bar%

_________|_________ | |- popup-menu%

| | |

| menu%

|

|- selectable-menu-item<%>

|- menu-item%

|- checkable-menu-item%

1.4 Geometry Management

The windowing toolbox’s geometry management makes it easy to design windows that look
right on all platforms, despite different graphical representations of GUI elements. Geometry
management is based on containers; each container arranges its children based on simple
constraints, such as the current size of a frame and the natural size of a button.

The built-in container classes include horizontal panels (and panes), which align their chil-
dren in a row, and vertical panels (and panes), which align their children in a column. By
nesting horizontal and vertical containers, a programmer can achieve most any layout. For
example, to construct a dialog with the shape

--

| ------------------------------------- |

| Your name: | | |

| ------------------------------------- |

| -------- ---- |

| (Cancel) (OK) |

| -------- ---- |

--

with the following program:

; Create a dialog

(define dialog (instantiate dialog% ("Example")))

; Add a text field to the dialog

(new text-field% [parent dialog] [label "Your name"])

14

; Add a horizontal panel to the dialog, with centering for buttons

(define panel (new horizontal-panel% [parent dialog]

[alignment '(center center)]))

; Add Cancel and Ok buttons to the horizontal panel

(new button% [parent panel] [label "Cancel"])

(new button% [parent panel] [label "Ok"])

(when (system-position-ok-before-cancel?)

(send panel change-children reverse))

; Show the dialog

(send dialog show #t)

Each container arranges its children using the natural size of each child, which usually de-
pends on instantiation parameters of the child, such as the label on a button or the number of
choices in a radio box. In the above example, the dialog stretches horizontally to match the
minimum width of the text field, and it stretches vertically to match the total height of the
field and the buttons. The dialog then stretches the horizontal panel to fill the bottom half
of the dialog. Finally, the horizontal panel uses the sum of the buttons’ minimum widths to
center them horizontally.

As the example demonstrates, a stretchable container grows to fill its environment, and it
distributes extra space among its stretchable children. By default, panels are stretchable in
both directions, whereas buttons are not stretchable in either direction. The programmer can
change whether an individual GUI element is stretchable.

The following subsections describe the container system in detail, first discussing the at-
tributes of a containee in §1.4.1 “Containees”, and then describing the attributes of a con-
tainer in §1.4.2 “Containers”. In addition to the built-in vertical and horizontal containers,
programmers can define new types of containers as discussed in the final subsection, §1.4.3
“Defining New Types of Containers”.

1.4.1 Containees

Each containee, or child, has the following properties:

• a graphical minimum width and a graphical minimum height;

• a requested minimum width and a requested minimum height;

• horizontal and vertical stretchability (on or off); and

• horizontal and vertical margins.

15

A container arranges its children based on these four properties of each containee. A con-
tainee’s parent container is specified when the containee is created, and the parent cannot be
changed. However, a containee can be hidden or deleted within its parent, as described in
§1.4.2 “Containers”.

The graphical minimum size of a particular containee, as reported by get-graphical-min-
size, depends on the platform, the label of the containee (for a control), and style attributes
specified when creating the containee. For example, a button’s minimum graphical size
ensures that the entire text of the label is visible. The graphical minimum size of a control
(such as a button) cannot be changed; it is fixed at creation time. (A control’s minimum size
is not recalculated when its label is changed.) The graphical minimum size of a panel or
pane depends on the total minimum size of its children and the way that they are arranged.

To select a size for a containee, its parent container considers the containee’s requested
minimum size rather than its graphical minimum size (assuming the requested minimum is
larger than the graphical minimum). Unlike the graphical minimum, the requested minimum
size of a containee can be changed by a programmer at any time using the min-width and
min-height methods.

Unless a containee is stretchable (in a particular direction), it always shrinks to its minimum
size (in the corresponding direction). Otherwise, containees are stretched to fill all available
space in a container. Each containee begins with a default stretchability. For example,
buttons are not initially stretchable, whereas a one-line text field is initially stretchable in the
horizontal direction. A programmer can change the stretchability of a containee at any time
using the stretchable-width and stretchable-height methods.

A margin is space surrounding a containee. Each containee’s margin is independent of
its minimum size, but from the container’s point of view, a margin effectively increases
the minimum size of the containee. For example, if a button has a vertical margin of 2,
then the container must allocate enough room to leave two pixels of space above and below
the button, in addition to the space that is allocated for the button’s minimum height. A
programmer can adjust a containee’s margin with horiz-margin and vert-margin. The
default margin is 2 for a control, and 0 for any other type of containee.

In practice, the requested minimum size and margin of a control are rarely changed, although
they are often changed for a canvas. Stretchability is commonly adjusted for any type of
containee, depending on the visual effect desired by the programmer.

1.4.2 Containers

A container has the following properties:

• a list of (non-deleted) children containees;

• a requested minimum width and a requested minimum height;

16

• a spacing used between the children;

• a border margin used around the total set of children;

• horizontal and vertical stretchability (on or off); and

• an alignment setting for positioning leftover space.

These properties are factored into the container’s calculation of its own size and the arrange-
ment of its children. For a container that is also a containee (e.g., a panel), the container’s
requested minimum size and stretchability are the same as for its containee aspect.

A containee’s parent container is specified when the containee is created, and the parent
cannot be changed. However, a containee window can be hidden or deleted within its parent
container (but a non-window containee cannot be hidden or deleted):

• A hidden child is invisible to the user, but space is still allocated for each hidden child
within a container. To hide or show a child, call the child’s show method.

• A deleted child is hidden and ignored by container as it arranges its other children, so
no space is reserved in the container for a deleted child. To make a child deleted or
non-deleted, call the container’s delete-child or add-child method (which calls
the child’s show method).

When a child is created, it is initially shown and non-deleted. A deleted child is subject
to garbage collection when no external reference to the child exists. A list of non-deleted
children (hidden or not) is available from a container through its get-children method.

The order of the children in a container’s non-deleted list is significant. For example, a
vertical panel puts the first child in its list at the top of the panel, and so on. When a new child
is created, it is put at the end of its container’s list of children. The order of a container’s list
can be changed dynamically via the change-children method. (The change-children

method can also be used to activate or deactivate children.)

The graphical minimum size of a container, as reported by get-graphical-min-size, is
calculated by combining the minimum sizes of its children (summing them or taking the
maximum, as appropriate to the layout strategy of the container) along with the spacing and
border margins of the container. A larger minimum may be specified by the programmer
using min-width and min-height methods; when the computed minimum for a container
is larger than the programmer-specified minimum, then the programmer-specified minimum
is ignored.

A container’s spacing determines the amount of space left between adjacent children in the
container, in addition to any space required by the children’s margins. A container’s border
margin determines the amount of space to add around the collection of children; it effectively
decreases the area within the container where children can be placed. A programmer can

17

adjust a container’s border and spacing dynamically via the border and spacing methods.
The default border and spacing are 0 for all container types.

Because a panel or pane is a containee as well as a container, it has a containee margin in
addition to its border margin. For a panel, these margins are not redundant because the panel
can have a graphical border; the border is drawn inside the panel’s containee margin, but
outside the panel’s border margin.

For a top-level-window container, such as a frame or dialog, the container’s stretchability
determines whether the user can resize the window to something larger than its minimum
size. Thus, the user cannot resize a frame that is not stretchable. For other types of containers
(i.e., panels and panes), the container’s stretchability is its stretchability as a containee in
some other container. All types of containers are initially stretchable in both directions—
except instances of grow-box-spacer-pane%, which is intended as a lightweight spacer
class rather than a useful container class—but a programmer can change the stretchability of
an area at any time via the stretchable-width and stretchable-height methods.

The alignment specification for a container determines how it positions its children when
the container has leftover space. (A container can only have leftover space in a particular
direction when none of its children are stretchable in that direction.) For example, when
the container’s horizontal alignment is 'left, the children are left-aligned in the container
and leftover space is accumulated to the right. When the container’s horizontal alignment
is 'center, each child is horizontally centered in the container. A container’s alignment is
changed with the set-alignment method.

1.4.3 Defining New Types of Containers

Although nested horizontal and vertical containers can express most layout patterns, a pro-
grammer can define a new type of container with an explicit layout procedure. A program-
mer defines a new type of container by deriving a class from panel% or pane% and overriding
the container-size and place-children methods. The container-size method takes
a list of size specifications for each child and returns two values: the minimum width and
height of the container. The place-children method takes the container’s size and a list
of size specifications for each child, and returns a list of sizes and placements (in parallel to
the original list).

An input size specification is a list of four values:

• the child’s minimum width;

• the child’s minimum height;

• the child’s horizontal stretchability (#t means stretchable, #f means not stretchable);
and

• the child’s vertical stretchability.

18

For place-children, an output position and size specification is a list of four values:

• the child’s new horizontal position (relative to the parent);

• the child’s new vertical position;

• the child’s new actual width;

• the child’s new actual height.

The widths and heights for both the input and output include the children’s margins. The re-
turned position for each child is automatically incremented to account for the child’s margin
in placing the control.

1.5 Mouse and Keyboard Events

Whenever the user moves the mouse, clicks or releases a mouse button, or presses a key on
the keyboard, an event is generated for some window. The window that receives the event
depends on the current state of the graphic display:

• The receiving window of a mouse event is usually the window under the cursor when
the mouse is moved or clicked. If the mouse is over a child window, the child window
receives the event rather than its parent.

When the user clicks in a window, the window “grabs” the mouse, so that all mouse
events go to that window until the mouse button is released (regardless of the location
of the cursor). As a result, a user can click on a scrollbar thumb and drag it without
keeping the cursor strictly inside the scrollbar control.

A mouse button-release event is normally generated for each mouse button-down
event, but a button-release event might get dropped. For example, a modal dialog
might appear and take over the mouse. More generally, any kind of mouse event can
get dropped in principle, so avoid algorithms that depend on precise mouse-event se-
quences. For example, a mouse tracking handler should reset the tracking state when
it receives an event other than a dragging event.

• The receiving window of a keyboard event is the window that owns the keyboard
focus at the time of the event. Only one window owns the focus at any time, and focus
ownership is typically displayed by a window in some manner. For example, a text
field control shows focus ownership by displaying a blinking caret.

Within a top-level window, only certain kinds of subwindows can have the focus, de-
pending on the conventions of the platform. Furthermore, the subwindow that initially
owns the focus is platform-specific. A user can moves the focus in various ways, usu-
ally by clicking the target window. A program can use the focus method to move the
focus to a subwindow or to set the initial focus.

19

A 'wheel-up or 'wheel-down event may be sent to a window other than the one with
the keyboard focus, depending on how the operating system handles wheel events.

A key-press event may correspond to either an actual key press or an auto-key repeat.
Multiple key-press events without intervening key-release events normally indicate an
auto-key. Like any input event, however, key-release events sometimes get dropped
(e.g., due to the appearance of a modal dialog).

Controls, such as buttons and list boxes, handle keyboard and mouse events automatically,
eventually invoking the callback procedure that was provided when the control was created.
A canvas propagates mouse and keyboard events to its on-event and on-char methods,
respectively.

A mouse and keyboard event is delivered in a special way to its window. Each ancestor of the
receiving window gets a chance to intercept the event through the on-subwindow-event

and on-subwindow-char methods. See the method descriptions for more information.

The default on-subwindow-char method for a top-level window intercepts keyboard events
to detect menu-shortcut events and focus-navigation events. See on-subwindow-char in
frame% and on-subwindow-char in dialog% for details. Certain OS-specific key combi-
nations are captured at a low level, and cannot be overridden. For example, on Windows and
Unix, pressing and releasing Alt always moves the keyboard focus to the menu bar. Simi-
larly, Alt-Tab switches to a different application on Windows. (Alt-Space invokes the system
menu on Windows, but this shortcut is implemented by on-system-menu-char, which is
called by on-subwindow-char in frame% and on-subwindow-char in dialog%.)

1.6 Event Dispatching and Eventspaces

A graphical user interface is an inherently multi-threaded system: one thread is the program
managing windows on the screen, and the other thread is the user moving the mouse and
typing at the keyboard. GUI programs typically use an event queue to translate this multi-
threaded system into a sequential one, at least from the programmer’s point of view. Each
user action is handled one at a time, ignoring further user actions until the previous one is
completely handled. The conversion from a multi-threaded process to a single-threaded one
greatly simplifies the implementation of GUI programs.

Despite the programming convenience provided by a purely sequential event queue, certain
situations require a less rigid dialog with the user:

• Nested event handling: In the process of handling an event, it may be necessary to
obtain further information from the user. Usually, such information is obtained via
a modal dialog; in whatever fashion the input is obtained, more user events must be
received and handled before the original event is completely handled. To allow the
further processing of events, the handler for the original event must explicitly yield to

20

the system. Yielding causes events to be handled in a nested manner, rather than in a
purely sequential manner.

• Asynchronous event handling: An application may consist of windows that represent
independent dialogs with the user. For example, a drawing program might support
multiple drawing windows, and a particularly time-consuming task in one window
(e.g., a special filter effect on an image) should not prevent the user from working
in a different window. Such an application needs sequential event handling for each
individual window, but asynchronous (potentially parallel) event handling across win-
dows. In other words, the application needs a separate event queue for each window,
and a separate event-handling thread for each event queue.

An eventspace is a context for processing GUI events. Each eventspace maintains its own
queue of events, and events in a single eventspace are dispatched sequentially by a designated
handler thread. An event-handling procedure running in this handler thread can yield to the
system by calling yield, in which case other event-handling procedures may be called in a
nested (but single-threaded) manner within the same handler thread. Events from different
eventspaces are dispatched asynchronously by separate handler threads.

When a frame or dialog is created without a parent, it is associated with the current
eventspace as described in §1.6.3 “Creating and Setting the Eventspace”. Events for a top-
level window and its descendants are always dispatched in the window’s eventspace. Every
dialog is modal; a dialog’s show method implicitly calls yield to handle events while the
dialog is shown. (See also §1.6.2 “Eventspaces and Threads” for information about threads
and modal dialogs.) Furthermore, when a modal dialog is shown, the system disables key
and mouse press/release events to other top-level windows in the dialog’s eventspace, but
windows in other eventspaces are unaffected by the modal dialog. (Mouse motion, enter,
and leave events are still delivered to all windows when a modal dialog is shown.)

1.6.1 Event Types and Priorities

In addition to events corresponding to user and windowing actions, such as button clicks,
key presses, and updates, the system dispatches two kinds of internal events: timer events
and explicitly queued events.

Timer events are created by instances of timer%. When a timer is started and then expires,
the timer queues an event to call the timer’s notify method. Like a top-level window, each
timer is associated with a particular eventspace (the current eventspace as described in §1.6.3
“Creating and Setting the Eventspace”) when it is created, and the timer queues the event in
its eventspace.

Explicitly queued events are created with queue-callback, which accepts a callback pro-
cedure to handle the event. The event is enqueued in the current eventspace at the time of
the call to queue-callback, with either a high or low priority as specified by the (optional)
second argument to queue-callback.

21

An eventspace’s event queue is actually a priority queue with events sorted according to their
kind, from highest-priority (dispatched first) to lowest-priority (dispatched last):

• The highest-priority events are high-priority events installed with queue-callback.

• Timer events have the second-highest priority.

• Graphical events, such as mouse clicks or window updates, have the second-lowest
priority.

• The lowest-priority events are low-priority events installed with queue-callback.

Although a programmer has no direct control over the order in which events are dispatched,
a programmer can control the timing of dispatches by setting the event dispatch handler via
the event-dispatch-handler parameter. This parameter and other eventspace procedures
are described in more detail in §3.2 “Eventspaces”.

1.6.2 Eventspaces and Threads

When a new eventspace is created, a corresponding handler thread is created for the
eventspace. When the system dispatches an event for an eventspace, it always does so in
the eventspace’s handler thread. A handler procedure can create new threads that run indef-
initely, but as long as the handler thread is running a handler procedure, no new events can
be dispatched for the corresponding eventspace.

When a handler thread shows a dialog, the dialog’s show method implicitly calls yield for
as long as the dialog is shown. When a non-handler thread shows a dialog, the non-handler
thread simply blocks until the dialog is dismissed. Calling yield with no arguments from
a non-handler thread has no effect. Calling yield with a semaphore from a non-handler
thread is equivalent to calling semaphore-wait.

1.6.3 Creating and Setting the Eventspace

Whenever a frame, dialog, or timer is created, it is associated with the current eventspace as
determined by the current-eventspace parameter (see §10.3.2 “Parameters”).

The make-eventspace procedure creates a new eventspace. The following example creates
a new eventspace and a new frame in the eventspace (the parameterize syntactic form
temporary sets a parameter value):

(let ([new-es (make-eventspace)])

(parameterize ([current-eventspace new-es])

(new frame% [label "Example"])))

22

When an eventspace is created, it is placed under the management of the current custo-
dian. When a custodian shuts down an eventspace, all frames and dialogs associated with
the eventspace are destroyed (without calling can-close? or on-close in top-level-

window<%>), all timers in the eventspace are stopped, and all enqueued callbacks are re-
moved. Attempting to create a new window, timer, or explicitly queued event in a shut-down
eventspace raises the exn:misc exception.

An eventspace is a synchronizable event (not to be confused with a GUI event), so it can
be used with sync. As a synchronizable event, an eventspace is in a blocking state when a
frame is visible, a timer is active, a callback is queued, or a menu-bar% is created with a
'root parent. (Note that the blocking state of an eventspace is unrelated to whether an event
is ready for dispatching.)

1.6.4 Continuations and Event Dispatch

Whenever the system dispatches an event, the call to the handler is wrapped with a contin-
uation prompt (see call-with-continuation-prompt) that delimits continuation aborts
(such as when an exception is raised) and continuations captured by the handler. The de-
limited continuation prompt is installed outside the call to the event dispatch handler, so any
captured continuation includes the invocation of the event dispatch handler.

For example, if a button callback raises an exception, than the abort performed by the default
exception handler returns to the event-dispatch point, rather than terminating the program or
escaping past an enclosing (yield). If with-handlers wraps a (yield) that leads to
an exception raised by a button callback, however, the exception can be captured by the
with-handlers.

Along similar lines, if a button callback captures a continuation (using the default continua-
tion prompt tag), then applying the continuation re-installs only the work to be done by the
handler up until the point that it returns; the dispatch machinery to invoke the button call-
back is not included in the continuation. A continuation captured during a button callback is
therefore potentially useful outside of the same callback.

1.7 Animation in Canvases

The content of a canvas is buffered, so if a canvas must be redrawn, the on-paint method
or paint-callback function usually does not need to be called again. To further reduce
flicker, while the on-paint method or paint-callback function is called, the windowing
system avoids flushing the canvas-content buffer to the screen.

Canvas content can be updated at any time by drawing with the result of the canvas’s get-dc
method, and drawing is thread-safe. Changes to the canvas’s content are flushed to the screen
periodically (not necessarily on an event-handling boundary), but the flush method imme-

23

diately flushes to the screen—as long as flushing has not been suspended. The suspend-

flush and resume-flush methods suspend and resume both automatic and explicit flushes,
although on some platforms, automatic flushes are forced in rare cases.

For most animation purposes, suspend-flush, resume-flush, and flush can be used to
avoid flicker and the need for an additional drawing buffer for animations. During an anima-
tion, bracket the construction of each animation frame with suspend-flush and resume-

flush to ensure that partially drawn frames are not flushed to the screen. Use flush to
ensure that canvas content is flushed when it is ready if a suspend-flush will soon follow,
because the process of flushing to the screen can be starved if flushing is frequently suspend.
The method refresh-now in canvas% conveniently encapsulates this sequence.

24

2 Windowing Classes

Windows and controls:

area<%>

_____________________|_______________

| | |

subarea<%> window<%> area-container<%>

<<<____|____ _____|__________ __|___ ___________________<<<

| | | | | |

subwindow<%> | | | |

<<<______________|___________ | | | | _<<<

| | | | pane% |

control<%> | | | |- horizontal-pane% |

|- message% | | | |- vertical-pane% |

|- button% | | | |

|- check-box% | area-container-window<%> |

|- slider% | | |

|- gauge% | | __________________|

|- text-field% | | |

|- combo-field% | |-------- panel%

|- radio-box% | | |- horizontal-panel%

|- list-control<%> | | |- vertical-panel%

|- choice% | | |- tab-panel%

|- list-box% | | |- group-box-

panel%

| |

| |- top-level-window<%>

| |- frame%

canvas<%> |- dialog%

|- canvas%

|- editor-canvas%

Menus:

menu-item<%> menu-item-container<%>

| |

|- separator-menu-item% _____|___

|- labelled-menu-item<%> | |- menu-bar%

_________|_________ | |- popup-menu%

| | |

| menu%

|

|- selectable-menu-item<%>

|- menu-item%

25

|- checkable-menu-item%

Events and other:

event% timer%

|- key-event% cursor%

|- mouse-event%

|- scroll-event% clipboard<%>

|- control-event% clipboard-client%

Alphabetical:

2.1 area<%>

area<%> : interface?

An area<%> object is either a window or a windowless container for managing the position
and size of other areas. An area<%> can be a container, a containee, or both. The only areas
without a parent are top-level windows.

All area<%> classes accept the following named instantiation arguments:

• min-width — default is the initial graphical minimum width; passed to min-width

• min-height — default is the initial graphical minimum height; passed to min-

height

• stretchable-width — default is class-specific; passed to stretchable-width

• stretchable-height — default is class-specific; passed to stretchable-height

(send an-area get-graphical-min-size)

→ (integer-in 0 10000) (integer-in 0 10000)

Returns the area’s graphical minimum size as two values: the minimum width and the mini-
mum height (in pixels).

See §1.4 “Geometry Management” for more information. Note that the return value does
not depend on the area’s min-width and min-height settings.

(send an-area get-parent)

→ (or/c (is-a?/c area-container<%>) false/c)

Returns the area’s parent. A top-level window may have no parent (in which case #f is
returned), or it may have another top-level window as its parent.

26

(send an-area get-top-level-window)

→ (or/c (is-a?/c frame%) (is-a?/c dialog%))

Returns the area’s closest frame or dialog ancestor. For a frame or dialog area, the frame or
dialog itself is returned.

(send an-area min-width) → (integer-in 0 10000)

(send an-area min-width w) → void?

w : (integer-in 0 10000)

Gets or sets the area’s minimum width (in pixels) for geometry management.

The minimum width is ignored when it is smaller than the area’s graphical minimum width,
or when it is smaller than the width reported by container-size if the area is a container.
See §1.4 “Geometry Management” for more information.

An area’s initial minimum width is its graphical minimum width. See also get-graphical-
min-size .

When setting the minimum width, if w is smaller than the internal hard minimum, an
exn:fail:contract exception is raised.

(send an-area min-height) → (integer-in 0 10000)

(send an-area min-height h) → void?

h : (integer-in 0 10000)

Gets or sets the area’s minimum height for geometry management.

The minimum height is ignored when it is smaller than the area’s graphical minimum height,
or when it is smaller than the height reported by container-size if the area is a container.
See §1.4 “Geometry Management” for more information.

An area’s initial minimum height is its graphical minimum height. See also get-

graphical-min-size .

When setting the minimum height (in pixels); if h is smaller than the internal hard minimum,
an exn:fail:contract exception is raised.

(send an-area stretchable-height) → boolean?

(send an-area stretchable-height stretch?) → void?

stretch? : any/c

Gets or sets the area’s vertical stretchability for geometry management. See §1.4 “Geometry
Management” for more information.

27

(send an-area stretchable-width) → boolean?

(send an-area stretchable-width stretch?) → void?

stretch? : any/c

Gets or sets the area’s horizontal stretchability for geometry management. See §1.4 “Geom-
etry Management” for more information.

2.2 area-container<%>

area-container<%> : interface?

implements: area<%>

An area-container<%> is a container area<%>.

All area-container<%> classes accept the following named instantiation arguments:

• border — default is 0; passed to border

• spacing — default is 0; passed to spacing

• alignment — default is class-specific, such as '(center top) for vertical-

panel%; the list elements are passed to set-alignment

(send an-area-container add-child child) → void?

child : (is-a?/c subwindow<%>)

Add the given subwindow to the set of non-deleted children. See also change-children.

(send an-area-container after-new-child child) → void?

child : (is-a?/c subarea<%>)

Specification: This method is called after a new containee area is created with this area as
its container. The new child is provided as an argument to the method.

Default implementation: Does nothing.

(send an-area-container begin-container-sequence) → void?

Suspends geometry management in the container’s top-level window until end-

container-sequence is called. The begin-container-sequence and end-

container-sequence methods are used to bracket a set of container modifications so that
the resulting geometry is computed only once. A container sequence also delays show and
hide actions by change-children, as well as the on-screen part of showing via show un-
til the sequence is complete. Sequence begin and end commands may be nested arbitrarily
deep.

28

(send an-area-container border) → (integer-in 0 1000)

(send an-area-container border margin) → void?

margin : (integer-in 0 1000)

Gets or sets the border margin for the container in pixels. This margin is used as an inset
into the panel’s client area before the locations and sizes of the subareas are computed.

(send an-area-container change-children filter) → void?

filter :
((listof (is-a?/c subarea<%>))

. -> . (listof (is-a?/c subarea<%>)))

Takes a filter procedure and changes the container’s list of non-deleted children. The filter
procedure takes a list of children areas and returns a new list of children areas. The new list
must consist of children that were created as subareas of this area (i.e., change-children
cannot be used to change the parent of a subarea).

After the set of non-deleted children is changed, the container computes the sets of newly
deleted and newly non-deleted children. Newly deleted windows are hidden. Newly non-
deleted windows are shown.

Since non-window areas cannot be hidden, non-window areas cannot be deleted. If the filter
procedure removes non-window subareas, an exception is raised and the set of non-deleted
children is not changed.

(send an-area-container container-flow-modified) → void?

Call this method when the result changes for an overridden flow-defining method, such as
place-children. The call notifies the geometry manager that the placement of the con-
tainer’s children needs to be recomputed.

The reflow-containermethod only recomputes child positions when the geometry man-
ager thinks that the placement has changed since the last computation.

(send an-area-container container-size info)

→ (integer-in 0 10000) (integer-in 0 10000)

info :

(listof (list/c (integer-in 0 10000)

(integer-in 0 10000)

any/c

any/c))

Called to determine the minimum size of a container. See §1.4 “Geometry Management” for
more information.

(send an-area-container delete-child child) → void?

child : (is-a?/c subwindow<%>)

29

Removes the given subwindow from the list of non-deleted children. See also change-

children.

(send an-area-container end-container-sequence) → void?

See begin-container-sequence.

(send an-area-container get-alignment)

→ (symbols 'right 'center 'left)

(symbols 'bottom 'center 'top)

Returns the container’s current alignment specification. See set-alignment for more in-
formation.

(send an-area-container get-children)

→ (listof (is-a?/c subarea<%>))

Returns a list of the container’s non-deleted children. (The non-deleted children are the ones
currently managed by the container; deleted children are generally hidden.) The order of the
children in the list is significant. For example, in a vertical panel, the first child in the list is
placed at the top of the panel.

(send an-area-container place-children info

width

height)

→

(listof (list/c (integer-in 0 10000)

(integer-in 0 10000)

(integer-in 0 10000)

(integer-in 0 10000)))

info :

(listof (list/c (integer-in 0 10000)

(integer-in 0 10000)

any/c

any/c))

width : (integer-in 0 10000)

height : (integer-in 0 10000)

Called to place the children of a container. See §1.4 “Geometry Management” for more
information.

(send an-area-container reflow-container) → void?

When a container window is not shown, changes to the container’s set of children do not nec-
essarily trigger the immediate re-computation of the container’s size and its children’s sizes
and positions. Instead, the recalculation is delayed until the container is shown, which avoids
redundant computations between a series of changes. The reflow-container method
forces the immediate recalculation of the container’s and its children’s sizes and locations.

30

Immediately after calling the reflow-container method, get-size, get-client-size,
get-width, get-height, get-x, and get-y report the manager-applied sizes and loca-
tions for the container and its children, even when the container is hidden. A container
implementation can call functions such as get-size at any time to obtain the current state
of a window (because the functions do not trigger geometry management).

See also container-flow-modified.

(send an-area-container set-alignment horiz-align

vert-align) → void?

horiz-align : (symbols 'right 'center 'left)

vert-align : (symbols 'bottom 'center 'top)

Sets the alignment specification for a container, which determines how it positions its chil-
dren when the container has leftover space (when a child was not stretchable in a particular
dimension).

When the container’s horizontal alignment is 'left, the children are left-aligned in the con-
tainer and whitespace is inserted to the right. When the container’s horizontal alignment is
'center, each child is horizontally centered in the container. When the container’s hori-
zontal alignment is 'right, leftover whitespace is inserted to the left.

Similarly, a container’s vertical alignment can be 'top, 'center, or 'bottom.

(send an-area-container spacing) → (integer-in 0 1000)

(send an-area-container spacing spacing) → void?

spacing : (integer-in 0 1000)

Gets or sets the spacing, in pixels, used between subareas in the container. For example, a
vertical panel inserts this spacing between each pair of vertically aligned subareas (with no
extra space at the top or bottom).

2.3 area-container-window<%>

area-container-window<%> : interface?

implements: area-container<%>

window<%>

Combines two interfaces.

2.4 button%

button% : class?

31

superclass: object%

extends: control<%>

Whenever a button is clicked by the user, the button’s callback procedure is invoked. A
callback procedure is provided as an initialization argument when each button is created.

(new button% [label label]

[parent parent]

[[callback callback]

[style style]

[font font]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c button%)

label :

(or/c label-string?

(is-a?/c bitmap%)

(list/c (is-a?/c bitmap%)

label-string?

(one-of/c 'left 'top 'right 'bottom)))

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

callback : ((is-a?/c button%) (is-a?/c control-event%) . -> . any)

= (lambda (b e) (void))

style : (listof (one-of/c 'border 'deleted)) = null

font : (is-a?/c font%) = normal-control-font

enabled : any/c = #t

vert-margin : (integer-in 0 1000) = 2

horiz-margin : (integer-in 0 1000) = 2

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #f

stretchable-height : any/c = #f

Creates a button with a string label, bitmap label, or both. If label is a bitmap, and if the
bitmap has a mask (see get-loaded-mask in bitmap%) that is the same size as the bitmap,
then the mask is used for the label. Modifying a bitmap while it is used as a label has an
unspecified effect on the displayed label. If label is a list, then the button has both a bitmap
and string label, and the symbol 'left, 'top, 'right, or 'bottom specifies the location of
the image relative to the text on the button.

If & occurs in label (when label includes a string), it is specially parsed; on Windows and

32

Unix, the character following & is underlined in the displayed control to indicate a keyboard
mnemonic. (On Mac OS X, mnemonic underlines are not shown.) The underlined mnemonic
character must be a letter or a digit. The user can effectively click the button by typing the
mnemonic when the control’s top-level-window contains the keyboard focus. The user must
also hold down the Meta or Alt key if the keyboard focus is currently in a control that handles
normal alphanumeric input. The & itself is removed from label before it is displayed for
the control; a && in label is converted to & (with no mnemonic underlining). On Mac
OS X, a parenthesized mnemonic character is removed (along with any surrounding space)
before the label is displayed, since a parenthesized mnemonic is often used for non-Roman
languages. Finally, any text after a tab character is removed on all platforms. Mnemonic
keyboard events are handled by on-traverse-char (but not on Mac OS X).

The callback procedure is called (with the event type 'button) whenever the user clicks
the button.

If style includes 'border, the button is drawn with a special border that indicates to
the user that it is the default action button (see on-traverse-char). If style includes
'deleted, then the button is created as hidden, and it does not affect its parent’s geometry;
the button can be made active later by calling parent ’s add-child method.

The font argument determines the font for the control. For information about the en-

abled argument, see window<%>. For information about the horiz-margin and vert-

margin arguments, see subarea<%>. For information about the min-width , min-height ,
stretchable-width , and stretchable-height arguments, see area<%>.

(send a-button set-label label) → void?

label :
(or/c label-string?

(is-a?/c bitmap%))

Overrides set-label in window<%>.

The same as set-label in window<%> when label is a string.

Otherwise, sets the bitmap label for a bitmap button. Since label is a bitmap, if the bitmap
has a mask (see get-loaded-mask in bitmap%) that is the same size as the bitmap, then the
mask is used for the label. Modifying a bitmap while it is used as a label has an unspecified
effect on the displayed label. The bitmap label is installed only if the control was originally
created with a bitmap label.

If the button has both a string and a bitmap label, then either can be set using set-label.

2.5 canvas<%>

canvas<%> : interface?

implements: subwindow<%>

33

A canvas is a subwindow onto which graphics and text can be drawn. Canvases also receive
mouse and keyboard events.

The canvas<%> interface is implemented by two classes:

• canvas% — a canvas for arbitrary drawing and event handling; and

• editor-canvas% — a canvas for displaying editor<%> objects.

To draw onto a canvas, get its device context via get-dc. There are two basic approaches to
updating a canvas:

• Drawing normally occurs during the canvas’s on-paint callback. The canvas% class
supports a paint-callback initialization argument to be called from the default on-
paint method.

A canvas’s on-paint method is called automatically as an event when the windowing
system determines that the canvas must be updated, such as when the canvas is first
shown or when it is resized. Use the refresh method to explicitly trigger an on-

paint call from the windowing system. (Multiple refresh requests before on-paint
can be called are coaleced into a single on-paint call.)

Before the windowing system calls on-paint, it may erase the canvas’s background
(see erase), depending on the style of the canvas (e.g., as determined by the style

initialization argument for canvas%). Even when the canvas’s style suppresses ex-
plicit clearing of the canvas, a canvas may be erased by the windowing system due to
window-moving and -resizing operations. For a transparent canvas, “erased” means
that the canvas’s parent window shows through.

• Drawing can also occur at any time outside an on-paint call form the windowing sys-
tem, including from threads other than the handler thread of the canvas’s eventspace.
Drawing outside an on-paint callback from the system is transient in the sense that
windowing activity can erase the canvas, but the drawing is persistent as long as no
windowing refresh is needed.

Calling an on-paint method directly is the same as drawing outside an on-paint

callback from the windowing system. For a canvas%, use refresh-now to force an
immediate update of the canvas’s content that is otherwise analogous to queueing an
update with refresh.

Drawing to a canvas’s drawing context actually renders into an offscreen buffer. The buffer
is automatically flushed to the screen asynchronously, explicitly via the flush method,
or explicitly via flush-display—unless flushing has been disabled for the canvas. The
suspend-flush method suspends flushing for a canvas until a matching resume-flush

calls; calls to suspend-flush and resume-flush can be nested, in which case flushing
is suspended until the outermost suspend-flush is balanced by a resume-flush. An

34

on-paint call from the windowing system is implicitly wrapped with suspend-flush and
resume-flush calls, as is a call to a paint procedure by refresh-now.

In the case of a transparent canvas, line and text smoothing can depend on the window that
serves as the canvas’s background. For example, smoothing may color pixels differently
depending on whether the target context is white or gray. Background-sensitive smoothing
is supported only if a relatively small number of drawing commands are recorded in the
canvas’s offscreen buffer, however.

(send a-canvas accept-tab-focus) → boolean?

(send a-canvas accept-tab-focus on?) → void?

on? : any/c

Gets or sets whether tab-focus is enabled for the canvas (assuming that the canvas is not
created with the 'no-focus style for canvas%). When tab-focus is enabled, the canvas can
receive the keyboard focus when the user navigates among a frame or dialog’s controls with
the Tab and arrow keys. By default, tab-focus is disabled.

When tab-focus is enabled for a canvas% object, Tab, arrow, Enter, and Escape keyboard
events are consumed by a frame’s default on-traverse-char method. (In addition, a dia-
log’s default method consumes Escape key events.) Otherwise, on-traverse-char allows
the keyboard events to be propagated to the canvas.

For an editor-canvas% object, handling of Tab, arrow, Enter, and Escape keyboard events
is determined by the allow-tab-exit method.

(send a-canvas flush) → void?

Like flush-display, but constrained if possible to the canvas.

(send a-canvas get-canvas-background)

→ (or/c (is-a?/c color%) false/c)

Returns the color currently used to “erase” the canvas content before on-paint is called.
See also set-canvas-background.

The result is #f if the canvas was created with the 'transparent style, otherwise it is
always a color% object.

(send a-canvas get-dc) → (is-a?/c dc<%>)

Gets the canvas’s device context. See dc<%> for more information about drawing.

(send a-canvas min-client-height) → (integer-in 0 10000)

(send a-canvas min-client-height h) → void?

h : (integer-in 0 10000)

35

Gets or sets the canvas’s minimum height for geometry management, based on the client
size rather than the full size. The client height is obtained or changed via min-height in
area<%>, adding or subtracting border and scrollbar sizes as appropriate.

The minimum height is ignored when it is smaller than the canvas’s graphical minimum
height. See §1.4 “Geometry Management” for more information.

(send a-canvas min-client-width) → (integer-in 0 10000)

(send a-canvas min-client-width w) → void?

w : (integer-in 0 10000)

Gets or sets the canvas’s minimum width for geometry management, based on the canvas’s
client size rather than its full size. The client width is obtained or changed via min-width

in area<%>, adding or subtracting border and scrollbar sizes as appropriate.

The minimum width is ignored when it is smaller than the canvas’s graphical minimum
width. See §1.4 “Geometry Management” for more information.

(send a-canvas on-char ch) → void?

ch : (is-a?/c key-event%)

Specification: Called when the canvas receives a keyboard event. See also §1.5 “Mouse and
Keyboard Events”.

Default implementation: Does nothing.

(send a-canvas on-event event) → void?

event : (is-a?/c mouse-event%)

Specification: Called when the canvas receives a mouse event. See also §1.5 “Mouse and
Keyboard Events”, noting in particular that certain mouse events can get dropped.

Default implementation: Does nothing.

(send a-canvas on-paint) → void?

Specification: Called when the canvas is exposed or resized so that the image in the canvas
can be repainted.

When on-paint is called in response to a system expose event and only a portion of the
canvas is newly exposed, any drawing operations performed by on-paint are clipped to the
newly-exposed region; however, the clipping region as reported by get-clipping-region

does not change.

Default implementation: Does nothing.

36

(send a-canvas on-tab-in) → void?

Specification: Called when the keyboard focus enters the canvas via keyboard navigation
events. The on-focus method is also called, as usual for a focus change. When the keyboard
focus leaves a canvas due to a navigation event, only on-focus is called.

See also accept-tab-focus and on-traverse-char in top-level-window<%> .

Default implementation: Does nothing.

(send a-canvas resume-flush) → void?

See canvas<%> for information on canvas flushing.

(send a-canvas set-canvas-background color) → void?

color : (is-a?/c color%)

Sets the color used to “erase” the canvas content before on-paint is called. (This color is
typically associated with the canvas at a low level, so that it is used even when a complete
refresh of the canvas is delayed by other activity.)

If the canvas was created with the 'transparent style, an exn:fail:contract exception
is raised.

(send a-canvas set-resize-corner on?) → void?

on? : any/c

On Mac OS X, enables or disables space for a resize tab at the canvas’s lower-right corner
when only one scrollbar is visible. This method has no effect on Windows or Unix, and it
has no effect when both or no scrollbars are visible. The resize corner is disabled by default,
but it can be enabled when a canvas is created with the 'resize-corner style.

(send a-canvas suspend-flush) → void?

See canvas<%> for information on canvas flushing.

Beware that suspending flushing for a canvas can discourage refreshes for other windows in
the same frame on some platforms.

(send a-canvas warp-pointer x y) → void?

x : (integer-in 0 10000)

y : (integer-in 0 10000)

Moves the cursor to the given location on the canvas.

37

2.6 canvas%

canvas% : class?

superclass: object%

extends: canvas<%>

A canvas% object is a general-purpose window for drawing and handling events. See can-
vas<%> for information about drawing onto a canvas.

(new canvas% [parent parent]

[[style style]

[paint-callback paint-callback]

[label label]

[gl-config gl-config]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c canvas%)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

style :

(listof (one-of/c 'border 'control-border 'combo

'vscroll 'hscroll 'resize-corner

'gl 'no-autoclear 'transparent

'no-focus 'deleted))

= null

paint-callback : ((is-a?/c canvas%) (is-a?/c dc<%>) . -> . any)

= void

label : (or/c label-string? false/c) = #f

gl-config : (or/c (is-a?/c gl-config%) false/c) = #f

enabled : any/c = #t

vert-margin : (integer-in 0 1000) = 0

horiz-margin : (integer-in 0 1000) = 0

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #t

stretchable-height : any/c = #t

The style argument indicates one or more of the following styles:

• 'border — gives the canvas a thin border

• 'control-border — gives the canvas a border that is like a text-field% control

38

• 'combo — gives the canvas a combo button that is like a combo-field% control; this
style is intended for use with 'control-border and not with 'hscroll or 'vscroll

• 'hscroll — enables horizontal scrolling (initially visible but inactive)

• 'vscroll — enables vertical scrolling (initially visible but inactive)

• 'resize-corner — leaves room for a resize control at the canvas’s bottom right
when only one scrollbar is visible

• 'gl — creates a canvas for OpenGL drawing instead of normal dc<%> drawing; call
the get-gl-context method on the result of get-dc; this style is usually combined
with 'no-autoclear

• 'no-autoclear — prevents automatic erasing of the canvas by the windowing sys-
tem; see canvas<%> for information on canvas refresh

• 'transparent — the canvas is “erased” by the windowing system by letting its par-
ent show through; see canvas<%> for information on window refresh and on the in-
teraction of 'transparent and offscreen buffering; the result is undefined if this flag
is combined with 'no-autoclear

• 'no-focus— prevents the canvas from accepting the keyboard focus when the canvas
is clicked or when the focus method is called

• 'deleted — creates the canvas as initially hidden and without affecting parent ’s ge-
ometry; the canvas can be made active later by calling parent ’s add-child method

The 'hscroll and 'vscroll styles create a canvas with an initially inactive scroll-
bar. The scrollbars are activated with either init-manual-scrollbars or init-auto-
scrollbars, and they can be hidden and re-shown with show-scrollbars.

The paint-callback argument is called by the default on-paint method, using the canvas
and the DC returned by get-dc as the argument.

The label argument names the canvas for get-label, but it is not displayed with the
canvas.

The gl-config argument determines properties of an OpenGL context for this canvas, as
obtained through the canvas’s drawing context. See also get-dc and get-gl-context in
dc<%>.

For information about the enabled argument, see window<%>. For information about the
horiz-margin and vert-margin arguments, see subarea<%>. For information about the
min-width , min-height , stretchable-width , and stretchable-height arguments,
see area<%>.

(send a-canvas get-scroll-page which) → (integer-in 1 1000000)

which : (one-of/c 'horizontal 'vertical)

39

Get the current page step size of a manual scrollbar. The result is 0 if the scrollbar is not
active or it is automatic.

The which argument is either 'horizontal or 'vertical, indicating whether to get the
page step size of the horizontal or vertical scrollbar, respectively.

See also init-manual-scrollbars.

(send a-canvas get-scroll-pos which) → (integer-in 0 1000000)

which : (one-of/c 'horizontal 'vertical)

Gets the current value of a manual scrollbar. The result is always 0 if the scrollbar is not
active or it is automatic.

The which argument is either 'horizontal or 'vertical, indicating that the value of the
horizontal or vertical scrollbar should be returned, respectively.

See also init-manual-scrollbars.

(send a-canvas get-scroll-range which) → (integer-in 0 1000000)

which : (one-of/c 'horizontal 'vertical)

Gets the current maximum value of a manual scrollbar. The result is always 0 if the scrollbar
is not active or it is automatic.

The which argument is either 'horizontal or 'vertical, indicating whether to get the
maximum value of the horizontal or vertical scrollbar, respectively.

See also init-manual-scrollbars.

(send a-canvas get-view-start)

→ (integer-in 0 10000) (integer-in 0 10000)

Get the location at which the visible portion of the canvas starts, based on the current values
of the horizontal and vertical scrollbars if they are initialized as automatic (see init-auto-
scrollbars). Combined with get-client-size, an application can efficiently redraw
only the visible portion of the canvas. The values are in pixels.

If the scrollbars are disabled or initialized as manual (see init-manual-scrollbars), the
result is (values 0 0).

(send a-canvas get-virtual-size)

→ (value (integer-in 0 10000) (integer-in 0 10000))

Gets the size in device units of the scrollable canvas area (as opposed to the client size,
which is the area of the canvas currently visible). This is the same size as the client size (as
returned by get-client-size) unless scrollbars are initialized as automatic (see init-

auto-scrollbars).

40

(send a-canvas init-auto-scrollbars horiz-pixels

vert-pixels

h-value

v-value) → void?

horiz-pixels : (or/c (integer-in 1 1000000) false/c)

vert-pixels : (or/c (integer-in 1 1000000) false/c)

h-value : (real-in 0.0 1.0)

v-value : (real-in 0.0 1.0)

Enables and initializes automatic scrollbars for the canvas. A horizontal or vertical scrollbar
can be activated only in a canvas that was created with the 'hscroll or 'vscroll style
flag, respectively.

With automatic scrollbars, the programmer specifies the desired virtual size of the canvas,
and the scrollbars are automatically handled to allow the user to scroll around the virtual area.
The scrollbars are not automatically hidden if they are unneeded; see show-scrollbars.

See also init-manual-scrollbars for information about manual scrollbars. The hori-
zontal and vertical scrollbars are always either both manual or both automatic, but they are
independently enabled. Automatic scrollbars can be re-initialized as manual, and vice versa.

If either horiz-pixels or vert-pixels is #f, the scrollbar is not enabled in the corre-
sponding direction, and the canvas’s virtual size in that direction is the same as its client
size.

The h-value and v-value arguments specify the initial values of the scrollbars as a frac-
tion of the scrollbar’s range. A 0.0 value initializes the scrollbar to its left/top, while a 1.0
value initializes the scrollbar to its right/bottom.

See also on-scroll and get-virtual-size.

(send a-canvas init-manual-scrollbars h-length

v-length

h-page

v-page

h-value

v-value) → void?

h-length : (or/c (integer-in 0 1000000) false/c)

v-length : (or/c (integer-in 0 1000000) false/c)

h-page : (integer-in 1 1000000)

v-page : (integer-in 1 1000000)

h-value : (integer-in 0 1000000)

v-value : (integer-in 0 1000000)

Enables and initializes manual scrollbars for the canvas. A horizontal or vertical scrollbar

41

can be activated only in a canvas that was created with the 'hscroll or 'vscroll style
flag, respectively.

With manual scrollbars, the programmer is responsible for managing all details of the scroll-
bars, and the scrollbar state has no effect on the canvas’s virtual size. Instead, the canvas’s
virtual size is the same as its client size.

See also init-auto-scrollbars for information about automatic scrollbars. The hori-
zontal and vertical scrollbars are always either both manual or both automatic, but they are
independently enabled. Automatic scrollbars can be re-initialized as manual, and vice versa.

The h-length and v-length arguments specify the length of each scrollbar in scroll steps
(i.e., the maximum value of each scrollbar). If either is #f, the scrollbar is disabled in the
corresponding direction.

The h-page and v-page arguments set the number of scrollbar steps in a page, i.e., the
amount moved when pressing above or below the value indicator in the scrollbar control.

The h-value and v-value arguments specify the initial values of the scrollbars.

If h-value is greater than h-length or v-value is greater than v-length , an
exn:fail:contract exception is raised. (The page step may be larger than the total size
of a scrollbar.)

See also on-scroll and get-virtual-size.

(send a-canvas make-bitmap width height) → (is-a/c? bitmap%)

width : exact-positive-integer?

height : exact-positive-integer?

Creates a bitmap that draws in a way that is the same as drawing to the canvas. See also
make-screen-bitmap.

(send a-canvas on-paint) → void?

Overrides on-paint in canvas<%>.

Calls the procedure supplied as the paint-callback argument when the canvas% was
created.

(send a-canvas on-scroll event) → void?

event : (is-a?/c scroll-event%)

Called when the user changes one of the canvas’s scrollbars. A scroll-event% argument
provides information about the scroll action.

This method is called only when manual scrollbars are changed, not automatic scrollbars;
for automatic scrollbars, the on-paint method is called, instead.

42

(send a-canvas refresh-now [paint-proc
#:flush? flush?]) → void?

paint-proc : ((is-a?/c dc<%>) . -> . any)

= (lambda (dc) (send a-canvas on-paint))

flush? : any/c = #t

Calls paint-proc with the canvas’s drawing context to immediately update the canvas (in
contrast to refresh, which merely queues an update request to be handled at the windowing
system’s discretion).

Before paint-proc is called, flushing is disabled for the canvas. Also, the canvas is erased,
unless the canvas has the 'no-autoclear style. After paint-proc returns, flushing is
enabled, and if flush? is true, then flush is called immediately.

(send a-canvas scroll h-value v-value) → void?

h-value : (or/c (real-in 0.0 1.0) false/c)

v-value : (or/c (real-in 0.0 1.0) false/c)

Sets the values of automatic scrollbars. (This method has no effect on manual scrollbars.)

If either argument is #f, the scrollbar value is not changed in the corresponding direction.

The h-value and v-value arguments each specify a fraction of the scrollbar’s movement.
A 0.0 value sets the scrollbar to its left/top, while a 1.0 value sets the scrollbar to its
right/bottom. A 0.5 value sets the scrollbar to its middle. In general, if the canvas’s virtual
size is v , its client size is c , and (> v c), then scrolling to p sets the view start to (floor

(* p (- v c))).

See also init-auto-scrollbars and get-view-start.

(send a-canvas set-scroll-page which value) → void?

which : (one-of/c 'horizontal 'vertical)

value : (integer-in 1 1000000)

Set the current page step size of a manual scrollbar. (This method has no effect on automatic
scrollbars.)

The which argument is either 'horizontal or 'vertical, indicating whether to set the
page step size of the horizontal or vertical scrollbar, respectively.

See also init-manual-scrollbars.

(send a-canvas set-scroll-pos which value) → void?

which : (one-of/c 'horizontal 'vertical)

value : (integer-in 0 1000000)

43

Sets the current value of a manual scrollbar. (This method has no effect on automatic scroll-
bars.)

The which argument is either 'horizontal or 'vertical, indicating whether to set the
value of the horizontal or vertical scrollbar set, respectively.

The value of the canvas’s scrollbar can be changed by the user scrolling, and such changes
do not go through this method; use on-scroll to monitor scrollbar value changes.

See also init-manual-scrollbars and scroll.

(send a-canvas set-scroll-range which

value) → void?

which : (one-of/c 'horizontal 'vertical)

value : (integer-in 0 1000000)

Sets the current maximum value of a manual scrollbar. (This method has no effect on auto-
matic scrollbars.)

The which argument is either 'horizontal or 'vertical, indicating whether to set the
maximum value of the horizontal or vertical scrollbar, respectively.

See also init-manual-scrollbars.

(send a-canvas show-scrollbars show-horiz?

show-vert?) → void?

show-horiz? : any/c

show-vert? : any/c

Shows or hides the scrollbars as indicated by show-horiz? and show-vert?. If
show-horiz? is true and the canvas was not created with the 'hscroll style, an
exn:fail:contract exception is raised. Similarly, if show-vert? is true and the can-
vas was not created with the 'vscroll style, an exn:fail:contract exception is raised.

The horizontal scrollbar can be shown only if the canvas was created with the 'hscroll

style, and the vertical scrollbar can be shown only if the canvas was created with the
'vscroll style. See also init-auto-scrollbars and init-manual-scrollbars.

(send a-canvas swap-gl-buffers) → void?

Calls swap-buffers on the result of get-gl-context for this canvas’s DC as returned by
get-dc.

The swap-buffers in gl-context<%> method acquires a re-entrant lock, so nested calls
to swap-gl-buffers or with-gl-context on different threads or OpenGL contexts can
block or deadlock.

44

(send a-canvas with-gl-context thunk

[#:fail fail]) → any

thunk : (-> any)

fail : (-> any) = (lambda () (error))

Passes the given thunk to call-as-current of the result of get-gl-context for this
canvas’s DC as returned by get-dc. If get-gl-context returns #f, then fail is called,
instead.

The call-as-current in gl-context<%> method acquires a re-entrant lock, so nested
calls to with-gl-context or swap-gl-buffers on different threads or OpenGL contexts
can block or deadlock.

2.7 check-box%

check-box% : class?

superclass: object%

extends: control<%>

A check box is a labeled box which is either checked or unchecked.

Whenever a check box is clicked by the user, the check box’s value is toggled and its callback
procedure is invoked. A callback procedure is provided as an initialization argument when
each check box is created.

(new check-box% [label label]

[parent parent]

[[callback callback]

[style style]

[value value]

[font font]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c check-box%)

label : (or/c label-string? (is-a?/c bitmap%))

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

callback : ((is-a?/c check-box%) (is-a?/c control-event%) . -> . any)

= (lambda (c e) (void))

45

style : (listof (one-of/c 'deleted)) = null

value : any/c = #f

font : (is-a?/c font%) = normal-control-font

enabled : any/c = #t

vert-margin : (integer-in 0 1000) = 2

horiz-margin : (integer-in 0 1000) = 2

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #f

stretchable-height : any/c = #f

Creates a check box with a string or bitmap label. If label is a bitmap, and if the bitmap
has a mask (see get-loaded-mask in bitmap%) that is the same size as the bitmap, then the
mask is used for the label. Modifying a bitmap while it is used as a label has an unspecified
effect on the displayed label.

If & occurs in label (when label is a string), it is specially parsed as for button%.

The callback procedure is called (with the event type 'check-box) whenever the user
clicks the check box.

If style includes 'deleted, then the check box is created as hidden, and it does not affect
its parent’s geometry; the check box can be made active later by calling parent ’s add-

child method.

If value is true, it is passed to set-value so that the box is initially checked.

The font argument determines the font for the control. For information about the en-

abled argument, see window<%>. For information about the horiz-margin and vert-

margin arguments, see subarea<%>. For information about the min-width , min-height ,
stretchable-width , and stretchable-height arguments, see area<%>.

(send a-check-box get-value) → boolean?

Gets the state of the check box: #t if it is checked, #f otherwise.

(send a-check-box set-label label) → void?

label : (or/c label-string? (is-a?/c bitmap%))

Overrides set-label in window<%>.

The same as set-label in window<%> when label is a string.

Otherwise, sets the bitmap label for a bitmap check box. Since label is a bitmap, if the
bitmap has a mask (see get-loaded-mask in bitmap%) that is the same size as the bitmap,
then the mask is used for the label. Modifying a bitmap while it is used as a label has an

46

unspecified effect on the displayed label. The bitmap label is installed only if the control
was originally created with a bitmap label.

(send a-check-box set-value state) → void?

state : any/c

Sets the check box’s state. (The control’s callback procedure is not invoked.)

The check box’s state can be changed by the user clicking the control, and such changes do
not go through this method; use the control callback procedure (provided as an initialization
argument) to monitor state changes.

If state is #f, the box is unchecked, otherwise it is checked.

2.8 checkable-menu-item%

checkable-menu-item% : class?

superclass: object%

extends: selectable-menu-item<%>

A checkable-menu-item% is a string-labelled menu item that maintains a check mark. Its
parent must be a menu% or popup-menu%. When the user selects the menu item, the item’s
check mark is toggled and its callback procedure is called.

(new checkable-menu-item% [label label]

[parent parent]

[[callback callback]

[shortcut shortcut]

[help-string help-string]

[demand-callback demand-callback]

[checked checked]

[shortcut-prefix shortcut-prefix]])
→ (is-a?/c checkable-menu-item%)

label : label-string?

parent : (or/c (is-a?/c menu%) (is-a?/c popup-menu%))

callback : ((is-a?/c checkable-menu-item%) (is-a?/c control-event%) . -> . any)

= (lambda (i e) (void))

shortcut : (or/c char? symbol? false/c) = #f

help-string : (or/c label-string? false/c) = #f

demand-callback : ((is-a?/c menu-item%) . -> . any)

= (lambda (i) (void))

checked : any/c = #f

shortcut-prefix :
(listof (one-of/c 'alt 'cmd 'meta 'ctl

'shift 'option))

= (get-default-shortcut-prefix)

47

Creates a new menu item in parent . The item is initially shown, appended to the end of
its parent, and unchecked. The callback procedure is called (with the event type 'menu)
when the menu item is selected (either via a menu bar, popup-menu in window<%>, or
popup-menu in editor-admin%).

See set-label for information about mnemonic &s in label .

If shortcut is not #f, the item has a shortcut. See get-shortcut for more information.
The shortcut-prefix argument determines the set of modifier keys for the shortcut; see
get-shortcut-prefix.

If help is not #f, the item has a help string. See get-help-string for more information.

The demand-callback procedure is called by the default on-demand method with the
object itself.

By default, the menu item is initially unchecked. If checked is true, then check is called
so that the menu item is initially checked.

(send a-checkable-menu-item check check?) → void?

check? : any/c

Checks or unchecks the menu item.

A menu item’s check state can be changed by the user selecting the item, and such changes
do not go through this method; use the menu item callback procedure (provided as an ini-
tialization argument) to monitor check state changes.

(send a-checkable-menu-item is-checked?) → boolean?

Returns #t if the item is checked, #f otherwise.

2.9 choice%

choice% : class?

superclass: object%

extends: list-control<%>

A choice item allows the user to select one string item from a pop-up list of items. Unlike a
list box, only the currently selection is visible until the user pops-up the menu of choices.

Whenever the selection of a choice item is changed by the user, the choice item’s callback
procedure is invoked. A callback procedure is provided as an initialization argument when
each choice item is created.

See also list-box%.

48

(new choice% [label label]

[choices choices]

[parent parent]

[[callback callback]

[style style]

[selection selection]

[font font]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c choice%)

label : (or/c label-string? false/c)

choices : (listof label-string?)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

callback : ((is-a?/c choice%) (is-a?/c control-event%) . -> . any)

= (lambda (c e) (void))

style :
(listof (one-of/c 'horizontal-label 'vertical-label

'deleted))

= null

selection : exact-nonnegative-integer? = 0

font : (is-a?/c font%) = normal-control-font

enabled : any/c = #t

vert-margin : (integer-in 0 1000) = 2

horiz-margin : (integer-in 0 1000) = 2

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #f

stretchable-height : any/c = #f

Creates a choice item. If label is a string, it is used as the label for the choice item.

If & occurs in label , it is specially parsed as for button%.

The choices list specifies the initial list of user-selectable items for the control. The ini-
tial set of choices determines the control’s minimum graphical width (see §1.4 “Geometry
Management” for more information).

The callback procedure is called (with the event type 'choice) when the user selects a
choice item (or re-selects the currently selected item).

49

If style includes 'vertical-label, then the choice item is created with a label
above the control; if style does not include 'vertical-label (and optionally includes
'horizontal-label), then the label is created to the left of the choice item. If style
includes 'deleted, then the choice item is created as hidden, and it does not affect its par-
ent’s geometry; the choice item can be made active later by calling parent ’s add-child
method.

By default, the first choice (if any) is initially selected. If selection is positive, it is passed
to set-selection to set the initial choice selection. Although selection normally must
be less than the length of choices , it can be 0 when choices is empty.

The font argument determines the font for the control. For information about the en-

abled argument, see window<%>. For information about the horiz-margin and vert-

margin arguments, see subarea<%>. For information about the min-width , min-height ,
stretchable-width , and stretchable-height arguments, see area<%>.

2.10 clipboard-client%

clipboard-client% : class?

superclass: object%

A clipboard-client% object allows a program to take over the clipboard and service
requests for clipboard data. See clipboard<%> for more information.

A clipboard-client% object is associated to an eventspace when it becomes the current
client; see set-clipboard-client for more information.

(new clipboard-client%) → (is-a?/c clipboard-client%)

Creates a clipboard client that supports no data formats.

(send a-clipboard-client add-type format) → void?

format : string?

Adds a new data format name to the list supported by the clipboard client.

The format string is typically four capital letters. (On Mac OS X, only four characters
for format are ever used.) For example, "TEXT" is the name of the UTF-8-encoded string
format. New format names can be used to communicate application- and platform-specific
data formats.

(send a-clipboard-client get-data format)

→ (or/c bytes? string? false/c)

format : string?

50

Called when a process requests clipboard data while this client is the current one for the
clipboard. The requested format is passed to the method, and the result should be a byte
string matching the requested format, or #f if the request cannot be fulfilled.

Only data format names in the client’s list will be passed to this method; see add-type.

When this method is called by the clipboard, the current eventspace is the same as the
client’s eventspace. If, at the point of the clipboard request, the current eventspace is not
the client’s eventspace, then current thread is guaranteed to be the handler thread of the
client’s eventspace.

(send a-clipboard-client get-types) → (listof string?)

Returns a list of names that are the data formats supported by the clipboard client.

(send a-clipboard-client on-replaced) → void?

Called when a clipboard client is dismissed as the clipboard owner (because the clipboard
has be taken by another client or by an external application).

2.11 clipboard<%>

clipboard<%> : interface?

A single clipboard<%> object, the-clipboard, manages the content of the system-wide
clipboard for cut and paste.

On Unix, a second clipboard<%> object, the-x-selection-clipboard, manages the
content of the system-wide X11 selection. If the 'GRacket:selectionAsClipboard pref-
erence preference (see §9 “Preferences”) is set to a non-zero true value, however, then the-

clipboard is always the same as the-x-selection-clipboard, and the system-wide
X11 clipboard is not used.

On Windows and Mac OS X, the-x-selection-clipboard is always the same as the-
clipboard.

Data can be entered into a clipboard in one of two ways: by setting the current clipboard
string or byte string, or by installing a clipboard-client% object. When a client is in-
stalled, requests for clipboard data are directed to the client.

Generic data is always retrieved from the clipboard as a byte string. When retrieving clip-
board data, a data type string specifies the format of the data string. The availability of
different clipboard formats is determined by the current clipboard owner.

(send a-clipboard get-clipboard-bitmap time)

51

→ (or/c (is-a?/c bitmap%) #f)

time : exact-integer?

Gets the current clipboard contents as a bitmap (Windows, Mac OS X), returning #f if the
clipboard does not contain a bitmap.

See get-clipboard-data for information on eventspaces and the current clipboard client.

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

(send a-clipboard get-clipboard-data format

time)

→ (or/c bytes? string? #f)

format : string?

time : exact-integer?

Gets the current clipboard contents in a specific format, returning #f if the clipboard does
not contain data in the requested format.

If the clipboard client is associated to an eventspace that is not the current one, the data is
retrieved through a callback event in the client’s eventspace. If no result is available within
one second, the request is abandoned and #f is returned.

See add-type in clipboard-client% for information on format .

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

(send a-clipboard get-clipboard-string time) → string?

time : exact-integer?

Gets the current clipboard contents as simple text, returning "" if the clipboard does not
contain any text.

See get-clipboard-data for information on eventspaces and the current clipboard client.

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

(send a-clipboard same-clipboard-client? owner) → boolean?

owner : (is-a?/c clipboard-client%)

Returns #t if owner currently owns the clipboard, #f otherwise.

52

(send a-clipboard set-clipboard-bitmap new-bitmap

time) → void?

new-bitmap : (is-a?/c bitmap%)

time : exact-integer?

Changes the current clipboard contents to new-bitmap (Windows, Mac OS X) and releases
the current clipboard client (if any).

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

(send a-clipboard set-clipboard-client new-owner

time) → void?

new-owner : (is-a?/c clipboard-client%)

time : exact-integer?

Changes the clipboard-owning client: sets the client to new-owner and associates new-

owner with the current eventspace (as determined by current-eventspace). The
eventspace association is removed when the client is no longer the current one.

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

(send a-clipboard set-clipboard-string new-text

time) → void?

new-text : string?

time : exact-integer?

Changes the current clipboard contents to new-text , and releases the current clipboard
client (if any).

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

2.12 combo-field%

combo-field% : class?

superclass: text-field%

A combo-field% object is a text-field% object that also resembles a choice% object,
because it has a small popup button to the right of the text field. Clicking the button pops up
a menu, and selecting a menu item typically copies the item into the text field.

53

(new combo-field% [label label]

[choices choices]

[parent parent]

[[callback callback]

[init-value init-value]

[style style]

[font font]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c combo-field%)

label : (or/c label-string? false/c)

choices : (listof label-string?)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

callback : ((is-a?/c combo-field%) (is-a?/c control-event%) . -> . any)

= (lambda (c e) (void))

init-value : string = ""

style :
(listof (one-of/c 'horizontal-label 'vertical-label

'deleted))

= null

font : (is-a?/c font%) = normal-control-font

enabled : any/c = #t

vert-margin : (integer-in 0 1000) = 2

horiz-margin : (integer-in 0 1000) = 2

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #t

stretchable-height : any/c = #f

If label is not #f, it is used as the combo label. Otherwise, the combo does not display its
label.

If & occurs in label , it is specially parsed as for button%.

The choices list specifies the initial list of items for the combo’s popup menu. The append
method adds a new item to the menu with a callback to install the appended item into the
combo’s text field. The get-menu method returns a menu that can be changed to adjust the
content and actions of the combo’s menu.

The callback procedure is called when the user changes the text in the combo or presses
the Enter key (and Enter is not handled by the combo’s frame or dialog; see on-traverse-

54

char in top-level-window<%>). If the user presses Enter, the type of event passed to the
callback is 'text-field-enter, otherwise it is 'text-field.

If init-value is not "", the minimum width of the text item is made wide enough to show
init-value . Otherwise, a built-in default width is selected.

If style includes 'vertical-label, then the combo is created with a label above the con-
trol; if style does not include 'vertical-label (and optionally includes 'horizontal-
label), then the label is created to the left of the combo. If style includes 'deleted, then
the combo is created as hidden, and it does not affect its parent’s geometry; the combo can
be made active later by calling parent ’s add-child method..

The font argument determines the font for the control. For information about the en-

abled argument, see window<%>. For information about the horiz-margin and vert-

margin arguments, see subarea<%>. For information about the min-width , min-height ,
stretchable-width , and stretchable-height arguments, see area<%>.

(send a-combo-field append l) → void?

l : label-string?

Adds a new item to the combo’s popup menu. The given label is used for the item’s name,
and the item’s callback installs the label into the combo’s text field.

(send a-combo-field get-menu) → (is-a?/c popup-menu%)

Returns a popup-menu% that is effectively copied into the combo’s popup menu when the
combo is clicked. Only the labels can callbacks of the menu’s items are used; the enable
state, submenus, or separators are ignored.

(send a-combo-field on-popup event) → void?

event : (is-a?/c control-event%)

Specification: Called when the user clicks the combo’s popup button. Override this method
to adjust the content of the combo menu on demand.

Default implementation: Does nothing.

2.13 control<%>

control<%> : interface?

implements: subwindow<%>

The control<%> interface is implemented by the built-in control window classes:

• message%

55

• button%

• check-box%

• slider%

• gauge%

• text-field%

• radio-box%

• choice%

• list-box%

(send a-control command event) → void?

event : (is-a?/c control-event%)

Calls the control’s callback function, passing on the given control-event% object.

2.14 column-control-event%

column-control-event% : class?

superclass: control-event%

A column-control-event% object contains information about a event on an list-box%

column header.

(new column-control-event% [column column]

[event-type event-type]

[[time-stamp time-stamp]])
→ (is-a?/c column-control-event%)

column : exact-nonnegative-integer?

event-type : (one-of/c 'list-box-column)

time-stamp : exact-integer? = 0

The column argument indicates the column that was clicked.

(send a-column-control-event get-column)

→ exact-nonnegative-integer?

Returns the column number (counting from 0) of the clicked column.

(send a-column-control-event set-column column) → void?

column : exact-nonnegative-integer?

Sets the column number (counting from 0) of the clicked column.

56

2.15 control-event%

control-event% : class?

superclass: event%

A control-event% object contains information about a control event. An instance of
control-event% is always provided to a control or menu item callback procedure.

(new control-event% [event-type event-type]

[[time-stamp time-stamp]])
→ (is-a?/c control-event%)

event-type :

(one-of/c 'button 'check-box 'choice

'list-box 'list-box-dclick 'list-box-column

'text-field 'text-field-enter

'menu 'slider 'radio-box 'tab-panel

'menu-popdown 'menu-popdown-none)

time-stamp : exact-integer? = 0

The event-type argument is one of the following:

• 'button — for button% clicks

• 'check-box — for check-box% toggles

• 'choice — for choice% item selections

• 'list-box — for list-box% selections and deselections

• 'list-box-dclick — for list-box% double-clicks

• 'list-box-column — for list-box% column clicks in a column-control-

event% instance

• 'text-field — for text-field% changes

• 'text-field-enter — for single-line text-field% Enter event

• 'menu — for selectable-menu-item<%> callbacks

• 'slider — for slider% changes

• 'radio-box — for radio-box% selection changes

• 'tab-panel — for tab-panel% tab changes

• 'menu-popdown — for popup-menu% callbacks (item selected)

• 'menu-popdown-none — for popup-menu% callbacks (no item selected)

57

This value is extracted out of a control-event% object with the get-event-type method.

See get-time-stamp for information about time-stamp .

(send a-control-event get-event-type)

→

(one-of/c 'button 'check-box 'choice

'list-box 'list-box-dclick 'text-field

'text-field-enter 'menu 'slider 'radio-box

'menu-popdown 'menu-popdown-none 'tab-panel)

Returns the type of the control event. See control-event% for information about each
event type symbol.

(send a-control-event set-event-type type) → void?

type :

(one-of/c 'button 'check-box 'choice

'list-box 'list-box-dclick 'text-field

'text-field-enter 'menu 'slider 'radio-box

'menu-popdown 'menu-popdown-none 'tab-panel)

Sets the type of the event. See control-event% for information about each event type
symbol.

2.16 cursor%

cursor% : class?

superclass: object%

A cursor is a small icon that indicates the location of the mouse pointer. The bitmap image
typically indicates the current mode or meaning of a mouse click at its current location.

A cursor is assigned to each window (or the window may use its parent’s cursor; see set-

cursor for more information), and the pointer image is changed to match the window’s
cursor when the pointer is moved over the window. Each cursor object may be assigned to
many windows.

(make-object cursor% image

mask

[hot-spot-x
hot-spot-y]) → (is-a?/c cursor%)

image : (is-a?/c bitmap%)

mask : (is-a?/c bitmap%)

hot-spot-x : (integer-in 0 15) = 0

hot-spot-y : (integer-in 0 15) = 0

(make-object cursor% id) → (is-a?/c cursor%)

id :
(one-of/c 'arrow 'bullseye 'cross 'hand 'ibeam 'watch 'blank

'size-n/s 'size-e/w 'size-ne/sw 'size-nw/se)

58

The first case creates a cursor using an image bitmap and a mask bitmap. Both bitmaps
must have depth 1 and size 16 by 16 pixels. The hot-spot-x and hot-spot-y arguments
determine the focus point of the cursor within the cursor image, relative to its top-left corner.

The second case creates a cursor using a stock cursor, specified as one of the following:

• 'arrow — the default cursor

• 'bullseye — concentric circles

• 'cross — a crosshair

• 'hand — an open hand

• 'ibeam — a vertical line, indicating that clicks control a text-selection caret

• 'watch — a watch or hourglass, indicating that the user must wait for a computation
to complete

• 'arrow+watch — the default cursor with a watch or hourglass, indicating that some
computation is in progress, but the cursor can still be used

• 'blank — invisible

• 'size-e/w — arrows left and right

• 'size-n/s — arrows up and down

• 'size-ne/sw — arrows up-right and down-left

• 'size-nw/se — arrows up-left and down-right

If the cursor is created successfully, ok? returns #t, otherwise the cursor object cannot be
assigned to a window.

(send a-cursor ok?) → boolean?

Returns #t if the cursor is can be assigned to a window, #f otherwise.

2.17 dialog%

dialog% : class?

superclass: object%

extends: top-level-window<%>

A dialog is a top-level window that is modal: while the dialog is shown, key and mouse
press/release events are disabled for all other top-level windows in the dialog’s eventspace.

59

(new dialog% [label label]

[[parent parent]

[width width]

[height height]

[x x]

[y y]

[style style]

[enabled enabled]

[border border]

[spacing spacing]

[alignment alignment]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c dialog%)

label : label-string?

