PLaneT: Automatic Package Distribution

Version 5.3.2

Jacob Matthews
and Robert Bruce Findler

January 31, 2013

The PLaneT system is a method for automatically sharing code packages, both as libraries
and as full applications, that gives every user of a PLaneT client the illusion of having a
local copy of every code package on the server. It consists of the central PLaneT package
repository, a server that holds all PLaneT packages, and the PLaneT client, built into Racket,
which transparently interacts with the server on your behalf when necessary.

http://planet.racket-lang.org/
http://planet.racket-lang.org/

Contents

II Usmg PLaneT |

|I.1 FindingaPackage|.

|1.2 Shorthand Syntax| o

1.3 Networking troubles|

|1.4 Fine-Grained Control Over Package Imports|.

|I1.5 Monitoring PLaneT s progress|

2_The PLaneT Search Order]

2.1 Previous Linkagel

2.2 Acceptable Local Package]

The planet Language|

Utility Libraries|

BT RESOIVEL . « - o v v o e e et e

.11 Resolverfilelocking]
9.2 Client Configuration|
5.3 Package Archives| L
5.4 Package Utils|
9.5 Package Version|. o
5.6 Macros and Syntax Objects|o
5.7 __Scribble Documentation|
9.8 Terse Status Updates|
I:E,E I IIQ Cﬂgllﬁ l llﬁ’s Ea[lll

Developing Packages for PLane')

6.1 Write Your Package|

6.1.1 DevelopmentLinks|.

6.2 Prepare Your Distribution| o 0oL

6.2.1 Arrange Files Into a Directory|

16.2.2 Create Documentation [Optional]|

6.2.3 Create an "info.rkt" File [Optional]|

6.4 Determine Your Package’s Backwards-Compatibility|

6.5 Submit Your Package| o o o oo

15

16

16

17

18

21

22

27

29

29

31

32

33

1 Using PLaneT

To use a PLaneT package in a program, require it using the planet require form (see
§2.2 “Importing and Exporting: require and provide” for a full reference on the features
of the require statement in general and the exact allowed grammar of PLaneT require
statements). Here we explain how to use PLaneT by example.

1.1 Finding a Package

If you are new to PLaneT, the first thing to do is visit the PLaneT repository web site and
see what packages are available. People contribute new PLaneT packages all the time — if
you want to be notified whenever a new or updated package is released, you can subscribe to
the (announcement-only) PLaneT-announce mailing list or use an RSS reader to subscribe
to/PLaneT’s RSS feed.

To use a package from PLaneT in your program, the easiest thing to do is copy the require
code snippet off of that package’s page and paste it ino your program. For instance, to use
Schematics’ spgsql. plt package (a library for interacting with the PostgresQL database), as
of this writing you would copy and paste the line:

(require (planet "spgsql.rkt" ("schematics" "spgsql.plt" 2 3)))

into your program. This line requires the file "spgsql.rkt" in package version 2.3 of the
"spgsql.plt" package written by "schematics". That does two things: first, it down-
loads and installs a version of "spgsql.plt" that is compatible with package version 2.3
from the central PLaneT repository| if a compatible version hasn’t already been installed.
Second, it requires the module in file "spgsql.rkt" from that package, making all of its
exported bindings available for use.

Unlike with most package-distribution systems, package downloading and installation in
PLaneT is transparent: there’s no need for you to do anything special the first time you
want to use a package, and there’s no need for you to even know whether or not a particular
package is installed on your computer or the computers where your code will be deployed.

If you want to find all of the latest versions of the packages that planet has available, visit
http://planet.racket-lang.org/servlets/pkg-info.ss

It returns a list matching the contract

(listof (list/c string?
string?

http://planet.racket-lang.org/
http://mailman.cs.uchicago.edu/mailman/listinfo/planet-announce
http://planet.racket-lang.org/300/planet.rss
http://planet.racket-lang.org/users/schematics/spgsql.plt
http://www.postgresql.org/
http://planet.racket-lang.org/
http://planet.racket-lang.org/servlets/pkg-info.ss

(1list/c exact-positive-integer?
exact-nonnegative-integer?)))

Each sublist represents the latest version of one of the packages and contains the userid, the
package name (including ".plt"), and the version (major and minor numbers).

1.2 Shorthand Syntax

The code snippet above can also be written using a new shorter syntax:

(require (planet schematics/spgsql:2:3/spgsql))

The two forms behave identically. In the abbreviated syntax, however, it is illegal to write
the trailing " .rkt" suffix on the file name to be required or the trailing ".plt" on the
package file name. (They are mandatory for the long-form syntax.) It is also legal in the
abbreviated syntax to omit a filename to be required entirely; in that case, PLaneT requires
the file "main.rkt" in the given package.

1.3 Networking troubles

Sometimes, when PLaneT tries to download and install a package for the first time, your
operating system may block it from access to the network. If you are uncomfortable giving
DrRacket free access to the network (or if your attempts to do so do not seem to work), then
you can use your browser to manually install a planet package.

To see how this works, lets assume you want to install the PLAI package and
(require (planet plai/plai:1))
is not working for you.

* First, fire up a command-line window and use raco planet url to determine the url
for downloading the package. To find the url for version (1 1) of the plai package,
do this:

% raco planet url plai plai.plt 1 1
and get this as a response:

http://planet.racket-lang.org/servlets/planet-
servlet.rkt?lang=%224.1.5.3)22&name=%22plai.plt%22&maj=1&min-
lo=1&min-hi=%23f&path=%28%22plai22%29

* Copy and paste that url into your browser, which should trigger the dowload of a file
called plai.plt. Note that your browser will probably try to call the file something
else. Rename it to plai.plt.

* Now run the command-line tool one more time to install the plt file:

% raco planet fileinject plai plai.plt 1 1
This command should be run from the same directory where you saved plai.plt.

This command may fail, since version (1 1) of the PLAI package depends on
cce/scheme:4:1. If it does, simply repeat the above steps for that package first,
and then continue with the fileinject command for PLAL

* Finally, to check that the installation is successful, run raco planet show. You
should see output like this (possibly with slightly different version numbers, if the
packages have been updated since this was written):

Normally-installed packages:
cce scheme.plt 41
plai plai.plt 11

Once that is complete, PLaneT will use that version of the package for any subsequent
requires and won’t try to use the network.

1.4 Fine-Grained Control Over Package Imports

The PLaneT client is designed to balance two competing goals: transparent upgradability
and control over the effect of a package requirement. To that end, the most basic PLaneT
require form offers maximum upgradability, but several more specialized forms allow finer-
grained control over what versions of the named package may be downloaded.

