
Scribble: The Racket Documentation Tool
Version 5.3.2

Matthew Flatt
and Eli Barzilay

January 31, 2013

Scribble is a collection of tools for creating prose documents—papers, books, library doc-
umentation, etc.—in HTML or PDF (via Latex) form. More generally, Scribble helps you
write programs that are rich in textual content, whether the content is prose to be typeset or
any other form of text to be generated programmatically.

This document is itself written using Scribble. You can see its source at
http://git.racket-lang.org/plt/tree/HEAD:/collects/scribblings/scribble, starting with the
"scribble.scrbl" file.

1

http://git.racket-lang.org/plt/tree/HEAD:/collects/scribblings/scribble

Contents

1 Getting Started 8

1.1 A First Example . 8

1.2 Multiple Sections . 9

1.3 Splitting the Document Source . 9

1.4 Document Styles . 10

1.5 More Functions . 11

1.5.1 Centering . 12

1.5.2 Margin Notes . 12

1.5.3 Itemizations . 13

1.5.4 Tables . 13

1.6 Text Mode vs. Racket Mode for Arguments 13

1.7 @ Syntax Basics . 15

1.8 Decoding Sequences . 17

1.9 Pictures . 18

1.10 Next Steps . 18

2 @ Syntax 19

2.1 The Scribble Syntax at a Glance . 19

2.2 The Command Part . 23

2.3 The Datum Part . 24

2.4 The Body Part . 25

2.4.1 Alternative Body Syntax . 26

2.4.2 Racket Expression Escapes . 26

2.4.3 Comments . 27

2

2.4.4 Spaces, Newlines, and Indentation 28

3 High-Level Scribble API 32

3.1 Base Document Format . 32

3.1.1 Document Structure . 32

3.1.2 Blocks . 35

3.1.3 Text Styles and Content . 37

3.1.4 Spacing . 40

3.1.5 Links . 41

3.1.6 Indexing . 43

3.1.7 Tables of Contents . 44

3.1.8 Tags . 44

3.2 Racket Manual Format . 44

3.3 SIGPLAN Paper Format . 45

3.4 JFP Paper Format . 47

3.5 LNCS Paper Format . 48

4 Scribbling Documentation 50

4.1 Getting Started with Documentation . 50

4.1.1 Setting Up Library Documentation 50

4.1.2 Racket Typesetting and Hyperlinks 51

4.1.3 Section Hyperlinks . 52

4.1.4 Defining Racket Bindings . 53

4.1.5 Showing Racket Examples . 54

4.1.6 Multi-Page Sections . 55

4.2 Style Guide . 56

3

4.2.1 Prose and Terminology . 56

4.2.2 Typesetting Code . 57

4.2.3 Typesetting Prose . 58

4.2.4 Section Titles . 59

4.2.5 Indexing . 59

4.2.6 Examples . 59

4.3 Manual Forms . 60

4.3.1 Typesetting Code . 60

4.3.2 Documenting Modules . 69

4.3.3 Documenting Forms, Functions, Structure Types, and Values 72

4.3.4 Documenting Classes and Interfaces 82

4.3.5 Documenting Signatures . 84

4.3.6 Various String Forms . 85

4.3.7 Links . 86

4.3.8 Indexing . 88

4.3.9 Images . 89

4.3.10 Bibliography . 89

4.3.11 Miscellaneous . 91

4.3.12 Index-Entry Descriptions . 92

4.4 Racket . 94

4.5 Evaluation and Examples . 98

4.6 In-Source Documentation . 102

4.6.1 Source Annotations for Documentation 103

4.6.2 Extracting Documentation from Source 105

4.7 BNF Grammars . 105

4

4.8 Compatibility Libraries . 107

4.8.1 Compatibility Structures And Processing 107

4.8.2 Compatibility Basic Functions . 115

5 Literate Programming 116

5.1 scribble/lp Language . 117

5.2 scribble/lp-include Module . 117

6 Text Generation 118

6.1 Writing Text Files . 118

6.2 Defining Functions and More . 121

6.3 Using Printouts . 123

6.4 Indentation in Preprocessed output . 124

6.5 Using External Files . 128

7 Low-Level Scribble API 132

7.1 Scribble Layers . 132

7.1.1 Typical Composition . 132

7.1.2 Layer Roadmap . 134

7.2 @ Reader Internals . 136

7.2.1 Using the @ Reader . 136

7.2.2 Syntax Properties . 136

7.2.3 Adding @-expressions to a Language 138

7.2.4 Interface . 138

7.3 Structures And Processing . 140

7.3.1 Parts, Flows, Blocks, and Paragraphs 141

7.3.2 Tags . 144

5

7.3.3 Styles . 145

7.3.4 Collected and Resolved Information 145

7.3.5 Structure Reference . 146

7.3.6 HTML Style Properties . 164

7.3.7 Latex Style Properties . 166

7.4 Renderers . 167

7.4.1 Rendering Driver . 167

7.4.2 Base Renderer . 169

7.4.3 Text Renderer . 173

7.4.4 Markdown Renderer . 173

7.4.5 HTML Renderer . 173

7.4.6 Latex Renderer . 174

7.4.7 PDF Renderer . 174

7.4.8 Contract (Blue boxes) Renderer 174

7.5 Decoding Text . 176

7.6 Document Language . 180

7.6.1 scribble/doclang . 181

7.7 Document Reader . 182

7.8 Cross-Reference Utilities . 182

7.9 Tag Utilities . 186

7.10 Extending and Configuring Scribble Output 187

7.10.1 Implementing Styles . 188

7.10.2 Configuring Output . 189

7.10.3 Predefined Latex Macros . 190

7.10.4 Latex Prefix Support . 191

6

8 Running scribble 192

8.1 Extra and Format-Specific Files . 192

8.2 Handling Cross-References . 193

Index 195

7

1 Getting Started

No matter what you want to do with Scribble, it’s best to start by generating a few simple
HTML and/or PDF documents. This chapter steps you through the basics, and it ends in
§1.10 “Next Steps” with goal-specific advice on how to continue.

1.1 A First Example

Create a file "mouse.scrbl" with this content:

#lang scribble/base

@title{On the Cookie-Eating Habits of Mice}

If you give a mouse a cookie, he's going to ask for a

glass of milk.

The first line’s #lang scribble/base indicates that the file implements a Scribble doc-
ument. The document starts in “text mode,” and the @ character escapes to operators like
title, where the curly braces return to text mode for the arguments to the operator. The
rest is document content.

Now run the scribble command-line program, specifying a mode for the kind of document
that you want as output:

• Run

scribble mouse.scrbl

to generate HTML as "mouse.html". You may notice that the apostrophe in “he’s”
turned into a curly apostrophe.

• Run

scribble --htmls mouse.scrbl

to generate HTML as "mouse/index.html". Sub-sections (which we add next) will
appear as separate HTML files in the "mouse" directory.

• Run

scribble --pdf mouse.scrbl

to generate PDF as "mouse.pdf". This will work only if you have pdflatex in-
stalled. If you’d like to see the intermediate Latex, try

scribble --latex mouse.scrbl

to generate "mouse.tex".

8

See §8 “Running scribble” for more information on the scribble command-line tool.

1.2 Multiple Sections

Add more text to "mouse.scrbl" so that it looks like this:

#lang scribble/base

@title{On the Cookie-Eating Habits of Mice}

If you give a mouse a cookie, he's going to ask for a

glass of milk.

@section{The Consequences of Milk}

That ``squeak'' was the mouse asking for milk. Let's

suppose that you give him some in a big glass.

He's a small mouse. The glass is too big---way too

big. So, he'll probably ask you for a straw. You might as

well give it to him.

@section{Not the Last Straw}

For now, to handle the milk moustache, it's enough to give

him a napkin. But it doesn't end there... oh, no.

Now, after the first paragraph of the paper, we have two sub-sections, each created by calling
section to generate a sub-section declaration. The first sub-section has two paragraphs.
The second section, as initiated by the result of the second section call, has a single para-
graph.

Run the scribble command(s) from §1.1 “A First Example” again. You may notice the
curly double-quotes in the output, and the --- turned into an em dash.

1.3 Splitting the Document Source

As a document grows larger, it’s better to split sections into separate source files. The
include-section operation incorporates a document defined by a ".scrbl" file into a
larger document.

To split the example document into multiple files, change "mouse.scrbl" to just

9

#lang scribble/base

@title{On the Cookie-Eating Habits of Mice}

If you give a mouse a cookie, he's going to ask for a

glass of milk.

@include-section["milk.scrbl"]

@include-section["straw.scrbl"]

Create "milk.scrbl" and "straw.scrbl" in the same directory as "mouse.scrbl". In
"milk.scrbl", put

#lang scribble/base

@title{The Consequences of Milk}

That ``squeak'' was the mouse asking for milk...

and in "straw.scrbl", put

#lang scribble/base

@title{Not the Last Straw}

For now, to handle the milk moustache, ...

Notice that the new files both start with #lang, like the original document, and the sections
from the original document become titles in the new documents. Both "milk.scrbl" and
"straw.scrbl" are documents in their own right with their own titles, and they can be in-
dividually rendered using scribble. Running scribble on "mouse.scrbl", meanwhile,
incorporates the smaller documents into one document that is the same as before.

1.4 Document Styles

Scribble currently supports only one form of HTML output. You can replace the
"scribble.css" file for the generated pages, and that’s about it. (We expect to add more
styles in the future.)