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) false/c)

= #f

width : (or/c (integer-in 0 10000) false/c) = #f

height : (or/c (integer-in 0 10000) false/c) = #f

x : (or/c (integer-in 0 10000) false/c) = #f

y : (or/c (integer-in 0 10000) false/c) = #f

style :
(listof (one-of/c 'no-caption 'resize-border

'no-sheet 'close-button))
= null

enabled : any/c = #t

border : (integer-in 0 1000) = 0

spacing : (integer-in 0 1000) = 0

alignment :
(list/c (one-of/c 'left 'center 'right)

(one-of/c 'top 'center 'bottom))

= '(center top)

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #t

stretchable-height : any/c = #t

The label string is used as the dialog’s title in its title bar. If the dialog’s label is changed
(see set-label), the title bar is updated.

The parent argument can be #f or an existing frame. On Windows, if parent is an existing
frame, the new dialog is always on top of its parent. On Windows and Unix, a dialog is
iconized when its parent is iconized.

If parent is #f, then the eventspace for the new dialog is the current eventspace, as de-
termined by current-eventspace. Otherwise, parent ’s eventspace is the new dialog’s

60

eventspace.

If the width or height argument is not #f, it specifies an initial size for the dialog (in
pixels) assuming that it is larger than the minimum size, otherwise the minimum size is
used. On Windows and Mac OS X (and with some Unix window managers) dialogs are not
resizeable.

If the x or y argument is not #f, it specifies an initial location for the dialog. Otherwise, if
no location is set before the dialog is shown, it is centered (with respect parent if not #f,
the screen otherwise).

The style flags adjust the appearance of the dialog on some platforms:

• 'no-caption — omits the title bar for the dialog (Windows)

• 'resize-border — adds a resizeable border around the window (Windows) or grow
box in the bottom right corner (Mac OS X)

• 'no-sheet — uses a movable window for the dialog, even if a parent window is
provided (Mac OS X)

• 'close-button — include a close button in the dialog’s title bar, which would not
normally be included (Mac OS X)

Even if the dialog is not shown, a few notification events may be queued for the dialog on
creation. Consequently, the new dialog’s resources (e.g., memory) cannot be reclaimed until
some events are handled, or the dialog’s eventspace is shut down.

For information about the enabled argument, see window<%>. For information about the
border , spacing , and alignment arguments, see area-container<%>. For information
about the min-width , min-height , stretchable-width , and stretchable-height

arguments, see area<%>.

(send a-dialog on-subwindow-char receiver

event) → boolean?

receiver : (is-a?/c window<%>)

event : (is-a?/c key-event%)

Overrides on-subwindow-char in window<%>.

Returns the result of

(or (send this on-system-menu-char event)

(send this on-traverse-char event))

(send a-dialog show show?) → void?

show? : any/c

61

Overrides show in top-level-window<%>.

If show? is true, the dialog is shown and all frames (and other dialogs) in the eventspace
become disabled until the dialog is closed. If show? is false, the dialog is hidden and other
frames and dialogs are re-enabled (unless a different, pre-existing dialog is still shown).

If show? is true, the method does not immediately return. Instead, it loops with yield until
the dialog is found to be hidden between calls to yield. An internal semaphore is used with
yield to avoid a busy-wait, and to ensure that the show method returns as soon as possible
after the dialog is hidden.

(send a-dialog show-without-yield) → void?

Like (send a-dialog show #t), but returns immediately instead of yielding.

2.18 event%

event% : class?

superclass: object%

An event% object contains information about a control, keyboard, mouse, or scroll event.
See also control-event%, key-event%, mouse-event%, and scroll-event%.

(new event% [[time-stamp time-stamp]]) → (is-a?/c event%)

time-stamp : exact-integer? = 0

See get-time-stamp for information about time-stamp .

(send an-event get-time-stamp) → exact-integer?

Returns the time, in milliseconds, when the event occurred. This time is compatible with
times reported by Racket’s current-milliseconds procedure.

(send an-event set-time-stamp time) → void?

time : exact-integer?

Set the time, in milliseconds, when the event occurred. See also Racket’s current-

milliseconds.

If the supplied value is outside the platform-specific range of time values, an
exn:fail:contract exception is raised.

62

2.19 frame%

frame% : class?

superclass: object%

extends: top-level-window<%>

A frame is a top-level container window. It has a title bar (which displays the frame’s label),
an optional menu bar, and an optional status line.

(new frame% [label label]

[[parent parent]

[width width]

[height height]

[x x]

[y y]

[style style]

[enabled enabled]

[border border]

[spacing spacing]

[alignment alignment]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c frame%)

label : label-string?

parent : (or/c (is-a?/c frame%) false/c) = #f

width : (or/c (integer-in 0 10000) false/c) = #f

height : (or/c (integer-in 0 10000) false/c) = #f

x : (or/c (integer-in -10000 10000) false/c) = #f

y : (or/c (integer-in -10000 10000) false/c) = #f

style :
(listof (one-of/c 'no-resize-border 'no-caption

'no-system-menu 'hide-menu-bar

'toolbar-button 'float 'metal))

= null

enabled : any/c = #t

border : (integer-in 0 1000) = 0

spacing : (integer-in 0 1000) = 0

alignment :
(list/c (one-of/c 'left 'center 'right)

(one-of/c 'top 'center 'bottom))

= '(center top)

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #t

stretchable-height : any/c = #t

63

The label string is displayed in the frame’s title bar. If the frame’s label is changed (see
set-label), the title bar is updated.

The parent argument can be #f or an existing frame. On Windows, if parent is an existing
frame, the new frame is always on top of its parent. On Windows and Unix (for many
window managers), a frame is iconized when its parent is iconized.

If parent is #f, then the eventspace for the new frame is the current eventspace, as de-
termined by current-eventspace. Otherwise, parent ’s eventspace is the new frame’s
eventspace.

If the width or height argument is not #f, it specifies an initial size for the frame (in pixels)
assuming that it is larger than the minimum size, otherwise the minimum size is used.

If the x or y argument is not #f, it specifies an initial location for the frame. Otherwise, a
location is selected automatically (tiling frames and dialogs as they are created).

The style flags adjust the appearance of the frame on some platforms:

• 'no-resize-border — omits the resizeable border around the window (Windows,
Unix) or grow box in the bottom right corner (Mac OS X)

• 'no-caption — omits the title bar for the frame (Windows, Mac OS X, Unix)

• 'no-system-menu — omits the system menu (Windows)

• 'toolbar-button — includes a toolbar button on the frame’s title bar (Mac OS X);
a click on the toolbar button triggers a call to on-toolbar-button-click

• 'hide-menu-bar — hides the menu bar and dock when the frame is active (Mac OS
X) or asks the window manager to make the frame fullscreen (Unix)

• 'float — causes the frame to stay in front of all other non-floating windows (Win-
dows, Mac OS X, Unix); on Mac OS X, a floating frame shares the focus with an active
non-floating frame; when this style is combined with 'no-caption, then showing the
frame does not cause the keyboard focus to shift to the window, and on Unix, click-
ing the frame does not move the focus; on Windows, a floating frame has no taskbar
button

• 'metal — ignored (formerly supported for Mac OS X)

Even if the frame is not shown, a few notification events may be queued for the frame on
creation. Consequently, the new frame’s resources (e.g., memory) cannot be reclaimed until
some events are handled, or the frame’s eventspace is shut down.

For information about the enabled argument, see window<%>. For information about the
border , spacing , and alignment arguments, see area-container<%>. For information
about the min-width , min-height , stretchable-width , and stretchable-height

arguments, see area<%>.

64

(send a-frame create-status-line) → void?

Creates a status line at the bottom of the frame. The width of the status line is the whole
width of the frame (adjusted automatically when resizing), and the height and text size are
platform-specific.

See also set-status-text.
(send a-frame get-menu-bar)

→ (or/c (is-a?/c menu-bar%) false/c)

Returns the frame’s menu bar, or #f if none has been created for the frame.

(send a-frame has-status-line?) → boolean?

Returns #t if the frame’s status line has been created, #f otherwise. See also create-

status-line.
(send a-frame iconize iconize?) → void?

iconize? : any/c

Iconizes (minimizes) or deiconizes (restores) the frame. Deiconizing brings the frame to the
front.

A frame’s iconization can be changed by the user, and such changes do not go through
this method. A program cannot detect when a frame has been iconized except by polling
is-iconized?.
(send a-frame is-iconized?) → boolean?

Returns #t if the frame is iconized (minimized), #f otherwise.

(send a-frame is-maximized?) → boolean?

On Windows and Mac OS X, returns #t if the frame is maximized, #f otherwise. On Unix,
the result is always #f.

(send a-frame maximize maximize?) → void?

maximize? : any/c

Specification: Maximizes or restores the frame on Windows and Mac OS X; the frame’s
show state is not affected. On Windows, an iconized frame cannot be maximized or restored.

A window’s maximization can be changed by the user, and such changes do not go through
this method; use on-size to monitor size changes.

Default implementation: If maximize? is #f, the window is restored, otherwise it is maxi-
mized.

65

(send a-frame modified) → boolean?

(send a-frame modified modified?) → void?

modified? : any/c

Gets or sets the frame’s modification state as reflected to the user. On Mac OS X, the
modification state is reflected as a dot in the frame’s close button. On Windows and Unix,
the modification state is reflected by an asterisk at the end of the frame’s displayed title.

(send a-frame on-menu-char event) → boolean?

event : (is-a?/c key-event%)

If the frame has a menu bar with keyboard shortcuts, and if the key event includes a Control,
Alt, Option, Meta, Command, Shift, or Function key, then on-menu-char attempts to match
the given event to a menu item. If a match is found, #t is returned, otherwise #f is returned.

When the match corresponds to a complete shortcut combination, the menu item’s callback
is called (before on-menu-char returns).

If the event does not correspond to a complete shortcut combination, the event may be han-
dled anyway if it corresponds to a mnemonic in the menu bar (i.e., an underlined letter
in a menu’s title, which is installed by including an ampersand in the menu’s label). If a
mnemonic match is found, the keyboard focus is moved to the menu bar (selecting the menu
with the mnemonic), and #t is returned.

(send a-frame on-subwindow-char receiver

event) → boolean?

receiver : (is-a?/c window<%>)

event : (is-a?/c key-event%)

Overrides on-subwindow-char in window<%>.

Returns the result of

(or (send this on-menu-char event)

(send this on-system-menu-char event)

(send this on-traverse-char event))

(send a-frame on-toolbar-button-click) → void?

On Mac OS X, called when the user clicks the toolbar button on a frame created with the
'toolbar-button style.

(send a-frame set-status-text text) → void?

text : string?

Sets the frame’s status line text and redraws the status line. See also create-status-line.

66

2.20 gauge%

gauge% : class?

superclass: object%

extends: control<%>

A gauge is a horizontal or vertical bar for displaying the output value of a bounded inte-
ger quantity. Each gauge has an adjustable range, and the gauge’s current value is always
between 0 and its range, inclusive. Use set-value to set the value of the gauge.

(new gauge% [label label]

[range range]

[parent parent]

[[style style]

[font font]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c gauge%)

label : (or/c label-string? false/c)

range : (integer-in 1 1000000)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

style :
(listof (one-of/c 'horizontal 'vertical

'vertical-label 'horizontal-label

'deleted))

= '(horizontal)

font : (is-a?/c font%) = normal-control-font

enabled : any/c = #t

vert-margin : (integer-in 0 1000) = 2

horiz-margin : (integer-in 0 1000) = 2

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = (memq 'horizontal style)

stretchable-height : any/c = (memq 'vertical style)

If label is a string, it is used as the gauge label; otherwise the gauge does not display a
label.

If & occurs in label , it is specially parsed; under Windows and X, the character following
& is underlined in the displayed control to indicate a keyboard mnemonic. (Under Mac OS
X, mnemonic underlines are not shown.) The mnemonic is meaningless for a gauge (as

67

far as on-traverse-char in top-level-window<%> is concerned), but it is supported for
consistency with other control types. A programmer may assign a meaning to the mnemonic
(e.g., by overriding on-traverse-char).

The range argument is an integer specifying the maximum value of the gauge (inclusive).
The minimum gauge value is always 0.

The style list must include either 'horizontal, specifying a horizontal gauge, or 'ver-
tical, specifying a vertical gauge. If style includes 'vertical-label, then the gauge
is created with a label above the control; if style does not include 'vertical-label (and
optionally includes 'horizontal-label), then the label is created to the left of the gauge.
If style includes 'deleted, then the gauge is created as hidden, and it does not affect
its parent’s geometry; the gauge can be made active later by calling parent ’s add-child
method.

The font argument determines the font for the control. For information about the en-

abled argument, see window<%>. For information about the horiz-margin and vert-

margin arguments, see subarea<%>. For information about the min-width , min-height ,
stretchable-width , and stretchable-height arguments, see area<%>.

(send a-gauge get-range) → (integer-in 1 10000)

Returns the range (maximum value) of the gauge.

(send a-gauge get-value) → (integer-in 0 10000)

Returns the gauge’s current value.

(send a-gauge set-range range) → void?

range : (integer-in 1 10000)

Sets the range (maximum value) of the gauge.

(send a-gauge set-value pos) → void?

pos : (integer-in 0 10000)

Sets the gauge’s current value. If the specified value is larger than the gauge’s range, an
exn:fail:contract exception is raised.

2.21 group-box-panel%

group-box-panel% : class?

superclass: vertical-panel%

68

A group-box panel arranges its subwindows in a single column, but also draws an optional
label at the top of the panel and a border around the panel content.

Unlike most panel classes, a group-box panel’s horizontal and vertical margins default to 2.

(new group-box-panel%

[label label]

[parent parent]

[[style style]

[font font]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[border border]

[spacing spacing]

[alignment alignment]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c group-box-panel%)

label : label-string?

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

style : (listof (one-of/c 'deleted)) = null

font : (is-a?/c font%) = small-control-font

enabled : any/c = #t

vert-margin : (integer-in 0 1000) = 2

horiz-margin : (integer-in 0 1000) = 2

border : (integer-in 0 1000) = 0

spacing : (integer-in 0 1000) = 0

alignment :
(list/c (one-of/c 'left 'center 'right)

(one-of/c 'top 'center 'bottom))

= '(center top)

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #t

stretchable-height : any/c = #t

Creates a group pane whose title is label .

If style includes 'deleted, then the group panel is created as hidden, and it does not
affect its parent’s geometry; the group panel can be made active later by calling parent ’s
add-child method.

The font argument determines the font for the control. For information about the en-

69

abled argument, see window<%>. For information about the horiz-margin and vert-

margin arguments, see subarea<%>. For information about the min-width , min-height ,
stretchable-width , and stretchable-height arguments, see area<%>.

2.22 grow-box-spacer-pane%

grow-box-spacer-pane% : class?

superclass: pane%

A grow-box-spacer-pane% object is intended for use as a lightweight spacer in the
bottom-right corner of a frame, rather than as a container. On Mac OS X, a grow-box-

spacer-pane% has the same width and height as the grow box that is inset into the bottom-
right corner of a frame. On Windows and Unix, a grow-box-spacer-pane% has zero width
and height. Unlike all other container types, a grow-box-spacer-pane% is unstretchable
by default.

(new grow-box-spacer-pane% ...superclass-args...)

→ (is-a?/c grow-box-spacer-pane%)

See pane% for information on initialization arguments.

2.23 horizontal-pane%

horizontal-pane% : class?

superclass: pane%

A horizontal pane arranges its subwindows in a single row. See also pane%.

(new horizontal-pane%

[parent parent]

[[vert-margin vert-margin]

[horiz-margin horiz-margin]

[border border]

[spacing spacing]

[alignment alignment]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c horizontal-pane%)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

vert-margin : (integer-in 0 1000) = 0

70

horiz-margin : (integer-in 0 1000) = 0

border : (integer-in 0 1000) = 0

spacing : (integer-in 0 1000) = 0

alignment :
(list/c (one-of/c 'left 'center 'right)

(one-of/c 'top 'center 'bottom))

= '(left center)

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #t

stretchable-height : any/c = #t

For information about the horiz-margin and vert-margin arguments, see subarea<%>.
For information about the border , spacing , and alignment arguments, see area-

container<%>. For information about the min-width , min-height , stretchable-

width , and stretchable-height arguments, see area<%>.

2.24 horizontal-panel%

horizontal-panel% : class?

superclass: panel%

A horizontal panel arranges its subwindows in a single row. See also panel%.

(new horizontal-panel%

[parent parent]

[[style style]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[border border]

[spacing spacing]

[alignment alignment]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c horizontal-panel%)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

style :
(listof (one-of/c 'border 'deleted

'hscroll 'auto-hscroll

'vscroll 'auto-vscroll))

= null

enabled : any/c = #t

vert-margin : (integer-in 0 1000) = 0

71

horiz-margin : (integer-in 0 1000) = 0

border : (integer-in 0 1000) = 0

spacing : (integer-in 0 1000) = 0

alignment :
(list/c (one-of/c 'left 'center 'right)

(one-of/c 'top 'center 'bottom))

= '(left center)

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #t

stretchable-height : any/c = #t

The style flags are the same as for panel%.

For information about the enabled argument, see window<%>. For information about the
horiz-margin and vert-margin arguments, see subarea<%>. For information about the
border , spacing , and alignment arguments, see area-container<%>. For information
about the min-width , min-height , stretchable-width , and stretchable-height

arguments, see area<%>.

(send a-horizontal-panel set-orientation horizontal?) → void?

horizontal? : boolean?

Sets the orientation of the panel, switching it between the behavior of the vertical-panel%
and that of the horizontal-panel%.

(send a-horizontal-panel get-orientation) → boolean?

Initially returns #t, but if set-orientation is called, this method returns whatever the last
value passed to it was.

2.25 key-event%

key-event% : class?

superclass: event%

A key-event% object contains information about a key press or release event. Key events
are primarily processed by on-subwindow-char in window<%> and on-char in can-

vas<%>.

For a key-press event, a virtual key code is provided by get-key-code. For a key-release
event, get-key-code reports 'release, and a virtual key code is provided by get-key-

release-code.

See also §1.5 “Mouse and Keyboard Events”.

72

(new key-event% [[key-code key-code]

[shift-down shift-down]

[control-down control-down]

[meta-down meta-down]

[alt-down alt-down]

[x x]

[y y]

[time-stamp time-stamp]

[caps-down caps-down]])
→ (is-a?/c key-event%)

key-code : (or/c char? key-code-symbol?) = #\nul

shift-down : any/c = #f

control-down : any/c = #f

meta-down : any/c = #f

alt-down : any/c = #f

x : exact-integer? = 0

y : exact-integer? = 0

time-stamp : exact-integer? = 0

caps-down : any/c = #f

See the corresponding get- and set- methods for information about key-code , shift-
down , control-down , meta-down , alt-down , x , y , time-stamp , caps-down .

The release key code, as returned by get-key-release-code, is initialized to 'press.

(send a-key-event get-alt-down) → boolean?

Returns #t if the Option (Mac OS X) key was down for the event. When the Alt key is
pressed in Windows, it is reported as a Meta press (see get-meta-down).

(send a-key-event get-caps-down) → boolean?

Returns #t if the Caps Lock key was on for the event.

(send a-key-event get-control-down) → boolean?

Returns #t if the Control key was down for the event.

On Mac OS X, if a control-key press is combined with a mouse button click, the event is
reported as a right-button click and get-control-down for the event reports #f.

(send a-key-event get-key-code)

→ (or/c char? key-code-symbol?)

Gets the virtual key code for the key event. The virtual key code is either a character or a
special key symbol, one of the following:

73

• 'start

• 'cancel

• 'clear

• 'shift — Shift key

• 'rshift — right Shift key

• 'control — Control key

• 'rcontrol — right Control key

• 'menu

• 'pause

• 'capital

• 'prior

• 'next

• 'end

• 'home

• 'left

• 'up

• 'right

• 'down

• 'escape

• 'select

• 'print

• 'execute

• 'snapshot

• 'insert

• 'help

• 'numpad0

• 'numpad1

• 'numpad2

74

• 'numpad3

• 'numpad4

• 'numpad5

• 'numpad6

• 'numpad7

• 'numpad8

• 'numpad9

• 'numpad-enter

• 'multiply

• 'add

• 'separator

• 'subtract

• 'decimal

• 'divide

• 'f1

• 'f2

• 'f3

• 'f4

• 'f5

• 'f6

• 'f7

• 'f8

• 'f9

• 'f10

• 'f11

• 'f12

• 'f13

• 'f14

75

• 'f15

• 'f16

• 'f17

• 'f18

• 'f19

• 'f20

• 'f21

• 'f22

• 'f23

• 'f24

• 'numlock

• 'scroll

• 'wheel-up — mouse wheel up one notch

• 'wheel-down — mouse wheel down one notch

• 'wheel-left — mouse wheel left one notch

• 'wheel-right — mouse wheel right one notch

• 'release — indicates a key-release event

• 'press — indicates a key-press event; usually only from get-key-release-code

The special key symbols attempt to capture useful keys that have no standard ASCII repre-
sentation. A few keys have standard representations that are not obvious:

• #\space — the space bar

• #\return — the Enter or Return key (on all platforms), but not necessarily the Enter
key near the numpad (which is reported as 'numpad-enter if the platform distin-
guishes the two Enter keys)

• #\tab — the tab key

• #\backspace — the backspace key

• #\rubout — the delete key

76

If a suitable special key symbol or ASCII representation is not available, #\nul (the NUL
character) is reported.

A 'wheel-up, 'wheel-down, 'wheel-left, or 'wheel-right event may be sent to a
window other than the one with the keyboard focus, because some platforms generate wheel
events based on the location of the mouse pointer instead of the keyboard focus.

On Windows, when the Control key is pressed without Alt, the key code for ASCII characters
is downcased, roughly cancelling the effect of the Shift key. On Mac OS X, the key code is
computed without Caps Lock effects when the Control or Command key is pressed; in the
case of Control, Caps Lock is used normally if special handling is disabled for the Control
key via special-control-key. On Unix, the key code is computed with Caps Lock effects
when the Control key is pressed without Alt.

See also get-other-shift-key-code.

(send a-key-event get-key-release-code)

→ (or/c char? key-code-symbol?)

Gets the virtual key code for a key-release event; the result is 'press for a key-press event.
See get-key-code for the list of virtual key codes.

(send a-key-event get-meta-down) → boolean?

Returns #t if the Meta (Unix), Alt (Windows), or Command (Mac OS X) key was down for
the event.

(send a-key-event get-other-altgr-key-code)

→ (or/c char? key-code-symbol? false/c)

See get-other-shift-key-code.

(send a-key-event get-other-caps-key-code)

→ (or/c char? key-code-symbol? false/c)

See get-other-shift-key-code.

(send a-key-event get-other-shift-altgr-key-code)

→ (or/c char? key-code-symbol? false/c)

See get-other-shift-key-code.

(send a-key-event get-other-shift-key-code)

→ (or/c char? key-code-symbol? false/c)

77

Since keyboard mappings vary, it is sometimes useful in key mappings for a program to
know the result that the keyboard would have produced for an event if the Shift key had
been toggled differently. The get-other-shift-key-code produces that other mapping,
returning #f if the alternate mapping is unavailable, otherwise returning the same kind of
result as get-key-code.

The get-other-altgr-key-code method provides the same information with respect to
the AltGr key (i.e., Alt combined with Control) on Windows and Unix, or the Option key
on Mac OS X. The get-other-shift-altgr-key-code method reports a mapping for in
tha case that both Shift and AltGr/Option were different from the actual event.

The get-other-shift-key-code, get-other-altgr-key-code, and get-other-

shift-altgr-key-code results all report key mappings where Caps Lock is off, indepen-
dent of whether Caps Lock was on for the actual event. The get-other-caps-key-code

method reports a mapping for in that case that the Caps Lock state was treated opposite as
for the get-key-code result. (Caps Lock normally has either no effect or the same effect
as Shift, so further combinations involving Caps Lock and other modifier keys would not
normally produce further alternatives.)

Alternate mappings are not available for all events. On Windows, alternate mappings are
reported when they produce ASCII letters, ASCII digits, and ASCII symbols. On Mac OS
X, alternate mappings are available only when the Command key is pressed. On Unix,
alternate mappings are usually available.

(send a-key-event get-shift-down) → boolean?

Returns #t if the Shift key was down for the event.

(send a-key-event get-x) → exact-integer?

Returns the x-position of the mouse at the time of the event, in the target’s window’s (client-
area) coordinate system.

(send a-key-event get-y) → exact-integer?

Returns the y-position of the mouse at the time of the event in the target’s window’s (client-
area) coordinate system.

(send a-key-event set-alt-down down?) → void?

down? : any/c

Sets whether the Option (Mac OS X) key was down for the event. When the Alt key is
pressed in Windows, it is reported as a Meta press (see set-meta-down).

(send a-key-event set-caps-down down?) → void?

down? : any/c

78

Sets whether the Caps Lock key was on for the event.

(send a-key-event set-control-down down?) → void?

down? : any/c

Sets whether the Control key was down for the event.

On Mac OS X, if a control-key press is combined with a mouse button click, the event is
reported as a right-button click and get-control-down for the event reports #f.

(send a-key-event set-key-code code) → void?

code : (or/c char? key-code-symbol?)

Sets the virtual key code for the event, either a character or one of the special symbols listed
with get-key-code.

(send a-key-event set-key-release-code code) → void?

code : (or/c char? key-code-symbol?)

Sets the virtual key code for a release event, either a character or one of the special symbols
listed with get-key-code. See also get-key-release-code.

(send a-key-event set-meta-down down?) → void?

down? : any/c

Sets whether the Meta (Unix), Alt (Windows), or Command (Mac OS X) key was down for
the event.

(send a-key-event set-other-altgr-key-code code) → void?

code : (or/c char? key-code-symbol? false/c)

Sets the key code produced by get-other-altgr-key-code.

(send a-key-event set-other-caps-key-code code) → void?

code : (or/c char? key-code-symbol? false/c)

Sets the key code produced by get-other-caps-key-code.

(send a-key-event set-other-shift-altgr-key-code code) → void?

code : (or/c char? key-code-symbol? false/c)

Sets the key code produced by get-other-shift-altgr-key-code.

(send a-key-event set-other-shift-key-code code) → void?

code : (or/c char? key-code-symbol? false/c)

79

Sets the key code produced by get-other-shift-key-code.

(send a-key-event set-shift-down down?) → void?

down? : any/c

Sets whether the Shift key was down for the event.

(send a-key-event set-x pos) → void?

pos : exact-integer?

Sets the x-position of the mouse at the time of the event in the target’s window’s (client-area)
coordinate system.

(send a-key-event set-y pos) → void?

pos : exact-integer?

Sets the y-position of the mouse at the time of the event in the target’s window’s (client-area)
coordinate system.

2.26 labelled-menu-item<%>

labelled-menu-item<%> : interface?

implements: menu-item<%>

A labelled-menu-item<%> object is a menu-item<%> with a string label (i.e., any menu
item other than a separator). More specifically, it is an instance of either menu-item% (a
plain menu item), checkable-menu-item% (a checkable menu item), or menu% (a sub-
menu).

(send a-labelled-menu-item enable enabled?) → void?

enabled? : any/c

Enables or disables the menu item. If the item is a submenu (or menu in a menu bar), the
entire menu is disabled, but each submenu item’s is-enabled? method returns #f only if
the item is specifically disabled (in addition to the submenu).

(send a-labelled-menu-item get-help-string)

→ (or/c label-string? false/c)

Returns the help string for the menu item, or #f if the item has no help string.

When an item has a help, the string may be used to display help information to the user.

(send a-labelled-menu-item get-label) → label-string?

80

Returns the item’s label.

See also set-label and get-plain-label.

(send a-labelled-menu-item get-plain-label) → label-string?

Like get-label, except that &s in the label are removed as described in set-label.

(send a-labelled-menu-item is-enabled?) → boolean?

Returns #t if the menu item is enabled, #f otherwise.

See also enable.

(send a-labelled-menu-item on-demand) → void?

Specification: Normally called when the user clicks on the menu bar containing the item
(before the user sees any menu items), just before the popup menu containing the item is
popped up, or just before inspecting the menu bar containing the item for a shortcut key
binding.

A on-demand in menu-item-container<%> method can be overridden in such a way that
the container does not call the on-demand method of its items.

Default implementation: Calls the demand-callback procedure that was provided when
the object was created.

(send a-labelled-menu-item set-help-string help) → void?

help : (or/c label-string? false/c)

Sets the help string for the menu item. Use #f to remove the help string for an item.

(send a-labelled-menu-item set-label label) → void?

label : label-string?

Sets the menu item’s label. If the item has a shortcut, the shortcut is not affected.

If the label contains & and the window is a control, the label is parsed specially; on Windows
and Unix, the character following a & is underlined in the displayed menu to indicate a
keyboard mnemonic. Pressing the Alt key with an underlined character from a menu’s name
in the menu bar causes the menu to be selected (via on-menu-char). When a menu has
the focus, the mnemonic characters are used for navigation without Alt. A && in the label
is replaced by a literal (non-navigation) &. On Mac OS X, &s in the label are parsed in the
same way as for Unix and Windows, but no mnemonic underline is displayed.

A & is always preserved in the label returned by get-label, but never preserved in the label
returned by get-plain-label.

81

For historical reasons, if a label contains a tab character, then the tab and all remaining
characters are hidden in the displayed menu.

2.27 list-box%

list-box% : class?

superclass: object%

extends: list-control<%>

A list box allows the user to select one or more string items from a scrolling list. A list box
is either a single-selection control (if an item is selected, the previous selection is removed)
or a multiple-selection control (clicking an item toggles the item on or off independently of
other selections).

Whenever the user changes the selection in a list box, the list box’s callback procedure is
called. A callback procedure is provided as an initialization argument when each list box is
created.

A list box can have multiple columns with optional column headers. An item in the list cor-
responds to a row that spans all columns. When column headers are displayed, the column
widths can be changed by a user. In addition, columns can optionally support dragging by
the user to change the display order of columns, while the logical order remains fixed.

List box rows and columns are indexed from 0.

See also choice%.

(new list-box% [label label]

[choices choices]

[parent parent]

[[callback callback]

[style style]

[selection selection]

[font font]

[label-font label-font]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]

[columns columns]

[column-order column-order]])
→ (is-a?/c list-box%)

label : (or/c label-string? false/c)

82

choices : (listof label-string?)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

callback : ((is-a?/c list-box%) (is-a?/c control-event%) . -> . any)

= (lambda (c e) (void))

style :

(listof (one-of/c 'single 'multiple 'extended

'vertical-label 'horizontal-label

'variable-columns 'column-headers

'clickable-headers 'reorderable-headers

'deleted))

= '(single)

selection : (or/c exact-nonnegative-integer? false/c) = #f

font : (is-a?/c font%) = view-control-font

label-font : (is-a?/c font%) = normal-control-font

enabled : any/c = #t

vert-margin : (integer-in 0 1000) = 2

horiz-margin : (integer-in 0 1000) = 2

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #t

stretchable-height : any/c = #t

columns : (cons/c label-string? (listof label-string?))

= '("Column")

column-order : (or/c #f (listof exact-nonnegative-integer?))

= #f

If label is not #f, it is used as the list box label. Otherwise, the list box will not display its
label.

If & occurs in label , it is specially parsed as for button%.

The choices list specifies the initial list of items to appear in the list box. If the list box has
multiple columns, choices determines the content of the first column, and other columns
are initialized to the empty string.

The callback procedure is called when the user changes the list box selection, by either
selecting, re-selecting, deselecting, or double-clicking an item. The type of the event pro-
vided to the callback is 'list-box-dclick when the user double-clicks on an item, or
'list-box otherwise.

The columns list determines the number of columns in the list box. The column titles
in columns are shown only if style includes 'column-headers. If style also includes
'clickable-headers, then a click on a header triggers a call to callback with a column-
control-event% argument whose event type is 'list-box-column.

The style specification must include exactly one of the following:

83

• 'single — Creates a single-selection list.

• 'multiple — Creates a multiple-selection list where a single click deselects other
items and selects a new item. Use this style for a list when single-selection is common,
but multiple selections are allowed.

• 'extended — Creates a multiple-selection list where a single click extends or con-
tracts the selection by toggling the clicked item. Use this style for a list when multiple
selections are the rule rather than the exception.

The 'multiple and 'extended styles determine a platform-independent interpretation of
unmodified mouse clicks, but dragging, shift-clicking, control-clicking, etc. have platform-
standard interpretations. Whatever the platform-specific interface, the user can always select
disjoint sets of items or deselect items (and leave no items selected). On some platforms, the
user can deselect the (sole) selected item in a 'single list box.

If style includes 'vertical-label, then the list box is created with a label above the con-
trol; if style does not include 'vertical-label (and optionally includes 'horizontal-
label), then the label is created to the left of the list box. If style includes 'deleted,
then the list box is created as hidden, and it does not affect its parent’s geometry; the list box
can be made active later by calling parent ’s add-child method.

If style includes 'variable-columns, then the number of columns in the list box can be
changed via append-column and delete-column.

If selection is an integer, it is passed to set-selection to set the initial selection. The
selection must be less than the length of choices .

The font argument determines the font for the control content, and label-font deter-
mines the font for the control label. For information about the enabled argument, see
window<%>. For information about the horiz-margin and vert-margin arguments, see
subarea<%>. For information about the min-width , min-height , stretchable-width ,
and stretchable-height arguments, see area<%>.

It the column-order argument is not #f, it determines the order in which logical columns
are initially displayed. See set-column-order for more information. If style includes
'column-headers and 'reorderable-headers, then a user can reorder columns as dis-
played (but the display order does not change the logical order of the columns).

(send a-list-box append item [data]) → void?

item : label-string?

data : any/c = #f

Overrides append in list-control<%>.

Adds a new item to the list box with an associated “data” object. The data object is not
displayed in the list box; it is provided merely as a convenience for use with get-data, pos-

84

sibly allowing a programmer to avoid managing a separate item-to-data mapping in addition
to the list box control.

See also append in list-control<%>.

(send a-list-box append-column label) → void?

label : label-string?

Adds a new column with title label to the list box, but only if the list box is created with the
'variable-columns style. The new column is logically the last column, and it is initially
displayed as the last column.

(send a-list-box delete n) → void?

n : exact-nonnegative-integer?

Deletes the item indexed by n . List box rows are indexed from 0. If n is equal to or larger
than the number of items in the control, an exn:fail:contract exception is raised.

Selected items that are not deleted remain selected, and no other items are selected.

(send a-list-box delete-column n) → void?

n : exact-nonnegative-integer?

Deletes the column with logical position n , but only if the list box is created with the
'variable-columns style, and only if the list box currently has more than one column
(i.e., the number of columns can never be zero).

(send a-list-box get-column-labels)

→ (cons/c label-string? (listof label-string?))

Returns the labels of the list box’s columns, and the number of returned strings indicates the
number of columns in the list box.

(send a-list-box get-column-order)

→ (listof exact-nonnegative-integer?)

Returns the display order of logical columns. Each column is represented by its logical
position in the result list, and the order of the column positions indicates the display order.

See also set-column-order.

(send a-list-box get-column-width column)

→
(integer-in 0 10000)

(integer-in 0 10000)

(integer-in 0 10000)

column : exact-nonnegative-integer?

85

Gets the width of the column identified by column (in logical positions, as opposed to
display positions), which must be between 0 and one less than the number of columns.

The result includes the column’s current width as well as its minimum and maximum widths
to constrain the column size as adjusted by a user.

See also set-column-width.

(send a-list-box get-data n) → any/c

n : exact-nonnegative-integer?

Returns the data for the item indexed by n , or #f if there is no associated data. List
box rows are indexed from 0. If n is equal to or larger than the number of choices, an
exn:fail:contract exception is raised.

See also append and set-data.

(send a-list-box get-first-visible-item)

→ exact-nonnegative-integer?

Reports the index of the item currently scrolled to the top of the list box. List box rows are
indexed from 0.

(send a-list-box get-label-font) → (is-a?/c font%)

Returns the font used for the control’s label, which is optionally supplied when a list box is
created.

(send a-list-box get-selections)

→ (listof exact-nonnegative-integer?)

Returns a list of indices for all currently selected items. List box rows are indexed from 0.

For single-selection lists, the result is always either null or a list containing one number.

(send a-list-box is-selected? n) → boolean?

n : exact-nonnegative-integer?

Returns #t if the items indexed by n is selected, #f otherwise. List box rows are indexed
from 0. If n is equal to or larger than the number of choices, an exn:fail:contract

exception is raised.

A list box’s selection can be changed by the user clicking the control, and such changes do
not go through this method; use the control callback procedure (provided as an initialization
argument) to monitor selection changes.

86

(send a-list-box number-of-visible-items)

→ exact-positive-integer?

Returns the maximum number of items in the list box that are visible to the user with the
control’s current size (rounding down if the exact answer is fractional, but returning at least
1).

(send a-list-box select n [select?]) → void?

n : exact-nonnegative-integer?

select? : any/c = #t

Selects or deselects an item. For selection in a single-selection list box, if a different choice
is currently selected, it is automatically deselected. For selection in a multiple-selection list
box, other selections are preserved, unlike set-selection.

If select? is #f, the item indexed by n is deselected; otherwise it is selected. List
box rows are indexed from 0. If n is equal to or larger than the number of choices, an
exn:fail:contract exception is raised.

A list box’s selection can be changed by the user clicking the control, and such changes do
not go through this method; use the control callback procedure (provided as an initialization
argument) to monitor selection changes.

The control’s callback procedure is not invoked.

(send a-list-box set choices ...) → void?

choices : (listof label-string?)

Clears the list box and installs a new list of items. The number of choices lists must
match the number of columns, and all choices lists must have the same number of items,
otherwise an exn:fail:contract exception is raised.

(send a-list-box set-column-label column

label) → void?

column : exact-nonnegative-integer?

label : label-string?

Sets the label of the column identified by column (in logical positions, as opposed to display
positions), which must be between 0 and one less than the number of columns.

(send a-list-box set-column-order column-order) → void?

column-order : (listof exact-nonnegative-integer?)

Sets the order in which logical columns are displayed. Each element of column-order must
identify a unique column by its logical position, and all logical columns must be represented
in the list.

87

See also get-column-order.

(send a-list-box set-column-width column

width

min-width

max-width) → void?

column : exact-nonnegative-integer?

width : (integer-in 0 10000)

min-width : (integer-in 0 10000)

max-width : (integer-in 0 10000)

Sets the width of the column identified by column (in logical positions, as opposed to display
positions), which must be between 0 and one less than the number of columns.

The width argument sets the current display width, while min-width and max-width

constrain the width of the column when the user resizes it. The width argument must be no
less than min-width and no more than max-width .

The default width of a column is platform-specific, and the last column of a list box may
extend to the end of the control independent of its requested size.

See also get-column-width.

(send a-list-box set-data n data) → void?

n : exact-nonnegative-integer?

data : any/c

Sets the associated data for item indexed by n . List box rows are indexed from 0. If n is
equal to or larger than the number of choices, an exn:fail:contract exception is raised.

See also append.

(send a-list-box set-first-visible-item n) → void?

n : exact-nonnegative-integer?

Scrolls the list box so that the item indexed by n is at the top of the list box display. List
box rows are indexed from 0. If n is equal to or larger than the number of choices, an
exn:fail:contract exception is raised.

A list box’s scroll position can be changed by the user clicking the control, and such changes
do not go through this method. A program cannot detect when the scroll position changes
except by polling get-first-visible-item.

(send a-list-box set-string n label [column]) → void?

n : exact-nonnegative-integer?

label : label-string?

column : exact-nonnegative-integer? = 0

88

Sets the item indexed by n in logical column column . List box rows and columns are
indexed from 0. If n is equal to or larger than the number of choices, or if column is equal
to or larger than the number of columns, an exn:fail:contract exception is raised.

2.28 list-control<%>

list-control<%> : interface?

implements: control<%>

A list control gives the user a list of string items to choose from. There are two built-in
classes that implement list-control<%>:

• choice% — presents the list in a popup menu (so the user can choose only one item
at a time)

• list-box% — presents the list in a scrolling box, allowing the use to choose one item
(if the style includes 'single) or any number of items

In either case, the set of user-selectable items can be changed dynamically.

(send a-list-control append item) → void?

item : label-string?

Adds a new item to the list of user-selectable items. The current selection is unchanged
(unless the list control is an empty choice control, in which case the new item is selected).

(send a-list-control clear) → void?

Removes all user-selectable items from the control.

(send a-list-control find-string s)

→ (or/c exact-nonnegative-integer? false/c)

s : string?

Finds a user-selectable item matching the given string. If no matching choice is found, #f is
returned, otherwise the index of the matching choice is returned (items are indexed from 0).

(send a-list-control get-number) → exact-nonnegative-integer?

Returns the number of user-selectable items in the control (which is also one more than the
greatest index in the list control).

(send a-list-control get-selection)

→ (or/c exact-nonnegative-integer? false/c)

89

Returns the index of the currently selected item (items are indexed from 0). If the choice
item currently contains no choices or no selections, #f is returned. If multiple selections are
allowed and multiple items are selected, the index of the first selection is returned.

(send a-list-control get-string n)

→ (and/c immutable? label-string?)

n : exact-nonnegative-integer?

Returns the item for the given index (items are indexed from 0). If the provided index
is larger than the greatest index in the list control, an exn:fail:contract exception is
raised.

(send a-list-control get-string-selection)

→ (or/c (and/c immutable? label-string?) false/c)

Returns the currently selected item. If the control currently contains no choices, #f is re-
turned. If multiple selections are allowed and multiple items are selected, the first selection
is returned.

(send a-list-control set-selection n) → void?

n : exact-nonnegative-integer?

Selects the item specified by the given index (items are indexed from 0). If the given index
larger than the greatest index in the list control, an exn:fail:contract exception is raised.

In a list box control, all other items are deselected, even if multiple selections are allowed in
the control. See also select in list-box%.

The control’s callback procedure is not invoked when this method is called.

The list control’s selection can be changed by the user clicking the control, and such changes
do not go through this method; use the control callback procedure (provided as an initializa-
tion argument) to monitor selection changes.

(send a-list-control set-string-selection s) → void?

s : string?

Selects the item that matches the given string. If no match is found in the list control, an
exn:fail:contract exception is raised.

In a list box control, all other items are deselected, even if multiple selections are allowed in
the control. See also select in list-box%.

The control’s callback procedure is not invoked when this method is called.

The list control’s selection can be changed by the user clicking the control, and such changes
do not go through this method; use the control callback procedure (provided as an initializa-
tion argument) to monitor selection changes.

90

2.29 menu%

menu% : class?

superclass: object%

extends: menu-item-container<%>

labelled-menu-item<%>

A menu% object is a submenu within a menu% or popup-menu%, or as a top-level menu in a
menu-bar%.

(new menu% [label label]

[parent parent]

[[help-string help-string]

[demand-callback demand-callback]])
→ (is-a?/c menu%)

label : label-string?

parent :
(or/c (is-a?/c menu%) (is-a?/c popup-menu%)

(is-a?/c menu-bar%))

help-string : (or/c label-string? false/c) = #f

demand-callback : ((is-a?/c menu%) . -> . any)

= (lambda (m) (void))

Creates a new menu with the given label.

If label contains a &, it is handled specially; on Windows, the character following a &

is underlined in the displayed menu title to indicate a keyboard mnemonic. Pressing and
releasing the Alt key switches to menu-selection mode in the menu bar where mnemonic
characters are used for navigation. An Alt combination might select a specific menu via on-
menu-char. A && in label is replaced by a literal (non-navigation) &ersand. On Unix
and Mac OS X, &s in the label are parsed in the same way as for Windows, but no mnemonic
underline is displayed.

If help-string is not #f, the menu has a help string. See get-help-string for more
information.

The demand-callback procedure is called by the default on-demand method with the
object itself.

2.30 menu-bar%

menu-bar% : class?

superclass: object%

extends: menu-item-container<%>

A menu-bar% object is created for a particular frame% object. A frame can have at most

91

one menu bar; an exn:fail:contract exception is raised when a new menu bar is created
for a frame that already has a menu bar.

(new menu-bar% [parent parent]

[[demand-callback demand-callback]])
→ (is-a?/c menu-bar%)

parent : (or/c (is-a?/c frame%) (one-of/c 'root))

demand-callback : ((is-a?/c menu-bar%) . -> . any)

= (lambda (m) (void))

Creates a menu bar in the specified frame. The menu bar is initially empty. If 'root is
supplied as parent , the menu bar becomes active only when no other frames are shown. A
'root parent is allowed only when current-eventspace-has-menu-root? returns #t,
and only if no such menu bar has been created before, otherwise an exn:fail:contract

exception is raised.

The demand-callback procedure is called by the default on-demand method with the
object itself.

(send a-menu-bar enable enable?) → void?

enable? : any/c

Enables or disables the menu bar (i.e., all of its menus). Each menu’s is-enabled? method
returns #f only if the menu is specifically disabled (in addition to the menu bar).

(send a-menu-bar get-frame) → (is-a?/c frame%)

Returns the menu bar’s frame.

(send a-menu-bar is-enabled?) → boolean?

Returns #t if the menu bar is enabled, #f otherwise.

2.31 menu-item<%>

menu-item<%> : interface?

A menu-item<%> object is an element within a menu%, popup-menu%, or menu-bar%. Op-
erations that affect the parent — such as renaming the item, deleting the item, or adding a
check beside the item — are accomplished via the menu-item<%> object.

A menu item is either a separator-menu-item% object (merely a separator), of a
labelled-menu-item<%> object; the latter is more specifically an instance of either menu-
item% (a plain menu item), checkable-menu-item% (a checkable menu item), or menu%
(a submenu).

92

(send a-menu-item delete) → void?

Removes the item from its parent. If the menu item is already deleted, delete has no effect.

See also restore.

(send a-menu-item get-parent)

→ (or/c (is-a?/c menu%) (is-a?/c popup-menu%) (is-a?/c menu-bar%))

Returns the menu, popup menu, or menu bar containing the item. The parent for a menu
item is specified when the menu item is created, and it cannot be changed.

(send a-menu-item is-deleted?) → boolean?

Returns #t if the menu item is deleted from its parent, #f otherwise.

(send a-menu-item restore) → void?

Adds a deleted item back into its parent. The item is always restored to the end of the parent,
regardless of its original position. If the item is not currently deleted, restore has no effect.

2.32 menu-item%

menu-item% : class?

superclass: object%

extends: selectable-menu-item<%>

A menu-item% is a plain string-labelled menu item. Its parent must be a menu% or popup-
menu%. When the user selects the menu item, its callback procedure is called.

(new menu-item% [label label]

[parent parent]

[callback callback]

[[shortcut shortcut]

[help-string help-string]

[demand-callback demand-callback]

[shortcut-prefix shortcut-prefix]])
→ (is-a?/c menu-item%)

label : label-string?

parent : (or/c (is-a?/c menu%) (is-a?/c popup-menu%))

callback : ((is-a?/c menu-item%) (is-a?/c control-event%) . -> . any)

shortcut : (or/c char? symbol? false/c) = #f

help-string : (or/c label-string? false/c) = #f

93

demand-callback : ((is-a?/c menu-item%) . -> . any)

= (lambda (i) (void))

shortcut-prefix :
(listof (one-of/c 'alt 'cmd 'meta 'ctl

'shift 'option))

= (get-default-shortcut-prefix)

Creates a new menu item in parent . The item is initially shown, appended to the end of
its parent. The callback procedure is called (with the event type 'menu) when the user
selects the menu item (either via a menu bar, popup-menu in window<%>, or popup-menu
in editor-admin%).

See set-label for information about mnemonic &s in label .

If shortcut is not #f, the item has a shortcut. See get-shortcut for more information.
The shortcut-prefix argument determines the set of modifier keys for the shortcut; see
get-shortcut-prefix.

If help is not #f, the item has a help string. See get-help-string for more information.

The demand-callback procedure is called by the default on-demand method with the
object itself.

2.33 menu-item-container<%>

menu-item-container<%> : interface?

A menu-item-container<%> object is a menu%, popup-menu%, or menu-bar%.

(send a-menu-item-container get-items)

→ (listof (is-a?/c menu-item<%>))

Returns a list of the items in the menu, popup menu, or menu bar. The order of the items in
the returned list corresponds to the order as the user sees them in the menu or menu bar.

(send a-menu-item-container on-demand) → void?

Specification: Called when the user clicks on the container as a menu bar (before the user
sees any menu items), just before the container as a popup menu is popped up, or just before
inspecting the menu bar containing the item for a shortcut key binding.

If the container is not a menu bar or a popup menu, this method is normally called via the
on-demand method of the container’s owning menu bar or popup menu, because the default
implementation of the method chains to the on-demand method of its items. However, the
method can be overridden in a container such that it does not call the on-demand method of
its items.

94

Default implementation: Calls the demand-callback procedure that was provided when
the object was created, then calls the on-demand method of the contained items.

2.34 message%

message% : class?

superclass: object%

extends: control<%>

A message control is a static line of text or a static bitmap. The text or bitmap corresponds
to the message’s label (see set-label).

(new message% [label label]

[parent parent]

[[style style]

[font font]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]

[auto-resize auto-resize]])
→ (is-a?/c message%)

label :
(or/c label-string? (is-a?/c bitmap%)

(one-of/c 'app 'caution 'stop))

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

style : (listof (one-of/c 'deleted)) = null

font : (is-a?/c font%) = normal-control-font

enabled : any/c = #t

vert-margin : (integer-in 0 1000) = 2

horiz-margin : (integer-in 0 1000) = 2

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #f

stretchable-height : any/c = #f

auto-resize : any/c = #f

Creates a string or bitmap message initially showing label . If label is a bitmap, and if the
bitmap has a mask (see get-loaded-mask in bitmap%) that is the same size as the bitmap,
then the mask is used for the label. Modifying a bitmap while it is used as a label has an
unspecified effect on the displayed label. An 'app, 'caution, or 'stop symbol for label

95

indicates an icon; 'app is the application icon (Windows and Mac OS X) or a generic “info”
icon (X), 'caution is a caution-sign icon, and 'stop is a stop-sign icon.

If & occurs in label , it is specially parsed; under Windows and X, the character following
& is underlined in the displayed control to indicate a keyboard mnemonic. (Under Mac OS
X, mnemonic underlines are not shown.) The mnemonic is meaningless for a message (as
far as on-traverse-char in top-level-window<%> is concerned), but it is supported for
consistency with other control types. A programmer may assign a meaning to the mnemonic
(e.g., by overriding on-traverse-char).

If style includes 'deleted, then the message is created as hidden, and it does not affect its
parent’s geometry; the message can be made active later by calling parent ’s add-child
method.

The font argument determines the font for the control. For information about the en-

abled argument, see window<%>. For information about the horiz-margin and vert-

margin arguments, see subarea<%>. For information about the min-width , min-height ,
stretchable-width , and stretchable-height arguments, see area<%>.

If auto-resize is not #f, then automatic resizing is initially enanbled (see auto-resize),
and the message% object’s graphical minimum size is as small as possible.

(send a-message auto-resize) → boolean?

(send a-message auto-resize on?) → void?

on? : any/c

Reports or sets whether the message%’s min-width and min-height are automatically set
when the label is changed via set-label.

(send a-message set-label label) → void?

label : (or/c label-string? (is-a?/c bitmap%))

Overrides set-label in window<%>.

The same as set-label in window<%> when label is a string.

Otherwise, sets the bitmap label for a bitmap message. Since label is a bitmap, if the
bitmap has a mask (see get-loaded-mask in bitmap%) that is the same size as the bitmap,
then the mask is used for the label. Modifying a bitmap while it is used as a label has an
unspecified effect on the displayed label. The bitmap label is installed only if the control
was originally created with a bitmap label.

2.35 mouse-event%

mouse-event% : class?

96

superclass: event%

A mouse-event% object encapsulates a mouse event. Mouse events are primarily processed
by on-subwindow-event in window<%> and on-event in canvas<%>.

See also §1.5 “Mouse and Keyboard Events”.

(new mouse-event% [event-type event-type]

[[left-down left-down]

[middle-down middle-down]

[right-down right-down]

[x x]

[y y]

[shift-down shift-down]

[control-down control-down]

[meta-down meta-down]

[alt-down alt-down]

[time-stamp time-stamp]

[caps-down caps-down]])
→ (is-a?/c mouse-event%)

event-type :
(or/c 'enter 'leave 'left-down 'left-up

'middle-down 'middle-up

'right-down 'right-up 'motion)

left-down : any/c = #f

middle-down : any/c = #f

right-down : any/c = #f

x : exact-integer? = 0

y : exact-integer? = 0

shift-down : any/c = #f

control-down : any/c = #f

meta-down : any/c = #f

alt-down : any/c = #f

time-stamp : exact-integer? = 0

caps-down : any/c = #f

Creates a mouse event for a particular type of event. The event types are:

• 'enter — mouse pointer entered the window

• 'leave — mouse pointer left the window

• 'left-down — left mouse button pressed

• 'left-up — left mouse button released

• 'middle-down — middle mouse button pressed

• 'middle-up — middle mouse button released

97

• 'right-down — right mouse button pressed (Mac OS X: click with control key
pressed)

• 'right-up — right mouse button released (Mac OS X: release with control key
pressed)

• 'motion — mouse moved, with or without button(s) pressed

See the corresponding get- and set- methods for information about left-down , middle-
down , right-down , x , y , shift-down , control-down , meta-down , alt-down , time-
stamp , and caps-down .

(send a-mouse-event button-changed? [button]) → boolean?

button : (or/c 'left 'middle 'right 'any) = 'any

Returns #t if this was a mouse button press or release event, #f otherwise. See also button-
up? and button-down?.

If button is not 'any, then #t is only returned if it is a release event for a specific button.

(send a-mouse-event button-down? [button]) → boolean?

button : (or/c 'left 'middle 'right 'any) = 'any

Returns #t if the event is for a button press, #f otherwise.

If button is not 'any, then #t is only returned if it is a press event for a specific button.

(send a-mouse-event button-up? [button]) → boolean?

button : (or/c 'left 'middle 'right 'any) = 'any

Returns #t if the event is for a button release, #f otherwise. (As noted in §1.5 “Mouse and
Keyboard Events”, button release events are sometimes dropped.)

If button is not 'any, then #t is only returned if it is a release event for a specific button.

(send a-mouse-event dragging?) → boolean?

Returns #t if this was a dragging event (motion while a button is pressed), #f otherwise.

(send a-mouse-event entering?) → boolean?

Returns #t if this event is for the mouse entering a window, #f otherwise.

When the mouse button is up, an enter/leave event notifies a window that it will start/stop
receiving mouse events. When the mouse button is down, however, the window receiving the

98

mouse-down event receives all mouse events until the button is released; enter/leave events
are not sent to other windows, and are not reliably delivered to the click-handling window
(since the window can detect movement out of its region via get-x and get-y). See also
§1.5 “Mouse and Keyboard Events”.

(send a-mouse-event get-alt-down) → boolean?

Returns #t if the Option (Mac OS X) key was down for the event. When the Alt key is
pressed in Windows, it is reported as a Meta press (see get-meta-down).

(send a-mouse-event get-caps-down) → boolean?

Returns #t if the Caps Lock key was on for the event.

(send a-mouse-event get-control-down) → boolean?

Returns #t if the Control key was down for the event.

On Mac OS X, if a control-key press is combined with a mouse button click, the event is
reported as a right-button click and get-control-down for the event reports #f.

(send a-mouse-event get-event-type)

→
(or/c 'enter 'leave 'left-down 'left-up

'middle-down 'middle-up

'right-down 'right-up 'motion)

Returns the type of the event; see mouse-event% for information about each event type. See
also set-event-type.

(send a-mouse-event get-left-down) → boolean?

Returns #t if the left mouse button was down (but not pressed) during the event.

(send a-mouse-event get-meta-down) → boolean?

Returns #t if the Meta (Unix), Alt (Windows), or Command (Mac OS X) key was down for
the event.

(send a-mouse-event get-middle-down) → boolean?

Returns #t if the middle mouse button was down (but not pressed) for the event. On Mac
OS X, a middle-button click is impossible.

(send a-mouse-event get-right-down) → boolean?

99

Returns #t if the right mouse button was down (but not pressed) for the event. On Mac OS
X, a control-click combination is treated as a right-button click.

(send a-mouse-event get-shift-down) → boolean?

Returns #t if the Shift key was down for the event.

(send a-mouse-event get-x) → exact-integer?

Returns the x-position of the mouse at the time of the event, in the target’s window’s (client-
area) coordinate system.

(send a-mouse-event get-y) → exact-integer?

Returns the y-position of the mouse at the time of the event in the target’s window’s (client-
area) coordinate system.

(send a-mouse-event leaving?) → boolean?

Returns #t if this event is for the mouse leaving a window, #f otherwise.

See entering? for information about enter and leave events while the mouse button is
clicked.

(send a-mouse-event moving?) → boolean?

Returns #t if this was a moving event (whether a button is pressed is not), #f otherwise.

(send a-mouse-event set-alt-down down?) → void?

down? : any/c

Sets whether the Option (Mac OS X) key was down for the event. When the Alt key is
pressed in Windows, it is reported as a Meta press (see set-meta-down).

(send a-mouse-event set-caps-down down?) → void?

down? : any/c

Sets whether the Caps Lock key was on for the event.

(send a-mouse-event set-control-down down?) → void?

down? : any/c

Sets whether the Control key was down for the event.

On Mac OS X, if a control-key press is combined with a mouse button click, the event is
reported as a right-button click and get-control-down for the event reports #f.

100

(send a-mouse-event set-event-type event-type) → void?

event-type :
(or/c 'enter 'leave 'left-down 'left-up

'middle-down 'middle-up

'right-down 'right-up 'motion)

Sets the type of the event; see mouse-event% for information about each event type. See
also get-event-type.

(send a-mouse-event set-left-down down?) → void?

down? : any/c

Sets whether the left mouse button was down (but not pressed) during the event.

(send a-mouse-event set-meta-down down?) → void?

down? : any/c

Sets whether the Meta (Unix), Alt (Windows), or Command (Mac OS X) key was down for
the event.
(send a-mouse-event set-middle-down down?) → void?

down? : any/c

Sets whether the middle mouse button was down (but not pressed) for the event. On Mac
OS X, a middle-button click is impossible.

(send a-mouse-event set-right-down down?) → void?

down? : any/c

Sets whether the right mouse button was down (but not pressed) for the event. On Mac OS
X, a control-click combination by the user is treated as a right-button click.

(send a-mouse-event set-shift-down down?) → void?

down? : any/c

Sets whether the Shift key was down for the event.

(send a-mouse-event set-x pos) → void?

pos : exact-integer?

Sets the x-position of the mouse at the time of the event in the target’s window’s (client-area)
coordinate system.

(send a-mouse-event set-y pos) → void?

pos : exact-integer?

Sets the y-position of the mouse at the time of the event in the target’s window’s (client-area)
coordinate system.

101

2.36 pane%

pane% : class?

superclass: object%

extends: area-container<%>

subarea<%>

A pane is a both a container and a containee area. It serves only as a geometry management
device. A pane% cannot be hidden or disabled like a panel% object.

A pane% object has a degenerate placement strategy for managing its children; it places them
all in the upper left corner and does not stretch any of them. The horizontal-pane% and
vertical-pane% classes provide useful geometry management.

See also grow-box-spacer-pane%.

(new pane% [parent parent]

[[vert-margin vert-margin]

[horiz-margin horiz-margin]

[border border]

[spacing spacing]

[alignment alignment]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c pane%)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

vert-margin : (integer-in 0 1000) = 0

horiz-margin : (integer-in 0 1000) = 0

border : (integer-in 0 1000) = 0

spacing : (integer-in 0 1000) = 0

alignment :
(list/c (one-of/c 'left 'center 'right)

(one-of/c 'top 'center 'bottom))

= '(center top)

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #t

stretchable-height : any/c = #t

For information about the horiz-margin and vert-margin arguments, see subarea<%>.
For information about the border , spacing , and alignment arguments, see area-

container<%>. For information about the min-width , min-height , stretchable-

width , and stretchable-height arguments, see area<%>.

102

2.37 panel%

panel% : class?

superclass: object%

extends: area-container-window<%>

subwindow<%>

A panel is a both a container and a containee window. It serves mainly as a geometry
management device, but the 'border creates a container with a border. Unlike a pane%

object, a panel% object can be hidden or disabled.

A panel% object has a degenerate placement strategy for managing its children; it places
them all in the upper left corner and does not stretch any of them. The horizontal-panel%
and vertical-panel% classes provide useful geometry management.

(new panel% [parent parent]

[[style style]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[border border]

[spacing spacing]

[alignment alignment]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c panel%)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

style :
(listof (one-of/c 'border 'deleted

'hscroll 'auto-hscroll

'vscroll 'auto-vscroll))

= null

enabled : any/c = #t

vert-margin : (integer-in 0 1000) = 0

horiz-margin : (integer-in 0 1000) = 0

border : (integer-in 0 1000) = 0

spacing : (integer-in 0 1000) = 0

alignment :
(list/c (one-of/c 'left 'center 'right)

(one-of/c 'top 'center 'bottom))

= '(center center)

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #t

stretchable-height : any/c = #t

103

If the 'border style is specified, the window is created with a thin border (in which case the
client size of the panel may be less than its total size). If style includes 'deleted, then
the panel is created as hidden, and it does not affect its parent’s geometry; the panel can be
made active later by calling parent ’s add-child method.

If the 'hscroll or 'vscroll style is specified, then the panel includes a scrollbar in the
corresponding direction, and the panel’s own size in the corresponding direction is not con-
strained by the size of its children subareas. The 'auto-hscroll and 'auto-vscroll

styles are like 'hscroll or 'vscroll, but they cause the corresponding scrollbar to disap-
pear when no scrolling is needed in the corresponding direction; the 'auto-vscroll and
'auto-hscroll modes assume that children subareas are placed using the default algorithm
for a panel%, vertical-panel%, or horizontal-panel%.

For information about the enabled argument, see window<%>. For information about the
horiz-margin and vert-margin arguments, see subarea<%>. For information about the
border , spacing , and alignment arguments, see area-container<%>. For information
about the min-width , min-height , stretchable-width , and stretchable-height

arguments, see area<%>.

2.38 popup-menu%

popup-menu% : class?

superclass: object%

extends: menu-item-container<%>

A popup-menu% object is created without a parent. Dynamically display a popup-menu%

with popup-menu in window<%> or popup-menu in editor-admin%.

A popup menu is not a control. A choice% control, however, displays a single value that the
user selects from a popup menu. A choice% control’s popup menu is built into the control,
and it is not accessible to the programmer.

(new popup-menu% [[title title]

[popdown-callback popdown-callback]

[demand-callback demand-callback]

[font font]])
→ (is-a?/c popup-menu%)

title : (or/c label-string? false/c) = #f

popdown-callback :
((is-a?/c popup-menu%) (is-a?/c control-event%)

. -> . any)

= (lambda (p e) (void))

demand-callback : ((is-a?/c popup-menu%) . -> . any)

= (lambda (p) (void))

font : (is-a?/c font%) = normal-control-font

104

If title is not #f, it is used as a displayed title at the top of the popup menu.

If title contains &, it is handled specially, the same as for menu% titles. A popup menu
mnemonic is not useful, but it is supported for consistency with other menu labels.

The popdown-callback procedure is invoked when a popup menu is dismissed. If the
popup menu is dismissed without an item being selected, popdown-callback is given a
control-event% object with the event type 'menu-popdown-none. If the popup menu
is dismissed via an item selection, the item’s callback is invoked first, and then popdown-

callback is given a control-event% object with the event type 'menu-popdown.

The demand-callback procedure is called by the default on-demand method with the
object itself.

The font argument determines the font for the popup menu’s items.

(send a-popup-menu get-font) → (is-a?/c font%)

Returns the font used for the popup menu’s items, which is optionally supplied when a popup
menu is created.

(send a-popup-menu get-popup-target)

→ (or/c (is-a?/c window<%>) (is-a?/c editor<%>) false/c)

Returns the context in which the popup menu is currently displayed, or #f if it is not popped
up in any window.

The context is set before the on-demand method is called, and it is not removed until after
the popup-menu’s callback is invoked. (Consequently, it is also set while an item callback is
invoked, if the user selected an item.)

(send a-popup-menu set-min-width width) → void?

width : (integer-in 0 10000)

Sets the popup menu’s minimum width in pixels.

2.39 printer-dc%

printer-dc% : class?

superclass: object%

extends: dc<%>

A printer-dc% object is a printer device context. A newly created printer-dc% object
obtains orientation (portrait versus landscape) and scaling information from the current ps-
setup% object, as determined by the current-ps-setup parameter. This information can
be configured by the user through a dialog shown by get-page-setup-from-user.

105

Be sure to use the following methods to start/end drawing:

• start-doc

• start-page

• end-page

• end-doc

Attempts to use a drawing method outside of an active page raises an exception.

See also post-script-dc%.

When a printer-dc% object is created, the user gets platform-specific modal dialogs for
configuring the output. If the user cancels the dialog, the ok? method of the object returns
#f.

(new printer-dc% [[parent parent]]) → (is-a?/c printer-dc%)

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) false/c)

= #f

If parent is not #f, it is used as the parent window of the configuration dialog.

2.40 radio-box%

radio-box% : class?

superclass: object%

extends: control<%>

A radio-box% control allows the user to select one of number of mutually exclusive items.
The items are displayed as a vertical column or horizontal row of labelled radio buttons.
Unlike a list-control<%>, the set of items in a radio-box% cannot be changed dynami-
cally.

Whenever the user changes the selected radio button, the radio box’s callback procedure is
invoked. A callback procedure is provided as an initialization argument when each radio box
is created.

106

(new radio-box% [label label]

[choices choices]

[parent parent]

[[callback callback]

[style style]

[selection selection]

[font font]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c radio-box%)

label : (or/c label-string? false/c)

choices : (or/c (listof label-string?) (listof (is-a?/c bitmap%)))

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

callback :
((is-a?/c radio-box%) (is-a?/c control-event%)

. -> . any)

= (lambda (r e) (void))

style :
(listof (one-of/c 'horizontal 'vertical

'vertical-label 'horizontal-label

'deleted))

= '(vertical)

selection : (or/c exact-nonnegative-integer? #f) = 0

font : (is-a?/c font%) = normal-control-font

enabled : any/c = #t

vert-margin : (integer-in 0 1000) = 2

horiz-margin : (integer-in 0 1000) = 2

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #f

stretchable-height : any/c = #f

Creates a radio button set with string or bitmap labels. The choices list specifies the radio
button labels; the list of choices must be homogeneous, either all strings or all bitmaps.

If & occurs in label , it is specially parsed as for button%.

Each string in choices can also contain a &, which creates a mnemonic for clicking the
corresponding radio button. As for label , a && is converted to a &.

If choices is a list of bitmaps, and if a bitmap has a mask (see get-loaded-mask in
bitmap%) that is the same size as the bitmap, then the mask is used for the label. Modifying

107

a bitmap while it is used as a label has an unspecified effect on the displayed label.

If label is a string, it is used as the label for the radio box. Otherwise, the radio box does
not display its label.

The callback procedure is called (with the event type 'radio-box) when the user changes
the radio button selection.

The style argument must include either 'vertical for a collection of radio buttons
vertically arranged, or 'horizontal for a horizontal arrangement. If style includes
'vertical-label, then the radio box is created with a label above the control; if style
does not include 'vertical-label (and optionally includes 'horizontal-label), then
the label is created to the left of the radio box. If style includes 'deleted, then the radio
box is created as hidden, and it does not affect its parent’s geometry; the radio box can be
made active later by calling parent ’s add-child method.

By default, the first radio button is initially selected. If selection is positive or #f, it is
passed to set-selection to set the initial radio button selection.

The font argument determines the font for the control. For information about the en-

abled argument, see window<%>. For information about the horiz-margin and vert-

margin arguments, see subarea<%>. For information about the min-width , min-height ,
stretchable-width , and stretchable-height arguments, see area<%>.

(send a-radio-box enable enable?) → void?

enable? : any/c

(send a-radio-box enable n enable?) → void?

n : exact-nonnegative-integer?

enable? : any/c

Overrides enable in window<%>.

If a single argument is provided, the entire radio box is enabled or disabled.

If two arguments are provided, then if enable? is #f, the n th radio button is disabled, oth-
erwise it is enabled (assuming the entire radio box is enabled). Radio buttons are numbered
from 0. If n is equal to or larger than the number of radio buttons in the radio box, an
exn:fail:contract exception is raised.

(send a-radio-box get-item-label n) → string?

n : exact-nonnegative-integer?

Gets the label of a radio button by position. Radio buttons are numbered from 0. If n is
equal to or larger than the number of radio buttons in the radio box, an exn:fail:contract
exception is raised.

(send a-radio-box get-item-plain-label n) → string?

n : exact-nonnegative-integer?

108

Like get-item-label, except that the label must be a string and &s in the label are removed.

(send a-radio-box get-number) → exact-nonnegative-integer?

Returns the number of radio buttons in the radio box.

(send a-radio-box get-selection)

→ (or/c exact-nonnegative-integer? #f)

Gets the position of the selected radio button, returning #f if no button is selected. Radio
buttons are numbered from 0.

(send a-radio-box is-enabled?) → boolean?

(send a-radio-box is-enabled? n) → boolean?

n : exact-nonnegative-integer?

Overrides is-enabled? in window<%>.

If no arguments are provided, the enable state of the entire radio box is reported.

Otherwise, returns #f if n th radio button is disabled (independent of disabling the entire
radio box), #t otherwise. Radio buttons are numbered from 0. If n is equal to or larger than
the number of radio buttons in the radio box, an exn:fail:contract exception is raised.

(send a-radio-box set-selection n) → void?

n : (or/c exact-nonnegative-integer? #f)

Sets the selected radio button by position, or deselects all radio buttons if n is #f. (The
control’s callback procedure is not invoked.) Radio buttons are numbered from 0. If n is
equal to or larger than the number of radio buttons in the radio box, an exn:fail:contract
exception is raised.

A radio box’s selection can be changed by the user clicking the control, and such changes do
not go through this method; use the control callback procedure (provided as an initialization
argument) to monitor selection changes.

2.41 selectable-menu-item<%>

selectable-menu-item<%> : interface?

implements: labelled-menu-item<%>

A selectable-menu-item<%> object is a labelled-menu-item<%> that the user can
select. It may also have a keyboard shortcut; the shortcut is displayed in the menu, and
the default on-subwindow-char method in the menu’s frame dispatches to the menu item
when the shortcut key combination is pressed.

109

(send a-selectable-menu-item command event) → void?

event : (is-a?/c control-event%)

Invokes the menu item’s callback procedure, which is supplied when an instance of menu-
item% or checkable-menu-item% is created.

(send a-selectable-menu-item get-shortcut)

→ (or/c char? symbol? false/c)

Gets the keyboard shortcut character or virtual key for the menu item. This character or key
is combined with the shortcut prefix, which is reported by get-shortcut-prefix.

If the menu item has no shortcut, #f is returned.

The shortcut part of a menu item name is not included in the label returned by get-label.

For a list of allowed key symbols, see get-key-code in key-event%, except that the fol-
lowing are disallowed: 'shift, 'control, 'numlock, 'scroll, 'wheel-up, 'wheel-
down, 'release, and 'press.

(send a-selectable-menu-item get-shortcut-prefix)

→ (listof (one-of/c 'alt 'cmd 'meta 'ctl 'shift 'option))

Returns a list of symbols that indicates the keyboard prefix used for the menu item’s key-
board shortcut. The allowed symbols for the list are the following:

• 'alt — Meta (Windows and X only)

• 'cmd — Command (Mac OS X only)

• 'meta — Meta (Unix only)

• 'ctl — Control

• 'shift — Shift

• 'option — Option (Mac OS X only)

On Unix, at most one of 'alt and 'meta can be supplied; the only difference between 'alt

and 'meta is the key combination’s display in a menu.

The default shortcut prefix is available from get-default-shortcut-prefix.