The most basic planet require line, which is what is used in the form

(require (planet "spgsql.rkt" ("schematics" "spgsql.plt" 2 3)))

in longhand notation, or

(require (planet schematics/spgsql:2:3/spgsql))
in shorthand notation, should be read “Require from PLaneT any release of Schematics’
"spgsql.plt" package that is backwards-compatible with package version 2.3.” (The ac-

tual package version used is determined by the PLaneT search order.) To signal this explic-
itly, it is possible to write

(require (planet "spgsql.rkt" ("schematics" "spgsql.plt" 2 (+ 3))))

Package versions
should not be
confused with
program or library
versions; a package
version is a
PLaneT-specific
version number that
encodes backwards-
compatibility
information.

or

(require (planet schematics/spgsql:2:>=3/spgsql))

both of which mean the same thing as the first pair of require lines.

The notion of “backwards-compatibility” has a specific meaning in PLaneT: by definition,
for the purposes of automation, a package is considered to be backwards-compatible with
any other package of the same owner, name, and major version, and any lower minor ver-
sion. Package maintainers are responsible for marking new releases that break backwards-
compatibility by incrementing their major-version number. This means that all of the above
require specifications will match any release of "unlib.plt" with major package version
3 (and any minor version), but will never match releases of "unlib.plt" with higher (or
lower) major version numbers.

Of course a package author may make a mistake and introduced a backwards-incompatibility
unintentionally, or may fix a bug that code in third-party libraries was already working
around. In those cases, it may help to make use of the “upper bound” form of the planet
require, in longhand form:

(require (planet "reduction-semantics.rkt"
("robby" "redex.plt" 4 (- 3))))
and using shorthand notation:
(require (planet robby/redex:4:<=3/reduction-semantics))
In this require line, any version of the package "redex.plt" from package version 4.0 to

package version 4.3 will match the require spec (though as with any PLaneT require speci-
fication, the PLaneT package search order determines which package is actually loaded).

It is also possible to specify both an upper and a lower bound, using the planet require’s
“range” form:

(require (planet "test.rkt" ("schematics" "schemeunit.plt" 2 (9 10))))

or

(require (planet schematics/schemeunit:2:9-10/test))

This form matches any package in the specified range (inclusive on both ends), in this exam-
ple the specifications match either package version 2.9 or 2.10 of the "schemeunit.plt"
package, but do not match version with higher or lower minor version numbers (or any other
major version number).

See §6.4
“Determine Your
Package’s
Backwards-
Compatibility” for a
more detailed
discussion of
backwards-
compatibility
obligations for
PLaneT packages.

Using the range form, it is possible to require a specific version of a package as a special
case (choosing the upper and lower bounds to be equal), but this is a common enough case
that it has special support with the “exact-match” form:

(require (planet "unzip.rkt" ("dherman' "zip.plt" 2 (= 1))))

or

(require (planet dherman/zip:2:=1/unzip))

match only the exact package version 2.1 of the "zip.plt" package.

1.5 Monitoring PLaneT’s progress

PLaneT logs information about what it is doing to the info log (via log-info). In Dr-
Racket, you can view the logs from the Show Log menu item in the View menu, and Racket’s
logging output can be controlled via command-line options and via environment variables.
See §14.5 “Logging” for more details.

2 The PLaneT Search Order

PLaneT has four strategies it uses in order to match a request with an appropriate package
that.

2.1 Previous Linkage

Whenever a file requires a package via PLaneT and that requirement is satisfied, the system
makes a note of exactly which package satisfied that requirement and from then on always
uses that exact same package, even if a newer version is available. This is done to prevent
"magic upgrades" in which a program stops working after installation because an unrelated
package was installed. Such connections are called links and are stored in a user-specific
table called the linkage table.

2.2 Acceptable Local Package

If the PLaneT client doesn’t have any previous linkage information, it checks its list of
already-installed PLaneT packages for one that meets the requirement, and uses it if avail-
able. Both PLaneT-installed packages and packages established through a development link
(see §6.1.1 “Development Links™) are checked simultaneously at this stage.

2.3 Acceptable Remote Package

If there is no acceptable local package, the PLaneT client sends a request to the PLaneT
server for a new package that would satisfy the requirement. The server then finds the
newest matching package and sends it back to the client, which then installs it and uses it to
satisfy the original requirement.

2.4 Cached Installation Archive

If the remote server cannot be contacted (or fails in any way to deliver an acceptable pack-
age), the PLaneT client consults the uninstalled-packages cache, a cache of all previously-
downloaded packages, even those that are not currently installed. Racket users who fre-
quently upgrade their installations may have many packages downloaded but not installed at
any given time; this step is intended to ensure that these users can still run programs even if
they temporarily lose network connection.

3 The raco planet Command-Line Tool

The raco planet command-line tool allows a command-line interface to the most
commonly-performed PLaneT tasks. It is invoked from the command line as

raco planet subcommand arg ...

where subcommand is a subcommand from the following list, and arg is a sequence of
arguments determined by that subcommand:

* create: create a PLaneT archive from a directory
* install: download and install a given package
» remove: remove the specified package from the local cache
» show: list the packages installed in the local cache
* clearlinks: clear the linkage table, allowing upgrades
e fileinject: install a local file to the planet cache
e 1link: create a development link
* unlink: remove development link associated with the given package
» fetch: download a package file without installing it
e url: get a URL for the given package
* open: unpack the contents of the given package
* structure: display the structure of a given .plt archive
* print: display a file within of the given .plt archive
Each of these commands is described in more detail below. All the functionality of the

command-line tool is also provided with a programmatic interface by the "util.rkt" li-
brary.

3.1 create

Usage:
raco planet create [<option> ...] <path>
Create a PLaneT archive in the current directory whose contents are the directory <path>.

<option> is one of:

10

* -f, --force: force a package to be created even if its info.rkt file contains errors.

3.2 install

Usage:
raco planet install <owner> <pkg> <maj> <min>

Download and install the package that (require (planet "file.rkt" (<owner>
<pkg> <maj> <min>))) would install.

3.3 remove

Usage:
raco planet remove [<option> ...] <owner> <pkg> <maj> <min>

Remove the specified package from the local cache, optionally also removing its distribution
file.

<option> is one of:

* -e, --erase: also remove the package’s distribution file from the uninstalled-
package cache

3.4 show

Usage:
raco planet show [<option> ...]
List the packages installed in the local cache.

<option> is one of:

* -p, --packages: show packages only (default)
e -1, --linkage: show linkage table only

* -a, --all: show packages and linkage

11

3.5 clearlinks

Usage:
raco planet clearlinks

Clear the linkage table, allowing upgrades.

