
File: Racket File Format Libraries
Version 5.3.1

November 6, 2012

1



Contents

1 Convertible: Data-Conversion Protocol 3

2 gzip Compression and File Creation 5

3 gzip Decompression 6

4 zip File Creation 7

5 tar File Creation 8

6 MD5 Message Digest 9

7 SHA1 Message Digest 10

8 GIF File Writing 11

9 ICO File Reading and Writing 17

10 Windows Registry 19

Index 22

2



1 Convertible: Data-Conversion Protocol

(require file/convertible)

The file/convertible library provides a protocol to mediate between providers of data
in different possible formats and consumers of the formats. For example, a datatype that
implements prop:convertible might be able to convert itself to a GIF or PDF stream, in
which case it would produce data for 'gif-bytes or 'pdf-bytes requests.

Any symbol can be used for a conversion request, but the following should be considered
standard:

• 'text — a string for human-readable text

• 'gif-bytes — a byte string containing a GIF image encoding

• 'png-bytes — a byte string containing a PNG image encoding

• 'ps-bytes — a byte string containing a PostScript document

• 'eps-bytes — a byte string containing an Encapsulated PostScript document

• 'pdf-bytes — a byte string containing a PDF document

• 'pdf-bytes+bounds — a list containing a byte string and four numbers; the byte
string contains a PDF document and the four numbers are sizing information for the
PDF document, namely the width, height, ascent and descent in that order

prop:convertible : struct-type-property?

A property whose value should be a procedure of three arguments. The procedure is called
when a structure with the property is passed to convert; the first argument to the procedure
is the structure, the second argument is a symbol for the requested conversion, and the third
argument is a value to return (typically #f if the conversion is not supported. The procedure’s
result depends on the requested conversion.

(convertible? v) → boolean?
v : any/c

Returns #t if v supports the conversion protocol, #f otherwise.

(convert v request [default ])

3



→

(case request

[(text) (or/c string? (λ (x) (eq? x default)))]

[(gif-bytes png-bytes ps-bytes eps-bytes pdf-bytes)

(or/c bytes? (λ (x) (eq? x default)))]

[(pdf-bytes+bounds) (or/c (list/c bytes?

(and/c real? (not/c negative?))

(and/c real? (not/c negative?))

(and/c real? (not/c negative?))

(and/c real? (not/c negative?)))

(λ (x) (eq? x default)))]

[else any/c])

v : convertible?

request : symbol?

default : any/c = #f

Requests a data conversion from v , where request indicates the type of requested data and
default is the value that the converter should return if it cannot produce data in the format
indicated by request .

4



2 gzip Compression and File Creation

(require file/gzip)

The file/gzip library provides utilities to create archive files in gzip format, or simply to
compress data using the pkzip “deflate” method.

(gzip in-file [out-file ]) → void?

in-file : path-string?

out-file : path-string? = (string-append in-file ".gz")

Compresses data to the same format as the gzip utility, writing the compressed data directly
to a file. The in-file argument is the name of the file to compress. If the file named by
out-file exists, it will be overwritten.

(gzip-through-ports in

out

orig-filename

timestamp) → void?

in : input-port?

out : output-port?

orig-filename : (or/c string? false/c)

timestamp : exact-integer?

Reads the port in for data and compresses it to out , outputting the same format as the
gzip utility. The orig-filename string is embedded in this output; orig-filename can
be #f to omit the filename from the compressed stream. The timestamp number is also
embedded in the output stream, as the modification date of the original file (in Unix seconds,
as file-or-directory-modify-seconds would report on Unix).

(deflate in out) →
exact-nonnegative-integer?

exact-nonnegative-integer?

exact-nonnegative-integer?

in : input-port?

out : output-port?

Writes pkzip-format “deflated” data to the port out , compressing data from the port in .
The data in a file created by gzip uses this format (preceded with header information).

The result is three values: the number of bytes read from in , the number of bytes written to
out , and a cyclic redundancy check (CRC) value for the input.

5



3 gzip Decompression

(require file/gunzip)

The file/gunzip library provides utilities to decompress archive files in gzip format, or
simply to decompress data using the pkzip “inflate” method.

(gunzip file [output-name-filter ]) → void?

file : path-string?

output-name-filter : (string? boolean? . -> . path-string?)