The shortcut key, as determined by get-shortcut, matches a key event using either the
normally reported key code or the other-Shift/AltGr key code (as produced by get-other-

shift-key-code in key-event%, etc.). When the shortcut key is a key-code symbol or an

110

ASCII letter or digit, then the shortcut matches only the exact combination of modifier keys
listed in the prefix. For character shortcuts other than ASCII letters and digits, however, then
the shortcut prefix merely determines a minimum set of modifier keys, because additional
modifiers may be needed to access the character; an exception is that, on Windows or Unix,
the Alt/Meta key press must match the prefix exactly (i.e., included or not). In all cases, the
most precise match takes precedence; see map-function in keymap% for more information
on match ranking.

An empty list can be used for a shortcut prefix. However, the default on-menu-char in
frame% method checks for menu shortcuts only when the key event includes either a non-
Shift modifier or a Function key. Thus, an empty shortcut prefix is normally useful only if
the shortcut key is a Function key.

(send a-selectable-menu-item set-shortcut shortcut) → void?

shortcut : (or/c char? symbol? false/c)

Sets the keyboard shortcut character for the menu item. See get-shortcut for more infor-
mation.

If the shortcut character is set to #f, then menu item has no keyboard shortcut.

(send a-selectable-menu-item set-shortcut-prefix prefix)

→ void?

prefix : (listof (one-of/c 'alt 'cmd 'meta 'ctl 'shift 'option))

Sets a list of symbols to indicates the keyboard prefix used for the menu item’s keyboard
shortcut.

See get-shortcut-prefix for more information.

2.42 separator-menu-item%

separator-menu-item% : class?

superclass: object%

extends: menu-item<%>

A separator is an unselectable line in a menu. Its parent must be a menu% or popup-menu%.

(new separator-menu-item% [parent parent])

→ (is-a?/c separator-menu-item%)

parent : (or/c (is-a?/c menu%) (is-a?/c popup-menu%))

Creates a new separator in the menu.

111

2.43 scroll-event%

scroll-event% : class?

superclass: event%

A scroll-event% object contains information about a scroll event. An instance of
scroll-event% is always provided to on-scroll.

See get-event-type for a list of the scroll event types.

(new scroll-event% [[event-type event-type]

[direction direction]

[position position]

[time-stamp time-stamp]])
→ (is-a?/c scroll-event%)

event-type :
(one-of/c 'top 'bottom 'line-up 'line-down

'page-up 'page-down 'thumb)

= 'thumb

direction : (one-of/c 'horizontal 'vertical) = 'vertical

position : (integer-in 0 10000) = 0

time-stamp : exact-integer? = 0

See the corresponding get- and set- methods for information about event-type , direc-
tion , position , and time-stamp .

(send a-scroll-event get-direction)

→ (one-of/c 'horizontal 'vertical)

Gets the identity of the scrollbar that was modified by the event, either the horizontal scroll-
bar or the vertical scrollbar, as 'horizontal or 'vertical, respectively. See also set-

direction.

(send a-scroll-event get-event-type)

→ (one-of/c 'top 'bottom 'line-up 'line-down 'page-up 'page-down 'thumb)

Returns the type of the event, one of the following:

• 'top — user clicked a scroll-to-top button

• 'bottom — user clicked a scroll-to-bottom button

• 'line-up — user clicked an arrow to scroll up or left one step

• 'line-down — user clicked an arrow to scroll down or right one step

• 'page-up — user clicked an arrow to scroll up or left one page

112

• 'page-down — user clicked an arrow to scroll down or right one page

• 'thumb — user dragged the scroll position indicator

(send a-scroll-event get-position) → (integer-in 0 10000)

Returns the position of the scrollbar after the action triggering the event. See also set-

position.

(send a-scroll-event set-direction direction) → void?

direction : (one-of/c 'horizontal 'vertical)

Sets the identity of the scrollbar that was modified by the event, either the horizontal scroll-
bar or the vertical scrollbar, as 'horizontal or 'vertical, respectively. See also get-

direction.

(send a-scroll-event set-event-type type) → void?

type :
(one-of/c 'top 'bottom 'line-up 'line-down

'page-up 'page-down 'thumb)

Sets the type of the event. See get-event-type for information about each event type.

(send a-scroll-event set-position position) → void?

position : (integer-in 0 10000)

Records the position of the scrollbar after the action triggering the event. (The scrollbar
itself is unaffected). See also get-position.

2.44 slider%

slider% : class?

superclass: object%

extends: control<%>

A slider object is a panel item with a handle that the user can drag to change the control’s
value. Each slider has a fixed minimum and maximum value.

Whenever the user changes the value of a slider, its callback procedure is invoked. A callback
procedure is provided as an initialization argument when each slider is created.

113

(new slider% [label label]

[min-value min-value]

[max-value max-value]

[parent parent]

[[callback callback]

[init-value init-value]

[style style]

[font font]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c slider%)

label : (or/c label-string? false/c)

min-value : (integer-in -10000 10000)

max-value : (integer-in -10000 10000)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

callback : ((is-a?/c slider%) (is-a?/c control-event%) . -> . any)

= (lambda (b e) (void))

init-value : (integer-in -10000 10000) = min-value

style :
(listof (one-of/c 'horizontal 'vertical 'plain

'vertical-label 'horizontal-label

'deleted))

= '(horizontal)

font : (is-a?/c font%) = normal-control-font

enabled : any/c = #t

vert-margin : (integer-in 0 1000) = 2

horiz-margin : (integer-in 0 1000) = 2

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = (memq 'horizontal style)

stretchable-height : any/c = (memq 'vertical style)

If label is a string, it is used as the label for the slider. Otherwise, the slider does not
display its label.

If & occurs in label , it is specially parsed as for button%.

The min-value and max-value arguments specify the range of the slider, inclusive. The
init-value argument optionally specifies the slider’s initial value. If the sequence [min-
value , initial-value, maximum-value] is not increasing, an exn:fail:contract ex-
ception is raised.

114

The callback procedure is called (with the event type 'slider) when the user changes the
slider’s value.

The style argument must include either 'vertical for a vertical slider, or 'horizontal
for a horizontal slider. If style includes 'plain, the slider does not display numbers for its
range and current value to the user. If style includes 'vertical-label, then the slider is
created with a label above the control; if style does not include 'vertical-label (and
optionally includes 'horizontal-label), then the label is created to the left of the slider.
If style includes 'deleted, then the slider is created as hidden, and it does not affect
its parent’s geometry; the slider can be made active later by calling parent ’s add-child
method.

The font argument determines the font for the control. For information about the en-

abled argument, see window<%>. For information about the horiz-margin and vert-

margin arguments, see subarea<%>. For information about the min-width , min-height ,
stretchable-width , and stretchable-height arguments, see area<%>.

(send a-slider get-value) → (integer-in -10000 10000)

Gets the current slider value.

(send a-slider set-value value) → void?

value : (integer-in -10000 10000)

Sets the value (and displayed position) of the slider. (The control’s callback procedure
is not invoked.) If value is outside the slider’s minimum and maximum range, an
exn:fail:contract exception is raised.

A slider’s value can be changed by the user clicking the control, and such changes do not
go through this method; use the control callback procedure (provided as an initialization
argument) to monitor value changes.

2.45 subarea<%>

subarea<%> : interface?

implements: area<%>

A subarea<%> is a containee area<%>.

All subarea<%> classes accept the following named instantiation arguments:

• horiz-margin — default is 2 for control<%> classes and group-box-panel%, 0
for others; passed to horiz-margin

• vert-margin — default is 2 for control<%> classes and group-box-panel%, 0 for
others; passed to vert-margin

115

(send a-subarea horiz-margin) → (integer-in 0 1000)

(send a-subarea horiz-margin margin) → void?

margin : (integer-in 0 1000)

Gets or sets the area’s horizontal margin, which is added both to the right and left, for
geometry management. See §1.4 “Geometry Management” for more information.

(send a-subarea vert-margin) → (integer-in 0 1000)

(send a-subarea vert-margin margin) → void?

margin : (integer-in 0 1000)

Gets or sets the area’s vertical margin, which is added both to the top and bottom, for geom-
etry management. See §1.4 “Geometry Management” for more information.

2.46 subwindow<%>

subwindow<%> : interface?

implements: subarea<%>

window<%>

A subwindow<%> is a containee window.

(send a-subwindow reparent new-parent) → void?

new-parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

Removes the window from its current parent and makes it a child of new-parent . The
current and new parents must have the same eventspace, and new-parent cannot be a de-
scendant of a-subwindow .

If a-subwindow is deleted within its current parent, it remains deleted in new-parent .
Similarly, if a-subwindow is shown in its current parent, it is shown in new-parent .

2.47 tab-panel%

tab-panel% : class?

superclass: vertical-panel%

A tab panel arranges its subwindows in a single column, but also includes a horizontal row
of tabs at the top of the panel. See also panel%.

116

The tab-panel% class does not implement the virtual swapping of the panel content when
a new tab is selected. Instead, it merely invokes a callback procedure to indicate that a user
changed the tab selection.

(new tab-panel% [choices choices]

[parent parent]

[[callback callback]

[style style]

[font font]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[border border]

[spacing spacing]

[alignment alignment]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c tab-panel%)

choices : (listof label-string?)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

callback :
((is-a?/c tab-panel%) (is-a?/c control-event%)

. -> . any)

= (lambda (b e) (void))

style : (listof (one-of/c 'no-border 'deleted)) = null

font : (is-a?/c font%) = normal-control-font

enabled : any/c = #t

vert-margin : (integer-in 0 1000) = 0

horiz-margin : (integer-in 0 1000) = 0

border : (integer-in 0 1000) = 0

spacing : (integer-in 0 1000) = 0

alignment :
(list/c (one-of/c 'left 'center 'right)

(one-of/c 'top 'center 'bottom))

= '(center top)

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #t

stretchable-height : any/c = #t

Creates a tab pane, where the choices list specifies the tab labels.

Each string in choices can contain an ampersand, which (in the future) may create a
mnemonic for clicking the corresponding tab. A double ampersand is converted to a sin-
gle ampersand.

117

The callback procedure is called (with the event type 'tab-panel) when the user changes
the tab selection.

If the style list includes 'no-border, no border is drawn around the panel content. If
style includes 'deleted, then the tab panel is created as hidden, and it does not affect its
parent’s geometry; the tab panel can be made active later by calling parent ’s add-child
method.

The font argument determines the font for the control. For information about the en-

abled argument, see window<%>. For information about the horiz-margin and vert-

margin arguments, see subarea<%>. For information about the min-width , min-height ,
stretchable-width , and stretchable-height arguments, see area<%>.

(send a-tab-panel append choice) → void?

choice : label-string?

Adds a tab to the right end of panel’s top row of tabs.

The label string choice can contain &, which (in the future) may create a mnemonic for
clicking the new tab. A && is converted to &.

(send a-tab-panel delete n) → void?

n : exact-nonnegative-integer?

Deletes an existing tab. If n is equal to or larger than the number of tabs on the panel, an
exn:fail:contract exception is raised.

(send a-tab-panel get-item-label n) → string?

n : exact-nonnegative-integer?

Gets the label of a tab by position. Tabs are numbered from 0. If n is equal to or larger than
the number of tabs in the panel, an exn:fail:contract exception is raised.

(send a-tab-panel get-number) → exact-nonnegative-integer?

Returns the number of tabs on the panel.

(send a-tab-panel get-selection)

→ (or/c exact-nonnegative-integer? false/c)

Returns the index (counting from 0) of the currently selected tab. If the panel has no tabs,
the result is #f.

(send a-tab-panel set choices) → void?

choices : (listof label-string?)

118

Removes all tabs from the panel and installs tabs with the given labels.

(send a-tab-panel set-item-label n label) → void?

n : exact-nonnegative-integer?

label : label-string?

Set the label for tab n to label . If n is equal to or larger than the number of tabs in the
panel, an exn:fail:contract exception is raised.

(send a-tab-panel set-selection n) → void?

n : exact-nonnegative-integer?

Sets the currently selected tab by index (counting from 0). If n is equal to or larger than the
number of tabs in the panel, an exn:fail:contract exception is raised.

2.48 text-field%

text-field% : class?

superclass: object%

extends: control<%>

A text-field% object is an editable text field with an optional label displayed in front of
it. There are two text field styles:

• A single line of text is visible, and a special control event is generated when the
user presses Return or Enter (when the text field has the focus) and the event is not
handled by the text field’s frame or dialog (see on-traverse-char in top-level-

window<%>).

• Multiple lines of text are visible, and Enter is not handled specially.

Whenever the user changes the content of a text field, its callback procedure is invoked. A
callback procedure is provided as an initialization argument when each text field is created.

The text field is implemented using a text% editor (with an inaccessible display). Thus,
whereas text-field% provides only get-value and set-value to manipulate the text in
a text field, the get-editor returns the field’s editor, which provides a vast collection of
methods for more sophisticated operations on the text.

The keymap for the text field’s editor is initialized by calling the current keymap initializer
procedure, which is determined by the current-text-keymap-initializer parameter.

119

(new text-field% [label label]

[parent parent]

[[callback callback]

[init-value init-value]

[style style]

[font font]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c text-field%)

label : (or/c label-string? false/c)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

callback :
((is-a?/c text-field%) (is-a?/c control-event%)

. -> . any)

= (lambda (t e) (void))

init-value : string? = ""

style :
(listof (one-of/c 'single 'multiple 'hscroll 'password

'vertical-label 'horizontal-label

'deleted))

= '(single)

font : (is-a?/c font%) = normal-control-font

enabled : any/c = #t

vert-margin : (integer-in 0 1000) = 2

horiz-margin : (integer-in 0 1000) = 2

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #t

stretchable-height : any/c = (memq 'multiple style)

If label is not #f, it is used as the text field label. Otherwise, the text field does not display
its label.

If & occurs in label , it is specially parsed as for button%.

The callback procedure is called when the user changes the text in the text field or presses
the Enter key (and Enter is not handled by the text field’s frame or dialog; see on-traverse-
char in top-level-window<%>). If the user presses Enter, the type of event passed to the
callback is 'text-field-enter, otherwise it is 'text-field.

If init-value is not "", the minimum width of the text item is made wide enough to show
init-value . Otherwise, a built-in default width is selected. For a text field in single-line

120

mode, the minimum height is set to show one line and only the control’s width is stretchable.
For a multiple-line text field, the minimum height shows three lines of text and is stretchable
in both directions.

The style must contain exactly one of 'single or 'multiple; the former specifies a single-
line field and the latter specifies a multiple-line field. The 'hscroll style applies only to
multiple-line fields; when 'hscroll is specified, the field has a horizontal scrollbar and
autowrapping is disabled; otherwise, the field has no horizontal scrollbar and autowrapping
is enabled. A multiple-line text field always has a vertical scrollbar. The 'password style
indicates that the field should draw each character of its content using a generic symbol
instead of the actual character. If style includes 'vertical-label, then the text field is
created with a label above the control; if style does not include 'vertical-label (and
optionally includes 'horizontal-label), then the label is created to the left of the text
field. If style includes 'deleted, then the text field is created as hidden, and it does
not affect its parent’s geometry; the text field can be made active later by calling parent ’s
add-child method..

The font argument determines the font for the control. For information about the en-

abled argument, see window<%>. For information about the horiz-margin and vert-

margin arguments, see subarea<%>. For information about the min-width , min-height ,
stretchable-width , and stretchable-height arguments, see area<%>.

(send a-text-field get-editor) → (is-a?/c text%)

Returns the editor used to implement the text field.

For a text field, the most useful methods of a text% object are the following:

• (send a-text get-text) returns the current text of the editor.

• (send a-text erase) deletes all text from the editor.

• (send a-text insert str) inserts str into the editor at the current caret posi-
tion.

(send a-text-field get-field-background) → (is-a?/c color%)

Gets the background color of the field’s editable area.

(send a-text-field get-value) → string?

Returns the text currently in the text field.

(send a-text-field set-field-background color) → void?

color : (is-a?/c color%)

121

Sets the background color of the field’s editable area.

(send a-text-field set-value val) → void?

val : string?

Sets the text currently in the text field. (The control’s callback procedure is not invoked.)

A text field’s value can be changed by the user typing into the control, and such changes do
not go through this method; use the control callback procedure (provided as an initialization
argument) to monitor value changes.

2.49 timer%

timer% : class?

superclass: object%

A timer% object encapsulates an event-based alarm. To use a timer, either instantiate it
with a timer-callback thunk to perform the alarm-based action, to derive a new class and
override the notify method to perform the alarm-based action. Start a timer with start

and stop it with stop. Supplying an initial interval (in milliseconds) when creating a
timer also starts the timer.

Timers have a relatively high priority in the event queue. Thus, if the timer delay is set
low enough, repeated notification for a timer can preempt user activities (which might be
directed at stopping the timer). For timers with relatively short delays, call yield within the
notify procedure to allow guaranteed event processing.

See §1.6 “Event Dispatching and Eventspaces” for more information about event priorities.

(new timer% [[notify-callback notify-callback]

[interval interval]

[just-once? just-once?]])
→ (is-a?/c timer%)

notify-callback : (-> any) = void

interval : (or/c (integer-in 0 1000000000) false/c) = #f

just-once? : any/c = #f

The notify-callback thunk is called by the default notify method when the timer ex-
pires.

If interval is #f (the default), the timer is not started; in that case, start must be called
explicitly. If interval is a number (in milliseconds), then start is called with interval

and just-once?.

(send a-timer interval) → (integer-in 0 1000000000)

122

Returns the number of milliseconds between each timer expiration (when the timer is run-
ning).

(send a-timer notify) → void?

Specification: Called (on an event boundary) when the timer’s alarm expires.

Default implementation: Calls the notify-callback procedure that was provided when
the object was created.

(send a-timer start msec [just-once?]) → void?

msec : (integer-in 0 1000000000)

just-once? : any/c = #f

Starts (or restarts) the timer. If the timer is already running, its alarm time is not changed.

The timer’s alarm expires after msec milliseconds, at which point notify is called (on an
event boundary). If just-once? is #f, the timer expires every msec milliseconds until
the timer is explicitly stopped. (More precisely, the timer expires msec milliseconds after
notify returns each time.) Otherwise, the timer expires only once.

(send a-timer stop) → void?

Stops the timer. A stopped timer never calls notify. If the timer has expired but the call to
notify has not yet been dispatched, the call is removed from the event queue.

2.50 top-level-window<%>

top-level-window<%> : interface?

implements: area-container-window<%>

A top-level window is either a frame% or dialog% object.

(send a-top-level-window can-close?) → boolean?

Refine this method with augment.

Called just before the window might be closed (e.g., by the window manager). If #f is
returned, the window is not closed, otherwise on-close is called and the window is closed
(i.e., the window is hidden, like calling show with #f).

This method is not called by show.

(send a-top-level-window can-exit?) → boolean?

123

Specification: Called before on-exit to check whether an exit is allowed. See on-exit for
more information.

Default implementation: Calls can-close? and returns the result.

(send a-top-level-window center [direction]) → void?

direction : (one-of/c 'horizontal 'vertical 'both) = 'both

Centers the window on the screen if it has no parent. If it has a parent, the window is centered
with respect to its parent’s location.

If direction is 'horizontal, the window is centered horizontally. If direction is
'vertical, the window is centered vertically. If direction is 'both, the window is
centered in both directions.

(send a-top-level-window get-edit-target-object)

→ (or/c (or/c (is-a?/c window<%>) (is-a?/c editor<%>)) false/c)

Like get-edit-target-window, but if an editor canvas had the focus and it also displays
an editor, the editor is returned instead of the canvas. Further, if the editor’s focus is dele-
gated to an embedded editor, the embedded editor is returned.

See also get-focus-object.

(send a-top-level-window get-edit-target-window)

→ (or/c (is-a?/c window<%>) false/c)

Returns the window that most recently had the keyboard focus, either the top-level window
or one of its currently-shown children. If neither the window nor any of its currently-shown
children has even owned the keyboard focus, #f is returned.

See also get-focus-window and get-edit-target-object.

(send a-top-level-window get-eventspace) → eventspace?

Returns the window’s eventspace.

(send a-top-level-window get-focus-object)

→ (or/c (or/c (is-a?/c window<%>) (is-a?/c editor<%>)) false/c)

Like get-focus-window, but if an editor canvas has the focus and it also displays an editor,
the editor is returned instead of the canvas. Further, if the editor’s focus is delegated to an
embedded editor, the embedded editor is returned.

See also get-edit-target-object.

124

(send a-top-level-window get-focus-window)

→ (or/c (is-a?/c window<%>) false/c)

Returns the window that has the keyboard focus, either the top-level window or one of its
children. If neither the window nor any of its children has the focus, #f is returned.

See also get-edit-target-window and get-focus-object.

(send a-top-level-window move x y) → void?

x : (integer-in -10000 10000)

y : (integer-in -10000 10000)

Moves the window to the given position on the screen.

A window’s position can be changed by the user dragging the window, and such changes do
not go through this method; use on-move to monitor position changes.

(send a-top-level-window on-activate active?) → void?

active? : any/c

Called when a window is activated or deactivated. A top-level window is activated when
the keyboard focus moves from outside the window to the window or one of its children.
It is deactivated when the focus moves back out of the window. On Mac OS X, a child of
a floating frames can have the focus instead of a child of the active non-floating frame; in
other words, floating frames act as an extension of the active non-frame for keyboard focus.

The method’s argument is #t when the window is activated, #f when it is deactivated.

(send a-top-level-window on-close) → void?

Refine this method with augment.

Called just before the window is closed (e.g., by the window manager). This method is not
called by show.

See also can-close?.
(send a-top-level-window on-exit) → void?

Specification: Called by the default application quit handler (as determined by the
application-quit-handler parameter) when the operating system requests that the ap-
plication shut down (e.g., when the Quit menu item is selected in the main application menu
on Mac OS X). In that case, this method is called for the most recently active top-level
window in the initial eventspace, but only if the window’s can-exit? method first returns
true.

Default implementation: Calls on-close and then show to hide the window.

125

(send a-top-level-window on-message message) → any/c

message : any/c

Specification: A generic message method, usually called by send-message-to-window.

If the method is invoked by send-message-to-window, then it is invoked in the thread
where send-message-to-window was called (which is possibly not the handler thread of
the window’s eventspace).

Default implementation: Returns #<void>.

(send a-top-level-window on-traverse-char event) → boolean?

event : (is-a?/c key-event%)

Specification: Attempts to handle the given keyboard event as a navigation event, such as
a Tab key event that moves the keyboard focus. If the event is handled, #t is returned,
otherwise #f is returned.

Default implementation: The following rules determine, in order, whether and how event

is handled:

• If the window that currently owns the focus specifically handles the event, then #f is
returned. The following describes window types and the keyboard events they specif-
ically handle:

– editor-canvas% — tab-exit is disabled (see allow-tab-exit): all keyboard
events, except alphanumeric key events when the Meta (Unix) or Alt (Windows)
key is pressed; when tab-exit is enabled: all keyboard events except Tab, Enter,
Escape, and alphanumeric Meta/Alt events.

– canvas% — when tab-focus is disabled (see accept-tab-focus): all keyboard
events, except alphanumeric key events when the Meta (Unix) or Alt (Windows)
key is pressed; when tab-focus is enabled: no key events

– text-field%, 'single style — arrow key events and alphanumeric key events
when the Meta (Unix) or Alt (Windows) key is not pressed (and all alphanumeric
events on Mac OS X)

– text-field%, 'multiple style — all keyboard events, except alphanumeric
key events when the Meta (Unix) or Alt (Windows) key is pressed

– choice% — arrow key events and alphanumeric key events when the Meta
(Unix) or Alt (Windows) key is not pressed

– list-box% — arrow key events and alphanumeric key events when the Meta
(Unix) or Alt (Windows) key is not pressed

• If event is a Tab or arrow key event, the keyboard focus is moved within the window
and #t is returned. Across platforms, the types of windows that accept the keyboard

126

focus via navigation may vary, but text-field% windows always accept the focus,
and message%, gauge%, and panel% windows never accept the focus.

• If event is a Space key event and the window that currently owns the focus is a
button%, check-box%, or radio-box% object, the event is handled in the same way
as a click on the control and #t is returned.

• If event is an Enter key event and the current top-level window contains a border
button, the button’s callback is invoked and #t is returned. (The 'border style for
a button% object indicates to the user that pressing Enter is the same as clicking the
button.) If the window does not contain a border button, #t is returned if the window
with the current focus is not a text field or editor canvas.

• In a dialog, if event is an Escape key event, the event is handled the same as a click
on the dialog’s close box (i.e., the dialog’s can-close? and on-close methods are
called, and the dialog is hidden) and #t is returned.

• If event is an alphanumeric key event and the current top-level window contains a
control with a mnemonic matching the key (which is installed via a label that contains
&; see get-label for more information), then the keyboard focus is moved to the
matching control. Furthermore, if the matching control is a button%, check-box%,
or radio-box% button, the keyboard event is handled in the same way as a click on
the control.

• Otherwise, #f is returned.

(send a-top-level-window on-system-menu-char event) → boolean?

event : (is-a?/c key-event%)

Checks whether the given event pops open the system menu in the top-left corner of the
window (Windows only). If the window’s system menu is opened, #t is returned, otherwise
#f is returned.

(send a-top-level-window resize width

height) → void?

width : (integer-in 0 10000)

height : (integer-in 0 10000)

Sets the size of the window (in pixels), but only if the given size is larger than the window’s
minimum size.

A window’s size can be changed by the user, and such changes do not go through this
method; use on-size to monitor size changes.

(send a-top-level-window set-icon icon

[mask
which]) → void?

127

icon : (is-a?/c bitmap%)

mask : (is-a?/c bitmap%) = #f

which : (one-of/c 'small 'large 'both) = 'both

Sets the large or small icon bitmap for the window. Future changes to the bitmap do not
affect the window’s icon.

The icon is used in a platform-specific way:

• Windows — the small icon is used for the window’s icon (in the top-left) and in the
task bar, and the large icon is used for the Alt-Tab task switcher.

• Mac OS X — both icons are ignored.

• Unix — many window managers use the small icon in the same way as Windows, and
others use the small icon when iconifying the frame; the large icon is ignored.

The bitmap for either icon can be any size, but most platforms scale the small bitmap to 16
by 16 pixels and the large bitmap to 32 by 32 pixels.

If a mask bitmap is not provided, then the entire (rectangular) bitmap is used as an icon.

If a mask bitmap is provided, the mask must be monochrome. In the mask bitmap, use black
pixels to indicate the icon’s region and use white pixels outside the icon’s region. In the icon
bitmap, use black pixels for the region outside the icon.

(send a-top-level-window show show) → void?

show : any/c

If the window is already shown, it is moved front of other top-level windows. If the window
is iconized (frames only), it is deiconized.

See also show in window<%>.

2.51 vertical-pane%

vertical-pane% : class?

superclass: pane%

A vertical pane arranges its subwindows in a single column. See also pane%.

128

(new vertical-pane% [parent parent]

[[vert-margin vert-margin]

[horiz-margin horiz-margin]

[border border]

[spacing spacing]

[alignment alignment]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c vertical-pane%)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

vert-margin : (integer-in 0 1000) = 0

horiz-margin : (integer-in 0 1000) = 0

border : (integer-in 0 1000) = 0

spacing : (integer-in 0 1000) = 0

alignment :
(list/c (one-of/c 'left 'center 'right)

(one-of/c 'top 'center 'bottom))

= '(center top)

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #t

stretchable-height : any/c = #t

For information about the horiz-margin and vert-margin arguments, see subarea<%>.
For information about the border , spacing , and alignment arguments, see area-

container<%>. For information about the min-width , min-height , stretchable-

width , and stretchable-height arguments, see area<%>.

2.52 vertical-panel%

vertical-panel% : class?

superclass: panel%

A vertical panel arranges its subwindows in a single column. See also panel%.

129

(new vertical-panel%

[parent parent]

[[style style]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[border border]

[spacing spacing]

[alignment alignment]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c vertical-panel%)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

style :
(listof (one-of/c 'border 'deleted

'hscroll 'auto-hscroll

'vscroll 'auto-vscroll))

= null

enabled : any/c = #t

vert-margin : (integer-in 0 1000) = 0

horiz-margin : (integer-in 0 1000) = 0

border : (integer-in 0 1000) = 0

spacing : (integer-in 0 1000) = 0

alignment :
(list/c (one-of/c 'left 'center 'right)

(one-of/c 'top 'center 'bottom))

= '(center top)

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #t

stretchable-height : any/c = #t

The style flags are the same as for panel%.

For information about the enabled argument, see window<%>. For information about the
horiz-margin and vert-margin arguments, see subarea<%>. For information about the
border , spacing , and alignment arguments, see area-container<%>. For information
about the min-width , min-height , stretchable-width , and stretchable-height

arguments, see area<%>.

(send a-vertical-panel set-orientation horizontal?) → void?

horizontal? : boolean?

Sets the orientation of the panel, switching it between the behavior of the vertical-panel%
and that of the horizontal-panel%.

130

(send a-vertical-panel get-orientation) → boolean?

Initially returns #f, but if set-orientation is called, this method returns whatever the last
value passed to it was.

2.53 window<%>

window<%> : interface?

implements: area<%>

A window<%> object is an area<%> with a graphical representation that can respond to
events.

All window<%> classes accept the following named instantiation arguments:

• enabled — default is #t; passed to enable if #f

(send a-window accept-drop-files) → boolean?

(send a-window accept-drop-files accept-files?) → void?

accept-files? : any/c

Enables or disables drag-and-drop dropping for the window, or gets the enable state. Drop-
ping is initially disabled. See also on-drop-file.

(send a-window client->screen x y) → (integer-in -10000 10000)

(integer-in -10000 10000)

x : (integer-in -10000 10000)

y : (integer-in -10000 10000)

Converts local window coordinates to screen coordinates.

On Mac OS X, the screen coordinates start with (0, 0) at the upper left of the menu bar. In
contrast, move in top-level-window<%> considers (0, 0) to be below the menu bar. See
also get-display-left-top-inset.

(send a-window enable enable?) → void?

enable? : any/c

Enables or disables a window so that input events are ignored. (Input events include mouse
events, keyboard events, and close-box clicks, but not focus or update events.) When a
window is disabled, input events to its children are also ignored.

131

The enable state of a window can be changed by enabling a parent window, and such
changes do not go through this method; use on-superwindow-enable to monitor enable
state changes.

If enable? is true, the window is enabled, otherwise it is disabled.

(send a-window focus) → void?

Moves the keyboard focus to the window, relative to its top-level window, if the window ever
accepts the keyboard focus. If the focus is in the window’s top-level window, then the focus
is immediately moved to this window. Otherwise, the focus is not immediately moved, but
when the window’s top-level window gets the keyboard focus, the focus is delegated to this
window.

See also on-focus.

Note that on Unix, keyboard focus can move to the menu bar when the user is selecting a
menu item.

The current keyboard focus window can be changed by the user, and such changes do not go
through this method; use on-focus to monitor focus changes.

(send a-window get-client-handle) → cpointer?

Returns a handle to the “inside” of the window for the current platform’s GUI toolbox. The
value that the pointer represents depends on the platform:

• Windows: HWND

• Mac OS X: NSView

• Unix: GtkWidget

See also get-handle.

(send a-window get-client-size)

→ (integer-in 0 10000) (integer-in 0 10000)

Gets the interior size of the window in pixels. For a container, the interior size is the size
available for placing subwindows (including the border margin). For a canvas, this is the
visible drawing area.

The client size is returned as two values: width and height (in pixels).

See also reflow-container.

(send a-window get-cursor) → (or/c (is-a?/c cursor%) #f)

132

Returns the window’s cursor, or #f if this window’s cursor defaults to the parent’s cursor.
See set-cursor for more information.
(send a-window get-handle) → cpointer?

Returns a handle to the “outside” of the window for the current platform’s GUI toolbox. The
value that the pointer represents depends on the platform:

• Windows: HWND

• Mac OS X: NSWindow for a top-level-window<%> object, NSView for other win-
dows

• Unix: GtkWidget

See also get-client-handle.

(send a-window get-height) → (integer-in 0 10000)

Returns the window’s total height (in pixels).

See also reflow-container.
(send a-window get-label)

→

(or/c label-string?

(is-a?/c bitmap%)

(one-of/c 'app 'caution 'stop)

(list/c (is-a?/c bitmap%)

label-string?

(one-of/c 'left 'top 'right 'bottom))

#f)

Gets a window’s label, if any. Control windows generally display their label in some way.
Frames and dialogs display their label as a window title. Panels do not display their label,
but the label can be used for identification purposes. Messages, buttons, and check boxes can
have bitmap labels (only when they are created with bitmap labels), but all other windows
have string labels. In addition, a message label can be an icon symbol 'app, 'caution, or
'stop, and a button can have both a bitmap label and a string label (along with a position
for the bitmap).

A label string may contain &s, which serve as keyboard navigation annotations for controls
on Windows and Unix. The ampersands are not part of the displayed label of a control;
instead, ampersands are removed in the displayed label (on all platforms), and any character
preceding an ampersand is underlined (Windows and Unix) indicating that the character is a
mnemonic for the control. Double ampersands are converted into a single ampersand (with
no displayed underline). See also on-traverse-char.

If the window does not have a label, #f is returned.

133

(send a-window get-plain-label) → (or/c string? #f)

Like get-label, except that ampersands in the label are removed. If the window has no
label or the window’s label is not a string, #f is returned.

(send a-window get-size)

→ (integer-in 0 10000) (integer-in 0 10000)

Gets the current size of the entire window in pixels, not counting horizontal and vertical
margins. (On Unix, this size does not include a title bar or borders for a frame/dialog.) See
also get-client-size.

The geometry is returned as two values: width and height (in pixels).

See also reflow-container.

(send a-window get-width) → (integer-in 0 10000)

Returns the window’s current total width (in pixels).

See also reflow-container.

(send a-window get-x) → (integer-in -10000 10000)

Returns the position of the window’s left edge in its parent’s coordinate system.

See also reflow-container.

(send a-window get-y) → (integer-in -10000 10000)

Returns the position of the window’s top edge in its parent’s coordinate system.

See also reflow-container.

(send a-window has-focus?) → boolean?

Indicates whether the window currently has the keyboard focus. See also on-focus.

(send a-window is-enabled?) → boolean?

Indicates whether the window is currently enabled or not. The result is #t if this window
is enabled when its ancestors are enabled, or #f if this window remains disable when its
ancestors are enabled. (That is, the result of this method is affected only by calls to enable

for a-window , not by the enable state of parent windows.)

134

(send a-window is-shown?) → boolean?

Indicates whether the window is currently shown or not. The result is #t if this window is
shown when its ancestors are shown, or #f if this window remains hidden when its ancestors
are shown. (That is, the result of this method is affected only by calls to show for a-window ,
not by the visibility of parent windows.)

(send a-window on-drop-file pathname) → void?

pathname : path?

Called when the user drags a file onto the window. (On Unix, drag-and-drop is supported via
the XDND protocol.) Drag-and-drop must first be enabled for the window with accept-

drop-files.

On Mac OS X, when the application is running and user double-clicks an application-
handled file or drags a file onto the application’s icon, the main thread’s application file
handler is called (see application-file-handler). The default handler calls the on-

drop-file method of the most-recently activated frame if drag-and-drop is enabled for
that frame, independent of the frame’s eventspace (but the method is called in the frame’s
eventspace’s handler thread). When the application is not running, the filenames are pro-
vided as command-line arguments.

(send a-window on-focus on?) → void?

on? : any/c

Specification: Called when a window receives or loses the keyboard focus. If the argument
is #t, the keyboard focus was received, otherwise it was lost.

Note that on Unix, keyboard focus can move to the menu bar when the user is selecting a
menu item.

Default implementation: Does nothing.

(send a-window on-move x y) → void?

x : (integer-in -10000 10000)

y : (integer-in -10000 10000)

Specification: Called when the window is moved. (For windows that are not top-level win-
dows, “moved” means moved relative to the parent’s top-left corner.) The new position is
provided to the method.

Default implementation: Does nothing.

(send a-window on-size width height) → void?

width : (integer-in 0 10000)

height : (integer-in 0 10000)

135

Specification: Called when the window is resized. The window’s new size (in pixels) is
provided to the method. The size values are for the entire window, not just the client area.

Default implementation: Does nothing.

(send a-window on-subwindow-char receiver

event) → boolean?

receiver : (is-a?/c window<%>)

event : (is-a?/c key-event%)

Specification: Called when this window or a child window receives a keyboard event. The
on-subwindow-char method of the receiver’s top-level window is called first (see get-

top-level-window); if the return value is #f, then the on-subwindow-char method is
called for the next child in the path to the receiver, and so on. Finally, if the receiver’s
on-subwindow-char method returns #f, the event is passed on to the receiver’s normal
key-handling mechanism.

The event argument is the event that was generated for the receiver window.

The atomicity limitation on-subwindow-event applies to on-subwindow-char as well.
That is, an insufficiently cooperative on-subwindow-char method can effectively disable a
control’s handling of key events, even when it returns #f

BEWARE: The default on-subwindow-char in frame% and on-subwindow-char in dia-
log% methods consume certain keyboard events (e.g., arrow keys, Enter) used for navigating
within the window. Because the top-level window gets the first chance to handle the key-
board event, some events never reach the “receiver” child unless the default frame or dialog
method is overridden.

Default implementation: Returns #f.

(send a-window on-subwindow-event receiver

event) → boolean?

receiver : (is-a?/c window<%>)

event : (is-a?/c mouse-event%)

Specification: Called when this window or a child window receives a mouse event. The on-
subwindow-event method of the receiver’s top-level window is called first (see get-top-
level-window); if the return value is #f, the on-subwindow-event method is called for
the next child in the path to the receiver, and so on. Finally, if the receiver’s on-subwindow-
event method returns #f, the event is passed on to the receiver’s normal mouse-handling
mechanism.

The event argument is the event that was generated for the receiver window.

If the on-subwindow-event method chain does not complete atomically (i.e., without re-
quiring other threads to run) or does not complete fast enough, then the corresponding event

136

may not be delivered to a target control, such as a button. In other words, an insufficiently
cooperative on-subwindow-event method can effectively disable a control’s handling of
mouse events, even when it returns #f.

Default implementation: Returns #f.

(send a-window on-subwindow-focus receiver

on?) → void?

receiver : (is-a?/c window<%>)

on? : boolean?

Specification: Called when this window or a child window receives or loses the keyboard fo-
cus. This method is called after the on-focus method of receiver . The on-subwindow-
focus method of the receiver’s top-level window is called first (see get-top-level-

window), then the on-subwindow-focus method is called for the next child in the path
to the receiver, and so on.

Default implementation: Does nothing.

(send a-window on-superwindow-enable enabled?) → void?

enabled? : any/c

Specification: Called via the event queue whenever the enable state of a window has
changed, either through a call to the window’s enable method, or through the en-
abling/disabling of one of the window’s ancestors. The method’s argument indicates
whether the window is now enabled or not.

This method is not called when the window is initially created; it is called only after a
change from the window’s initial enable state. Furthermore, if an enable notification event
is queued for the window and it reverts its enabled state before the event is dispatched, then
the dispatch is canceled.

If the enable state of a window’s ancestor changes while the window is deleted (e.g., because
it was removed with delete-child), then no enable events are queued for the deleted
window. But if the window is later re-activated into an enable state that is different from the
window’s state when it was de-activated, then an enable event is immediately queued.

Default implementation: Does nothing.

(send a-window on-superwindow-show shown?) → void?

shown? : any/c

Specification: Called via the event queue whenever the visibility of a window has changed,
either through a call to the window’s show, through the showing/hiding of one of the win-
dow’s ancestors, or through the activating or deactivating of the window or its ancestor in a
container (e.g., via delete-child). The method’s argument indicates whether the window
is now visible or not.

137

This method is not called when the window is initially created; it is called only after a change
from the window’s initial visibility. Furthermore, if a show notification event is queued for
the window and it reverts its visibility before the event is dispatched, then the dispatch is
canceled.

Default implementation: Does nothing.

(send a-window popup-menu menu x y) → void?

menu : (is-a?/c popup-menu%)

x : (integer-in 0 10000)

y : (integer-in 0 10000)

Pops up the given popup-menu% object at the specified coordinates (in this window’s coor-
dinates), and returns after handling an unspecified number of events; the menu may still be
popped up when this method returns. If a menu item is selected from the popup-menu, the
callback for the menu item is called. (The eventspace for the menu item’s callback is the
window’s eventspace.)

While the menu is popped up, its target is set to the window. See get-popup-target for
more information.

The menu is popped up within the window at position (x , y).

(send a-window refresh) → void?

Enqueues an event to repaint the window.

(send a-window screen->client x y) → (integer-in -10000 10000)

(integer-in -10000 10000)

x : (integer-in -10000 10000)

y : (integer-in -10000 10000)

Converts global coordinates to window local coordinates. See also client->screen for
information on screen coordinates.

(send a-window set-cursor cursor) → void?

cursor : (or/c (is-a?/c cursor%) #f)

Sets the window’s cursor. Providing #f instead of a cursor value removes the window’s
cursor.

If a window does not have a cursor, it uses the cursor of its parent. Frames and dialogs start
with the standard arrow cursor, and text fields start with an I-beam cursor. All other windows
are created without a cursor.

(send a-window set-label l) → void?

l : label-string?

138

Sets a window’s label. The window’s natural minimum size might be different after the label
is changed, but the window’s minimum size is not recomputed.

If the window was not created with a label, or if the window was created with a non-string
label, l is ignored.

See get-label for more information.

(send a-window show show?) → void?

show? : any/c

Shows or hides a window.

The visibility of a window can be changed by the user clicking the window’s close box, for
example, and such changes do not go through this method; use on-superwindow-show or
on-close to monitor visibility changes.

If show? is #f, the window is hidden. Otherwise, the window is shown.

139

3 Windowing Functions

3.1 Dialogs

These functions get input from the user and/or display messages.

(get-file [message
parent

directory

filename

extension

style

filters

#:dialog-mixin dialog-mixin]) → (or/c path? #f)

message : (or/c string? #f) = #f

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) #f) = #f

directory : (or/c path-string? #f) = #f

filename : (or/c path-string? #f) = #f

extension : (or/c string? #f) = #f

style : (listof (or/c 'packages 'enter-packages 'common))

= null

filters : (listof (list/c string? string?)) = '(("Any" "*.*"))

dialog-mixin : (make-mixin-contract path-dialog%) = (λ (x) x)

Obtains a file pathname from the user via the platform-specific standard (modal) dialog,
using parent as the parent window if it is specified, and using message as a message at the
top of the dialog if it is not #f.

The result is #f if the user cancels the dialog, the selected pathname otherwise. The returned
pathname may or may not exist, although the style of the dialog is directed towards selecting
existing files.

If directory is not #f, it is used as the starting directory for the file selector (otherwise the
starting directory is chosen automatically in a platform-specific manner, usually based on the
current directory and the user’s interactions in previous calls to get-file, put-file, etc.).
If filename is not #f, it is used as the default filename when appropriate, and it should not
contain a directory path prefix.

Under Windows, if extension is not #f, the returned path will use the extension if the user
does not supply one; the extension string should not contain a period. The extension is
ignored on other platforms.

The style list can contain 'common, a platform-independent version of the dialog is used
instead of a native dialog. On Mac OS X, if the style list contains 'packages, a user is
allowed to select a package directory, which is a directory with a special suffix (e.g., “.app”)

140

that the Finder normally displays like a file. If the list contains 'enter-packages, a user is
allowed to select a file within a package directory. If the list contains both 'packages and
'enter-packages, the former is ignored.

On Windows and Unix, filters determines a set of filters from which the user can choose
in the dialog. Each element of the filters list contains two strings: a description of the
filter as seen by the user, and a filter pattern matched against file names. Pattern strings can
be a simple “glob” pattern, or a number of glob patterns separated by a ; character. On Unix,
a "*.*" pattern is implicitly replaced with "*". On Mac OS X, suffix names are extracted
from all globs that match a fixed suffix (e.g., two suffixes of "foo" and "bar" are extracted
from a "*.foo;*.bar;*.baz*" pattern), and files that have any of these suffixes in any
filter are selectable; a "*.*" glob makes all files available for selection.

The dialog-mixin is applied to path-dialog% before creating an instance of the class for
this dialog.

See also path-dialog% for a richer interface.

(get-file-list [message
parent

directory

filename

extension

style

filters

#:dialog-mixin dialog-mixin])
→ (or/c (listof path?) #f)

message : (or/c string? #f) = #f

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) #f) = #f

directory : (or/c path-string? #f) = #f

filename : (or/c path-string? #f) = #f

extension : (or/c string? #f) = #f

style : (listof (or/c 'packages 'enter-packages 'common))

= null

filters : (listof (list/c string? string?)) = '(("Any" "*.*"))

dialog-mixin : (make-mixin-contract path-dialog%) = (λ (x) x)

Like get-file, except that the user can select multiple files, and the result is either a list of
file paths of #f.

141

(put-file [message
parent

directory

filename

extension

style

filters

#:dialog-mixin dialog-mixin]) → (or/c path? #f)

message : (or/c string? #f) = #f

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) #f) = #f

directory : (or/c path-string? #f) = #f

filename : (or/c path-string? #f) = #f

extension : (or/c string? #f) = #f

style : (listof (or/c 'packages 'enter-packages 'common))

= null

filters : (listof (list/c string? string?)) = '(("Any" "*.*"))

dialog-mixin : (make-mixin-contract path-dialog%) = (λ (x) x)

Obtains a file pathname from the user via the platform-specific standard (modal) dialog,
using parent as the parent window if it is specified, and using message as a message at the
top of the dialog if it is not #f.

The result is #f if the user cancels the dialog, the selected pathname otherwise. The returned
pathname may or may not exist, although the style of the dialog is directed towards creating
a new file.

If directory is not #f, it is used as the starting directory for the file selector (otherwise the
starting directory is chosen automatically in a platform-specific manner, usually based on the
current directory and the user’s interactions in previous calls to get-file, put-file, etc.).
If filename is not #f, it is used as the default filename when appropriate, and it should not
contain a directory path prefix.

On Windows, if extension is not #f, the returned path will get a default extension if
the user does not supply one. If extension is the empty string, then the extension is de-
rived from the user’s filters choice if the corresponding pattern is of the form (string-

append "*." extension); if the pattern is "*.*", then no default extension is added.
Finally, if extension is any string other than the empty string, extension is used as the
default extension when the user’s filters choice has the pattern "*.*". Meanwhile, the
filters argument has the same format and auxiliary role as for get-file. In particular,
if the only pattern in filters is (string-append "*." extension), then the result
pathname is guaranteed to have an extension mapping extension .

On Mac OS X 10.5 and later, if extension is not #f or "", the returned path will get a
default extension if the user does not supply one. If filters contains as "*.*" pattern, then
the user can supply any extension that is recognized by the system; otherwise, the extension
on the returned path will be either extension or other-extension for any (string-

142

append "*." other-extension) pattern in filters . In particular, if the only pattern in
filters is empty or contains only (string-append "*." extension), then the result
pathname is guaranteed to have an extension mapping extension .

On Mac OS X versions before 10.5, the returned path will get a default extension only if
extension is not #f, extension is not "", and filters contains only (string-append

"*." extension).

On Unix, extension is ignored, and filters is used to filter the visible list of files as in
get-file.

The style list is treated as for get-file.

The dialog-mixin is applied to path-dialog% before creating an instance of the class for
this dialog.

See also path-dialog% for a richer interface.

(get-directory [message
parent

directory

style

#:dialog-mixin dialog-mixin]) → (or/c path #f)

message : (or/c string? #f) = #f

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) #f) = #f

directory : (or/c path? #f) = #f

style : (listof (or/c 'enter-packages 'common)) = null

dialog-mixin : (make-mixin-contract path-dialog%) = (λ (x) x)

Obtains a directory pathname from the user via the platform-specific standard (modal) dia-
log, using parent as the parent window if it is specified.

If directory is not #f, it is used on some platforms as the starting directory for the direc-
tory selector (otherwise the starting directory is chosen automatically in a platform-specific
manner, usually based on the current directory and the user’s interactions in previous calls
to get-file, put-file, etc.).

The style argument is treated as for get-file, except that only 'common or 'enter-
packages can be specified. The latter matters only on Mac OS X, where 'enter-packages
enables the user to select package directory or a directory within a package. A package is a
directory with a special suffix (e.g., “.app”) that the Finder normally displays like a file.

The dialog-mixin is applied to path-dialog% before creating an instance of the class for
this dialog.

See also path-dialog% for a richer interface.

143

(message-box title

message

[parent
style

#:dialog-mixin dialog-mixin])
→ (or/c 'ok 'cancel 'yes 'no)

title : label-string?

message : string?

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) #f) = #f

style : (listof (or/c 'ok 'ok-cancel 'yes-no 'caution 'stop))

= '(ok)

dialog-mixin : (make-mixin-contract dialog%) = values

See also message-box/custom.

Displays a message to the user in a (modal) dialog, using parent as the parent window if
it is specified. The dialog’s title is title . The message string can be arbitrarily long, and
can contain explicit linefeeds or carriage returns for breaking lines.

The style must include exactly one of the following:

• 'ok — the dialog only has an OK button and always returns 'ok.

• 'ok-cancel — the message dialog has Cancel and OK buttons. If the user clicks
Cancel, the result is 'cancel, otherwise the result is 'ok.

• 'yes-no — the message dialog has Yes and No buttons. If the user clicks Yes, the
result is 'yes, otherwise the result is 'no. Note: instead of a Yes/No dialog, best-
practice GUI design is to use message-box/custom and give the buttons meaningful
labels, so that the user does not have to read the message text carefully to make a
selection.

In addition, style can contain 'caution to make the dialog use a caution icon instead of
the application (or generic “info”) icon. Alternately, it can contain 'stop to make the dialog
use a stop icon. If style contains both 'caution and 'stop, then 'caution is ignored.

The class that implements the dialog provides a get-message method that takes no argu-
ments and returns the text of the message as a string. (The dialog is accessible through the
get-top-level-windows function.)

The message-box function can be called in a thread other than the handler thread of the
relevant eventspace (i.e., the eventspace of parent , or the current eventspace if parent is
#f), in which case the current thread blocks while the dialog runs on the handler thread.

The dialog-mixin argument is applied to the class that implements the dialog before the
dialog is created.

144

(message-box/custom title

message

button1-label

button2-label

button3-label

[parent
style

close-result

#:dialog-mixin dialog-mixin])
→ (or/c 1 2 3 close-result)

title : label-string?

message : string

button1-label : (or/c label-string? (is-a?/c bitmap%) #f)

button2-label : (or/c label-string? (is-a?/c bitmap%) #f)

button3-label : (or/c label-string? (is-a?/c bitmap%) #f)

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) #f) = #f

style :
(listof (or/c 'stop 'caution 'number-order

'disallow-close 'no-default

'default=1 'default=2 'default=3))

= '(no-default)

close-result : any/c = #f

dialog-mixin : (make-mixin-contract dialog%) = values

Displays a message to the user in a (modal) dialog, using parent as the parent window if
it is specified. The dialog’s title is title . The message string can be arbitrarily long, and
can contain explicit linefeeds or carriage returns for breaking lines.

The dialog contains up to three buttons for the user to click. The buttons have the labels
button1-label , button2-label , and button3-label , where #f for a label indicates
that the button should be hidden.

If the user clicks the button labelled button1-label , a 1 is returned, and so on for 2 and 3.
If the user closes the dialog some other way—which is only allowed when style does not
contain 'disallow-close—then the result is the value of close-result . For example,
the user can usually close a dialog by typing an Escape. Often, 2 is an appropriate value for
close-result , especially when Button 2 is a Cancel button.

If style does not include 'number-order, the order of the buttons is platform-specific,
and labels should be assigned to the buttons based on their role:

• Button 1 is the normal action, and it is usually the default button. For example, if the
dialog has an OK button, it is this one. On Windows, this button is leftmost; on Unix
and Mac OS X, it is rightmost. (See also system-position-ok-before-cancel?.)
Use this button for dialogs that contain only one button.

145

• Button 2 is next to Button 1, and it often plays the role of Cancel (even when the
default action is to cancel, such as when confirming a file replacement).

• Button 3 tends to be separated from the other two (on Mac OS X, it is left-aligned in
the dialog). Use this button only for three-button dialogs.

Despite the above guidelines, any combination of visible buttons is allowed in the dialog.

If style includes 'number-order, then the buttons are displayed in the dialog left-to-right
with equal spacing between all buttons, though aligned within the dialog (centered or right-
aligned) in a platform-specific manner. Use 'number-order sparingly.

The style list must contain exactly one of 'default=1, 'default=2, 'default=3, and
'no-default to determine which button (if any) is the default. The default button is
“clicked” when the user types Return. If 'default=n is supplied but button n has no label,
then it is equivalent to 'no-default.

In addition, style can contain 'caution to make the dialog use a caution icon instead of
the application (or generic “info”) icon. Alternately, it can contain 'stop to make the dialog
use a stop icon. If style contains both 'caution and 'stop, then 'caution is ignored.

The class that implements the dialog provides a get-message method that takes no argu-
ments and returns the text of the message as a string. (The dialog is accessible through the
get-top-level-windows function.)

The message-box/custom function can be called in a thread other than the handler thread
of the relevant eventspace (i.e., the eventspace of parent , or the current eventspace if par-
ent is #f), in which case the current thread blocks while the dialog runs on the handler
thread.

The dialog-mixin argument is applied to the class that implements the dialog before the
dialog is created.

(message+check-box title

message

check-label

[parent
style

#:dialog-mixin dialog-mixin])
→ (or/c 'ok 'cancel 'yes 'no) boolean?

title : label-string?

message : string?

check-label : label-string?

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) #f) = #f

style :
(listof (or/c 'ok 'ok-cancel 'yes-no

'caution 'stop 'checked))
= '(ok)

dialog-mixin : (make-mixin-contract dialog%) = values

146

See also message+check-box/custom.

Like message-box, except that

• the dialog contains a check box whose label is check-label ;

• the result is two values: the message-box result, and a boolean indicating whether
the box was checked; and

• style can contain 'checked to indicate that the check box should be initially
checked.

(message+check-box/custom title

message

check-label

button1-label

button2-label

button3-label

[parent
style

close-result

#:dialog-mixin dialog-mixin])
→ (or/c 1 2 3 (λ (x) (eq? x close-result)))

title : label-string?

message : string

check-label : label-string?

button1-label : (or/c label-string? (is-a?/c bitmap%) #f)

button2-label : (or/c label-string? (is-a?/c bitmap%) #f)

button3-label : (or/c label-string? (is-a?/c bitmap%) #f)

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) #f) = #f

style :
(listof (or/c 'stop 'caution 'number-order

'disallow-close 'no-default

'default=1 'default=2 'default=3))

= '(no-default)

close-result : any/c = #f

dialog-mixin : (make-mixin-contract dialog%) = values

Like message-box/custom, except that

• the dialog contains a check box whose label is check-label ;

• the result is two values: the message-box result, and a boolean indicating whether
the box was checked; and

• style can contain 'checked to indicate that the check box should be initially
checked.

147

(get-text-from-user title

message

[parent
init-val

style

#:dialog-mixin dialog-mixin])
→ (or/c string? #f)

title : string?

message : (or/c string? #f)

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) #f) = #f

init-val : string? = ""

style : (listof 'password) = null

dialog-mixin : (make-mixin-contract dialog%) = values

Gets a text string from the user via a modal dialog, using parent as the parent window if
it is specified. The dialog’s title is title . The dialog’s text field is labelled with message

and initialized to init-val (but init-val does not determine the size of the dialog).

The result is #f if the user cancels the dialog, the user-provided string otherwise.

If style includes 'password, the dialog’s text field draws each character of its content
using a generic symbol, instead of the actual character.

The dialog-mixin argument is applied to the class that implements the dialog before the
dialog is created.

(get-choices-from-user title

message

choices

[parent
init-choices

style])
→ (or/c (listof exact-nonnegative-integer?) #f)

title : string?

message : (or/c string? #f)

choices : (listof string?)

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) #f) = #f

init-choices : (listof exact-nonnegative-integer?) = null

style : (listof (or/c 'single 'multiple 'extended))

= '(single)

Gets a list box selection from the user via a modal dialog, using parent as the parent
window if it is specified. The dialog’s title is title . The dialog’s list box is labelled with
message and initialized by selecting the items in init-choices .

148

The style must contain exactly one of 'single, 'multiple, or 'extended. The styles have
the same meaning as for creating a list-box% object. (For the single-selection style, only
the last selection in init-choices matters.)

The result is #f if the user cancels the dialog, the list of selections otherwise.

(get-color-from-user [message
parent

init-color

style]) → (or/c (is-a?/c color%) #f)

message : (or/c string? #f) = #f

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) #f) = #f

init-color : (or/c (is-a?/c color%) #f) = #f

style : null? = null

Lets the user select a color though the platform-specific (modal) dialog, using parent as the
parent window if it is specified. The message string is displayed as a prompt in the dialog
if possible. If init-color is provided, the dialog is initialized to the given color.

The style argument is provided for future extensions. Currently, style must be the empty
list.

The result is #f if the user cancels the dialog, the selected color otherwise.

(get-font-from-user [message
parent

init-font

style]) → (or/c (is-a?/c font%) #f)

message : (or/c string? #f) = #f

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) #f) = #f

init-font : (or/c (is-a?/c font%) #f) = #f

style : null? = null

Lets the user select a font though the platform-specific (modal) dialog, using parent as the
parent window if it is specified. The message string is displayed as a prompt in the dialog
if possible. If init-font is provided, the dialog is initialized to the given font.

The style argument is provided for future extensions. Currently, style must be the empty
list.

The result is #f if the user cancels the dialog, the selected font otherwise.

(get-ps-setup-from-user [message
parent

init-setup

style])
→ (or/c (is-a?/c ps-setup%) #f)

149

message : (or/c string? #f) = #f

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) #f) = #f

init-setup : (or/c (is-a?/c ps-setup%) #f) = #f

style : null? = null

Lets the user select a PostScript configuration though a (modal) dialog, using parent as the
parent window if it is specified. The message string is displayed as a prompt in the dialog.
If init-setup is provided, the dialog is initialized to the given configuration, otherwise the
current configuration from current-ps-setup is used.

The style argument is provided for future extensions. Currently, style must be the empty
list.

The result is #f if the user cancels the dialog, , a ps-setup% object that encapsulates the
selected PostScript configuration otherwise.

(get-page-setup-from-user [message
parent

init-setup

style])
→ (or/c (is-a?/c ps-setup%) #f)

message : (or/c string? #f) = #f

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) #f) = #f

init-setup : (or/c (is-a?/c ps-setup%) #f) = #f

style : null? = null

Like get-ps-setup-from-user, but the dialog configures page layout for native printing
with printer-dc%. A dialog is shown only if can-get-page-setup-from-user? returns
#t, otherwise no dialog is shown and the result is #f.

The parent argument is used as the parent window for a dialog if it is specified. The
message string might be displayed as a prompt in the dialog. If init-setup is provided,
the dialog is initialized to the given configuration, otherwise the current configuration from
current-ps-setup is used.

The style argument is provided for future extensions. Currently, style must be the empty
list.

The result is #f if the user cancels the dialog, a ps-setup% object that encapsulates the
selected configuration otherwise.

(can-get-page-setup-from-user?) → boolean?

Returns #t if the current platform (Mac OS X) supports a page-layout dialog for use with
printer-dc% printing, and if the page-layout dialog is different from the print-job dialog
that is automatically shown when a printer-dc% is created. Returns #f if no separate
page-layout dialog is needed (Windows and Unix).

150

3.2 Eventspaces

(make-eventspace) → eventspace?

Creates and returns a new eventspace value. The new eventspace is created as a child of
the current eventspace. The eventspace is used by making it the current eventspace with the
current-eventspace parameter.

See §1.6 “Event Dispatching and Eventspaces” for more information about eventspaces.

(current-eventspace) → eventspace?

(current-eventspace e) → void?

e : eventspace?

A parameter (see §10.3.2 “Parameters”) that determines the current eventspace.

See §1.6 “Event Dispatching and Eventspaces” for more information about eventspaces.

(eventspace? v) → boolean?

v : any/c

Returns #t if v is an eventspace value or #f otherwise.

See §1.6 “Event Dispatching and Eventspaces” for more information about eventspaces.

(event-dispatch-handler) → (eventspace? . -> . any)

(event-dispatch-handler handler) → void?

handler : (eventspace? . -> . any)

A parameter (see §10.3.2 “Parameters”) that determines the current event dispatch handler.
The event dispatch handler is called by an eventspace’s handler thread for every queue-based
event to be processed in the eventspace. The only argument to the handler is the eventspace
in which an event should be dispatched. The event dispatch handler gives the programmer
control over the timing of event dispatching, but not the order in which events are dispatched
within a single eventspace.

An event dispatch handler must ultimately call the primitive event dispatch handler. If an
event dispatch handler returns without calling the primitive handler, then the primitive han-
dler is called directly by the eventspace handler thread.

(eventspace-event-evt [e]) → evt?

e : eventspace? = (current-eventspace)

Produces a synchronizable event (see sync) that is ready when a GUI event (mouse or key-
board action, update event, timer, queued callback, etc.) is ready for dispatch in e . That is,
the result event is ready when (yield) for the eventspace e would dispatch a GUI event.

151

(check-for-break) → boolean?

Inspects the event queue of the current eventspace, searching for a Shift-Ctl-C (Unix, Win-
dows) or Cmd-. (Mac OS X) key combination. Returns #t if such an event was found (and
the event is dequeued) or #f otherwise.

(get-top-level-windows)

→ (listof (or/c (is-a?/c frame%) (is-a?/c dialog%)))

Returns a list of visible top-level frames and dialogs in the current eventspace.

(get-top-level-focus-window)

→ (or/c (is-a?/c frame%) (is-a?/c dialog%) false/c)

Returns the top level window in the current eventspace that has the keyboard focus (or con-
tains the window with the keyboard focus), or #f if no window in the current eventspace has
the focus.

(get-top-level-edit-target-window)

→ (or/c (is-a?/c frame%) (is-a?/c dialog%) false/c)

Returns the top level window in the current eventspace that is visible and most recently had
the keyboard focus (or contains the window that had the keyboard focus), or #f if there is no
visible window in the current eventspace.

(special-control-key on?) → void?

on? : any/c

(special-control-key) → boolean?

Enables or disables special Control key handling (Mac OS X). When Control is treated as
a special key, the system’s key-mapper is called without Control for keyboard translations.
For some languages, Control key presses must be seen by the system translation, so this
mode should be turned off, but the default is on.

If on? is provided and #f, Control is passed to the system translation as normal. This setting
affects all windows and eventspaces.

If no argument is provided, the result is #t if Control is currently treated specially, #f other-
wise.

(special-option-key on?) → void?

on? : any/c

(special-option-key) → boolean?

152

Enables or disables special Option key handling (Mac OS X). When Option is treated as a
special key, the system’s key-mapper is called without Option for keyboard translations. By
default, Option is not special.

If on? is provided #f, Option is passed to the system translation as normal. This setting
affects all windows and eventspaces.

If no argument is provided, the result is #t if Option is currently treated specially, #f other-
wise.

(queue-callback callback [high-priority?]) → void?

callback : (-> any)

high-priority? : any/c = #t

Installs a procedure to be called via the current eventspace’s event queue. The procedure
is called once in the same way and under the same restrictions that a callback is invoked to
handle a method.

A second (optional) boolean argument indicates whether the callback has a high or low
priority in the event queue. See §1.6 “Event Dispatching and Eventspaces” for information
about the priority of events.

(yield) → boolean?

(yield v) → any/c

v : (or/c (one-of/c 'wait) evt?)

Yields control to event dispatching. See §1.6 “Event Dispatching and Eventspaces” for
details.

A handler procedure invoked by the system during a call to yield can itself call yield,
creating an additional level of nested (but single-threaded) event handling.

See also sleep/yield.

If no argument is provided, yield dispatches an unspecified number of events, but only if
the current thread is the current eventspace’s handler thread (otherwise, there is no effect).
The result is #t if any events may have been handled, #f otherwise.

If v is 'wait, and yield is called in the handler thread of an eventspace, then yield starts
processing events in that eventspace until

• no top-level windows in the eventspace are visible;

• no timers in the eventspace are running;

• no callbacks are queued in the eventspace; and

153

• no menu-bar% has been created for the eventspace with 'root (i.e., creating a 'root
menu bar prevents an eventspace from ever unblocking).

When called in a non-handler thread, yield returns immediately. In either case, the result
is #t.

Evaluating (yield 'wait) is thus similar to (yield (current-eventspace)), except
that it is sensitive to whether the current thread is a handler thread, instead of the value of
the current-eventspace parameter.

If v is an event in Racket’s sense (not to be confused with a GUI event), yield blocks on
v in the same way as sync, except that it may start a sync on v multiple times (but it will
complete a sync on v at most one time). If the current thread is the current eventspace’s
handler thread, events are dispatched until a v sync succeeds on an event boundary. For
other threads, calling yield with a Racket event is equivalent to calling sync. In either
case, the result is the same that of sync; however, if a wrapper procedure is associated with
v via handle-evt, it is not called in tail position with respect to the yield.

Always use (yield v) instead of a busy-wait loop.

(sleep/yield secs) → void?

secs : (and/c real? (not/c negative?))

Blocks for at least the specified number of seconds, handling events meanwhile if the current
thread is the current eventspace’s handler thread (otherwise, sleep/yield is equivalent to
sleep).

(eventspace-shutdown? e) → boolean?

e : eventspace?

Returns #t if the given eventspace has been shut down by its custodian, #f otherwise. At-
tempting to create a new window, timer, or explicitly queued event in a shut-down eventspace
raises the exn:misc exception.

Attempting to use certain methods of windows and timers in a shut-down eventspace also
raises the exn:misc exception, but the get-top-level-window in area<%> and get-

eventspace in top-level-window<%> methods work even after the area’s eventspace is
shut down.

(eventspace-handler-thread e) → (or/c thread? #f)

e : eventspace?

Returns the handler thread of the given eventspace. If the handler thread has terminated (e.g.,
because the eventspace was shut down), the result is #f.

154

3.3 System Menus

(current-eventspace-has-standard-menus?) → boolean?

Returns #t for Mac OS X when the current eventspace is the initial one, since that eventspace
is the target for the standard application menus. For any other system or eventspace, the
result is #f.

This procedure is intended for use in deciding whether to include a Quit, About, and Prefer-

ences menu item in a frame’s menu. On Mac OS X, the application Quit menu triggers a call
to a frame’s on-exit method, the About menu item is controlled by application-about-
handler, and the Preferences menu item is controlled by application-preferences-

handler.

(current-eventspace-has-menu-root?) → boolean?

Returns #t for Mac OS X when the current eventspace is the initial one, since that eventspace
can supply a menu bar to be active when no frame is visible. For any other system or
eventspace, the result is #f.

This procedure is intended for use in deciding whether to create a menu-bar% instance with
'root as its parent.

(application-about-handler) → (-> any)

(application-about-handler handler-thunk) → void?

handler-thunk : (-> any)

When the current eventspace is the initial eventspace, this procedure retrieves or installs a
thunk that is called when the user selects the application About menu item on Mac OS X.
The thunk is always called in the initial eventspace’s handler thread (as a callback).

The default handler displays a generic Racket dialog.

If the current eventspace is not the initial eventspace, this procedure returns void (when
called with zero arguments) or has no effect (when called with a handler).

(application-file-handler) → (path? . -> . any)

(application-file-handler handler-proc) → void?

handler-proc : (path? . -> . any)

When the current eventspace is the initial eventspace, this procedure retrieves or installs a
procedure that is called on Mac OS X and Windows when the application is running and
user double-clicks an application-handled file or drags a file onto the application’s icon. The
procedure is always called in the initial eventspace’s handler thread (as a callback), and the
argument is a filename.

155

The default handler queues a callback to the on-drop-file method of the most-recently
activated frame in the main eventspace (see get-top-level-edit-target-window), if
drag-and-drop is enabled for that frame. Otherwise, it saves the filename and re-queues the
handler event when the application file handler is later changed.

On Windows, when the application is not running and user double-clicks an application-
handled file or drags a file onto the application’s icon, the filename is provided as a
command-line argument to the application.

On Mac OS X, if an application is started without files, then the application-start-

empty-handler procedure is called.

If the current eventspace is not the initial eventspace, this procedure returns void (when
called with zero arguments) or has no effect (when called with a handler).

(application-preferences-handler) → (or/c (-> any) false/c)

(application-preferences-handler handler-thunk) → void?

handler-thunk : (or/c (-> any) false/c)

When the current eventspace is the initial eventspace, this procedure retrieves or installs a
thunk that is called when the user selects the application Preferences menu item on Mac OS
X. The thunk is always called in the initial eventspace’s handler thread (as a callback). If the
handler is set to #f, the Preferences item is disabled.

The default handler is #f.

If the current eventspace is not the initial eventspace, this procedure returns void (when
called with zero arguments) or has no effect (when called with a handler).

(application-quit-handler) → (-> any)

(application-quit-handler handler-thunk) → void?

handler-thunk : (-> any)

When the current eventspace is the initial eventspace, this procedure retrieves or installs a
thunk that is called when the user requests that the application quit (e.g., through the Quit

menu item on Mac OS X, or when shutting down the machine in Windows). The thunk is
always called in the initial eventspace’s handler thread (as a callback). If the result of the
thunk is #f, then the operating system is explicitly notified that the application does not
intend to quit (on Windows).

The default handler queues a call to the can-exit? method of the most recently active frame
in the initial eventspace (and then calls the frame’s on-exit method if the result is true).
The result is #t if the eventspace is left with no open frames after on-exit returns, #f
otherwise.

If the current eventspace is not the initial eventspace, this procedure returns void (when
called with zero arguments) or has no effect (when called with a handler).

156

(application-start-empty-handler) → (-> any)

(application-start-empty-handler handler-thunk) → void?

handler-thunk : (-> any)

When the current eventspace is the initial eventspace, this procedure retrieves or installs a
thunk that is called when the user starts the application on Mac OS X without supplying any
initial files (e.g., by double-clicking the application icon instead of double-clicking files that
are handled by the application).

The default handler re-queues the handler event when the application start-empty handler
is later changed. As a result, if an application sets both application-start-empty-

handler and application-file-handler, then one or the other is eventually called.

If the current eventspace is not the initial eventspace, this procedure returns void (when
called with zero arguments) or has no effect (when called with a handler).

3.4 Global Graphics

(flush-display) → void?

Flushes canvas offscreen drawing and other updates onto the screen.

Normally, drawing is automatically flushed to the screen. Use flush-display sparingly to
force updates to the screen when other actions depend on updating the display.

(get-display-count) → exact-positive-integer?

Returns the number of monitors currently active. On Windows and Mac OS X, the result can
change at any time.

(get-display-depth) → exact-nonnegative-integer?

Returns the depth of the main display (a value of 1 denotes a monochrome display).

(get-display-left-top-inset [avoid-bars?
#:monitor monitor])

→ (or/c exact-nonnegative-integer? #f)

(or/c exact-nonnegative-integer? #f)

avoid-bars? : any/c = #f

monitor : exact-nonnegative-integer? = 0

When the optional argument is #f (the default), this function returns the offset of monitor ’s
origin from the top-left of the physical monitor. For monitor 0, on Unix and Windows, the

157

result is always 0 and 0; on Mac OS X, the result is 0 and the height of the menu bar. To
position a frame at a given monitor ’s top-left corner, use the negated results from get-

display-left-top-inset as the frame’s position.

When the optional avoid-bars? argument is true, for monitor 0, get-display-left-
top-inset function returns the amount space at the left and top of the monitor that is
occupied by the task bar (Windows) or menu bar and dock (Mac OS X). On Unix, for monitor
0, the result is always 0 and 0. For monitors other than 0, avoid-bars? has no effect.

If monitor is not less than the current number of available monitors (which can change at
any time), the results are #f and #f.

(get-display-size [full-screen?
#:monitor monitor])

→ (or/c exact-nonnegative-integer? #f)

(or/c exact-nonnegative-integer? #f)

full-screen? : any/c = #f

monitor : exact-nonnegative-integer? = 0

Gets the physical size of the specified monitor in pixels. On Windows, this size does not
include the task bar by default. On Mac OS X, this size does not include the menu bar or
dock area by default.