3.6 fileinject

Usage:
raco planet fileinject <owner> <plt-file> <maj> <min>

Install local file <plt-file> into the planet cache as though it had been downloaded from the
planet server. It is treated as though it had the given owner name as its owner name, the given
file’s filename as the its package name, and the given major and minor version numbers.

3.7 1link

Usage:
raco planet link <owner> <pkg> <maj> <min> <path>

Create a development link (see §6.1.1 “Development Links”) between the given package
specifier and the specified directory name.

3.8 unlink

Usage:
raco planet unlink [<option>] <owner> <pkg> <maj> <min>

Remove any development link (see §6.1.1 “Development Links”) associated with the given
package.

<option> can only be:

* -q, --quiet: don’tsignal an error on nonexistent links

12

3.9 fetch

Usage:
raco planet fetch <owner> <pkg> <maj> <min>

Download the given package file from the central PLaneT repository without installing it.

310 url

Usage:
raco planet url <owner> <pkg> <maj> <min>
Get a URL for the given package.

This is never necessary for normal use of planet, but may be helpful in some circumstances
for retrieving packages.

3.11 open

Usage:
raco planet open <plt-file> <target>
Unpack the contents of the given package into the given directory without installing.

This command is not necessary for normal use of planet. It is intended to allow you to
inspect package contents offline without needing to install the package.

3.12 structure

Usage:
raco planet structure <plt-file>
Print the structure of the PLaneT archive named by <plt-file> to the standard output port.

This command does not unpack or install the named .plt file.

13

3.13 print

Usage:
raco planet print <plt-file> <path>

Print the contents of the file named by <path>, which must be a relative path within the
PLaneT archive named by <plt-file>, to the standard output port.

This command does not unpack or install the named .plt file.

14

4 The planet Language

#lang planet

When used with #1ang, planet must be followed by a short-form PLaneT path. The path
is used in the same way that #lang uses plain identifiers: /lang/reader is added to the
given path to determine a module that supplies a module reader.

The planet module (as opposed to the reader used with #lang) implements the raco
planet command-line tool.

15

5 Utility Libraries

The planet collection provides configuration and utilities for using PLaneT.

5.1 Resolver

(require planet/resolver)

The primary purpose of this library to for require to find PLaneT packages. It also, how-
ever, provides some utilities for manipulating the resolvers behavior.

(planet-module-name-resolver r-m-p) — void?
r-m-p : resolved-module-path?
(planet-module-name-resolver spec
module-path
stx
load
orig-paramz)
— resolved-module-path?
spec : (or/c module-path? path?)
module-path : (or/c #f resolved-module-path?)
stx : (or/c #f syntax?)
Joad : boolean?
orig-paramz . parameterization?

This implements the PLaneT module resolution process. It is dynamic-required by racket
when the first PLaneT module require is needed. It acts much like a current-module-
name-resolver would, but racket provides it with a special parameterization? (giving
it special privileges) that it uses when installing new packages.

(get-planet-module-path/pkg spec
module-path
stx) — path? pkg?
spec : (or/c module-path? path?)
module-path : (or/c #f resolved-module-path?)
stx : (or/c #f syntax?)

Returns the path corresponding to the package (interpreting the arguments the same way as
planet-module-name-resolver and (current-module-name-resolver)).

(resolve-planet-path planet-path) — path?
planet-path : any/c

16

Returns the file system path to the file specified by the given quoted PLaneT require specifi-
cation. This function downloads and installs the specified package if necessary, but does not
verify that the actual file within it actually exists.

If the PLaneT package is not actually installed, then this function expects to be called with a
very powerful security guard, one that is available to the built-in module name resolver, but
not generally available to user code. So probably this function will fail (possibly deadlock).

This is the same function as the one with the same name, exported by planet/util.

(download?) — boolean?
(download? d1?) — void?
dl? : boolean?

A parameter that controls if PLaneT attempts to download a package that isn’t already
present. If the package isn’t present, the resolver will raise the exn:fail:planet? ex-
ception instead of downloading it.

(install?) — boolean?
(install? inst?) — void?
inst? : boolean?

A parameter that controls if PLaneT attempts to install a package that isn’t already installed.
If the package isn’t installed, the resolver will raise the exn:fail:planet? exception in-
stead of installing it.

5.1.1 Resolver file locking

When PLaneT is asked to resolve a module path for loading the file (e.g., when the last
argument to the (current-module-name-resolver) is #t and that resolver triggers a
call to the PLaneT resolver), it finds the directory where the files are installed, say in this
directory, which corresponds to version 1.2 of dyoo’s closure-compile.plt package:

" (CACHE-DIR) /dyoo/closure-compile.plt/1/2/"
If the file
" (CACHE-DIR) /dyoo/closure-compile.plt/1/2.SUCCESS"

is there, it assumes that there is no installation needed and it just continues, using the path to
the file inside that directory.

If the "2.SUCCESS" file is not there, then it attempts to grab an ’exclusive filesystem lock
on this file (via port-try-file-lock?)

17

" (CACHE-DIR)/dyoo/closure-compile.plt/1/2.LOCK"

If it gets the lock, it then proceeds with the installation, calling raco setup to do the unpack-
ing, compilation, and docs building. After the unpacking has finished, but before beginning
compilation and docs building, it creates the "2.UNPACKED" file:

" (CACHE-DIR) /dyoo/closure-compile.plt/1/2.UNPACKED"
When compilation and docs build are complete, it creates the "2.SUCCESS" file:
" (CACHE-DIR) /dyoo/closure-compile.plt/1/2.SUCCESS"

and releases the lock on the "2.L0OCK" file.

If it fails to get the lock on "2.LOCK" and it does not already hold the lock (due to a re-
entrant call to the resolver (the resolver knows about locks it holds via an internal parameter
that gets created when the planet/resolver module is instantiated) then it goes into a
loop that polls for the existence of the "2.SUCCESS" file; when it that file appears, it just
continues, without installing anything (since that means someone else installed it).

In some situations (e.g., when a new namespace is created and a fresh instantiation of
planet/resolver is created), PLaneT can be fooled into thinking that it does not hold
the lock on some installation. In order to cope with these situations somewhat, PLaneT takes
an easier path when the resolver is only looking for information about package files (i.e.,
when the last argument to the resolver is #f, or when get-planet-module-path/pkg is
called directly (as opposed to being called via module resolution). In those cases, PLaneT
will look only for the "2.UNPACKED" file instead of the "2.SUCCESS" file.

5.2 Client Configuration

(require planet/config)

The planet/config library provides several parameters useful for configuring how PLaneT
works.