= (lambda (file archive-supplied?) file)

Extracts data that was compressed using the gzip utility (or gzip function), writing the
uncompressed data directly to a file. The file argument is the name of the file containing
compressed data. The default output file name is the original name of the compressed file
as stored in file . If a file by this name exists, it will be overwritten. If no original name is
stored in the source file, "unzipped" is used as the default output file name.

The output-name-filter procedure is applied to two arguments—the default destination
file name and a boolean that is #t if this name was read from file—before the destination
file is created. The return value of the file is used as the actual destination file name (to be
opened with the 'truncate flag of open-output-file).

If the compressed data turns out to be corrupted, the exn:fail exception is raised.

(gunzip-through-ports in out) → void?

in : input-port?

out : output-port?

Reads the port in for compressed data that was created using the gzip utility, writing the
uncompressed data to the port out .

If the compressed data turns out to be corrupted, the exn:fail exception is raised. The
unzipping process may peek further into in than needed to decompress the data, but it will
not consume the unneeded bytes.

(inflate in out) → void?
in : input-port?

out : output-port?

Reads pkzip-format “deflated” data from the port in and writes the uncompressed (“in-
flated”) data to the port out . The data in a file created by gzip uses this format (preceded
with some header information).

If the compressed data turns out to be corrupted, the exn:fail exception is raised. The
inflate process may peek further into in than needed to decompress the data, but it will not
consume the unneeded bytes.

6



4 zip File Creation

(require file/zip)

The file/zip library provides utilities to create zip archive files, which are compatible
with both Windows and Unix (including Mac OS X) unpacking. The actual compression is
implemented by deflate.

(zip zip-file path ...) → void?

zip-file : path-string?

path : path-string?

Creates zip-file , which holds the complete content of all paths. The given paths are all
expected to be relative path names of existing directories and files (i.e., relative to the current
directory). If a nested path is provided as a path , its ancestor directories are also added to the
resulting zip file, up to the current directory (using pathlist-closure). Files are packaged
as usual for zip files, including permission bits for both Windows and Unix (including Mac
OS X). The permission bits are determined by file-or-directory-permissions, which
does not preserve the distinction between owner/group/other permissions. Also, symbolic
links are always followed.

(zip->output paths [out ]) → void?

paths : (listof path-string?)

out : output-port? = (current-output-port)

Zips each of the given paths , and packages it as a zip “file” that is written directly to out .
Unlike zip, the specified paths are included as-is; if a directory is specified, its content is
not automatically added, and nested directories are added without parent directories.

(zip-verbose) → boolean?

(zip-verbose on?) → void?

on? : any/c

A parameter that controls output during a zip operation. Setting this parameter to a true
value causes zip to display to (current-error-port) the filename that is currently being
compressed.

7



5 tar File Creation

(require file/tar)

The file/tar library provides utilities to create archive files in USTAR format, like the
archive that the Unix utility pax generates. The USTAR format imposes limits on path
lengths. The resulting archives contain only directories and files (symbolic links are fol-
lowed), and owner information is not preserved; the owner that is stored in the archive is
always “root.”

(tar tar-file path ...) → exact-nonnegative-integer?

tar-file : path-string?

path : path-string?

Creates tar-file , which holds the complete content of all paths. The given paths are all
expected to be relative path names of existing directories and files (i.e., relative to the current
directory). If a nested path is provided as a path , its ancestor directories are also added to
the resulting tar file, up to the current directory (using pathlist-closure).

(tar->output paths [out ]) → exact-nonnegative-integer?

paths : (listof path?)

out : output-port? = (current-output-port)

Packages each of the given paths in a tar format archive that is written directly to the
out . The specified paths are included as-is; if a directory is specified, its content is not
automatically added, and nested directories are added without parent directories.

(tar-gzip tar-file paths ...) → void?

tar-file : path-string?

paths : path-string?

Like tar, but compresses the resulting file with gzip.

8



6 MD5 Message Digest

(require file/md5)

(md5 in [hex-encode?]) → bytes?

in : (or/c input-port? bytes? string?)

hex-encode? : boolean? = #t

If hex-encode? is #t, produces a byte string containing 32 hexadecimal digits (lowercase)
that is the MD5 hash of the given input stream or byte string. Otherwise produces the 16
byte long byte string that is the MD5 hash of the given input stream or byte string.