On Windows and Mac OS X, if the optional argument is true and monitor is 0, then the
task bar, menu bar, and dock area are included in the result.

If monitor is not less than the current number of available monitors (which can change at
any time), the results are #f and #f.

(is-color-display?) → boolean?

Returns #t if the main display has color, #f otherwise.

3.5 Fonts

menu-control-font : (is-a?/c font%)

This font is the default for popup-menu% objects.

On Mac OS X, this font is slightly larger than normal-control-font. On Windows and
Unix, it is the same size as normal-control-font.

normal-control-font : (is-a?/c font%)

This font is the default for most controls, except list-box% and group-box-panel% ob-
jects.

158

small-control-font : (is-a?/c font%)

This font is the default for group-box-panel% objects, and it is a suitable for controls in a
floating window and other contexts that need smaller controls.

On Windows, this font is the same size as normal-control-font, since the Windows
control font is already relatively small. On Unix and Mac OS X, this font is slightly smaller
than normal-control-font.

tiny-control-font : (is-a?/c font%)

This font is for tiny controls, and it is smaller than small-control-font on all platforms.

view-control-font : (is-a?/c font%)

This font is the default for list-box% objects (but not list box labels, which use normal-

control-font).

On Mac OS X, this font is slightly smaller than normal-control-font, and slightly
larger than small-control-font. On Windows and Unix, it is the same size as normal-
control-font.

3.6 Miscellaneous

(begin-busy-cursor) → void?

Changes the cursor to a watch cursor for all windows in the current eventspace. Use end-

busy-cursor to revert the cursor back to its previous state. Calls to begin-busy-cursor

and end-busy-cursor can be nested arbitrarily.

The cursor installed by begin-busy-cursor overrides any window-specific cursors in-
stalled with set-cursor.

See also is-busy?.

(bell) → void?

Rings the system bell.

(end-busy-cursor) → void?

See begin-busy-cursor.

159

(file-creator-and-type filename

creator-string

type-bytes) → void?

filename : path?

creator-string :
(lambda (s) (and (bytes? s)

(= 4 (bytes-length s))))

type-bytes :
(lambda (s) (and (bytes? s)

(= 4 (bytes-length s))))

(file-creator-and-type filename)

→

(lambda (s) (and (bytes? s)

(= 4 (bytes-length s))))

(lambda (s) (and (bytes? s)

(= 4 (bytes-length s))))

filename : path?

Gets or sets the creator and type of a file in Mac OS X.

The get operation always returns #"????" and #"????" for Unix or Windows. The set
operation has no effect on Unix or Windows.

(find-graphical-system-path what) → (or/c path? #f)

what : (one-of/c 'init-file 'x-display)

Finds a platform-specific (and possibly user- or machine-specific) standard filename or di-
rectory. See also find-system-path.

The result depends on what , and a #f result is only possible when what is 'x-display:

• 'init-file returns the ,path to the user-specific initialization file (containing Racket
code). The directory part of the path is the same path as returned for 'init-dir by
Racket’s find-system-path. The file name is platform-specific:

– Unix and Mac OS X: ".gracketrc"

– Windows: "gracketrc.rktl"

• 'x-display returns a “path” whose string identifies the X11 display if specified by
either the -display flag or the DISPLAY environment variable when GRacket starts
on Unix. For other platforms, or when neither -display nor DISPLAY was specified,
the result is #f.

(get-default-shortcut-prefix)

→ (listof (one-of/c 'alt 'cmd 'meta 'ctl 'shift 'option))

Returns an immutable list specifying the default prefix for menu shortcuts. See also get-

shortcut-prefix in selectable-menu-item<%>.

160

On Windows, the default is '(ctl). On Mac OS X, the default is '(cmd). On
Unix, the default is normally '(ctl), but the default can be changed through the
'GRacket:defaultMenuPrefix preference low-level preference (see §9 “Preferences”).

(get-panel-background) → (is-a?/c color%)

Returns a shade of gray.

Historically, the result matched the color of a panel% background, but panel% backgrounds
can vary on some platforms (e.g., when nested in a group-box-panel%), so the result is no
longer guaranteed to be related to a panel%’s color.

(get-highlight-background-color) → (is-a?/c color%)

Returns the color that is drawn behind selected text.

(get-highlight-text-color) → (or/c (is-a?/c color%) #f)

Returns the color that is used to draw selected text or #f if selected text is drawn with its
usual color.

(get-window-text-extent string

font

[combine?]) → exact-nonnegative-integer?

exact-nonnegative-integer?

string : string?

font : (is-a?/c font%)

combine? : any/c = #f

Returns the pixel size of a string drawn as a window’s label or value when drawn with the
given font. The optional combine? argument is as for get-text-extent in dc<%>.

See also get-text-extent in dc<%>.

(graphical-read-eval-print-loop [eval-eventspace
redirect-ports?]) → void?

eval-eventspace : (or/c eventspace? #f) = #f

redirect-ports? : any/c = (not eval-eventspace)

Similar to read-eval-print-loop, except that none of read-eval-print-loop’s con-
figuration parameters are used (such as current-read) and the interaction occurs in a GUI
window instead of using the current input and output ports.

Expressions entered into the graphical read-eval-print loop can be evaluated in an eventspace
(and thread) that is distinct from the one implementing the graphical-read-eval-print-
loop window (i.e., the current eventspace when graphical-read-eval-print-loop is
called).

161

If no eventspace is provided, or if #f is provided, an evaluation eventspace is created using
(make-eventspace) with a new custodian; the eventspace and its threads are be shut down
when the user closes the graphical-read-eval-print-loop window. If an eventspace
is provided, closing the window performs no shut-down actions on eventspace.

When redirect-ports? is true, the following parameters are initialized in the created
eventspace’s handler thread:

• current-output-port — writes to the frame

• current-error-port — writes to the frame

• current-input-port — always returns eof

The keymap for the read-eval-print loop’s editor is initialized by calling the current keymap
initializer procedure, which is determined by the current-text-keymap-initializer

parameter.

(textual-read-eval-print-loop) → void?

Similar to read-eval-print-loop, except that evaluation uses a newly created eventspace
like graphical-read-eval-print-loop.

The current-prompt-read parameter is used in the current thread to read input. The result
is queued for evaluation and printing in the created eventspace’s handler thread, which uses
current-eval and current-print. After printing completes for an interaction result, the
next expression in read in the original thread, and so on.

If an exn:break exception is raised in the original thread during reading, it aborts the current
call to (current-read) and a new one is started. If an exn:break exception is raised in
the original thread while waiting for an interaction to complete, a break is sent (via break-
thread) to the created eventspace’s handler thread.

(hide-cursor-until-moved) → void?

Hides the cursor until the user moves the mouse or clicks the mouse button. (For some plat-
forms, the cursor is not hidden if it is over a window in a different eventspace or application.)

(is-busy?) → boolean?

Returns #t if a busy cursor has been installed with begin-busy-cursor and not removed
with end-busy-cursor.

(label->plain-label label) → string?

label : string?

162

Strips shortcut ampersands from label , removes parenthesized ampersand–character com-
binations along with any surrounding space, and removes anything after a tab. Overall, it
returns the label as it would appear on a button on a platform without support for mnemon-
ics.

(make-gl-bitmap width height config) → (is-a?/c bitmap%)

width : exact-positive-integer?

height : exact-positive-integer?

config : (is-a?/c gl-config%)

Creates a bitmap that supports both normal dc<%> drawing an OpenGL drawing through a
context returned by get-gl-context in dc<%>.

For dc<%> drawing, an OpenGL-supporting bitmap draws like a bitmap frmo make-

screen-bitmap on some platforms, while it draws like a bitmap instantiated directly from
bitmap% on other platforms.

(make-gui-empty-namespace) → namespace?

Like make-base-empty-namespace, but with racket/class and racket/gui/base

also attached to the result namespace.

(make-gui-namespace) → namespace?

Like make-base-namespace, but with racket/class and racket/gui/base also re-
quired into the top-level environment of the result namespace.

(make-screen-bitmap width height) → (is-a?/c bitmap%)

width : exact-positive-integer?

height : exact-positive-integer?

Creates a bitmap that draws in a way that is the same as drawing to a canvas in its default
configuration.

A normal bitmap% draws in a more platform-independent way and may use fewer con-
strained resources, particularly on Windows.

(play-sound filename async?) → boolean?

filename : path-string?

async? : any/c

Plays a sound file. If async? is false, the function does not return until the sound com-
pletes. Otherwise, it returns immediately. The result is #t if the sound plays successfully,
#f otherwise.

On Windows, only ".wav" files are supported.

163

On Unix, the function invokes an external sound-playing program; looking for a few known
programs (aplay, play, esdplay, sndfile-play, audioplay). In addition, a play com-
mand can be defined through the 'GRacket:playcmd preference preference (see §9 “Pref-
erences”). The preference can hold a program name, or a format string containing a single
∼a where the filename should be substituted—and used as a shell command. (Don’t use
∼s, since the string that is used with the format string will be properly quoted and wrapped
in double quotes.) A plain command name is usually better since execution is faster. The
command’s output is discarded, unless it returns an error code—in this case the last part of
the error output is shown.

On Mac OS X, Quicktime is used to play sounds; most sound formats (.wav, .aiff, .mp3)
are supported in recent versions of Quicktime. In order to play .wav files, Quicktime 3.0
(compatible with OS 7.5 and up) is required.

(register-collecting-blit canvas

x

y

w

h

on

off

[on-x
on-y

off-x

off-y]) → void?

canvas : (is-a?/c canvas%)

x : real?

y : real?

w : (and/c real? (not/c negative?))

h : (and/c real? (not/c negative?))

on : (is-a?/c bitmap%)

off : (is-a?/c bitmap%)

on-x : real? = 0

on-y : real? = 0

off-x : real? = 0

off-y : real? = 0

Registers a “blit” to occur when garbage collection starts and ends. When garbage collection
starts, on is drawn at location x and y within canvas , if canvas is shown. When garbage
collection ends, the drawing is reverted, possibly by drawing the off bitmap.

The background behind on is unspecified, so on should be a solid image, and the canvas’s
scale or scrolling is not applied to the drawing. Only the portion of on within w and h pixels
is used; if on-x and on-y are specified, they specify an offset within the bitmap that is used
for drawing, and off-x and off-y similarly specify an offset within off .

164

The blit is automatically unregistered if canvas becomes invisible and inaccessible. Multi-
ple registrations can be installed for the same canvas .

See also unregister-collecting-blit.

(unregister-collecting-blit canvas) → void?

canvas : (is-a?/c canvas%)

Unregisters all blit requests installed for canvas with register-collecting-blit.

(send-message-to-window x y message) → any/c

x : (integer-in -10000 10000)

y : (integer-in -10000 10000)

message : any/c

Finds the frontmost top-level window at (x , y) in global coordinates. If a window is there,
this function calls the window’s on-message method, providing message as the method’s
argument; the result of the function call is the result returned by the method. If no Racket
window is at the given coordinates, or if it is covered by a non-Racket window at (x , y), #f
is returned.

(system-position-ok-before-cancel?) → boolean?

Returns #t on Windows—indicating that a dialog with OK and Cancel buttons should place
the OK button on to left of the Cancel button—and returns #f on Mac OS X and Unix.

the-clipboard : (is-a?/c clipboard<%>)

See clipboard<%>.

the-x-selection-clipboard : (is-a?/c clipboard<%>)

See clipboard<%>.

(label-string? v) → boolean?

v : any/c

Returns #t if v is a string whose length is less than or equal to 200.

This predicate is typically used as the contract for strings that appear in GUI objects. In
some cases, such as the label in a button% or menu-item% object, the character & is treated
specially to indicate that the following character is used in keyboard navigation. See set-

label in labelled-menu-item<%> for one such example. In other cases, such as the label
on a frame%, & is not treated specially.

165

(key-code-symbol? v) → boolean?

v : any/c

Returns #t if the argument is a symbol that can be returned by key-event%’s method get-

key-code.

166

4 Editors

The editor toolbox provides a foundation for two common kinds of applications:

• Programs that need a sophisticated text editor — The simple text field control is in-
adequate for text-intensive applications. Many programs need editors that can handle
multiple fonts and non-text items.

• Programs that need a canvas with dragable objects — The drawing toolbox provides
a generic drawing surface for plotting lines and boxes, but many applications need an
interactive canvas, where the user can drag and resize individual objects.

Both kinds of applications need an extensible editor that can handle text, images,
programmer-defined items, and even embedded editors. The difference between them is the
layout of items. The editor toolbox therefore provides two kinds of editors via two classes:

• text% — in a text editor, items are automatically positioned in a paragraph flow.

• pasteboard% — in a pasteboard editor, items are explicitly positioned and dragable.

This editor architecture addresses the full range of real-world issues for an editor—including
cut-and-paste, extensible file formats, and layered text styles—while supporting a high level
of extensibility. Unfortunately, the system is fairly complex as a result, and using the editor
classes effectively requires a solid understanding of the structure and terminology of the
editor toolbox. Nevertheless, enough applications fit one (or both) of the descriptions above
to justify the depth and complexity of the toolbox and the learning investment required to
use it.

A brief example illustrates how editors work. To start, an editor needs an editor-canvas%

to display its contents. Then, we can create a text editor and install it into the canvas:

(define f (new frame% [label "Simple Edit"]

[width 200]

[height 200]))

(define c (new editor-canvas% [parent f]))

(define t (new text%))

(send c set-editor t)

(send f show #t)

At this point, the editor is fully functional: the user can type text into the editor, but no
cut-and-paste operations are available. We can support all of the standard operations on an
editor via the menu bar:

(define mb (new menu-bar% [parent f]))

167

(define m-edit (new menu% [label "Edit"] [parent mb]))

(define m-font (new menu% [label "Font"] [parent mb]))

(append-editor-operation-menu-items m-edit #f)

(append-editor-font-menu-items m-font)

Now, the standard cut and paste operations work, and the user can even set font styles. The
user can also insert an embedded editor by selecting Insert Text from the Edit menu; after
selecting the menu item, a box appears in the editor with the caret inside. Typing with the
caret in the box stretches the box as text is added, and font operations apply wherever the
caret is active. Text on the outside of the box is rearranged as the box changes sizes. Note
that the box itself can be copied and pasted.

The content of an editor is made up of snips. An embedded editor is a single snip from
the embedding editor’s point-of-view. To encode immediate text, a snip can be a single
character, but more often a snip is a sequence of adjacent characters on the same line. The
find-snip method extracts a snip from a text editor:

(send t find-snip 0 'after)

The above expression returns the first snip in the editor, which may be a string snip (for
immediate text) or an editor snip (for an embedded editor).

An editor is not permanently attached to any display. We can take the text editor out of our
canvas and put a pasteboard editor in the canvas, instead:

(define pb (new pasteboard%))

(send c set-editor pb)

With the pasteboard editor installed, the user can no longer type characters directly into the
editor (because a pasteboard does not support directly entered text). However, the user can
cut text from elsewhere and paste it into pasteboard, or select one of the Insert menu items
in the Edit menu. Snips are clearly identifiable in a pasteboard editor (unlike a text editor)
because each snip is separately dragable.

We can insert the old text editor (which we recently removed from the canvas) as an embed-
ded editor in the pasteboard by explicitly creating an editor snip:

(define s (make-object editor-snip% t)) ; t is the old text editor

(send pb insert s)

An individual snip cannot be inserted into different editors at the same time, or inserted
multiple times in the same editor:

(send pb insert s) ; no effect

168

However, we can make a deep copy of the snip and insert the copy into the pasteboard:

(send pb insert (send s copy))

Applications that use the editor classes typically derive new versions of the text% and
pasteboard% classes. For example, to implement an append-only editor (which allows
insertions only at the end and never allows deletions), derive a new class from text% and
override the can-insert? and can-delete? methods:

(define append-only-text%

(class text%

(inherit last-position)

(define/augment (can-insert? s l) (= s (last-position)))

(define/augment (can-delete? s l) #f)

(super-new)))

4.1 Editor Structure and Terminology

The editor toolbox supports extensible and nestable editors by decomposing an editor as-
sembly into three functional parts:

• The editor itself stores the state of the text or pasteboard and handles most events and
editing operations. The editor<%> interface defines the core editor functionality, but
editors are created as instances of text% or pasteboard%.

• A snip is a segment of information within the editor. Each snip can contain a sequence
of characters, a picture, or an interactive object (such as an embedded editor). In a text
editor, snips are constrained to fit on a single line and generally contain data of a single
type. The snip% class implements a basic snip. Other snip classes include string-

snip% for managing text, image-snip% for managing pictures, and editor-snip%

for managing embedded editors.

• A display presents the editor on the screen. The display lets the user scroll around an
editor or change editors. Most displays are instances of the editor-canvas% class,
but the editor-snip% class also acts as a display for embedded editors.

These three parts are illustrated by a simple word processor. The editor corresponds to the
text document. The editor object receives keyboard and mouse commands for editing the
text. The text itself is distributed among snips. Each character could be a separate snip,
or multiple characters on a single line could be grouped together into a snip. The display
roughly corresponds to the window in which the text is displayed. While the editor manages
the arrangement of the text as it is displayed into a window, the display determines which
window to draw into and which part of the editor to display.

169

Each selectable entity in an editor is an item. In a pasteboard, all selection and dragging
operations work on snips, so there is a one-to-one correspondence between snips and items.
In an editor, one snip contains one or more consecutive items, and every item belongs to
some snip. For example, in a simple text editor, each character is an item, but multiple
adjacent characters may be grouped into a single snip. The number of items in a snip is the
snip’s count.

Each place where the insertion point can appear in a text editor is a position. A text editor
with n items contains n+1 positions: one position before each item, and one position after
the last item.

The order of snips within a pasteboard determines each snip’s drawing plane. When two
snips overlap within the pasteboard, the snip that is earlier in the order is in front of the other
snip (i.e., the former is drawn after the latter, such that the former snip may cover part of the
latter snip).

When an editor is drawn into a display, each snip and position has a location. The location
of a position or snip is specified in coordinates relative to the top-left corner of the editor.
Locations in an editor are only meaningful when the editor is displayed.

4.1.1 Administrators

Two extra layers of administration manage the display-editor and editor-snip connections.
An editor never communicates directly with a display; instead, it always communicates with
an editor administrator, an instance of the editor-admin% class, which relays information
to the display. Similarly, a snip communicates with a snip administrator, an instance of the
snip-admin% class.

The administrative layers make the editor hierarchy flexible without forcing every part of an
editor assembly to contain the functionality of several parts. For example, a text editor can
be a single item within another editor; without administrators, the text% class would also
have to contain all the functionality of a display (for the containing editor) and a snip (for
the embedded editor). Using administrators, an editor class can serve as both a containing
and an embedded editor without directly implementing the display and snip functionality.

A snip belongs to at most one editor via a single administrator. An editor also has only one
administrator at a time. However, the administrator that connects the an editor to the stan-
dard display (i.e., an editor canvas) can work with other such administrators. In particular,
the administrator of an editor-canvas% (each one has its own administrator) can work
with other editor-canvas% administrators, allowing an editor to be displayed in multiple
editor-canvas% windows at the same time.

When an editor is displayed by multiple canvases, one of the canvases’ administrators is used
as the editor’s primary administrator. To handle user and update events for other canvases,
the editor’s administrator is temporarily changed and then restored through the editor’s set-

170

admin method. The return value of the editor’s get-admin method thus depends on the
context of the call.

4.1.2 Styles

A style, an instance of the style<%> interface, parameterizes high-level display information
that is common to all snip classes. This includes the font, color, and alignment for drawing
the item. A single style is attached to each snip.

Styles are hierarchical: each style is defined in terms of another style. There is a single root
style, named "Basic", from which all other styles in an editor are derived. The difference
between a base style and each of its derived style is encoded in a style delta (or simply delta).
A delta encodes changes such as

• change the font family to X;

• enlarge the font by adding Y to the point size;

• toggle the boldness of the font; or

• change everything to match the style description Z.

Style objects are never created separately; rather, they are always created through a style list,
an instance of the style-list% class. A style list manages the styles, servicing external
requests to find a particular style, and it manages the hierarchical relationship between styles.
A global style list is available, the-style-list, but new style lists can be created for
managing separate style hierarchies. For example, each editor will typically have its own
style list.

Each new style is defined in one of two ways:

• A derived style is defined in terms of a base style and a delta. Every style (except for
the root style) has a base style, even if it does not depend on the base style in any way
(i.e., the delta describes a fixed style rather than extensions to an existing style). (This
is the usual kind of style inheritance, as found in word processors such as Microsoft
Word.)

• A join style is defined in terms of two other styles: a base style and a shift style.
The meaning of a join style is determined by reinterpreting the shift style; in the
reinterpretation, the base style is used as the root style for the shift style. (This is
analogous to multi-level styles, like the paragraph and character styles in FrameMaker.
In this analogy, the paragraph style is the base style, and the character style is the shift
style. However, FrameMaker allows only those two levels; with join styles support
any number of levels.)

171

Usually, when text is inserted into a text editor, it inherits the style of the preceding snip. If
text is inserted into an empty editor, the text is usually assigned a style called "Standard".
By default, the "Standard" style is unmodified from the root style. The default style name
can be changed by overriding default-style-name.

The exception to the above is when change-style in text% is called with the current
selection position (when the selection is a position and not a range). In that case, the style is
remembered, and if the next editor-modifying action is a text insertion, the inserted text gets
the remembered style.

See get-styles-sticky in text% for more information about the style of inserted text.

4.2 File Format

To allow editor content to be saved to a file, the editor classes implement a special
file format called WXME. (The format is used when cutting and pasting between appli-
cations or eventspaces, too). The file format is not documented, except that it begins
WXME01〈digit〉〈digit〉 ## . Otherwise, the load-file and save-file methods define the
format internally. The file format is the same for text and pasteboard editors. When a paste-
board saves its content to a file, it saves the snips from front to back, and also includes extra
location information. The wxme library provides utilities for manipulating WXME files.

Editor data is read and written using editor-stream-in% and editor-stream-out% ob-
jects. Editor information can only be read from or written to one stream at a time. To write
one or more editors to a stream, first call the function write-editor-global-header to
write initialization data into an output stream. When all editors are written to the stream, call
write-editor-global-footer. Similarly, reading editors from a stream is initialized
with read-editor-global-header and finalized with read-editor-global-footer.
Optionally, to support streams that span versions of Racket, use write-editor-version

and read-editor-version before the header operations.

The editor file data format can be embedded within another file, and it can be extended with
new kinds of data. The editor file format can be extended in two ways: with snip- or content-
specific data, and with editor-specific global data. These are described in the remainder of
this section.

4.2.1 Encoding Snips

The generalized notion of a snip allows new snip types to be defined and immediately used
in any editor class. Also, when two applications support the same kinds of snips, snip data
can easily be cut and pasted between them, and the same data files will be readable by each
program. This interoperability is due to a consistent encoding mechanism that is built into
the snip system.

172

Graceful and extensible encoding of snips requires that two issues are addressed:

• The encoding function for a snip can be associated with the snip itself. To convert
a snip from an encoded representation (e.g., as bytes in a file) to a memory object,
a decoding function must be provided for each type of snip. Furthermore, a list of
such decoders must be available to the high-level decoding process. This decoding
mapping is defined by associating a snip class object to every snip. A snip class is an
instance of the snip-class% class.

• Some editors may require additional information to be stored about a snip; this in-
formation is orthogonal to the type-specific information stored by the snip itself. For
example, a pasteboard needs to remember a snip’s location, while a text editor does
not need this information. If data is being cut and pasted from one pasteboard to
another, then information about relative locations needs to be maintained, but this in-
formation should not inhibit pasting into an editor. Extra data is associated with a snip
through editor data objects, which are instances of the editor-data% class; decod-
ing requires that each editor data object has an editor data class, which is an instance
of the editor-data-class% class.

Snip classes, snip data, and snip data classes solve problems related to encoding and decod-
ing snips. In an application that has no need for saving files or cut-and-paste, these issues
can be safely ignored.

Snip Classes

Each snip can be associated to a snip class. This “class” is not a class description in the
programmer’s language; it is an object which provides a way to create new snips of the
appropriate type from an encoded snip specification.

Snip class objects can be added to the eventspace-specific snip class list, which is returned by
get-the-snip-class-list. When a snip is encoded, the snip’s class name is associated
with the encoding; when the snip needs to be decoded, then the snip class list is searched by
name to find the snip’s class. The snip class will then provide a decoding function that can
create a new snip from the encoding.

If a snip class’s name is of the form "((lib ...) (lib ...))", then the snip class
implementation can be loaded on demand. The name is parsed using read; if the result
has the form ((lib string ...) (lib string ...)), then the first element used with
dynamic-require along with 'snip-class. If the dynamic-require result is a snip-

class% object, then it is inserted into the current eventspace’s snip class list, and loading or
saving continues using the new class.

The second lib form in "((lib ...) (lib ...))" supplies a reader for a text-only ver-
sion of the snip. See §8.1 “Snip Class Mapping” for more information on how such snip-
classes work (and generally see the wxme library).

173

A snip class’s name can also be just "(lib ...)", which is used like the first part of the
two-lib form. However, this form provides no information for the text-only wxme reader.

Editor Data

While a snip belongs to an editor, the editor may store extra information about a snip in some
specialized way. When the snip is to be encoded, this extra information needs to be put into
an editor data object so that the extra information can be encoded as well. In a text editor,
extra information can be associated with ranges of items, as well as snips.

Just as a snip must be associated with a snip class to be decoded (see §4.2.1.1 “Snip
Classes”), an editor data object needs an editor data class for decoding. Every editor
data class object can be added to the eventspace-specific editor data class list, returned by
get-the-editor-data-class-list. Alternatively, like snip classes (see §4.2.1.1 “Snip
Classes”), editor data class names can use the form "((lib ...) (lib ...))" to enable
on-demand loading. The corresponding module should export an editor-data-class%

object named 'editor-data-class.

To store and load information about a snip or region in an editor:

• derive new classes from editor-data% and editor-data-class%.

• derive a new class from the text% or pasteboard% class, and override the get-

snip-data and set-snip-data methods and/or the get-region-data and set-

region-data methods.

Note: the get-region-data and set-region-data methods are called for cut-and-
paste encoding, but not for file-saving encoding; see §4.2.2 “Global Data: Headers and
Footers” for information on extending the file format.

4.2.2 Global Data: Headers and Footers

The editor file format provides for adding extra global data in special header and footer
sections. To save and load special header and/or footer records:

• Pick a name for each header/footer record. This name should not conflict with any
other header/footer record name in use, and no one else should use these names. All
names beginning with “wx” are reserved for internal use. By tagging extra header and
footer records with a unique name, the file can be safely loaded in an installation that
does not support the records.

• Derive a new class from the text% or pasteboard% class, and override the write-

headers-to-file, write-footers-to-file, read-header-from-file and/or
read-footer-from-file methods.

174

When an editor is saved, the methods write-headers-to-file and write-footers-

to-file are invoked; at this time, the derived text% or pasteboard% object has a chance
to save records. To write a header/footer record, first invoke the begin-write-header-

footer-to-file method, at which point the record name is provided. Once the record is
written, call end-write-header-footer-to-file.

When an editor is loaded and a header/footer record is encountered, the read-header-

from-file or read-footer-from-file method is invoked, with the record name as the
argument. If the name matches a known record type, then the data can be loaded.

See also write-headers-to-file and read-header-from-file.

4.3 End of Line Ambiguity

Because an editor can force a line break even when there is no newline item, a position alone
does not always specify a location for the caret. Consider the last position of a line that is
soft-broken (i.e., no newline is present): there is no item between the last item of the line and
the first item of the next line, so two locations (one end-of-line and one start-of-line) map to
the same position.

For this reason, position-setting and position-getting methods often have an extra argument.
In the case of a position-setting method, the argument specifies whether the caret should be
drawn at the left or right side of the page (in the event that the location is doubly defined); #t
means that the caret should be drawn on the right side. Similarly, methods which calculate
a position from a location will take an extra boxed boolean; the box is filled with #t if the
position is ambiguous and it came from a right-side location, or #f otherwise.

4.4 Flattened Text

In plain text editors, there is a simple correlation between positions and characters. In an
editor<%> object, this is not true much of the time, but it is still sometimes useful to just
“get the text” of an editor.

Text can be extracted from an editor in either of two forms:

• Simple text, where there is one character per item. Items that are characters are mapped
to themselves, and all other items are mapped to a period. Line breaks are represented
by newline characters (ASCII 10).

• Flattened text, where each item can map to an arbitrary string. Items that are characters
are still mapped to themselves, but more complicated items can be represented with a
useful string determined by the item’s snip. Newlines are mapped to platform-specific
character sequences (linefeed on Unix and Mac OS X, and linefeed–carriage return

175

on Windows). This form is called “flattened” because the editor’s items have been
reduced to a linear sequence of characters.

4.5 Caret Ownership

Within a frame, only one object can contain the keyboard focus. This property must be
maintained when a frame contains multiple editors in multiple displays, and when a single
editor contains other editors as items.

When an editor has the keyboard focus, it will usually display the current selection or a line
indicating the insertion point; the line is called the caret.

When an editor contains other editors, it keeps track of caret ownership among the con-
tained sub-editors. When the caret is taken away from the main editor, it will revoke caret
ownership from the appropriate sub-editor.

When an editor or snip is drawn, an argument to the drawing method specifies whether the
caret should be drawn with the data or whether a selection spans the data. This argument can
be any of:

• 'no-caret — The caret should not be drawn at all.

• 'show-inactive-caret — The caret should be drawn as inactive; items may be
identified as the local current selection, but the keyboard focus is elsewhere.

• 'show-caret — The caret should be drawn to show keyboard focus ownership.

• (cons start end) — The caret is owned by an enclosing region, and its selection
spans the current editor or snip; in the case of the snip, the selection spans elements
start through end positions within the snip.

The 'show-inactive-caret display mode is useful for showing selection ranges in text
editors that do not have the focus. This 'show-inactive-caret mode is distinct from
'no-caret mode; when editors are embedded, only the locally active editor shows its se-
lection.

4.6 Cut and Paste Time Stamps

Methods of editor<%> that use the clipboard — including copy, cut, paste, and do-

edit-operation — consume a time stamp argument. This time stamp is generally ex-
tracted from the mouse-event% or key-event% object that triggered the clipboard action.
Unix uses the time stamp to synchronize clipboard operations among the clipboard clients.

176

All instances of event% include a time stamp, which can be obtained using get-time-

stamp.

If the time stamp is 0, it defaults to the current time. Using 0 as the time stamp almost always
works fine, but it is considered bad manners on Unix.

4.7 Clickbacks

Clickbacks in a text% editor facilitate the creation of simple interactive objects, such as
hypertext. A clickback is defined by associating a callback function with a range of items in
the editor. When a user clicks on the items in that range, the callback function is invoked. For
example, a hypertext clickback would associate a range to a callback function that changes
the selection range in the editor.

By default, the callback function is invoked when the user releases the mouse button. The
set-clickback method accepts an optional argument that causes the callback function to
be invoked on the button press, instead. This behavior is useful, for example, for a clickback
that creates a popup menu.

Note that there is no attempt to save clickback information when a file is saved, since a
clickback will have an arbitrary procedure associated with it.

4.8 Internal Editor Locks

Instances of editor<%> have three levels of internal locking:

• write locking — When an editor is internally locked for writing, the abstract content
of the editor cannot be changed (e.g., insertion attempts fail silently). However, snips
in a text editor can still be split and merged, and the text editor can be changed in
ways that affect the flow of lines. The locked-for-write? method reports whether
an editor is currently locked for writing.

• flow locking — When a text editor is internally locked for reflowing, it is locked for
writing, the snip content of the editor cannot change, the location of a snip cannot be
computed if it is not already known (see locations-computed? in editor<%>), and
the editor cannot be drawn to a display. A request for uncomputed location informa-
tion during a flow lock produces undefined results. The locked-for-flow? method
reports whether an editor is currently locked for flowing.

• read locking — When an editor is internally locked for reading, no operations can
be performed on the editor (e.g., a request for the current selection position returns
an undefined value). This extreme state is used only during callbacks to its snips for
setting the snip’s administrator, splitting the snip, or merging snips. The locked-

for-read? method reports whether an editor is currently locked for reading.

177

The internal lock for an editor is not affected by calls to lock.

Methods that report location-independent information about an editor never trigger a lock. A
method that reports location information may trigger a flow lock or write lock if the relevant
information has not been computed since the last modification to the editor (see locations-
computed? in editor<%>). A method that modifies the editor in any way, even setting the
selection position, can trigger a read lock, flow lock, or write lock.

4.9 Editors and Threads

An editor is not tied to any particular thread or eventspace, except to the degree that it is
displayed in a canvas (which has an eventspace). Concurrent access of an editor is always
safe, in the sense that the editor will not become corrupted. However, because editor access
can trigger locks, concurrent access can produce contract failures or unexpected results.

An editor supports certain concurrent patterns reliably. One relevant pattern is updating an
editor in one thread while the editor is displayed in a canvas that is managed by a different
(handler) thread. To ensure that canvas refreshes are not performed while the editor is locked
for flowing, and to ensure that refreshes do not prevent editor modifications, the following
are guaranteed:

• When an editor’s refresh method is called during an edit sequence (which is started
by begin-edit-sequence and ended with end-edit-sequence), the requested re-
fresh region is recorded, but the refresh is not performed. Instead, the refresh is de-
layed until the end of the edit sequence.

• Attempting to start an edit sequence while a refresh is in progress blocks until the
refresh is complete.

• The on-display-size-when-ready method calls on-display-size only when
the editor is not being refreshed and only when an edit sequence is not in progress. In
the first case, the on-display-size call is delegated to the refreshing thread to be
called after the refresh completes. In the second case, the on-display-size call is
delegated to the edit-sequence thread, to be called when the edit sequence is complete.

Thus, disabling an editor-canvas% object (using enable) is sufficient to ensure that a
background thread can modify an editor displayed by the canvas, as long as all modifications
are in edit sequences. The background modifications will impair canvas refreshes minimally
and temporarily, and refreshes will not impair modifications in the background thread.

A second supported pattern is reading an editor in a background thread while the editor may
be manipulated in other threads. Since no location-independent reads introduce locks, the
such reads in the background thread will not impair other threads. However, other threads
may interfere with the background thread, causing it to receive erroneous or out-of-date

178

content information. This one-sided guarantee is useful if the background thread’s work can
be discarded when the editor is modified.

179

5 Snip and Style Classes

(require racket/snip)

The racket/snip collection provides the core snip and style classes without depending on
racket/gui/base. This separation enables libraries that can cooperate with an editor while
also working in contexts that do not have a GUI.

Snips and Administrators:

snip% readable-snip<%>

|- string-snip%

| |- tab-snip%

|- image-snip%

|- editor-snip% (not provided by racket/snip)

snip-admin%

Snip Lists:

snip-class%

snip-class-list<%>

Styles:

style<%> style-delta% add-color<%>

style-list% mult-color<%>

Alphabetical:

5.1 add-color<%>

add-color<%> : interface?

An add-color<%> object is used to additively change the RGB values of a color% object.
An add-color<%> object only exists within a style-delta% object.

See also get-foreground-add and get-background-add.

(send an-add-color get r g b) → void?

r : (box/c (integer-in -1000 1000))

g : (box/c (integer-in -1000 1000))

b : (box/c (integer-in -1000 1000))

Gets all of the additive values.

The r box is filled with the additive value for the red component of the color. The g box is

180

filled with the additive value for the green component of the color. The b box is filled with
the additive value for the blue component of the color.

(send an-add-color get-b) → (integer-in -1000 1000)

Gets the additive value for the blue component of the color.

(send an-add-color get-g) → (integer-in -1000 1000)

Gets the additive value for the green component of the color.

(send an-add-color get-r) → (integer-in -1000 1000)

Gets the additive value for the red component of the color.

(send an-add-color set r g b) → void?

r : (integer-in -1000 1000)

g : (integer-in -1000 1000)

b : (integer-in -1000 1000)

Sets all of the additive values.

(send an-add-color set-b v) → void?

v : (integer-in -1000 1000)

Sets the additive value for the blue component of the color.

(send an-add-color set-g v) → void?

v : (integer-in -1000 1000)

Sets the additive value for the green component of the color.

(send an-add-color set-r v) → void?

v : (integer-in -1000 1000)

Sets the additive value for the red component of the color.

5.2 image-snip%

image-snip% : class?

superclass: snip%

An image-snip% is a snip that can display bitmap images (usually loaded from a file).
When the image file cannot be found, a box containing an “X” is drawn.

181

(make-object image-snip% [file
kind

relative-path?

inline?])
→ (is-a?/c image-snip%)

file : (or/c path-string? input-port? #f) = #f

kind :

(one-of/c 'unknown 'unknown/mask 'unknown/alpha

'gif 'gif/mask 'gif/alpha

'jpeg 'png 'png/mask 'png/alpha

'xbm 'xpm 'bmp 'pict)

= 'unknown

relative-path? : any/c = #f

inline? : any/c = #t

(make-object image-snip% bitmap [mask]) → (is-a?/c image-snip%)

bitmap : (is-a?/c bitmap%)

mask : (or/c (is-a?/c bitmap%) #f) = #f

Creates an image snip, loading the image file if specified (see also load-file), or using
the given bitmap .

(send an-image-snip equal-hash-code-of hash-code)

→ exact-integer?

hash-code : (any/c . -> . exact-integer?)

Returns an integer that can be used as a equal?-based hash code for an-image-snip (using
the same notion of equal? as other-equal-to?).

See also equal<%>.

(send an-image-snip equal-secondary-hash-code-of hash-code)

→ exact-integer?

hash-code : (any/c . -> . exact-integer?)

Returns an integer that can be used as a equal?-based secondary hash code for an-image-
snip (using the same notion of equal? as other-equal-to?).

See also equal<%>.

(send an-image-snip get-bitmap) → (or/c (is-a?/c bitmap%) #f)

Returns the bitmap that is displayed by the snip, whether set through set-bitmap or load-
file. If no bitmap is displayed, the result is #f.

(send an-image-snip get-bitmap-mask)

→ (or/c (is-a?/c bitmap%) #f)

182

Returns the mask bitmap that is used for displaying by the snip, if one was installed with
set-bitmap. If no mask is used, the result is #f.

(send an-image-snip get-filename [relative-path])
→ (or/c path-string? #f)

relative-path : (or/c (box/c any/c) #f) = #f

Returns the name of the currently loaded, non-inlined file, or #f if a file is not loaded or if a
file was loaded with inlining (the default).

The relative-path box is filled with #t if the loaded file’s path is relative to the owning
editor’s path, unless relative-path is #f.

(send an-image-snip get-filetype)

→

(one-of/c 'unknown 'unknown/mask 'unknown/alpha

'gif 'gif/mask 'gif/alpha

'jpeg 'png 'png/mask 'png/alpha

'xbm 'xpm 'bmp 'pict)

Returns the kind used to load the currently loaded, non-inlined file, or 'unknown if a file is
not loaded or if a file was loaded with inlining (the default).

(send an-image-snip load-file file

[kind
relative-path?

inline?]) → void?

file : (or/c path-string? input-port? #f)

kind :

(one-of/c 'unknown 'unknown/mask 'unknown/alpha

'gif 'gif/mask 'gif/alpha

'jpeg 'png 'png/mask 'png/alpha

'xbm 'xpm 'bmp 'pict)

= 'unknown

relative-path? : any/c = #f

inline? : any/c = #t

Loads the file by passing file and kind to load-file in bitmap%. If a bitmap had
previously been specified with set-bitmap, that bitmap (and mask) will no longer be used.
If file is #f, then the current image is cleared.

When 'unknown/mask, 'gif/mask, or 'png/mask is specified and the loaded bitmap ob-
ject includes a mask (see get-loaded-mask), the mask is used for drawing the bitmap (see
draw-bitmap). The 'unknown/alpha, 'gif/alpha, or 'png/alpha variants are recom-
mended, however.

If relative-path? is not #f and file is a relative path, then the file will be read using the
path of the owning editor’s filename. If the image is not inlined, it will be saved as a relative
pathname.

183

If inline? is not #f, the image data will be saved directly to the file or clipboard when the
image is saved or copied (preserving the bitmap’s mask, if any). The source filename and
kind is no longer relevant.

(send an-image-snip other-equal-to? snip

equal?) → boolean?

snip : (is-a?/c image-snip%)

equal? : (any/c any/c . -> . boolean?)

Returns #t if an-image-snip and snip both have bitmaps and the bitmaps are the same.
If either has a mask bitmap with the same dimensions as the main bitmap, then the masks
must be the same (or if only one mask is present, it must correspond to a solid mask).

The given equal? function (for recursive comparisons) is not used.

(send an-image-snip resize w h) → boolean?

w : (and/c real? (not/c negative?))

h : (and/c real? (not/c negative?))

Overrides resize in snip%.

The bitmap will be cropped to fit in the given dimensions.

(send an-image-snip set-bitmap bm [mask]) → void?

bm : (is-a?/c bitmap%)

mask : (or/c (is-a?/c bitmap%) #f) = #f

Sets the bitmap that is displayed by the snip.

An optional mask is used when drawing the bitmap (see draw-bitmap), but supplying the
mask directly is deprecated. If no mask is supplied but the bitmap’s get-loaded-mask

method produces a bitmap of the same dimensions, it is used as the mask; furthermore, such
a mask is saved with the snip when it is saved to a file or copied (whereas a directly supplied
mask is not saved). Typically, however, bm instead should have an alpha channel instead of
a separate mask bitmap.

(send an-image-snip set-offset dx dy) → void?

dx : real?

dy : real?

Sets a graphical offset for the bitmap within the image snip.

5.3 mult-color<%>

mult-color<%> : interface?

184

A mult-color<%> object is used to scale the RGB values of a color% object. A mult-

color<%> object exist only within a style-delta% object.

See also get-foreground-mult and get-background-mult.

(send a-mult-color get r g b) → void?

r : (box/c real?)

g : (box/c real?)

b : (box/c real?)

Gets all of the scaling values.

The r box is filled with the scaling value for the red component of the color. The g box is
filled with the scaling value for the green component of the color. The b box is filled with
the scaling value for the blue component of the color.

(send a-mult-color get-b) → real?

Gets the multiplicative scaling value for the blue component of the color.

(send a-mult-color get-g) → real?

Gets the multiplicative scaling value for the green component of the color.

(send a-mult-color get-r) → real?

Gets the multiplicative scaling value for the red component of the color.

(send a-mult-color set r g b) → void?

r : real?

g : real?

b : real?

Sets all of the scaling values.

(send a-mult-color set-b v) → void?

v : real?

Sets the multiplicative scaling value for the blue component of the color.

(send a-mult-color set-g v) → void?

v : real?

Sets the multiplicative scaling value for the green component of the color.

(send a-mult-color set-r v) → void?

v : real?

Sets the additive value for the red component of the color.

185

5.4 readable-snip<%>

readable-snip<%> : interface?

A readable-snip<%> object is treated specially by the port generated by open-input-

text-editor: When a readable-snip<%> object is encountered for the input stream, its
read-special method is called to generate the read result for the snip, which is returned
from the port as a “special” value in the sense of read-char-or-special.

Since read and read-syntax build on read-char-or-special, a snip can implement
readable-snip<%> so that it produces a whole S-expression or some other kind of value
when read is used on a stream containing the snip.

(send a-readable-snip read-special source

line

column

position) → any/c

source : any/c

line : (or/c exact-nonnegative-integer? false/c)

column : (or/c exact-nonnegative-integer? false/c)

position : (or/c exact-nonnegative-integer? false/c)

The arguments are the same as the arguments to a procedure returned by a custom input
port’s read-in ; see §12.1.9 “Custom Ports” for details. The result is also the same as the
result from a read-in -produced procedure.

5.5 snip%

snip% : class?

superclass: object%

extends: equal<%>

A direct instance of snip% is uninteresting. Useful snips are defined by instantiating derived
subclasses, but this class defines the basic functionality.

In deriving a new snip class, these methods must be overridden to create a useful snip:

• get-extent

• draw

• copy

• resize if the snip can be resized by the user

• partial-offset if the snip can contain more than one item

186

• split if the snip can contain more than one item

• size-cache-invalid if the snip caches the result to get-extent

• get-text (not required)

• find-scroll-step, get-num-scroll-steps, and get-scroll-step-offset if
the snip can contain more than one scroll position

• set-unmodified if the snip’s internal state can be modified by the user, and call
modified in the snip’s administrator when the state changes the first time

If a snip can contain more than one item, then the snip’s count must be maintained as well.

To define a class of snips that can be saved or cut-and-pasted:

• Create an instance of snip-class%, implementing the read method. Export the
snip-class% instance as snip-class from a module, and use a classname of the
form "(lib ...)" as described in §4.2.1.1 “Snip Classes”.

• For each instance of the snip class, set the snip’s class object with set-snipclass.

• Override the copy method.

• Override the write method.

To define a class of snips that read specially with open-input-text-editor:

• Make your snip% class implement readable-snip<%>.

• Implement the read-special method.

(new snip%) → (is-a?/c snip%)

Creates a plain snip of length 1 with the "Basic" style of the-style-list.

(send a-snip adjust-cursor dc

x

y

editorx

editory

event)

→ (or/c (is-a?/c cursor%) false/c)

dc : (is-a?/c dc<%>)

x : real?

y : real?

editorx : real?

editory : real?

event : (is-a?/c mouse-event%)

187

Specification: Called to determine the cursor image used when the cursor is moved over the
snip in an editor. If #f is returned, a default cursor is selected by the editor. (See adjust-

cursor in editor<%> for more information.)

Default implementation: Returns #f.

(send a-snip blink-caret dc x y) → void?

dc : (is-a?/c dc<%>)

x : real?

y : real?

Tells the snip to blink the selection caret. This method is called periodically when the snip’s
editor’s display has the keyboard focus, and the snip has the editor-local focus.

The drawing context and snip’s locations in drawing context coordinates are provided.

(send a-snip can-do-edit-operation? op

[recursive?]) → boolean?

op :

(one-of/c 'undo 'redo 'clear 'cut 'copy

'paste 'kill 'select-all

'insert-text-box 'insert-pasteboard-box

'insert-image)

recursive? : any/c = #t

See can-do-edit-operation? in editor<%>.

Called when the snip’s editor’s method is called, recursive? is not #f, and this snip owns
the caret.

(send a-snip copy) → (is-a?/c snip%)

Creates and returns a copy of this snip. The copy method is responsible for copying this
snip’s style (as returned by get-style) to the new snip.

(send a-snip do-edit-operation op

[recursive?
time]) → void?

op :

(one-of/c 'undo 'redo 'clear 'cut 'copy

'paste 'kill 'select-all

'insert-text-box 'insert-pasteboard-box

'insert-image)

recursive? : any/c = #t

time : exact-integer? = 0

See do-edit-operation in editor<%>.

188

Called when the snip’s editor’s method is called, recursive? is not #f, and this snip owns
the caret.

(send a-snip draw dc

x

y

left

top

right

bottom

dx

dy

draw-caret) → void?

dc : (is-a?/c dc<%>)

x : real?

y : real?

left : real?

top : real?

right : real?

bottom : real?

dx : real?

dy : real?

draw-caret :
(or/c 'no-caret 'show-inactive-caret 'show-caret

(cons/c exact-nonnegative-integer?

exact-nonnegative-integer?))

Specification: Called (by an editor) to draw the snip into the given drawing context with the
snip’s top left corner at location (x , y) in DC coordinates.

The arguments left , top , right , and bottom define a clipping region (in DC coordinates)
that the snip can use to optimize drawing, but it can also ignore these arguments.

The dx and dy argument provide numbers that can be subtracted from x and y to obtain
the snip’s location in editor coordinates (as opposed to DC coordinates, which are used for
drawing).

See §4.5 “Caret Ownership” for information about draw-caret . When draw-caret is a
pair, refrain from drawing a background for the selected region, and if (get-highlight-
text-color) returns a color (instead of #f), use that color for drawing selected text and
other selected foreground elements.

Before this method is called, the font, text color, and pen color for the snip’s style will have
been set in the drawing context. (The drawing context is not so configured for get-extent
or partial-offset.) The draw method must not make any other assumptions about the
state of the drawing context, except that the clipping region is already set to something
appropriate. Before draw returns, it must restore any drawing context settings that it changes.

189

See also on-paint in editor<%>.

The snip’s editor is usually internally locked for writing and reflowing when this method is
called (see also §4.8 “Internal Editor Locks”).

Default implementation: Draws nothing.

(send a-snip equal-to? snip equal?) → boolean?

snip : (is-a?/c snip%)

equal? : (-> any/c any/c boolean?)

Specification: See equal<%>.

Default implementation: Calls the other-equal-to? method of snip (to simulate multi-
method dispatch) in case snip provides a more specific equivalence comparison.

(send a-snip other-equal-to? that equal?) → boolean?

that : (is-a?/c snip%)

equal? : (-> any/c any/c boolean?)

Default implementation: Returns (eq? a-snip that).

(send a-snip equal-hash-code-of hash-code) → exact-integer?

hash-code : (any/c . -> . exact-integer?)

Specification: See equal<%>.

Default implementation: Returns (eq-hash-code a-snip).

(send a-snip equal-secondary-hash-code-of hash-code)

→ exact-integer?

hash-code : (any/c . -> . exact-integer?)

Specification: See equal<%>.

Default implementation: Returns 1.

(send a-snip find-scroll-step y) → exact-nonnegative-integer?

y : real?

Specification: If a snip contains more than one vertical scroll step (see get-num-scroll-

steps) then this method is called to find a scroll step offset for a given y-offset into the
snip.

Default implementation: Returns 0.

190

(send a-snip get-admin) → (or/c (is-a?/c snip-admin%) false/c)

Returns the administrator for this snip. (The administrator can be #f even if the snip is
owned but not visible in the editor.)

(send a-snip get-count) → (integer-in 0 100000)

Returns the snip’s count (i.e., number of items within the snip).

(send a-snip get-extent dc

x

y

[w
h

descent

space

lspace

rspace]) → void?

dc : (is-a?/c dc<%>)

x : real?

y : real?

w : (or/c (box/c (and/c real? (not/c negative?))) false/c)

= #f

h : (or/c (box/c (and/c real? (not/c negative?))) false/c)

= #f

descent : (or/c (box/c (and/c real? (not/c negative?))) false/c)

= #f

space : (or/c (box/c (and/c real? (not/c negative?))) false/c)

= #f

lspace : (or/c (box/c (and/c real? (not/c negative?))) false/c)

= #f

rspace : (or/c (box/c (and/c real? (not/c negative?))) false/c)

= #f

Specification: Calculates the snip’s width, height, descent (amount of height which is drawn
below the baseline), space (amount of height which is “filler” space at the top), and horizon-
tal spaces (amount of width which is “filler” space at the left and right). Those values are
returned by filling the w , h , descent , space , lspace , and rspace boxes.

This method is called by the snip’s administrator; it is not normally called directly by others.
To get the extent of a snip, use get-snip-location in editor<%> .

A drawing context is provided for the purpose of finding font sizes, but no drawing should
occur. The get-extent and partial-offset methods must not make any assumptions
about the state of the drawing context, except that it is scaled properly. In particular, the

191

font for the snip’s style is not automatically set in the drawing context before the method
is called. (Many snips cache their size information, so automatically setting the font would
be wasteful.) If get-extent or partial-offset changes the drawing context’s setting,
it must restore them before returning. However, the methods should not need to change the
drawing context; only font settings can affect measurement results from a device context,
and get-text-extent in dc<%> accepts a font% argument for sizing that overrides that
device context’s current font.

The snip’s left and top locations are provided as x and y in editor coordinates, in case the
snip’s size depends on its location; the x and y arguments are usually ignored. In a text
editor, the y -coordinate is the line’s top location; the snip’s actual top location is potentially
undetermined until its height is known.

If a snip caches the result size for future replies, it should invalidate its cached size when
size-cache-invalid is called (especially if the snip’s size depends on any device context
properties).

If a snip’s size changes after receiving a call to get-extent and before receiving a call to
size-cache-invalid, then the snip must notify its administrator of the size change, so
that the administrator can recompute its derived size information. Notify the administrator
of a size change by call its resized method.

The snip’s editor is usually internally locked for writing and reflowing when this method is
called (see also §4.8 “Internal Editor Locks”).

Default implementation: Fills in all boxes with 0.0.

(send a-snip get-flags) → (listof symbol?)

Returns flags defining the behavior of the snip, a list of the following symbols:

• 'is-text — this is a text snip derived from string-snip%; do not set this flag

• 'can-append — this snip can be merged with another snip of the same type

• 'invisible — an invisible snip that the user doesn’t see, such as a newline

• 'hard-newline — a newline must follow the snip

• 'newline — a newline currently follows the snip; only an owning editor should set
this flag

• 'handles-events — this snip can handle keyboard and mouse events when it has
the keyboard focus

• 'handles-all-mouse-events — this snip can handle mouse events that touch the
snip or that immediately follow an event that touches the snip, even if the snip does
not have the keyboard focus

192

• 'width-depends-on-x — this snip’s display width depends on the snip’s x-location
within the editor; e.g.: tab

• 'height-depends-on-y — this snip’s display height depends on the snip’s y-
location within the editor

• 'width-depends-on-y — this snip’s display width depends on the snip’s y-location
within the editor

• 'height-depends-on-x — this snip’s display height depends on the snip’s x-
location within the editor

• 'uses-editor-path — this snip uses its editor’s pathname and should be notified
when the name changes; notification is given as a redundant call to set-admin

(send a-snip get-num-scroll-steps)

→ exact-nonnegative-integer?

Specification: Returns the number of horizontal scroll steps within the snip. For most snips,
this is 1. Embedded editor snips use this method so that scrolling in the owning editor will
step through the lines in the embedded editor.

Default implementation: Returns 1.

(send a-snip get-scroll-step-offset offset)

→ (and/c real? (not/c negative?))

offset : exact-nonnegative-integer?

Specification: If a snip contains more than one vertical scroll step (see get-num-scroll-

steps) then this method is called to find the y-offset into the snip for a given scroll offset.

Default implementation: Returns 0.0.

(send a-snip get-snipclass) → (or/c #f (is-a?/c snip-class%))

Returns the snip’s class, which is used for file saving and cut-and-paste.

Since this method returns the snip class stored by set-snipclass, it is not meant to be
overridden.

(send a-snip get-style) → (is-a?/c style<%>)

Returns the snip’s style. See also set-style.

(send a-snip get-text offset num [flattened?]) → string?

offset : exact-nonnegative-integer?

num : exact-nonnegative-integer?

flattened? : any/c = #f

193

Specification: Returns the text for this snip starting with the position offset within the
snip, and continuing for a total length of num items. If offset is greater than the snip’s
count, then "" is returned. If num is greater than the snip’s count minus the offset, then text
from the offset to the end of the snip is returned.

If flattened? is not #f, then flattened text is returned. See §4.4 “Flattened Text” for a
discussion of flattened vs. non-flattened text.

Default implementation: Returns "".

(send a-snip get-text! buffer

offset

num

buffer-offset) → void?

buffer : (and/c string? (not/c immutable?))

offset : exact-nonnegative-integer?

num : exact-nonnegative-integer?

buffer-offset : exact-nonnegative-integer?

Specification: Like get-text in non-flattened mode, except that the characters are put into
the given mutable string, instead of returned in a newly allocated string.

The buffer string is filled starting at position buffer-offset . The buffer string must
be at least num+buffer-offset characters long.

Default implementation: Calls get-text, except in the case of a string-snip%, in which
case buffer is filled directly.

(send a-snip is-owned?) → boolean?

Returns #t if this snip has an owner, #f otherwise. Note that a snip may be owned by an
editor if it was inserted and then deleted from the editor, if it’s still in the editor’s undo
history.

(send a-snip match? snip) → boolean?

snip : (is-a?/c snip%)

Specification: Return #t if a-snip “matches” snip , #f otherwise.

Default implementation: Returns #t if the snip and a-snip are from the same class and
have the same length.

(send a-snip merge-with prev) → (or/c (is-a?/c snip%) false/c)

prev : (is-a?/c snip%)

Specification: Merges a-snip with prev , returning #f if the snips cannot be merged or a
new merged snip otherwise. This method will only be called if both snips are from the same
class and both have the 'can-append flag.

194

If the returned snip does not have the expected count, its count is forcibly modified. If the
returned snip is already owned by another administrator, a surrogate snip is created.

The snip’s editor is usually internally locked for reading when this method is called (see also
§4.8 “Internal Editor Locks”).

Default implementation: Returns #f.

(send a-snip next) → (or/c (is-a?/c snip%) false/c)

Returns the next snip in the editor owning this snip, or #f if this is the last snip.

In a text editor, the next snip is the snip at the position following this snip’s (last) position.
In a pasteboard, the next snip is the one immediately behind this snip. (See §4.1 “Editor
Structure and Terminology” for information about snip order in pasteboards.)

(send a-snip on-char dc

x

y

editorx

editory

event) → void?

dc : (is-a?/c dc<%>)

x : real?

y : real?

editorx : real?

editory : real?

event : (is-a?/c key-event%)

Specification: Called to handle keyboard events when this snip has the keyboard focus and
can handle events. The drawing context is provided, as well as the snip’s location in display
coordinates (the event uses display coordinates), and the snip’s location in editor coordinates.

The x and y arguments are the snip’s location in display coordinates. The editorx and
editory arguments are the snip’s location in editor coordinates. To get event ’s x location
in snip coordinates, subtract x from (send event get-x).

See also 'handles-events in get-flags.

Default implementation: Does nothing.

(send a-snip on-event dc

x

y

editorx

editory

event) → void?

195

dc : (is-a?/c dc<%>)

x : real?

y : real?

editorx : real?

editory : real?

event : (is-a?/c mouse-event%)

Specification: Called to handle mouse events on the snip when this snip can handle events
and when the snip has the keyboard focus. See on-char for information about the argu-
ments.

The x and y arguments are the snip’s location in display coordinates. The editorx and
editory arguments are the snip’s location in editor coordinates. To get event ’s x location
in snip coordinates, subtract x from (send event get-x).

See also 'handles-events in get-flags.

Default implementation: Does nothing.

(send a-snip own-caret own-it?) → void?

own-it? : any/c

Specification: Notifies the snip that it is or is not allowed to display the caret (indicating
ownership of keyboard focus) in some display. This method is not called to request that the
caret is actually shown or hidden; the draw method is called for all display requests.

The own-it? argument is #t if the snip owns the keyboard focus or #f otherwise.

Default implementation: Does nothing.

(send a-snip partial-offset dc x y len) → real?

dc : (is-a?/c dc<%>)

x : real?

y : real?

len : exact-nonnegative-integer?

Specification: Calculates a partial width for the snip, starting from the first snip item and
continuing for len items. The drawing context and snip’s locations in editor coordinates are
provided. See also get-extent.

The snip’s editor is usually internally locked for writing and reflowing when this method is
called (see also §4.8 “Internal Editor Locks”).

Default implementation: Returns 0.0.

(send a-snip previous) → (or/c (is-a?/c snip%) false/c)

196

Returns the previous snip in the editor owning this snip, or #f if this is the first snip.

(send a-snip release-from-owner) → boolean?

Specification: Asks the snip to try to release itself from its owner. If the snip is not owned or
the release is successful, then #t is returned. Otherwise, #f is returned and the snip remains
owned. See also is-owned?.

Use this method for moving a snip from one editor to another. This method notifies the
snip’s owning editor that someone else really wants control of the snip. It is not necessary
to use this method for "cleaning up" a snip when it is deleted from an editor.

Default implementation: Requests a low-level release from the snip’s owning administrator.

(send a-snip resize w h) → boolean?

w : (and/c real? (not/c negative?))

h : (and/c real? (not/c negative?))

Specification: Resizes the snip. The snip can refuse to be resized by returning #f. Otherwise,
the snip will resize (it must call its administrator’s resized method) and return #t.

See also on-interactive-resize in pasteboard%.

Default implementation: Returns #f.

(send a-snip set-admin admin) → void?

admin : (or/c (is-a?/c snip-admin%) false/c)

Sets the snip’s administrator. Only an administrator should call this method.

The default method sets the internal state of a snip to record its administrator. It will not
modify this state if the snip is already owned by an administrator and the administrator has
not blessed the transition. If the administrator state of a snip is not modified as expected
during a sensitive call to this method by an instance of text% or pasteboard%, the internal
state may be forcibly modified (if the new administrator was #f) or a surrogate snip may be
created (if the snip was expected to receive a new administrator).

The snip’s (new) editor is usually internally locked for reading when this method is called
(see also §4.8 “Internal Editor Locks”).

(send a-snip set-count c) → void?

c : (integer-in 1 100000)

Specification: Sets the snip’s count (i.e., the number of items within the snip).

The snip’s count may be changed by the system (in extreme cases to maintain consistency)
without calling this method.

197

Default implementation: Sets the snip’s count and notifies the snip’s administrator that the
snip’s size has changed.

(send a-snip set-flags flags) → void?

flags : (listof symbol?)

Specification: Sets the snip’s flags. See get-flags.

Default implementation: Sets the snip flags and notifies the snip’s editor that its flags have
changed.

(send a-snip set-snipclass class) → void?

class : (is-a?/c snip-class%)

Sets the snip’s class, used for file saving and cut-and-paste.

This method stores the snip class internally; other editor objects may access the snip class
directly, instead of through the get-snipclass method.

(send a-snip set-style style) → void?

style : (is-a?/c style<%>)

Sets the snip’s style if it is not owned by any editor. See also get-style and is-owned?.

The snip’s style may be changed by the system without calling this method.

(send a-snip set-unmodified) → void?

Specification: Called by the snip’s administrator to notify the snip that its changed have been
saved. The next time snip’s internal state is modified by the user, it should call modified
to report the state change (but only on the first change after this method is called, or the first
change after the snip acquires a new administrator).

Default implementation: Does nothing.

(send a-snip size-cache-invalid) → void?

Specification: Called to notify the snip that it may need to recalculate its display arguments
(width, height, etc.) when it is next asked, because the style or location of the snip has
changed.

The snip’s (new) editor is usually internally locked for reflowing when this method is called
(see also §4.8 “Internal Editor Locks”).

Default implementation: Does nothing.

198

(send a-snip split position first second) → void?

position : exact-nonnegative-integer?

first : (box/c (is-a?/c snip%))

second : (box/c (is-a?/c snip%))

Specification: Splits the snip into two snips. This is called when a snip has more than one
item and something is inserted between two items.

The arguments are a relative position integer and two boxes. The position integer specifies
how many items should be given to the new first snip; the rest go to the new second snip.
The two boxes must be filled with two new snips. (The old snip is no longer used, so it can
be recycled as a new snip.)

If the returned snips do not have the expected counts, their counts are forcibly modified. If
either returned snip is already owned by another administrator, a surrogate snip is created.

The snip’s editor is usually internally locked for reading when this method is called (see also
§4.8 “Internal Editor Locks”).

Default implementation: Creates a new snip% instance with position elements, and mod-
ifies a-snip to decrement its count by position . The nest snip is installed into first and
a-snip is installed into second .

(send a-snip write f) → void?

f : (is-a?/c editor-stream-out%)

Writes the snip to the given stream. (Snip reading is handled by the snip class.) Style
information about the snip (i.e., the content of get-style) will be saved and restored auto-
matically.

5.6 snip-admin%

snip-admin% : class?

superclass: object%

See §4.1.1 “Administrators” for information about the role of administrators. The snip-

admin% class is never instantiated directly. It is not even instantiated through derived classes
by most programmers; each text% or pasteboard% object creates its own administrator.
However, it may be useful to derive a new instance of this class to display snips in a new
context. Also, it may be useful to call the methods of an existing administrator from an
owned snip.

To create a new snip-admin% class, all methods described here must be overridden. They
are all invoked by the administrator’s snip.

199

Because a snip-admin% object typically owns more than one snip, many methods require a
snip% object as an argument.

(new snip-admin%) → (is-a?/c snip-admin%)

Creates a (useless) editor administrator.

(send a-snip-admin get-dc) → (or/c (is-a?/c dc<%>) false/c)

Gets a drawing context suitable for determining display size information. If the snip is not
displayed, #f is returned.

(send a-snip-admin get-editor)

→ (or/c (is-a?/c text%) (is-a?/c pasteboard%))

Returns the editor that this administrator reports to (directly or indirectly).

(send a-snip-admin get-view x y w h [snip]) → void?

x : (or/c (box/c real?) false/c)

y : (or/c (box/c real?) false/c)

w : (or/c (box/c (and/c real? (not/c negative?))) false/c)

h : (or/c (box/c (and/c real? (not/c negative?))) false/c)

snip : (or/c (is-a?/c snip%) false/c) = #f

Specification: Gets the location and size of the visible region of a snip in snip coordinates.
The result is undefined if the given snip is not managed by this administrator.

If snip is not #f, the current visible region of the snip is installed in the boxes x , y , w , and
h . The x and y values are relative to the snip’s top-left corner. The w and h values may be
larger than the snip itself.

If snip is #f, the total visible region of the snip’s top-level display is returned in editor
coordinates. Using #f for snip is analogous to using #t for full? in get-view in editor-
admin%.

If no snip is specified, then the location and size of the snip’s editor are returned, instead, in
editor coordinates.

See also get-view in editor-admin%.

Default implementation: Fills all boxes with 0.0.

(send a-snip-admin get-view-size h w) → void?

h : (or/c (box/c (and/c real? (not/c negative?))) false/c)

w : (or/c (box/c (and/c real? (not/c negative?))) false/c)

200

Specification: Gets the visible size of the administrator’s display region.

If the display is an editor canvas, see also reflow-container.

Default implementation: Fills all boxes with 0.0.

(send a-snip-admin modified snip modified?) → void?

snip : (is-a?/c snip%)

modified? : any/c

Specification: Called by a snip to report that its modification state has changed to either
modified or unmodified.

Default implementation: Does nothing.

(send a-snip-admin needs-update snip

localx

localy

w

h) → void?

snip : (is-a?/c snip%)

localx : real?

localy : real?

w : (and/c real? (not/c negative?))

h : (and/c real? (not/c negative?))

Specification: Called by the snip to request that the snip’s display needs to be updated.
The administrator determines when to actually update the snip; the snip’s draw method is
eventually called.

The localx , localy , w , and h arguments specify a region of the snip to be refreshed (in
snip coordinates).

No update occurs if the given snip is not managed by this administrator.

Default implementation: Does nothing.

(send a-snip-admin popup-menu menu snip x y) → boolean?

menu : (is-a?/c popup-menu%)

snip : (is-a?/c snip%)

x : real?

y : real?

Specification: Opens a popup menu in the display for this snip’s editor. The result is #t if
the popup succeeds, #f otherwise (independent of whether the user selects an item in the
popup menu).

201

The menu is placed at x and y in snip coordinates.

While the menu is popped up, its target is set to the top-level editor in the display for this
snip’s editor. See get-popup-target for more information.

Default implementation: Returns #f.

(send a-snip-admin recounted snip refresh?) → void?

snip : (is-a?/c snip%)

refresh? : any/c

Specification: Called by a snip to notify the administrator that the specified snip has changed
its count. The snip generally needs to be updated after changing its count, but the snip
decides whether the update should occur immediately.

If refresh? is not #f, then the snip is requesting to be updated immediately. Otherwise,
needs-update must eventually be called as well.

The method call is ignored if the given snip is not managed by this administrator.

Default implementation: Does nothing.

(send a-snip-admin release-snip snip) → boolean?

snip : (is-a?/c snip%)

Specification: Requests that the specified snip be released. If this administrator is not the
snip’s owner or if the snip cannot be released, then #f is returned. Otherwise, #t is returned
and the snip is no longer owned.

See also release-snip in editor<%> .

The result is #f if the given snip is not managed by this administrator.

Default implementation: Returns #f.

(send a-snip-admin resized snip refresh?) → void?

snip : (is-a?/c snip%)

refresh? : any/c

Specification: Called by a snip to notify the administrator that the specified snip has changed
its display size. The snip generally needs to be updated after a resize, but the snip decides
whether the update should occur immediately.

If refresh? is not #f, then the snip is requesting to be updated immediately, as if calling
needs-update. Otherwise, needs-update must eventually be called as well.

The method call is ignored if the given snip is not managed by this administrator.

202

Default implementation: Does nothing.

(send a-snip-admin scroll-to snip

localx

localy

w

h

refresh?

[bias]) → boolean?

snip : (is-a?/c snip%)

localx : real?

localy : real?

w : (and/c real? (not/c negative?))

h : (and/c real? (not/c negative?))

refresh? : any/c

bias : (one-of/c 'start 'end 'none) = 'none

Specification: Called by the snip to request scrolling so that the given region is visible. The
snip generally needs to be updated after a scroll, but the snip decides whether the update
should occur immediately.

The localx , localy , w , and h arguments specify a region of the snip to be made visible
by the scroll (in snip coordinates).

If refresh? is not #f, then the editor is requesting to be updated immediately.

The bias argument is one of:

• 'start — if the range doesn’t fit in the visible area, show the top-left region

• 'none — no special scrolling instructions

• 'end — if the range doesn’t fit in the visible area, show the bottom-right region

The result is #t if the editor is scrolled, #f otherwise.

The method call is ignored (and the result is #f) if the given snip is not managed by this
administrator.

Default implementation: Returns #f.

(send a-snip-admin set-caret-owner snip

domain) → void?

snip : (is-a?/c snip%)

domain : (one-of/c 'immediate 'display 'global)

203

Specification: Requests that the keyboard focus is assigned to the specified snip. If the
request is granted, the own-caret method of the snip is called.

See set-caret-owner for information about the possible values of domain .

The method call is ignored if the given snip is not managed by this administrator.

Default implementation: Does nothing.

(send a-snip-admin update-cursor) → void?

Specification: Queues an update for the cursor in the display for this snip’s editor. The actual
cursor used will be determined by calling the snip’s adjust-cursor method as appropriate.

Default implementation: Does nothing.

(send a-snip-admin get-line-spacing)

→ (and/c real? (not/c negative?))

Specification: Returns the spacing inserted by the snip’s editor between each line. Default
implementation: Returns 0.0

(send a-snip-admin get-selected-text-color) → void?

Specification: Returns the color that is used to draw selected text or #f if selected text is
drawn with its usual color. Default implementation: Returns #f.

(send a-snip-admin call-with-busy-cursor thunk) → any

thunk : (-> any)

Specification: Calls thunk while changing the cursor to a watch cursor for all windows in
the current eventspace.

Default implementation: Does nothing.

(send a-snip-admin get-tabs [length
tab-width

in-units]) → (listof real?)

length : (or/c (box/c exact-nonnegative-integer?) #f) = #f

tab-width : (or/c (box/c real?) #f) = #f

in-units : (or/c (box/c any/c) #f) = #f

Specification: Returns the current tab-position array as a list.

The length box is filled with the length of the tab array (and therefore the returned list),
unless length is #f. The tab-width box is filled with the width used for tabs past the end

204

of the tab array, unless tab-width is #f. The in-units box is filled with #t if the tabs are
specified in canvas units or #f if they are specified in space-widths, unless in-units is #f.

Default implementation: Returns null.

5.7 snip-class%

snip-class% : class?

superclass: object%

Useful snip classes are defined by instantiating derived subclasses of snip-class%. A class
derived from snip-class% serves as a kind of “meta-class” for snips; each snip is associated
with an instance of snip-class% as its snip class.

In deriving a new snip-class% class, override the read method. Then, for each instance
of the derived class (where each instance corresponds to a single snip class):

• Set the classname using set-classname.

• Set the version using set-version.

• Install the class into the list returned by get-the-snip-class-list using the add

method. Note that if the same name is inserted into the same class list multiple times,
all but the first insertion is ignored.

See also §4.2.1.1 “Snip Classes”.

(new snip-class%) → (is-a?/c snip-class%)

Creates a (useless) snip class.

(send a-snip-class get-classname) → string?

Returns the class’s name, a string uniquely designating this snip class. For example, the
standard text snip classname is "wxtext". Names beginning with wx are reserved.

