Make: Dependency Manager

Version 5.3.1

November 6, 2012

The make library provides a Racket version of the popular make utility. Its syntax is intended
to imitate the syntax of make, only in Racket.

Contents

I _Overviewl 3
2 Make from Dependencies| 5
................................... 6
250 6
3 Building Native-Code Extensions| 7
4 Making Collections| 10
4. 1gnature] L e e 10
B27UNI - - o oo e 10

1 Overview

If you are already familiar with make, skip to the precise details of the make library in §2
“Make from Dependencies”. This section contains a brief overview of make for everyone
else.

When you use make, the idea is that you explain how to generate files in a project from a
collection of source files that go through several stages of processing.

For example, say that you are writing a project that has three input files (which you create and
maintain) called "a.input", "b.input", and "c.input". Further, there are two stages of
processing: first you run a particular tool make-output that takes an input file and produces
an output file, and then you combine the input files into a single file using combine-files.
Using make, you might describe this as:

a.output: a.input
make-output a.input a.output
b.output: b.input
make-output b.input b.output
c.output: c.input
make-output c.input c.output
total: a.output b.output c.output
combine-files a.output b.output c.output

Once you’ve put this description in a file called "Makefile" you can issue the command:
make total

to build your entire project. The "Makefile" consists of several rules that tell make how to
create each piece of your project. For example, the rule that is specified in the first two lines
say that "a.output" depends on "a.input" and the command for making "a.output"
from "a.input" is

make-output a.input a.output

The main feature of make is that it uses the time stamps of files to determine when a certain
step is necessary. The make utility uses existing programs to build your project — each rule
has a shell command line.

The make library provides similar functionality, except that the description is in Racket, and
the steps that are needed to build target files are implemented as Racket functions.

Here’s a Racket program that is equivalent to the above:

(require make)

(define (make-output in out)

If you want to build
Racket modules
with automatic
dependency
tracking, just use
raco make as
described in raco:
Racket
Command-Line
Tools.

)

(define (combine-files . args)

)

(make
(("a.output" ("a.input") (make-output "a.input" "a.output"))
("b.output" ("b.input") (make-output "b.input'" "b.output"))
("c.output" ("c.input") (make-output "c.input'" "c.output"))
("total" ("a.output" "b.output" "c.output")
(combine-files "a.output" "b.output" "c.output"))))

If you were to fill in the ellipses above with calls to system, you’d have the exact same
functionality as the original "Makefile". In addition, you can use make/proc to abstract
over the various lines. For example, the "a.output", "b.output", and "c.output" lines
are very similar so you can write the code that generates those lines:

(require make)

(define (make-output in out)

)

(define (combine-files . args)

)

(define files ’("a" "b" "c"))
(define inputs (map (lambda (f) (string-append f ".input"))))
(define outputs (map (lambda (f) (string-append f ".output"))))

(define (line file)
(let ([i (string-append file ".input")]
[o (string-append file ".output")])
‘(o (1))
(1ist o (list i) (lambda () (make-output o i)))))

"

(make/proc
“(,0(map (lambda (i o) ‘(o (,i) ,(lambda () (make-output i 0))))
inputs outputs)
("total" ,outputs ,(lambda () (apply combine-
files outputs)))))

2 Make from Dependencies

(require make)

(make ((target-expr (depend-expr ...)
command-expr ...)
D)

argv-expr)

Expands to

(make/proc
(list (list target-expr (list depend-expr ...)
(lambda () command-expr ...))
)

argv-expr)

(make/proc spec argv) — void?
(listof
(cons/c (or/c path-string? (listof path-string?))
spec : (cons/c (listof path-string?)
(or/c null?
(list/c (-> any))))))

argv : (or/c string? (vectorof string?) (listof string?))

Performs a make according to spec and using argv as command-line arguments selecting
one or more targets.

Each element of the spec list is a target. A target element that starts with a list of strings
is the same as multiple elements, one for each string. The second element of each target
is a list of dependencies, and the third element (if any) of a target is the optional command
thunk.

To make a target, make/proc is first called recursively on each of the target’s dependencies.
If a target is not in spec and it exists as a file, then the target is considered made. If a target’s
modification date is older than any of its dependencies’ modification dates, the correspond-
ing command thunk is called. If the dependency has no command thunk then no action is
taken; such a target is useful for triggering the make of other targets (i.e., the dependencies).

While running a command thunk, make/proc catches exceptions and wraps them in an
exn:fail :make structure, the raises the resulting structure. }

(struct exn:fail:make exn:fail (targets orig-exn)
#:extra-constructor-name make-exn:fail:make)
targets : (listof path-string?)
orig-exn : any/c

The targets field is a list of strings naming the target(s), and the orig-exn field is the
original raised value.

(make-print-checking) — boolean?

(make-print-checking on?) — void?
on? : any/c

A parameter that controls whether make/proc prints a message when making a target. The
default is #t.

(make-print-dep-no-line) — boolean?
(make-print-dep-no-line on?) — void?
on? : any/c

A parameter that controls whether make/proc prints “checking...” lines for dependencies
that have no target in the given kspec. The default is #f.

(make-print-reasons) — boolean?
(make-print-reasons on?) — void?
on? : any/c

A parameter that controls whether make/proc prints the reason that a command thunk is
called. The default is #t.

2.1 Signature
(require make/make-sig)
make™ : signature

Includes all of the names provided by make.