For Latex-based PDF output, Scribble includes support for multiple page-layout configu-
rations. The "mouse.scrbl" example so far uses the default Latex style. If you plan on
submitting the paper to a workshop on programming languages, then—well, you probably
need a different topic. But you can start making the current content look right by changing
the first line to

10

#lang scribble/sigplan

If you’re instead working toward Racket library documentation, try changing the first line to

#lang scribble/manual

which produces output with a separate title page, initial content on that page (intended as a
brief orientation to the document), and top-level sections turned into chapters that each start
on a new page. If you have split the document into multiple files, the first line of the main
document file determines the output format.

Using scribble/sigplan or scribble/manual does not change the rendered HTML for
a document—aside from scribble/manual adding a version number—but it changes the
set of bindings available in the document body. For example, with scribble/sigplan, the
introductory text can be marked as an abstract:

#lang scribble/sigplan

@title{On the Cookie-Eating Habits of Mice}

@abstract{If you give a mouse a cookie, he's going to

ask for a glass of milk.}

@section{The Consequences of Milk}

....

When rendered as HTML, the abstract shows up as an inset paragraph. If you try to use
abstract with the scribble/base or scribble/manual language, then you get an error,
because abstract is not defined.

When a document is implemented across multiple files, changing the language of the
main document can set the style for all of the parts, but it does not introduce bindings
into the other part files. For example, if you change the language of "mouse.scrbl"

to scribble/sigplan, then abstract becomes available in "mouse.scrbl" but not in
"milk.scrbl" or "straw.scrbl". In other words, operator names are lexically scoped.

1.5 More Functions

The scribble/base language provides a collection of basic operations (and The scrib-

ble/sigplan and scribble/manual are supersets of scribble/base). Many of the op-
erations are style variations that you can apply to text:

11

He's a @smaller{small mouse}. The glass is too

@larger{big}---@bold{way @larger{too @larger{big}}}. So, he'll

@italic{probably} ask you for a straw.

which renders as

He’s a small mouse. The glass is too big—way too big. So, he’ll probably ask
you for a straw.

As you would expect, calls to functions like smaller, larger, and bold can be nested in
other calls. They can also be nested within calls to title or section:

@section{@italic{Not} the Last Straw}

1.5.1 Centering

The centered operation centers a flow of text:

If a mouse eats all your cookies, put up a sign that says

@centered{

@bold{Cookies Wanted}

@italic{Chocolate chip preferred!}

}

and see if anyone brings you more.

which renders as

If a mouse eats all your cookies, put up a sign that says

Cookies Wanted
Chocolate chip preferred!

and see if anyone brings you more.

1.5.2 Margin Notes

The margin-note operation is used in a similar way, but the rendered text is moved to the
margins. If you use

margin-note, then
the content shows
up over here.

12

1.5.3 Itemizations

The itemlist operation creates a sequence of bulleted text, where the item operation
groups text to appear in a single bullet. The itemlist operation is different from the oth-
ers that we have seen before, because it only accepts values produced by item instead of
arbitrary text. This difference is reflected in the use of [...] for the arguments to itemlist

instead of {...}:

@centered{@bold{Notice to Mice}}

@itemlist[@item{We have cookies for you.}

@item{If you want to eat a cookie,

you must bring your own straw.}]

which renders as

Notice to Mice

• We have cookies for you.

• If you want to eat a cookie, you must bring your own straw.

1.5.4 Tables

The tabular function takes a list of lists to organize into a two-dimensional table. By
default, no spacing is added between columns, so supply a #:sep argument to acts as a
column separator. For example,

@tabular[#:sep @hspace[1]

(list (list @bold{Animal} @bold{Food})

(list "mouse" "cookie")

(list "moose" "muffin"))]

else

Animal Food
mouse cookie
moose muffin

1.6 Text Mode vs. Racket Mode for Arguments

When [...] surrounds the arguments of an operation, the argument expressions are in Racket
mode rather than text mode. Even in Racket mode, @ can be used to apply operations; once

13

the @ syntax is enabled through a language like scribble/base (as opposed to racket),
it behaves the same in both Racket mode and text mode.

One advantage of using Racket mode for the arguments to itemlist is that we can pass
a keyword-tagged optional argument to itemlist. In particular, if you want a list with
numbers instead of bullets, supply the 'ordered style to itemlist using the #:style

keyword:

@itemlist[#:style 'ordered

@item{Eat cookie.}

@item{Drink milk.}

@item{Wipe mouth.}

@item{...}]

An operation doesn’t care whether it’s used with [...] or {...}. Roughly, {...} forms an argu-
ment that is a string. (Only roughly, though. Newlines or uses of @ within {...} complicate
the picture, and we’ll get back to that soon.) So,

@italic{Yummy!}

is equivalent to

@italic["Yummy!"]

which is equivalent to the Racket expression

(italic "Yummy!")

These equivalences explain why Scribble functions are documented in Racket notation. If
you’re reading this in HTML format, you can click italic above to access its documen-
tation. The documentation won’t completely make sense, yet, but it will by the end of this
chapter.

What if you want to provide arguments in text mode, but you also want to supply other
optional arguments? You can use both [...] and {...} for an operation, as long as the [...]
is first, and as long as no character separate the closing] from the opening {. For example,
calling italic is the same as using elem with the 'italic style:

@elem[#:style 'italic]{Yummy!}

You can also omit both [...] and {...}. In that case, the Racket expression after @ is used
directly instead of applied as an operation. For example,

1 plus 2 is @(number->string (+ 1 2)).

14

renders as

1 plus 2 is 3.

The call to number->string is needed because a naked number is not valid as document
content.

1.7 @ Syntax Basics

The @ notation provided by Scribble is just another way of writing Racket expressions.
Scribble documents could be constructed using normal Racket notation, without using @ at
all, but that would be inconvenient for most purposes. The @ notation makes dealing with
textual content much easier.

Whether in text mode or Racket mode, @ in a document provides an escape to Racket mode.
The basic syntax of @ is

@ 〈cmd〉 [〈datum〉*] { 〈text-body〉 }

where all three parts after @ are optional, but at least one must be present. No spaces are
allowed between

• @ and 〈cmd〉, [, or {

• 〈cmd〉 and [or {; or

•] and {.

A 〈cmd〉 or 〈datum〉 is normal Racket notation, while a 〈text-body〉 is itself in text mode. A
〈cmd〉 obviously must not start with [or {, even though Racket forms could otherwise start
with those characters.

The expansion of just @〈cmd〉 into Racket code is

〈cmd〉

When either [] or { } are used, the expansion is

(〈cmd〉 〈datum〉* 〈parsed-body〉*)

where 〈parsed-body〉* is the parse result of the 〈text-body〉. The 〈parsed-body〉* part often
turns out to be a sequence of Racket strings.

15

In practice, the 〈cmd〉 is normally a Racket identifier that is bound to a procedure or syntactic
form. If the procedure or form expects further text to typeset, then {...} supplies the text. If
the form expects other data, typically [...] is used to surround Racket arguments, instead.
Even if an operation’s argument is a string, if the string is not used as content text (but instead
used as, say, a hyperlink label), then the string is typically provided through [...] instead of
{...}. Sometimes, both [...] and {...} are used, where the former surround Racket arguments
that precede text to typeset. Finally, if a form is a purely Racket-level form with not typeset
result, such as a require to import more operations, then typically just @ is used.

For example the text-mode stream

@(require scriblib/figure)

@section[#:tag "poetry"]{Of Mice and Cookies}

See @secref["milk"].

@section[#:tag "milk"]{@italic{Important} Milk Supplies}

@figure["straw" @elem{A straw}]{@image["straw.png"]}

is equivalent to the Racket-mode sequence

(require scriblib/figure) "\n"

"\n"

(section #:tag "poetry" "Of Mice and Cookies") "\n"

"See " (secref "milk") "." "\n"

"\n"

(section #:tag "milk" (italic "Important") " Milk Supplies") "\n"

(figure "straw" (elem "A straw") (image "straw.png")) "\n"

Besides showing how different argument conventions are used for different operations, the
above example illustrates how whitespace is preserved in the Racket form of a text-mode
stream—including newlines preserved as their own strings. Notice how the second section

gets two arguments for its content, since the argument content for section in the source
stream includes both the use of an operator and additional text. When an operation like
section or italic accepts content to typeset, it normally accepts an arbitrary number of
arguments that together form the content.

In addition to its role for command, a @ can be followed by ; to start a comment. If the
character after ; is {, then the comment runs until a matching }, otherwise the comment
runs until the end-of-line:

@;{ 〈comment〉 }

@; 〈line-comment〉

For more information on the syntax of @, see §2 “@ Syntax”. The full syntax includes a
few more details, such as brackets like |{...}| for text-mode arguments while disabling @

between the brackets.

16

1.8 Decoding Sequences

In a document that starts #lang scribble/base, the top level is a text-mode stream, just
like the 〈text-body〉 in a @ form. As illustrated in the previous section, such a top-level se-
quence corresponds to a mixture of Racket-mode strings and operation applications. There’s
an implicit operation, decode, that wraps the whole document to consume this mixture of
strings and other values and turn them into a document description.

The decode operation implements flow decoding, which takes a document stream and breaks
it up into sections and paragraphs. Blank lines delimit paragraphs, and the results of oper-
ations like title and section generate “here’s the title” or “a new section starts here”
declarations that are recognized by decode.

A different but related content decoding takes place within a paragraph or section title. Con-
tent decoding is responsible for converting --- to an em dash or for converting " and ' to
suitable curly quotes.

The decoding process for document’s stream is ultimately determined by the #lang line that
starts the document. The scribble/base, scribble/manual, and scribble/sigplan

languages all use the same decode operation. The scribble/text language, however,
acts more like a plain-text generator and preprocessor, and it does not perform any such
decoding rules. (For more on scribble/text, see §6 “Text Generation”.) More precisely,

languages like
scribble/base

apply decode only
after lifting out all
definitions and
imports from the
document stream.