Note that while these parameters can be useful to modify programmatically, PLaneT code
runs at module-expansion time, so most user programs cannot set them until PLaneT has
already run. Therefore, to meaningfully change these settings, it is best to manually edit the
"config.rkt" file.

(PLANET-BASE-DIR) — path-string?
(PLANET-BASE-DIR dir) — void?
dir : path-string?

18

The root of the tree where planet stores all of its files. Defaults to

(let ([plt-planet-dir-env-var (getenv "PLTPLANETDIR")])
(if plt-planet-dir-env-var
(string->path plt-planet-dir-env-var)
(build-path (find-system-path ’addon-dir)
"planet"
(PLANET-CODE-VERSION))))

(PLANET-DIR) — path-string?
(PLANET-DIR dir) — void?
dir : path-string?

The root of the version-specific PLaneT files. Defaults to (build-path (PLANET-BASE-
DIR) (version)).

(CACHE-DIR) — path-string?
(CACHE-DIR dir) — void?
dir : path-string?

The root of the PLaneT client’s cache directory.

(UNINSTALLED-PACKAGE-CACHE) — path-string?
(UNINSTALLED-PACKAGE-CACHE dir) — void?
dir : path-string?

The root of the PLaneT client’s uninstalled-packages cache. PLaneT stores package distri-
bution files in this directory, and searches for them in this directory for them if necessary.
Unlike the main PLaneT cache, which contains compiled files and is specific to each par-
ticular version of Racket, the uninstalled package cache is shared by all versions of Racket
that use the same package repository, and it is searched if a package is not installed in the
primary cache and cannot be downloaded from the central PLaneT repository (for instance
due to a loss of Internet connectivity). This behavior is intended to primarily benefit users
who upgrade their Racket installations frequently.

(LINKAGE-FILE) — path-string?
(LINKAGE-FILE file) — void?
file : path-string?

The file to use as the first place PLaneT looks to determine how a particular PLaneT depen-
dence in a file should be satisfied. The contents of this file are used to ensure that no "magic
upgrades" occur after a package is installed. The default is the file "LINKAGE" in the root
PLaneT directory.

19

(LOG-FILE) — (or/c path-string? false?)
(LOG-FILE file) — void?
file : (or/c path-string? false?)

If #£, indicates that no logging should take place. Otherwise specifies the file into which
logging should be written. The default is the file "INSTALL-LOG" in the root PLaneT direc-
tory.
(USE-HTTP-DOWNLOADS?) — boolean?
(USE-HTTP-DOWNLOADS? bool) — void?
bool : any/c

PLaneT can use two different protocols to retrieve packages. If #t, PLaneT will use the
HTTP protocol; if #£ it will use the custom-built PLaneT protocol. The default value for
this parameter is #t and setting this parameter to #f is not recommended.

(HTTP-DOWNLOAD-SERVLET-URL) — string?
(HTTP-DOWNLOAD-SERVLET-URL url) — void?
url : string?

The URL for the servlet that will provide PLaneT packages if USE-HTTP-DOWNLOADS? is #t,
represented as a string. This defaults to the value of the PLTPLANETURL environment variable
if it is set and otherwise is "http://planet.racket-lang.org/servlets/planet-
servlet.rkt".
(PLANET-SERVER-NAME) — string?
(PLANET-SERVER-NAME host) — void?
host : string?

The name of the PLaneT server to which the client should connect if USE-HTTP-
DOWNLOADS? is #£. The default value for this parameter is "planet.racket-lang.org".

(PLANET-SERVER-PORT) — natural-number?
(PLANET-SERVER-PORT port) — void?
port : natural-number?

The port on the server the client should connect to if USE-HTTP-DOWNLOADS? is #f. The
default value for this parameter is 270.

(HARD-LINK-FILE) — path?
(HARD-LINK-FILE file) — void?
file : path?

The name of the file where hard links are saved. Defaults to (build-path (PLANET-BASE-
DIR) (version) "HARD-LINKS").

20

(PLANET-ARCHIVE-FILTER) — (or/c #f string? regexp?)
(PLANET-ARCHIVE-FILTER regexp-filter) — void?
regexp-filter : (or/c #f string? regexp?)

A regular-expression based filter that is used to skip files when building a PLaneT archive.

(PLANET-CODE-VERSION) — string?
(PLANET-CODE-VERSION vers) — void?
vers : string?

Used to compute PLANET-BASE-VERSION.

(DEFAULT-PACKAGE-LANGUAGE) — string?
(DEFAULT-PACKAGE-LANGUAGE vers) — void?
vers : string?

The package language used when communicating with the server to find which package to
download.

Defaults to (version).

5.3 Package Archives

(require planet/planet-archives)

(get-all-planet-packages)
(listof (list/c (and/c path? absolute-path?) string? string? (listof string?)
— exact-nonnegative-integer?
exact-nonnegative-integer?))

Returns the installed planet package. Each element of the result list corresponds to a single
package. The first element in an inner list is the location of the installed files. The second
and third elements are the owner and package names. The last two elements are the major
and minor verisons

(get-installed-planet-archives)
(listof (list/c (and/c path? absolute-path?) string? string? (listof string?)
— exact-nonnegative-integer?
exact-nonnegative-integer?))

Like get-all-planet-archives, except that it does not return packages linked in with
“raco planet link”.

21

(get-hard-linked-packages)
(listof (list/c (and/c path? absolute-path?) string? string? (listof string?)
— exact-nonnegative-integer?
exact-nonnegative-integer?))

Like get-all-planet-archives, except that it return only packages linked in with “raco
planet link”.

5.4 Package Utils

(require planet/util)

The planet/util library supports examination of the pieces of PLaneT. It is meant pri-
marily to support debugging and to allow easier development of higher-level package-
management tools. The functionality exposed by the raco planet command-line tool is
also available programmatically through this library.

(download/install-pkg owner pkg maj min) — (or/c pkg? #f)
owner : string?
pkg : (and/c string? #rx"[.]plt$")
maj : natural-number/c
min : natural-number/c

Downloads and installs the package specifed by the given owner name, package name, major
and minor version number. Returns false if no such package is available; otherwise returns
a package structure for the installed package.

The pkg argument must end with " .plt".

(install-pkg pkg-spec file maj min) — (or/c pkg-spec? #f)
pkg-spec . pkg-spec?
file : path-string?
maj : natural-number/c
min : natural-number/c

Installs the package represented by the arguments, using the pkg-spec argument to find the
path and name of the package to install.

See get-package-spec to build a pkg-spec argument.

Returns a new pkg-spec? corresponding to the package that was actually installed.

(get-package-spec owner pkg [maj min]) — pkg-spec?