A snip class name should usually have the form "((lib ...)\n(lib ...))" to enable
on-demand loading of the class. See §4.2.1.1 “Snip Classes” for details.

(send a-snip-class get-version) → exact-integer?

Returns the version of this snip class. When attempting to load a file containing a snip with
the same class name but a different version, the user is warned.

205

(send a-snip-class read f) → (or/c (is-a?/c snip%) false/c)

f : (is-a?/c editor-stream-in%)

Specification: Reads a snip from a given stream, returning a newly created snip as the result
or #f if there is an error.

Default implementation: Returns #f.

(send a-snip-class read-header f) → boolean?

f : (is-a?/c editor-stream-in%)

Specification: Called to read header information that may be useful for every snip read in
this class. This method is only called once per editor read session, and only if the stream
contains header information for this class.

The return value is #f if a read error occurs or anything else otherwise.

See also write-header.

Default implementation: Returns #t.

(send a-snip-class reading-version stream) → exact-integer?

stream : (is-a?/c editor-stream-in%)

Returns the version number specified for this snip class for snips currently being read from
the given stream.

(send a-snip-class set-classname name) → void?

name : string?

Sets the class’s name. See also get-classname.

(send a-snip-class set-version v) → void?

v : exact-integer?

Sets the version of this class. See get-version.

(send a-snip-class write-header stream) → boolean?

stream : (is-a?/c editor-stream-out%)

Specification: Called to write header information that may be useful for every snip written
for this class. This method is only called once per editor write session, and only if the editor
contains snips in this class.

206

When reading the snips back in, read-header will only be called if write-header writes
some data to the stream.

The return value is #f if a write error occurs or anything else otherwise.

Default implementation: Returns #t.

5.8 snip-class-list<%>

snip-class-list<%> : interface?

Each eventspace has its own instance of snip-class-list<%>, obtained with (get-the-

snip-class-list). New instances cannot be created directly. Each instance keeps a list
of snip classes. This list is needed for loading snips from a file. See also §4.2.1.1 “Snip
Classes”.

(send a-snip-class-list add snipclass) → void?

snipclass : (is-a?/c snip-class%)

Adds a snip class to the list. If a class with the same name already exists in the list, this one
will not be added.

(send a-snip-class-list find name)

→ (or/c (is-a?/c snip-class%) false/c)

name : string?

Finds a snip class from the list with the given name, returning #f if none is found.

(send a-snip-class-list find-position class)

→ exact-nonnegative-integer?

class : (is-a?/c snip-class%)

Returns an index into the list for the specified class.

(send a-snip-class-list nth n)

→ (or/c (is-a?/c snip-class%) false/c)

n : exact-nonnegative-integer?

Returns the n th class in the list, or #f if the list has n classes or less.

(send a-snip-class-list number) → exact-nonnegative-integer?

Returns the number of snip classes in the list.

207

5.9 string-snip%

string-snip% : class?

superclass: snip%

An instance of string-snip% is created automatically when text is inserted into a text
editor. See also on-new-string-snip in text%.

(make-object string-snip% [allocsize]) → (is-a?/c string-snip%)

allocsize : exact-nonnegative-integer? = 0

(make-object string-snip% s) → (is-a?/c string-snip%)

s : string?

Creates a string snip whose initial content is s , if supplied, empty otherwise. In the latter
case, the optional allocsize argument is a hint about how much storage space for text
should be initially allocated by the snip.

(send a-string-snip insert s len [pos]) → void?

s : string?

len : exact-nonnegative-integer?

pos : exact-nonnegative-integer? = 0

Inserts s (with length len) into the snip at relative position pos within the snip.

(send a-string-snip read len f) → void?

len : exact-nonnegative-integer?

f : (is-a?/c editor-stream-in%)

Reads the snip’s data from the given stream.

The len argument specifies the maximum length of the text to be read. (When a text snip
is written to a file, the very first field is the length of the text contained in the snip.) This
method is usually invoked by the text snip class’s read method.

5.10 style<%>

style<%> : interface?

A style<%> object encapsulates drawing information (font, color, alignment, etc.) in a
hierarchical manner. A style<%> object always exists within the context of a style-list%
object and is never created except by a style-list% object.

See also §4.1.2 “Styles”.

208

(send a-style get-alignment) → (one-of/c 'top 'center 'bottom)

Returns the style’s alignment: 'top, 'center, or 'bottom.

(send a-style get-background) → (is-a?/c color%)

Returns the style’s background color.

(send a-style get-base-style)

→ (or/c (is-a?/c style<%>) false/c)

Returns the style’s base style. See §4.1.2 “Styles” for more information. The return value is
#f only for the basic style in the list.

(send a-style get-delta delta) → void?

delta : (is-a?/c style-delta%)

Mutates delta , changing it to match the style’s delta, if the style is not a join style. See
§4.1.2 “Styles” for more information.

(send a-style get-face) → (or/c string? false/c)

Returns the style’s face name. See font%.

(send a-style get-family)

→ (one-of/c 'default 'decorative 'roman 'script

'swiss 'modern 'symbol 'system)

Returns the style’s font family. See font%.

(send a-style get-font) → (is-a?/c font%)

Returns the style’s font information.

(send a-style get-foreground) → (is-a?/c color%)

Returns the style’s foreground color.

(send a-style get-name) → (or/c string? false/c)

Returns the style’s name, or #f if it is unnamed. Style names are only set through the style’s
style-list% object.

209

(send a-style get-shift-style) → (is-a?/c style<%>)

Returns the style’s shift style if it is a join style. Otherwise, the root style is returned. See
§4.1.2 “Styles” for more information.

(send a-style get-size) → (integer-in 0 255)

Returns the style’s font size.

(send a-style get-size-in-pixels) → boolean?

Returns #t if the style size is in pixels, instead of points, or #f otherwise.

(send a-style get-smoothing)

→ (one-of/c 'default 'partly-smoothed 'smoothed 'unsmoothed)

Returns the style’s font smoothing. See font%.

(send a-style get-style) → (one-of/c 'normal 'italic 'slant)

Returns the style’s font style. See font%.

(send a-style get-text-descent dc)

→ (and/c real? (not/c negative?))

dc : (is-a?/c dc<%>)

Returns the descent of text using this style in a given DC.

(send a-style get-text-height dc)

→ (and/c real? (not/c negative?))

dc : (is-a?/c dc<%>)

Returns the height of text using this style in a given DC.

(send a-style get-text-space dc)

→ (and/c real? (not/c negative?))

dc : (is-a?/c dc<%>)

Returns the vertical spacing for text using this style in a given DC.

(send a-style get-text-width dc)

→ (and/c real? (not/c negative?))

dc : (is-a?/c dc<%>)

210

Returns the width of a space character using this style in a given DC.

(send a-style get-transparent-text-backing) → boolean?

Returns #t if text is drawn without erasing the text background or #f otherwise.

(send a-style get-underlined) → boolean?

Returns #t if the style is underlined or #f otherwise.

(send a-style get-weight) → (one-of/c 'normal 'bold 'light)

Returns the style’s font weight. See font%.

(send a-style is-join?) → boolean?

Returns #t if the style is a join style or #f otherwise. See §4.1.2 “Styles” for more informa-
tion.

(send a-style set-base-style base-style) → void?

base-style : (is-a?/c style<%>)

Sets the style’s base style and recomputes the style’s font, etc. See §4.1.2 “Styles” for more
information.

(send a-style set-delta delta) → void?

delta : (is-a?/c style-delta%)

Sets the style’s delta (if it is not a join style) and recomputes the style’s font, etc. See §4.1.2
“Styles” for more information.

(send a-style set-shift-style style) → void?

style : (is-a?/c style<%>)

Sets the style’s shift style (if it is a join style) and recomputes the style’s font, etc. See §4.1.2
“Styles” for more information.

(send a-style switch-to dc old-style) → void?

dc : (is-a?/c dc<%>)

old-style : (or/c (is-a?/c style<%>) false/c)

Sets the font, pen color, etc. of the given drawing context. If oldstyle is not #f, only
differences between the given style and this one are applied to the drawing context.

211

5.11 style-delta%

style-delta% : class?

superclass: object%

A style-delta% object encapsulates a style change. The changes expressible by a delta
include:

• changing the font family

• changing the font face

• changing the font size to a new value

• enlarging the font by an additive amount

• enlarging the font by a multiplicative amount, etc.

• changing the font style (normal, italic, or slant)

• toggling the font style

• changing the font to italic if it is currently slant , etc.

• changing the font weight, etc.

• changing the underline, etc.

• changing the vertical alignment, etc.

• changing the foreground color

• dimming or brightening the foreground color, etc.

• changing the background color, etc.

• changing text backing transparency

The set-delta method is convenient for most style delta settings; it takes a high-level delta
specification and sets the internal delta information.

To take full advantage of a style delta, it is necessary to understand the internal on/off set-
tings that can be manipulated through methods such as set-weight-on. For example, the
font weight change is specified through the weight-on and weight-off internal settings.
Roughly, weight-on turns on a weight setting when it is not present and weight-off turns
off a weight setting when it is present. These two interact precisely in the following way:

• If both weight-on and weight-off are set to 'base, then the font weight is not
changed.

212

• If weight-on is not 'base, then the weight is set to weight-on.

• If weight-off is not 'base, then the weight will be set back to 'normal when the
base style has the weight weight-off.

• If both weight-on and weight-off are set to the same value, then the weight is
toggled with respect to that value: if the base style has the weight weight-on, then
weight is changed to 'normal; if the base style has a different weight, it is changed to
weight-on.

• If both weight-on and weight-off are set, but to different values, then the weight
is changed to weight-on only when the base style has the weight weight-off.

Font styles, smoothing, underlining, and alignment work in an analogous manner.

The possible values for alignment-on and alignment-off are:

• 'base

• 'top

• 'center

• 'bottom

The possible values for style-on and style-off are:

• 'base

• 'normal

• 'italic

• 'slant

The possible values for smoothing-on and smoothing-off are:

• 'base

• 'default

• 'partly-smoothed

• 'smoothed

• 'unsmoothed

The possible values for underlined-on and underlined-off are:

213

• #f (acts like 'base)

• #t

The possible values for size-in-pixels-on and size-in-pixels-off are:

• #f (acts like 'base)

• #t

The possible values for transparent-text-backing-on and transparent-text-

backing-off are:

• #f (acts like 'base)

• #t

The possible values for weight-on and weight-off are:

• 'base

• 'normal

• 'bold

• 'light

The family and face settings in a style delta are interdependent:

• When a delta’s face is #f and its family is 'base, then neither the face nor family are
modified by the delta.

• When a delta’s face is a string and its family is 'base, then only face is modified by
the delta.

• When a delta’s family is not 'base, then both the face and family are modified by the
delta. If the delta’s face is #f, then applying the delta sets a style’s face to #f, so that
the family setting prevails in choosing a font.

(make-object style-delta% [change-command])
→ (is-a?/c style-delta%)

change-command :

(or/c 'change-nothing

'change-normal

'change-toggle-underline

'change-toggle-size-in-pixels

'change-normal-color

'change-bold)

= 'change-nothing

214

(make-object style-delta% change-command v)

→ (is-a?/c style-delta%)

change-command :

(or/c 'change-family

'change-style

'change-toggle-style

'change-weight

'change-toggle-weight

'change-smoothing

'change-toggle-smoothing

'change-alignment)

v : symbol

(make-object style-delta% change-command v)

→ (is-a?/c style-delta%)

change-command :
(or/c 'change-size

'change-bigger

'change-smaller)

v : (integer-in 0 255)

(make-object style-delta% change-command v)

→ (is-a?/c style-delta%)

change-command :
(or/c 'change-underline

'change-size-in-pixels)

v : any/c

The initialization arguments are passed on to set-delta.

(send a-style-delta collapse delta) → boolean?

delta : (is-a?/c style-delta%)

Tries to collapse into a single delta the changes that would be made by applying this delta
after a given delta. If the return value is #f, then it is impossible to perform the collapse.
Otherwise, the return value is #t and this delta will contain the collapsed change specifica-
tion.

(send a-style-delta copy delta) → void?

delta : (is-a?/c style-delta%)

Copies the given style delta’s settings into this one.

(send a-style-delta equal? delta) → boolean?

delta : (is-a?/c style-delta%)

Returns #t if the given delta is equivalent to this one in all contexts or #f otherwise.

(send a-style-delta get-alignment-off)

→ (or/c 'base 'top 'center 'bottom)

215

See style-delta%.

(send a-style-delta get-alignment-on)

→ (or/c 'base 'top 'center 'bottom)

See style-delta%.

(send a-style-delta get-background-add)

→ (is-a?/c add-color<%>)

Gets the object additive color shift for the background (applied after the multiplicative fac-
tor). Call this add-color<%> object’s methods to change the style delta’s additive back-
ground color shift.

(send a-style-delta get-background-mult)

→ (is-a?/c mult-color<%>)

Gets the multiplicative color shift for the background (applied before the additive factor).
Call this mult-color<%> object’s methods to change the style delta’s multiplicative back-
ground color shift.

(send a-style-delta get-face) → (or/c string? false/c)

Gets the delta’s font face string. If this string is #f and the family is 'base when the delta
is applied to a style, the style’s face and family are not changed. However, if the face string
is #f and the family is not 'base, then the style’s face is changed to #f.

See also get-family.

(send a-style-delta get-family)

→ (or/c 'base 'default 'decorative 'roman 'script

'swiss 'modern 'symbol 'system)

Returns the delta’s font family. The possible values are

• 'base — no change to family

• 'default

• 'decorative

• 'roman

• 'script

• 'swiss

216

• 'modern (fixed width)

• 'symbol (Greek letters)

• 'system (used to draw control labels)

See also get-face.

(send a-style-delta get-foreground-add)

→ (is-a?/c add-color<%>)

Gets the additive color shift for the foreground (applied after the multiplicative factor). Call
this add-color<%> object’s methods to change the style delta’s additive foreground color
shift.

(send a-style-delta get-foreground-mult)

→ (is-a?/c mult-color<%>)

Gets the multiplicative color shift for the foreground (applied before the additive factor). Call
this mult-color<%> object’s methods to change the style delta’s multiplicative foreground
color shift.

(send a-style-delta get-size-add) → (integer-in 0 255)

Gets the additive font size shift (applied after the multiplicative factor).

(send a-style-delta get-size-in-pixels-off) → boolean?

See style-delta%.

(send a-style-delta get-size-in-pixels-on) → boolean?

See style-delta%.

(send a-style-delta get-size-mult) → real?

Gets the multiplicative font size shift (applied before the additive factor).

(send a-style-delta get-smoothing-off)

→ (or/c 'base 'default 'partly-smoothed 'smoothed 'unsmoothed)

See style-delta%.

(send a-style-delta get-smoothing-on)

→ (or/c 'base 'default 'partly-smoothed 'smoothed 'unsmoothed)

217

See style-delta%.

(send a-style-delta get-style-off)

→ (or/c 'base 'normal 'italic 'slant)

See style-delta%.

(send a-style-delta get-style-on)

→ (or/c 'base 'normal 'italic 'slant)

See style-delta%.

(send a-style-delta get-transparent-text-backing-off)

→ boolean?

See style-delta%.

(send a-style-delta get-transparent-text-backing-on)

→ boolean?

See style-delta%.

(send a-style-delta get-underlined-off) → boolean?

See style-delta%.

(send a-style-delta get-underlined-on) → boolean?

See style-delta%.

(send a-style-delta get-weight-off)

→ (or/c 'base 'normal 'bold 'light)

See style-delta%.

(send a-style-delta get-weight-on)

→ (or/c 'base 'normal 'bold 'light)

See style-delta%.

(send a-style-delta set-alignment-off v) → void?

v : (or/c 'base 'top 'center 'bottom)

See style-delta%.

218

(send a-style-delta set-alignment-on v) → void?

v : (or/c 'base 'top 'center 'bottom)

See style-delta%.

(send a-style-delta set-delta [change-command])
→ (is-a?/c style-delta%)

change-command :

(or/c 'change-nothing

'change-normal

'change-toggle-underline

'change-toggle-size-in-pixels

'change-normal-color

'change-bold)

= 'change-nothing

(send a-style-delta set-delta change-command

param)

→ (is-a?/c style-delta%)

change-command :

(or/c 'change-family

'change-style

'change-toggle-style

'change-weight

'change-toggle-weight

'change-smoothing

'change-toggle-smoothing

'change-alignment)

param : symbol

(send a-style-delta set-delta change-command

param)

→ (is-a?/c style-delta%)

change-command :
(or/c 'change-size

'change-bigger

'change-smaller)

param : (integer-in 0 255)

(send a-style-delta set-delta change-command

on?)

→ (is-a?/c style-delta%)

change-command :
(or/c 'change-underline

'change-size-in-pixels)

on? : any/c

Configures the delta with high-level specifications. The return value is the delta itself.

Except for 'change-nothing and 'change-normal, the command only changes part of
the delta. Thus, applying 'change-bold and then 'change-italic sets the delta for both
the style and weight change.

219

The change-command argument specifies how the delta is changed; the possible values are:

• 'change-nothing — reset all changes

• 'change-normal — turn off all styles and resizings

• 'change-toggle-underline — underline regions that are currently not underlined,
and vice versa

• 'change-toggle-size-in-pixels — interpret sizes in pixels for regions that are
currently interpreted in points, and vice versa

• 'change-normal-color — change the foreground and background to black and
white, respectively

• 'change-italic — change the style of the font to italic

• 'change-bold — change the weight of the font to bold

• 'change-family — change the font family (param is a family; see font%); see also
get-family

• 'change-style — change the style of the font (param is a style; see font%)

• 'change-toggle-style — toggle the style of the font (param is a style; see font%)

• 'change-weight — change the weight of the font (param is a weight; see font%)

• 'change-toggle-weight — toggle the weight of the font (param is a weight; see
font%)

• 'change-smoothing — change the smoothing of the font (param is a smoothing;
see font%)

• 'change-toggle-smoothing — toggle the smoothing of the font (param is a
smoothing; see font%)

• 'change-alignment — change the alignment (param is an alignment; see style-

delta%)

• 'change-size — change the size to an absolute value (param is a size)

• 'change-bigger — make the text larger (param is an additive amount)

• 'change-smaller — make the text smaller (param is an additive amount)

• 'change-underline — set the underline status to either underlined or plain

• 'change-size-in-pixels — set the size interpretation to pixels or points

220

(send a-style-delta set-delta-background name)

→ (is-a?/c style-delta%)

name : string?

(send a-style-delta set-delta-background color)

→ (is-a?/c style-delta%)

color : (is-a?/c color%)

Makes the delta encode a background color change to match the absolute color given; that is,
it sets the multiplicative factors to 0.0 in the result of get-background-mult, and it sets
the additive values in the result of get-background-add to the specified color’s values. In
addition, it also disables transparent text backing by setting transparent-text-backing-
on to #f and transparent-text-backing-off to #t. The return value of the method is
the delta itself.

For the case that a string color name is supplied, see color-database<%>.

(send a-style-delta set-delta-face name

[family])
→ (is-a?/c style-delta%)

name : string?

family :
(or/c 'base 'default 'decorative 'roman

'script 'swiss 'modern 'symbol 'system)

= 'default

Like set-face, but sets the family at the same time.

The return value is a-style-delta .

(send a-style-delta set-delta-foreground name)

→ (is-a?/c style-delta%)

name : string?

(send a-style-delta set-delta-foreground color)

→ (is-a?/c style-delta%)

color : (is-a?/c color%)

Makes the delta encode a foreground color change to match the absolute color given; that is,
it sets the multiplicative factors to 0.0 in the result of get-foreground-mult, and it sets
the additive values in the result of get-foreground-add to the specified color’s values.
The return value of the method is the delta itself.

For the case that a string color name is supplied, see color-database<%>.

(send a-style-delta set-face v) → void?

v : (or/c string? false/c)

221

See get-face. See also set-delta-face.

(send a-style-delta set-family v) → void?

v :
(or/c 'base 'default 'decorative 'roman 'script

'swiss 'modern 'symbol 'system)

Sets the delta’s font family. See get-family.

(send a-style-delta set-size-add v) → void?

v : (integer-in 0 255)

Sets the additive font size shift (applied after the multiplicative factor).

(send a-style-delta set-size-in-pixels-off v) → void?

v : any/c

See style-delta%.

(send a-style-delta set-size-in-pixels-on v) → void?

v : any/c

See style-delta%.

(send a-style-delta set-size-mult v) → void?

v : real?

Sets the multiplicative font size shift (applied before the additive factor).

(send a-style-delta set-smoothing-off v) → void?

v : (or/c 'base 'default 'partly-smoothed 'smoothed 'unsmoothed)

See style-delta%.

(send a-style-delta set-smoothing-on v) → void?

v : (or/c 'base 'default 'partly-smoothed 'smoothed 'unsmoothed)

See style-delta%.

(send a-style-delta set-style-off v) → void?

v : (or/c 'base 'normal 'italic 'slant)

See style-delta%.

(send a-style-delta set-style-on v) → void?

v : (or/c 'base 'normal 'italic 'slant)

222

See style-delta%.

(send a-style-delta set-transparent-text-backing-off v) → void?

v : any/c

See style-delta%.

(send a-style-delta set-transparent-text-backing-on v) → void?

v : any/c

See style-delta%.

(send a-style-delta set-underlined-off v) → void?

v : any/c

See style-delta%.

(send a-style-delta set-underlined-on v) → void?

v : any/c

See style-delta%.

(send a-style-delta set-weight-off v) → void?

v : (or/c 'base 'normal 'bold 'light)

See style-delta%.

(send a-style-delta set-weight-on v) → void?

v : (or/c 'base 'normal 'bold 'light)

See style-delta%.

5.12 style-list%

style-list% : class?

superclass: object%

A style-list% object contains a set of style<%> objects and maintains the hierarchical
relationships between them. A style<%> object can only be created through the methods
of a style-list% object. There is a global style list object, the-style-list, but any
number of independent lists can be created for separate style hierarchies. Each editor creates
its own private style list.

See §4.1.2 “Styles” for more information.

223

(new style-list%) → (is-a?/c style-list%)

The root style, named "Basic", is automatically created.

(send a-style-list basic-style) → (is-a?/c style<%>)

Returns the root style. Each style list has its own root style.

See also §9 “Preferences” for information about the 'GRacket:default-font-size pref-
erence.

(send a-style-list convert style) → (is-a?/c style<%>)

style : (is-a?/c style<%>)

Converts style , which can be from another style list, to a style in this list. If style is
already in this list, then style is returned. If style is named and a style by that name is
already in this list, then the existing named style is returned. Otherwise, the style is converted
by converting its base style (and shift style if style is a join style) and then creating a new
style in this list.

(send a-style-list find-named-style name)

→ (or/c (is-a?/c style<%>) false/c)

name : string?

Finds a style by name. If no such style can be found, #f is returned.

(send a-style-list find-or-create-join-style base-style

shift-style)

→ (is-a?/c style<%>)

base-style : (is-a?/c style<%>)

shift-style : (is-a?/c style<%>)

Creates a new join style, or finds an appropriate existing one. The returned style is always
unnamed. See §4.1.2 “Styles” for more information.

The base-style argument must be a style within this style list.

(send a-style-list find-or-create-style base-style

delta)

→ (is-a?/c style<%>)

base-style : (is-a?/c style<%>)

delta : (is-a?/c style-delta%)

Creates a new derived style, or finds an appropriate existing one. The returned style is always
unnamed. See §4.1.2 “Styles” for more information.

224

The base-style argument must be a style within this style list. If base-style is not a
join style, if it has no name, and if its delta can be collapsed with delta (see collapse in
style-delta%), then the collapsed delta is used in place of delta , and the base style of
base-style is used in place of base-style ; this collapsing and substitution of base styles
is performed recursively.

(send a-style-list forget-notification key) → void?

key : any/c

See notify-on-change.

The key argument is the value returned by notify-on-change.

(send a-style-list index-to-style i)

→ (or/c (is-a?/c style<%>) false/c)

i : exact-nonnegative-integer?

Returns the style associated with the given index, or #f for a bad index. See also style-

to-index.

(send a-style-list new-named-style name

like-style)

→ (is-a?/c style<%>)

name : string?

like-style : (is-a?/c style<%>)

Creates a new named style, unless the name is already being used.

If name is already being used, then like-style is ignored and the old style associated to the
name is returned. Otherwise, a new style is created for name with the same characteristics
(i.e., the same base style and same style delta or shift style) as like-style .

The like-style style must be in this style list, otherwise the named style is derived from
the basic style with an empty style delta.

(send a-style-list notify-on-change f) → any/c

f : ((or/c (is-a?/c style<%>) #f) . -> . any)

Attaches a callback to the style list, retaining the callback only weakly (in the sense of
make-weak-box). The callback is invoked whenever a style is modified.

Often, a change in one style will trigger a change in several other derived styles; to allow
clients to handle all the changes in a batch, #f is passed in as the changing style after a set
of styles has been processed.

The return value from notify-on-change is an opaque key to be used with forget-

notification.

225

(send a-style-list number) → exact-nonnegative-integer?

Returns the number of styles in the list.

(send a-style-list replace-named-style name

like-style)

→ (is-a?/c style<%>)

name : string?

like-style : (is-a?/c style<%>)

Like new-named-style, except that if the name is already mapped to a style, the existing
mapping is replaced.

(send a-style-list style-to-index style)

→ (or/c exact-nonnegative-integer? false/c)

style : (is-a?/c style<%>)

Returns the index for a particular style. The index for a style’s base style (and shift style, if
it is a join style) is guaranteed to be lower than the style’s own index. (As a result, the root
style’s index is always 0.) A style’s index can change whenever a new style is added to the
list, or the base style or shift style of another style is changed.

If the given style is not in this list, #f is returned.

5.13 tab-snip%

tab-snip% : class?

superclass: string-snip%

An instance of tab-snip% is created automatically when a tab is inserted into an editor.

(new tab-snip%) → (is-a?/c tab-snip%)

Creates a snip for a single tab, though the tab is initially empty.

Normally, a single tab is inserted into a tab-snip% object using the insert method.

The tab’s content is not drawn, through it is used when determining the size of a single
character in editors where tabbing is determined by the character width (see set-tabs); if
the content is a single tab character (the normal case), then the average character width of
snip’s font is used as the tab’s width.

226

6 Editor Classes

Editors:

editor<%>

|- text%

|- pasteboard%

Editor Snips:

snip%

|- editor-snip%

Displays, Administrators, and Mappings:

editor-canvas%

editor-admin% snip-admin%

|- editor-snip-editor-admin<%>

editor-wordbreak-map% keymap%

Streams for Saving and Cut-and-Paste:

editor-data%

editor-data-class%

editor-data-class-list<%>

editor-stream-in% editor-stream-out%

editor-stream-in-base% editor-stream-out-base%

|- editor-stream-in-bytes-base% |- editor-stream-out-bytes-base%

Alphabetical:

6.1 editor<%>

editor<%> : interface?

The editor<%> interface is implemented by text% and pasteboard%.

(send an-editor add-canvas canvas) → void?

canvas : (is-a?/c editor-canvas%)

Adds a canvas to this editor’s list of displaying canvases. (See get-canvases.)

Normally, this method is called only by set-editor in editor-canvas%.

227

(send an-editor add-undo undoer) → void?

undoer : (-> any)

Adds an undoer procedure to the editor’s undo stack. If an undo is currently being performed,
the undoer is added to the editor’s redo stack. The undoer is called by the system when it is
undoing (or redoing) changes to an editor, and when this undoer is the first item on the undo
(or redo) stack.

The system automatically installs undo records to undo built-in editor operations, such as
inserts, deletes, and font changes. Install an undoer only when it is necessary to maintain
state or handle operations that are not built-in. For example, in a program where the user can
assign labels to snips in a pasteboard, the program should install an undoer to revert a label
change. Thus, when a user changes a snip’s label and then selects Undo (from a standard
menu bar), the snip’s label will revert as expected. In contrast, there is no need to install an
undoer when the user moves a snip by dragging it, because the system installs an appropriate
undoer automatically.

After an undoer returns, the undoer is popped off the editor’s undo (or redo) stack; if the
return value is true, then the next undoer is also executed as part of the same undo (or redo)
step. The undoer should return true if the action being undone was originally performed
as part of a begin-edit-sequence and end-edit-sequence sequence. The return value
should also be true if the undone action was implicitly part of a sequence. To extend the
previous example, if a label change is paired with a move to realign the snip, then the label-
change undoer should be added to the editor after the call to move, and it should return #t

when it is called. As a result, the move will be undone immediately after the label change
is undone. (If the opposite order is needed, use begin-edit-sequence and end-edit-

sequence to create an explicit sequence.)

The system adds undoers to an editor (in response to other method calls) without calling this
method.

(send an-editor adjust-cursor event)

→ (or/c (is-a?/c cursor%) #f)

event : (is-a?/c mouse-event%)

Specification: Gets a cursor to be used in the editor’s display. If the return value is #f, a
default cursor is used.

See also set-cursor.

Default implementation: If an overriding cursor has been installed with set-cursor, then
the installed cursor is returned.

Otherwise, if the event is a dragging event, a snip in the editor has the focus, and the snip’s
adjust-cursor method returns a cursor, that cursor is returned.

228

Otherwise, if the cursor is over a snip and the snip’s adjust-cursor method returns a
cursor, that cursor is returned.

Otherwise, if a cursor has been installed with set-cursor, then the installed cursor is re-
turned.

Otherwise, if the cursor is over a clickback region in an editor, an arrow cursor is returned.

Finally, if none of the above cases apply, a default cursor is returned. For a text editor, the
default cursor is an I-beam. For a pasteboard editor, the default cursor is an arrow.

(send an-editor after-edit-sequence) → void?

Refine this method with augment.

Specification: Called after a top-level edit sequence completes (involving unnested begin-

edit-sequence and end-edit-sequence).

See also on-edit-sequence.

Default implementation: Does nothing.

(send an-editor after-load-file success?) → void?

success? : any/c

Refine this method with augment.

Specification: Called just after the editor is loaded from a file or during the exception es-
cape when an attempt to load fails. The success? argument indicates whether the load
succeeded.

See also can-load-file? and on-load-file.

Default implementation: Does nothing.

(send an-editor after-save-file success?) → void?

success? : any/c

Refine this method with augment.

Specification: Called just after the editor is saved to a file or during the exception escape
when a save fails. The success? argument indicates whether the save succeeded.

See also can-save-file? and on-save-file.

Default implementation: Does nothing.

229

(send an-editor auto-wrap) → boolean?

(send an-editor auto-wrap auto-wrap?) → void?

auto-wrap? : any/c

Enables or disables automatically calling set-max-width in response to on-display-

size, or gets the state of auto-wrapping. For text editors, this has the effect of wrapping
the editor’s contents to fit in a canvas displaying the editor (the widest one if multiple can-
vases display the editor). For pasteboard editors, “auto-wrapping” merely truncates the area
of the pasteboard to match its canvas display.

When the wrapping mode is changed, the on-display-size method is called immediately
to update the editor’s maximum width.

Auto-wrapping is initially disabled.

(send an-editor begin-edit-sequence [undoable?
interrupt-streak?]) → void?

undoable? : any/c = #t

interrupt-streak? : any/c = #t

Specification: The begin-edit-sequence and end-edit-sequence methods are used to
bracket a set of editor modifications so that the results are all displayed at once. The com-
mands may be nested arbitrarily deep. Using these functions can greatly speed up displaying
the changes.

When an editor contains other editors, using begin-edit-sequence and end-edit-

sequence on the main editor brackets some changes to the sub-editors as well, but it is
not as effective when a sub-editor changes as calling begin-edit-sequence and end-

edit-sequence for the sub-editor.

See also refresh-delayed? and in-edit-sequence?, and see §4.9 “Editors and
Threads” for information about edit sequences and refresh requests.

If the undoable? flag is #f, then the changes made in the sequence cannot be reversed
through the undo method. This flag is only effective for the outermost begin-edit-
sequence when nested sequences are used. Note that, for a text% object, the character-
inserting version of insert interferes with sequence-based undo groupings.

If the interrupt-streak? flag is #f and the sequence is outermost, then special actions
before and after the sequence count as consecutive actions. For example, kills just before
and after the sequence are appended in the copy buffer.

Default implementation: Starts a sequence.

(send an-editor begin-write-header-footer-to-file f

name

buffer)

230

→ void?

f : (is-a?/c editor-stream-out%)

name : string?

buffer : (box/c exact-integer?)

This method must be called before writing any special header data to a stream. See §4.2
“File Format” and write-headers-to-file for more information.

The name string must be a unique name that can be used by a header reader to recognize the
data. This method will store a value in buffer that should be passed on to end-write-

header-footer-to-file.

(send an-editor blink-caret) → void?

Specification: Tells the editor to blink the selection caret. This method is called periodically
when the editor’s display has the keyboard focus.

Default implementation: Propagates the request to any snip with the editor-local focus.

(send an-editor can-do-edit-operation? op

[recursive?]) → boolean?

op :
(or/c 'undo 'redo 'clear 'cut 'copy 'paste

'kill 'select-all 'insert-text-box

'insert-pasteboard-box 'insert-image)

recursive? : any/c = #t

Specification: Checks whether a generic edit command would succeed for the editor. This
check is especially useful for enabling and disabling menus on demand. See do-edit-

operation for information about the op and recursive? arguments.

Default implementation: Allows the operation depending on the selection, whether the editor
is locked, etc.

(send an-editor can-load-file? filename

format) → boolean?

filename : path?

format :
(or/c 'guess 'same 'copy 'standard

'text 'text-force-cr)

Refine this method with augment.

Specification: Called just before the editor is loaded from a file. If the return value is #f, the
file is not loaded. See also on-load-file and after-load-file.

The filename argument is the name the file will be loaded from. See load-file for
information about format .

231

Note that the filename argument cannot be a string; it must be a path value.

Default implementation: Returns #t.

(send an-editor can-save-file? filename

format) → boolean?

filename : path?

format :
(or/c 'guess 'same 'copy 'standard

'text 'text-force-cr)

Refine this method with augment.

Specification: Called just before the editor is saved to a file. If the return value is #f, the file
is not saved. See also on-save-file and after-save-file.

The filename argument is the name the file will be saved to. See load-file for informa-
tion about format .

Note that the filename argument cannot be a string; it must be a path value.

Default implementation: Returns #t.

(send an-editor clear) → void?

Deletes the currently selected items.

The content of an editor can be changed by the system in response to other method calls,
and such changes do not go through this method; use on-delete in text% or on-delete
in pasteboard% to monitor content deletions changes.

(send an-editor clear-undos) → void?

Destroys the undo history of the editor.

(send an-editor copy [extend? time]) → void?

extend? : any/c = #f

time : exact-integer? = 0

Copies items into the clipboard. If extend? is not #f, the old clipboard contents are ap-
pended.

The system may execute a copy (in response to other method calls) without calling this
method. To extend or re-implement copying, override the do-copy in text% or do-copy in
pasteboard% method of an editor.

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

232

(send an-editor copy-self)

→ (or/c (is-a?/c text%) (is-a?/c pasteboard%))

Creates a new editor with the same properties as this one. After an editor is created (either a
text% or pasteboard% instance, as appropriate), the new editor is passed to copy-self-

to.

(send an-editor copy-self-to dest) → void?

dest : (or/c (is-a?/c text%) (is-a?/c pasteboard%))

Copies the properties of an-editor to dest .

Each snip in an-editor is copied and inserted into dest . In addition, an-editor ’s file-
name, maximum undo history setting, keymap, interactive caret threshold, and overwrite-
styles-on-load settings are installed into dest . Finally, an-editor ’s style list is copied and
the copy is installed as the style list for dest .

(send an-editor cut [extend? time]) → void?

extend? : any/c = #f

time : exact-integer? = 0

Copies and then deletes the currently selected items. If extend? is not #f, the old clipboard
contents are appended.

The system may execute a cut (in response to other method calls) without calling this
method. To extend or re-implement the copying portion of the cut, override the do-copy

in text% or do-copy in pasteboard% method of an editor. To monitor deletions in an
editor, override on-delete in text% or on-delete in pasteboard%.

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

(send an-editor dc-location-to-editor-location x

y) → real? real?

x : real?

y : real?

Converts the given coordinates from top-level display coordinates (usually canvas coordi-
nates) to editor location coordinates. The same calculation is performed by global-to-

local.

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”).

See also editor-location-to-dc-location.

233

(send an-editor default-style-name) → string?

Returns the name of a style to be used for newly inserted text, etc. The default is "Stan-
dard".

(send an-editor do-edit-operation op

[recursive?
time]) → void?

op :
(or/c 'undo 'redo 'clear 'cut 'copy 'paste

'kill 'select-all 'insert-text-box

'insert-pasteboard-box 'insert-image)

recursive? : any/c = #t

time : exact-integer? = 0

Performs a generic edit command. The op argument must be a valid edit command, one of:

• 'undo — undoes the last operation

• 'redo — undoes the last undo

• 'clear — deletes the current selection

• 'cut — cuts

• 'copy — copies

• 'paste — pastes

• 'kill — cuts to the end of the current line, or cuts a newline if there is only whites-
pace between the selection and end of line

• 'select-all — selects everything in the editor

• 'insert-text-box — inserts a text editor as an item in this editor; see also on-new-
box .

• 'insert-pasteboard-box — inserts a pasteboard editor as an item in this editor;
see also on-new-box .

• 'insert-image — gets a filename from the user and inserts the image as an item in
this editor; see also on-new-image-snip .

If recursive? is not #f, then the command is passed on to any active snips of this editor
(i.e., snips which own the caret).

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

234

(send an-editor editor-location-to-dc-location x

y) → real? real?

x : real?

y : real?

Converts the given coordinates from editor location coordinates to top-level display coor-
dinates (usually canvas coordinates). The same calculation is performed by local-to-

global.

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”).

See also dc-location-to-editor-location.

(send an-editor end-edit-sequence) → void?

See begin-edit-sequence.

(send an-editor end-write-header-footer-to-file f

buffer-value)

→ void?

f : (is-a?/c editor-stream-out%)

buffer-value : exact-integer?

This method must be called after writing any special header data to a stream. The buffer-
value argument must be the value put in the buffer argument box by begin-write-

header-footer-to-file.

See §4.2 “File Format” and write-headers-to-file for more information.

(send an-editor find-first-snip) → (or/c (is-a?/c snip%) #f)

Returns the first snip in the editor, or #f if the editor is empty. To get all of the snips in the
editor, use the next in snip% on the resulting snip.

The first snip in a text editor is the one at position 0. The first snip in a pasteboard is the
frontmost snip. (See §4.1 “Editor Structure and Terminology” for information about snip
order in pasteboards.)

(send an-editor find-scroll-line location)

→ exact-nonnegative-integer?

location : real?

Maps a vertical location within the editor to a vertical scroll position.

235

For text% objects: Calling this method may force the recalculation of location information,
even if the editor currently has delayed refreshing (see refresh-delayed?). The result is
only valid when the editor is displayed (see §4.1 “Editor Structure and Terminology”).

(send an-editor get-active-canvas)

→ (or/c (is-a?/c editor-canvas%) #f)

If the editor is displayed in a canvas, this method returns the canvas that most recently had
the keyboard focus (while the editor was displayed). If no such canvas exists, #f is returned.

(send an-editor get-admin) → (or/c (is-a?/c editor-admin%) #f)

Returns the editor-admin% object currently managing this editor or #f if the editor is not
displayed.

(send an-editor get-canvas)

→ (or/c (is-a?/c editor-canvas%) #f)

If get-active-canvas returns a canvas, that canvas is also returned by this method. Oth-
erwise, if get-canvases returns a non-empty list, the first canvas in the list is returned,
otherwise #f is returned.

(send an-editor get-canvases)

→ (listof (is-a?/c editor-canvas%))

Returns a list of canvases displaying the editor. An editor may be displayed in multiple
canvases and no other kind of display, or one instance of another kind of display and no
canvases. If the editor is not displayed or the editor’s current display is not a canvas, null
is returned.

(send an-editor get-dc) → (or/c (is-a?/c dc<%>) #f)

Typically used (indirectly) by snip objects belonging to the editor. Returns a destination
drawing context which is suitable for determining display sizing information, or #f if the
editor is not displayed.

(send an-editor get-descent) → (and/c real? (not/c negative?))

Returns the font descent for the editor. This method is primarily used when an editor is an
item within another editor. For a text editor, the reported descent includes the editor’s bottom
padding (see set-padding).

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”). For text% objects, calling this method may force the recalculation of location
information if a maximum width is set for the editor, even if the editor currently has delayed
refreshing (see refresh-delayed?).

236

(send an-editor get-extent w h) → void?

w : (or/c (box/c (and/c real? (not/c negative?))) #f)

h : (or/c (box/c (and/c real? (not/c negative?))) #f)

Gets the current extent of the editor’s graphical representation. The w box is filled with the
editor’s width, unless w is #f. The h box is filled with the editor’s height, unless h is #f.
For a text editor, the reported extent includes the editor’s padding (see set-padding).

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”). For text% objects, calling this method may force the recalculation of location
information if a maximum width is set for the editor, even if the editor currently has delayed
refreshing (see refresh-delayed?).

(send an-editor get-file directory) → (or/c path-string? #f)

directory : (or/c path? #f)

Specification: Called when the user must be queried for a filename to load an editor. A
starting-directory path is passed in, but is may be #f to indicate that any directory is fine.

Note that the directory argument cannot be a string; it must be a path value or #f.

Default implementation: Calls the global get-file procedure.

If the editor is displayed in a single canvas, then the canvas’s top-level frame is used as the
parent for the file dialog. Otherwise, the file dialog will have no parent.

(send an-editor get-filename [temp]) → (or/c path-string? #f)

temp : (box/c (or/c any/c #f)) = (box #f)

Returns the path name of the last file saved from or loaded into this editor, #f if the editor
has no filename.

The temp box is filled with #t if the filename is temporary or #f otherwise.

(send an-editor get-flattened-text) → string?

Returns the contents of the editor in text form. See §4.4 “Flattened Text” for a discussion of
flattened vs. non-flattened text.

(send an-editor get-focus-snip) → (or/c (is-a?/c snip%) #f)

Returns the snip within the editor that gets the keyboard focus when the editor has the focus,
or #f if the editor does not delegate the focus.

The returned snip might be an editor-snip% object. In that case, the embedded editor
might delegate the focus to one of its own snips. However, the get-focus-snip method

237

returns only the editor-snip% object, because it is the focus-owning snip within the im-
mediate editor.

See also set-caret-owner.

(send an-editor get-inactive-caret-threshold)

→ (or/c 'no-caret 'show-inactive-caret 'show-caret)

Returns the threshold for painting an inactive selection. This threshold is compared with the
draw-caret argument to refresh and if the argument is as least as large as the threshold
(but larger than 'show-caret), the selection is drawn as inactive.

See also set-inactive-caret-threshold and §4.5 “Caret Ownership”.

(send an-editor get-keymap) → (or/c (is-a?/c keymap%) #f)

Returns the main keymap currently used by the editor.

(send an-editor get-load-overwrites-styles) → boolean?

Reports whether named styles in the current style list are replaced by load-file when the
loaded file contains style specifications.

See also set-load-overwrites-styles.

(send an-editor get-max-height)

→ (or/c (and/c real? (not/c negative?)) 'none)

Gets the maximum display height for the contents of the editor; zero or 'none indicates that
there is no maximum.

(send an-editor get-max-undo-history)

→ (or/c (integer-in 0 100000) 'forever)

Returns the maximum number of undoables that will be remembered by the editor. Note that
undoables are counted by insertion, deletion, etc. events, not by the number of times that
undo can be called; a single undo call often reverses multiple events at a time (such as when
the user types a stream of characters at once).

(send an-editor get-max-view-size) → real? real?

Returns the maximum visible area into which the editor is currently being displayed, ac-
cording to the editor’s administrators. If the editor has only one display, the result is the
same as for get-view-size. Otherwise, the maximum width and height of all the editor’s
displaying canvases is returned.

238

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”).

If the display is an editor canvas, see also reflow-container.

(send an-editor get-max-width)

→ (or/c (and/c real? (not/c negative?)) 'none)

Gets the maximum display width for the contents of the editor; zero or 'none indicates that
there is no maximum. In a text editor, zero of 'none disables automatic line breaking.

(send an-editor get-min-height)

→ (or/c (and/c real? (not/c negative?)) 'none)

Gets the minimum display height for the contents of the editor; zero or 'none indicates that
there is no minimum.

(send an-editor get-min-width)

→ (or/c (and/c real? (not/c negative?)) 'none)

Gets the minimum display width for the contents of the editor; zero or 'none indicates that
there is no minimum.

(send an-editor get-paste-text-only) → boolean?

If the result is #t, then the editor accepts only plain-text data from the clipboard. If the result
is #f, the editor accepts both text and snip data from the clipboard.

(send an-editor get-snip-data thesnip)

→ (or/c (is-a?/c editor-data%) #f)

thesnip : (is-a?/c snip%)

Specification: Gets extra data associated with a snip (e.g., location information in a paste-
board) or returns #f is there is no information. See §4.2.1.2 “Editor Data” for more infor-
mation.

Default implementation: Returns #f.

(send an-editor get-snip-location thesnip

[x
y

bottom-right?]) → boolean?

thesnip : (is-a?/c snip%)

x : (or/c (box/c real?) #f) = #f

y : (or/c (box/c real?) #f) = #f

bottom-right? : any/c = #f

239

Gets the location of the given snip. If the snip is found in the editor, #t is returned; otherwise,
#f is returned.

The x box is filled with the x-coordinate of the snip’s location, unless x is #f. The y box is
filled with the y-coordinate of the snip’s location, unless y is #f.

If bottom-right? is not #f, the values in the x and y boxes are for the snip’s bottom right
corner instead of its top-left corner.

Obtaining the location if the bottom-right corner may trigger delayed size calculations (in-
cluding snips other than the one whose location was requested).

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”). As a special case, however, a pasteboard% object always reports valid answers
when bottom-right? is #f. For text% objects, calling this method may force the recal-
culation of location information if a maximum width is set for the editor, even if the editor
currently has delayed refreshing (see refresh-delayed?).

(send an-editor get-space) → (and/c real? (not/c negative?))

Returns the maximum font space for the editor. This method is primarily used when an editor
is an item within another editor. For a text editor, the reported space includes the editor’s top
padding (see set-padding).

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”). For text% objects, calling this method may force the recalculation of location
information if a maximum width is set for the editor, even if the editor currently has delayed
refreshing (see refresh-delayed?).

(send an-editor get-style-list) → (is-a?/c style-list%)

Returns the style list currently in use by the editor.

(send an-editor get-view-size w h) → void?

w : (or/c (box/c (and/c real? (not/c negative?))) #f)

h : (or/c (box/c (and/c real? (not/c negative?))) #f)

Returns the visible area into which the editor is currently being displayed (according to the
editor’s administrator). See also get-view .

The w box is filled with the visible area width, unless w is #f. The h box is filled with the
visible area height, unless h is #f.

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”).

If the display is an editor canvas, see also reflow-container.

240

(send an-editor global-to-local x y) → void?

x : (or/c (box/c real?) #f)

y : (or/c (box/c real?) #f)

Converts the given coordinates from top-level display coordinates (usually canvas coordi-
nates) to editor location coordinates. The same calculation is performed by dc-location-

to-editor-location.

The x box is filled with the translated x-coordinate of the value initially in x , unless x is #f.
The y box is filled with the translated x-coordinate of the value initially in y , unless y is #f.

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”).

See also local-to-global.

(send an-editor in-edit-sequence?) → boolean?

Returns #t if updating on this editor is currently delayed because begin-edit-sequence

has been called for this editor.

See also refresh-delayed?.

(send an-editor insert snip) → void?

snip : (is-a?/c snip%)

Inserts data into the editor. A snip cannot be inserted into multiple editors or multiple times
within a single editor.

The content of an editor can be changed by the system in response to other method calls,
and such changes do not go through this method; use on-insert in text% or on-insert
in pasteboard% to monitor content additions changes.

(send an-editor insert-box [type]) → void?

type : (or/c 'text 'pasteboard) = 'text

Inserts a box (a sub-editor) into the editor by calling on-new-box, then passing along type

and inserts the resulting snip into the editor.

The content of an editor can be changed by the system in response to other method calls,
and such changes do not go through this method; use on-insert in text% or on-insert
in pasteboard% to monitor content additions changes.

(send an-editor insert-file filename

[format
show-errors?]) → boolean?

241

filename : path-string?

format :
(or/c 'guess 'same 'copy 'standard

'text 'text-force-cr)
= 'guess

show-errors? : any/c = #t

Inserts the content of a file or port into the editor (at the current selection position in text%

editors). The result is #t; if an error occurs, an exception is raised.

For information on format , see load-file. The show-errors? argument is no longer
used.

The content of an editor can be changed by the system in response to other method calls,
and such changes do not go through this method; use on-insert in text% or on-insert
in pasteboard% to monitor content additions changes.

(send an-editor insert-image [filename
type

relative-path?

inline?]) → void?

filename : (or/c path-string? #f) = #f

type :

(or/c 'unknown 'unknown/mask 'unknown/alpha

'gif 'gif/mask 'gif/alpha

'jpeg 'png 'png/mask 'png/alpha

'xbm 'xpm 'bmp 'pict)

= 'unknown/alpha

relative-path? : any/c = #f

inline? : any/c = #t

Inserts an image into the editor.

If filename is #f, then the user is queried for a filename. The kind must one of the symbols
that can be passed to load-file.

After the filename has been determined, an image is created by calling on-new-image-

snip. See also image-snip%.

The content of an editor can be changed by the system in response to other method calls,
and such changes do not go through this method; use on-insert in text% or on-insert
in pasteboard% to monitor content additions changes.

(send an-editor insert-port port

[format
replace-styles?])

→ (or/c 'standard 'text 'text-force-cr)

port : input-port?

format :
(or/c 'guess 'same 'copy 'standard

'text 'text-force-cr)
= 'guess

242

replace-styles? : any/c = #t

Inserts the content of a port into the editor (at the current selection position in text% editors)
without wrapping the insert operations as an edit sequence. The result is the actual format
of the loaded content (which is different from the given format type if the given format is
'guess, 'same, or 'copy).

The port must support position setting with file-position.

For information on format , see load-file.

if replace-styles? is true, then styles in the current style list are replaced by style speci-
fications in port ’s stream.

See also insert-file.

(send an-editor invalidate-bitmap-cache [x
y

width

height]) → void?

x : real? = 0.0

y : real? = 0.0

width : (or/c (and/c real? (not/c negative?)) 'end 'display-end)

= 'end

height : (or/c (and/c real? (not/c negative?)) 'end 'display-end)

= 'end

When on-paint is overridden, call this method when the state of on-paint’s drawing
changes.

The x , y , width , and height arguments specify the area that needs repainting in editor
coordinates. If width /height is 'end, then the total height/width of the editor (as reported
by get-extent) is used. Note that the editor’s size can be smaller than the visible region of
its display. If width /height is 'display-end, then the largest height/width of the editor’s
views (as reported by get-max-view) is used. If width /height is not 'display-end,
then the given width /height is constrained to the editor’s size.

The default implementation triggers a redraw of the editor, either immediately or at the end
of the current edit sequence (if any) started by begin-edit-sequence.

See also size-cache-invalid.

(send an-editor is-locked?) → boolean?

Returns #t if the editor is currently locked, #f otherwise. See lock for more information.

(send an-editor is-modified?) → boolean?

243

Returns #t if the editor has been modified since the last save or load (or the last call to
set-modified with #f), #f otherwise.

(send an-editor is-printing?) → boolean?

Returns #t if the editor is currently being printed through the print method, #f otherwise.

(send an-editor kill [time]) → void?

time : exact-integer? = 0

In a text editor, cuts to the end of the current line, or cuts a newline if there is only whites-
pace between the selection and end of line. Multiple consecutive kills are appended. In a
pasteboard editor, cuts the current selection.

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

See also cut.

The content of an editor can be changed by the system in response to other method calls,
and such changes do not go through this method; use on-delete in text% or on-delete
in pasteboard% to monitor content deletions changes.

(send an-editor load-file [filename
format

show-errors?]) → boolean?

filename : (or/c path-string? #f) = #f

format :
(or/c 'guess 'same 'copy 'standard

'text 'text-force-cr)
= 'guess

show-errors? : any/c = #t

Loads a file into the editor and returns #t. If an error occurs, an exception is raised.

If filename is #f, then the internally stored filename will be used; if filename is "" or if
the internal name is unset or temporary, then the user will be prompted for a name.

The possible values for format are listed below. A single set of format values are used for
loading and saving files:

• 'guess — guess the format based on extension and/or contents; when saving a file,
this is the same as 'standard

• 'same — read in whatever format was last loaded or saved

• 'standard — read/write a standard file (binary format)

244

• 'copy — write using whatever format was last loaded or saved, but do not change the
modification flag or remember filename (saving only)

• 'text — read/write a text file (text% only); file writing uses the platform’s text-
mode conventions (e.g., newlines as return–linefeed combinations on Windows) when
not specifically disabled via use-file-text-mode

• 'text-force-cr — read/write a text file (text% only); when writing, change auto-
matic newlines (from word-wrapping) into real carriage returns

In a text% instance, the format returned from get-file-format is always one of 'stan-
dard, 'text, or 'text-force-cr.

The show-errors? argument is no longer used.

The filename used to load the file can be retrieved with get-filename. For a text% in-
stance, the format can be retrieved with get-file-format. However, if an error occurs
while loading the file, the filename is set to #f.

See also on-load-file, after-load-file, can-load-file?, and set-load-

overwrites-styles.

(send an-editor local-to-global x y) → void?

x : (or/c (box/c real?) #f)

y : (or/c (box/c real?) #f)

Converts the given coordinates from editor location coordinates to top-level display co-
ordinates (usually canvas coordinates). The same calculation is performed by editor-

location-to-dc-location.

The x box is filled with the translated x-coordinate of the value initially in x , unless x is #f.
The y box is filled with the translated x-coordinate of the value initially in y , unless y is #f.

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”).

See also global-to-local.

(send an-editor locations-computed?) → boolean?

Returns #t if all location information has been computed after recent changes to the editor’s
content or to its snips, #f otherwise.

Location information is often computed on demand, and begin-edit-sequence tends to
delay the computation.

When the editor is locked for reflowing, location information cannot be recomputed. See
also §4.8 “Internal Editor Locks”.

245

(send an-editor lock lock?) → void?

lock? : any/c

Locks or unlocks the editor for modifications. If an editor is locked, all modifications are
blocked, not just user modifications.

See also is-locked?.

This method does not affect internal locks, as discussed in §4.8 “Internal Editor Locks”.

(send an-editor locked-for-flow?) → boolean?

Reports whether the editor is internally locked for flowing. See §4.8 “Internal Editor Locks”
for more information.

(send an-editor locked-for-read?) → boolean?

Reports whether the editor is internally locked for reading. See §4.8 “Internal Editor Locks”
for more information.

(send an-editor locked-for-write?) → boolean?

Reports whether the editor is internally locked for writing. See §4.8 “Internal Editor Locks”
for more information.

(send an-editor needs-update snip

localx

localy

w

h) → void?

snip : (is-a?/c snip%)

localx : real?

localy : real?

w : (and/c real? (not/c negative?))

h : (and/c real? (not/c negative?))

Typically called (indirectly) by a snip within the editor to force the editor to be redrawn.

The localx , localy , width, and height arguments specify the area that needs repainting
in the coordinate system of snip .

For text% objects, calling this method may force the recalculation of location information
if a maximum width is set for the editor, even if the editor currently has delayed refreshing
(see refresh-delayed?).

246

(send an-editor num-scroll-lines) → exact-nonnegative-integer?

Reports the number of scroll positions available within the editor.

For text% objects: Calling this method may force the recalculation of location information,
even if the editor currently has delayed refreshing (see refresh-delayed?). If the editor is
not displayed and the editor has a maximum width, line breaks are calculated as for line-
start-position (which handles specially the case of no display when the editor has a
maximum width).

(send an-editor on-change) → void?

Refine this method with augment.

Specification: Called whenever any change is made to the editor that affects the way the
editor is drawn or the values reported for the location/size of some snip in the editor. The
on-change method is called just before the editor calls its administrator’s needs-update
method to refresh the editor’s display, and it is also called just before and after printing an
editor.

The editor is locked for writing and reflowing during the call to on-change.

Default implementation: Does nothing.

(send an-editor on-char event) → void?

event : (is-a?/c key-event%)

Specification: Handles keyboard input to the editor.

Consider overriding on-local-char or on-default-char instead of this method.

Default implementation: Either passes this event on to a caret-owning snip or calls on-

local-char. In the latter case, text% first calls hide-cursor-until-moved.

(send an-editor on-default-char event) → void?

event : (is-a?/c key-event%)

Specification: Called by on-local-char when the event is not handled by a caret-owning
snip or by the keymap.

Default implementation: Does nothing.

(send an-editor on-default-event event) → void?

event : (is-a?/c mouse-event%)

247

Specification: Called by on-local-event when the event is not handled by a caret-owning
snip or by the keymap.

Default implementation: Does nothing. See also on-default-event in text% and on-

default-event in pasteboard%.

(send an-editor on-display-size) → void?

Refine this method with augment.

Specification: This method is called by the editor’s display whenever the display’s size
(as reported by get-view-size) changes, but it is called indirectly through on-display-

size-when-ready.

Default implementation: If automatic wrapping is enabled (see auto-wrap) then set-max-
width is called with the maximum width of all of the editor’s canvases (according to the
administrators; call-as-primary-owner in editor-canvas% is used with each canvas
to set the administrator and get the view size). If the editor is displayed but not in a canvas,
the unique width is obtained from the editor’s administrator (there is only one). If the editor
is not displayed, the editor’s maximum width is not changed.

(send an-editor on-display-size-when-ready) → void?

Calls on-display-size unless the editor is currently in an edit sequence or currently being
refreshed. In the latter cases, the call to on-display-size is delegated to another thread;
see §4.9 “Editors and Threads” for more information.

(send an-editor on-edit-sequence) → void?

Refine this method with augment.

Specification: Called just after a top-level (i.e., unnested) edit sequence starts.

During an edit sequence, all callbacks methods are invoked normally, but it may be ap-
propriate for these callbacks to delay computation during an edit sequence. The call-
backs must manage this delay manually. Thus, when overriding other callback methods,
such as on-insert in text%, on-insert in pasteboard%, after-insert in text%,
or after-insert in pasteboard%, consider overriding on-edit-sequence and after-

edit-sequence as well.

“Top-level edit sequence” refers to an outermost pair of begin-edit-sequence and end-

edit-sequence calls. The embedding of an editor within another editor does not affect the
timing of calls to on-edit-sequence, even if the embedding editor is in an edit sequence.

Pairings of on-edit-sequence and after-edit-sequence can be nested if an after-

edit-sequence starts a new edit sequence, since after-edit-sequence is called after

248

an edit sequence ends. However, on-edit-sequence can never start a new top-level edit
sequence (except through an unpaired end-edit-sequence), because it is called after a
top-level edit sequence starts.

Default implementation: Does nothing.

(send an-editor on-event event) → void?

event : (is-a?/c mouse-event%)

Specification: Handles mouse input to the editor. The event’s x and y coordinates are in the
display’s co-ordinate system; use the administrator’s get-dc method to obtain translation
arguments (or use dc-location-to-editor-location).

Consider overriding on-local-event or on-default-event instead of this method.

Default implementation: Either passes this event on to a caret-owning snip, selects a new
caret-owning snip (text% only) and passes the event on to the selected snip, or calls on-
local-event. A new caret-owning snip is selected in a text% object when the click is on
an event-handling snip, and not too close to the space between snips (see get-between-

threshold).

(send an-editor on-focus on?) → void?

on? : any/c

Called when the keyboard focus changes into or out of this editor (and not to/from a snip
within the editor) with #t if the focus is being turned on, #f otherwise.

(send an-editor on-load-file filename

format) → void?

filename : path?

format :
(or/c 'guess 'same 'copy 'standard

'text 'text-force-cr)

Refine this method with augment.

Specification: Called just before the editor is loaded from a file, after calling can-load-

file? to verify that the load is allowed. See also after-load-file.

The filename argument is the name the file will be loaded from. See load-file for
information about format .

Note that the filename argument cannot be a string; it must be a path value.

Default implementation: Does nothing.

(send an-editor on-local-char event) → void?

event : (is-a?/c key-event%)

249

Specification: Called by on-char when the event is not handled by a caret-owning snip.

Consider overriding on-default-char instead of this method.

Default implementation: Either lets the keymap handle the event or calls on-default-

char.

(send an-editor on-local-event event) → void?

event : (is-a?/c mouse-event%)

Specification: Called by on-event when the event is not handled by a caret-owning snip.

Consider overriding on-default-event instead of this method.

Default implementation: Either lets the keymap handle the event or calls on-default-

event.

(send an-editor on-new-box type) → (is-a?/c snip%)

type : (or/c 'text 'pasteboard)

Specification: Creates and returns a new snip for an embedded editor. This method is called
by insert-box.

Default implementation: Creates a editor-snip% with either a sub-editor from text%

or sub-pasteboard from pasteboard%, depending on whether type is 'text or 'paste-
board. The keymap (see keymap%) and style list (see style-list%) for of the new sub-
editor are set to the keymap and style list of this editor.

(send an-editor on-new-image-snip filename

kind

relative-path?

inline?)

→ (is-a?/c image-snip%)

filename : path?

kind :

(or/c 'unknown 'unknown/mask 'unknown/alpha

'gif 'gif/mask 'gif/alpha

'jpeg 'png 'png/mask 'png/alpha

'xbm 'xpm 'bmp 'pict)

relative-path? : any/c

inline? : any/c

Specification: Creates and returns a new instance of image-snip% for insert-image.

Note that the filename argument cannot be a string; it must be a path value.

Default implementation: Returns (make-object image-snip% filename kind

relative-path? inline?).

250

(send an-editor on-paint before?

dc

left

top

right

bottom

dx

dy

draw-caret) → void?

before? : any/c

dc : (is-a?/c dc<%>)

left : real?

top : real?

right : real?

bottom : real?

dx : real?

dy : real?

draw-caret :
(or/c 'no-caret 'show-inactive-caret 'show-caret

(cons/c exact-nonnegative-integer?

exact-nonnegative-integer?))

Specification: Provides a way to add arbitrary graphics to an editor’s display. This method
is called just before and just after every painting of the editor.

The before? argument is #t when the method is called just before a painting the contents
of the editor or #f when it is called after painting. The left , top , right , and bottom

arguments specify which region of the editor is being repainted, in editor coordinates. To
get the coordinates for dc , offset editor coordinates by adding (dx , dy). See §4.5 “Caret
Ownership” for information about draw-caret .

The on-paint method, together with the snips’ draw methods, must be able to draw the
entire state of an editor. Never paint directly into an editor’s display canvas except from
within on-paint or draw. Instead, put all extra drawing code within on-paint and call
invalidate-bitmap-cache when part of the display needs to be repainted.

If an on-paint method uses cached location information, then the cached information
should be recomputed in response to a call of invalidate-bitmap-cache.

The on-paint method must not make any assumptions about the state of the drawing con-
text (e.g., the current pen), except that the clipping region is already set to something ap-
propriate. Before on-paint returns, it must restore any drawing context settings that it
changes.

The editor is internally locked for writing and reflowing during a call to this method (see
also §4.8 “Internal Editor Locks”).

251

See also invalidate-bitmap-cache.

Default implementation: Does nothing.

(send an-editor on-save-file filename

format) → void?

filename : path?

format :
(or/c 'guess 'same 'copy 'standard

'text 'text-force-cr)

Refine this method with augment.

Specification: Called just before the editor is saved to a file, after calling can-save-file?

to verify that the save is allowed. See also after-save-file.

The filename argument is the name the file will be saved to. See load-file for informa-
tion about format .

Note that the filename argument cannot be a string; it must be a path value.

Default implementation: Does nothing.

(send an-editor on-snip-modified snip

modified?) → void?

snip : (is-a?/c snip%)

modified? : any/c

Refine this method with augment.

Specification: This method is called whenever a snip within the editor reports that it has
been modified (by calling its adminstrator’s modified method). The method arguments are
the snip that reported a modification-state change, and the snip’s new modification state.

See also set-modified.

Default implementation: If modified? is true and the editor was not already modified (i.e.,
its is-modified? method reports #f), then the set-modified method is called with #t.
If the editor was already modified, then the internal modify-counter is incremented.

If modified? is #f, and if the modify-counter is 1, then the set-modified method is
called with #f (on the assumption that the modify-counter was set to 1 by an earlier call to
this method for the same snip).

(send an-editor own-caret own?) → void?

own? : any/c

Specification: Tells the editor to display or not display the caret or selection.

252

The focus state of an editor can be changed by by the system, and such changes do not go
through this method; use on-focus to monitor focus changes.

Default implementation: Propagates the flag to any snip with the editor-local focus. If no
sub-editors are active, the editor assumes the caret ownership.

(send an-editor paste [time]) → void?

time : exact-integer? = 0

Pastes the current contents of the clipboard into the editor.

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

The system may execute a paste (in response to other method calls) without calling this
method. To extend or re-implement copying, override the do-paste in text% or do-paste
in pasteboard% method.

See also get-paste-text-only.

(send an-editor paste-x-selection [time]) → void?

time : exact-integer? = 0

Like paste, but on Unix, uses the X11 selection instead of the clipboard.

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

To extend or re-implement copying, override the do-paste-x-selection in text% or do-
paste-x-selection in pasteboard% method.

(send an-editor print [interactive?
fit-on-page?

output-mode

parent

force-ps-page-bbox?

as-eps?]) → void?

interactive? : any/c = #t

fit-on-page? : any/c = #t

output-mode : (or/c 'standard 'postscript 'pdf) = 'standard

parent : (or/c (or/c (is-a?/c frame%) (is-a?/c dialog%)) #f)

= #f

force-ps-page-bbox? : any/c = #t

as-eps? : any/c = #f

Prints the editor.

253

If interactive? is true and a PostScript file is created, the is given a dialog for adjusting
printing parameters; see also get-ps-setup-from-user. Otherwise, if a PostScript file
is created, the settings returned by current-ps-setup are used. (The user may still get a
dialog to select an output file name; see post-script-dc% for more details.)

If fit-on-page? is a true value, then during printing for a text% editor, the editor’s max-
imum width is set to the width of the page (less margins) and the autowrapping bitmap is
removed.

The output-mode setting determines whether the output is generated directly as a
PostScript file, generated directly as a PDF file, or generated using the platform-specific
standard printing mechanism. The possible values are

• 'standard — print using the platform-standard mechanism (via a printer-dc%)

• 'postscript — print to a PostScript file (via a post-script-dc%)

• 'pdf — print to a PDF file (via a pdf-dc%)

If parent is not #f, it is used as the parent window for configuration dialogs (for either
PostScript or platform-standard printing). If parent is #f and if the editor is displayed
in a single canvas, then the canvas’s top-level frame is used as the parent for configuration
dialogs. Otherwise, configuration dialogs will have no parent.

The force-ps-page-bbox? argument is used for PostScript and PDF printing, and is used
as the third initialization argument when creating the post-script-dc% or pdf-dc% in-
stance. Unless it is #f, the bounding-box of the resulting PostScript/PDF file is set to the
current paper size.

The as-eps? argument is used for PostScript and PDF printing, and is used as the fourth
initialization argument when creating the post-script-dc% or pdf-dc% instance. Unless
it is #f, a resulting PostScript file is identified as Encapsulated PostScript (EPS).

The printing margins are determined by get-editor-margin in the current ps-setup%
object (as determined by current-ps-setup), but they are ignored when as-eps? is true.

(send an-editor print-to-dc dc [page-number]) → void?

dc : (is-a?/c dc<%>)

page-number : exact-integer? = -1

Prints the editor into the given drawing context. See also print.

If page-number is a positive integer, then just the indicated page is printed, where pages are
numbered from 1. If page-number is 0, then the entire content of the editor is printed on
a single page. When page-number is negative, then the editor content is split across pages
as needed to fit, and the start-page and end-page methods of dc<%> are called for each
page.

254

(send an-editor put-file directory

default-name) → (or/c path-string? #f)

directory : (or/c path? #f)

default-name : (or/c path? #f)

Specification: Called when the user must be queried for a filename to save an editor. Starting-
directory and default-name paths are passed in, but either may be #f to indicate that any
directory is fine or there is no default name.

Note that the directory and filename arguments cannot be strings; each must be a path
value.

Default implementation: Calls the global put-file procedure.

If the editor is displayed in a single canvas, then the canvas’s top-level frame is used as the
parent for the file dialog. Otherwise, the file dialog will have no parent.

(send an-editor read-footer-from-file stream

name) → boolean?

stream : (is-a?/c editor-stream-in%)

name : string?

See read-header-from-file.

(send an-editor read-from-file stream

[overwrite-styles?]) → boolean?

stream : (is-a?/c editor-stream-in%)

overwrite-styles? : any/c = #f

Reads new contents for the editor from a stream. The return value is #t if there are no errors,
#f otherwise. See also §4.2 “File Format”.

The stream provides either new mappings for names in the editor’s style list, or it indicates
that the editor should share a previously-read style list (depending on how style lists were
shared when the editor was written to the stream; see also write-to-file).

• In the former case, if the overwrite-styles? argument is #f, then each style name
in the loaded file that is already in the current style list keeps its current style. Other-
wise, existing named styles are overwritten with specifications from the loaded file.

• In the latter case, the editor’s style list will be changed to the previously-read list.

(send an-editor read-header-from-file stream

name) → boolean?

stream : (is-a?/c editor-stream-in%)

name : string?

255

Called to handle a named header that is found when reading editor data from a stream. The
return value is #t if there are no errors, #f otherwise.

Override this method only to embellish the file format with new header information. Always
call the inherited method if the derived reader does not recognize the header.

See also §4.2 “File Format”.

(send an-editor redo) → void?

Undoes the last undo, if no other changes have been made since. See undo for information
about Emacs-style undo. If the editor is currently performing an undo or redo, the method
call is ignored.

The system may perform a redo without calling this method in response to other method
calls. Use methods such as on-change to monitor editor content changes.

See also add-undo.

(send an-editor refresh x

y

width

height

draw-caret

background) → void?

x : real?

y : real?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

draw-caret :
(or/c 'no-caret 'show-inactive-caret 'show-caret

(cons/c exact-nonnegative-integer?

exact-nonnegative-integer?))

background : (or/c (is-a?/c color%) #f)

Repaints a region of the editor, generally called by an editor administrator. The x , y , width ,
and height arguments specify the area that needs repainting in editor coordinates. The
get-dc method of the editor’s administrator (as returned by get-admin) supplies the target
dc<%> object and offset for drawing.

See §4.5 “Caret Ownership” for information about draw-caret .

The background color corresponds to the background of the display; if it is #f, then the dis-
play is transparent. An editor should use the given background color as its own background
(or not paint the background of background is #f).

See §4.9 “Editors and Threads” for information about edit sequences and refresh requests.

(send an-editor refresh-delayed?) → boolean?

256

Returns #t if updating on this editor is currently delayed. Updating may be delayed because
begin-edit-sequence has been called for this editor, or because the editor has no adminis-
trator, or because the editor’s administrator returns #t from its refresh-delayed? method.
(The administrator might return #t because an enclosing editor’s refresh is delayed.)

See also in-edit-sequence?.

(send an-editor release-snip snip) → boolean?

snip : (is-a?/c snip%)

Requests that the specified snip be deleted and released from the editor. If this editor is not
the snip’s owner or if the snip cannot be released, then #f is returned. Otherwise, #t is
returned and the snip is no longer owned.

See also release-snip in snip-admin% .

(send an-editor remove-canvas canvas) → void?

canvas : (is-a?/c editor-canvas%)

Removes a canvas from this editor’s list of displaying canvases. (See get-canvases.)

Normally, this method is called only by set-editor in editor-canvas%.

(send an-editor resized snip redraw-now?) → void?

snip : (is-a?/c snip%)

redraw-now? : any/c

Called (indirectly) by snips within the editor: it forces a recalculation of the display infor-
mation in which the specified snip has changed its size.