When the flow decoder is used, after it breaks the input stream into paragraphs, it applies
content decoding to strings within the paragraph. When content is wrapped with an opera-
tion, however, content decoding does not apply automatically. An operation is responsible
for calling a content or flow decoder as it sees fit. Most operations call the decoder; for
example, italic, bold, smaller, etc., all decode their arguments. Similarly, title and
section decode the given content for the title or section name. The literal and verbatim
operators, however, do not decode the given strings. For example,

@verbatim{---}

renders as

Don’t confuse decoding with the expansion of @ notation. The source form

@verbatim{@(number->string (+ 1 2))}

renders as

3

17

because the source is equivalent to

(verbatim (number->string (+ 1 2)))

where (number->string (+ 1 2)) is evaluated to produce the argument to verbatim.
The |{...}| style of brackets is often used with verbatim, because |{...}| disables @ no-
tation for arguments. For example,

@verbatim|{@(number->string (+ 1 2))}|

renders as

@(number->string (+ 1 2))

1.9 Pictures

Any value that is convertable to an image can be used directly within a Scribble document.
Functions from the slideshow/pict and 2htdp/image libraries, for example, generate
images. For example,

@(require slideshow/pict)

This cookie has lost its chocolate chips:

@(colorize (filled-ellipse 40 40) "beige").

renders as

This cookie has lost its chocolate chips: .

1.10 Next Steps

If your immediate goal is to document a Racket library or write literate programs, skip to
§4.1 “Getting Started with Documentation”, and then go back to §2 “@ Syntax” and other
chapters.

If you are more interested in producing documents unrelated to Racket, continue with §2 “@
Syntax” and then §3 “High-Level Scribble API”. Move on to §7 “Low-Level Scribble API”
when you need more power.

If you are interested in text generation and preprocessing, continue with §2 “@ Syntax”, but
then skip to §6 “Text Generation”.

18

2 @ Syntax

The Scribble @ notation is designed to be a convenient facility for free-form text in Racket
code, where “@” was chosen as one of the least-used characters in existing Racket code. An
@-expression is simply an S-expression in disguise.

Typically, @ notation is enabled through scribble/base or similar languages, but you can
also add @ notation to an S-expression-based language using the at-exp meta-language.
For example,

#lang at-exp racket

(define v '@op{str})

is equivalent to

#lang racket

(define v '(op "str"))

Using #lang at-exp racket is probably the easiest way to try the examples in this chap-
ter.

2.1 The Scribble Syntax at a Glance

To review §1.7 “@ Syntax Basics”, the concrete syntax of @-forms is roughly

@ 〈cmd〉 [〈datum〉*] { 〈text-body〉* }

where all three parts after @ are optional, but at least one should be present. (Spaces are not
allowed between the three parts.) Roughly, a form matching the above grammar is read as

(〈cmd〉 〈datum〉* 〈parsed-body〉*)

where 〈parsed-body〉 is the translation of each 〈text-body〉 in the input. Thus, the initial
〈cmd〉 determines the Racket code that the input is translated into. The common case is
when 〈cmd〉 is a Racket identifier, which reads as a plain Racket form, with datum arguments
and/or string arguments.

Here is one example:

@foo{blah blah blah} reads as (foo "blah blah blah")

The example shows how an input syntax is read as Racket syntax, not what it evaluates to.
If you want to see the translation of an example into S-expression form, add a quote in front
of it in a #lang at-exp racket module. For example, running

19

#lang at-exp racket

'@foo{blah blah blah}

in DrRacket prints the output

(foo "blah blah blah")

while omitting the quote

#lang at-exp racket

@foo{blah blah blah}

triggers a syntax error because foo is not bound, and

#lang at-exp racket

(define (foo str) (printf "He wrote ∼s.\n" str))

@foo{blah blah blah}

prints the output

He wrote "blah blah blah".

Here are more examples of @-forms:

@foo{blah "blah" (`blah'?)} reads as (foo "blah \"blah\" (`blah'?)")

@foo[1 2]{3 4} reads as (foo 1 2 "3 4")

@foo[1 2 3 4] reads as (foo 1 2 3 4)

@foo[#:width 2]{blah blah} reads as (foo #:width 2 "blah blah")

@foo{blah blah

yada yada}
reads as

(foo "blah blah" "\n"

"yada yada")

@foo{

blah blah

yada yada

}

reads as
(foo

"blah blah" "\n"

"yada yada")

As seen in the last example, multiple lines and the newlines that separate them are parsed to
multiple Racket strings. More generally, a 〈text-body〉 is made of text, newlines, and nested
@-forms, where the syntax for @-forms is the same whether it’s in a 〈text-body〉 context as
in a Racket context. A 〈text-body〉 that isn’t an @-form is converted to a string expression for
its 〈parsed-body〉; newlines and following indentations are converted to "\n" and all-space
string expressions.

20

@foo{bar @baz{3}

blah}
reads as

(foo "bar " (baz "3") "\n"

"blah")

@foo{@b{@u[3] @u{4}}

blah}
reads as

(foo (b (u 3) " " (u "4")) "\n"

"blah")

@C{while (*(p++))

*p = '\n';}
reads as

(C "while (*(p++))" "\n" " "

"*p = '\\n';")

The command part of an @-form is optional as well. In that case, the @ form is read as a
list, which usually counts as a function application, but it also useful when quoted with the
usual Racket quote:

@{blah blah} reads as ("blah blah")

@{blah @[3]} reads as ("blah " (3))

'@{foo

bar

baz}

reads as
'("foo" "\n"

"bar" "\n"

"baz")

Finally, we can also drop the datum and text parts, which leaves us with only the command—
which is read as is, not within a parenthesized form. This is not useful when reading Racket
code, but it can be used inside a text block to escape a Racket identifier. A vertical bar (|)
can be used to delimit the escaped identifier when needed.

@foo reads as foo

@{blah @foo blah} reads as ("blah " foo " blah")

@{blah @foo: blah} reads as ("blah " foo: " blah")

@{blah @|foo|: blah} reads as ("blah " foo ": blah")

Actually, the command part can be any Racket expression (that does not start with [, {, or |),
which is particularly useful with such escapes since they can be used with any expression.

@foo{(+ 1 2) -> @(+ 1 2)!} reads as (foo "(+ 1 2) -> " (+ 1 2) "!")

@foo{A @"string" escape} reads as (foo "A string escape")

Note that an escaped Racket string is merged with the surrounding text as a special case.
This is useful if you want to use the special characters in your string, but escaping braces are
not necessary if they are balanced.

@foo{eli@"@"barzilay.org} reads as (foo "eli@barzilay.org")

@foo{A @"{" begins a block} reads as (foo "A { begins a block")

21

@C{while (*(p++)) {

*p = '\n';

}}

reads as
(C "while (*(p++)) {" "\n" " "

"*p = '\\n';" "\n"

"}")

In some cases, a text contains many literal @s, which can be cumbersome to quote individu-
ally. For such case, braces have an alternative syntax: A block of text can begin with a “|{”
and terminated accordingly with a “}|”. Furthermore, any nested @ forms must begin with
a “|@”.

@foo|{bar}@{baz}| reads as (foo "bar}@{baz")

@foo|{bar |@x{X} baz}| reads as (foo "bar " (x "X") " baz")

@foo|{bar |@x|{@}| baz}| reads as (foo "bar " (x "@") " baz")

In cases when even this is not convenient enough, punctuation characters can be added be-
tween the | and the braces and the @ in nested forms. (The punctuation is mirrored for
parentheses and <>s.) With this extension, Scribble syntax can be used as a “here string”
replacement.

@foo|--{bar}@|{baz}--| reads as (foo "bar}@|{baz")

@foo|<<{bar}@|{baz}>>| reads as (foo "bar}@|{baz")

On the flip side of this is, how can an @ sign be used in Racket code? This is almost never
an issue, because Racket strings and characters are still read the same, and @ is set as a
non-terminating reader macro so it can be used in Racket identifiers anywhere except in the
first character of an identifier. When @ must appear as the first character of an identifier,
you must quote the identifier just like other non-standard characters in normal S-expression
syntax: with a backslash or with vertical bars.

(define \@email "foo@bar.com") reads as (define @email "foo@bar.com")

(define |@atchar| #\@) reads as (define @atchar #\@)

Note that spaces are not allowed before a [or a {, or they will be part of the following text
(or Racket code). (More on using braces in body texts below.)

@foo{bar @baz[2 3] {4 5}} reads as (foo "bar " (baz 2 3) " {4 5}")

Finally, remember that the Scribble is just an alternate for S-expressions. Identifiers still
get their meaning, as in any Racket code, through the lexical context in which they appear.
Specifically, when the above @-form appears in a Racket expression context, the lexical
environment must provide bindings for foo as a procedure or a macro; it can be defined,
required, or bound locally (with let, for example).

> (let* ([formatter (lambda (fmt)

(lambda args (format fmt (apply string-append args))))]

[bf (formatter "*∼a*")]
[it (formatter "/∼a/")]
[ul (formatter "_∼a_")]
[text string-append])

22

@text{@it{Note}: @bf{This is @ul{not} a pipe}.})

"/Note/: *This is _not_ a pipe*."

2.2 The Command Part

Besides being a Racket identifier, the 〈cmd〉 part of an @-form can have Racket punctuation
prefixes, which will end up wrapping the whole expression.

@`',@foo{blah} reads as `',@(foo "blah")

@#`#'#,@foo{blah} reads as #`#'#,@(foo "blah")

When writing Racket code, this means that @`',@foo{blah} is exactly the same as
`@',@foo{blah} and `',@@foo{blah}, but unlike the latter two, the first construct can
appear in body texts with the same meaning, whereas the other two would not work (see
below).