Examples:

> (md5 #"abc")

#"900150983cd24fb0d6963f7d28e17f72"

> (md5 #"abc" #f)

#"\220\1P\230<\322O\260\326\226?}(\341\177r"

9



7 SHA1 Message Digest

(require file/sha1)

See openssl/sha1 for a faster implementation.

(sha1 in) → string?

in : input-port

Returns a 40-character string that represents the SHA-1 hash (in hexadecimal notation) of
the content from in , consuming all of the input from in until an end-of-file.

The sha1 function composes bytes->hex-string with sha1-bytes.

Example:

> (sha1 (open-input-bytes #"abc"))

"a9993e364706816aba3e25717850c26c9cd0d89d"

(sha1-bytes in) → bytes?

in : input-port

Returns a 20-byte byte string that represents the SHA-1 hash of the content from in , con-
suming all of the input from in until an end-of-file.

Example:

> (sha1-bytes (open-input-bytes #"abc"))

#"\251\231>6G\6\201j\272>%qxP\302l\234\320\330\235"

(bytes->hex-string bstr) → string?

bstr : bytes?

Converts the given byte string to a string representation, where each byte in bstr is con-
verted to its two-digit hexadecimal representation in the resulting string.

10



8 GIF File Writing

(require file/gif)

The file/gif library provides functions for writing GIF files to a stream, including GIF
files with multiple images and controls (such as animated GIFs).

A GIF stream is created by gif-start, and then individual images are written with gif-

add-image. Optionally, gif-add-control inserts instructions for rendering the images.
The gif-end function ends the GIF stream.

A GIF stream can be in any one of the following states:

• 'init : no images or controls have been added to the stream

• 'image-or-control : another image or control can be written

• 'image : another image can be written (but not a control, since a control was written)

• 'done : nothing more can be added

(gif-stream? v) → boolean?

v : any/c

Returns #t if v is a GIF stream created by gif-write, #f otherwise.

(image-ready-gif-stream? v) → boolean?

v : any/c

Returns #t if v is a GIF stream that is not in 'done mode, #f otherwise.

(image-or-control-ready-gif-stream? v) → boolean?

v : any/c

Returns #t if v is a GIF stream that is in 'init or 'image-or-control mode, #f other-
wise.

(empty-gif-stream? v) → boolean?

v : any/c

Returns #t if v is a GIF stream that in 'init mode, #f otherwise.

11



(gif-colormap? v) → boolean?

v : any/c

Returns #t if v represets a colormap, #f otherwise. A colormap is a list whose size is a
power of 2 between 21 and 28, and whose elements are vectors of size 3 containing colors
(i.e., exact integers between 0 and 255 inclusive).

(color? v) → boolean?
v : any/c

The same as byte?.

(dimension? v) → boolean?
v : any/c

Returns #t if v is an exact integer between 0 and 65535 inclusive, #f otherwise.

(gif-state stream) → symbol?

stream : gif-stream?

Returns the state of stream .

(gif-start out w h bg-color cmap) → gif-stream?

out : output-port?

w : dimension?

h : dimension?

bg-color : color?

cmap : (or/c gif-colormap? #f)

Writes the start of a GIF file to the given output port, and returns a GIF stream that adds to
the output port.

The width and height determine a virtual space for the overall GIF image. Individual images
added to the GIF stream must fit within this virtual space. The space is initialized by the
given background color.

Finally, the default meaning of color numbers (such as the background color) is determined
by the given colormap, but individual images within the GIF file can have their own col-
ormaps.

A global colormap need not be supplied, in which case a colormap must be supplied for each
image. Beware that the bg-color is ill-defined if a global colormap is not provided.

12



(gif-add-image stream

left

top

width

height

interlaced?

cmap

bstr) → void?

stream : image-ready-gif-stream?

left : dimension?

top : dimension?

width : dimension?

height : dimension?

interlaced? : any/c

cmap : (or/c gif-colormap? #f)

bstr : bytes?

Writes an image to the given GIF stream. The left , top , width , and height values
specify the location and size of the image within the overall GIF image’s virtual space.