If redraw-now? is #f, the editor will require another message to repaint itself. (See also
needs-update.)

(send an-editor save-file [filename
format

show-errors?]) → boolean?

filename : (or/c path-string? #f) = #f

format :
(or/c 'guess 'same 'copy 'standard

'text 'text-force-cr)
= 'same

show-errors? : any/c = #t

Saves the editor into a file and returns #t. If an error occurs, an exception is raised.

If filename is #f, then the internally stored filename will be used; if filename is "" or
if the internal name is unset or temporary, then the user will be prompted for a name. The
possible values for format are described at load-file.

257

The filename and format used to save the file can be retrieved with get-filename. In a
text% instance, the format can be retrieved with get-file-format.

See also on-save-file, after-save-file, and can-save-file?.

On Mac OS X, the file’s type signature is set to "TEXT" for a text-format file or "WXME" for
a standard-format (binary) file.

The show-errors? argument is no longer used.

(send an-editor save-port port

[format
show-errors?]) → boolean?

port : output-port?

format :
(or/c 'guess 'same 'copy 'standard

'text 'text-force-cr)
= 'same

show-errors? : any/c = #t

Saves the editor into a port and returns #t. If an error occurs, an exception is raised.

The possible values for format are described at load-file.

The show-errors? argument is no longer used.

(send an-editor scroll-editor-to localx

localy

width

height

refresh?

bias) → boolean?

localx : real?

localy : real?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

refresh? : any/c

bias : (or/c 'start 'end 'none)

Causes the editor to be scrolled so that a given location is visible. If the editor is scrolled, #t
is returned, otherwise #f is returned.

This method is normally called indirectly by scroll-to or scroll-to-position in
text% to implement scrolling.

The default implementation forwards the request to the scroll-to method of the current
administrator, if any (see get-admin). If a text editor has padding (see set-padding), then
the padding is added to the given location before forwarding to the administrator. If the
editor has no administrator, #f is returned.

258

(send an-editor scroll-line-location pos)

→ (and/c real? (not/c negative?))

pos : exact-nonnegative-integer?

Maps a vertical scroll position to a vertical location within the editor.

For text% objects: Calling this method may force the recalculation of location information,
even if the editor currently has delayed refreshing (see refresh-delayed?). If the editor is
not displayed and the editor has a maximum width, line breaks are calculated as for line-
start-position (which handles specially the case of no display when the editor has a
maximum width).

(send an-editor scroll-to snip

localx

localy

width

height

refresh?

[bias]) → boolean?

snip : (is-a?/c snip%)

localx : real?

localy : real?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

refresh? : any/c

bias : (or/c 'start 'end 'none) = 'none

Called (indirectly) by snips within the editor: it causes the editor to be scrolled so that a
given location range within a given snip is visible. If the editor is scrolled immediately, #t
is returned, otherwise #f is returned.

If refreshing is delayed (see refresh-delayed?), then the scroll request is saved until the
delay has ended. The scroll is performed (immediately or later) by calling scroll-editor-
to.

The localx , localy , width , and height arguments specify the area that needs to be
visible in snip ’s coordinate system.

When the specified region cannot fit in the visible area, bias indicates which end of the
region to display. When bias is 'start, then the top-left of the region is displayed. When
bias is 'end, then the bottom-right of the region is displayed. Otherwise, bias must be
'none.

(send an-editor select-all) → void?

Selects all data in the editor

259

(send an-editor set-active-canvas canvas) → void?

canvas : (is-a?/c editor-canvas%)

Sets the active canvas for this editor. (See get-active-canvas.)

Normally, this method is called only by on-focus in editor-canvas% in an editor canvas
that is displaying an editor.

(send an-editor set-admin admin) → void?

admin : (or/c (is-a?/c editor-admin%) #f)

Sets the editor’s administrator. This method is only called by an administrator.

The administrator of an editor can be changed by by the system, and such changes do not
go through this method. A program cannot detect when the administrator changes except by
polling get-admin.

(send an-editor set-caret-owner snip

[domain]) → void?

snip : (or/c (is-a?/c snip%) #f)

domain : (or/c 'immediate 'display 'global) = 'immediate

Attempts to give the keyboard focus to snip . If snip is #f, then the caret is taken away
from any snip in the editor that currently has the caret and restored to this editor.

If the keyboard focus is moved to snip and the editor has the real keyboard focus, the
own-caret method of the snip will be called.

If #f is provided as the new owner, then the local focus is moved to the editor itself. Other-
wise, the local focus is moved to the specified snip.

The domain of focus-setting is one of:

• 'immediate — only set the focus owner within the editor

• 'display — make this editor or the new focus owner get the keyboard focus among
the editors in this editor’s display (if this is an embedded editor)

• 'global — make this editor or the new focus owner get the keyboard focus among
all elements in the editor’s frame

The focus state of an editor can be changed by by the system, and such changes do not go
through this method; use on-focus to monitor focus changes.

See also get-focus-snip.

260

(send an-editor set-cursor cursor

[override?]) → void?

cursor : (or/c (is-a?/c cursor%) #f)

override? : any/c = #t

Sets the custom cursor for the editor to cursor . If override? is a true value and cursor

is not #f, then this cursor overrides cursor settings in embedded editors.

If the custom cursor is #f, the current cursor is removed, and a cursor is selected auto-
matically by the editor (depending on whether the cursor is pointing at a clickback). See
adjust-cursor for more information about the default selection.

An embedding editor’s custom cursor can override the cursor of an embedded editor—even
if the embedded editor has the caret—if the cursor is specified as an overriding cursor.

(send an-editor set-filename filename

[temporary?]) → void?

filename : (or/c path-string? #f)

temporary? : any/c = #f

Sets the filename to filename . If filename is #f or temporary? is a true value, then the
user will still be prompted for a name on future calls to save-file and load-file.

This method is also called when the filename changes through any method (such as load-
file).

(send an-editor set-inactive-caret-threshold threshold) → void?

threshold : (or/c 'no-caret 'show-inactive-caret 'show-caret)

Sets the threshold for painting an inactive selection. See get-inactive-caret-

threshold for more information.

(send an-editor set-keymap [keymap]) → void?

keymap : (or/c (is-a?/c keymap%) #f) = #f

Sets the current keymap for the editor. A #f argument removes all key mapping.

(send an-editor set-load-overwrites-styles overwrite?) → void?

overwrite? : any/c

Determines whether named styles in the current style list are replaced by load-file when
the loaded file contains style specifications.

See also get-load-overwrites-styles and read-from-file.

261

(send an-editor set-max-height width) → void?

width : (or/c (and/c real? (not/c negative?)) 'none)

Sets the maximum display height for the contents of the editor. A value less or equal to 0

indicates that there is no maximum.

Setting the height is disallowed when the editor is internally locked for reflowing (see also
§4.8 “Internal Editor Locks”).

(send an-editor set-max-undo-history count) → void?

count : (or/c exact-nonnegative-integer? 'forever)

Sets the maximum number of undoables that will be remembered by the editor. The default
is 0, which disables undo. The symbol 'forever is accepted as a synonym for a very large
number.

(send an-editor set-max-width width) → void?

width : (or/c (and/c real? (not/c negative?)) 'none)

Sets the maximum display width for the contents of the editor; zero or 'none indicates that
there is no maximum. In a text editor, having no maximum disables automatic line breaking,
and the minimum (positive) maximum width depends on the width of the autowrap bitmap.
The maximum width of a text editor includes its left and right padding (see set-padding)
and its autowrap bitmap (see set-autowrap-bitmap).

Setting the width is disallowed when the editor is internally locked for reflowing (see also
§4.8 “Internal Editor Locks”).

(send an-editor set-min-height width) → void?

width : (or/c (and/c real? (not/c negative?)) 'none)

Sets the minimum display height for the contents of the editor; zero or 'none indicates that
there is no minimum.

Setting the height is disallowed when the editor is internally locked for reflowing (see also
§4.8 “Internal Editor Locks”).

(send an-editor set-min-width width) → void?

width : (or/c (and/c real? (not/c negative?)) 'none)

Sets the minimum display width for the contents of the editor; zero or 'none indicates that
there is no minimum.

Setting the width is disallowed when the editor is internally locked for reflowing (see also
§4.8 “Internal Editor Locks”).

262

(send an-editor set-modified modified?) → void?

modified? : any/c

Sets the modified state of the editor. Usually, the state is changed automatically after an
insertion, deletion, or style change by calling this method. (This method is also called when
the modification state changes through any method.) This method is usually not called when
the state of the flag is not changing.

See also is-modified? and on-snip-modified.

When modified? is true, then an internal modify-counter is set to 1.

When modified? is #f and the editor’s undo or redo stack contains a system-created undoer
that resets the modified state (because the preceding undo or redo action puts the editor back
to a state where the modification state was #f), the undoer is disabled.

Regardless of the value of modified?, the editor’s adminstrator’s modified method is
called.

Finally, if modified? is #f and the internal modify-counter is set to 0, then the set-

unmodified method is called on every snip within the editor.

(send an-editor set-paste-text-only text-only?) → void?

text-only? : any/c

Sets whether the editor accepts only text from the clipboard, or both text and snips. By
default, an editor accepts both text and snips.

See also get-paste-text-only.

(send an-editor set-snip-data thesnip data) → void?

thesnip : (is-a?/c snip%)

data : (is-a?/c editor-data%)

Sets extra data associated with the snip (e.g., location information in a pasteboard). See
§4.2.1.2 “Editor Data” for more information.

(send an-editor set-style-list style-list) → void?

style-list : (is-a?/c style-list%)

Sets the editor’s style list. Styles currently in use with the old style list will be “moved” to
the new style list. In this “move,” if a named style already exists in the new style list, then
the new style with the same name will be used in place of the old style.

Setting the style list is disallowed when the editor is internally locked for reflowing (see also
§4.8 “Internal Editor Locks”).

263

(send an-editor size-cache-invalid) → void?

This method is called when the drawing context given to the editor by its administrator
changes in a way that makes cached size information (such as the width of a string) invalid.

The default implementation eventually propagates the message to snips, and, more generally,
causes location information to be recalculated on demand.

See also invalidate-bitmap-cache.

(send an-editor style-has-changed style) → void?

style : (or/c (is-a?/c style<%>) #f)

Notifies the editor that a style in its style list has changed. This method is automatically
registered with the editor’s style list using notify-on-change in style-list% and auto-
matically deregistered when the style list is removed from the editor.

See notify-on-change in style-list% for more information.

(send an-editor undo) → void?

Undoes the last editor change, if undos have been enabled by calling set-max-undo-

history with a non-zero integer.

If the editor is currently performing an undo or redo, the method call is ignored.

The user may enable Emacs-style undo for editors; see §9 “Preferences”. Normally, undo
operations add to the redo stack (see redo), and any undoable (non-undo) operation clears
the redo stack. With Emacs-style undo, the redo stack is added back to the undo stack, along
with the original undos, so that a complete history is kept in the undo stack.

The system may perform an undo without calling this method in response to other method
calls. Use methods such as on-change to monitor editor content changes.

See also add-undo .
(send an-editor use-file-text-mode) → boolean?

(send an-editor use-file-text-mode on?) → void?

on? : any/c

Gets or sets a boolean that controls if files are saved in 'text or 'binary mode (as in open-
input-file’s #:mode argument). This flag is consulted only when the format is 'text or
'text-force-cr. See load-file for information on formats.

The setting is consulted by save-file after on-save-file is called.

Overriding this method is a reliable way to detect changes to the internal boolean.

264

(send an-editor write-footers-to-file stream) → boolean?

stream : (is-a?/c editor-stream-out%)

See write-headers-to-file.

(send an-editor write-headers-to-file stream) → boolean?

stream : (is-a?/c editor-stream-out%)

Specification: Called when the editor is being saved to a file. The return value is #t if there
are no errors, #f otherwise. Override this method to add custom header data to a file, but
always call the inherited method so that it can write its own extra headers.

To write a header item, call begin-write-header-footer-to-file, passing a box for an
integer. Then write the header data and end by calling end-write-header-footer-to-

file, passing back the integer that was put into the box. Follow this procedure correctly or
the file will be corrupted.

Default implementation: Does nothing.

(send an-editor write-to-file stream) → boolean?

stream : (is-a?/c editor-stream-out%)

Writes the current editor contents to the given stream. The return value is #t if there are no
errors, #f otherwise. See also §4.2 “File Format”.

If the editor’s style list has already been written to the stream, it is not re-written. Instead,
the editor content indicates that the editor shares a previously-written style list. This sharing
will be recreated when the stream is later read.

6.2 editor-admin%

editor-admin% : class?

superclass: object%

See §4.1.1 “Administrators” for information about the role of administrators. The editor-
admin% class is never instantiated directly. It is not even instantiated through derived classes
by most programmers; each editor-canvas% and editor-snip% object creates its own
administrator. However, it may be useful to derive a new instance of this class to display ed-
itors in a new context. Also, it may be useful to call the methods of an existing administrator
from an owned editor.

To create a new editor-admin% class, all methods described here must be overridden. They
are all invoked by the administrator’s editor.

265

(new editor-admin%) → (is-a?/c editor-admin%)

Creates a (useless) editor administrator.

(send an-editor-admin get-dc [x y])
→ (or/c (is-a?/c dc<%>) false/c)

x : (or/c (box/c real?) false/c) = #f

y : (or/c (box/c real?) false/c) = #f

Specification: Returns either the drawing context into which the editor is displayed, or the
context into which it is currently being drawn. When the editor is not embedded, the returned
context is always the drawing content into which the editor is displayed. If the editor is not
displayed, #f is returned.

The origin of the drawing context is also returned, translated into the local coordinates of the
editor. For an embedded editor, the returned origin is reliable only while the editor is being
drawn, or while it receives a mouse or keyboard event.

The x box is filled with the x-origin of the DC in editor coordinates, unless x is #f. The y
box is filled with the y-origin of the DC in editor coordinates, unless y is #f.

See also editor-location-to-dc-location in editor<%> and dc-location-to-

editor-location in editor<%>.

Default implementation: Fills all boxes with 0.0 and returns #f.

(send an-editor-admin get-max-view x

y

w

h

[full?]) → void?

x : (or/c (box/c real?) false/c)

y : (or/c (box/c real?) false/c)

w : (or/c (box/c (and/c real? (not/c negative?))) false/c)

h : (or/c (box/c (and/c real? (not/c negative?))) false/c)

full? : any/c = #f

Specification: Same as get-view unless the editor is visible in multiple standard displays.
If the editor has multiple displays, a region is computed that includes the visible region in
all displays.

See get-view.

Default implementation: Fills all boxes with 0.0.

266

(send an-editor-admin get-view x y w h [full?]) → void?

x : (or/c (box/c real?) false/c)

y : (or/c (box/c real?) false/c)

w : (or/c (box/c (and/c real? (not/c negative?))) false/c)

h : (or/c (box/c (and/c real? (not/c negative?))) false/c)

full? : any/c = #f

Specification: Gets the visible region of the editor within its display (in editor coordinates),
or the overall size of the viewing region in the editor’s top-level display (for an embedded
editor).

If the display is an editor canvas, see also reflow-container. The viewing area within
an editor canvas is not the full client area of the canvas, because an editor canvas installs a
whitespace border around a displayed editor within the client area.

The calculation of the editor’s visible region is based on the current size and scrollbar values
of the top-level display. For an editor canvas display, the region reported by get-view does
not depend on whether the canvas is hidden, obscured by other windows, or moved off the
edge of the screen.

The x box is filled with the left edge of the visible region in editor coordinates, unless x is
#f. The y box is filled with the top edge of the visible region in editor coordinates, unless y
is #f. The w box is filled with the width of the visible region, which may be larger than the
editor itself, unless w is #f. The h box is filled with the height of the visible region, which
may be larger than the editor itself, unless h is #f.

If an editor is fully visible and full? is #f, then x and y will both be filled with 0.

If full? is a true value, then the returned area is the view area of the top-level display for
the editor. This result is different only when the editor is embedded in another editor; in that
case, the x and y values may be meaningless, because they are in the coordinate system of
the immediate editor within the top-level display.

Default implementation: Fills all boxes with 0.0.

(send an-editor-admin grab-caret [domain]) → void?

domain : (one-of/c 'immediate 'display 'global) = 'global

Specification: Called by the editor to request the keyboard focus. If the request is granted,
then the administered editor’s own-caret method will be called.

See set-caret-owner for information about the possible values of domain .

Default implementation: Does nothing.

(send an-editor-admin modified modified?) → void?

modified? : any/c

267

Specification: Called by the editor to report that its modification state has changed to either
modified or unmodified.

See also set-modified in editor<%>.

Default implementation: Does nothing.

(send an-editor-admin needs-update localx

localy

w

h) → void?

localx : real?

localy : real?

w : (and/c real? (not/c negative?))

h : (and/c real? (not/c negative?))

Specification: Called by the editor to request a refresh to its displayed representation. When
the administrator decides that the displayed should be refreshed, it calls the editor’s refresh
method.

The localx , localy , w , and h arguments specify a region of the editor to be updated (in
editor coordinates).

Default implementation: Does nothing.

(send an-editor-admin popup-menu menu x y) → boolean?

menu : (is-a?/c popup-menu%)

x : real?

y : real?

Specification:

Pops up the given popup-menu% object at the specified coordinates (in this window’s coor-
dinates), and returns after handling an unspecified number of events; the menu may still be
popped up when this method returns. If a menu item is selected from the popup-menu, the
callback for the menu item is called. (The eventspace for the menu item’s callback is the
administrator’s display’s eventspace.)

While the menu is popped up, its target is set to the top-level editor in this administrator’s
display. See get-popup-target for more information.

The result is #t if the popup succeeds, #f otherwise (independent of whether the user selects
an item in the popup menu).

The menu is displayed at x and y in editor coordinates.

Default implementation: Returns #f.

268

(send an-editor-admin refresh-delayed?) → boolean?

Specification: Returns #t if updating on this administrator’s display is currently delayed
(usually by begin-edit-sequence in editor<%> in an enclosing editor).

Default implementation: Returns #f.

(send an-editor-admin resized refresh?) → void?

refresh? : any/c

Specification: Called by the editor to notify its display that the editor’s size or scroll count
has changed, so the scrollbars need to be adjusted to reflect the new size. The editor generally
needs to be updated after a resize, but the editor decides whether the update should occur
immediately. If refresh? is not #f, then the editor is requesting to be updated immediately.

Default implementation: Does nothing.

(send an-editor-admin scroll-to localx

localy

w

h

[refresh?
bias]) → boolean?

localx : real?

localy : real?

w : (and/c real? (not/c negative?))

h : (and/c real? (not/c negative?))

refresh? : any/c = #t

bias : (one-of/c 'start 'end 'none) = 'none

Specification: Called by the editor to request scrolling so that the given region is visible. The
editor generally needs to be updated after a scroll, but the editor decides whether the update
should occur immediately.

The localx , localy , w , and h arguments specify a region of the editor to be made visible
by the scroll (in editor coordinates).

If refresh? is not #f, then the editor is requesting to be updated immediately.

The bias argument is one of:

• 'start — if the range doesn’t fit in the visible area, show the top-left region

• 'none — no special scrolling instructions

• 'end — if the range doesn’t fit in the visible area, show the bottom-right region

269

The return value is #t if the display is scrolled, #f if not (either because the requested
region is already visible, because the display has zero size, or because the editor is currently
printing).

If an editor has multiple displays, then if any display currently has the keyboard focus, it is
scrolled. Otherwise, the “primary owner” of the editor (see call-as-primary-owner) is
scrolled.

Default implementation: Return #f

(send an-editor-admin update-cursor) → void?

Specification: Queues an update for the cursor in the display for this editor. The actual cursor
used will be determined by calling the editor’s adjust-cursor method.

Default implementation: Does nothing.

6.3 editor-canvas%

editor-canvas% : class?

superclass: object%

extends: canvas<%>

An editor-canvas% object manages and displays a text% or pasteboard% object.

(new editor-canvas% [parent parent]

[[editor editor]

[style style]

[scrolls-per-page scrolls-per-page]

[label label]

[wheel-step wheel-step]

[line-count line-count]

[horizontal-inset horizontal-inset]

[vertical-inset vertical-inset]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c editor-canvas%)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

editor : (or/c (or/c (is-a?/c text%) (is-a?/c pasteboard%)) false/c)

= #f

270

style :

(listof (one-of/c 'no-border 'control-border 'combo

'no-hscroll 'no-vscroll

'hide-hscroll 'hide-vscroll

'auto-vscroll 'auto-hscroll

'resize-corner 'no-focus 'deleted

'transparent))

= null

scrolls-per-page : (integer-in 1 10000) = 100

label : (or/c label-string? false/c) = #f

wheel-step : (or/c (integer-in 1 10000) false/c) = 3

line-count : (or/c (integer-in 1 1000) false/c) = #f

horizontal-inset : (integer-in 0 1000) = 5

vertical-inset : (integer-in 0 1000) = 5

enabled : any/c = #t

vert-margin : (integer-in 0 1000) = 0

horiz-margin : (integer-in 0 1000) = 0

min-width : (integer-in 0 10000) = graphical-minimum-width

min-height : (integer-in 0 10000) = graphical-minimum-height

stretchable-width : any/c = #t

stretchable-height : any/c = #t

If a canvas is initialized with #f for editor , install an editor later with set-editor.

The style list can contain the following flags:

• 'no-border — omits a border around the canvas

• 'control-border — gives the canvas a border that is like a text-field% control

• 'combo — gives the canvas a combo button that is like a combo-field% control;
this style is intended for use with 'control-border, 'hide-hscroll, and 'hide-

vscroll

• 'no-hscroll — disallows horizontal scrolling and hides the horizontal scrollbar

• 'no-vscroll — disallows vertical scrolling and hides the vertical scrollbar

• 'hide-hscroll — allows horizontal scrolling, but hides the horizontal scrollbar

• 'hide-vscroll — allows vertical scrolling, but hides the vertical scrollbar

• 'auto-hscroll — automatically hides the horizontal scrollbar when unneeded (un-
less 'no-hscroll or 'hide-hscroll is specified)

• 'auto-vscroll — automatically hides the vertical scrollbar when unneeded (unless
'no-vscroll or 'hide-vscroll is specified)

• 'resize-corner — leaves room for a resize control at the canvas’s bottom right
when only one scrollbar is visible

271

• 'no-focus— prevents the canvas from accepting the keyboard focus when the canvas
is clicked or when the focus method is called

• 'deleted — creates the canvas as initially hidden and without affecting parent ’s ge-
ometry; the canvas can be made active later by calling parent ’s add-child method

• 'transparent — the canvas is “erased” before an update using its parent window’s
background; see canvas<%> for information on the interaction of 'transparent and
offscreen buffering

While vertical scrolling of text editors is based on lines, horizontal scrolling and pasteboard
vertical scrolling is based on a fixed number of steps per horizontal page. The scrolls-

per-page argument sets this value.

If provided, the wheel-step argument is passed on to the wheel-step method. The default
wheel step can be overridden globally though the 'GRacket:wheelStep preference; see §9
“Preferences”.

If line-count is not #f, it is passed on to the set-line-count method.

If horizontal-inset is not 5, it is passed on to the horizontal-inset method. Simi-
larly, if vertical-inset is not 5, it is passed on to the vertical-inset method.

For information about the enabled argument, see window<%>. For information about the
horiz-margin and vert-margin arguments, see subarea<%>. For information about the
min-width , min-height , stretchable-width , and stretchable-height arguments,
see area<%>.

(send an-editor-canvas allow-scroll-to-last) → boolean?

(send an-editor-canvas allow-scroll-to-last on?) → void?

on? : any/c

Enables or disables last-line scrolling, or gets the current enable state. If last-line scrolling
is enabled, then an editor displayed in this canvas can be scrolled so that the last line of text
is at the top of the canvas (or bottom of the canvas when bottom-based scrolling is enabled;
see scroll-with-bottom-base). By default, an editor can only be scrolled until the last
line is at the bottom (or top) of the canvas.

(send an-editor-canvas allow-tab-exit) → boolean?

(send an-editor-canvas allow-tab-exit on?) → void?

on? : any/c

Gets or sets whether tab-exit is enabled for the editor canvas. When tab-exit is enabled, the
user can move the keyboard focus out of the editor using the Tab and arrow keys, invoke the
default button using the Enter/Return key, or invoke a dialog’s close action with Escape. By
default, tab-exit is disabled.

272

When tab-exit is enabled for an editor canvas, Tab and Enter keyboard events are consumed
by a frame’s default on-traverse-char method; in addition, a dialog’s default method
consumes Escape key events. Otherwise, on-traverse-char allows the keyboard events
to be propagated to the canvas.

(send an-editor-canvas call-as-primary-owner f) → any

f : (-> any)

Calls a thunk and returns the value. While the thunk is being called, if the canvas has
an editor, the editor’s get-admin method returns the administrator for this canvas. This
method is only useful when an editor is displayed in multiple canvases.

(send an-editor-canvas force-display-focus) → boolean?

(send an-editor-canvas force-display-focus on?) → void?

on? : any/c

Enables or disables force-focus mode. In force-focus mode, the caret or selection of the
editor displayed in this canvas is drawn even when the canvas does not have the keyboard
focus.

(send an-editor-canvas get-editor)

→ (or/c (or/c (is-a?/c text%) (is-a?/c pasteboard%)) false/c)

Returns the editor currently displayed by this canvas, or #f if the canvas does not have an
editor.

(send an-editor-canvas get-line-count)

→ (or/c (integer-in 1 1000) false/c)

Returns a line count installed with set-line-count, or #f if no minimum line count is set.

(send an-editor-canvas horizontal-inset)

→ (integer-in 1 10000)

(send an-editor-canvas horizontal-inset step) → void?

step : (integer-in 1 10000)

Gets or sets the number of pixels within the canvas reserved to the left and right of editor
content. The default is 5.

(send an-editor-canvas lazy-refresh) → boolean?

(send an-editor-canvas lazy-refresh on?) → void?

on? : any/c

Enables or disables lazy-refresh mode, or gets the current enable state. In lazy-refresh mode,
the canvas’s refresh method is called when the window needs to be updated, rather than
on-paint. By default, an editor-canvas% object is not in lazy-refresh mode.

273

(send an-editor-canvas on-char event) → void?

event : (is-a?/c key-event%)

Overrides on-char in canvas<%>.

Handles 'wheel-up and 'wheel-down events by scrolling vertically. Otherwise, passes the
event to the canvas’s editor, if any, by calling its on-char method.

See also get-editor.

(send an-editor-canvas on-event event) → void?

event : (is-a?/c mouse-event%)

Overrides on-event in canvas<%>.

Passes the event to the canvas’s editor, if any, by calling its on-event method.

See also get-editor.

(send an-editor-canvas on-focus on?) → void?

on? : any/c

Overrides on-focus in window<%>.

Enables or disables the caret in the display’s editor, if there is one.

(send an-editor-canvas on-paint) → void?

Overrides on-paint in canvas<%>.

Repaints the editor, or clears the canvas if no editor is being displayed.

This method is called after clearing the margin around the editor, unless the canvas is cre-
ated with the 'transparent style, but the editor area is not automatically cleared. In
other words, editor-canvas% update by default is like canvas% update with the 'no-

autoclear style, except that the margin around the editor area is always cleared.

(send an-editor-canvas on-size width

height) → void?

width : (integer-in 0 10000)

height : (integer-in 0 10000)

Overrides on-size in window<%>.

If the canvas is displaying an editor, its on-display-size method is called.

274

(send an-editor-canvas scroll-to localx

localy

w

h

refresh?

[bias]) → boolean?

localx : real?

localy : real?

w : (and/c real? (not/c negative?))

h : (and/c real? (not/c negative?))

refresh? : any/c

bias : (one-of/c 'start 'end 'none) = 'none

Requests scrolling so that the given region in the currently displayed editor is made visible.

The localx , localy , w , and h arguments specify a region of the editor to be made visible
by the scroll (in editor coordinates).

If refresh? is not #f, then the editor is updated immediately after a successful scroll.

The bias argument is one of:

• 'start — if the range doesn’t fit in the visible area, show the top-left region

• 'none — no special scrolling instructions

• 'end — if the range doesn’t fit in the visible area, show the bottom-right region

The return value is #t if the display is scrolled, #f if not (either because the requested
region is already visible, because the display has zero size, or because the editor is currently
printing).

(send an-editor-canvas scroll-with-bottom-base) → boolean?

(send an-editor-canvas scroll-with-bottom-base on?) → void?

on? : any/c

Enables or disables bottom-base scrolling, or gets the current enable state. If bottom-base
scrolling is on, then scroll positions are determined by line boundaries aligned with the
bottom of the viewable area (rather than with the top of the viewable area). If last-line
scrolling is also enabled (see allow-scroll-to-last), then the editor is bottom-aligned
in the display area even when the editor does not fill the viewable area.

(send an-editor-canvas set-editor edit

[redraw?]) → void?

edit : (or/c (or/c (is-a?/c text%) (is-a?/c pasteboard%)) false/c)

redraw? : any/c = #t

275

Sets the editor that is displayed by the canvas, releasing the current editor (if any). If the new
editor already has an administrator that is not associated with an editor-canvas%, then the
new editor is not installed into the canvas.

If redraw? is #f, then the editor is not immediately drawn; in this case, something must
force a redraw later (e.g., a call to the on-paint method).

If the canvas has a line count installed with set-line-count, the canvas’s minimum height
is adjusted.

(send an-editor-canvas set-line-count count) → void?

count : (or/c (integer-in 1 1000) false/c)

Sets the canvas’s graphical minimum height to display a particular number of lines of text.
The line height is determined by measuring the difference between the top and bottom of
a displayed editor’s first line. The minimum height is not changed until the canvas gets an
editor. When the canvas’s editor is changed, the minimum height is recalculated.

If the line count is set to #f, then the canvas’s graphical minimum height is restored to its
original value.

(send an-editor-canvas vertical-inset) → (integer-in 1 10000)

(send an-editor-canvas vertical-inset step) → void?

step : (integer-in 1 10000)

Gets or sets the number of pixels within the canvas reserved above and below editor content.
The default is 5.

(send an-editor-canvas wheel-step)

→ (or/c (integer-in 1 10000) false/c)

(send an-editor-canvas wheel-step step) → void?

step : (or/c (integer-in 1 10000) false/c)

Gets or sets the number of vertical scroll steps taken for one click of the mouse wheel via a
'wheel-up or 'wheel-down key-event%. A #f value disables special handling for wheel
events (i.e., wheel events are passed on to the canvas’s editor).

6.4 editor-data%

editor-data% : class?

superclass: object%

An editor-data% object contains extra data associated to a snip or region in an editor. See
also §4.2.1.2 “Editor Data”.

276

(new editor-data%) → (is-a?/c editor-data%)

The element returned by get-next is initialized to #f.

(send an-editor-data get-dataclass)

→ (or/c (is-a?/c editor-data-class%) false/c)

Gets the class for this data.

(send an-editor-data get-next)

→ (or/c (is-a?/c editor-data%) false/c)

Gets the next editor data element in a list of editor data elements. A #f terminates the list.

(send an-editor-data set-dataclass v) → void?

v : (is-a?/c editor-data-class%)

Sets the class for this data.

(send an-editor-data set-next v) → void?

v : (or/c (is-a?/c editor-data%) false/c)

Sets the next editor data element in a list of editor data elements. A #f terminates the list.

(send an-editor-data write f) → boolean?

f : (is-a?/c editor-stream-out%)

Specification: Writes the data to the specified stream, returning #t if data is written success-
fully or #f otherwise.

Default implementation: Returns #f.

6.5 editor-data-class%

editor-data-class% : class?

superclass: object%

An editor-data-class% object defines a type for editor-data% objects. See also
§4.2.1.2 “Editor Data”.

(new editor-data-class%) → (is-a?/c editor-data-class%)

Creates a (useless) instance.

277

(send an-editor-data-class get-classname) → string?

Gets the name of the class. Names starting with wx are reserved for internal use.

(send an-editor-data-class read f)

→ (or/c (is-a?/c editor-data%) false/c)

f : (is-a?/c editor-stream-in%)

Reads a new data object from the given stream, returning #f if there is an error.

(send an-editor-data-class set-classname v) → void?

v : string?

Sets the name of the class. Names starting with wx are reserved for internal use.

An editor data class name should usually have the form "(lib\n ...)" to enable on-
demand loading of the class; see §4.2.1.2 “Editor Data” for details.

6.6 editor-data-class-list<%>

editor-data-class-list<%> : interface?

Each eventspace has an instance of editor-data-class-list<%>, obtained with (get-

the-editor-data-class-list). New instances cannot be created directly. This list
keeps a list of editor data classes; this list is needed for loading snips from a file. See
also §4.2.1.2 “Editor Data”.

(send an-editor-data-class-list add snipclass) → void?

snipclass : (is-a?/c editor-data-class%)

Adds a snip data class to the list. If a class with the same name already exists in the list, this
one will not be added.

(send an-editor-data-class-list find name)

→ (or/c (is-a?/c snip-class%) false/c)

name : string?

Finds a snip data class from the list with the given name, returning #f if none can be found.

(send an-editor-data-class-list find-position class)

→ exact-nonnegative-integer?

class : (is-a?/c editor-data-class%)

278

Returns an index into the list for the specified class.

(send an-editor-data-class-list nth n)

→ (or/c (is-a?/c editor-data-class%) false/c)

n : exact-nonnegative-integer?

Returns the n th class in the list (counting from 0), returning #f if the list has n or less
classes.

(send an-editor-data-class-list number)

→ exact-nonnegative-integer?

Returns the number of editor data classes in the list.

6.7 editor-snip-editor-admin<%>

editor-snip-editor-admin<%> : interface?

An instance of this administrator interface is created with each editor-snip% object; new
instances cannot be created directly.

(send an-editor-snip-editor-admin get-snip)

→ (is-a?/c editor-snip%)

Returns the snip that owns this administrator (and displays the editor controlled by the ad-
ministrator, if any).

6.8 editor-snip%

editor-snip% : class?

superclass: snip%

An editor-snip% object is a snip% object that contains and displays an editor<%> object.
This snip class is used to insert an editor as a single item within another editor.

279

(new editor-snip% [[editor editor]

[with-border? with-border?]

[left-margin left-margin]

[top-margin top-margin]

[right-margin right-margin]

[bottom-margin bottom-margin]

[left-inset left-inset]

[top-inset top-inset]

[right-inset right-inset]

[bottom-inset bottom-inset]

[min-width min-width]

[max-width max-width]

[min-height min-height]

[max-height max-height]])
→ (is-a?/c editor-snip%)

editor : (or/c (is-a?/c editor<%>) false/c) = #f

with-border? : any/c = #t

left-margin : exact-nonnegative-integer? = 5

top-margin : exact-nonnegative-integer? = 5

right-margin : exact-nonnegative-integer? = 5

bottom-margin : exact-nonnegative-integer? = 5

left-inset : exact-nonnegative-integer? = 1

top-inset : exact-nonnegative-integer? = 1

right-inset : exact-nonnegative-integer? = 1

bottom-inset : exact-nonnegative-integer? = 1

min-width : (or/c (and/c real? (not/c negative?)) (one-of/c 'none))

= 'none

max-width : (or/c (and/c real? (not/c negative?)) (one-of/c 'none))

= 'none

min-height : (or/c (and/c real? (not/c negative?)) (one-of/c 'none))

= 'none

max-height : (or/c (and/c real? (not/c negative?)) (one-of/c 'none))

= 'none

If editor is non-#f, then it will be used as the editor contained by the snip. See also
set-editor.

If with-border? is not #f, then a border will be drawn around the snip. The editor display
will be inset in the snip area by the amounts specified in the -margin arguments. The border
will be drawn with an inset specified by the -inset arguments.

See get-inset and get-margin for information about the inset and margin arguments.

280

(send an-editor-snip adjust-cursor dc

x

y

editorx

editory

event)

→ (or/c (is-a?/c cursor%) false/c)

dc : (is-a?/c dc<%>)

x : real?

y : real?

editorx : real?

editory : real?

event : (is-a?/c mouse-event%)

Overrides adjust-cursor in snip%.

Gets a cursor from the embedded editor by calling its adjust-cursor method.

(send an-editor-snip border-visible?) → boolean?

Returns #t if the snip has a border draw around it, #f otherwise.

See also show-border.

(send an-editor-snip get-align-top-line) → boolean?

Reports whether the snip is in align-top-line mode. See get-extent for more information.

See also set-align-top-line.

(send an-editor-snip get-editor)

→ (or/c (or/c (is-a?/c text%) (is-a?/c pasteboard%)) false/c)

Returns the editor contained by the snip, or #f is there is no editor.

(send an-editor-snip get-extent dc

x

y

[w
h

descent

space

lspace

rspace]) → void?

dc : (is-a?/c dc<%>)

x : real?

281

y : real?

w : (or/c (box/c (and/c real? (not/c negative?))) false/c)

= #f

h : (or/c (box/c (and/c real? (not/c negative?))) false/c)

= #f

descent : (or/c (box/c (and/c real? (not/c negative?))) false/c)

= #f

space : (or/c (box/c (and/c real? (not/c negative?))) false/c)

= #f

lspace : (or/c (box/c (and/c real? (not/c negative?))) false/c)

= #f

rspace : (or/c (box/c (and/c real? (not/c negative?))) false/c)

= #f

Overrides get-extent in snip%.

Calls its editor’s get-extent method, then adds the editor snip’s margins.

The top space always corresponds to the space of the editor’s top line, plus the snip’s top
margin. Normally, the descent corresponds to the descent of the editor’s last line plus the
snip’s bottom margin. However, if the snip is in align-top-line mode (see set-align-top-
line), the descent corresponds to the descent of the top line, plus the height rest of the
editor’s lines, plus the snip’s bottom margin.

If the editor is a text editor, then 1 is normally subtracted from the editor’s width as returned
by get-extent, because the result looks better for editing. If the snip is in tight-text-fit
mode (see set-tight-text-fit) then 2 is subtracted from a text editor’s width, eliminat-
ing the two pixels that the text editor reserves for the blinking caret. In addition, tight-text-fit
mode subtracts an amount equal to the line spacing from the editor’s height. By default,
tight-text-fit mode is disabled.

(send an-editor-snip get-inset l t r b) → void?

l : (box/c exact-nonnegative-integer?)

t : (box/c exact-nonnegative-integer?)

r : (box/c exact-nonnegative-integer?)

b : (box/c exact-nonnegative-integer?)

Gets the current border insets for the snip. The inset sets how much space is left between the
edge of the snip and the border.

The l box is filled with left inset. The t box is filled with top inset. The r box is filled with
right inset. The b box is filled with bottom inset.

(send an-editor-snip get-margin l t r b) → void?

l : (box/c exact-nonnegative-integer?)

t : (box/c exact-nonnegative-integer?)

282

r : (box/c exact-nonnegative-integer?)

b : (box/c exact-nonnegative-integer?)

Gets the current margins for the snip. The margin sets how much space is left between the
edge of the editor’s contents and the edge of the snip.

The l box is filled with left margin. The t box is filled with top margin. The r box is filled
with right margin. The b box is filled with bottom margin.

(send an-editor-snip get-max-height)

→ (or/c (and/c real? (not/c negative?)) (one-of/c 'none))

Gets the maximum display height of the snip; zero or 'none indicates that there is no maxi-
mum.

(send an-editor-snip get-max-width)

→ (or/c (and/c real? (not/c negative?)) (one-of/c 'none))

Gets the maximum display width of the snip; zero or 'none indicates that there is no maxi-
mum.

(send an-editor-snip get-min-height)

→ (or/c (and/c real? (not/c negative?)) (one-of/c 'none))

Gets the minimum display height of the snip; zero or 'none indicates that there is no mini-
mum.

(send an-editor-snip get-min-width)

→ (or/c (and/c real? (not/c negative?)) (one-of/c 'none))

Gets the minimum display width of the snip; zero or 'none indicates that there is no mini-
mum.

(send an-editor-snip get-tight-text-fit) → boolean?

Reports whether the snip is in tight-text-fit mode. See get-extent for more information.

See also set-tight-text-fit.

(send an-editor-snip resize w h) → boolean?

w : (and/c real? (not/c negative?))

h : (and/c real? (not/c negative?))

Overrides resize in snip%.

283

Sets the snip’s minimum and maximum width and height to the specified values minus the
snip border space. See also set-min-width set-max-width set-max-height set-min-
height.

Also sets the minimum and maximum width of the editor owned by the snip to the given
width (minus the snip border space) via set-max-width and set-min-width.

(send an-editor-snip set-align-top-line tight?) → void?

tight? : any/c

Enables or disables align-top-line mode. See get-extent for more information.

See also get-align-top-line.

(send an-editor-snip set-editor editor) → void?

editor : (or/c (or/c (is-a?/c text%) (is-a?/c pasteboard%)) false/c)

Sets the editor contained by the snip, releasing the old editor in the snip (if any). If the new
editor already has an administrator, then the new editor is not installed into the snip.

When an editor-snip% object is not inserted in an editor, it does not have an administrator.
During this time, it does not give its contained editor an administrator, either. The adminis-
tratorless contained editor can therefore “defect” to some other display with an administrator.
When a contained editor defects and the snip is eventually inserted into a different editor, the
snip drops the traitor contained editor, setting its contained editor to #f.

(send an-editor-snip set-inset l t r b) → void?

l : exact-nonnegative-integer?

t : exact-nonnegative-integer?

r : exact-nonnegative-integer?

b : exact-nonnegative-integer?

Sets the current border insets for the snip. The inset sets how much space is left between the
edge of the snip and the border.

(send an-editor-snip set-margin l t r b) → void?

l : exact-nonnegative-integer?

t : exact-nonnegative-integer?

r : exact-nonnegative-integer?

b : exact-nonnegative-integer?

Sets the current margins for the snip. The margin sets how much space is left between the
edge of the editor’s contents and the edge of the snip.

(send an-editor-snip set-max-height h) → void?

h : (or/c (and/c real? (not/c negative?)) (one-of/c 'none))

284

An editor-snip% normally stretches to wrap around the size of the editor it contains. This
method limits the height of the snip (and if the editor is larger, only part of the editor is
displayed).

Zero or 'none disables the limit.

(send an-editor-snip set-max-width w) → void?

w : (or/c (and/c real? (not/c negative?)) (one-of/c 'none))

An editor-snip% normally stretches to wrap around the size of the editor it contains. This
method limits the width of the snip (and if the editor is larger, only part of the editor is
displayed). The contained editor’s width limits are not changed by this method.

Zero or 'none disables the limit.

(send an-editor-snip set-min-height h) → void?

h : (or/c (and/c real? (not/c negative?)) (one-of/c 'none))

An editor-snip% normally stretches to wrap around the size of the editor it contains. This
method sets the minimum height of the snip (and if the editor is smaller, the editor is
top-aligned in the snip).

Zero or 'none disables the limit.

(send an-editor-snip set-min-width w) → void?

w : (or/c (and/c real? (not/c negative?)) (one-of/c 'none))

An editor-snip% normally stretches to wrap around the size of the editor it contains. This
method sets the minimum width of the snip (and if the editor is smaller, the editor is left-
aligned in the snip). The contained editor’s width limits are not changed by this method.

Zero or 'none disables the limit.

(send an-editor-snip set-tight-text-fit tight?) → void?

tight? : any/c

Enables or disables tight-text-fit mode. See get-extent for more information.

See also get-tight-text-fit.

(send an-editor-snip show-border show?) → void?

show? : any/c

Shows or hides the snip’s border.

(send an-editor-snip style-background-used?) → boolean?

285

Returns #t if the snip uses its style’s background and transparency information when draw-
ing, #f otherwise.

See also use-style-background.

(send an-editor-snip use-style-background use?) → void?

use? : any/c

Causes the snip to use or not used (the default) its style’s background and transparency
information for drawing the background within the snip’s border.

If use? is #f, the style background and transparency information is ignored, otherwise is it
used.

6.9 editor-stream-in%

editor-stream-in% : class?

superclass: object%

An editor-stream-in% object is used to read editor information from a file or other input
stream (such as the clipboard).

(make-object editor-stream-in% base)

→ (is-a?/c editor-stream-in%)

base : (is-a?/c editor-stream-in-base%)

An in-stream base—possibly an editor-stream-in-bytes-base% object—must be sup-
plied in base .

(send an-editor-stream-in get v) → (is-a?/c editor-stream-in%)

v : (box/c exact-integer?)

(send an-editor-stream-in get v) → (is-a?/c editor-stream-in%)

v : (box/c real?)

Reads data from the stream, returning itself. Reading from a bad stream always gives 0.

The v box is filled with the next integer or floating-point value in the stream.

(send an-editor-stream-in get-bytes [len])
→ (or/c bytes? false/c)

len : (or/c (box/c exact-nonnegative-integer?) false/c) = #f

Like get-unterminated-bytes, but the last read byte is assumed to be a nul terminator
and discarded. Use this method when data is written by a call to put without an explicit byte
count, and use get-unterminated-bytes when data is written with an explicit byte count.

286

The len box is filled with the length of the byte string plus one (to indicate the terminator),
unless len is #f.

(send an-editor-stream-in get-exact) → exact-integer?

Returns the next integer value in the stream.

(send an-editor-stream-in get-fixed v)

→ (is-a?/c editor-stream-in%)

v : (box/c exact-integer?)

The v box is filled with a fixed-size integer from the stream obtained through get-fixed-

exact.

(send an-editor-stream-in get-fixed-exact) → exact-integer?

Gets a fixed-sized integer from the stream. See put-fixed for more information. Reading
from a bad stream always gives 0.

(send an-editor-stream-in get-inexact) → real?

Returns the next floating-point value in the stream.

(send an-editor-stream-in get-unterminated-bytes [len])
→ (or/c bytes? false/c)

len : (or/c (box/c exact-nonnegative-integer?) false/c) = #f

Returns the next byte string from the stream. This is the recommended way to read bytes
back in from a stream; use put with two arguments (passing along the length of the bytes)
to write out the bytes to match this method.

Reading from a bad stream returns #f or #"".

Note that when put is not given a byte length, it includes an extra byte for a nul terminator;
use get-bytes to read such byte strings.

The len box is filled with the length of the byte string, unless len is #f.

(send an-editor-stream-in jump-to pos) → void?

pos : exact-nonnegative-integer?

Jumps to a given position in the stream.

(send an-editor-stream-in ok?) → boolean?

287

Returns #t if the stream is ready for reading, #f otherwise. Reading from a bad stream
always returns 0 or "".

(send an-editor-stream-in remove-boundary) → void?

See set-boundary.

(send an-editor-stream-in set-boundary n) → void?

n : exact-nonnegative-integer?

Sets a file-reading boundary at n bytes past the current stream location. If there is an attempt
to read past this boundary, an error is signaled. The boundary is removed with a call to
remove-boundary. Every call to set-boundary must be balanced by a call to remove-

boundary.

Boundaries help keep a subroutine from reading too much data leading to confusing errors.
However, a malicious subroutine can call remove-boundary on its own.

(send an-editor-stream-in skip n) → void?

n : exact-nonnegative-integer?

Skips past the next n bytes in the stream.

(send an-editor-stream-in tell) → exact-nonnegative-integer?

Returns the current stream position.

6.10 editor-stream-in-base%

editor-stream-in-base% : class?

superclass: object%

An editor-stream-in-base% object is used by an editor-stream-in% object to per-
form low-level reading of data.

The editor-stream-in-base% class is never instantiated directly, but the derived class
editor-stream-in-bytes-base% can be instantiated. New derived classes must override
all of the methods described in this section.

(send an-editor-stream-in-base bad?) → boolean?

Returns #t if there has been an error reading from the stream, #f otherwise.

(send an-editor-stream-in-base read data)

→ exact-nonnegative-integer?

data : (and/c vector? (not immutable?))

288

Like read-bytes, but fills a supplied vector with Latin-1 characters instead of filling a byte
string. This method is implemented by default via read-bytes.

(send an-editor-stream-in-base read-bytes bstr)

→ exact-nonnegative-integer?

bstr : (and/c bytes? (not immutable?))

Reads bytes to fill the supplied byte string. The return value is the number of bytes read,
which may be less than the number requested if the stream is emptied. If the stream is
emptied, the next call to bad? must return #t.

(send an-editor-stream-in-base read-byte) → (or/c byte? #f)

Reads a single byte and return it, or returns #f if no more bytes are available. The default
implementation of this method uses read-bytes.

(send an-editor-stream-in-base seek pos) → void?

pos : exact-nonnegative-integer?

Moves to the specified absolute position in the stream.

(send an-editor-stream-in-base skip n) → void?

n : exact-nonnegative-integer?

Skips past the next n characters in the stream.

(send an-editor-stream-in-base tell)

→ exact-nonnegative-integer?

Returns the current stream position.

6.11 editor-stream-in-bytes-base%

editor-stream-in-bytes-base% : class?

superclass: editor-stream-in-base%

An editor-stream-in-bytes-base% object can be used to read editor data from a byte
string.

(make-object editor-stream-in-bytes-base% s)

→ (is-a?/c editor-stream-in-bytes-base%)

s : bytes?

Creates a stream base that reads from s .

289

6.12 editor-stream-out%

editor-stream-out% : class?

superclass: object%

An editor-stream-out% object is used to write editor information to a file or other output
stream (such as the clipboard).

(make-object editor-stream-out% base)

→ (is-a?/c editor-stream-out%)

base : (is-a?/c editor-stream-out-base%)

An out-stream base—possibly an editor-stream-out-bytes-base% object—must be
supplied in base .

(send an-editor-stream-out jump-to pos) → void?

pos : exact-nonnegative-integer?

Jumps to a given position in the stream.

(send an-editor-stream-out ok?) → boolean?

Returns #t if the stream is ready for writing, #f otherwise. Writing to a bad stream has no
effect.
(send an-editor-stream-out pretty-finish) → void?

Ensures that the stream ends with a newline. This method is called by write-editor-

global-footer.

(send an-editor-stream-out pretty-start) → void?

Writes a “comment” into the stream that identifies the file format. This method is called by
write-editor-global-header.

(send an-editor-stream-out put n v)

→ (is-a?/c editor-stream-out%)

n : exact-nonnegative-integer?

v : bytes?

(send an-editor-stream-out put v)

→ (is-a?/c editor-stream-out%)

v : bytes?

(send an-editor-stream-out put v)

→ (is-a?/c editor-stream-out%)

v : exact-integer?

(send an-editor-stream-out put v)

→ (is-a?/c editor-stream-out%)

v : real?

290

Writes v , or n bytes of v .

When n is supplied with a byte-string v , use get-unterminated-bytes to read the bytes
later. This is the recommended way to write out bytes to be easily read in later; use get-

unterminated-bytes to read the bytes back in.

If n is not supplied and v is a byte string, then for historical reasons, the actual num-
ber of bytes written includes a #\nul terminator, so use get-bytes instead of get-

unterminated-bytes to read the bytes later.

(send an-editor-stream-out put-fixed v)

→ (is-a?/c editor-stream-out%)

v : exact-integer?

Puts a fixed-sized integer into the stream. This method is needed because numbers are
usually written in a way that takes varying numbers of bytes. In some cases it is useful
to temporary write a 0 to a stream, write more data, and then go back and change the 0 to
another number; such a process requires a fixed-size number.

Numbers written to a stream with put-fixed must be read with get-fixed-exact or
get-fixed.

(send an-editor-stream-out put-unterminated v)

→ (is-a?/c editor-stream-out%)

v : bytes?

The same as calling put with (bytes-length v) and v .

(send an-editor-stream-out tell) → exact-nonnegative-integer?

Returns the current stream position.

6.13 editor-stream-out-base%

editor-stream-out-base% : class?

superclass: object%

An editor-stream-out-base% object is used by an editor-stream-out% object to per-
form low-level writing of data.

The editor-stream-out-base% class is never instantiated directly, but the derived class
editor-stream-out-bytes-base% can be instantiated. New derived classes must over-
ride all of the methods described in this section.

(send an-editor-stream-out-base bad?) → boolean?

291

Returns #t if there has been an error writing to the stream, #f otherwise.

(send an-editor-stream-out-base seek pos) → void?

pos : exact-nonnegative-integer?

Moves to the specified absolute position in the stream.

(send an-editor-stream-out-base tell)

→ exact-nonnegative-integer?

Returns the current stream position.

(send an-editor-stream-out-base write data) → void?

data : (listof char?)

Writes data (encoded as Latin-1 characters) to the stream. This method is implemented by
default via write-bytes.

(send an-editor-stream-out-base write-bytes bstr) → void?

bstr : bytes?

Writes data to the stream.

6.14 editor-stream-out-bytes-base%

editor-stream-out-bytes-base% : class?

superclass: editor-stream-out-base%

An editor-stream-out-bytes-base% object can be used to write editor data into a byte
string.

(new editor-stream-out-bytes-base%)

→ (is-a?/c editor-stream-out-bytes-base%)

Creates an empty stream.

(send an-editor-stream-out-bytes-base get-bytes) → bytes?

Returns the current contents of the stream.

292

6.15 editor-wordbreak-map%

editor-wordbreak-map% : class?

superclass: object%

An editor-wordbreak-map% objects is used with a text% objects to specify word-
breaking criteria for the default wordbreaking function. See also set-wordbreak-map,
get-wordbreak-map, find-wordbreak, and set-wordbreak-func.

A global object the-editor-wordbreak-map is created automatically and used as the de-
fault map for all text% objects.

A wordbreak objects implements a mapping from each character to a list of symbols. The
following symbols are legal elements of the list:

• 'caret

• 'line

• 'selection

• 'user1

• 'user2

The presence of a flag in a character’s value indicates that the character does not break a
word when searching for breaks using the corresponding reason. For example, if 'caret
is present, then the character is a non-breaking character for caret-movement words. (Each
stream of non-breaking characters is a single word.)

(new editor-wordbreak-map%) → (is-a?/c editor-wordbreak-map%)

All ASCII alpha-numeric characters are initialized with '(caret line selection). All
other ASCII non-whitespace characters except - are initialized with '(line). All ASCII
whitespace characters and - are initialized with null.

(send an-editor-wordbreak-map get-map char)

→ (listof (one-of/c 'caret 'line 'selection 'user1 'user2))

char : char?

Gets the mapping value for char . See editor-wordbreak-map% for more information.

(send an-editor-wordbreak-map set-map char

value) → void?

char : char?

value : (listof (one-of/c 'caret 'line 'selection 'user1 'user2))

Sets the mapping value for char to value . See editor-wordbreak-map% for more infor-
mation.

293

6.16 keymap%

keymap% : class?

superclass: object%

A keymap% object is used by editor<%> objects to map keyboard and mouse sequences to
arbitrary functions in an extensible way. Keymaps can be used without editors, as well. A
keymap% object contains

• a mapping from function names to event-handling procedures; and

• a mapping from key and mouse sequences to function names.

A handler procedure in a keymap is invoked with a key-event% object or a mouse-event%
object. It is also given another value that depends on the context in which the keymap
is used (or, more specifically, the arguments to handle-key-event or handle-mouse-
event). For keymaps associated with editor<%> objects, the extra parameter is generally
the editor<%> object that received the keyboard or mouse event.

(new keymap%) → (is-a?/c keymap%)

Creates an empty keymap.

(send a-keymap add-function name func) → void?

name : string?

func : (any/c (is-a?/c event%) . -> . any/c)

Names a new function to handle events, called in response to handle-key-event, handle-
mouse-event, or call-function. The return value is of the procedure is ignored.

If there was already a function mapped to this name, it will be replaced with the given
function.

When the function is called, it gets the arguments that were passed to handle-key-event,
handle-mouse-event, or call-function. For keymaps associated with an editor, this is
normally the target editor.

(send a-keymap break-sequence) → void?

Clears the state of the keymap if it is in the middle of a key sequence. For example, the user
may have hit escape, and then changed to another window; if escape is part of a keyboard
sequence, the keymap state needs to be cleared because the user is not going to complete the
sequence.

A break callback function can be installed with set-break-sequence-callback.

294

(send a-keymap call-function name

in

event

[try-chain?]) → boolean?

name : string?

in : any/c

event : (is-a?/c event%)

try-chain? : any/c = #f

Calls a named event handler directly. If the function cannot be found or the found handler
did not want to handle the event, #f is returned. Otherwise, the return value is the boolean
return value of the event handler.

The in and event arguments are passed on to the keymap handler procedure if one is found.

If try-chain? is not #f, keymaps chained to this one are searched for the function name.
If the function is not found and try-chain? is #f; an exception is also raised, but the
exception handler cannot escape (see §1.6.4 “Continuations and Event Dispatch”).

(send a-keymap chain-to-keymap next

prefix?) → void?

next : (is-a?/c keymap%)

prefix? : any/c

Chains next off a-keymap The next keymap will be used to handle events which are not
handled by a-keymap . If prefix? is a true value, then next will take precedence over
other keymaps already chained to a-keymap .

Multiple keymaps can be chained off one keymap using chain-to-keymap. When keymaps
are chained off a main keymap, events not handled by the main keymap are passed to the
chained keymaps until some chained keymap handles the events. Keymaps can be chained
together in an arbitrary acyclic graph.

Keymap chaining is useful because multiple-event sequences are handled correctly for
chained groups. Without chaining, a sequence of events can produce state in a keymap that
must be reset when a callback is invoked in one of the keymaps. This state can be manually
cleared with break-sequence, though calling the break-sequence method also invokes
the handler installed by set-break-sequence-callback.

(send a-keymap get-double-click-interval)

→ (integer-in 0 1000000)

Returns the maximum number of milliseconds that can separate the clicks of a double-click.

The default interval is determined in a platform-specific way, but it can be overridden glob-
ally though the 'GRacket:doubleClickTime preference; see §9 “Preferences”.

295

(send a-keymap handle-key-event in event) → boolean?

in : any/c

event : (is-a?/c key-event%)

Attempts to handle a keyboard event, returning #t if the event was handled (i.e., a handler
was found and it returned a true value), #f otherwise.

See also call-function.

(send a-keymap handle-mouse-event in event) → boolean?

in : any/c

event : (is-a?/c mouse-event%)

Attempts to handle a mouse event, returning #t if the event was handled (i.e., a handler was
found and it returned a true value), #f otherwise.

See also call-function.

(send a-keymap map-function keyname fname) → void?

keyname : string?

fname : string?

Maps an input state sequence to a function name using a string-encoded sequence in key-

name . The format of keyname is a sequence of semicolon-delimited input states; each state
is made up of a sequence of modifier identifiers followed by a key identifier.

The modifier identifiers are:

• s: — All platforms: Shift

• c: — All platforms: Control

• a: — Mac OS X: Option

• m: — Windows: Alt; Unix: Meta; Mac OS X: Command, when map-command-as-

meta-key produces #t

• d: — Mac OS X: Command

• l: — All platforms: Caps Lock

• ?: — All platforms: allow match to character produced by opposite use of Shift,
AltGr/Option, and/or Caps Lock, when available; see get-other-shift-key-code
in key-event%

296

If a particular modifier is not mentioned in a state string, it matches states whether that
modifier is pressed or not pressed. A ∼ preceding a modifier makes the string match only
states where the corresponding modifier is not pressed. If the state string begins with :,
then the string matches a state only if modifiers (other than Caps Lock) not mentioned in the
string are not pressed.

A key identifier can be either a character on the keyboard (e.g., a, 2, ?) or a special name.
The special names are as follows:

• leftbutton (button down)

• rightbutton

• middlebutton

• leftbuttondouble (button down for double-click)

• rightbuttondouble

• middlebuttondouble

• leftbuttontriple (button down for triple-click)

• rightbuttontriple

• middlebuttontriple

• leftbuttonseq (all events from button down through button up)

• rightbuttonseq

• middlebuttonseq

• wheelup

• wheeldown

• wheelleft

• wheelright

• esc

• delete

• del (same as delete)

• insert

• ins (same as insert)

• add

297

• subtract

• multiply

• divide

• backspace

• back

• return

• enter (same as return)

• tab

• space

• right

• left

• up

• down

• home

• end

• pageup

• pagedown

• semicolon (since ; separates sequence steps)

• colon (since : separates modifiers)

• numpad0

• numpad1

• numpad2

• numpad3

• numpad4

• numpad5

• numpad6

• numpad7

• numpad8

298

• numpad9

• numpadenter

• f1

• f2

• f3

• f4

• f5

• f6

• f7

• f8

• f9

• f10

• f11

• f12

• f13

• f14

• f15

• f16

• f17

• f18

• f19

• f20

• f21

• f22

• f23

• f24

299

For a special keyword, the capitalization does not matter. However, capitalization is im-
portant for single-letter keynames. Furthermore, single-letter ASCII keynames are treated
specially: A and s:a are both treated as s:A. However, when c: is included on Windows
without m:, or when d: is included on Mac OS X, then ASCII letters are not upcased with
s:, since the upcasing behavior of the Shift key is cancelled by Control without Alt (on
Windows) or by Command (on Mac OS X).

A state can match multiple state strings mapped in a keymap (or keymap chain); when a
state matches multiple state strings, a mapping is selected by ranking the strings according
to specificity. A state string that mentions more pressed modifiers ranks higher than other
state strings, and if two strings mention the same number of pressed modifiers, the one that
mentions more unpressed modifiers ranks higher. Finally, a state string that includes ?: and
matches only with the opposite use of Shift, AltGr/Option, and/or Caps Lock ranks below
all matches that do not depend on ?:, and one that requires the opposite use of both Shift
and AltGr/Option ranks even lower. In the case that multiple matching strings have the same
rank, a match is selected arbitrarily.

Examples:

• "space" — matches whenever the space bar is pressed, regardless of the state of
modifiers keys.

• "∼c:space" — matches whenever the space bar is pressed and the Control key is not
pressed.

• "a" — matches whenever a is typed, regardless of the state of modifiers keys (other
than Shift).

• ":a" — matches only when a is typed with no modifier keys pressed.

• "∼c:a" — matches whenever a is typed and neither the Shift key nor the Control key
is pressed.

• ":esc;:c:c" — matches an Escape key press (no modifiers) followed by a Control-C
press (no modifiers other than Control).

• "?:d:+" — matches when Command is pressed with key that produces +, even if
producing + normally requires pressing Shift.

A call to map-function that would map a particular key sequence both as a prefix and as a
complete sequence raises an exception, but the exception handler cannot escape (see §1.6.4
“Continuations and Event Dispatch”).

A function name does not have to be mapped to a handler before input states are mapped to
the name; the handler is dispatched by name at the time of invocation. The event handler
mapped to a function name can be changed without affecting the map from input states to
function names.

300

(send a-keymap remove-chained-keymap keymap) → void?

keymap : (is-a?/c keymap%)

If keymap was previously chained from this keymap (through chain-to-keymap), then it
is removed from the chain-to list.

(send a-keymap remove-grab-key-function) → void?

Removes a callback installed with set-grab-key-function.

(send a-keymap remove-grab-mouse-function) → void?

Removes a callback installed with set-grab-mouse-function.

(send a-keymap set-break-sequence-callback f) → void?

f : (-> any)

Installs a callback procedure that is invoked when break-sequence is called. After it is
invoked once, the callback is removed from the keymap. If another callback is installed
before break-sequence is called, the old callback is invoked immediately before the new
one is installed.

(send a-keymap set-double-click-interval n) → void?

n : (integer-in 0 1000000)

Sets the maximum number of milliseconds that can separate the clicks of a double-click.

(send a-keymap set-grab-key-function f) → void?

f :

((or/c string? false?)

(is-a?/c keymap%)

any/c

(is-a?/c key-event%)

. -> . any)

Installs a callback procedure that is invoked after the keymap matches input to a function
name or fails to match an input. Only one keyboard grab function can be installed at a
time. When keymaps are chained to a keymap with a grab callback, the callback is invoked
for matches in the chained keymap (when the chained keymap does not have its own grab
callback).

If a grab callback returns a true value for a matching or non-matching callback, the event
is considered handled. If the callback returns a true value for a matching callback, then the
matching keymap function is not called by the keymap.

The callback procedure f will be invoked as:

301

(f str keymap editor event)

The str argument is the name of a function for a matching callback, or #f for a non-
matching callback. The keymap argument is the keymap that matched (possibly a keymap
chained to the one in which the callback was installed) or the keymap in which the callback
was installed. The editor and event arguments are the same as passed on to the matching
keymap function.

Key grab callback functions are de-installed with remove-grab-key-function.

(send a-keymap set-grab-mouse-function f) → void?

f :

((or/c string? false?)

(is-a?/c keymap%)

any/c

(is-a?/c mouse-event%)

. -> . any)

Like set-grab-key-function, but for mouse events.

6.17 pasteboard%

pasteboard% : class?

superclass: object%

extends: editor<%>

A pasteboard% object is an editor for displaying snips with arbitrary locations.

(new pasteboard%) → (is-a?/c pasteboard%)

The editor will not be displayed until it is attached to an editor-canvas% object or some
other display.

A new keymap% object is created for the new editor. See also get-keymap and set-keymap.

A new style-list% object is created for the new editor. See also get-style-list and
set-style-list.

(send a-pasteboard add-selected snip) → void?

snip : (is-a?/c snip%)

(send a-pasteboard add-selected x y w h) → void?

x : real?

y : real?

w : (and/c real? (not/c negative?))

h : (and/c real? (not/c negative?))

302

Selects snips without deselecting other snips. When coordinates are given, this method
selects all snips that intersect with the given rectangle (in editor coordinates).

The selection in a pasteboard can be changed by the system in response to other method
calls, and such changes do not go through this method; use on-select to monitor selection
changes.

(send a-pasteboard after-delete snip) → void?

snip : (is-a?/c snip%)

Refine this method with augment.

Specification: Called after a snip is deleted from the editor (and after the display is refreshed;
use on-delete and begin-edit-sequence to avoid extra refreshes when after-delete

modifies the editor).

See also can-delete? and on-edit-sequence.

No internals locks are set when this method is called.

Default implementation: Does nothing.

(send a-pasteboard after-insert snip

before

x

y) → void?

snip : (is-a?/c snip%)

before : (or/c (is-a?/c snip%) false/c)

x : real?

y : real?

Refine this method with augment.

Specification: Called after a snip is inserted into the editor (and after the display is refreshed;
use on-insert and begin-edit-sequence to avoid extra refreshes when after-insert

modifies the editor).

See also can-insert? and on-edit-sequence.

No internals locks are set when this method is called.

Default implementation: Does nothing.

(send a-pasteboard after-interactive-move event) → void?

event : (is-a?/c mouse-event%)

Refine this method with augment.

303

Specification: Called after the user stops interactively dragging snips (the ones that are se-
lected; see find-next-selected-snip). The mouse event that terminated the move (usu-
ally a button-up event) is provided.

See also can-interactive-move? and on-interactive-move.

Default implementation: Does nothing.

(send a-pasteboard after-interactive-resize snip) → void?

snip : (is-a?/c snip%)

Refine this method with augment.

Specification: Called after the user stops interactively resizing a snip (the one that is cur-
rently selected; see find-next-selected-snip). The snip argument is the snip that was
resized.

See also can-interactive-resize? and on-interactive-resize.

Default implementation: Does nothing.

(send a-pasteboard after-move-to snip

x

y

dragging?) → void?

snip : (is-a?/c snip%)

x : real?

y : real?

dragging? : any/c

Refine this method with augment.

Specification: Called after a given snip is moved within the editor (and after the display
is refreshed; use on-move-to and begin-edit-sequence to avoid extra refreshes when
after-move-to modifies the editor).

If dragging? is not #f, then this move was a temporary move for dragging.

See also can-move-to? and on-edit-sequence.

No internals locks are set when this method is called.

Default implementation: Does nothing.

(send a-pasteboard after-reorder snip

to-snip

before?) → boolean?

304

snip : (is-a?/c snip%)

to-snip : (is-a?/c snip%)

before? : any/c

Refine this method with augment.

Specification: Called before a snip is moved in the pasteboard’s front-to-back snip order
(and after the display is refreshed; use on-reorder and begin-edit-sequence to avoid
extra refreshes when after-reorder modifies the editor).

If before? is #t, then snip was moved before to-snip , otherwise snip was moved after
to-snip .

See also can-reorder? and on-edit-sequence.

No internals locks are set when this method is called.

Default implementation: Does nothing.

(send a-pasteboard after-resize snip

w

h

resized?) → void?

snip : (is-a?/c snip%)

w : (and/c real? (not/c negative?))

h : (and/c real? (not/c negative?))

resized? : any/c

Refine this method with augment.

Specification: Called after a given snip is resized (and after the display is refreshed; use on-
resize and begin-edit-sequence to avoid extra refreshes when after-resize modi-
fies the editor), or after an unsuccessful resize attempt was made.

If resized? is not #f, the snip was successfully resized.

See also can-resize? and on-edit-sequence.

No internals locks are set when this method is called.

Default implementation: Does nothing.

(send a-pasteboard after-select snip on?) → void?

snip : (is-a?/c snip%)

on? : any/c

Refine this method with augment.

305

Specification: Called after a snip in the pasteboard is selected or deselected. See also on-

select. This method is not called after selected snip is deleted (and thus de-selected indi-
rectly); see also after-delete.

If on? is #t, then snip was just selected, otherwise snip was just deselected.

See also can-select? and on-edit-sequence.

No internals locks are set when this method is called.

Default implementation: Does nothing.

(send a-pasteboard can-delete? snip) → boolean?

snip : (is-a?/c snip%)

Refine this method with augment.

Specification: Called before a snip is deleted from the editor. If the return value is #f, then
the delete will be aborted.

See also on-delete and after-delete.

The editor is internally locked for writing when this method is called (see also §4.8 “Internal
Editor Locks”).

Default implementation: Returns #t.

(send a-pasteboard can-insert? snip

before

x

y) → boolean?

snip : (is-a?/c snip%)

before : (or/c (is-a?/c snip%) false/c)

x : real?

y : real?

Refine this method with augment.

Specification: Called before a snip is inserted from the editor. If the return value is #f, then
the insert will be aborted.

See also on-insert and after-insert.

The editor is internally locked for writing when this method is called (see also §4.8 “Internal
Editor Locks”).

Default implementation: Returns #t.

306

(send a-pasteboard can-interactive-move? event) → boolean?

event : (is-a?/c mouse-event%)

Refine this method with augment.

Specification: Called when the user starts interactively dragging snips (the ones that are
selected; see find-next-selected-snip). All of the selected snips will be moved. If
#f is returned, the interactive move is disallowed. The mouse event that started the move
(usually a button-down event) is provided.

See also on-interactive-move, after-interactive-move, and interactive-

adjust-move.

Default implementation: Returns #t.

(send a-pasteboard can-interactive-resize? snip) → boolean?

snip : (is-a?/c snip%)

Refine this method with augment.

Specification: Called when the user starts interactively resizing a snip (the one that is se-
lected; see find-next-selected-snip). If #f is returned, the interactive resize is disal-
lowed.

The snip argument is the snip that will be resized.

See also after-interactive-resize, after-interactive-resize, and
interactive-adjust-resize.

Default implementation: Returns #t.

(send a-pasteboard can-move-to? snip

x

y

dragging?) → boolean?

snip : (is-a?/c snip%)

x : real?

y : real?

dragging? : any/c

Refine this method with augment.

Specification: Called before a snip is moved in the editor. If the return value is #f, then the
move will be aborted.

If dragging? is not #f, then this move is a temporary move for dragging.

307

See also on-move-to and after-move-to.

The editor is internally locked for writing when this method is called (see also §4.8 “Internal
Editor Locks”).

Default implementation: Returns #t.

(send a-pasteboard can-reorder? snip

to-snip

before?) → boolean?

snip : (is-a?/c snip%)

to-snip : (is-a?/c snip%)

before? : any/c

Refine this method with augment.

Specification: Called before a snip is moved in the pasteboard’s front-to-back snip order. If
the return value is #f, then the reordering will be aborted.

If before? is #t, then snip is to be moved before to-snip , otherwise snip is to be moved
after to-snip .

See also on-reorder and after-reorder.

The editor is internally locked for writing when this method is called (see also §4.8 “Internal
Editor Locks”).

Default implementation: Returns #t.