After the optional punctuation prefix, the 〈cmd〉 itself is not limited to identifiers; it can be
any Racket expression.

@(lambda (x) x){blah} reads as ((lambda (x) x) "blah")

@`(unquote foo){blah} reads as `(,foo "blah")

In addition, the command can be omitted altogether, which will omit it from the translation,
resulting in an S-expression that usually contains, say, just strings:

@{foo bar

baz}
reads as

("foo bar" "\n"

"baz")

@'{foo bar

baz}
reads as

'("foo bar" "\n"

"baz")

If the command part begins with a ; (with no newline between the @ and the ;), then the
construct is a comment. There are two comment forms, one for arbitrary-text and possibly
nested comments, and another one for line comments:

@;{ 〈any〉* }

@; 〈anything-else-without-newline〉*

In the first form, the commented body must still parse correctly; see the description of the
body syntax below. In the second form, all text from the @; to the end of the line and all
following spaces (or tabs) are part of the comment (similar to % comments in TeX).

@foo{bar @; comment

baz@;

blah}

reads as (foo "bar bazblah")

23

Tip: if you use an editor in some Scheme mode without support for @-forms, balanced
comments can be confusing, since the open brace looks commented out, and the closing one
isn’t. In such cases it is useful to “comment” out the closing brace too:

@;{

...

;}

so the editor does not treat the file as having unbalanced parentheses.

If only the 〈cmd〉 part of an @-form is specified, then the result is the command part only,
without an extra set of parenthesis. This makes it suitable for Racket escapes in body texts.
(More on this below, in the description of the body part.)

@foo{x @y z} reads as (foo "x " y " z")

@foo{x @(* y 2) z} reads as (foo "x " (* y 2) " z")

@{@foo bar} reads as (foo " bar")

Finally, note that there are currently no special rules for using @ in the command itself, which
can lead to things like:

@@foo{bar}{baz} reads as ((foo "bar") "baz")

2.3 The Datum Part

The datum part can contains arbitrary Racket expressions, which are simply stacked before
the body text arguments:

@foo[1 (* 2 3)]{bar} reads as (foo 1 (* 2 3) "bar")

@foo[@bar{...}]{blah} reads as (foo (bar "...") "blah")

The body part can still be omitted, which is essentially an alternative syntax for plain (non-
textual) S-expressions:

@foo[bar] reads as (foo bar)

@foo{bar @f[x] baz} reads as (foo "bar " (f x) " baz")

The datum part can be empty, which makes no difference, except when the body is omitted.
It is more common, however, to use an empty body for the same purpose.

@foo[]{bar} reads as (foo "bar")

@foo[] reads as (foo)

@foo reads as foo

@foo{} reads as (foo)

The most common use of the datum part is for Racket forms that expect keyword-value
arguments that precede the body of text arguments.

24

@foo[#:style 'big]{bar} reads as (foo #:style 'big "bar")

2.4 The Body Part

The syntax of the body part is intended to be as convenient as possible for free text. It can
contain almost any text—the only characters with special meaning is @ for sub-@-forms,
and } for the end of the text. In addition, a { is allowed as part of the text, and it makes the
matching } be part of the text too—so balanced braces are valid text.

@foo{f{o}o} reads as (foo "f{o}o")

@foo{{{}}{}} reads as (foo "{{}}{}")

As described above, the text turns to a sequence of string arguments for the resulting form.
Spaces at the beginning and end of lines are discarded, and newlines turn to individual "\n"
strings (i.e., they are not merged with other body parts); see also the information about
newlines and indentation below. Spaces are not discarded if they appear after the open {

(before the closing }) when there is also text that follows (precedes) it; specifically, they are
preserved in a single-line body.

@foo{bar} reads as (foo "bar")

@foo{ bar } reads as (foo " bar ")

@foo[1]{ bar } reads as (foo 1 " bar ")

If @ appears in a body, then it is interpreted as Racket code, which means that the @-reader
is applied recursively, and the resulting syntax appears as part of the S-expression, among
other string contents.

@foo{a @bar{b} c} reads as (foo "a " (bar "b") " c")

If the nested @ construct has only a command—no body or datum parts—it will not appear
in a subform. Given that the command part can be any Racket expression, this makes @ a
general escape to arbitrary Racket code.

@foo{a @bar c} reads as (foo "a " bar " c")

@foo{a @(bar 2) c} reads as (foo "a " (bar 2) " c")

This is particularly useful with strings, which can be used to include arbitrary text.

@foo{A @"}" marks the end} reads as (foo "A } marks the end")

Note that the escaped string is (intentionally) merged with the rest of the text. This works
for @ too:

@foo{The prefix: @"@".} reads as (foo "The prefix: @.")

@foo{@"@x{y}" --> (x "y")} reads as (foo "@x{y} --> (x \"y\")")

25

2.4.1 Alternative Body Syntax

In addition to the above, there is an alternative syntax for the body, one that specifies a new
marker for its end: use |{ for the opening marker to have the text terminated by a }|.

@foo|{...}| reads as (foo "...")

@foo|{"}" follows "{"}| reads as (foo "\"}\" follows \"{\"")

@foo|{Nesting |{is}| ok}| reads as (foo "Nesting |{is}| ok")

This applies to sub-@-forms too—the @ must be prefixed with a |:

@foo|{Maze

|@bar{is}

Life!}|

reads as
(foo "Maze" "\n"

(bar "is") "\n"

"Life!")

@t|{In |@i|{sub|@"@"s}| too}| reads as (t "In " (i "sub@s") " too")

Note that the subform uses its own delimiters, {...} or |{...}|. This means that you
can copy and paste Scribble text with @-forms freely, just prefix the @ if the immediate
surrounding text has a prefix.

For even better control, you can add characters in the opening delimiter, between the | and
the {. Characters that are put there (non alphanumeric ASCII characters only, excluding {

and @) should also be used for sub-@-forms, and the end-of-body marker should have these
characters in reverse order with paren-like characters ((, [, <) mirrored.

@foo|<<<{@x{foo} |@{bar}|.}>>>| reads as (foo "@x{foo} |@{bar}|.")

@foo|!!{X |!!@b{Y}...}!!| reads as (foo "X " (b "Y") "...")

Finally, remember that you can use an expression escape with a Racket string for confusing
situations. This works well when you only need to quote short pieces, and the above works
well when you have larger multi-line body texts.

2.4.2 Racket Expression Escapes

In some cases, you may want to use a Racket identifier (or a number or a boolean etc.) in a
position that touches the following text; in these situations you should surround the escaped
Racket expression by a pair of | characters. The text inside the bars is parsed as a Racket
expression.

@foo{foo@bar.} reads as (foo "foo" bar.)

@foo{foo@|bar|.} reads as (foo "foo" bar ".")

@foo{foo@3.} reads as (foo "foo" 3.0)

@foo{foo@|3|.} reads as (foo "foo" 3 ".")

This form is a generic Racket expression escape, there is no body text or datum part when

26

you use this form.

@foo{foo@|(f 1)|{bar}} reads as (foo "foo" (f 1) "{bar}")

@foo{foo@|bar|[1]{baz}} reads as (foo "foo" bar "[1]{baz}")

This works for string expressions too, but note that unlike the above, the string is (intention-
ally) not merged with the rest of the text:

@foo{x@"y"z} reads as (foo "xyz")

@foo{x@|"y"|z} reads as (foo "x" "y" "z")

Expression escapes also work with any number of expressions,

@foo{x@|1 (+ 2 3) 4|y} reads as (foo "x" 1 (+ 2 3) 4 "y")

@foo{x@|*

*|y}
reads as

(foo "x" *

* "y")

It seems that @|| has no purpose—but remember that these escapes are never merged with
the surrounding text, which can be useful when you want to control the sub expressions in
the form.

@foo{Alice@||Bob@|

|Carol}
reads as

(foo "Alice" "Bob"

"Carol")

Note that @|{...}| can be parsed as either an escape expression or as the Racket command
part of a @-form. The latter is used in this case (since there is little point in Racket code that
uses braces.

@|{blah}| reads as ("blah")

2.4.3 Comments

As noted above, there are two kinds of Scribble comments: @;{...} is a (nestable) com-
ment for a whole body of text (following the same rules for @-forms), and @;... is a
line-comment.

@foo{First line@;{there is still a

newline here;}

Second line}

reads as
(foo "First line"

"\n"

"Second line")

One useful property of line-comments is that they continue to the end of the line and all
following spaces (or tabs). Using this, you can get further control of the subforms.

@foo{A long @;

single-@;

string arg.}

reads as (foo "A long single-string arg.")

27

Note how this is different from using @||s in that strings around it are not merged.

2.4.4 Spaces, Newlines, and Indentation

The Scribble syntax treats spaces and newlines in a special way is meant to be sensible for
dealing with text. As mentioned above, spaces at the beginning and end of body lines are
discarded, except for spaces between a { and text, or between text and a }.

@foo{bar} reads as (foo "bar")

@foo{ bar } reads as (foo " bar ")

@foo{ bar

baz }
reads as

(foo " bar" "\n"

"baz ")

A single newline that follows an open brace or precedes a closing brace is discarded, unless
there are only newlines in the body; other newlines are read as a "\n" string

@foo{bar

}
reads as (foo "bar")

@foo{

bar

}

reads as
(foo

"bar")

@foo{

bar

}

reads as
(foo

"\n"

"bar" "\n")

@foo{

bar

baz

}

reads as

(foo

"bar" "\n"

"\n"

"baz")

@foo{

}
reads as (foo "\n")

@foo{

}

reads as
(foo "\n"

"\n")

28

@foo{ bar

baz }
reads as

(foo " bar" "\n"

"baz ")

Spaces at the beginning of body lines do not appear in the resulting S-expressions, but the
column of each line is noticed, and all-space indentation strings are added so the result has
the same indentation. A indentation string is added to each line according to its distance
from the leftmost syntax object (except for empty lines). (Note: if you try these examples on
a Racket REPL, you should be aware that the reader does not know about the “> ” prompt.)