2.2 Unit

(require make/make-unit)

make@ : unit?

A unit that imports nothing and exports make™.

3 Building Native-Code Extensions

(require make/setup-extension)

The make/setup-extension library helps compile C code via Setup PLT’s “pre-install”
phase (triggered by a pre-install-collection item in "info.rkt"; see also §8.1.1
“Controlling raco setup with "info.rkt" Files”).

The pre-install function takes a number of arguments that describe how the C code
is compiled—mainly the libraries that it depends on. It then drives a C compiler via the
dynext/compile and dynext/link functions.

Many issues can complicate C compilation, and the pre-install function helps with a
few:

* finding non-standard libraries and header files,
* taming to some degree the differing conventions of Unix and Windows,
* setting up suitable dependencies on Racket headers, and

* using a pre-compiled binary when a "precompiled" directory is present.

Many extension installers will have to sort out addition platform issues manually, however.
For example, an old "readline" installer used to pick whether to link to "1ibcurses" or
"libncurses" heuristically by inspecting "/usr/1ib". More generally, the “last chance”
argument to pre-install allows an installer to patch compiler and linker options (see
dynext/compile and dynext/1link) before the C code is compiled or linked.

(pre-install plthome-dir
collection-dir
c-file
default-1ib-dir
include-subdirs
find-unix-1ibs
find-windows-1ibs
unix-1ibs
windows-1ibs
extra-depends
last-chance-k
[3m-too?]) — void?
plthome-dir : path-string?
collection-dir : path-string?
c-file : path-string?
default-1ib-dir : path-string?
include-subdirs : (listof path-string?)

find-unix-1ibs : (listof string?)
find-windows-1libs : (listof string?)
unix-1ibs : (listof string?)
windows-1ibs : (listof string?)
extra-depends : (listof path-string?)
last-chance-k : ((-> any) . -> . any)
3m-too? : any/c = #f

The arguments are as follows:

e plthome-dir — the directory provided to a ‘pre-installer’ function.
* collection-dir — a directory to use as the current directory while building.

e c-file — the name of the source file (relative to collection-dir). The out-
put file will be the same, except with a ".c" suffix replaced with (system-
type ’so-suffix), and the path changed to (build-path "compiled" '"na-
tive" (system-library-subpath)).

It (build-path "precompiled" "native" (system-library-subpath)
(path-replace-suffix c-file (system-type ’so-suffix))) exists, then
c-file is not used at all, and the file in the "precompiled" directory is simply
copied.

e default-1ib-dir — adefault directory for finding supporting libraries, often a sub-
directory of "collection-dir". The user can supplement this path by setting the
PLT_EXTENSION_LIB_PATHS environment variable, which applies to all extensions
manged by pre-install.

e include-subdirs — a list of relative paths in which #include files will be found;
the path will be determined through a search, in case it’s not in a standard place like
"/usr/include".

For example, the list used to be > ("openss1") for the "openssl" collection, because
the source uses #include <openssl/ssl.h> and #include <openssl/err.h>.

e find-unix-1ibs — like include-subdirs, but a list of library bases. Leave off
the "1ib" prefix and any suffix (such as ".a" or ".so"). For "openssl", the list
used to be ’ ("ss1" "crypto'"). Each name will essentially get a -1 prefix for the
linker command line.

e find-windows-1ibs — like find-unix-1ibs, but for Windows. The library name
will be suffixed with ".1ib" and supplied directly to the linker.

e unix-libs — like find-unix-1ibs, except that the installer makes no attempt to
find the libraries in a non-standard place. For example, the "readline" installer used
to supply ’ ("curses").

windows-1ibs — like unix-1ibs, but for Windows. For example, the "openssl1"
installer used to supply ’ ("wsock32").

extra-depends — a list of relative paths to treat as dependencies for compiling
"file.c". Often this list will include "file.c" with the ".c" suffix replaced by
".rkt". For example, the "openssl" installer supplies ’ ("mzssl.rkt") to ensure
that the stub module "mzss1.rkt" is never used when the true extension can be built.

last-chance-k — a procedure of one argument, which is a thunk. This procedure
should invoke the thunk to make the file, but it may add parameterizations before
the final build. For example, the "readline" installer used to add an AIX-specific
compile flag in this step when compiling on AIX.

3m-too?— a boolean. If true, when the 3m variant is installed, use the equivalent to
raco ctool --xform to transform the source file and then compile and link for 3m.
Otherwise, the extension is built only for CGC when the CGC variant is installed.

4 Making Collections

(require make/collection)

(make-collection collection-name
collection-files
argv) — void?
collection-name : any/c
collection-files : (listof path-string?)
argv : (or/c string? (vectorof string?))

Builds bytecode files for each file in collection-files, writing each to a "compiled"
subdirectory and automatically managing dependencies. Supply ’#("zo") as argv to com-
pile all files. The collection-name argument is used only for printing status information.

Compilation is performed as with raco make (see raco: Racket Command-Line Tools).

4.1 Signature

(require make/collection-sig)

make:collection™ : signature

Provides make-collection.

4.2 Unit

(require make/collection-unit)

make:collection®@ : unit?

Imports make~, dynext:file~, and compiler~, and exports make:collection”.

10

	1 Overview
	2 Make from Dependencies
	2.1 Signature
	2.2 Unit

	3 Building Native-Code Extensions
	4 Making Collections
	4.1 Signature
	4.2 Unit