22

owner : string?

pkg : (and/c string? #rx"[.]lplt$")
maj : (or/c #f natural-number/c) = #f
min : (or/c #f natural-number/c) = #f

Builds a pkg-spec? corresponding to the package specified by owner, pkg, maj, and min.
The pkg argument must end with the string " .plt".

(pkg-spec? v) — boolean?
v : any/c

Recognizes the result of get-package-spec (and install-pkg).

(current-cache-contents)
(listof
(l1ist/c string?
(listof
(list/c string?
(cons/c natural-number/c
(listof natural-number/c))))))
(current-cache-contents contents) — void?
(listof
(list/c string?
(listof
(list/c string?
(cons/c natural-number/c
(listof natural-number/c))))))

contents :

Holds a listing of all package names and versions installed in the local cache.

(current-linkage)
(listof (list/c path-string?
(list/c string?
— (list/c string?)
natural-number/c
natural-number/c)))

Returns the current linkage table.

The linkage table is an association between file locations (encoded as path strings) and con-
crete planet package versions. If a require line in the associated file requests a package, this
table is consulted to determine a particular concrete package to satisfy the request.

(make-planet-archive directory [output-file]) — path-string?

23

directory : path-string?
output-file : (or/c path? path-string?)
= (string-append (path->string name) ".plt")

Makes a .plt archive file suitable for PLaneT whose contents are all files in the given directory
and returns that file’s name. If the optional filename argument is provided, that filename will
be used as the output file’s name.

See also build-scribble-docs? and force-package-building?

(build-scribble-docs?) — boolean?
(build-scribble-docs? b) — void?
b : boolean?

Determines if make-planet-archive builds scribble docs (or not).

(force-package-building?) — boolean?
(force-package-building? b) — void?
b : boolean?

Determines if make-planet-archive signals an error and refuses to continue packaging
for certain, more significant errors.

Defaults to #t, and thus packaging will signal errors.

(download-package pkg-spec)
(or/c (list/c #true path? natural-number/c natural-number/c)
— string?
(1ist/c #false string?))
pkg-spec : pkg-spec?

Downloads the package given by pkg-spec. If the result is a list whose first element is
#true, then the package was downloaded successfully and the rest of the elements of the
list indicate where it was downloaded, and the precise version number.

The other two possible results indicate errors. If the result is a list, then the server is saying
that there is no matching package; otherwise the error is some lower-level problem (perhaps
no networking, etc.)

(pkg->download-url pkg) — url?
pkg : pkg?

Returns the url for a given package.

(get-package-from-cache pkg-spec) — (or/c #false path?)
pkg-spec . pkg-spec?

24

Returns the location of the already downloaded package, if it exists (and #false otherwise).

(lookup-package-by-keys owner
name
major
minor-Io
minor-hi)

(or/c (1ist/c path?
string?
string?

— (listof string?)
exact-nonnegative-integer?
exact-nonnegative-integer?)

#false)
owner : string?
name : string?
major : exact-nonnegative-integer?
minor-lo : exact-nonnegative-integer?
minor-hi : exact-nonnegative-integer?

Looks up and returns a list representation of the package named by the given owner, package
name, major and (range of) minor version(s).

(unpack-planet-archive plt-file output-dir) — any
plt-file : (or/c path? path-string?)
output-dir : (or/c path? path-string?)

Unpacks the PLaneT archive with the given filename, placing its contents into the given
directory (creating that path if necessary).
(remove-pkg owner pkg maj min) — any
owner : string?
pkg : (and/c string? #rx"[.]plt$")
maj : natural-number/c
min : natural-number/c

Removes the specified package from the local planet cache, deleting the installed files.

(erase-pkg owner pkg maj min) — any
owner : string?
pkg : (and/c string? #rx"[.]plt$")
maj : natural-number/c
min : natural-number/c

Like remove-pkg, removes the specified package from the local planet cache and deletes all
of the files corresponding to the package, but also deletes the cached " .plt" file (so it will
be redownloaded later).

25

(display-plt-file-structure plt-file) — any
plt-file : (or/c path-string? path?)

Print a tree representing the file and directory structure of the PLaneT archive .plt file named
by plt-file to (current-output-port).

(display-plt-archived-file plt-file
file-to-print) — any
plt-file : (or/c path-string? path?)
file-to-print : string?

Print the contents of the file named file-to-print within the PLaneT archive .plt file
named by plt-file to (current-output-port).

(unlink-all) — any

Removes the entire linkage table from the system, which will force all modules to relink
themselves to PLaneT modules the next time they run.

(add-hard-link owner pkg maj min dir) — any
owner : string?
pkg : (and/c string? #rx"[.]1plt$")
maj : natural-number/c
min : natural-number/c
dir : path?

Adds a development link between the specified package and the given directory; once a
link is established, PLaneT will treat the cache as having a package with the given owner,
name, and version whose files are located in the given path. This is intended for package
development; users only interested in using PLaneT packages available online should not
need to create any development links.

If the specified package already has a development link, this function first removes the old
link and then adds the new one.

The pkg argument must end with the string " .plt".

(remove-hard-link owner
pkg
maj
min
[#:quiet? quiet?]) — any
owner : string?
pkg : (and/c string? #rx"[.]plt$")

26

maj : natural-number/c
min : natural-number/c
quiet? : boolean? = #false

Removes any hard link that may be associated with the given package.

The pkg argument must end with the string " .plt". The maj and min arguments must be
integers. This procedure signals an error if no such link exists, unless #:quiet? is #true.

(resolve-planet-path spec) — path?
spec : quoted-planet-require-spec?
This is the same function as the one with the same name, exported by planet/resolver.

(path->package-version p)
— (or/c (list/c string? string? natural-number/c natural-number/c) #f)
p : path?

Given a path that corresponds to a PLaneT package (or some part of one), produces a list
corresponding to its name and version, exactly like (this-package-version). Given any
other path, produces #f.

(struct exn:fail:planet exn:fail (message continuation-marks)
#:extra-constructor-name make-exn:fail:planet)
message : string?
continuation-marks : continuation-mark-set?
This exception record is used to report planet-specific exceptions.
(pkg? v) — boolean?

v : any/c

Determines if its argument is a pkg, the representation of an installed package.

5.5 Package Version

Provides bindings for PLaneT developers that automatically produce references to the name
and version of the containing PLaneT package so the same code may be reused across re-
leases without accidentally referring to a different version of the same package.