@foo{

bar

baz

blah

}

reads as

(foo

"bar" "\n"

"baz" "\n"

"blah")

@foo{

begin

x++;

end}

reads as

(foo

"begin" "\n" " "

"x++;" "\n"

"end")

@foo{

a

b

c}

reads as

(foo " "

"a" "\n" " "

"b" "\n"

"c")

If the first string came from the opening { line, it is not prepended with an indentation
(but it can affect the leftmost syntax object used for indentation). This makes sense when
formatting structured code as well as text (see the last example in the following block).

@foo{bar

baz

bbb}

reads as
(foo "bar" "\n" " "

"baz" "\n"

"bbb")

@foo{ bar

baz

bbb}

reads as
(foo " bar" "\n" " "

"baz" "\n" " "

"bbb")

@foo{bar

baz

bbb}

reads as
(foo "bar" "\n"

"baz" "\n"

"bbb")

@foo{ bar

baz

bbb}

reads as
(foo " bar" "\n"

"baz" "\n"

"bbb")

29

@foo{ bar

baz

bbb}

reads as
(foo " bar" "\n"

"baz" "\n" " "

"bbb")

@text{Some @b{bold

text}, and

more text.}

reads as
(text "Some " (b "bold" "\n"

"text")", and" "\n"

"more text.")

Note that each @-form is parsed to an S-expression that has its own indentation. This means
that Scribble source can be indented like code, but if indentation matters then you may need
to apply indentation of the outer item to all lines of the inner one. For example, in

@code{

begin

i = 1, r = 1

@bold{while i < n do

r *= i++

done}

end

}

a formatter will need to apply the 2-space indentation to the rendering of the bold body.

Note that to get a first-line text to be counted as a leftmost line, line and column accounting
should be on for the input port (use-at-readtable turns them on for the current input
port). Without this,

@foo{x1

x2

x3}

will not have 2-space indentations in the parsed S-expression if source accounting is not on,
but

@foo{x1

x2

x3}

will (due to the last line). Pay attention to this, as it can be a problem with Racket code, for
example:

@code{(define (foo x)

(+ x 1))}

For rare situations where spaces at the beginning (or end) of lines matter, you can begin (or
end) a line with a @||.

30

@foo{

@|| bar @||

@|| baz}

reads as
(foo

" bar " "\n"

" baz")

31

3 High-Level Scribble API

3.1 Base Document Format

#lang scribble/base

The scribble/base language provides functions and forms that can be used from code
written either in Racket or with @ expressions. It essentially extends racket/base, except
that top-level forms within a module using the scribble/base language are treated as
document content (like scribble/doclang).

The scribble/base name can also be used as a library with require, in which case it
provides only the bindings defined in this section, and it also does not set the reader or set
the default rendering format to the Racket manual format.

Functions provided by this library, such as title and italic, might be called from Racket
as

(title #:tag "how-to"

"How to Design " (italic "Great") " Programs")

They can also be called with @ notation as

@title[#:tag "how-to"]{How to Design @italic{Great} Programs}

Although the procedures are mostly design to be used from @ mode, they are easier to
document in Racket mode (partly because we have scribble/manual).

3.1.1 Document Structure

(title [#:tag tag

#:tag-prefix tag-prefix

#:style style

#:version vers

#:date date]
pre-content ...+) → title-decl?

tag : (or/c #f string? (listof string?)) = #f

tag-prefix : (or/c #f string? module-path?) = #f

style : (or/c style? #f string? symbol? (listof symbol?)) = #f

vers : (or/c string? #f) = #f

date : (or/c string? #f) = #f

pre-content : pre-content?

Generates a title-decl to be picked up by decode or decode-part. The decoded pre-

32

content (i.e., parsed with decode-content) supplies the title content. If tag is #f, a
tag string is generated automatically from the content. The tag string is combined with the
symbol 'part to form the full tag.

The style argument can be a style structure, or it can be one of the following: a #f that
corresponds to a “plain” style, a string that is used as a style name, a symbol that is used as a
style property, or a list of symbols to be used as style properties. For information on styles,
see part. For example, a style of 'toc causes sub-sections to be generated as separate pages
in multi-page HTML output.

The tag-prefix argument is propagated to the generated structure (see §7.3.2 “Tags”).
If tag-prefix is a module path, it is converted to a string using module-path-prefix-

>string.

The vers argument is propagated to the title-decl structure. Use "" as vers to suppress
version rendering in the output.

The date argument is propagated to the title-decl structure via a document-date style
property. Use "" as date to suppress date rendering in Latex output.

The section title is automatically indexed by decode-part. For the index key, leading
whitespace and a leading “A”, “An”, or “The” (followed by more whitespace) is removed.

(section [#:tag tag

#:tag-prefix tag-prefix

#:style style]
pre-content ...+) → part-start?

tag : (or/c #f string? (listof string?)) = #f

tag-prefix : (or/c #f string? module-path?) = #f

style : (or/c style? #f string? symbol? (listof symbol?)) = #f

pre-content : pre-content?

Like title, but generates a part-start of depth 0 to be by decode or decode-part.

(subsection [#:tag tag

#:tag-prefix tag-prefix

#:style style]
pre-content ...+) → part-start?

tag : (or/c #f string? (listof string?)) = #f

tag-prefix : (or/c #f string? module-path?) = #f

style : (or/c style? #f string? symbol? (listof symbol?)) = #f

pre-content : pre-content?

Like section, but generates a part-start of depth 1.

33

(subsubsection [#:tag tag

#:tag-prefix tag-prefix

#:style style]
pre-content ...+) → part-start?

tag : (or/c #f string? (listof string?)) = #f

tag-prefix : (or/c #f string? module-path?) = #f

style : (or/c style? #f string? symbol? (listof symbol?)) = #f

pre-content : pre-content?

Like section, but generates a part-start of depth 2.

(subsubsub*section [#:tag tag

#:tag-prefix tag-prefix

#:style style]
pre-content ...+) → paragraph?

tag : (or/c #f string? (listof string?)) = #f

tag-prefix : (or/c #f string? module-path?) = #f

style : (or/c style? #f string? symbol? (listof symbol?)) = #f

pre-content : pre-content?

Similar to section, but merely generates a paragraph that looks like an unnumbered section
heading (for when the nesting gets too deep to include in a table of contents).

(include-section module-path)

Requires module-path and returns its doc export (without making any imports visible to
the enclosing context). Since this form expands to require, it must be used in a module or
top-level context.

(author auth ...) → block?
auth : content?

Generates a paragraph with style name 'author to show the author(s) of a document,
where each author is represented by content. Normally, this function is used after title for
the beginning of a document. See also author+email.

(author+email author-name

email

[#:obfuscate? obfuscate?]) → element?

author-name : elem

email : string?

obfuscate? : any/c = #f

Combines an author name with an e-mail address. If obfuscate? is true, then the result
obscures the e-mail address slightly to avoid address-harvesting robots.

34

Note that author+email is not a replacement for author. The author+email function is
often used in combination with author.

3.1.2 Blocks

(para [#:style style] pre-content ...) → paragraph?

style : (or/c style? string? symbol? #f) = #f

pre-content : pre-content?

Creates a paragraph containing the decoded pre-content (i.e., parsed with decode-

paragraph).

The style argument can be a style, #f to indicate a “plain” style, a string that is used as
a style name, or a symbol that is used as a style name. (Note that section and para treat
symbols differently as style arguments.)

(nested [#:style style] pre-flow ...) → nested-flow?

style : (or/c style? string? symbol? #f) = #f

pre-flow : pre-flow?

Creates a nested flow containing the decoded pre-flow (i.e., parsed with decode-flow).

The style argument is handled the same as para. The 'inset and 'code-inset styles
cause the nested flow to be inset compared to surrounding text, with the latter particularly
intended for insetting code.

(centered pre-flow ...) → nested-flow?

pre-flow : pre-flow?

Produces a nested flow whose content is centered.

(margin-note pre-flow ... [#:left? left?]) → block?

pre-flow : pre-flow?

left? : any/c = #f

Produces a nested flow that is typeset in the margin, instead of inlined.

If left? is true, then the note is shown on the opposite as it would normally be shown
(which is the left-hand side for HTML output). Beware of colliding with output for a table
of contents.

(margin-note* pre-content ... [#:left? left?]) → element?

pre-content : pre-content?

left? : any/c = #f

35

Produces an element that is typeset in the margin, instead of inlined. Unlike margin-

note, margin-note* can be used in the middle of a paragraph; at the same time, its content
is constrained to form a single paragraph in the margin.

(itemlist itm ... [#:style style]) → itemization?

itm : items/c

style : (or/c style? string? symbol? #f) = #f

Constructs an itemization given a sequence of items. Typical each itm is constructed by
item, but an itm can be a block that is coerced to an item. Finally, itm can be a list or
splice whose elements are spliced (recursively, if necessary) into the itemlist sequence.

The style argument is handled the same as para. The 'ordered style numbers items,
instead of just using a bullet.

items/c : flat-contract?

A contract that is equivalent to the following recursive specification:

(or/c item? block? (listof items/c) (spliceof items/c))

(item pre-flow ...) → item?

pre-flow : pre-flow?