If interlaced? is true, then bstr should provide bytes ininterlaced order instead of top-
to-bottom order. Interlaced order is:

• every 8th row, starting with 0

• every 8th row, starting with 4

• every 4th row, starting with 2

• every 2nd row, starting with 1

If a global color is provided with gif-start, a #f value can be provided for cmap .

The bstr argument specifies the pixel content of the image. Each byte specifies a color
(i.e., an index in the colormap). Each row is provided left-to-right, and the rows provided
either top-to-bottom or in interlaced order (see above). If the image is prefixed with a control
that specifies an transparent index (see gif-add-control), then the corresponding “color”
doesn’t draw into the overall GIF image.

An exception is raised if any byte value in bstr is larger than the colormap’s length, if
the bstr length is not width times height , or if the top , left , width , and height

dimensions specify a region beyond the overall GIF image’s virtual space.

13



(gif-add-control stream

disposal

wait-for-input?

delay

transparent) → void?

stream : image-or-control-ready-gif-stream?

disposal : (or/c 'any 'keep 'restore-bg 'restore-prev)

wait-for-input? : any/c

delay : dimension?

transparent : (or/c color? #f)

Writes an image-control command to a GIF stream. Such a control must appear just before
an image, and it applies to the following image.

The GIF image model involves processing images one by one, placing each image into the
specified position within the overall image’s virtual space. An image-control command can
specify a delay before an image is added (to create animated GIFs), and it also specifies how
the image should be kept or removed from the overall image before proceeding to the next
one (also for GIF animation).

The disposal argument specifies how to proceed:

• 'any : doesn’t matter (perhaps because the next image completely overwrites the
current one)

• 'keep : leave the image in place

• 'restore-bg : replace the image with the background color

• 'restore-prev : restore the overall image content to the content before the image is
added

If wait-for-input? is true, then the display program may wait for some cue from the user
(perhaps a mouse click) before adding the image.

The delay argument specifies a delay in 1/100s of a second.

If the transparent argument is a color, then it determines an index that is used to represent
transparent pixels in the follow image (as opposed to the color specified by the colormap for
the index).

An exception is raised if a control is already added to stream without a corresponding
image.

(gif-add-loop-control stream iteration) → void?

stream : empty-gif-stream?

iteration : dimension?

14



Writes a control command to a GIF stream for which no images or other commands have
already been written. The command causes the animating sequence of images in the GIF to
be repeated ‘iteration-dimension’ times, where 0 can be used to mean “infinity.”

An exception is raise if some control or image has been added to the stream already.

(gif-add-comment stream bstr) → void?

stream : image-or-control-ready-gif-stream?

bstr : bytes?

Adds a generic comment to the GIF stream.

An exception is raised if an image-control command was just written to the stream (so that
an image is required next).

(gif-end stream) → void?

stream : image-or-control-ready-gif-stream?

Finishes writing a GIF file. The GIF stream’s output port is not automatically closed.

An exception is raised if an image-control command was just written to the stream (so that
an image is required next).

(quantize bstr) → bytes? gif-colormap? (or/c color? #f)

bstr :
(and/c bytes?

(lambda (bstr)

(zero? (remainder (bytes-length bstr) 4))))

Each image in a GIF stream is limited to 256 colors, including the transparent “color,” if any.
The quantize function converts a 24-bit image (plus alpha channel) into an indexed-color
image, reducing the number of colors if necessary.

Given a set of pixels expressed in ARGB format (i.e., each four bytes is a set of values for
one pixel: alpha, red, blue, and green), quantize produces produces

• bytes for the image (i.e., a array of colors, expressed as a byte string)

• a colormap

• either #f or a color index for the transparent “color”

The conversion treats alpha values less than 128 as transparent pixels, and other alpha values
as solid.

15



The quantization process uses Octrees [Gervautz1990] to construct an adaptive palette for all
(non-transparent) colors in the image. This implementation is based on an article by Dean
Clark [Clark1996].

To convert a collection of images all with the same quantization, simply append them for the
input of a single call of quantize, and then break apart the result bytes.