(require planet/version)

27

(this-package-version)
(this-package-version-symbol)
(this-package-version-symbol suffix-id)
(this-package-version-name)
(this-package-version-owner)
(this-package-version-maj)
(this-package-version-min)

Macros that expand into expressions that evaluate to information about the name, owner,
and version number of the package in which they appear. this-package-version returns
a list consisting of a string naming the package’s owner, a string naming the package, a
number indicating the package major version and a number indicating the package minor
version, or #f if the expression appears outside the context of a package. The macros this-
package-version-name, this-package-version-owner, this-package-version-
maj, and this-package-version-min produce the relevant fields of the package version
list.

this-package-version-symbol produces a symbol suitable for use in planet
module paths. For instance, in version 1:0 of the package package.plt
owned by author, (this-package-version-symbol dir/file) produces
’author/package:1:0/dir/file. In the same package, (this-package-version-
symbol) produces ’author/package:1:0.

(this-package-in suffix-id ...)

A require sub-form that requires modules from within the same PLaneT package version
as the require, as referred to by each suffix-id. For instance, in version 1: 0 of the package
package.plt owned by author, (require (this-package-in dir/file)) is equiv-
alent to (require (planet author/package:1:0/dir/file)).

Note: Use this-package-in when documenting PLaneT packages with Scribble to asso-
ciate each documented binding with the appropriate package.

(make-planet-symbol stx [suffix]) — (or/c #false symbol?)
stx : syntax?
suffix : (or/c #false string?) = #false

Returns a symbol representing a require spec for the location of stx, as a planet package.

(package-version->symbol ver [suffix]) — (or/c #false symbol?)

~ (or/c (list/c string? string? exact-nonnegative-integer? exact-nonnegative-integer?)
#false)

suffix : (or/c #false string?) = #false

ver

Returns a symbol representing the require spec for ver, as a planet package.

28

5.6 Macros and Syntax Objects

(require planet/syntax)
Provides bindings useful for PLaneT-based macros.

(syntax-source-planet-package stx) — (or/c list? #f)
stx : syntax?

(syntax-source-planet-package-owner stx) — (or/c string? #f)
stx : syntax?

(syntax-source-planet-package-name stx) — (or/c string? #f)
stx : syntax?

(syntax-source-planet-package-major stx) — (or/c integer? #f)
stx : syntax?

(syntax-source-planet-package-minor stx) — (or/c integer? #f)
stx : syntax?

(syntax-source-planet-package-symbol stx

[suffix])

— (or/c symbol? #f)
stx : syntax?
suffix : (or/c symbol? #f) = #f

Produce output analogous to this-package-version, this-package-version-
owner, this-package-version-name, this-package-version-maj, this-package-
version-min, and this-package-version-symbol based on the source location of stx.

(make-planet-require-spec stx [suffix]) — syntax?
stx : syntax?
suffix : (or/c symbol? #f) = #f

Produces a require sub-form for the module referred to by suffix in the PLaneT package
containing the source location of stx.

5.7 Scribble Documentation

(require planet/scribble)

Provides bindings for documenting PLaneT packages.

(this-package-in suffix-id ...)

This binding from planet/version is also exported from planet/scribble, as it is use-
ful for for-label imports in Scribble documentation.

29

(racketmod/this-package maybe-file suffix-id datum ...)
(racketmodname/this-package suffix-id)
(racketmodname/this-package (unsyntax suffix-expr))

(racketmodlink/this-package suffix-id pre-content-expr ...)
(defmodule/this-package maybe-req suffix-id maybe-sources pre-
flow ...)
(defmodulelang/this-package suffix-id maybe-sources pre-flow ...)
(defmodulelang/this-package suffix-id

#:module-paths (mod-suffix-id ...) maybe-sources

pre-flow ...)
(defmodulereader/this-package suffix-id maybe-sources pre-flow ...)
(defmodule*/this-package maybe-req (suffix-id ...+)

maybe-sources pre-flow ...)
(defmodulelang*/this-package (suffix-id ...+)

maybe-sources pre-flow ...)
(defmodulelang*/this-package (suffix-id ...+)

#:module-paths (mod-suffix-id ...) maybe-sources

pre-flow ...)
(defmodulereader*/this-package (suffix-id ...+)

maybe-sources pre-flow ...)
(defmodule*/no-declare/this-package maybe-req (suffix-id ...+)
maybe-sources pre-flow ...)
(defmodulelang*/no-declare/this-package (suffix-id ...+)
maybe-sources pre-flow ...)
(defmodulelang*/no-declare/this-package (suffix-id ...+)
#:module-paths (mod-suffix-id ...) maybe-sources pre-flow ...)
(defmodulereader*/no-declare/this-package (suffix-id ...+)
maybe-sources pre-flow ...)
(declare-exporting/this-package suffix-id ... maybe-sources)

Variants of racketmod, racketmodname, racketmodlink, defmodule, defmod-
ulereader, defmodulelang, defmodule*, defmodulelang+*, defmodulereader,
defmodule*/no-declare, defmodulelang*/no—declare, defmodulereader*/no-
declare, and declare-exporting, respectively, that implicitly refer to the PLaneT pack-
age that contains the enclosing module.

The full module name passed to defmodule, etc is formed by appending the suffix-id
or mod-suffix-id to the symbol returned by (this-package-version-symbol), sep-
arated by a / character, and tagging the resulting symbol as a planet module path. As a
special case, if suffix-id is main, the suffix is omitted.

For example, within a package named package.plt by author, version 1:0, the following
are equivalent:

(defmodule/this-package dir/file)

30

= (defmodule (planet author/package:1:0/dir/file))
and

(defmodule/this-package main)
= (defmodule (planet author/package:1:0))

5.8 Terse Status Updates

(require planet/terse-info)

This module provides access to some PLaneT status information. This module is first loaded
by PLaneT in the initial namespace (when PLaneT’s resolver is loaded), but PLaneT uses
dynamic-require to load this module each time it wants to announce information. Simi-
larly, the state of which procedures are registered (via planet-terse-register) is saved
in the namespace, making the listening and information producing namespace-specific.

(planet-terse-register proc) — void?
(-> (or/c ’download ’install ’docs-build ’finish)
proc : string?
any/c)

Registers proc as a function to be called when planet-terse-log is called.

Note that proc is called asynchronously (ie, on some thread other than the one calling
planet-terse-register).

(planet-terse-log id msg) — void?
id : (or/c ’download ’install ’finish)
msg : string?

This function is called by PLaneT to announce when things are happening. See also
planet-terse-set-key.

(planet-terse-set-key key) — void?
key : any/c

This sets a thread cell to the value of key. The value of the thread cell is used as an index
into a table to determine which of the functions passed to planet-terse-register to call
when planet-terse-1log is called.