Creates an item for use with itemlist. The decoded pre-flow (i.e., parsed with decode-

flow) is the item content.

(item? v) → boolean?
v : any/c

Returns #t if v is an item produced by item, #f otherwise.

(tabular cells [#:style style #:sep sep]) → table?

cells : (listof (listof (or/c block? content? 'cont)))

style : (or/c style? string? symbol? #f) = #f

sep : (or/c block? content? #f) = #f

Creates a table with the given content, which is supplies as a list of rows, where each row
has a list of cells. The length of all rows must match.

If sep is not #f, it is inserted between every column in the table. Otherwise, the default
style places no space between table columns.

Use 'cont as a cell to continue the content of the preceding cell in a row in the space that
would otherwise be used for a new cell. A 'cont must not appear as the first cell in a row.

36

The style argument is handled the same as para.

Examples:

@tabular[#:sep @hspace[1]

(list (list "soup" "gazpacho")

(list "soup" "tonjiru"))]

@tabular[#:style 'boxed

(list (list @bold{recipe} @bold{vegetable})

(list "caldo verde" "kale")

(list "kinpira gob	o" "burdock")

(list "makizushi" 'cont))]

(verbatim [#:indent indent] str ...+) → block?

indent : exact-nonnegative-integer? = 0

str : string?

Typesets strs in typewriter font with the linebreaks specified by newline characters in str .
Consecutive spaces in the strs are converted to hspace to ensure that they are all pre-
served in the output. Additional space (via hspace) as specified by indent is added to the
beginning of each line.

The strs are not decoded with decode-content, so (verbatim "---") renders with
three hyphens instead of an em dash. Beware, however, that reading @verbatim converts
@ syntax within the argument, and such reading occurs well before arguments to verbatim

are delivered at run-time. To disable simple @ notation within the verbatim argument,
verbatim is typically used with |{...}| or similar brackets, like this:

@verbatim|{

Use @bold{---} like this...

}|

which renders as

Use @bold{---} like this...

Even with |{...}|, beware that consistent leading whitespace is removed by the parser; see
§2.4.1 “Alternative Body Syntax” for more information.

See also literal.

3.1.3 Text Styles and Content

37

(elem pre-content ... [#:style style]) → element?

pre-content : pre-content?

style : (or style? string? symbol? #f) = #f

Wraps the decoded pre-content as an element with style style .

(italic pre-content ...) → element?

pre-content : pre-content?

Like elem, but with style 'italic.

(bold pre-content ...) → element?

pre-content : pre-content?

Like elem, but with style 'bold.

(tt pre-content ...) → element?

pre-content : pre-content?

Like elem, but with style 'tt.

(subscript pre-content ...) → element?

pre-content : pre-content?

Like elem, but with style 'subscript.

(superscript pre-content ...) → element?

pre-content : pre-content?

Like elem, but with style 'superscript.

(smaller pre-content ...) → element?

pre-content : pre-content?

Like elem, but with style 'smaller. When uses of smaller are nested, text gets progres-
sively smaller.

(larger pre-content ...) → element?

pre-content : pre-content?

38

Like elem, but with style 'larger. When uses of larger are nested, text gets progressively
larger.

(emph pre-content ...) → element?

pre-content : pre-content?

The same as italic.
(literal str ...+) → element?

str : string?

Produces an element containing literally strs with no decoding via decode-content.

Beware that @ for a literal call performs some processing before delivering arguments
to literal. The literal form can be used with |{...}| or similar brackets to disable @

notation within the literal argument, like this:

@literal|{@bold{---}}|

which renders as

@literal|{@bold{---}}|

See also verbatim.
(image path

[#:scale scale

#:suffixes suffixes]
pre-content ...) → element?

path : (or/c path-string? (cons/c 'collects (listof bytes?)))

scale : real? = 1.0

suffixes : (listof #rx"^[.]") = null

pre-content : pre-content?

Creates an image element from the given path. The decoded pre-content serves as the
alternate text for contexts where the image cannot be displayed.

The path is relative to the current directory, which is set by setup-plt and scribble to
the directory of the main document file. The path argument also can be a result of path-
>main-collects-relative.

The strings in suffixes are filtered to those supported by given renderer, and then the
acceptable suffixes are tried in order. The HTML renderer supports ".png", ".gif", and
".svg", while the Latex renderer supports ".png", ".pdf", and ".ps" (but ".ps" works
only when converting Latex output to DVI, and ".png" and ".pdf" work only for convert-
ing Latex output to PDF).

Note that when the suffixes library is non-empty, then the path argument should not have
a suffix.

39

3.1.4 Spacing

(linebreak) → element?

Produces an element that forces a line break.
(nonbreaking pre-content ...) → element?

pre-content : pre-content?

Like elem, but line breaks are suppressed while rendering the content.

(hspace n) → element?

n : exact-nonnegative-integer?

Produces an element containing n spaces and style 'hspace.

∼ : string?

A string containing the non-breaking space character, which is equivalent to 'nbsp as an
element.

-∼- : string?

A string containing the non-breaking hyphen character.

?- : string?

A string containing the soft-hyphen character (i.e., a suggestion of where to hyphenate a
word to break it across lines when rendering).

._ : element?

Generates a period that ends an abbreviation in the middle of a sentence, as opposed to a
period that ends a sentence (since the latter may be typeset with extra space). Use @._ in a
document instead of just . for an abbreviation-ending period that is preceded by a lowercase
letter and followed by a space.

See .__ for an example.

.__ : element?

Generates a period that ends a sentence (which may be typeset with extra space), as opposed
to a period that ends an abbreviation in the middle of a sentence. Use @.__ in a document
instead of just . for a sentence-ending period that is preceded by an uppercase letter.

The following example illustrates both ._ and .__:

#lang scribble/base

My name is Mr@._ T@.__ I pity the fool who can't typeset punctuation.

40

3.1.5 Links

(hyperlink url

pre-content ...

[#:underline? underline?

#:style style]) → element?

url : string?

pre-content : pre-content?

underline? : any/c = #t

style : (or/c style? string? symbol? #f)

= (if underline? #f "plainlink")

The decoded pre-content is hyperlinked to url . If style is not supplied, then
underline? determines how the link is rendered.

(url dest) → element?
dest : string?

Generates a literal hyperlinked URL.

(secref tag

[#:doc module-path

#:tag-prefixes prefixes

#:underline? underline?]) → element?

tag : string?

module-path : (or/c module-path? #f) = #f

prefixes : (or/c (listof string?) #f) = #f

underline? : any/c = #t

Inserts a reference to the section tagged tag .

If #:doc module-path is provided, the tag refers to a tag with a prefix deter-
mined by module-path . When setup-plt renders documentation, it automatically
adds a tag prefix to the document based on the source module. Thus, for exam-
ple, to refer to a section of the Racket reference, module-path would be '(lib

"scribblings/reference/reference.scrbl").

The #:tag-prefixes prefixes argument similarly supports selecting a particular section
as determined by a path of tag prefixes. When a #:doc argument is provided, then prefixes
should trace a path of tag-prefixed subsections to reach the tag section. When #:doc is not
provided, the prefixes path is relative to any enclosing section (i.e., the youngest ancestor
that produces a match).

For HTML output, the generated reference is the hyperlinked title of the elements in the
section’s title content, except that elements with the 'aux style property are omitted in the

41

hyperlink label. If underline? is #f, then the hyperlink is rendered in HTML without an
underline.

For Latex output, the generated reference’s format depends on the document style. By de-
fault, only the section number is shown in the reference, but the scribble/manual style
shows the title after the section number. Customize the output (see §7.10 “Extending and
Configuring Scribble Output”) by redefining the \BookRef, etc., macros (see §7.10.3 “Pre-
defined Latex Macros”).

(Secref tag

[#:doc module-path

#:tag-prefixes prefixes

#:underline? underline?]) → element?

tag : string?

module-path : (or/c module-path? #f) = #f

prefixes : (or/c (listof string?) #f) = #f

underline? : any/c = #t

Like secref, but if the rendered form of the reference starts with a word (e.g., “section”),
then the word is capitalized.

(seclink tag

[#:doc module-path

#:tag-prefixes prefixes

#:underline? underline?]
pre-content ...) → element?

tag : string?

module-path : (or/c module-path? #f) = #f

prefixes : (or/c (listof string?) #f) = #f

underline? : any/c = #t

pre-content : pre-content?

Like secref, but the link label is the decoded pre-content instead of the target section’s
name.

(other-doc module-path

[#:underline? underline?]) → element?

module-path : module-path?

underline? : any/c = #t

Like secref for the document’s implicit "top" tag. Use this function to refer to a whole
manual instead of secref, in case a special style in the future is used for manual titles.

(elemtag t pre-content ...) → element?

t : (or/c tag? string?)

pre-content : pre-content?

42

The tag t refers to the content form of pre-content .

(elemref t

pre-content ...

[#:underline? underline?]) → element?

t : (or/c tag? string?)

pre-content : pre-content?

underline? : any/c = #t

The decoded pre-content is hyperlinked to t , which is normally defined using elemtag.

3.1.6 Indexing

(index words pre-content ...) → index-element?

words : (or/c string? (listof string?))

pre-content : pre-content?

Creates an index element given a plain-text string—or list of strings for a hierarchy, such as
'("strings" "plain") for a “plain” entry below a more general “strings” entry. As index
keys, the strings are “cleaned” using clean-up-index-strings. The strings (without
clean-up) also serve as the text to render in the index. The decoded pre-content is the text
to appear inline as the index target.