(send a-pasteboard can-resize? snip w h) → boolean?

snip : (is-a?/c snip%)

w : (and/c real? (not/c negative?))

h : (and/c real? (not/c negative?))

Refine this method with augment.

Specification: Called before a snip is resized in the editor. If the return value is #f, then the
resize will be aborted.

See also on-resize and after-resize.

The editor is internally locked for writing when this method is called (see also §4.8 “Internal
Editor Locks”).

Default implementation: Returns #t.

(send a-pasteboard can-select? snip on?) → boolean?

snip : (is-a?/c snip%)

on? : any/c

308

Refine this method with augment.

Specification: This method is called before a snip in the pasteboard is selected or deselected.
If #f is returned, the selection change is disallowed. This method is not called when a
selected snip is to be deleted (and thus de-selected indirectly); see also can-delete?.

If on? is #t, then snip will be selected, otherwise snip will be deselected.

See also on-select and after-select.

The editor is internally locked for writing when this method is called (see also §4.8 “Internal
Editor Locks”).

Default implementation: Returns #t.

(send a-pasteboard change-style [style snip]) → void?

style : (or/c (is-a?/c style-delta%) (is-a?/c style<%>) #f)

= #f

snip : (or/c (is-a?/c snip%) #f) = #f

Changes the style of snip to a specific style or by applying a style delta. If snip is #f,
then all currently selected snips are changed. If style is #f, then the default style is used,
according to default-style-name.

To change a large collection of snips from one style to another style, consider providing a
style<%> instance rather than a style-delta% instance. Otherwise, change-style must
convert the style-delta% instance to the style<%> instance for every snip; this conversion
consumes both time and (temporary) memory.

When a style is provided: The editor’s style list must contain style , otherwise the style
is not changed. See also convert in style-list%.

(send a-pasteboard copy-self-to dest) → void?

dest : (or/c (is-a?/c text%) (is-a?/c pasteboard%))

Overrides copy-self-to in editor<%>.

In addition to the default copy-self-to in editor<%> work, the dragability, selection
visibility state, and scroll step of a-pasteboard are installed into dest .

(send a-pasteboard delete) → void?

(send a-pasteboard delete snip) → void?

snip : (is-a?/c snip%)

Deletes snip when provided, or deletes the currently selected snips from the editor when
snip is not provided.

309

The content of an editor can be changed by the system in response to other method calls, and
such changes do not go through this method; use on-delete to monitor content deletion
changes.

(send a-pasteboard do-copy time extend?) → void?

time : exact-integer?

extend? : any/c

Specification: Called to copy the editor’s current selection into the clipboard. This method is
provided so that it can be overridden by subclasses. Do not call this method directly; instead,
call copy.

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

Default implementation: Copies the current selection, extending the current clipboard con-
texts if extend? is true.

(send a-pasteboard do-paste time) → void?

time : exact-integer?

Specification: Called to paste the current contents of the clipboard into the editor. This
method is provided so that it can be overridden by subclasses. Do not call this method
directly; instead, call paste.

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

Default implementation: Pastes.

(send a-pasteboard do-paste-x-selection time) → void?

time : exact-integer?

Specification: Called to paste the current contents of the X11 selection on Unix (or the
clipboard on Windows and Mac OS X) into the editor. This method is provided so that it
can be overridden by subclasses. Do not call this method directly; instead, call paste-x-
selection.

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

Default implementation: Pastes.

(send a-pasteboard erase) → void?

Deletes all snips from the editor.

See also delete.

310

(send a-pasteboard find-next-selected-snip start)

→ (or/c (is-a?/c snip%) false/c)

start : (or/c (is-a?/c snip%) false/c)

Returns the next selected snip in the editor, starting the search after start . (See §4.1 “Editor
Structure and Terminology” for information about snip order in pasteboards.) If start is
#f, then the search starts with the first snip in the editor (and thus returns the first selected
snip, if any are selected). If no more selected snips are available, or if start is not in the
pasteboard, #f is returned.

(send a-pasteboard find-snip x y [after])
→ (or/c (is-a?/c snip%) false/c)

x : real?

y : real?

after : (or/c (is-a?/c snip%) false/c) = #f

Finds the frontmost snip (after a given snip) that intersects a given location. See §4.1 “Editor
Structure and Terminology” for information about snip order in pasteboards.

The x and y arguments are in editor coordinates. If after is not supplied, the frontmost
snip at x and y is returned, otherwise the frontmost snip behind after is returned. If after
is a snip that is not in the pasteboard, #f is returned.

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”).

(send a-pasteboard get-center) → real? real?

Returns the center of the pasteboard in pasteboard coordinates.

The first result is the x-coordinate of the center and the second result is the y-coordinate of
the center.

(send a-pasteboard get-dragable) → boolean?

Returns whether snips in the editor can be interactively dragged by event handling in on-

default-event: #t if dragging is allowed, #f otherwise. By default, dragging is allowed.
See also set-dragable.

(send a-pasteboard get-scroll-step)

→ (and/c real? (not/c negative?))

Gets the editor location offset for each vertical scroll position. See also set-scroll-step.

(send a-pasteboard get-selection-visible) → boolean?

311

Returns whether selection dots are drawn around the edge of selected snips in the pasteboard.
By default, selection dots are on. See also set-selection-visible.

(send a-pasteboard insert snip) → void?

snip : (is-a?/c snip%)

(send a-pasteboard insert snip before x y) → void?

snip : (is-a?/c snip%)

before : (or/c (is-a?/c snip%) false/c)

x : real?

y : real?

(send a-pasteboard insert snip x y) → void?

snip : (is-a?/c snip%)

x : real?

y : real?

(send a-pasteboard insert snip before) → void?

snip : (is-a?/c snip%)

before : (or/c (is-a?/c snip%) false/c)

Extends insert in editor<%>.

Inserts snip at location (x , y) just in front of before . (See §4.1 “Editor Structure and
Terminology” for information about snip order in pasteboards.) If before is not provided
or is #f, then snip is inserted behind all other snips. If x and y are not provided, the snip is
added at (0, 0).

(send a-pasteboard interactive-adjust-mouse x

y) → void?

x : (box/c real?)

y : (box/c real?)

Specification: This method is called during interactive dragging and resizing (of the currently
selected snips; see find-next-selected-snip) to preprocess the current mouse location
(in editor coordinates). The snip and actual x and y coordinates are passed into the method
(boxed); the resulting coordinates are used instead of the actual mouse location.

See also interactive-adjust-resize.

Default implementation: A negative value for either x or y is replaced with 0.

(send a-pasteboard interactive-adjust-move snip

x

y) → void?

snip : (is-a?/c snip%)

x : (box/c real?)

y : (box/c real?)

312

Specification: This method is called during an interactive move (for each selected snip) to
preprocess the user-determined snip location for each selected snip. The snip and mouse-
determined locations (in editor coordinates) are passed into the method (boxed); the resulting
locations are used for graphical feedback to the user during moving.

The actual mouse coordinates are first sent through interactive-adjust-mouse before
determining the locations passed into this method.

Default implementation: Does nothing.

(send a-pasteboard interactive-adjust-resize snip

width

height) → void?

snip : (is-a?/c snip%)

width : (box/c (and/c real? (not/c negative?)))

height : (box/c (and/c real? (not/c negative?)))

Specification: This method is called during interactive resizing of a snip to preprocess the
user-determined snip size. The snip and mouse-determined height and width are passed into
the method (boxed); the resulting height and width are used for graphical feedback to the
user during resizing.

The actual mouse coordinates are first sent through interactive-adjust-mouse before
determining the sizes passed into this method.

Default implementation: Does nothing.

(send a-pasteboard is-selected? snip) → boolean?

snip : (is-a?/c snip%)

Returns #t if a specified snip is currently selected or #f otherwise.

(send a-pasteboard lower snip) → void?

snip : (is-a?/c snip%)

Moves the snip one level deeper (i.e., behind one more other snip) in the pasteboard’s snip
order. See §4.1 “Editor Structure and Terminology” for information about snip order in
pasteboards.

See also raise, set-before, and set-after.

(send a-pasteboard move snip x y) → void?

snip : (is-a?/c snip%)

x : real?

y : real?

(send a-pasteboard move x y) → void?

x : real?

y : real?

313

Moves snip right x pixels and down y pixels. If snip is not provided, then all selected
snips are moved.

Snip locations in a pasteboard can be changed by the system in response to other method
calls, and such changes do not go through this method; use on-move-to to monitor snip
position changes.

(send a-pasteboard move-to snip x y) → void?

snip : (is-a?/c snip%)

x : real?

y : real?

Moves snip to a given location in the editor.

Snip locations in a pasteboard can be changed by the system in response to other method
calls, and such changes do not go through this method; use on-move-to to monitor snip
position changes.

(send a-pasteboard no-selected) → void?

Deselects all selected snips in the editor.

The selection in a pasteboard can be changed by the system in response to other method
calls, and such changes do not go through this method; use on-select to monitor selection
changes.

(send a-pasteboard on-default-event event) → void?

event : (is-a?/c mouse-event%)

Overrides on-default-event in editor<%>.

Selects, drags, and resizes snips:

• Clicking on a snip selects the snip. Shift-clicking extends the current selection with
the snip.

• Clicking in the space between snips drags a selection box; once the mouse button is
released, all snips touching the box are selected. Shift-clicking extends the current
selection with the new snips.

• Double-clicking on a snip calls on-double-click.

• Clicking on a selected snip drags the selected snip(s) to a new location.

• Clicking on a hiliting tab for a selected object resizes the object.

314

(send a-pasteboard on-delete snip) → void?

snip : (is-a?/c snip%)

Refine this method with augment.

Called before a snip is deleted from the editor, after can-delete? is called to verify that the
deletion is allowed. The after-delete method is guaranteed to be called after the delete
has completed.

The editor is internally locked for writing when this method is called (see also §4.8 “Internal
Editor Locks”). Use after-delete to modify the editor, if necessary.

(send a-pasteboard on-double-click snip

event) → void?

snip : (is-a?/c snip%)

event : (is-a?/c mouse-event%)

Specification: This method is called when the user double-clicks on a snip in the editor. The
clicked-on snip and event records are passed to the method.

Default implementation: If snip accepts events, it is designated as the caret owner and all
snips in the editor are unselected.

(send a-pasteboard on-insert snip before x y) → void?

snip : (is-a?/c snip%)

before : (or/c (is-a?/c snip%) false/c)

x : real?

y : real?

Refine this method with augment.

Called before a snip is inserted from the editor, after can-insert? is called to verify that
the insertion is allowed. The after-insert method is guaranteed to be called after the
insert has completed.

The editor is internally locked for writing when this method is called (see also §4.8 “Internal
Editor Locks”). Use after-insert to modify the editor, if necessary.

(send a-pasteboard on-interactive-move event) → void?

event : (is-a?/c mouse-event%)

Refine this method with augment.

Specification: Called when the user starts interactively dragging snips (the ones that are
selected; see find-next-selected-snip), after can-interactive-move? is called to

315

verify that the move is allowed. The after-interactive-move method is guaranteed to
be called after the move has completed. All of the selected snips will be moved. The mouse
event that started the move (usually a button-down event) is provided.

See also interactive-adjust-move.

Default implementation: Does nothing.

(send a-pasteboard on-interactive-resize snip) → void?

snip : (is-a?/c snip%)

Refine this method with augment.

Specification: Called when the user starts interactively resizing a snip (the one that is se-
lected; see find-next-selected-snip), after can-interactive-resize? is called to
verify that the resize is allowed. The after-interactive-resize method is guaranteed
to be called after the resize has completed.

The snip argument is the snip that will be resized.

Default implementation: Does nothing.

(send a-pasteboard on-move-to snip

x

y

dragging?) → void?

snip : (is-a?/c snip%)

x : real?

y : real?

dragging? : any/c

Refine this method with augment.

Specification: Called before a snip is moved in the editor, after can-move-to? is called to
verify that the move is allowed. The after-move-to method is guaranteed to be called
after the move has completed.

If dragging? is not #f, then this move is a temporary move for dragging.

The editor is internally locked for writing when this method is called (see also §4.8 “In-
ternal Editor Locks”). Use after-move-to to modify the editor, if necessary. See also
on-interactive-move and interactive-adjust-move.

Default implementation: Does nothing.

(send a-pasteboard on-reorder snip

to-snip

before?) → void?

316

snip : (is-a?/c snip%)

to-snip : (is-a?/c snip%)

before? : any/c

Refine this method with augment.

Specification: Called before a snip is moved in the pasteboard’s front-to-back snip order,
after can-reorder? is called to verify that the reorder is allowed. The after-reorder

method is guaranteed to be called after the reorder has completed.

If before? is #t, then snip is to be moved before to-snip , otherwise snip is to be moved
after to-snip .

The editor is internally locked for writing when this method is called (see also §4.8 “Internal
Editor Locks”). Use after-reorder to modify the editor, if necessary.

Default implementation: Does nothing.

(send a-pasteboard on-resize snip w h) → void?

snip : (is-a?/c snip%)

w : (and/c real? (not/c negative?))

h : (and/c real? (not/c negative?))

Refine this method with augment.

Specification: Called before a snip is resized by the editor, after can-resize? is called to
verify that the resize is allowed. The after-resize method is guaranteed to be called after
the resize has completed.

The editor is internally locked for writing when this method is called (see also §4.8 “Internal
Editor Locks”). Use after-resize to modify the editor, if necessary.

Note that a snip calls resized, not this method, to notify the pasteboard that the snip resized
itself.

Default implementation: Does nothing.

(send a-pasteboard on-select snip on?) → void?

snip : (is-a?/c snip%)

on? : any/c

Refine this method with augment.

Specification: Called before a snip in the pasteboard is selected or deselected, after can-
select? is called to verify that the selection is allowed. The after-select method is
guaranteed to be called after the selection has completed. This method is not called when a
selected snip is to be deleted (and thus de-selected indirectly); see also on-delete .

317

If on? is #t, then snip will be selected, otherwise snip will be deselected.

The editor is internally locked for writing when this method is called (see also §4.8 “Internal
Editor Locks”). Use after-select to modify the editor, if necessary.

Default implementation: Does nothing.

(send a-pasteboard raise snip) → void?

snip : (is-a?/c snip%)

Moves a snip one level shallower (i.e., in front of one more other snip) in the pasteboard’s
snip order. See §4.1 “Editor Structure and Terminology” for information about snip order in
pasteboards.

See also lower, set-before, and set-after.

(send a-pasteboard remove snip) → void?

snip : (is-a?/c snip%)

Removes the specified snip from the editor in a non-undoable manner (so the snip is com-
pletely free of the pasteboard can be used in other editors).

See also delete.

(send a-pasteboard remove-selected snip) → void?

snip : (is-a?/c snip%)

Deselects snip (if it is currently selected) without deselecting any other snips.

The selection in a pasteboard can be changed by the system in response to other method
calls, and such changes do not go through this method; use on-select to monitor selection
changes.

(send a-pasteboard resize snip w h) → boolean?

snip : (is-a?/c snip%)

w : (and/c real? (not/c negative?))

h : (and/c real? (not/c negative?))

Attempts to resize a given snip. If the snip allows resizing, #t is returned, otherwise #f is
returned. Using this method instead of calling the snip’s resize method directly will make
the resize undo-able.

(send a-pasteboard set-after snip after) → void?

snip : (is-a?/c snip%)

after : (or/c (is-a?/c snip%) false/c)

318

Changes the depth of snip moving it just behind after . If after is #f, snip is moved to
the back. See §4.1 “Editor Structure and Terminology” for information about snip order in
pasteboards.

See also raise, lower, and set-before.

(send a-pasteboard set-before snip before) → void?

snip : (is-a?/c snip%)

before : (or/c (is-a?/c snip%) false/c)

Changes the depth of snip moving it just in front of before . If before is #f, snip is
moved to the front. See §4.1 “Editor Structure and Terminology” for information about snip
order in pasteboards.

See also raise, lower, and set-after.

(send a-pasteboard set-dragable allow-drag?) → void?

allow-drag? : any/c

Sets whether snips in the editor can be interactively dragged by event handling in on-

default-event: a true value allows dragging, #f disallows dragging. See also get-

dragable.

(send a-pasteboard set-scroll-step stepsize) → void?

stepsize : (and/c real? (not/c negative?))

Sets the editor location offset for each vertical scroll position. See also get-scroll-step.

(send a-pasteboard set-selected snip) → void?

snip : (is-a?/c snip%)

Selects a specified snip (deselecting all others).

The selection in a pasteboard can be changed by the system in response to other method
calls, and such changes do not go through this method; use on-select to monitor selection
changes.

(send a-pasteboard set-selection-visible visible?) → void?

visible? : any/c

Sets whether selection dots are drawn around the edge of selected snips in the pasteboard.
See also get-selection-visible.

6.18 text%

text% : class?

319

superclass: object%

extends: editor<%>

A text% object is a standard text editor. A text editor is displayed on the screen through an
editor-canvas% object or some other display.

(new text% [[line-spacing line-spacing]

[tab-stops tab-stops]

[auto-wrap auto-wrap]]) → (is-a?/c text%)

line-spacing : (and/c real? (not/c negative?)) = 1.0

tab-stops : (listof real?) = null

auto-wrap : any/c = #f

The line-spacing argument sets the additional amount of space (in DC units) inserted
between each line in the editor when the editor is displayed. This spacing is included in the
reported height of each line.

See set-tabs for information about tabstops.

If auto-wrap is true, then auto-wrapping is enabled via auto-wrap.

A new keymap% object is created for the new editor. See also get-keymap and set-keymap.

A new style-list% object is created for the new editor. See also get-style-list and
set-style-list.

(send a-text after-change-style start len) → void?

start : exact-nonnegative-integer?

len : exact-nonnegative-integer?

Refine this method with augment.

Specification: Called after the style is changed for a given range (and after the display is re-
freshed; use on-change-style and begin-edit-sequence to avoid extra refreshes when
after-change-style modifies the editor).

See also can-change-style? and on-edit-sequence.

No internals locks are set when this method is called.

Default implementation: Does nothing.

(send a-text after-delete start len) → void?

start : exact-nonnegative-integer?

len : exact-nonnegative-integer?

Refine this method with augment.

320

Specification: Called after a given range is deleted from the editor (and after the display
is refreshed; use on-delete and begin-edit-sequence to avoid extra refreshes when
after-delete modifies the editor).

The start argument specifies the starting position of the deleted range. The len argument
specifies number of deleted items (so start+len is the ending position of the deleted
range).

See also can-delete? and on-edit-sequence.

No internals locks are set when this method is called.

Default implementation: Does nothing.

(send a-text after-insert start len) → void?

start : exact-nonnegative-integer?

len : exact-nonnegative-integer?

Refine this method with augment.

Specification: Called after items are inserted into the editor (and after the display is re-
freshed; use on-insert and begin-edit-sequence to avoid extra refreshes when after-
insert modifies the editor).

The start argument specifies the position of the insert. The len argument specifies the
total length (in positions) of the inserted items.

See also can-insert? and on-edit-sequence.

No internals locks are set when this method is called.

Default implementation: Does nothing.

(send a-text after-merge-snips pos) → void?

pos : exact-nonnegative-integer?

Refine this method with augment.

Specification: Called after adjacent snips in the editor are combined into one.

The pos argument specifies the position within the editor where the snips were merged (i.e.,
one old snip was just before pos , one old was just after pos , and the new snip spans pos).

See also merge-with.

Default implementation: Does nothing.

(send a-text after-set-position) → void?

321

Refine this method with augment.

Specification: Called after the start and end position have been moved (but not when the
position is moved due to inserts or deletes).

See also on-edit-sequence.

Default implementation: Does nothing.

(send a-text after-set-size-constraint) → void?

Refine this method with augment.

Specification: Called after the editor’s maximum or minimum height or width is changed
(and after the display is refreshed; use on-set-size-constraint and begin-edit-

sequence to avoid extra refreshes when after-set-size-constraint modifies the edi-
tor).

(This callback method is provided because setting an editor’s maximum width may cause
lines to be re-flowed with soft newlines.)

See also can-set-size-constraint? and on-edit-sequence.

Default implementation: Does nothing.

(send a-text after-split-snip pos) → void?

pos : exact-nonnegative-integer?

Refine this method with augment.

Specification: Called after a snip in the editor is split into two, either through a call to
split-snip or during some other action, such as inserting.

The pos argument specifies the position within the editor where a snip was split.

Default implementation: Does nothing.

(send a-text call-clickback start end) → void?

start : exact-nonnegative-integer?

end : exact-nonnegative-integer?

Simulates a user click that invokes a clickback, if the given range of positions is within a
clickback’s region. See also §4.7 “Clickbacks”.

(send a-text can-change-style? start len) → boolean?

start : exact-nonnegative-integer?

len : exact-nonnegative-integer?

322

Refine this method with augment.

Specification: Called before the style is changed in a given range of the editor. If the return
value is #f, then the style change will be aborted.

The editor is internally locked for writing during a call to this method (see also §4.8 “Internal
Editor Locks”). Use after-change-style to modify the editor, if necessary.

See also on-change-style, after-change-style, and on-edit-sequence.

Default implementation: Returns #t.

(send a-text can-delete? start len) → boolean?

start : exact-nonnegative-integer?

len : exact-nonnegative-integer?

Refine this method with augment.

Specification: Called before a range is deleted from the editor. If the return value is #f, then
the delete will be aborted.

The start argument specifies the starting position of the range to delete. The len argument
specifies number of items to delete (so start+len is the ending position of the range to
delete).

The editor is internally locked for writing during a call to this method (see also §4.8 “Internal
Editor Locks”). Use after-delete to modify the editor, if necessary.

See also on-delete, after-delete, and on-edit-sequence.

Default implementation: Returns #t.

(send a-text can-insert? start len) → boolean?

start : exact-nonnegative-integer?

len : exact-nonnegative-integer?

Refine this method with augment.

Specification: Called before items are inserted into the editor. If the return value is #f, then
the insert will be aborted.

The start argument specifies the position of the potential insert. The len argument speci-
fies the total length (in positions) of the items to be inserted.

The editor is internally locked for writing during a call to this method (see also §4.8 “Internal
Editor Locks”). Use after-insert to modify the editor, if necessary.

See also on-insert, after-insert, and on-edit-sequence.

323

Default implementation: Returns #t.

(send a-text can-set-size-constraint?) → boolean?

Refine this method with augment.

Specification: Called before the editor’s maximum or minimum height or width is changed.
If the return value is #f, then the change will be aborted.

(This callback method is provided because setting an editor’s maximum width may cause
lines to be re-flowed with soft newlines.)

See also on-set-size-constraint, after-set-size-constraint, and on-edit-

sequence.

Default implementation: Returns #t.

(send a-text caret-hidden?) → boolean?

Returns #t if the caret is hidden for this editor or #f otherwise.

See also hide-caret.
(send a-text change-style delta

[start
end

counts-as-mod?]) → void?

delta : (or/c (is-a?/c style-delta%) #f)

start : (or/c exact-nonnegative-integer? 'start) = 'start

end : (or/c exact-nonnegative-integer? 'end) = 'end

counts-as-mod? : any/c = #t

(send a-text change-style style

[start
end

counts-as-mod?]) → void?

style : (or/c (is-a?/c style<%>) #f)

start : (or/c exact-nonnegative-integer? 'start) = 'start

end : (or/c exact-nonnegative-integer? 'end) = 'end

counts-as-mod? : any/c = #t

Changes the style for a region in the editor by applying a style delta or installing a specific
style. If start is 'start and end is 'end, then the currently selected items are changed.
Otherwise, if end is 'end, then the style is changed from start until the end of the selec-
tion. If counts-as-mod? is #f, then set-modified is not called after applying the style
change.

To change a large collection of snips from one style to another style, consider providing a
style<%> instance rather than a style-delta% instance. Otherwise, change-style must

324

convert the style-delta% instance to the style<%> instance for every snip; this conversion
consumes both time and (temporary) memory.

When style is provided: The editor’s style list must contain style , otherwise the style is
not changed. See also convert in style-list%.

(send a-text copy [extend? time start end]) → void?

extend? : any/c = #f

time : exact-integer? = 0

start : (or/c exact-nonnegative-integer? 'start) = 'start

end : (or/c exact-nonnegative-integer? 'end) = 'end

Extends copy in editor<%>.

Copies specified range of text into the clipboard. If extend? is not #f, the old clipboard
contents are appended. If start is 'start or end is 'end, then the current selection
start/end is used.

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

(send a-text copy-self-to dest) → void?

dest : (or/c (is-a?/c text%) (is-a?/c pasteboard%))

Overrides copy-self-to in editor<%>.

In addition to the default copy-self-to in editor<%> work, this editor’s file format, word-
break function, wordbreak map, click-between-threshold, caret visibility state, overwrite
mode state, and autowrap bitmap are installed into dest .

(send a-text cut [extend? time start end]) → void?

extend? : any/c = #f

time : exact-integer? = 0

start : (or/c exact-nonnegative-integer? 'start) = 'start

end : (or/c exact-nonnegative-integer? 'end) = 'end

Overrides cut in editor<%>.

Copies and then deletes the specified range. If extend? is not #f, the old clipboard contents
are appended. If start is 'start or end is 'end, then the current selection start/end is
used.

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

(send a-text delete start [end scroll-ok?]) → void?

325

start : (or/c exact-nonnegative-integer? 'start)

end : (or/c exact-nonnegative-integer? 'back) = 'back

scroll-ok? : any/c = #t

(send a-text delete) → void?

Deletes the specified range or the currently selected text (when no range is provided) in the
editor. If start is 'start, then the starting selection position is used; if end is 'back, then
only the character preceding start is deleted. If scroll-ok? is not #f and start is the
same as the current caret position, then the editor’s display may be scrolled to show the new
selection position.

The content of an editor can be changed by the system in response to other method calls, and
such changes do not go through this method; use on-delete to monitor content deletion
changes.

(send a-text do-copy start end time extend?) → void?

start : exact-nonnegative-integer?

end : exact-nonnegative-integer?

time : exact-integer?

extend? : any/c

Specification: Called to copy a region of the editor into the clipboard. This method is pro-
vided so that it can be overridden by subclasses. Do not call this method directly; instead,
call copy.

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

Default implementation: Copy the data from start to end , extending the current clipboard
contexts if extend? is not #f.

(send a-text do-paste start time) → void?

start : exact-nonnegative-integer?

time : exact-integer?

Specification: Called to paste the current contents of the clipboard into the editor. This
method is provided so that it can be overridden by subclasses. Do not call this method
directly; instead, call paste.

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

Default implementation: Pastes into the position start .

(send a-text do-paste-x-selection start

time) → void?

326

start : exact-nonnegative-integer?

time : exact-integer?

Specification: Called to paste the current contents of the X11 selection on Unix (or the
clipboard on Windows or Mac OS X) into the editor. This method is provided so that it
can be overridden by subclasses. Do not call this method directly; instead, call paste-x-
selection.

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

Default implementation: Pastes into the position start .

(send a-text erase) → void?

Erases the contents of the editor.

See also delete.

(send a-text extend-position pos) → void?

pos : exact-nonnegative-integer?

Updates the selection (see set-position) based on the result of get-extend-end-

position, get-extend-start-position, and pos .

If pos is before the extend start and extend end positions, then the selection goes from pos

to the extend end position. If it is after, then the selection goes from the extend start position
to pos .

Use this method to implement shift-modified movement keys in order to properly extend the
selection.

(send a-text find-line y [on-it?]) → exact-nonnegative-integer?

y : real?

on-it? : (or/c (box/c any/c) #f) = #f

Given a location in the editor, returns the line at the location. Lines are numbered starting
with 0.

The on-it? box is filled with #t if the line actually touches this position, or #f otherwise,
unless on-it? is #f. (A large enough y will always return the last line number, but will set
on-it? to #f.)

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”). Calling this method may force the recalculation of location information, even if
the editor currently has delayed refreshing (see refresh-delayed?).

327

(send a-text find-newline [direction
start

end])
→ (or/c exact-nonnegative-integer? #f)

direction : (or/c 'forward 'backward) = 'forward

start : (or/c exact-nonnegative-integer? 'start) = 'start

end : (or/c exact-nonnegative-integer? 'eof) = 'eof

Like find-string, but specifically finds a paragraph break (possibly more efficiently than
searching text).

(send a-text find-next-non-string-snip after)

→ (or/c (is-a?/c snip%) #f)

after : (or/c (is-a?/c snip%) #f)

Given a snip, returns the next snip in the editor (after the given one) that is not an instance of
string-snip%. If #f is given as the snip, the result is the first non-string snip in the editor
(if any). If no non-string snip is found after the given snip, the result is #f.

(send a-text find-position x

y

[at-eol?
on-it?

edge-close?])
→ exact-nonnegative-integer?

x : real?

y : real?

at-eol? : (or/c (box/c any/c) #f) = #f

on-it? : (or/c (box/c any/c) #f) = #f

edge-close? : (or/c (box/c real?) #f) = #f

Given a location in the editor, returns the position at the location.

See §4.3 “End of Line Ambiguity” for a discussion of the at-eol? argument. The on-it?
box is filled with #t if the line actually touches this position, or #f otherwise, unless on-it?
is #f.

The edge-close? box is filled with it will be filled in with a value indicating how close
the point is to the vertical edges of the item when the point falls on the item, unless edge-
close? is #f. If the point is closest to the left edge of the item, the value will be negative;
otherwise, the value will be positive. In either case, then absolute value of the returned result
is the distance from the point to the edge of the item. The values 100 and -100 indicate
infinity.

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”). Calling this method may force the recalculation of location information, even if

328

the editor currently has delayed refreshing (see refresh-delayed?).

(send a-text find-position-in-line line

x

[at-eol?
on-it?

edge-close?])
→ exact-nonnegative-integer?

line : exact-nonnegative-integer?

x : real?

at-eol? : (or/c (box/c any/c) #f) = #f

on-it? : (or/c (box/c any/c) #f) = #f

edge-close? : (or/c (box/c real?) #f) = #f

Given a location within a line of the editor, returns the position at the location. Lines are
numbered starting with 0.

See §4.3 “End of Line Ambiguity” for a discussion of the at-eol? argument. The on-it?
box is filled with #t if the line actually touches this position, or #f otherwise, unless on-it?
is #f.

See find-position for a discussion of edge-close?.

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”). Calling this method may force the recalculation of location information, even if
the editor currently has delayed refreshing (see refresh-delayed?).

(send a-text find-snip pos direction [s-pos])
→ (or/c (is-a?/c snip%) #f)

pos : exact-nonnegative-integer?

direction : (or/c 'before-or-none 'before 'after 'after-or-none)

s-pos : (or/c (box/c exact-nonnegative-integer?) #f) = #f

Returns the snip at a given position, or #f if an appropriate snip cannot be found.

If the position pos is between two snips, direction specifies which snip to return; direc-
tion can be any of the following:

• 'before-or-none — returns the snip before the position, or #f if pos is 0

• 'before — returns the snip before the position, or the first snip if pos is 0

• 'after — returns the snip after the position, or the last snip if pos is the last position

• 'after-or-none – returns the snip after the position, or #f if pos is the last position
or larger

329

The s-pos box is filled with the position where the returned snip starts, unless s-pos is #f.

(send a-text find-string str

[direction
start

end

get-start?

case-sensitive?])
→ (or/c exact-nonnegative-integer? #f)

str : string?

direction : (or/c 'forward 'backward) = 'forward

start : (or/c exact-nonnegative-integer? 'start) = 'start

end : (or/c exact-nonnegative-integer? 'eof) = 'eof

get-start? : any/c = #t

case-sensitive? : any/c = #t

Finds an exact-match string in the editor and returns its position. If the string is not found,
#f is returned.

The direction argument can be 'forward or 'backward, indicating a forward search or
backward search respectively. In the case of a forward search, the return value is the starting
position of the string; for a backward search, the ending position is returned. However, if
get-start? is #f, then the other end of the string position will be returned.

The start and end arguments set the starting and ending positions of a forward search (use
start > end for a backward search). If start is 'start, then the search starts at the start
of the selection. If end is 'eof, then the search continues to the end (for a forward search)
or start (for a backward search) of the editor.

If case-sensitive? is #f, then an uppercase and lowercase of each alphabetic character
are treated as equivalent.

(send a-text find-string-all str

[direction
start

end

get-start?

case-sensitive])
→ (listof exact-nonnegative-integer?)

str : string?

direction : (or/c 'forward 'backward) = 'forward

start : (or/c exact-nonnegative-integer? 'start) = 'start

end : (or/c exact-nonnegative-integer? 'eof) = 'eof

get-start? : any/c = #t

case-sensitive : any/c = #t

Finds all occurrences of a string using find-string. If no occurrences are found, the empty

330

list is returned. The arguments are the same as for find-string.

(send a-text find-wordbreak start

end

reason) → void?

start : (or/c (box/c exact-nonnegative-integer?) #f)

end : (or/c (box/c exact-nonnegative-integer?) #f)

reason : (or/c 'caret 'line 'selection 'user1 'user2)

Finds wordbreaks in the editor using the current wordbreak procedure. See also set-

wordbreak-func.

The contents of the start argument specifies an position to start searching backwards to
the next word start; its will be filled with the starting position of the word that is found. If
start is #f, no backward search is performed.

The contents of the end argument specifies an position to start searching forwards to the
next word end; its will be filled with the ending position of the word that is found. If end is
#f, no forward search is performed.

The reason argument specifies more information about what the wordbreak is used for. For
example, the wordbreaks used to move the caret may be different from the wordbreaks used
to break lines. The possible values of reason are:

• 'caret — find a wordbreak suitable for moving the caret

• 'line — find a wordbreak suitable for breaking lines

• 'selection — find a wordbreak suitable for selecting the closest word

• 'user1 — for other (not built-in) uses

• 'user2 — for other (not built-in) uses

The actual handling of reason is controlled by the current wordbreak procedure; see set-
wordbreak-funcfor details. The default handler and default wordbreak map treats alphanu-
meric characters the same for 'caret, 'line, and 'selection. Non-alphanumeric, non-
space, non-hyphen characters do not break lines, but do break caret and selection words. For
example a comma should not be counted as part of the preceding word for moving the caret
past the word or double-clicking the word, but the comma should stay on the same line as
the word (and thus counts in the same “line word”).

(send a-text flash-off) → void?

Turns off the hiliting and shows the normal selection range again; see flash-on. There is
no effect if this method is called when flashing is already off.

331

(send a-text flash-on start

end

[at-eol?
scroll?

timeout]) → void?

start : exact-nonnegative-integer?

end : exact-nonnegative-integer?

at-eol? : any/c = #f

scroll? : any/c = #t

timeout : exact-nonnegative-integer? = 500

Temporarily hilites a region in the editor without changing the current selection.

See §4.3 “End of Line Ambiguity” for a discussion of the at-eol? argument. If scroll?
is not #f, the editor’s display will be scrolled if necessary to show the hilited region. If
timeout is greater than 0, then the hiliting will be automatically turned off after the given
number of milliseconds.

See also flash-off.

(send a-text get-anchor) → boolean?

Returns #t if the selection is currently auto-extending. See also set-anchor.

(send a-text get-between-threshold)

→ (and/c real? (not/c negative?))

Returns an amount used to determine the meaning of a user click. If the click falls within
the threshold of a position between two items, then the click registers on the space between
the items rather than on either item.

See also set-between-threshold.

(send a-text get-character start) → char?

start : exact-nonnegative-integer?

Returns the character following the position start . The character corresponds to getting
non-flattened text from the editor.

If start is greater than or equal to the last position, #\nul is returned.

(send a-text get-end-position) → exact-nonnegative-integer?

Returns the ending position of the current selection. See also get-position.

332

(send a-text get-extend-start-position)

→ exact-nonnegative-integer?

Returns the beginning of the “extend” region if the selection is currently being extended
via, e.g., shift and a cursor movement key; otherwise returns the same value as get-end-
position.

(send a-text get-extend-end-position)

→ exact-nonnegative-integer?

Returns the beginning of the “extend” region if the selection is currently being extended via,
e.g., shift and a cursor movement key; otherwise returns the same value as get-start-

position.

(send a-text get-file-format)

→ (or/c 'standard 'text 'text-force-cr)

Returns the format of the last file saved from or loaded into this editor. See also load-file.

(send a-text get-line-spacing)

→ (and/c real? (not/c negative?))

Returns the spacing inserted by the editor between each line. This spacing is included in the
reported height of each line.

(send a-text get-overwrite-mode) → boolean?

Returns #t if the editor is in overwrite mode, #f otherwise. Overwrite mode only affects
the way that on-default-char handles keyboard input for insertion characters. See also
set-overwrite-mode.

(send a-text get-padding) →

(and/c real? (not/c negative?))

(and/c real? (not/c negative?))

(and/c real? (not/c negative?))

(and/c real? (not/c negative?))

Returns the editor’s padding for its left, top, right, and bottom sides (in that order).

See also set-padding.

(send a-text get-position start [end]) → void?

start : (or/c (box/c exact-nonnegative-integer?) #f)

end : (or/c (box/c exact-nonnegative-integer?) #f) = #f

333

Returns the current selection range in positions. If nothing is selected, the start and end

will be the same number and that number will be where the insertion point is.

See also get-start-position and get-end-position.

The start box is filled with the starting position of the selection, unless start is #f. The
end box is filled with the ending position of the selection, unless end is #f.

(send a-text get-region-data start end)

→ (or/c (is-a?/c editor-data%) #f)

start : exact-nonnegative-integer?

end : exact-nonnegative-integer?

Gets extra data associated with a given region. See §4.2.1.2 “Editor Data” for more infor-
mation.

This method is not called when the whole editor is saved to a file. In such cases, the infor-
mation can be stored in the header or footer; see §4.2.2 “Global Data: Headers and Footers”.

This method is meant to be overridden; the default set-region-data method does not
store information to be retrieved by this method.

(send a-text get-revision-number)

→ (and/c real? (not/c negative?))

Returns an inexact number that increments every time the editor is changed in one of the fol-
lowing ways: a snip is inserted (see after-insert), a snip is deleted (see after-delete),
a snip is split (see after-split-snip), snips are merged (see after-merge-snips), or a
snip changes its count (which is rare; see recounted).

(send a-text get-snip-position snip)

→ (or/c exact-nonnegative-integer? #f)

snip : (is-a?/c snip%)

Returns the starting position of a given snip or #f if the snip is not in this editor.

(send a-text get-snip-position-and-location snip

pos

[x
y]) → boolean?

snip : (is-a?/c snip%)

pos : (or/c (box/c exact-nonnegative-integer?) #f)

x : (or/c (box/c real?) #f) = #f

y : (or/c (box/c real?) #f) = #f

Gets a snip’s position and top left location in editor coordinates. The return value is #t if
the snip is found, #f otherwise.

334

The pos box is filled with starting position of snip , unless pos is #f. The x box is filled
with left location of snip in editor coordinates, unless x is #f. The y box is filled with top
location of snip in editor coordinates, unless y is #f.

When location information is requested: The result is only valid when the editor is dis-
played (see §4.1 “Editor Structure and Terminology”). Calling this method may force the
recalculation of location information, even if the editor currently has delayed refreshing (see
refresh-delayed?).

(send a-text get-start-position) → exact-nonnegative-integer?

Returns the starting position of the current selection. See also get-position.

(send a-text get-styles-sticky) → boolean?

In the normal mode for a text editor, style settings are sticky. With sticky styles, when
a string or character is inserted into an editor, it gets the style of the snip preceding the
insertion point (or the snip that includes the insertion point if text is inserted into an exiting
string snip). Alternatively, if change-style is called to set the style at the caret position
(when it is not a range), then the style is remembered; if the editor is not changed before text
is inserted at the caret, then the text gets the remembered style.

With non-sticky styles, text inserted into an editor always gets the style in the editor’s style
list named by default-style-name.

See also set-styles-sticky.

(send a-text get-tabs [length
tab-width

in-units]) → (listof real?)

length : (or/c (box/c exact-nonnegative-integer?) #f) = #f

tab-width : (or/c (box/c real?) #f) = #f

in-units : (or/c (box/c any/c) #f) = #f

Returns the current tab-position array as a list.

The length box is filled with the length of the tab array (and therefore the returned list),
unless length is #f. The tab-width box is filled with the width used for tabs past the end
of the tab array, unless tab-width is #f. The in-units box is filled with #t if the tabs are
specified in canvas units or #f if they are specified in space-widths, unless in-units is #f.

See also set-tabs.

(send a-text get-text [start
end

flattened?

force-cr?]) → string?

335

start : exact-nonnegative-integer? = 0

end : (or/c exact-nonnegative-integer? 'eof) = 'eof

flattened? : any/c = #f

force-cr? : any/c = #f

Gets the text from start to end . If end is 'eof, then the contents are returned from start

until the end of the editor.

If flattened? is not #f, then flattened text is returned. See §4.4 “Flattened Text” for a
discussion of flattened vs. non-flattened text.

If force-cr? is not #f and flattened? is not #f, then automatic newlines (from word-
wrapping) are written into the return string as real newlines.

(send a-text get-top-line-base)

→ (and/c real? (not/c negative?))

Returns the distance from the top of the editor to the alignment baseline of the top line.
This method is primarily used when an editor is an item within another editor. The reported
baseline distance includes the editor’s top padding (see set-padding).

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”). For text% objects, calling this method may force the recalculation of location
information if a maximum width is set for the editor, even if the editor currently has delayed
refreshing (see refresh-delayed?).

(send a-text get-visible-line-range start

end

[all?]) → void?

start : (or/c (box/c exact-nonnegative-integer?) #f)

end : (or/c (box/c exact-nonnegative-integer?) #f)

all? : any/c = #t

Returns the range of lines which are currently visible (or partially visible) to the user. Lines
are numbered starting with 0.

The start box is filled with first line visible to the user, unless start is #f. The end box
is filled with last line visible to the user, unless end is #f.

If the editor is displayed by multiple canvases and all? is #t, then the computed range
includes all visible lines in all displays. Otherwise, the range includes only the visible lines
in the current display.

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”). Calling this method may force the recalculation of location information, even if
the editor currently has delayed refreshing (see refresh-delayed?).

336

(send a-text get-visible-position-range start

end

[all?]) → void?

start : (or/c (box/c exact-nonnegative-integer?) #f)

end : (or/c (box/c exact-nonnegative-integer?) #f)

all? : any/c = #t

Returns the range of positions that are currently visible (or partially visible) to the user.

The start box is filled with first position visible to the user, unless start is #f. The end
box is filled with last position visible to the user, unless end is #f.

If the editor is displayed by multiple canvases and all? is #t, then the computed range
includes all visible positions in all displays. Otherwise, the range includes only the visible
positions in the current display.

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”). Calling this method may force the recalculation of location information, even if
the editor currently has delayed refreshing (see refresh-delayed?).

(send a-text get-wordbreak-map)

→ (or/c (is-a?/c editor-wordbreak-map%) #f)

Returns the wordbreaking map that is used by the standard wordbreaking function. See
set-wordbreak-map and editor-wordbreak-map% for more information.

(send a-text hide-caret hide?) → void?

hide? : any/c

Determines whether the caret is shown when the editor has the keyboard focus.

If hide? is not #f, then the caret or selection hiliting will not be drawn for the editor. The
editor can still own the keyboard focus, but no caret will be drawn to indicate the focus.

See also caret-hidden? and lock.

(send a-text insert str start [end scroll-ok?]) → void?

str : string?

start : exact-nonnegative-integer?

end : (or/c exact-nonnegative-integer? 'same) = 'same

scroll-ok? : any/c = #t

(send a-text insert n

str

start

[end
scroll-ok?]) → void?

337

n :
(and/c exact-nonnegative-integer?

(<=/c (string-length str)))

str : string?

start : exact-nonnegative-integer?

end : (or/c exact-nonnegative-integer? 'same) = 'same

scroll-ok? : any/c = #t

(send a-text insert str) → void?

str : string?

(send a-text insert n str) → void?

n :
(and/c exact-nonnegative-integer?

(<=/c (string-length str)))

str : string?

(send a-text insert snip

start

[end
scroll-ok?]) → void?

snip : (is-a?/c snip%)

start : exact-nonnegative-integer?

end : (or/c exact-nonnegative-integer? 'same) = 'same

scroll-ok? : any/c = #t

(send a-text insert snip) → void?

snip : (is-a?/c snip%)

(send a-text insert char) → void?

char : char?

(send a-text insert char start [end]) → void?

char : char?

start : exact-nonnegative-integer?

end : (or/c exact-nonnegative-integer? 'same) = 'same

Overrides insert in editor<%>.

Inserts text or a snip into a-text at position start . If n is provided, the only the first n
characters of str are inserted.

When a snip is provided: The snip cannot be inserted into multiple editors or multiple
times within a single editor. As the snip is inserted, its current style is converted to one in
the editor’s style list; see also convert.

When a char is provided: Multiple calls to the character-inserting method are grouped
together for undo purposes, since this case of the method is typically used for handling
user keystrokes. However, this undo-grouping feature interferes with the undo grouping
performed by begin-edit-sequence and end-edit-sequence, so the string-inserting
method should be used instead during undoable edit sequences.

When start is not provided, the current selection start is used. If the current selection
covers a range of items, then char replaces the selected text. The selection’s start and end

338

positions are moved to the end of the inserted character.

For a case where end is not provided and has no default, the current selection end is used.
Otherwise, if end is not 'same, then the inserted value replaces the region from start

to end , and the selection is left at the end of the inserted text. Otherwise, if the insertion
position is before or equal to the selection’s start/end position, then the selection’s start/end
position is incremented by the length of str .

If scroll-ok? is not #f and start is the same as the current selection’s start position, then
the editor’s display is scrolled to show the new selection position.

See also get-styles-sticky.

(send a-text kill [time]) → void?

time : exact-integer? = 0

(send a-text kill time start end) → void?

time : exact-integer?

start : exact-nonnegative-integer?

end : exact-nonnegative-integer?

Overrides kill in editor<%>.

Cuts the text in the given region. If start and end are not supplied, then the selected region
plus all whitespace to the end of line is cut; the newline is also cut if only whitespace exists
between the selection and the end of line.

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

(send a-text last-line) → exact-nonnegative-integer?

Returns the number of the last line in the editor. Lines are numbered starting with 0, so this
is one less than the number of lines in the editor.

See also paragraph-start-position, which operates on paragraphs (determined by ex-
plicit newline characters) instead of lines (determined by both explicit newline characters
and automatic line-wrapping).

Calling this method may force the recalculation of location information if a maximum width
is set for the editor, even if the editor currently has delayed refreshing (see refresh-

delayed?). If the editor is not displayed and the editor has a maximum width, line breaks
are calculated as for line-start-position (which handles specially the case of no display
when the editor has a maximum width).

(send a-text last-paragraph) → exact-nonnegative-integer?

Returns the number of the last paragraph in the editor. Paragraphs are numbered starting
with 0, so this is one less than the number of paragraphs in the editor.

339

Calling this method may force the recalculation of location information if a maximum width
is set for the editor, even if the editor currently has delayed refreshing (see refresh-

delayed?).

(send a-text last-position) → exact-nonnegative-integer?

Returns the last selection position in the editor. This is also the number of items in the editor.

(send a-text line-end-position line

[visible?])
→ exact-nonnegative-integer?

line : exact-nonnegative-integer?

visible? : any/c = #t

Returns the last position of a given line. Lines are numbered starting with 0.

If there are fewer than line -1 lines, the end of the last line is returned. If line is less than
0, then the end of the first line is returned.

If the line ends with invisible items (such as a newline) and visible? is not #f, the first
position before the invisible items is returned.

See also paragraph-start-position, which operates on paragraphs (determined by ex-
plicit newline characters) instead of lines (determined by both explicit newline characters
and automatic line-wrapping).

Calling this method may force the recalculation of location information if a maximum width
is set for the editor, even if the editor currently has delayed refreshing (see refresh-

delayed?). If the editor is not displayed and the editor has a maximum width, line breaks
are calculated as for line-start-position (which handles specially the case of no display
when the editor has a maximum width).

(send a-text line-length i) → exact-nonnegative-integer?

i : exact-nonnegative-integer?

Returns the number of items in a given line. Lines are numbered starting with 0.

Calling this method may force the recalculation of location information if a maximum width
is set for the editor, even if the editor currently has delayed refreshing (see refresh-

delayed?). If the editor is not displayed and the editor has a maximum width, line breaks
are calculated as for line-start-position (which handles specially the case of no display
when the editor has a maximum width).

(send a-text line-location line [top?]) → real?

line : exact-nonnegative-integer?

top? : any/c = #t

340

Given a line number, returns the location of the line. Lines are numbered starting with 0.

If top? is not #f, the location for the top of the line is returned; otherwise, the location for
the bottom of the line is returned.

See also paragraph-start-position, which operates on paragraphs (determined by ex-
plicit newline characters) instead of lines (determined by both explicit newline characters
and automatic line-wrapping).

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”). Calling this method may force the recalculation of location information, even if
the editor currently has delayed refreshing (see refresh-delayed?).

(send a-text line-paragraph start) → exact-nonnegative-integer?

start : exact-nonnegative-integer?

Returns the paragraph number of the paragraph containing the line. Lines are numbered
starting with 0. Paragraphs are numbered starting with 0.

Calling this method may force the recalculation of location information if a maximum width
is set for the editor, even if the editor currently has delayed refreshing (see refresh-

delayed?). If the editor is not displayed and the editor has a maximum width, line breaks
are calculated as for line-start-position (which handles specially the case of no display
when the editor has a maximum width).

(send a-text line-start-position line

[visible?])
→ exact-nonnegative-integer?

line : exact-nonnegative-integer?

visible? : any/c = #t

Returns the first position of the given line. Lines are numbered starting with 0.

If there are fewer than line -1 lines, the start of the last line is returned. If line is less than
0, then the start of the first line is returned.

If the line starts with invisible items and visible? is not #f, the first position past the
invisible items is returned.

See also paragraph-start-position, which operates on paragraphs (determined by ex-
plicit newline characters) instead of lines (determined by both explicit newline characters
and automatic line-wrapping).

Calling this method may force the recalculation of location information if a maximum width
is set for the editor, even if the editor currently has delayed refreshing (see refresh-

delayed?).

To calculate lines, if the following are true:

341

• the editor is not displayed (see §4.1 “Editor Structure and Terminology”),

• a maximum width is set for the editor, and

• the editor has never been viewed

then this method ignores the editor’s maximum width and any automatic line breaks it might
imply. If the first two of the above conditions are true and the editor was formerly displayed,
this method uses the line breaks from the most recent display of the editor. (Insertions or
deletions since the display shift line breaks within the editor in the same way as items.)

(send a-text move-position code

[extend?
kind]) → void?

code : (or/c 'home 'end 'right 'left 'up 'down)

extend? : any/c = #f

kind : (or/c 'simple 'word 'page 'line) = 'simple

Moves the current selection.

The possible values for code are:

• 'home — go to start of file

• 'end — go to end of file

• 'right — move right

• 'left — move left

• 'up — move up

• 'down — move down

If extend? is not #f, the selection range is extended instead of moved. If anchoring is on
(see get-anchor and set-anchor), then extend? is effectively forced to #t. See also
get-extend-start-position and get-extend-end-position.

The possible values for kind are:

• 'simple — move one item or line

• 'word — works with 'right or 'left

• 'page — works with 'up or 'down

• 'line — works with 'right or 'left; moves to the start or end of the line

342

See also set-position.

(send a-text on-change-style start len) → void?

start : exact-nonnegative-integer?

len : exact-nonnegative-integer?

Refine this method with augment.

Specification: Called before the style is changed in a given range of the editor, after can-
change-style? is called to verify that the change is ok. The after-change-style

method is guaranteed to be called after the change has completed.

The editor is internally locked for writing during a call to this method (see also §4.8 “Internal
Editor Locks”). Use after-change-style to modify the editor, if necessary.

See also on-edit-sequence.

Default implementation: Does nothing.

(send a-text on-default-char event) → void?

event : (is-a?/c key-event%)

Overrides on-default-char in editor<%>.

Handles the following:

• Delete and Backspace — calls delete.

• The arrow keys, Page Up, Page Down, Home, and End (including shifted versions) —
moves the selection position with move-position.

• Any other character in the range (integer->char 32) to (integer->char 255)

— inserts the character into the editor.

Note that an editor’s editor-canvas% normally handles mouse wheel events (see also on-

char).

(send a-text on-default-event event) → void?

event : (is-a?/c mouse-event%)

Overrides on-default-event in editor<%>.

Tracks clicks on a clickback (see set-clickback) of changes the selection. Note that on-
event dispatches to a caret-owning snip and detects a click on an event-handling snip before
calling to this method.

343

• Clicking on a clickback region starts clickback tracking. See set-clickback for
more information. Moving over a clickback changes the shape of the mouse cursor.

• Clicking anywhere else moves the caret to the closest position between items. Shift-
clicking extends the current selection.

• Dragging extends the selection, scrolling if possible when the selection is dragged
outside the editor’s visible region.

(send a-text on-delete start len) → void?

start : exact-nonnegative-integer?

len : exact-nonnegative-integer?

Refine this method with augment.

Specification: Called before a range is deleted from the editor, after can-delete? is called
to verify that the deletion is ok. The after-delete method is guaranteed to be called after
the delete has completed.

The start argument specifies the starting position of the range to delete. The len argument
specifies number of items to delete (so start+len is the ending position of the range to
delete).

The editor is internally locked for writing during a call to this method (see also §4.8 “Internal
Editor Locks”). Use after-delete to modify the editor, if necessary.

See also on-edit-sequence.

Default implementation: Does nothing.

(send a-text on-insert start len) → void?

start : exact-nonnegative-integer?

len : exact-nonnegative-integer?

Refine this method with augment.

Specification: Called before items are inserted into the editor, after can-insert? is called
to verify that the insertion is ok. The after-insert method is guaranteed to be called after
the insert has completed.

The start argument specifies the position of the insert. The len argument specifies the
total length (in positions) of the items to be inserted.

The editor is internally locked for writing during a call to this method (see also §4.8 “Internal
Editor Locks”). Use after-insert to modify the editor, if necessary.

See also on-edit-sequence.

344

Default implementation: Does nothing.

(send a-text on-new-string-snip) → (is-a?/c string-snip%)

Specification: Called by insert when a string or character is inserted into the editor, this
method creates and returns a new instance of string-snip% to store inserted text. The
returned string snip is empty (i.e., its count is zero).

Default implementation: Returns a string-snip% instance.

(send a-text on-new-tab-snip) → (is-a?/c tab-snip%)

Specification: Creates and returns a new instance of tab-snip% to store an inserted tab. The
returned tab snip is empty (i.e., its count is zero).

Default implementation: Returns a tab-snip% instance.

(send a-text on-reflow) → void?

Refine this method with augment.

Specification: Called after locations have changed and are recomputed for the editor. Default
implementation: Does nothing.

(send a-text on-set-size-constraint) → void?

Refine this method with augment.

Specification: Called before the editor’s maximum or minimum height or width is changed,
after can-set-size-constraint? is called to verify that the change is ok. The after-

set-size-constraint method is guaranteed to be called after the change has completed.

(This callback method is provided because setting an editor’s maximum width may cause
lines to be re-flowed with soft newlines.)

See also on-edit-sequence.

Default implementation: Does nothing.

(send a-text paragraph-end-line paragraph)

→ exact-nonnegative-integer?

paragraph : exact-nonnegative-integer?

Returns the ending line of a given paragraph. Paragraphs are numbered starting with 0. Lines
are numbered starting with 0.

345

Calling this method may force the recalculation of location information if a maximum width
is set for the editor, even if the editor currently has delayed refreshing (see refresh-

delayed?). If the editor is not displayed and the editor has a maximum width, line breaks
are calculated as for line-start-position (which handles specially the case of no display
when the editor has a maximum width).

(send a-text paragraph-end-position paragraph

[visible?])
→ exact-nonnegative-integer?

paragraph : exact-nonnegative-integer?

visible? : any/c = #t

Returns the ending position of a given paragraph. Paragraphs are numbered starting with 0.

If there are fewer than paragraph -1 paragraphs, the end of the last paragraph is returned.
If paragraph is less than 0, then the end of the first paragraph is returned.

If the paragraph ends with invisible items (such as a newline) and visible? is not #f, the
first position before the invisible items is returned.

(send a-text paragraph-start-line paragraph)

→ exact-nonnegative-integer?

paragraph : exact-nonnegative-integer?

Returns the starting line of a given paragraph. If paragraph is greater than the highest-
numbered paragraph, then the editor’s end position is returned. Paragraphs are numbered
starting with 0. Lines are numbered starting with 0.

Calling this method may force the recalculation of location information if a maximum width
is set for the editor, even if the editor currently has delayed refreshing (see refresh-

delayed?). If the editor is not displayed and the editor has a maximum width, line breaks
are calculated as for line-start-position (which handles specially the case of no display
when the editor has a maximum width).

(send a-text paragraph-start-position paragraph

[visible?])
→ exact-nonnegative-integer?

paragraph : exact-nonnegative-integer?

visible? : any/c = #t

Returns the starting position of a given paragraph. Paragraphs are numbered starting with 0.

If there are fewer than paragraph -1 paragraphs, the start of the last paragraph is returned.

If the paragraph starts with invisible items and visible? is not #f, the first position past the
invisible items is returned.

346

(send a-text paste [time start end]) → void?

time : exact-integer? = 0

start : (or/c exact-nonnegative-integer? 'start 'end) = 'start

end : (or/c exact-nonnegative-integer? 'same) = 'same

Overrides paste in editor<%>.

Pastes into the specified range. If start is 'start, then the current selection start position
is used. If start is 'end, then the current selection end position is used. If end is 'same,
then start is used for end , unless start is 'start, in which case the current selection
end position is used.

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

(send a-text paste-next) → void?

Editors collectively maintain a copy ring that holds up to 30 previous copies (and cuts)
among the editors. When it is called as the next method on an editor after a paste, the
paste-next method replaces the text from a previous paste with the next data in the copy
ring, incrementing the ring pointer so that the next paste-next pastes in even older data.

It is a copy “ring” because the ring pointer wraps back to the most recent copied data after
the oldest remembered data is pasted. Any cut, copy, or (regular) paste operation resets the
copy ring pointer back to the beginning.

If the previous operation on the editor was not a paste, calling paste-next has no effect.

(send a-text paste-x-selection time

[start
end]) → void?

time : exact-integer?

start : (or/c exact-nonnegative-integer? 'start 'end) = 'start

end : (or/c exact-nonnegative-integer? 'same) = 'same

Overrides paste-x-selection in editor<%>.

Pastes into the specified range. If start is 'start, then the current selection start position
is used. If start is 'end, then the current selection end position is used. If end is 'same,
then start is used for end , unless start is 'start, in which case the current selection
end position is used.

See §4.6 “Cut and Paste Time Stamps” for a discussion of the time argument. If time is
outside the platform-specific range of times, an exn:fail:contract exception is raised.

347

(send a-text position-line start [at-eol?])
→ exact-nonnegative-integer?

start : exact-nonnegative-integer?

at-eol? : any/c = #f

Returns the line number of the line containing a given position. Lines are numbered starting
with 0.

See also paragraph-start-position, which operates on paragraphs (determined by ex-
plicit newline characters) instead of lines (determined by both explicit newline characters
and automatic line-wrapping).

See §4.3 “End of Line Ambiguity” for a discussion of at-eol?.

Calling this method may force the recalculation of location information if a maximum width
is set for the editor, even if the editor currently has delayed refreshing (see refresh-

delayed?). If the editor is not displayed and the editor has a maximum width, line breaks
are calculated as for line-start-position (which handles specially the case of no display
when the editor has a maximum width).

(send a-text position-location start

[x
y

top?

at-eol?

whole-line?]) → void?

start : exact-nonnegative-integer?

x : (or/c (box/c real?) #f) = #f

y : (or/c (box/c real?) #f) = #f

top? : any/c = #t

at-eol? : any/c = #f

whole-line? : any/c = #f

Returns the location of a given position. See also position-locations.

The x box is filled with the x-location of the position start in editor coordinates, unless
x is #f. The y box is filled with the y-location (top or bottom; see below) of the position
start in editor coordinates, unless y is #f.

See §4.3 “End of Line Ambiguity” for a discussion of at-eol?.

If top? is not #f, the top coordinate of the location is returned, otherwise the bottom coor-
dinate of the location is returned.

The top y location may be different for different positions within a line when different-sized
graphic objects are used. If whole-line? is not #f, the minimum top location or maximum
bottom location for the whole line is returned in y .

348

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”). Calling this method may force the recalculation of location information, even if
the editor currently has delayed refreshing (see refresh-delayed?).

(send a-text position-locations start

[top-x
top-y

bottom-x

bottom-y

at-eol?

whole-line?]) → void?

start : exact-nonnegative-integer?

top-x : (or/c (box/c real?) #f) = #f

top-y : (or/c (box/c real?) #f) = #f

bottom-x : (or/c (box/c real?) #f) = #f

bottom-y : (or/c (box/c real?) #f) = #f

at-eol? : any/c = #f

whole-line? : any/c = #f

Like position-location, but returns both the “top” and “bottom” results at once.

The result is only valid when the editor is displayed (see §4.1 “Editor Structure and Termi-
nology”). Calling this method may force the recalculation of location information, even if
the editor currently has delayed refreshing (see refresh-delayed?).

(send a-text position-paragraph start

[at-eol?])
→ exact-nonnegative-integer?

start : exact-nonnegative-integer?

at-eol? : any/c = #f

See §4.3 “End of Line Ambiguity” for a discussion of at-eol?.

Returns the paragraph number of the paragraph containing a given position.

(send a-text read-from-file stream

start

[overwrite-styles?]) → boolean?

stream : (is-a?/c editor-stream-in%)

start : (or/c exact-nonnegative-integer? 'start)

overwrite-styles? : any/c = #f

Extends read-from-file in editor<%>.

New data is inserted at the position indicated by start , or at the current position if start
is 'start.

349

(send a-text remove-clickback start end) → void?

start : exact-nonnegative-integer?

end : exact-nonnegative-integer?

Removes all clickbacks installed for exactly the range start to end . See also §4.7 “Click-
backs”.

(send a-text scroll-to-position start

[at-eol?
end

bias]) → boolean?

start : exact-nonnegative-integer?

at-eol? : any/c = #f

end : (or/c exact-nonnegative-integer? 'same) = 'same

bias : (or/c 'start 'end 'none) = 'none

Scrolls the editor so that a given position is visible.

If end is 'same or equal to start , then position start is made visible. See §4.3 “End of
Line Ambiguity” for a discussion of at-eol?.

If end is not 'same and not the same as start , then the range start to end is made visible
and at-eol? is ignored.

When the specified range cannot fit in the visible area, bias indicates which end of the range
to display. When bias is 'start, then the start of the range is displayed. When bias is
'end, then the end of the range is displayed. Otherwise, bias must be 'none.

If the editor is scrolled, then the editor is redrawn and the return value is #t; otherwise, the
return value is #f. If refreshing is delayed (see refresh-delayed?), then the scroll request
is saved until the delay has ended. The scroll is performed (immediately or later) by calling
scroll-editor-to.

Scrolling is disallowed when the editor is internally locked for reflowing (see also §4.8
“Internal Editor Locks”).

The system may scroll the editor without calling this method. For example, a canvas dis-
playing an editor might scroll the editor to handle a scrollbar event.

(send a-text set-anchor on?) → void?

on? : any/c

Turns anchoring on or off. This method can be overridden to affect or detect changes in the
anchor state. See also get-anchor.

If on? is not #f, then the selection will be automatically extended when cursor keys are

350

used (or, more generally, when move-position is used to move the selection or the keep-
anchor? argument to set-position is a true value), otherwise anchoring is turned off.
Anchoring is automatically turned off if the user does anything besides cursor movements.

(send a-text set-autowrap-bitmap bitmap)

→ (or/c (is-a?/c bitmap%) #f)

bitmap : (or/c (is-a?/c bitmap%) #f)

Sets the bitmap that is drawn at the end of a line when it is automatically line-wrapped.

If bitmap is #f, no autowrap indicator is drawn (this is the default). The previously used
bitmap (possibly #f) is returned.

Setting the bitmap is disallowed when the editor is internally locked for reflowing (see also
§4.8 “Internal Editor Locks”).

(send a-text set-between-threshold threshold) → void?

threshold : (and/c real? (not/c negative?))

Sets the graphical distance used to determine the meaning of a user click. If a click falls
within threshold of a position between two items, then the click registers on the space
between the items rather than on either item.

See also get-between-threshold.

(send a-text set-clickback start

end

f

[hilite-delta
call-on-down?]) → void?

start : exact-nonnegative-integer?

end : exact-nonnegative-integer?

f :

(-> (is-a?/c text%)

exact-nonnegative-integer?

exact-nonnegative-integer?

any)

hilite-delta : (or/c (is-a?/c style-delta%) #f) = #f

call-on-down? : any/c = #f

Installs a clickback for a given region. If a clickback is already installed for an overlapping
region, this clickback takes precedence.

The callback procedure f is called when the user selects the clickback. The arguments to f

are this editor and the starting and ending range of the clickback.

The hilite-delta style delta is applied to the clickback text when the user has clicked and
is still holding the mouse over the clickback. If hilite-delta is #f, then the clickback
region’s style is not changed when it is being selected.

351

If call-on-down? is not #f, the clickback is called immediately when the user clicks the
mouse button down, instead of after a mouse-up event. The hilite-delta argument is not
used in this case.

See also §4.7 “Clickbacks”.

(send a-text set-file-format format) → void?

format : (or/c 'standard 'text 'text-force-cr)

Set the format of the file saved from this editor.

The legal formats are:

• 'standard — a standard editor file

• 'text — a text file

• 'text-force-cr — a text file; when writing, change automatic newlines (from
word-wrapping) into real newlines

The file format of an editor can be changed by the system in response to file loading and
saving method calls, and such changes do not go through this method; use on-load-file

and on-save-file to monitor such file format changes.

(send a-text set-line-spacing space) → void?

space : (and/c real? (not/c negative?))

Sets the spacing inserted by the editor between each line. This spacing is included in the
reported height of each line.

(send a-text set-overwrite-mode on?) → void?

on? : any/c

Enables or disables overwrite mode. See get-overwrite-mode. This method can be over-
ridden to affect or detect changes in the overwrite mode.

(send a-text set-padding left

top

right

bottom) → void?

left : (and/c real? (not/c negative?))

top : (and/c real? (not/c negative?))

right : (and/c real? (not/c negative?))

bottom : (and/c real? (not/c negative?))

352

Sets padding that insets the editor’s content when drawn within its display.

Unlike any margin that may be applied by the editor’s display, padding is counted in location
information that is reported by methods such as position-location. For example, with a
left padding of 17.0 and a top padding of 9.0, the location of position 0 will be (17.0, 9.0)
rather than (0, 0). Padding also contributes to the editor’s size as reported by get-extent.

(send a-text set-paragraph-alignment paragraph

alignment) → void?

paragraph : exact-nonnegative-integer?

alignment : (or/c 'left 'center 'right)

Sets a paragraph-specific horizontal alignment. The alignment is only used when the editor
has a maximum width, as set with set-max-width. Paragraphs are numbered starting with
0.

This method is experimental. It works reliably only when the paragraph is not merged or
split. Merging or splitting a paragraph with alignment settings causes the settings to be trans-
ferred unpredictably (although other paragraphs in the editor can be safely split or merged).
If the last paragraph in an editor is empty, settings assigned to it are ignored.

(send a-text set-paragraph-margins paragraph

first-left

left

right) → void?

paragraph : exact-nonnegative-integer?

first-left : (and/c real? (not/c negative?))

left : (and/c real? (not/c negative?))

right : (and/c real? (not/c negative?))

Sets a paragraph-specific margin. Paragraphs are numbered starting with 0.

The first line of the paragraph is indented by first-left points within the editor. If the
paragraph is line-wrapped (when the editor has a maximum width), subsequent lines are
indented by left points. If the editor has a maximum width, the paragraph’s maximum
width for line-wrapping is right points smaller than the editor’s maximum width.

This method is experimental. See set-paragraph-alignment for more information.

(send a-text set-position start

[end
at-eol?

scroll?

seltype]) → void?

start : exact-nonnegative-integer?

end : (or/c exact-nonnegative-integer? 'same) = 'same

353

at-eol? : any/c = #f

scroll? : any/c = #t

seltype : (or/c 'default 'x 'local) = 'default

Sets the current selection in the editor.

If end is 'same or less than or equal to start , the current start and end positions are both
set to start . Otherwise the given range is selected.

See §4.3 “End of Line Ambiguity” for a discussion of at-eol?. If scroll? is not #f, then
the display is scrolled to show the selection if necessary.

The seltype argument is only used when the X Window System selection mechanism is
enabled. The possible values are:

• 'default — if this window has the keyboard focus and given selection is non-empty,
make it the current X selection

• 'x — if the given selection is non-empty, make it the current X selection

• 'local — do not change the current X selection

Setting the position is disallowed when the editor is internally locked for reflowing (see also
§4.8 “Internal Editor Locks”).

The system may change the selection in an editor without calling this method (or any visible
method).

See also editor-set-x-selection-mode.

(send a-text set-position-bias-scroll bias

start

[end
ateol?

scroll?

seltype]) → void?

bias : (or/c 'start-only 'start 'none 'end 'end-only)

start : exact-nonnegative-integer?

end : (or/c exact-nonnegative-integer? 'same) = 'same

ateol? : any/c = #f

scroll? : any/c = #t

seltype : (or/c 'default 'x 'local) = 'default

Like set-position, but a scrolling bias can be specified.

The possible values for bias are:

354

• 'start-only — only insure that the starting position is visible

• 'start — if the range doesn’t fit in the visible area, show the starting position

• 'none — no special scrolling instructions

• 'end — if the range doesn’t fit in the visible area, show the ending position

• 'end-only — only insure that the ending position is visible

See also scroll-to-position.

(send a-text set-region-data start end data) → void?

start : exact-nonnegative-integer?

end : exact-nonnegative-integer?

data : (is-a?/c editor-data%)

Specification: Sets extra data associated with a given region. See §4.2.1.2 “Editor Data” and
get-region-data for more information.

This method is meant to be overridden in combination with get-region-data .

Default implementation: Does nothing.

(send a-text set-styles-sticky sticky?) → void?

sticky? : any/c

See get-styles-sticky for information about sticky styles.

(send a-text set-tabs tabs

[tab-width
in-units?]) → void?

tabs : (listof real?)

tab-width : real? = 20

in-units? : any/c = #t

Sets the tabbing array for the editor.

The tabs list determines the tabbing array. The tabbing array specifies the x-locations
where each tab occurs. Tabs beyond the last specified tab are separated by a fixed amount
tab-width . If in-units? is not #f, then tabs are specified in canvas units; otherwise, they
are specified as a number of spaces. (If tabs are specified in spaces, then the graphic tab
positions will change with the font used for the tab.)

Setting tabs is disallowed when the editor is internally locked for reflowing (see also §4.8
“Internal Editor Locks”).

355

(send a-text set-wordbreak-func f) → void?

f :

((is-a?/c text%) (or/c (box/c exact-nonnegative-integer?) #f)

(or/c (box/c exact-nonnegative-integer?) #f)

symbol?

. -> . any)

Sets the word-breaking function for the editor. For information about the arguments to the
word-breaking function, see find-wordbreak.

The standard wordbreaking function uses the editor’s editor-wordbreak-map% object to
determine which characters break a word. See also editor-wordbreak-map% and set-

wordbreak-map.

Since the wordbreak function will be called when line breaks are being determined (in an
editor that has a maximum width), there is a constrained set of text% methods that the
wordbreak function is allowed to invoke. It cannot invoke a member function that uses
information about locations or lines (which are identified in this manual with “The result is
only valid when the editor is displayed (see §4.1 “Editor Structure and Terminology”).”), but
it can still invoke member functions that work with snips and items.

(send a-text set-wordbreak-map map) → void?

map : (or/c (is-a?/c editor-wordbreak-map%) #f)

Sets the wordbreaking map that is used by the standard wordbreaking function. See editor-
wordbreak-map% for more information.

If map is #f, then the standard map (the-editor-wordbreak-map) is used.

(send a-text split-snip pos) → void?

pos : exact-nonnegative-integer?