The table holding the key uses ephemerons and a weak hash table to ensure that when the
key is unreachable, then the procedures passed to planet-terse-log cannot be reached
through the table.

31

5.9 The Cache File’s Path

(require planet/cachepath)

(get-planet-cache-path) — (and/c path? absolute-path?)

Returns the path to the "cache.rktd" file for the planet installation.

32

6 Developing Packages for PLaneT

To put a package on PLaneT, or release an upgrade to an already-existing package:

6.1 Write Your Package

PLaneT can distribute whatever programs you write, but keep these guidelines in mind as
you write:

* Organize your code into modules. Since the PLaneT client is integrated into the re-
quire form, it works best if your code is arranged into modules.

* When one module in your program depends on another, it is best to require it using
the relative-file-name form rather than the planet require form. For instance, if your
program contains files primary.rkt and helper.rkt where primary.rkt requires helper,
use the form

(require "helper.rkt")
instead of

(require (planet "helper.rkt" ("username" "packagename.plt" 1

0)))
in files that will also be a part of the package.

6.1.1 Development Links

To aid development, PLaneT allows users to establish direct associations between a particu-
lar planet package with an arbitrary directory on the filesystem, for instance connecting the
package named by the require line

(require (planet "file.rkt" ("my" "mypackage.plt" 1 0)))
to the directory "/home/myname/svn/mypackages/devel/".

These associations are intended to allow developers to use their own directory structures,
version control systems, and so on while still being able to use the packages they create as
though they were distributed directly by PLaneT. Development links are local to a particular
user and repository (but not to a particular Racket minor revision).

To establish a development link, use the raco planet command-line tool:

raco planet link myname mypackage.plt 1 O ~/svn/mypackages/devel

33

Once you are finished developing a package, you should remove any development links you
have established for it, again using the planet command-line tool:

raco planet unlink myname mypackage.plt 1 O

You may alternately use the functions add-hard-1ink and remove-hard-1link.

6.2 Prepare Your Distribution
6.2.1 Arrange Files Into a Directory

Make sure that all source files, documentation, etc. that you want to be a part of the package
are in a single directory and its subdirectories. Furthermore make sure that nothing else, e.g.
unneeded backup files, is in that directory (with the exception that the meta-subdirectories
and files Git/Subversion/CVS uses are automatically skipped by the packaging tool).

6.2.2 Create Documentation [Optional]

Use Scribble to write documentation for your package. See §5.7 “Scribble Documentation”
for macros that ensure proper bindings and version numbers in documentation for PLaneT
packages, and Scribble: The Racket Documentation Tool for instructions on how to write
Scribble documentation.

When testing your documentation, set up a development link and use
raco setup -P <owner> <package-name> <maj> <min>

with arguments based on the development link to build and test your documentation.

Note: Always use this-package-in in for-label bindings when documenting PLane
T packages, and always use the bindings in planet/scribble rather than scrib-
ble/manual. These macros automatically produce planet-based module paths with ap-
propriate version numbers. Other require subforms and Scribble declarations may refer to
the wrong version of a package, or may not be recognized as part of a PLaneT package at all
when documentation is produced.

6.2.3 Create an "info.rkt" File [Optional]

If you put a file named "info.rkt" in your package’s root directory, the PLaneT system (as
well as the rest of the Racket tool suite) will look in it for descriptive metadata about your
package. The PLaneT system looks for certain names in that file:

34

e The *blurb field: If present, the blurb field should contain a list of XHTML fragments
encoded as x-expressions (see the xml collection for details) that PLaneT will use as
a short description of your project.

e The ’

release-notes field: If present, the release-notes field should contain a list of

XHTML fragments encoded as x-expressions (see the xml collection for details) that
PLaneT will use as a short description of what’s new in this release of your package.

e The

’categories field: If present, the categories field should be a list of symbols

corresponding to the categories under which this package should be listed.

The valid categories are:

’devtools: Development Tools

’net: Networking and Protocols

’media: Graphics and Audio

’xml: XML-Related

’datastructures: Data Structures and Algorithms
?io: Input/Output and Filesystem

’scientific: Mathematical and Scientific
’system: Hardware/Operating System-Specific Tools
’ui: Textual and Graphical User Interface
’metaprogramming: Metaprogramming Tools
’planet: PLaneT-Related

‘misc: Miscellaneous

If you put symbols other than these the categories field, they will be ignored. If you
put no legal symbols in the categories field or do not include this field in your info.rkt
file, your package will be categorized as "Miscellaneous."

e The’

can-be-loaded-with field: If present, the can-be-loaded-with field should be

a quoted datum of one of the following forms:

can-be-loaded-with ::= ’all

| ’none
| (list ’all-except ’VER-SPEC ...)
| (1list ’only ’VER-SPEC ...)

VER-SPEC ::= Nat

| (Nat MINOR)

MINOR ::= Nat

| (Nat Nat)
| (= Nat)
| (+ Nat)
| (- Nat)

where VER-SPEC is a PLaneT package version specification in a manner like using
planet in require.

35

Depending on your package’s behavior, it may or may not be okay for multiple ver-
sions of the same package to be loaded at one time on the entire system — for in-
stance, if your package relies on writing to a particular file and assumes that nothing
else writes to that same file, then multiple versions of the same package being loaded
simultaneously may be a problem. This field allows you to specify whether your pack-
age can be loaded simultaneously with older versions of itself. If its value is ’all,
then the package may be loaded with any older version. If it is *none, then it may not
be loaded with older versions at all. If itis (1ist ’all-except VER-SPEC ...)
then any package except those that match one of the given VER-SPEC forms may be
loaded with this package; if itis (1ist ’only VER-SPEC ...) then only packages
that match one of the given VER-SPEC forms may be loaded with this package.

When checking to see if a package may be loaded, PLaneT compares it to all other
currently-loaded instances of the same package with any version: for each compari-
son, it checks to see if the newer package’s can-be-loaded-with field allows the older
package to be loaded. If all such comparisons succeed then the new package may be
loaded; otherwise PLaneT signals an error.

The default for this field is ’none as a conservative protection measure. For many
packages it is safe to set this field to *all.

The ’homepage field: If present, the URL field should be a string corresponding to a
URL for the package. PLaneT provides this link with the description of your package
on the main PLaneT web page.

The ’primary-file field: If present, the primary-file field should be a either a string
corresponding to the name (without path) of the main Racket source file of your pack-
age, or a list of such strings. The PLaneT web page corresponding to this package will
present all files listed here as interface files for your package; it will give direct links
to each package and a listing of all names provided by the package along with their
contracts (if present).

If you include only a single string, it will be used as the require line printed on your
package’s page. If you include a list of strings, then the first legal file string in the list
will be used.