16



9 ICO File Reading and Writing

(require file/ico)

The file/ico library provides functions for reading and writing ".ico" files, which con-
tain one or more icons. Each icon is up to 256 by 256 pixels, has a particular depth (i.e., bits
per pixel used to represent a color), and mask (i.e., whether a pixel is shown, except that the
mask may be ignored for 32-bit icons that have an alpha value per pixel).

(ico? v) → boolean?
v : any/c

Returns #t if v represents an icon, #f otherwise.

(ico-width ico) → (integer-in 1 256)

ico : ico?

(ico-height ico) → (integer-in 1 256)

ico : ico?

(ico-depth ico) → (one-of/c 1 2 4 8 16 24 32)

ico : ico?

Returns the width or height of an icon in pixels, or the depth in bits per pixel.

(read-icos src) → (listof ico?)
src : (or/c path-string? input-port?)

Parses src as an ".ico" to extract a list of icons.

(read-icos-from-exe src) → (listof ico?)
src : (or/c path-string? input-port?)

Parses src as an ".exe" to extract the list of icons that represent the Windows executable.

(write-icos icos dest [#:exists exists ]) → void?

icos : (listof ico?)

dest : (or/c path-string? output-port?)

exists :
(or/c 'error 'append 'update 'can-update

'replace 'truncate

'must-truncate 'truncate/replace)

= 'error

Writes each icon in icos to dest as an ".ico" file. If dest is not an output port, exists
is passed on to open-output-file to open dest for writing.

(replace-icos icos dest) → void?

icos : (listof ico?)

dest : (or/c path-string? output-port?)

17



Writes icons in icos to replace icons in dest as an Windows executable. Only existing
icon sizes and depths in the executable are replaced, and best matches for the existing sizes
and depth are drawn from icos (adjusting the scale and depth f a best match as necessary).

(ico->argb ico) → bytes?

ico : ico?

Converts an icon to an ARGB byte string, which has the icon’s pixels in left-to-right, top-to-
bottom order, with four bytes (alpha, red, green, and blue channels) for each pixel.

(argb->ico width height bstr [#:depth depth ]) → ico?

width : (integer-in 1 256)

height : (integer-in 1 256)

bstr : bytes?

depth : (one-of/c 1 2 4 8 24 32) = 32

Converts an ARGB byte string (in the same format as from ico->argb) to an icon of the
given width, height, and depth.

The bstr argument must have a length (* 4 width height), and (* width depth)

must be a multiple of 8.

18



10 Windows Registry

(require file/resource)

(get-resource section

entry

[value-box
file

#:type type ])
→ (or/c #f string? bytes? exact-integer? #t)

section : string?

entry : string?

value-box : (or/f #f (box/c (or/c string? bytes? exact-integer?)))

= #f

file : (or/c #f fail-path?) = #f

type : (or/c 'string 'bytes 'integer) = derived-from-value-box

Gets a value from the Windows registry or an ".ini" file. For backward compati-
bilty, the result is #f for platforms other than Windows. The registry is read when
file is #f and when section is "HKEY_CLASSES_ROOT", "HKEY_CURRENT_CONFIG",
"HKEY_CURRENT_USER", "HKEY_LOCAL_MACHINE", or "HKEY_USERS". When file is #f
and section is not one of the special registry strings, then (build-path (find-system-

path 'home-dir) "mred.ini") is read.

The resource value is keyed on the combination of section and entry . The result is #f if
no value is found for the specified section and entry . If value-box is a box, then the
result is #t if a value is found, and the box is filled with the value; when value-box is #f,
the result is the found value.

The type argument determines how a value in the resource is converted to a Racket value. If
value-box is a box, then the default type is derived from the initial box content, otherwise
the default type is 'string.

Registry values of any format can be extracted. Values using the registry format REG_SZ
are treated as strings, and values with the format REG_DWORD are treated as 32-bit signed
integers. All other formats are treated as raw bytes. Data from the registry is converted to
the requested type as follows:

• A REG_SZ registry value is converted to an integer using string->number (using
0 if the result is not an exact integer), and it is converted to bytes using string-

>bytes/utf-8.

• A REG_DWORD registry value is converted to a string or byte string via number-

>string and (for byte strings) string->bytes/utf-8.

• Any other kind of registry value is converted to a string or integer using bytes-

>string/utf-8 and (for integers) string->number.