Use index when an index entry should point to a specific word or phrase within the typeset
document (i.e., the pre-content). Use section-index, instead, to create an index entry
that leads to a section, instead of a specific word or phrase within the section.

(index* words word-contents pre-content ...) → index-element?

words : (listof string?)

word-contents : (listof list?)

pre-content : pre-content?

Like index, except that words must be a list, and the list of contents render in the index (in
parallel to words) is supplied as word-contents .

(as-index pre-content ...) → index-element?

pre-content : pre-content?

Like index, but the word to index is determined by applying content->string on the
decoded pre-content .

(section-index word ...) → part-index-decl?

word : string?

43

Creates a part-index-decl to be associated with the enclosing section by decode. The
words serve as both the keys and as the rendered forms of the keys within the index.

(index-section [#:tag tag]) → part?

tag : (or/c #f string?) = "doc-index"

Produces a part that shows the index the enclosing document. The optional tag argument is
used as the index section’s tag.

3.1.7 Tables of Contents

(table-of-contents) → delayed-block?

Returns a delayed flow element that expands to a table of contents for the enclosing sec-
tion. For Latex output, however, the table of contents currently spans the entire enclosing
document.

(local-table-of-contents [#:style style]) → delayed-block?

style : (or/c symbol? #f) = #f

Returns a delayed flow element that may expand to a table of contents for the enclosing
section, depending on the output type. For multi-page HTML output, the flow element is a
table of contents; for Latex output, the flow element is empty.

The meaning of the style argument depends on the output type, but 'immediate-only
normally creates a table of contents that contains only immediate sub-sections of the enclos-
ing section. See also the 'quiet style of part (i.e., in a part structure, not supplied as
the style argument to local-table-of-contents), which normally suppresses sub-part
entries in a table of contents.

3.1.8 Tags

The exports of scribble/tag are all re-exported by scribble/base.

3.2 Racket Manual Format

The scribble/manual language is a major component of Scribble, and it is documented in
its own chapter: §4 “Scribbling Documentation”.

44

3.3 SIGPLAN Paper Format

#lang scribble/sigplan

The scribble/sigplan language is like scribble/manual, but configured with Latex
style defaults to use the "sigplanconf.cls" class file that is included with Scribble.

preprint

Enables the preprint option. Use preprint only on the same line as #lang, with only
whitespace (or other options) between scribble/sigplan and preprint:

#lang scribble/sigplan @preprint

10pt

Enables the 10pt option. Use 10pt only on the same line as #lang, with only whitespace
(or other options) between scribble/sigplan and 10pt:

#lang scribble/sigplan @10pt

nocopyright

Enables the nocopyright option. Use nocopyright only on the same line as #lang, with
only whitespace (or other options) between scribble/sigplan and nocopyright:

#lang scribble/sigplan @nocopyright

onecolumn

Enables the onecolumn option. Use onecolumn only on the same line as #lang, with only
whitespace (or other options) between scribble/sigplan and onecolumn:

#lang scribble/sigplan @onecolumn

notimes

Disables the use of \usepackage{times} in the generated LaTeX output. Use onecolumn
only on the same line as #lang, with only whitespace (or other options) between scrib-

ble/sigplan and notimes:

#lang scribble/sigplan @notimes

noqcourier

45

Disables the use of \usepackage{qcourier} in the generated LaTeX output. Use
onecolumn only on the same line as #lang, with only whitespace (or other options) be-
tween scribble/sigplan and noqcourier:

#lang scribble/sigplan @noqcourier

The 10pt, preprint, nocopyright, onecolumn, notimes, and noqcourier options can
be used together and may appear in any order.

(abstract pre-content ...) → block?

pre-content : pre-content?

Generates a nested flow for a paper abstract.

(include-abstract module-path)

Similar to include-section, but incorporates the document in the specified module as an
abstract. The document must have no title or sub-parts.

(authorinfo name affiliation email) → block?
name : pre-content?

affiliation : pre-content?

email : pre-content?

A replacement for author that associates an affiliation and e-mail address with the author
name.

(conferenceinfo conference location) → block?
conference : pre-content?

location : pre-content?

(copyrightyear content ...) → block?

content : pre-content?

(copyrightdata content ...) → block?

content : pre-content?

Declares information that is collected into the copyright region of the paper.

(category CR-number

subcategory

third-level

[fourth-level]) → content?

CR-number : pre-content?

subcategory : pre-content?

third-level : pre-content?

fourth-level : (or/c #f pre-content?) = #f

46

(terms content ...) → content?
content : pre-content?

(keywords content ...) → content?

content : pre-content?

Typesets category, term, and keyword information for the paper, which is normally placed
immediately after an abstract form. See also http://www.acm.org/about/class/

how-to-use.

For category, the subcategory argument should be in titlecase (i.e., capitalize the first
letter of each word) and a phrase at the level of “Programming Languages” or “Software
Engineering” (as opposed to a category like “Software” or a third-level name like “Con-
current Programming” or “Processors”). A third-level phrase should be in titlecase. A
fourth-level phrase, if any, should not be capitalized.

For terms, each general term should be in titlecase. Terms are usually drawn from a fixed
list, and they are usually optional.

For keywords, capitalize only the first letter of the first word, separate phrases by com-
mas, and do not include “and” before the last one. Keywords should be noun phrases, not
adjectives.

3.4 JFP Paper Format

#lang scribble/jfp

The scribble/jfp language is like scribble/manual, but configured with Latex style
defaults to use the "jfp1.cls" class file. The class file is not included with Scribble due
to license issues, but if the file is not manually installed into the scribble/jfp collections,
then it is downloaded on demand to (find-system-path 'addon-dir).

Latex output with scribble/jfp uses a main-document version supplied to title as the
short-form document name (to be used in page headers).

(abstract pre-content ...) → block?

pre-content : pre-content?

Generates a nested flow for a paper abstract.

(include-abstract module-path)

Similar to include-section, but incorporates the document in the specified module as an
abstract. The document must have no title or sub-parts.

47

http://www.acm.org/about/class/how-to-use
http://www.acm.org/about/class/how-to-use

(author name ...) → block?
name : pre-content?

A replacement for author from scribble/base.

((author/short short-name ...) long-name ...) → block?

short-name : pre-content?

long-name : pre-content?

Like author, but allows the short-form names (to be used in page headers) to be specified
separately from the long-form name.

(affiliation place ...) → element?

place : pre-content?

(affiliation-mark mark ...) → element?
mark : pre-content?

(affiliation-sep) → element?

Use affiliation within author or the long-name part of author/short to specify affil-
iations after all authors. If different authors have different affiliations, use affiliation-

mark with a number after each author, and then use affiliation-mark before each differ-
ent affiliation within a single affiliation, using (affiliation-sep) to separate affilia-
tions.

3.5 LNCS Paper Format

#lang scribble/lncs

The scribble/lncs language is like scribble/manual, but configured with Latex style
defaults to use the "llncs.cls" class file. The class file is not included with Scribble due
to license issues, but if the file is not manually installed into the scribble/lncs collection,
then it is downloaded on demand to (find-system-path 'addon-dir).

(abstract pre-content ...) → block?

pre-content : pre-content?

Generates a nested flow for a paper abstract.

(include-abstract module-path)

Similar to include-section, but incorporates the document in the specified module as an
abstract. The document must have no title or sub-parts.

48

(authors auth ...)

auth = (author pre-content-expr ...)

| (author #:inst str-expr pre-content-expr ...)

pre-content-expr : pre-content?

str-expr : string?

A replacement for author from scribble/base.

The #:inst should be a number that matches up to one of the arguments to institutes.

(institutes (institute pre-content-expr ...) ...)

pre-content-expr : pre-content?

The pre-content-exprs are used as the institutions of the authors.

institute

For use only in institutes.

(email pre-content-expr ...)

Specifies an email address; must be used inside institute.

49

4 Scribbling Documentation

The scribble/manual language and associated libraries provide extensive support for doc-
umenting Racket libraries. The most significant aspect of support for documentation is the
way that source-code bindings are connected to documentation sites through the module
namespace—a connection that is facilitated by the fact that Scribble documents are them-
selves modules that reside in the same namespace. §4.1 “Getting Started with Documen-
tation” provides an introduction to using Scribble for documentation, and the remaining
sections document the relevant libraries and APIs in detail.

4.1 Getting Started with Documentation

Although the scribble command-line utility generates output from a Scribble document,
documentation of Racket libraries is normally built by raco setup. This chapter empha-
sizes the raco setup approach, which more automatically supports links across documents. See §1 “Getting

Started” for
information on
using the scribble
command-line
utility.

4.1.1 Setting Up Library Documentation

To document a collection or PLaneT package:

• Create a file in your collection or planet package with the file extension ".scrbl".
Beware that the file name you choose will determine the output directory’s name. The
remainder of these instructions assume that the file is called "manual.scrbl".

• Start "manual.scrbl" like this:

#lang scribble/manual

@title{My Library}

Welcome to my documentation: @racket[(list 'testing 1 2 3)].

The first line starts the file in “text” mode and selects the Racket manual output format.
It also introduces bindings like title and racket for writing Racket documentation.

• Add the following entry to your collect or package’s "info.rkt":

(define scribblings '(("manual.scrbl" ())))

The () above is a list of options. When your document gets large enough that you
want it split into multiple pages, add the 'multi-page option (omitting the quote,
since the whole right-hand side of the definition is already quoted).

If you do not already have an "info.rkt" module, here’s a suitable complete module:

50

#lang setup/infotab

(define scribblings '(("manual.scrbl" ())))

• Run raco setup to build your documentation. For a collection, optionally supply
-l followed by the collection name to limit the build process to that collection. For a
PLaneT package, optionally supply -P followed by the package information to limit
the build process to that package.