The ’required-core-version field: If present, the required-core-version field
should be a string with the same syntax as the output of the version function. Defin-
ing this field indicates that PLaneT should only allow users of a version of Racket
equal to or more recent than the version specified by this field. This allows you finer-
grained control of your package’s core-language requirements than its inclusion in
a particular repository; for instance, setting this field to "5.1.3" would cause the
PLaneT server not to serve it to Racket v5.1.2 or older clients.

The ’version field: If present, the version field should be a string that describes the
version number of this code that should be presented to users (e.g., "0.15 alpha").
This field does not override or in any way interact with your package’s package version
number, which is assigned by PLaneT, but may be useful to users.

36

* The ’repositories field: If present, the repositories field should be a list consisting
of some subset of the strings "4.x" and "3xx". The string "4.x" indicates that this
package should be included in the v4.x repository (which contains packages that are
intended to run in Racket and PLT Scheme versions at or above version 4.0, including
the 5.0 series), and the string "3xx" indicates that the package should be included in
the v3xx repository (containing packages intended to run in PLT Scheme versions in
the 3xx series). A single package (and a single version of a package) may be included
in multiple repositories with the same PLaneT version number.

In addition, PLaneT uses the setup-plt installer to install packages on client machines, so
most fields it looks for can be included with their usual effects. In particular, adding a *name
field indicates that the Racket files in the package should be compiled during installation; it
is a good idea to add it.

An example info.rkt file looks like this:

#lang setup/infotab
(define name "My Application")
(define blurb
>("My application runs 607 faster on 207 less peanut "
"butter. It even shows a fancy graphic!"))
(define primary-file "my-app.rkt")
(define categories ’(system xml))

See §9.2 “"info.rkt" File Format” for more information on "info.rkt" files.

6.3 Build a Distribution Archive

1. So that the next step can find for-label documentation in your own package, first
set up a development link (if it is not already set), using

raco planet link <owner> pkg.plt> <maj> <min> <path-to-files>
This step is not necessary if your package has no documentation.
2. Use the planet command-line tool in its archive-creation mode to create a planet
archive:
raco planet create /home/jacobm/my-app/

This will create a planet archive named "my-app.plt" in the current directory whose
contents are the contents of " /home/jacobm/my-app" and all its subdirectories.

Alternately, you can run make-planet-archive with the name of the directory
you’ve prepared as its argument:

(make-planet-archive "/home/jacobm/my-app/")

37

This function will build a packaged version of your directory and return the path to
that package. The path will always be a file named "X.plt", where "X" is the name
of the directory you gave to make-planet-archive, located in that same directory.
3. Remove the development link from the first step (assuming you added one) using
raco planet unlink <owner> <packagename.plt> <maj> <min>
4. Now test that your archive file works as intended using the planet command-line tool
in its install mode:
raco planet fileinject <owner> <path to .plt file> <maj> <min>

installs the specified file into your local PLaneT cache as though it had been down-
loaded from the PLaneT server with the given owner name and major and minor ver-
sions. After you run this command, you can require your package on your local ma-
chine using

(require (planet <file> (<owner> <.plt file name> <maj> <min>)))

to verify everything works.

5. Finally, use
raco planet remove <owner> <.plt file name> <maj> <min>

to remove the test package from your local cache. (Not removing it is safe as long
as you use the same name and version numbers the package will have on the PLaneT
server; otherwise you may experience problems.)

6.4 Determine Your Package’s Backwards-Compatibility

If you are updating a previously-released package, you must decide whether your package is
a backwards-compatible change or not. A rule of thumb is to remember that modules written
to work with the previously-released version of your package should unmodified with the
new package. This means that at a minimum, a backwards compatible update should:

» Contain all the same Racket source files in that the previous version contained in
directories intended for public access

¢ In each public file, provide at least all the bindings that the previous version provided

* For each name provided with a contract (see §7 “Contracts”), provide it with a contract
that is at least as permissive as the previous contract

A backwards-compatible upgrade may, however:

¢ Change any behavior that reasonable consumers of your package would not consider
guaranteed (e.g., by fixing bugs or improving the efficiency of operations).

38

* Remove files in clearly-marked private sections. By convention, the contents of any
directory called "private" are considered private and should not be relied upon by
external users of your package.

* Extend the set of names exported by a module.

Currently these rules are guidelines only, but in the future some or all of them may be en-
forced programmatically. Ultimately, though, no technical device can precisely capture what
it means for a package to be backwards-compatible with a previous version, so you should
use your best judgment.

6.5 Submit Your Package

Go to the central PLaneT package repository web page and click on the link marked "con-
tribute a package / log in" in the upper-right-hand corner. If you have not yet created an
account, then do so on that page by providing your name, a user name, an email address, and
a password and then responding to the confirmation message delivered to the email address
you provide.

Once you have an account, then if this is a new package then upload it using the "Contribute
a package" section in your user account page. If this is a package update then click "update
this package" next to its name in the "Manage your packages" section of your user account
page, then upload the .plt file and indicate on the form whether your update is backwards-
compatible with the prior version or not.

39

http://planet.racket-lang.org/

	1 Using PLaneT
	1.1 Finding a Package
	1.2 Shorthand Syntax
	1.3 Networking troubles
	1.4 Fine-Grained Control Over Package Imports
	1.5 Monitoring PLaneT's progress

	2 The PLaneT Search Order
	2.1 Previous Linkage
	2.2 Acceptable Local Package
	2.3 Acceptable Remote Package
	2.4 Cached Installation Archive

	3 The raco planet Command-Line Tool
	3.1 create
	3.2 install
	3.3 remove
	3.4 show
	3.5 clearlinks
	3.6 fileinject
	3.7 link
	3.8 unlink
	3.9 fetch
	3.10 url
	3.11 open
	3.12 structure
	3.13 print

	4 The blueIdentifierColorplanet Language
	5 Utility Libraries
	5.1 Resolver
	5.1.1 Resolver file locking

	5.2 Client Configuration
	5.3 Package Archives
	5.4 Package Utils
	5.5 Package Version
	5.6 Macros and Syntax Objects
	5.7 Scribble Documentation
	5.8 Terse Status Updates
	5.9 The Cache File's Path

	6 Developing Packages for PLaneT
	6.1 Write Your Package
	6.1.1 Development Links

	6.2 Prepare Your Distribution
	6.2.1 Arrange Files Into a Directory
	6.2.2 Create Documentation [Optional]
	6.2.3 Create an "info.rkt" File [Optional]

	6.3 Build a Distribution Archive
	6.4 Determine Your Package's Backwards-Compatibility
	6.5 Submit Your Package