19



Resources from ".ini" files are always strings, and are converted like REG_SZ registry
values.

To get the “default” value for a registry entry, use a trailing backslash. For example, the
following expression gets a command line for starting a browser:

(get-resource "HKEY_CLASSES_ROOT"

"htmlfile\\shell\\open\\command\\")

(write-resource section

entry

value

[file
#:type type

#:create-key? create-key?]) → boolean?

section : string?

entry : string?

value : (or/c string? bytes? exact-integer?)

file : (or/c path-string? #f) = #f

type : (or/c 'string 'bytes 'integer) = 'string

create-key? : any/c = #f

Write a value to the Windows registry or an ".ini" file. For backward compati-
bilty, the result is #f for platforms other than Windows. The registry is written when
file is #f and when section is "HKEY_CLASSES_ROOT", "HKEY_CURRENT_CONFIG",
"HKEY_CURRENT_USER", "HKEY_LOCAL_MACHINE", or "HKEY_USERS". When file is #f
and section is not one of the special registry strings, then (build-path (find-system-

path 'home-dir) "mred.ini") is written.

The resource value is keyed on the combination of section and entry . If create-key? is
false when writing to the registry, the resource entry must already exist, otherwise the write
fails. The result is #f if the write fails or #t if it succeeds.

The type argument determines the format of the value written to the registry: 'string

writes using the REG_SZ format, 'bytes writes using the REG_BINARY format, and 'dword

writes using the REG_DWORD format. Any kind of value can be converted for any kind of
type using the inverse of the conversions for get-resource.

When writing to an ".ini" file, the format is always a string, independent of type .

20



Bibliography

[Gervautz1990] M. Gervautz and W. Purgathofer, “A simple method for color quantiza-
tion: Octree quantization,” Graphics Gems, 1990.

[Clark1996] Dean Clark, “Color Quantization using Octrees,” Dr. Dobbs Journal, Jan-
uary 1, 1996. http://www.ddj.com/184409805

21

http://www.ddj.com/184409805


Index
argb->ico, 18
bytes->hex-string, 10
color?, 12
convert, 3
Convertible: Data-Conversion Protocol, 3
convertible?, 3
deflate, 5
dimension?, 12
empty-gif-stream?, 11
file/convertible, 3
file/gif, 11
file/gunzip, 6
file/gzip, 5
file/ico, 17
file/md5, 9
file/resource, 19
file/sha1, 10
file/tar, 8
file/zip, 7
File: Racket File Format Libraries, 1
get-resource, 19
GIF File Writing, 11
gif-add-comment, 15
gif-add-control, 14
gif-add-image, 13
gif-add-loop-control, 14
gif-colormap?, 12
gif-end, 15
gif-start, 12
gif-state, 12
gif-stream?, 11
gunzip, 6
gunzip-through-ports, 6
gzip, 5
gzip Compression and File Creation, 5
gzip Decompression, 6
gzip-through-ports, 5
"HKEY_CLASSES_ROOT", 19
"HKEY_CURRENT_CONFIG", 19
"HKEY_CURRENT_USER", 19

"HKEY_LOCAL_MACHINE", 19
"HKEY_USERS", 19
ICO File Reading and Writing, 17
ico->argb, 18
ico-depth, 17
ico-height, 17
ico-width, 17
ico?, 17
image-or-control-ready-gif-

stream?, 11
image-ready-gif-stream?, 11
inflate, 6
md5, 9
MD5 Message Digest, 9
prop:convertible, 3
quantize, 15
read-icos, 17
read-icos-from-exe, 17
replace-icos, 17
sha1, 10
SHA1 Message Digest, 10
sha1-bytes, 10
tar, 8
tar File Creation, 8
tar->output, 8
tar-gzip, 8
Windows Registry, 19
write-icos, 17
write-resource, 20
zip, 7
zip File Creation, 7
zip->output, 7
zip-verbose, 7

22


	1 Convertible: Data-Conversion Protocol
	2 gzip Compression and File Creation
	3 gzip Decompression
	4 zip File Creation
	5 tar File Creation
	6 MD5 Message Digest
	7 SHA1 Message Digest
	8 GIF File Writing
	9 ICO File Reading and Writing
	10 Windows Registry
	Index