Given a position, splits the snip that includes the position (if any) so that the position is
between two snips. The snip may refuse to split, although none of the built-in snip classes
will ever refuse.

Splitting a snip is disallowed when the editor is internally locked for reflowing (see also §4.8
“Internal Editor Locks”).

(send a-text write-to-file stream [start end]) → boolean?

stream : (is-a?/c editor-stream-out%)

start : exact-nonnegative-integer? = 0

end : (or/c exact-nonnegative-integer? 'eof) = 'eof

Extends write-to-file in editor<%>.

356

If start is 0 and end is 'eof negative, then the entire contents are written to the stream. If
end is 'eof, then the contents are written from start until the end of the editor. Otherwise,
the contents of the given range are written.

357

7 Editor Functions

(add-editor-keymap-functions keymap) → void?

keymap : (is-a?/c keymap%)

Given a keymap% object, the keymap is loaded with mappable functions that apply to all
editor<%> objects:

• "copy-clipboard"

• "copy-append-clipboard"

• "cut-clipboard"

• "cut-append-clipboard"

• "paste-clipboard"

• "paste-x-selection"

• "delete-selection"

• "clear-selection"

• "undo"

• "redo"

• "select-all"

(add-pasteboard-keymap-functions keymap) → void?

keymap : (is-a?/c keymap%)

Given a keymap% object, the table is loaded with mappable functions that apply to paste-

board% objects. Currently, there are no such functions.

See also add-editor-keymap-functions.

(add-text-keymap-functions keymap) → void?

keymap : (is-a?/c keymap%)

Given a keymap% object, the table is loaded with functions that apply to all text% objects:

• "forward-character"

• "backward-character"

358

• "previous-line"

• "next-line"

• "previous-page"

• "next-page"

• "forward-word"

• "backward-word"

• "forward-select"

• "backward-select"

• "select-down"

• "select-up"

• "select-page-up"

• "select-page-down"

• "forward-select-word"

• "backward-select-word"

• "beginning-of-file"

• "end-of-file"

• "beginning-of-line"

• "end-of-line"

• "select-to-beginning-of-file"

• "select-to-end-of-file"

• "select-to-beginning-of-line"

• "select-to-end-of-line"

• "copy-clipboard"

• "copy-append-clipboard"

• "cut-clipboard"

• "cut-append-clipboard"

• "paste-clipboard"

• "paste-x-selection"

359

• "delete-selection"

• "delete-previous-character"

• "delete-next-character"

• "clear-selection"

• "delete-to-end-of-line"

• "delete-next-word"

• "delete-previous-word"

• "delete-line"

• "undo"

• "redo"

See also add-editor-keymap-functions.

(append-editor-font-menu-items menu) → void?

menu : (or/c (is-a?/c menu%) (is-a?/c popup-menu%))

Appends menu items to a given menu (not a popup menu) to implement a standard set of
font-manipulation operations, such as changing the font face or style. The callback for each
menu item uses get-edit-target-object in top-level-window<%> (finding the frame
by following a chain of parents until a frame is reached); if the result is an editor<%>

object, change-style in text% or change-style in pasteboard% is called on the editor.

(append-editor-operation-menu-items menu

[text-only?]) → void?

menu : (or/c (is-a?/c menu%) (is-a?/c popup-menu%))

text-only? : any/c = #t

Appends menu items to a given menu (not a popup menu) to implement the standard editor
operations, such as cut and paste. The callback for each menu item uses get-edit-target-
object in top-level-window<%> (finding the frame by following a chain of parents until a
frame is reached); if the result is an editor<%> object, do-edit-operation in editor<%>
is called on the editor.

If text-only? is #f, then menu items that insert non-text snips (such as Insert Image...)
are appended to the menu.

(current-text-keymap-initializer)

→ ((is-a?/c keymap%) . -> . any/c)

(current-text-keymap-initializer proc) → void?

proc : ((is-a?/c keymap%) . -> . any/c)

360

Parameter that specifies a keymap-initialization procedure. This procedure is called to ini-
tialize the keymap of a text-field% object or a text% object created by graphical-

read-eval-print-loop.

The initializer takes a keymap object and returns nothing. The default initializer chains
the given keymap to an internal keymap that implements standard text editor keyboard and
mouse bindings for cut, copy, paste, undo, and select-all. The right mouse button is mapped
to popup an edit menu when the button is released. On Unix, start-of-line (Ctl-A) and end-
of-line (Ctl-E) are also mapped.

(editor-set-x-selection-mode on) → void?

on : any/c

On Unix, editor selections conform to the X11 Windows selection conventions. If on is #f,
the behavior is switched exclusively to the clipboard-based convention (where copy must be
explicitly requested before a paste).

(get-the-editor-data-class-list)

→ (is-a?/c editor-data-class-list<%>)

Gets the editor data class list instance for the current eventspace.

(get-the-snip-class-list) → (is-a?/c snip-class-list<%>)

Gets the snip class list instance for the current eventspace.

(map-command-as-meta-key on?) → void?

on? : any/c

(map-command-as-meta-key) → boolean?

Determines the interpretation of m: for a keymap% mapping on Mac OS X. See also map-

function in keymap%.

First case:

If on? is #t, m: corresponds to the Command key. If on? is #f, then m: corresponds to no
key on Mac OS X.

Second case:

Returns #t if m: corresponds to Command, #f otherwise.

(open-input-graphical-file filename) → input-port?

filename : string?

Opens filename (in 'binary mode) and checks whether it looks like a “graphical” file in
editor format. If the file does not appear to be an editor file, the file port is returned with line

361

counting enabled. Otherwise, the file is loaded into an editor, and the result port is created
with open-input-text-editor.

(open-input-text-editor

text-editor

[start-position
end-position

snip-filter

port-name

expect-to-read-all?

#:lock-while-reading? lock-while-reading?])
→ input-port

text-editor : (is-a?/c text%)

start-position : exact-nonnegative-integer? = 0

end-position : (or/c exact-nonnegative-integer? 'end) = 'end

snip-filter : ((is-a?/c snip%) . -> . any/c) = (lambda (s) s)

port-name : any/c = text-editor

expect-to-read-all? : any/c = #f

lock-while-reading? : any/c = #f

Creates an input port that draws its content from text-editor . The editor content be-
tween positions start-position and end-position is the content of the port. If end-
position is 'end, the content runs until the end of the editor. If a snip that is not a string-
snip% object spans start-position or end-position , the entire snip contributes to the
port. If a string-snip% instance spans start-position , only the part of the snip after
start-position contributes, and if a string-snip% object spans end-position , only
the part before end-position contributes.

An instance of string-snip% in text-editor generates a character sequence in the re-
sulting port. All other kinds of snips are passed to snip-filter to obtain a “special” value
for the port. If a snip is returned as the first result from snip-filter , and if the snip is
an instance of readable-snip<%>, the snip generates a special value for the port through
the read-special method. If snip-filter returns any other kind of snip, it is copied for
the special result. Finally, a non-snip first result from snip-filter is used directly as the
special result.

The port-name argument is used for the input port’s name. The expect-to-read-all?

argument is a performance hint; use #t if the entire port’s stream will be read.

The result port must not be used if text-editor changes in any of the following ways: a
snip is inserted (see after-insert), a snip is deleted (see after-delete), a snip is split
(see after-split-snip), snips are merged (see after-merge-snips), or a snip changes
its count (which is rare; see recounted). The get-revision-number method can be used
to detect any of these changes.

To help guard against such uses, if lock-while-reading? argument is a true value, then
open-input-text-editor will lock the text-editor and call begin-edit-sequence

362

before it returns and unlock it and call end-edit-sequence after it is safe to use the above
methods. (In some cases, it will not lock the editor or put it in an edit sequence at all, if
using those methods are always safe.)

(open-output-text-editor text-editor

[start-position
special-filter

port-name]) → output-port

text-editor : (is-a?/c text%)

start-position : (or/c exact-nonnegative-integer? (one/of 'end))

= 'end

special-filter : (any/c . -> . any/c) = (lambda (x) x)

port-name : any/c = text-editor

Creates an output port that delivers its content to text-editor . The content is written to
text-editor starting at the position start-position , where 'end indicates that output
should start at the text editor’s current end position.

If special-filter is provided, it is applied to any value written to the port with write-

special, and the result is inserted in its place. If a special value is a snip% object, it is
inserted into the editor. Otherwise, the special value is displayed into the editor.

If line counting is enabled for the resulting output port, then the port will report the line,
offset from the line’s start, and position within the editor at which the port writes data.

(read-editor-global-footer in) → boolean?

in : (is-a?/c editor-stream-in%)

See read-editor-global-header. Call read-editor-global-footer even if read-
editor-global-header returns #f.

(read-editor-global-header in) → boolean?

in : (is-a?/c editor-stream-in%)

Reads data from in to initialize for reading editors from the stream. The return value is #t
if the read succeeds, or #f otherwise.

One or more editors can be read from the stream by calling the editor’s read-from-file
method. (The number of editors to be read must be known by the application before-
hand.) When all editors are read, call read-editor-global-footer. Calls to read-

editor-global-header and read-editor-global-footer must bracket any call to
read-from-file, and only one stream at a time can be read using these methods or written
using write-editor-global-header and write-editor-global-footer.

When reading from streams that span Racket versions, use read-editor-version before
this procedure.

363

(read-editor-version in

in-base

parse-format?

[raise-errors?]) → boolean?

in : (is-a?/c editor-stream-in%)

in-base : (is-a?/c editor-stream-in-base%)

parse-format? : any/c

raise-errors? : any/c = #t

Reads version information from in-base , where in-base is the base for in . The version
information parsed from in-base is recorded in in for later version-sensitive parsing. The
procedure result is true if the version information was read successfully and if the version is
supported.

If parse-format? is true, then in-base is checked for an initial "WXME" format indicator.
Use #f when "WXME" has been consumed already by format-dispatching code.

If raise-errors? is true, then an error in reading triggers an exception, instead of a #f

result.

(text-editor-load-handler [filename]
expected-module-name) → any/c

filename : path = string

expected-module-name : (or/c symbol? #f)

This procedure is a load handler for use with current-load.

The handler recognizes Racket editor-format files (see §4.2 “File Format”) and decodes
them for loading. It is normally installed as GRacket starts (see §17.1 “Running Racket or
GRacket”).

The handler recognizes editor files by the first twelve characters of the file:
WXME01〈digit〉〈digit〉 ## . Such a file is opened for loading by creating a text% object,
loading the file into the object with insert-file, and then converting the editor content
into a port with open-input-text-editor. After obtaining a port in this way, the content
is read in essentially the same way as by the default Racket load handler. The difference is
that the editor may contain instances of readable-snip<%>, which are “read” though the
snips’ read-special method; see open-input-text-editor for details.

the-editor-wordbreak-map : (is-a?/c editor-wordbreak-map%)

See editor-wordbreak-map%.

the-style-list : (is-a?/c style-list%)

See style-list%.

364

(write-editor-global-footer out) → boolean?

out : (is-a?/c editor-stream-out%)

See write-editor-global-header. Call write-editor-global-footer even if
write-editor-global-header returns #f.

(write-editor-global-header out) → boolean?

out : (is-a?/c editor-stream-out%)

Writes data to out , initializing it for writing editors to the stream. The return value is #t if
the write succeeds, or #f otherwise.

One or more editors can be written to the stream by calling the editor’s write-to-file

method. When all editors are written, call write-editor-global-footer. Calls to
write-editor-global-header and write-editor-global-footer must bracket any
call to write-to-file, and only one stream at a time can be written using these methods
or read using read-editor-global-header and read-editor-global-footer.

To support streams that span Racket versions, use write-editor-version before this pro-
cedure.

See also §4.2 “File Format”.

(write-editor-version out out-base) → boolean?

out : (is-a?/c editor-stream-out%)

out-base : (is-a?/c editor-stream-out-base%)

Writes version information to out-base in preparation for writing editor information to the
stream out .

The out argument is currently not used, but out-base should be the base for out . In the
future, out may record information about the version for later version-sensitive output.

The result is #t if the write succeeded, #f otherwise.

365

8 WXME Decoding

(require wxme)

The wxme library provides tools for reading WXME editor<%>-format files (see §4.2 “File
Format”) without the racket/gui library.

(is-wxme-stream? in) → boolean?

in : input-port?

Peeks from in and returns #t if it starts with the magic bytes indicating a WXME-format
stream (see §4.2 “File Format”), #f otherwise.

(wxme-port->text-port in [close?]) → input-port?

in : input-port?

close? : any/c = #t

Takes an input port whose stream starts with WXME-format data and returns an input port
that produces a text form of the WXME content, like the result of opening a WXME file in
DrRacket and saving it as text.

If close? is true, then closing the result port close the original port.

See §8.1 “Snip Class Mapping” for information about the kinds of non-text content that can
be read.
(wxme-port->port in [close? snip-filter]) → input-port?

in : input-port?

close? : any/c = #t

snip-filter : (any/c . -> . any/c) = (lambda (x) x)

Takes an input port whose stream starts with WXME-format data and returns an input port
that produces text content converted to bytes, and non-text content as “special” values (see
read-char-or-special).

These special values produced by the new input port are different than the ones produced by
reading a file into an editor<%> object. Instead of instances of the snip%, the special values
are typically simple extensions of object%. See §8.1 “Snip Class Mapping” for information
about the kinds of non-text content that can be read.

If close? is true, then closing the result port close the original port.

The snip-filter procedure is applied to any special value generated for the stream, and
its result is used as an alternate special value.

If a special value (possibly produced by the filter procedure) is an object implementing the
readable<%> interface, then the object’s read-special method is called to produce the
special value.

366

(extract-used-classes in) → (listof string?) (listof string?)

in : input-port?

Returns two values: a list of snip-class names used by the given stream, and a list of data-
class names used by the stream. If the stream is not a WXME stream, the result is two empty
lists. The given stream is not closed, and only data for a WXME stream (if any) is consumed.

(register-lib-mapping! str mod-path) → void?

str : string?

mod-path : (cons/c (one-of/c 'lib) (listof string?))

Maps a snip-class name to a quoted module path that provides a reader% implementation.
The module path must have the form '(lib string ...), where each string contains
only alpha-numeric ASCII characters, ., _, -, and spaces.

(string->lib-path str gui?)

→ (cons/c (one-of/c 'lib) (listof string?))

str : string?

gui? : any/c

Returns a quoted module path for str for either editor<%> mode when gui? is true, or
wxme mode when gui? is #f. For the latter, built-in mappings and mapping registered via
register-lib-mapping! are used. If str cannot be parsed as a library path, and if no
mapping is available (either because the class is built-in or not known), the result is #f.

(unknown-extensions-skip-enabled) → boolean?

(unknown-extensions-skip-enabled skip?) → void?

skip? : any/c

A parameter. When set to #f (the default), an exception is raised when an unrecognized snip
class is encountered in a WXME stream. When set to a true value, instances of unrecognized
snip classes are simply omitted from the transformed stream.

(broken-wxme-big-endian?) → boolean?

(broken-wxme-big-endian? big?) → void?

big? : any/c

A parameter. Some old and short-lived WXME formats depended on the endian order of the
machine where the file was saved. Set this parameter to pick the endian order to use when
reading the file; the default is the current platform’s endian order.

(wxme-read in) → any/c

in : input-port?

367

Like read, but for a stream that starts with WXME-format data. If multiple S-expressions
are in the WXME data, they are all read and combined with 'begin.

If racket/gui/base is available (as determined by gui-available?), then open-input-
text-editor is used. Otherwise, wxme-port->port is used.

(wxme-read-syntax source-v in) → (or/c syntax? eof-object?)

source-v : any/c

in : input-port?

Like read-syntax, but for a WXME-format input stream. If multiple S-expressions are in
the WXME data, they are all read and combined with 'begin.

If racket/gui/base is available (as determined by gui-available?), then open-input-
text-editor is used. Otherwise, wxme-port->port is used.

snip-reader<%> : interface?

An interface to be implemented by a reader for a specific kind of data in a WXME stream.
The interface has two methods: read-header and read-snip.

(send a-snip-reader read-header version

stream) → any

version : exact-nonnegative-integer?

stream : (is-a?/c stream<%>)

Called at most once per WXME stream to initialize the data type’s stream-
specific information. This method usually does nothing.

(send a-snip-reader read-snip text-only?

version

stream) →
(if text-only?

bytes?

any/c)

text-only? : boolean?

version : exact-nonnegative-integer?

stream : (is-a?/c stream<%>)

Called when an instance of the data type is encountered in the stream. This
method reads the data and returns either bytes to be returned as part of the
decoded stream or any other kind of value to be returned as a “special” value
from the decoded stream. The result value can optionally be an object that
implements readable<%>.

readable<%> : interface?

368

An interface to be implemented by values returned from a snip reader. The only method is
read-special.

(send a-readable read-special source

line

column

position) → any/c

source : any/c

line : (or/c exact-nonnegative-integer? false/c)

column : (or/c exact-nonnegative-integer? false/c)

position : (or/c exact-nonnegative-integer? false/c)

Like read-special, but for non-graphical mode. When a value implements
this interface, its read-special method is called with source-location infor-
mation to obtain the “special” result from the WXME-decoding port.

stream<%> : interface?

Represents a WXME input stream for use by snip-reader<%> instances.

(send a-stream read-integer what) → exact-integer?

what : any/c

Reads an exact integer, analogous to get-exact.

The what field describes what is being read, for error-message purposes, in case
the stream does not continue with an integer.

(send a-stream read-fixed-integer what) → exact-integer?

what : any/c

Reads an exact integer that has a fixed size in the stream, analogous to get-

fixed.

The what argument is as for read-integer.

(send a-stream read-inexact what) → (and/c real? inexact?)

what : any/c

Reads an inexact real number, analogous to get-inexact.

The what argument is as for read-integer.

(send a-stream read-raw-bytes what) → bytes?

what : any/c

369

Reads raw bytes, analogous to get-unterminated-bytes.

The what argument is as for read-integer.

(send a-stream read-bytes what) → bytes?

what : any/c

Reads raw bytes, analogous to get-bytes.

The what argument is as for read-integer.

(send a-stream read-editor what) → input-port?

what : any/c

Reads a nested editor, producing a new input port to extract the editor’s content.

The what argument is as for read-integer.

(read-snip-from-port name who stream) → bytes?

name : string?

who : any/c

stream : (is-a?/c stream<%>)

Given name , which is expected to be the name of a snipclass, uses that snipclass to read from
the given stream at the current point in that stream. Returns the processed bytes, much like
the read-snip method.

8.1 Snip Class Mapping

When graphical data is marshaled to the WXME format, it is associated with a snip-class
name to be matched with an implementation at load time. See also §4.2.1.1 “Snip Classes”.

Ideally, the snip-class name is generated as

(format "∼s" (list '(lib string ...)

'(lib string ...)))

where each element of the formated list is a quoted module path (see module-path?). The
strings must contain only alpha-numeric ASCII characters, plus ., _, -, and spaces, and
they must not be "." or "..".

In that case, the first quoted module path is used for loading WXME files in graphical
mode; the corresponding module must provide snip-class object that implements the
snip-class% class. The second quoted module path is used by the wxme library for con-
verting WXME streams without graphical support; the corresponding module must provide

370

a reader object that implements the snip-reader<%> interface. Naturally, the snip-

class% instance and snip-reader<%> instance are expected to parse the same format, but
generate different results suitable for the different contexts (i.e., graphical or not).

If a snip-class name is generated as

(format "∼s" '(lib string ...))

then graphical mode uses the sole module path, and wxme needs a compatibility mapping.
Install one with register-lib-mapping!.

If a snip-class name has neither of the above formats, then graphical mode can use the data
only if a snip class is registered for the name, or if it the name of one of the built-in classes:
"wxtext", "wxtab", "wximage", or "wxmedia" (for nested editors). The wxme library
needs a compatibility mapping installed with register-lib-mapping! if it is not one of
the built-in classes.

Several compatibility mappings are installed automatically for the wxme library. They corre-
spond to popular graphical elements supported by various versions of DrRacket, including
comment boxes, fractions, XML boxes, Racket boxes, text boxes, and images generated
by the htdp/image teachpack (or, more generally, from mrlib/cache-image-snip), and
test-case boxes.

For a port created by wxme-port->port, nested editors are represented by instances of the
editor% class provided by the wxme/editor library. This class provides a single method,
get-content-port, which returns a port for the editor’s content. Images are represented
as instances of the image% class provided by the wxme/image library.

Comment boxes are represented as instances of a class that extends editor% to implement
readable<%>; see wxme/comment. The read form produces a special comment (created by
make-special-comment), so that the comment box disappears when read is used to read
the stream; the special-comment content is the readable instance. XML, Racket, and text
boxes similarly produce instances of editor% and readable<%> that expand in the usual
way; see wxme/xml, wxme/scheme, and wxme/text. Images from the htdp/image teach-
pack are packaged as instances of cache-image% from the wxme/cache-image library.
Test-case boxes are packaged as instances of test-case% from the wxme/test-case li-
brary.

8.1.1 Nested Editors

(require wxme/editor)

editor% : class?

superclass: object%

Instantiated for plain nested editors in a WXME stream in text mode.

371

(send an-editor get-content-port) → input-port?

Returns a port (like the one from wxme-port->port) for the editor’s content.

8.1.2 Images

(require wxme/image)

image% : class?

superclass: image-snip%

Instantiated for images in a WXME stream in text mode. This class can just be treated like
image-snip% and should behave just like it, except it has the methods below in addition in
case old code still needs them. In other words, the methods below are provided for back-
wards compatibility with earlier verisons of Racket.

(send an-image get-data) → (or/c bytes? false/c)

Returns bytes for a PNG, XBM,or XPM file for the image.

(send an-image get-w)

→ (or/c exact-nonnegative-integer? (one-of/c -1))

Returns the display width of the image, which may differ from the width of the
actual image specified as data or by a filename; -1 means that the image data’s
width should be used.

(send an-image get-h)

→ (or/c exact-nonnegative-integer? (one-of/c -1))

Returns the display height of the image, which may differ from the height of the
actual image specified as data or by a filename; -1 means that the image data’s
height should be used.

(send an-image get-dx) → exact-integer?

Returns an offset into the actual image to be used as the left of the display image.

(send an-image get-dy) → exact-integer?

Returns an offset into the actual image to be used as the top of the display image.

372

8.2 DrRacket Comment Boxes

(require wxme/comment)

reader : (is-a?/c snip-reader<%>)

A text-mode reader for comment boxes.

comment-editor% : class?

superclass: editor%

extends: readable<%>

Instantiated for DrRacket comment boxes in a WXME stream for text mode.

(send a-comment-editor get-data) → false/c

No data is available.

(send a-comment-editor read-special source

line

column

position) → any/c

source : any/c

line : (or/c exact-nonnegative-integer? false/c)

column : (or/c exact-nonnegative-integer? false/c)

position : (or/c exact-nonnegative-integer? false/c)

Generates a special comment using make-special-comment. The special
comment contains the comment text.

8.3 DrRacket XML Boxes

(require wxme/xml)

reader : (is-a?/c snip-reader<%>)

A text-mode reader for XML boxes.

xml-editor% : class?

superclass: editor%

extends: readable<%>

Instantiated for DrRacket XML boxes in a WXME stream for text mode.

373

(send a-xml-editor get-data) → any/c

Returns #t if whitespace is elimited from the contained XML literal, #f other-
wise.

(send a-xml-editor read-special source

line

column

position) → any/c

source : any/c

line : (or/c exact-nonnegative-integer? false/c)

column : (or/c exact-nonnegative-integer? false/c)

position : (or/c exact-nonnegative-integer? false/c)

Generates a quasiquote S-expression that enclosed the XML, with unquote

and unquote-splicing escapes for nested Racket boxes.

8.4 DrRacket Racket Boxes

(require wxme/scheme)

reader : (is-a?/c snip-reader<%>)

A text-mode reader for Racket boxes.

racket-editor% : class?

superclass: editor%

extends: readable<%>

Instantiated for DrRacket Racket boxes in a WXME stream for text mode.

(send a-racket-editor get-data) → any/c

Returns #t if the box corresponds to a splicing unquote, #f for a non-splicing
unquote.

(send a-racket-editor read-special source

line

column

position) → any/c

source : any/c

line : (or/c exact-nonnegative-integer? false/c)

column : (or/c exact-nonnegative-integer? false/c)

position : (or/c exact-nonnegative-integer? false/c)

Generates an S-expression for the code in the box.

374

8.5 DrRacket Text Boxes

(require wxme/text)

reader : (is-a?/c snip-reader<%>)

A text-mode reader for text boxes.

text-editor% : class?

superclass: editor%

extends: readable<%>

Instantiated for DrRacket text boxes in a WXME stream for text mode.

(send a-text-editor get-data) → false/c

No data is available.

(send a-text-editor read-special source

line

column

position) → any/c

source : any/c

line : (or/c exact-nonnegative-integer? false/c)

column : (or/c exact-nonnegative-integer? false/c)

position : (or/c exact-nonnegative-integer? false/c)

Generates a string containing the text.

8.6 DrRacket Fractions

(require wxme/number)

reader : (is-a?/c snip-reader<%>)

A text-mode reader for DrRacket fractions that generates exact, rational numbers.

8.7 DrRacket Teachpack Images

(require wxme/cache-image)

reader : (is-a?/c snip-reader<%>)

375

A text-mode reader for images in a WXME stream generated by the htdp/image

teachpack—or, more generally, by mrlib/cache-image-snip.

cache-image% : class?

superclass: object%

Instantiated for DrRacket teachpack boxes in a WXME stream for text mode.

(send a-cache-image get-argb) → (vectorof byte?)

Returns a vector of bytes representing the content of the image.

(send a-cache-image get-width) → exact-nonnegative-integer?

Returns the width of the image.

(send a-cache-image get-height) → exact-nonnegative-integer?

Returns the height of the image.

(send a-cache-image get-pin-x) → exact-integer?

Returns an offset across into the image for the pinhole.

(send a-cache-image get-pin-y) → exact-integer?

Returns an offset down into the image for the pinhole.

8.8 DrRacket Test-Case Boxes

(require wxme/test-case)

reader : (is-a?/c snip-reader<%>)

A text-mode reader for DrRacket test-case boxes in a WXME stream. It generates instances
of test-case%.

test-case% : class?

superclass: object%

Instantiated for old-style DrRacket test-case boxes in a WXME stream for text mode.

(send a-test-case get-comment) → (or/c false/c input-port?)

Returns a port for the comment field, if any.

376

(send a-test-case get-test) → input-port?

Returns a port for the “test” field.

(send a-test-case get-expected) → input-port?

Returns a port for the “expected” field.

(send a-test-case get-should-raise)

→ (or/c false/c input-port?)

Returns a port for the “should raise” field, if any.

(send a-test-case get-error-message)

→ (or/c false/c input-port?)

Returns a port for the “error msg” field, if any.

(send a-test-case get-enabled?) → boolean?

Returns #t if the test is enabled.

(send a-test-case get-collapsed?) → boolean?

Returns #t if the test is collapsed.

(send a-test-case get-error-box?) → boolean?

Returns #t if the test is for an exception.

377

9 Preferences

The racket/gui/base library supports a number of preferences for global configuration.
The preferences are stored in the common file reported by find-system-path for 'pref-
file, and preference values can be retrieved and changed through get-preference and
put-preferences. Except for the except the 'GRacket:playcmd preference preference,
the racket/gui/base library reads each of the preferences below once at startup.

Beware: The preferences file is read in case-insensitive mode (for historical reasons), so the
symbols listed below must be surrounded with |.

The following are the preference names used by GRacket:

• 'GRacket:default-font-size preference — sets the default font size the basic
style in a style list, and thus the default font size for an editor.

• 'GRacket:defaultMenuPrefix preference — sets the prefix used by default for
menu item shortcuts on Unix, one of 'ctl, 'meta, or 'alt. The default is 'ctl.
When this preference is set to 'meta or 'alt, underlined mnemonics (introduced by
& in menu labels) are suppressed.

• 'GRacket:emacs-undo preference — a true value makes undo in editors work as in
Emacs (i.e., undo operations are themselves kept in the undo stack).

• 'GRacket:wheelStep preference — sets the default mouse-wheel step size of
editor-canvas% objects.

• 'GRacket:outline-inactive-selection preference — a true value causes selec-
tions in text editors to be shown with an outline of the selected region when the editor
does no have the keyboard focus.

• 'GRacket:playcmd preference — used to format a sound-playing command; see
play-sound for details.

• 'GRacket:doubleClickTime preference — overrides the platform-specific default
interval (in milliseconds) for double-click events.

In each of the above cases, if no preference value is found using the GRacket-prefixed name,
a MrEd-prefixed name is tried for backward compatibility.

378

10 Dynamic Loading

(require racket/gui/dynamic)

The racket/gui/dynamic library provides functions for dynamically access-
ing the racket/gui/base library, instead of directly requiring racket/gui or
racket/gui/base.

(gui-available?) → boolean?

Returns #t if dynamic access to the GUI bindings is available. The bindings are available
if racket/gui/base has been loaded, instantiated, and attached to the namespace in which
racket/gui/dynamic was instantiated.

(gui-dynamic-require sym) → any

sym : symbol?

Like dynamic-require, but specifically to access exports of racket/gui/base.

379

11 Startup Actions

The racket/gui/base module can be instantiated only once per operating-system process,
because it sets hooks in the Racket run-time system to coordinate between Racket thread
scheduling and GUI events. Attempting to instantiate it a second time results in an exception.

Loading racket/gui/base sets two parameters:

• executable-yield-handler — The executable yield handler is set to evaluate
(yield initial-eventspace) before chaining to the previously installed handler.
As a result, the Racket process will normally wait until all top-level windows are
closed, all callbacks are invoked, and all timers are stopped in the initial eventspace
before the process exits.

• current-get-interaction-input-port — The interaction port handler is set to
wrap the previously installed handler’s result to yield to GUI events when the input
port blocks on reading. This extension of the default handler’s behavior is triggered
only when the current thread is the handler thread of some eventspace, in which case
current-eventspace is set to the eventspace before invoking yield. As a result,
GUI events normally can be handled while read-eval-print-loop (such as run by
the plain Racket executable) is blocked on input.

380

12 Platform Dependencies

See §27 “Platform Dependencies” in The Racket Drawing Toolkit for information on plat-
form library dependencies for racket/draw. On Unix, the following additional system
libraries must be installed for racket/gui/base:

• "libgdk-x11-2.0[.0]"

• "libgdk_pixbuf-2.0[.0]"

• "libgtk-x11-2.0[.0]"

• "libgdkglext-x11-1.0[.0]" — optional, for OpenGL support

• "libgtkglext-x11-1.0[.0]" — optional, for OpenGL support

• "libunique-1.0[.0]" — optional, for single-instance support

381

Index
".gracketrc", 160
accept-drop-files, 131
accept-tab-focus, 35
add, 207
add, 278
'add, 75
add-canvas, 227
add-child, 28
add-color<%>, 180
add-editor-keymap-functions, 358
add-function, 294
add-pasteboard-keymap-functions,

358
add-selected, 302
add-text-keymap-functions, 358
add-type, 50
add-undo, 228
adjust-cursor, 228
adjust-cursor, 187
adjust-cursor, 281
Administrators, 170
after-change-style, 320
after-delete, 320
after-delete, 303
after-edit-sequence, 229
after-insert, 303
after-insert, 321
after-interactive-move, 303
after-interactive-resize, 304
after-load-file, 229
after-merge-snips, 321
after-move-to, 304
after-new-child, 28
after-reorder, 304
after-resize, 305
after-save-file, 229
after-select, 305
after-set-position, 321
after-set-size-constraint, 322
after-split-snip, 322

alignment, 28
allow-scroll-to-last, 272
allow-tab-exit, 272
Animation in Canvases, 23
'app, 95
append, 55
append, 118
append, 84
append, 89
append-column, 85
append-editor-font-menu-items, 360
append-editor-operation-menu-

items, 360
application-about-handler, 155
application-file-handler, 155
application-preferences-handler,

156
application-quit-handler, 156
application-start-empty-handler,

157
area, 11
area-container-window<%>, 31
area-container<%>, 28
area<%>, 26
auto-resize, 96
auto-wrap, 230
bad?, 291
bad?, 288
'base, 213
'base, 213
'base, 213
'base, 214
'base, 216
'base, 216
'base, 216
"Basic" style, 171
basic-style, 224
begin-busy-cursor, 159
begin-container-sequence, 28
begin-edit-sequence, 230
begin-write-header-footer-to-file,

230

382

bell, 159
blink-caret, 231
blink-caret, 188
'bold, 214
border, 29
border, 28
border-visible?, 281
'bottom, 213
break-sequence, 294
broken-wxme-big-endian?, 367
'button, 33
button, 11
button%, 31
button-changed?, 98
button-down?, 98
button-up?, 98
cache-image%, 376
call-as-primary-owner, 273
call-clickback, 322
call-function, 295
call-with-busy-cursor, 204
'can-append, 192
'can-append, 194
can-change-style?, 322
can-close?, 123
can-delete?, 306
can-delete?, 323
can-do-edit-operation?, 231
can-do-edit-operation?, 188
can-exit?, 123
can-get-page-setup-from-user?, 150
can-insert?, 306
can-insert?, 323
can-interactive-move?, 307
can-interactive-resize?, 307
can-load-file?, 231
can-move-to?, 307
can-reorder?, 308
can-resize?, 308
can-save-file?, 232
can-select?, 308
can-set-size-constraint?, 324

'cancel, 74
canvas, 11
canvas%, 38
canvas<%>, 33
'capital, 74
'caret, 293
caret, 176
Caret Ownership, 176
caret-hidden?, 324
'caution, 95
center, 124
'center, 18
'center, 213
chain-to-keymap, 295
change-children, 29
change-style, 324
change-style, 309
check, 48
check box, 11
'check-box, 46
check-box%, 45
check-for-break, 152
checkable menu item, 13
checkable-menu-item%, 47
'choice, 49
choice item, 11
choice%, 48
clear, 232
clear, 89
'clear, 74
clear-undos, 232
Clickbacks, 177
Clickbacks, 177
client->screen, 131
clipboard-client%, 50
clipboard<%>, 51
collapse, 215
column-control-event%, 56
combo field, 12
combo-field%, 53
command, 110
command, 56

383

comment-editor%, 373
Containees, 15
Containees, 11
container-flow-modified, 29
container-size, 29
Containers, 16
Containers, 11
continuation prompt, 23
Continuations and Event Dispatch, 23
'control, 74
control-event%, 57
control<%>, 55
Controls, 11
convert, 224
copy, 215
copy, 325
copy, 232
copy, 188
copy-self, 233
copy-self-to, 233
copy-self-to, 309
copy-self-to, 325
Core Windowing Classes, 11
count, 170
create-status-line, 65
Creating and Setting the Eventspace, 22
Creating Windows, 8
current eventspace, 22
current-eventspace, 151
current-eventspace-has-menu-root?,

155
current-eventspace-has-standard-

menus?, 155
current-text-keymap-initializer,

360
cursor%, 58
cut, 325
cut, 233
Cut and Paste Time Stamps, 176
dc-location-to-editor-location, 233
'decimal, 75
'decorative, 216

'default, 213
'default, 216
default-style-name, 234
Defining New Types of Containers, 18
delete, 118
delete, 85
delete, 93
delete, 325
delete, 309
delete-child, 29
delete-column, 85
deleted, 17
delta, 171
derived style, 171
dialog, 11
dialog%, 59
dialogs, modal, 21
Dialogs, 140
display, 169
'divide, 75
do-copy, 310
do-copy, 326
do-edit-operation, 234
do-edit-operation, 188
do-paste, 310
do-paste, 326
do-paste-x-selection, 326
do-paste-x-selection, 310
'down, 74
drag-and-drop, 126
drag-and-drop, 131
drag-and-drop, 135
drag-and-drop, 165
dragging?, 98
draw, 189
Drawing in Canvases, 10
DrRacket Comment Boxes, 373
DrRacket Fractions, 375
DrRacket Racket Boxes, 374
DrRacket Teachpack Images, 375
DrRacket Test-Case Boxes, 376
DrRacket Text Boxes, 375

384

DrRacket XML Boxes, 373
Dynamic Loading, 379
editor, 169
editor administrator, 170
editor canvas, 11
Editor Classes, 227
Editor Data, 174
editor data, 173
editor data class, 173
editor data class list, 174
Editor Functions, 358
Editor Structure and Terminology, 169
editor toolbox, 1
editor%, 371
editor-admin%, 265
editor-canvas%, 270
editor-data%, 276
editor-data-class%, 277
editor-data-class-list<%>, 278
editor-location-to-dc-location, 235
editor-set-x-selection-mode, 361
editor-snip%, 279
editor-snip-editor-admin<%>, 279
editor-stream-in%, 286
editor-stream-in-base%, 288
editor-stream-in-bytes-base%, 289
editor-stream-out%, 290
editor-stream-out-base%, 291
editor-stream-out-bytes-base%, 292
editor-wordbreak-map%, 293
editor<%>, 227
Editors, 167
Editors and Threads, 178
enable, 92
enable, 108
enable, 131
enable, 80
enabled, 131
Encoding Snips, 172
'end, 74
End of Line Ambiguity, 175
end-busy-cursor, 159

end-container-sequence, 30
end-edit-sequence, 235
end-write-header-footer-to-file,

235
entering?, 98
equal-hash-code-of, 182
equal-hash-code-of, 190
equal-secondary-hash-code-of, 182
equal-secondary-hash-code-of, 190
equal-to?, 190
equal?, 215
erase, 310
erase, 327
'escape, 74
event dispatch handler, 22
Event Dispatching and Eventspaces, 20
event queue, 20
Event Types and Priorities, 21
event%, 62
event-dispatch-handler, 151
events, timer, 21
events, explicitly queued, 21
events, dispatching, 20
events, delivery, 20
eventspace, 21
eventspace-event-evt, 151
eventspace-handler-thread, 154
eventspace-shutdown?, 154
eventspace?, 151
Eventspaces, 151
Eventspaces and Threads, 22
'execute, 74
Explicitly queued events, 21
extend-position, 327
'extended, 149
extract-used-classes, 367
'f1, 75
'f10, 75
'f11, 75
'f12, 75
'f13, 75
'f14, 75

385

'f15, 76
'f16, 76
'f17, 76
'f18, 76
'f19, 76
'f2, 75
'f20, 76
'f21, 76
'f22, 76
'f23, 76
'f24, 76
'f3, 75
'f4, 75
'f5, 75
'f6, 75
'f7, 75
'f8, 75
'f9, 75
File Format, 172
file-creator-and-type, 160
find, 278
find, 207
find-first-snip, 235
find-graphical-system-path, 160
find-line, 327
find-named-style, 224
find-newline, 328
find-next-non-string-snip, 328
find-next-selected-snip, 311
find-or-create-join-style, 224
find-or-create-style, 224
find-position, 328
find-position, 278
find-position, 207
find-position-in-line, 329
find-scroll-line, 235
find-scroll-step, 190
find-snip, 311
find-snip, 329
find-string, 89
find-string, 330
find-string-all, 330

find-wordbreak, 331
flash-off, 331
flash-on, 332
Flattened Text, 175
Flattened text, 175
flush, 35
flush-display, 157
focus, 132
Fonts, 158
force-display-focus, 273
'forever, 262
forget-notification, 225
frame, 11
frame%, 63
gauge, 12
gauge%, 67
Geometry Management, 14
get, 286
get, 185
get, 180
get-active-canvas, 236
get-admin, 191
get-admin, 236
get-align-top-line, 281
get-alignment, 209
get-alignment, 30
get-alignment-off, 215
get-alignment-on, 216
get-alt-down, 73
get-alt-down, 99
get-anchor, 332
get-argb, 376
get-b, 185
get-b, 181
get-background, 209
get-background-add, 216
get-background-mult, 216
get-base-style, 209
get-between-threshold, 332
get-bitmap, 182
get-bitmap-mask, 182
get-bytes, 286

386

get-bytes, 292
get-canvas, 236
get-canvas-background, 35
get-canvases, 236
get-caps-down, 99
get-caps-down, 73
get-center, 311
get-character, 332
get-children, 30
get-choices-from-user, 148
get-classname, 205
get-classname, 278
get-client-handle, 132
get-client-size, 132
get-clipboard-bitmap, 51
get-clipboard-data, 52
get-clipboard-string, 52
get-collapsed?, 377
get-color-from-user, 149
get-column, 56
get-column-labels, 85
get-column-order, 85
get-column-width, 85
get-comment, 376
get-content-port, 372
get-control-down, 99
get-control-down, 73
get-count, 191
get-cursor, 132
get-data, 374
get-data, 86
get-data, 374
get-data, 375
get-data, 50
get-data, 372
get-data, 373
get-dataclass, 277
get-dc, 35
get-dc, 266
get-dc, 200
get-dc, 236
get-default-shortcut-prefix, 160

get-delta, 209
get-descent, 236
get-direction, 112
get-directory, 143
get-display-count, 157
get-display-depth, 157
get-display-left-top-inset, 157
get-display-size, 158
get-double-click-interval, 295
get-dragable, 311
get-dx, 372
get-dy, 372
get-edit-target-object, 124
get-edit-target-window, 124
get-editor, 273
get-editor, 200
get-editor, 121
get-editor, 281
get-enabled?, 377
get-end-position, 332
get-error-box?, 377
get-error-message, 377
get-event-type, 58
get-event-type, 112
get-event-type, 99
get-eventspace, 124
get-exact, 287
get-expected, 377
get-extend-end-position, 333
get-extend-start-position, 333
get-extent, 281
get-extent, 237
get-extent, 191
get-face, 216
get-face, 209
get-family, 216
get-family, 209
get-field-background, 121
get-file, 237
get-file, 140
get-file-format, 333
get-file-list, 141

387

get-filename, 183
get-filename, 237
get-filetype, 183
get-first-visible-item, 86
get-fixed, 287
get-fixed-exact, 287
get-flags, 192
get-flattened-text, 237
get-focus-object, 124
get-focus-snip, 237
get-focus-window, 125
get-font, 209
get-font, 105
get-font-from-user, 149
get-foreground, 209
get-foreground-add, 217
get-foreground-mult, 217
get-frame, 92
get-g, 185
get-g, 181
get-graphical-min-size, 26
get-h, 372
get-handle, 133
get-height, 376
get-height, 133
get-help-string, 80
get-highlight-background-color, 161
get-highlight-text-color, 161
get-inactive-caret-threshold, 238
get-inexact, 287
get-inset, 282
get-item-label, 108
get-item-label, 118
get-item-plain-label, 108
get-items, 94
get-key-code, 73
get-key-release-code, 77
get-keymap, 238
get-label, 80
get-label, 133
get-label-font, 86
get-left-down, 99

get-line-count, 273
get-line-spacing, 333
get-line-spacing, 204
get-load-overwrites-styles, 238
get-map, 293
get-margin, 282
get-max-height, 283
get-max-height, 238
get-max-undo-history, 238
get-max-view, 266
get-max-view-size, 238
get-max-width, 239
get-max-width, 283
get-menu, 55
get-menu-bar, 65
get-meta-down, 77
get-meta-down, 99
get-middle-down, 99
get-min-height, 283
get-min-height, 239
get-min-width, 239
get-min-width, 283
get-name, 209
get-next, 277
get-num-scroll-steps, 193
get-number, 118
get-number, 109
get-number, 89
get-orientation, 72
get-orientation, 131
get-other-altgr-key-code, 77
get-other-caps-key-code, 77
get-other-shift-altgr-key-code, 77
get-other-shift-key-code, 77
get-overwrite-mode, 333
get-padding, 333
get-page-setup-from-user, 150
get-panel-background, 161
get-parent, 26
get-parent, 93
get-paste-text-only, 239
get-pin-x, 376

388

get-pin-y, 376
get-plain-label, 81
get-plain-label, 134
get-popup-target, 105
get-position, 113
get-position, 333
get-ps-setup-from-user, 149
get-r, 185
get-r, 181
get-range, 68
get-region-data, 334
get-revision-number, 334
get-right-down, 99
get-scroll-page, 39
get-scroll-pos, 40
get-scroll-range, 40
get-scroll-step, 311
get-scroll-step-offset, 193
get-selected-text-color, 204
get-selection, 109
get-selection, 89
get-selection, 118
get-selection-visible, 311
get-selections, 86
get-shift-down, 78
get-shift-down, 100
get-shift-style, 210
get-shortcut, 110
get-shortcut-prefix, 110
get-should-raise, 377
get-size, 134
get-size, 210
get-size-add, 217
get-size-in-pixels, 210
get-size-in-pixels-off, 217
get-size-in-pixels-on, 217
get-size-mult, 217
get-smoothing, 210
get-smoothing-off, 217
get-smoothing-on, 217
get-snip, 279
get-snip-data, 239

get-snip-location, 239
get-snip-position, 334
get-snip-position-and-location, 334
get-snipclass, 193
get-space, 240
get-start-position, 335
get-string, 90
get-string-selection, 90
get-style, 210
get-style, 193
get-style-list, 240
get-style-off, 218
get-style-on, 218
get-styles-sticky, 335
get-tabs, 204
get-tabs, 335
get-test, 377
get-text, 335
get-text, 193
get-text!, 194
get-text-descent, 210
get-text-from-user, 148
get-text-height, 210
get-text-space, 210
get-text-width, 210
get-the-editor-data-class-list, 361
get-the-snip-class-list, 361
get-tight-text-fit, 283
get-time-stamp, 62
get-top-level-edit-target-window,

152
get-top-level-focus-window, 152
get-top-level-window, 27
get-top-level-windows, 152
get-top-line-base, 336
get-transparent-text-backing, 211
get-transparent-text-backing-off,

218
get-transparent-text-backing-on,

218
get-types, 51
get-underlined, 211

389

get-underlined-off, 218
get-underlined-on, 218
get-unterminated-bytes, 287
get-value, 115
get-value, 121
get-value, 46
get-value, 68
get-version, 205
get-view, 200
get-view, 267
get-view-size, 240
get-view-size, 200
get-view-start, 40
get-virtual-size, 40
get-visible-line-range, 336
get-visible-position-range, 337
get-w, 372
get-weight, 211
get-weight-off, 218
get-weight-on, 218
get-width, 376
get-width, 134
get-window-text-extent, 161
get-wordbreak-map, 337
get-x, 100
get-x, 78
get-x, 134
get-y, 134
get-y, 100
get-y, 78
global coordinates, 131
global coordinates, 138
Global Data: Headers and Footers, 174
Global Graphics, 157
global-to-local, 241
grab-caret, 267
'GRacket:default-font-size prefer-

ence, 224
'GRacket:default-font-size prefer-

ence, 378
'GRacket:defaultMenuPrefix prefer-

ence, 378

'GRacket:doubleClickTime preference,
295

'GRacket:doubleClickTime preference,
378

'GRacket:emacs-undo preference, 378
'GRacket:outline-inactive-

selection preference, 378
'GRacket:playcmd preference, 164
'GRacket:playcmd preference, 378
'GRacket:selectionAsClipboard pref-

erence, 51
'GRacket:wheelStep preference, 272
'GRacket:wheelStep preference, 378
"gracketrc.rktl", 160
graphical minimum height, 15
graphical minimum size, 16
graphical minimum width, 15
graphical-read-eval-print-loop, 161
group-box-panel%, 68
grow-box-spacer-pane%, 70
gui-available?, 379
gui-dynamic-require, 379
handle-key-event, 296
handle-mouse-event, 296
handler thread, 21
'handles-all-mouse-events, 192
'handles-events, 192
'handles-events, 195
'handles-events, 196
'hard-newline, 192
has-focus?, 134
has-status-line?, 65
'height-depends-on-x, 193
'height-depends-on-y, 193
'help, 74
hidden, 17
hide-caret, 337
hide-cursor-until-moved, 162
'home, 74
horiz-margin, 116
horiz-margin, 115
horizontal-inset, 273

390

horizontal-pane%, 70
horizontal-panel%, 71
'hscroll, 41
'hscroll, 42
iconize, 65
image%, 372
image-snip%, 181
Images, 372
in-edit-sequence?, 241
index-to-style, 225
init-auto-scrollbars, 41
init-manual-scrollbars, 41
insert, 312
insert, 208
insert, 241
insert, 337
'insert, 74
insert-box, 241
insert-file, 241
insert-image, 242
insert-port, 242
interactive-adjust-mouse, 312
interactive-adjust-move, 312
interactive-adjust-resize, 313
Internal Editor Locks, 177
interval, 122
invalidate-bitmap-cache, 243
'invisible, 192
invisible, 192
is-busy?, 162
is-checked?, 48
is-color-display?, 158
is-deleted?, 93
is-enabled?, 92
is-enabled?, 109
is-enabled?, 81
is-enabled?, 134
is-iconized?, 65
is-join?, 211
is-locked?, 243
is-maximized?, 65
is-modified?, 243

is-owned?, 194
is-printing?, 244
is-selected?, 86
is-selected?, 313
is-shown?, 135
'is-text, 192
is-wxme-stream?, 366
'italic, 213
item, 170
join style, 171
jump-to, 287
jump-to, 290
key-code-symbol?, 166
key-event%, 72
keyboard events, overview, 19
keyboard focus, snips, 237
keyboard focus, setting, 132
keyboard focus, overview, 19
keyboard focus, notification, 135
keyboard focus, notification, 249
keyboard focus, navigation, 126
keyboard focus, navigation, 35
keyboard focus, navigation, 272
keyboard focus, navigation, 20
keyboard focus, last active, 124
keyboard focus, last active, 124
keyboard focus, 124
keyboard focus, 125
keyboard focus, 19
keymap%, 294
kill, 339
kill, 244
label->plain-label, 162
label-string?, 165
labelled-menu-item<%>, 80
last-line, 339
last-paragraph, 339
last-position, 340
lazy-refresh, 273
leaving?, 100
'left, 18
'left, 74

391

'light, 214
'line, 293
line-end-position, 340
line-length, 340
line-location, 340
line-paragraph, 341
line-start-position, 341
list box, 11
'list-box, 83
list-box%, 82
'list-box-column, 83
'list-box-dclick, 83
list-control<%>, 89
load-file, 183
load-file, 244
local-to-global, 245
location, 170
locations-computed?, 245
lock, 246
locked-for-flow?, 246
locked-for-read?, 246
locked-for-write?, 246
lower, 313
make-bitmap, 42
make-eventspace, 151
make-gl-bitmap, 163
make-gui-empty-namespace, 163
make-gui-namespace, 163
make-screen-bitmap, 163
map-command-as-meta-key, 361
map-function, 296
margin, 16
match?, 194
maximize, 65
'menu, 94
'menu, 48
'menu, 74
menu, 13
menu bar, 13
Menu Item Containers, 13
Menu Items, 13
menu%, 91

menu-bar%, 91
menu-control-font, 158
menu-item%, 93
menu-item-container<%>, 94
menu-item<%>, 92
'menu-popdown, 105
'menu-popdown-none, 105
merge-with, 194
message, 11
message%, 95
message+check-box, 146
message+check-box/custom, 147
message-box, 144
message-box/custom, 145
min-client-height, 35
min-client-width, 36
min-height, 27
min-height, 26
min-width, 27
min-width, 26
minimizes, 65
Miscellaneous, 159
'modern, 217
modified, 66
modified, 267
modified, 201
Mouse and Keyboard Events, 19
mouse events, overview, 19
mouse-event%, 96
move, 125
move, 313
move-position, 342
move-to, 314
moving?, 100
mult-color<%>, 184
'multiple, 149
'multiply, 75
needs-update, 268
needs-update, 246
needs-update, 201
Nested Editors, 371
new-named-style, 225

392

'newline, 192
next, 195
'next, 74
'no-caret, 176
no-selected, 314
non-windows, 12
'normal, 213
'normal, 214
normal-control-font, 158
notify, 123
notify-on-change, 225
nth, 207
nth, 279
num-scroll-lines, 247
number, 226
number, 207
number, 279
number-of-visible-items, 87
'numlock, 76
'numpad-enter, 75
'numpad0, 74
'numpad1, 74
'numpad2, 74
'numpad3, 75
'numpad4, 75
'numpad5, 75
'numpad6, 75
'numpad7, 75
'numpad8, 75
'numpad9, 75
ok?, 59
ok?, 290
ok?, 287
on-activate, 125
on-change, 247
on-change-style, 343
on-char, 195
on-char, 274
on-char, 247
on-char, 36
on-close, 125
on-default-char, 343

on-default-char, 247
on-default-event, 314
on-default-event, 343
on-default-event, 247
on-delete, 315
on-delete, 344
on-demand, 81
on-demand, 94
on-display-size, 248
on-display-size-when-ready, 248
on-double-click, 315
on-drop-file, 135
on-edit-sequence, 248
on-event, 274
on-event, 249
on-event, 195
on-event, 36
on-exit, 125
on-focus, 249
on-focus, 135
on-focus, 274
on-insert, 344
on-insert, 315
on-interactive-move, 315
on-interactive-resize, 316
on-load-file, 249
on-local-char, 249
on-local-event, 250
on-menu-char, 66
on-message, 126
on-move, 135
on-move-to, 316
on-new-box, 250
on-new-image-snip, 250
on-new-string-snip, 345
on-new-tab-snip, 345
on-paint, 36
on-paint, 42
on-paint, 251
on-paint, 274
on-popup, 55
on-reflow, 345

393

on-reorder, 316
on-replaced, 51
on-resize, 317
on-save-file, 252
on-scroll, 42
on-select, 317
on-set-size-constraint, 345
on-size, 135
on-size, 274
on-snip-modified, 252
on-subwindow-char, 61
on-subwindow-char, 66
on-subwindow-char, 136
on-subwindow-event, 136
on-subwindow-focus, 137
on-superwindow-enable, 137
on-superwindow-show, 137
on-system-menu-char, 127
on-tab-in, 37
on-toolbar-button-click, 66
on-traverse-char, 126
open-input-graphical-file, 361
open-input-text-editor, 362
open-output-text-editor, 363
other-equal-to?, 184
other-equal-to?, 190
own-caret, 252
own-caret, 196
pane, 11
pane%, 102
panel, 11
panel%, 103
paragraph-end-line, 345
paragraph-end-position, 346
paragraph-start-line, 346
paragraph-start-position, 346
partial-offset, 196
'partly-smoothed, 213
paste, 347
paste, 253
paste-next, 347
paste-x-selection, 253

paste-x-selection, 347
pasteboard editor, 167
pasteboard%, 302
'pause, 74
place-children, 30
plain menu item, 13
Platform Dependencies, 381
play-sound, 163
popup menu, 13
popup-menu, 138
popup-menu, 268
popup-menu, 201
popup-menu%, 104
position, 170
position-line, 348
position-location, 348
position-locations, 349
position-paragraph, 349
'pref-file, 378
Preferences, 378
'press, 76
pretty-finish, 290
pretty-start, 290
previous, 196
print, 253
'print, 74
print-to-dc, 254
printer-dc%, 105
'prior, 74
put, 290
put-file, 255
put-file, 142
put-fixed, 291
put-unterminated, 291
queue-callback, 153
racket-editor%, 374
racket/gui, 1
racket/gui/base, 1
racket/gui/dynamic, 379
racket/snip, 180
radio box, 11
radio buttons, 11

394

'radio-box, 108
radio-box%, 106
raise, 318
'rcontrol, 74
read, 288
read, 278
read, 206
read, 208
read-byte, 289
read-bytes, 289
read-bytes, 370
read-editor, 370
read-editor-global-footer, 363
read-editor-global-header, 363
read-editor-version, 364
read-fixed-integer, 369
read-footer-from-file, 255
read-from-file, 255
read-from-file, 349
read-header, 206
read-header, 368
read-header-from-file, 255
read-inexact, 369
read-integer, 369
read-raw-bytes, 369
read-snip, 368
read-snip-from-port, 370
read-special, 374
read-special, 186
read-special, 375
read-special, 373
read-special, 369
read-special, 374
readable-snip<%>, 186
readable<%>, 368
reader, 374
reader, 373
reader, 373
reader, 375
reader, 375
reader, 375
reader, 376

reading-version, 206
recounted, 202
redo, 256
reflow-container, 30
refresh, 256
refresh, 138
refresh-delayed?, 269
refresh-delayed?, 256
refresh-now, 43
register-collecting-blit, 164
register-lib-mapping!, 367
'release, 76
release-from-owner, 197
release-snip, 257
release-snip, 202
remove, 318
remove-boundary, 288
remove-canvas, 257
remove-chained-keymap, 301
remove-clickback, 350
remove-grab-key-function, 301
remove-grab-mouse-function, 301
remove-selected, 318
reparent, 116
replace-named-style, 226
requested minimum height, 15
requested minimum size, 16
requested minimum width, 15
resize, 318
resize, 197
resize, 184
resize, 283
resize, 127
resized, 257
resized, 269
resized, 202
restore, 93
resume-flush, 37
'right, 74
'roman, 216
'root, 92
root style, 171

395

'rshift, 74
same-clipboard-client?, 52
save-file, 257
save-port, 258
screen resolution, 158
screen->client, 138
'script, 216
scroll, 43
'scroll, 76
scroll-editor-to, 258
scroll-event%, 112
scroll-line-location, 259
scroll-to, 203
scroll-to, 269
scroll-to, 275
scroll-to, 259
scroll-to-position, 350
scroll-with-bottom-base, 275
seek, 289
seek, 292
select, 87
'select, 74
select-all, 259
selectable-menu-item<%>, 109
'selection, 293
send-message-to-window, 165
'separator, 75
separator, 13
separator-menu-item%, 111
set, 87
set, 181
set, 118
set, 185
set-active-canvas, 260
set-admin, 260
set-admin, 197
set-after, 318
set-align-top-line, 284
set-alignment, 31
set-alignment-off, 218
set-alignment-on, 219
set-alt-down, 100

set-alt-down, 78
set-anchor, 350
set-autowrap-bitmap, 351
set-b, 181
set-b, 185
set-base-style, 211
set-before, 319
set-between-threshold, 351
set-bitmap, 184
set-boundary, 288
set-break-sequence-callback, 301
set-canvas-background, 37
set-caps-down, 100
set-caps-down, 78
set-caret-owner, 260
set-caret-owner, 203
set-classname, 206
set-classname, 278
set-clickback, 351
set-clipboard-bitmap, 53
set-clipboard-client, 53
set-clipboard-string, 53
set-column, 56
set-column-label, 87
set-column-order, 87
set-column-width, 88
set-control-down, 79
set-control-down, 100
set-count, 197
set-cursor, 138
set-cursor, 261
set-data, 88
set-dataclass, 277
set-delta, 211
set-delta, 219
set-delta-background, 221
set-delta-face, 221
set-delta-foreground, 221
set-direction, 113
set-double-click-interval, 301
set-dragable, 319
set-editor, 284

396

set-editor, 275
set-event-type, 58
set-event-type, 101
set-event-type, 113
set-face, 221
set-family, 222
set-field-background, 121
set-file-format, 352
set-filename, 261
set-first-visible-item, 88
set-flags, 198
set-g, 181
set-g, 185
set-grab-key-function, 301
set-grab-mouse-function, 302
set-help-string, 81
set-icon, 127
set-inactive-caret-threshold, 261
set-inset, 284
set-item-label, 119
set-key-code, 79
set-key-release-code, 79
set-keymap, 261
set-label, 81
set-label, 33
set-label, 96
set-label, 46
set-label, 138
set-left-down, 101
set-line-count, 276
set-line-spacing, 352
set-load-overwrites-styles, 261
set-map, 293
set-margin, 284
set-max-height, 262
set-max-height, 284
set-max-undo-history, 262
set-max-width, 262
set-max-width, 285
set-meta-down, 101
set-meta-down, 79
set-middle-down, 101

set-min-height, 262
set-min-height, 285
set-min-width, 285
set-min-width, 262
set-min-width, 105
set-modified, 263
set-next, 277
set-offset, 184
set-orientation, 130
set-orientation, 72
set-other-altgr-key-code, 79
set-other-caps-key-code, 79
set-other-shift-altgr-key-code, 79
set-other-shift-key-code, 79
set-overwrite-mode, 352
set-padding, 352
set-paragraph-alignment, 353
set-paragraph-margins, 353
set-paste-text-only, 263
set-position, 113
set-position, 353
set-position-bias-scroll, 354
set-r, 185
set-r, 181
set-range, 68
set-region-data, 355
set-resize-corner, 37
set-right-down, 101
set-scroll-page, 43
set-scroll-pos, 43
set-scroll-range, 44
set-scroll-step, 319
set-selected, 319
set-selection, 119
set-selection, 90
set-selection, 109
set-selection-visible, 319
set-shift-down, 80
set-shift-down, 101
set-shift-style, 211
set-shortcut, 111
set-shortcut-prefix, 111

397

set-size-add, 222
set-size-in-pixels-off, 222
set-size-in-pixels-on, 222
set-size-mult, 222
set-smoothing-off, 222
set-smoothing-on, 222
set-snip-data, 263
set-snipclass, 198
set-status-text, 66
set-string, 88
set-string-selection, 90
set-style, 198
set-style-list, 263
set-style-off, 222
set-style-on, 222
set-styles-sticky, 355
set-tabs, 355
set-tight-text-fit, 285
set-time-stamp, 62
set-transparent-text-backing-off,

223
set-transparent-text-backing-on,

223
set-underlined-off, 223
set-underlined-on, 223
set-unmodified, 198
set-value, 47
set-value, 68
set-value, 115
set-value, 122
set-version, 206
set-weight-off, 223
set-weight-on, 223
set-wordbreak-func, 356
set-wordbreak-map, 356
set-x, 101
set-x, 80
set-y, 80
set-y, 101
'shift, 74
shift style, 171
show, 139

show, 128
show, 61
show-border, 285
'show-caret, 176
'show-caret, 238
'show-inactive-caret, 176
show-scrollbars, 44
show-without-yield, 62
Simple text, 175
'single, 149
size-cache-invalid, 198
size-cache-invalid, 264
skip, 289
skip, 288
'slant, 213
sleep/yield, 154
'slider, 115
slider, 12
slider%, 113
small-control-font, 159
'smoothed, 213
'snapshot, 74
snip, 169
snip administrator, 170
Snip and Style Classes, 180
snip class, 173
snip class list, 173
Snip Class Mapping, 370
Snip Classes, 173
snip%, 186
snip-admin%, 199
snip-class%, 205
snip-class-list<%>, 207
snip-reader<%>, 368
snips, saving, 172
snips, cut and paste, 172
spacing, 31
spacing, 28
special-control-key, 152
special-option-key, 152
split, 199
split-snip, 356

398

"Standard" style, 172
start, 123
'start, 74
Startup Actions, 380
stop, 123
'stop, 95
stream<%>, 369
stretchability, 15
stretchable-height, 27
stretchable-height, 26
stretchable-width, 28
stretchable-width, 26
string->lib-path, 367
string-snip%, 208
style, 171
style delta, 171
style list, 171
style-background-used?, 285
style-delta%, 212
style-has-changed, 264
style-list%, 223
style-to-index, 226
style<%>, 208
Styles, 171
subarea<%>, 115
'subtract, 75
subwindow<%>, 116
suspend-flush, 37
swap-gl-buffers, 44
'swiss, 216
switch-to, 211
'symbol, 217
'system, 217
System Menus, 155
system-position-ok-before-cancel?,

165
'tab-panel, 118
tab-panel%, 116
tab-snip%, 226
tell, 291
tell, 288
tell, 289

tell, 292
test-case%, 376
text editor, 167
text field, 12
text%, 319
text-editor%, 375
text-editor-load-handler, 364
'text-field, 120
'text-field, 55
text-field%, 119
'text-field-enter, 120
'text-field-enter, 55
textual-read-eval-print-loop, 162
The Racket Graphical Interface Toolkit, 1
the-clipboard, 165
the-clipboard, 51
the-editor-wordbreak-map, 364
the-style-list, 364
the-style-list, 171
the-style-list, 223
the-x-selection-clipboard, 165
the-x-selection-clipboard, 51
Timer events, 21
timer%, 122
tiny-control-font, 159
'toolbar-button, 66
'top, 213
top-level-window<%>, 123
'transparent, 35
'transparent, 37
undo, 264
unknown-extensions-skip-enabled,

367
unregister-collecting-blit, 165
'unsmoothed, 213
'up, 74
update-cursor, 270
update-cursor, 204
use-file-text-mode, 264
use-style-background, 286
'user1, 293
'user2, 293

399

'uses-editor-path, 193
vert-margin, 116
vert-margin, 115
vertical-inset, 276
vertical-pane%, 128
vertical-panel%, 129
view-control-font, 159
'vscroll, 41
'vscroll, 42
'wait, 153
warp-pointer, 37
wheel on mouse, 76
wheel on mouse, 272
'wheel-down, 76
'wheel-down, 20
'wheel-left, 76
'wheel-right, 76
wheel-step, 276
'wheel-up, 76
'wheel-up, 20
'width-depends-on-x, 193
'width-depends-on-y, 193
window<%>, 131
Windowing, 8
Windowing Classes, 25
Windowing Functions, 140
windowing toolbox, 1
windows, 12
with-gl-context, 45
write, 292
write, 277
write, 199
write-bytes, 292
write-editor-global-footer, 365
write-editor-global-header, 365
write-editor-version, 365
write-footers-to-file, 265
write-header, 206
write-headers-to-file, 265
write-to-file, 356
write-to-file, 265
wxme, 366

WXME, 172
WXME Decoding, 366
wxme-port->port, 366
wxme-port->text-port, 366
wxme-read, 367
wxme-read-syntax, 368
wxme/cache-image, 375
wxme/comment, 373
wxme/editor, 371
wxme/image, 372
wxme/number, 375
wxme/scheme, 374
wxme/test-case, 376
wxme/text, 375
wxme/xml, 373
xml-editor%, 373
yield, 153
yield, 20

400

	1 Windowing
	1.1 Creating Windows
	1.2 Drawing in Canvases
	1.3 Core Windowing Classes
	1.4 Geometry Management
	1.4.1 Containees
	1.4.2 Containers
	1.4.3 Defining New Types of Containers

	1.5 Mouse and Keyboard Events
	1.6 Event Dispatching and Eventspaces
	1.6.1 Event Types and Priorities
	1.6.2 Eventspaces and Threads
	1.6.3 Creating and Setting the Eventspace
	1.6.4 Continuations and Event Dispatch

	1.7 Animation in Canvases

	2 Windowing Classes
	2.1 IdentifierColorbluearea<%>
	2.2 IdentifierColorbluearea-container<%>
	2.3 IdentifierColorbluearea-container-window<%>
	2.4 IdentifierColorbluebutton%
	2.5 IdentifierColorbluecanvas<%>
	2.6 IdentifierColorbluecanvas%
	2.7 IdentifierColorbluecheck-box%
	2.8 IdentifierColorbluecheckable-menu-item%
	2.9 IdentifierColorbluechoice%
	2.10 IdentifierColorblueclipboard-client%
	2.11 IdentifierColorblueclipboard<%>
	2.12 IdentifierColorbluecombo-field%
	2.13 IdentifierColorbluecontrol<%>
	2.14 IdentifierColorbluecolumn-control-event%
	2.15 IdentifierColorbluecontrol-event%
	2.16 IdentifierColorbluecursor%
	2.17 IdentifierColorbluedialog%
	2.18 IdentifierColorblueevent%
	2.19 IdentifierColorblueframe%
	2.20 IdentifierColorbluegauge%
	2.21 IdentifierColorbluegroup-box-panel%
	2.22 IdentifierColorbluegrow-box-spacer-pane%
	2.23 IdentifierColorbluehorizontal-pane%
	2.24 IdentifierColorbluehorizontal-panel%
	2.25 IdentifierColorbluekey-event%
	2.26 IdentifierColorbluelabelled-menu-item<%>
	2.27 IdentifierColorbluelist-box%
	2.28 IdentifierColorbluelist-control<%>
	2.29 IdentifierColorbluemenu%
	2.30 IdentifierColorbluemenu-bar%
	2.31 IdentifierColorbluemenu-item<%>
	2.32 IdentifierColorbluemenu-item%
	2.33 IdentifierColorbluemenu-item-container<%>
	2.34 IdentifierColorbluemessage%
	2.35 IdentifierColorbluemouse-event%
	2.36 IdentifierColorbluepane%
	2.37 IdentifierColorbluepanel%
	2.38 IdentifierColorbluepopup-menu%
	2.39 IdentifierColorblueprinter-dc%
	2.40 IdentifierColorblueradio-box%
	2.41 IdentifierColorblueselectable-menu-item<%>
	2.42 IdentifierColorblueseparator-menu-item%
	2.43 IdentifierColorbluescroll-event%
	2.44 IdentifierColorblueslider%
	2.45 IdentifierColorbluesubarea<%>
	2.46 IdentifierColorbluesubwindow<%>
	2.47 IdentifierColorbluetab-panel%
	2.48 IdentifierColorbluetext-field%
	2.49 IdentifierColorbluetimer%
	2.50 IdentifierColorbluetop-level-window<%>
	2.51 IdentifierColorbluevertical-pane%
	2.52 IdentifierColorbluevertical-panel%
	2.53 IdentifierColorbluewindow<%>

	3 Windowing Functions
	3.1 Dialogs
	3.2 Eventspaces
	3.3 System Menus
	3.4 Global Graphics
	3.5 Fonts
	3.6 Miscellaneous

	4 Editors
	4.1 Editor Structure and Terminology
	4.1.1 Administrators
	4.1.2 Styles

	4.2 File Format
	4.2.1 Encoding Snips
	4.2.2 Global Data: Headers and Footers

	4.3 End of Line Ambiguity
	4.4 Flattened Text
	4.5 Caret Ownership
	4.6 Cut and Paste Time Stamps
	4.7 Clickbacks
	4.8 Internal Editor Locks
	4.9 Editors and Threads

	5 Snip and Style Classes
	5.1 IdentifierColorblueadd-color<%>
	5.2 IdentifierColorblueimage-snip%
	5.3 IdentifierColorbluemult-color<%>
	5.4 IdentifierColorbluereadable-snip<%>
	5.5 IdentifierColorbluesnip%
	5.6 IdentifierColorbluesnip-admin%
	5.7 IdentifierColorbluesnip-class%
	5.8 IdentifierColorbluesnip-class-list<%>
	5.9 IdentifierColorbluestring-snip%
	5.10 IdentifierColorbluestyle<%>
	5.11 IdentifierColorbluestyle-delta%
	5.12 IdentifierColorbluestyle-list%
	5.13 IdentifierColorbluetab-snip%

	6 Editor Classes
	6.1 IdentifierColorblueeditor<%>
	6.2 IdentifierColorblueeditor-admin%
	6.3 IdentifierColorblueeditor-canvas%
	6.4 IdentifierColorblueeditor-data%
	6.5 IdentifierColorblueeditor-data-class%
	6.6 IdentifierColorblueeditor-data-class-list<%>
	6.7 IdentifierColorblueeditor-snip-editor-admin<%>
	6.8 IdentifierColorblueeditor-snip%
	6.9 IdentifierColorblueeditor-stream-in%
	6.10 IdentifierColorblueeditor-stream-in-base%
	6.11 IdentifierColorblueeditor-stream-in-bytes-base%
	6.12 IdentifierColorblueeditor-stream-out%
	6.13 IdentifierColorblueeditor-stream-out-base%
	6.14 IdentifierColorblueeditor-stream-out-bytes-base%
	6.15 IdentifierColorblueeditor-wordbreak-map%
	6.16 IdentifierColorbluekeymap%
	6.17 IdentifierColorbluepasteboard%
	6.18 IdentifierColorbluetext%

	7 Editor Functions
	8 WXME Decoding
	8.1 Snip Class Mapping
	8.1.1 Nested Editors
	8.1.2 Images

	8.2 DrRacket Comment Boxes
	8.3 DrRacket XML Boxes
	8.4 DrRacket Racket Boxes
	8.5 DrRacket Text Boxes
	8.6 DrRacket Fractions
	8.7 DrRacket Teachpack Images
	8.8 DrRacket Test-Case Boxes

	9 Preferences
	10 Dynamic Loading
	11 Startup Actions
	12 Platform Dependencies
	Index