• The generated documentation is normally "doc/manual/index.html" within
the collection or PLaneT package directory. If the collection is in Racket’s
main "collects" directory, however, then the documentation is generated as
"manual/index.html" in the installation’s main "doc" directory.

4.1.2 Racket Typesetting and Hyperlinks

In the document source at the start of this chapter (§4.1.1 “Setting Up Library Documenta-
tion”), the Racket expression (list 'testing 1 2 3) is typeset properly, but the list

identifier is not hyperlinked to the usual definition. To cause list to be hyperlinked, add a
require form like this:

@(require (for-label racket))

This require with for-label declaration introduces a document-time binding for each
export of the racket module. When the document is built, the racket form detects the
binding for list, and so it generates a reference to the specification of list. The setup
process detects the reference, and it finds the matching specification in the existing docu-
mentation, and ultimately directs the hyperlink to that specification.

Hyperlinks based on for-label and racket are the preferred mechanism for linking to
information outside of a single document. Such links require no information about where
and how a binding is documented elsewhere:

#lang scribble/manual

@(require (for-label racket))

@title{My Library}

See also @racket[list].

The racket form typesets a Racket expression for inline text, so it ignores the source for-
matting of the expression. The racketblock form, in contrast, typesets inset Racket code,
and it preserves the expression’s formatting from the document source.

#lang scribble/manual

@(require (for-label racket))

51

@title{My Library}

Some example Racket code:

@racketblock[

(define (nobody-understands-me what)

(list "When I think of all the"

what

"I've tried so hard to explain!"))

(nobody-understands-me "glorble snop")

]

4.1.3 Section Hyperlinks

A section declaration in a document can include a #:tag argument that declares a
hyperlink-target tag. The secref function generates a hyperlink, using the section name
as the text of the hyperlink. Use seclink to create a hyperlink with text other than the
section title.

The following example illustrates section hyperlinks:

#lang scribble/manual

@(require (for-label racket))

@title{My Library}

Welcome to my documentation: @racket[(list 'testing 1 2 3)].

@table-of-contents[]

@section[#:tag "chickens"]{Philadelphia Chickens}

Dancing tonight!

@section{Reprise}

See @secref{chickens}.

Since the page is so short, the hyperlinks in the above example are more effective if you
change the "info.rkt" file to add the 'multi-file flag:

(define scribblings '(("manual.scrbl" (multi-page))))

52

A section can have a tag prefix that applies to all tags as seen from outside the section. Such
a prefix is automatically given to each top-level document as processed by raco setup.
Thus, referencing a section tag in a different document requires using a prefix, which is
based on the target document’s main source file. The following example links to a section in
the Racket reference manual:

#lang scribble/manual

@(require (for-label racket))

@(define ref-src

'(lib "scribblings/reference/reference.scrbl"))

@title{My Library}

See also @italic{@secref[#:doc ref-src]{pairs}}.

As mentioned in §4.1.2 “Racket Typesetting and Hyperlinks”, however, cross-document
references based on (require (for-label)) and racket are usually better than
cross-document references using secref.

4.1.4 Defining Racket Bindings

Use defproc to document a procedure, defform to document a syntactic form, defstruct
to document a structure type, etc. These forms provide consistent formatting of definitions,
and they declare hyperlink targets for racket-based hyperlinks.

To document a my-helper procedure that is exported by "helper.rkt" in the "my-lib"

collection that contains "manual.scrbl":

• Use (require (for-label "helper.rkt")) to import the binding information
about the bindings of "helper.rkt" for use when typesetting identifiers. A relative
reference "helper.rkt" works since it is relative to the documentation source.

• Add a @defmodule[my-lib/helper] declaration, which specifies the library that is
being documented within the section. The defmodule form needs an absolute mod-
ule name mylib/helper, instead of a relative reference "helper.rkt", since the
module path given to defmodule appears verbatim in the generated documentation.

• Use defproc to document the procedure.

Adding these pieces to ""manual.scrbl"" gives us the following:

#lang scribble/manual

@(require (for-label racket

"helper.rkt"))

53

@title{My Library}

@defmodule[my-lib/helper]

@defproc[(my-helper [lst list?])

(listof

(not/c (one-of/c 'cow)))]{

Replaces each @racket['cow] in @racket[lst] with

@racket['aardvark].}

In defproc, a contract is specified with each argument to the procedure. In this example,
the contract for the lst argument is list?, which is the contract for a list. After the closing
parenthesis that ends the argument sequence, the contract of the result must be given; in this
case, my-helper guarantees a result that is a list where none of the elements are 'cow.

Some things to notice in this example and the documentation that it generates:

• The list?, listof, etc. elements of contracts are hyperlinked to their documentation.

• The result contract is formatted in the generated documentation in the same way as in
the source. That is, the source layout of contracts is preserved. (In this case, putting
the contract all on one line would be better.)

• In the prose that documents my-helper, lst is automatically typeset in italic, match-
ing the typesetting in the blue box. The racket form essentially knows that it’s used
in the scope of a procedure with argument lst .

• If you hover the mouse pointer over my-helper, a popup reports that it is provided
from my-lib/helper.

• If you use my-helper in any documentation now, as long as that documentation
source also has a (require (for-label)) of "helper.rkt", then the ref-
erence is hyperlinked to the definition above.

See defproc*, defform, etc. for more information on forms to document Racket bindings.

4.1.5 Showing Racket Examples

The examples form from scribble/eval helps you generate examples in your documen-
tation. Warning: the examples form is especially likely to change or be replaced.

To use examples, the procedures to document must be suitable for use at documentation
time; in fact, examples uses bindings introduced into the document source by require.
Thus, to generate examples using my-helper from the previous section, "helper.rkt"
must be imported both via require-for-label and require:

54

#lang scribble/manual

@(require scribble/eval ; <--- added

"helper.rkt" ; <--- added

(for-label racket

"helper.rkt"))

@title{My Library}

@defmodule[my-lib/helper]{The @racketmodname[my-lib/helper]

module---now with extra cows!}

@defproc[(my-helper [lst list?])

(listof (not/c (one-of/c 'cow)))]{

Replaces each @racket['cow] in @racket[lst] with

@racket['aardvark].

@examples[

(my-helper '())

(my-helper '(cows such remarkable cows))

]}

4.1.6 Multi-Page Sections

Setting the 'multi-page option (see §4.1.3 “Section Hyperlinks”) causes each top-level
section of a document to be rendered as a separate HTML page.

To push sub-sections onto separate pages, use the 'toc style for the enclosing section (as
started by title, section, subsection, etc.) and use local-table-of-contents to
generate hyperlinks to the sub-sections.

Revising "cows.scrbl" from the previous section:

#lang scribble/manual

@title[#:style '(toc)]{Cows}

@local-table-of-contents[]

@section[#:tag "singing"]{Singing}

Wherever they go, it's a quite a show.

@section{Dancing}

See @secref["singing"].

55

To run this example, remember to change "info.rkt" to add the 'multi-page style. You
may also want to add a call to table-of-contents in "manual.scrbl".

The difference between table-of-contents and local-table-of-contents is that the
latter is ignored for Latex output.

When using local-table-of-contents, it often makes sense to include introductory text
before the call of local-table-of-contents. When the introductory text is less important
and when local table of contents is short, putting the introductory text after the call of local-
table-of-contents may be appropriate.

4.2 Style Guide

Consistent style—for terms, typesetting, and prose—makes documentation clearer. As much
as possible, follow the rules listed in this section. Many of the rules are arbitrary in the sense
that a different choice of rule could work fine, but the only way to make our documentation
consistent is to pick one of the choices.

There are too many rules to absorb easily on a first reading. Re-read this section after writ-
ing documentation for a library or two, and revisit the section periodically to refresh your
memory and check for new rules.

4.2.1 Prose and Terminology

In the descriptive body of defform, defproc, etc., do not start with “This ...” Instead, start
with a sentence whose implicit subject is the form or value being described (but only start
the first sentence that way). Capitalize the first word. Thus, the description will often start
with “Returns” or “Produces.” Refer to arguments and sub-forms by name.

Do not use the word “argument” to describe a sub-form in a syntactic form; use the term
“sub-form” instead, reserving “argument” for values or expressions in a function call. Refer
to libraries and languages as such, rather than as “modules” (even though the form to typeset
a library or language name is called racketmodname). Do not call an identifier (i.e., a
syntactic element) a “variable” or a “symbol.” Do not use the word “expression” for a form
that is a definition or might be a definition; use the word “form,” instead. Prefer “function”
to “procedure.”

Use the word “list” only when you mean a run-time value consisting of the empty list and
cons cells; use the word “sequence” in other cases, if you must use any word. For example,
do not write that begin has a “list of sub-forms;” instead, it has a “sequence of sub-forms.”
Similarly, do not refer to a “list of arguments” in a function call; just write “arguments”
if possible, or write “sequence of argument expressions.” (Unfortunately, “sequence” has
acquired a specific run-time meaning, too, but the collision is less severe than the historical

56

confusion between lists and other entities in Lisp.)

Avoid cut-and-paste for descriptive text. If two functions are similar, consider documenting
them together with deftogether. To abstract a description, consider using explicit prose
abstraction, such as “x is like y, except that ...,” instead of abstracting the source and in-
stantiating it multiple times; often, a prose abstraction is clearer to the reader than a hidden
abstraction in the document implementation.

Hyphenate the words “sub-form” and “sub-expression.”

Use “Windows,” “Mac OS X,” and “Unix” for the three “platforms” (as opposed to “sys-
tems”) on which Racket runs. Use “Unix” as a generic term for Unix-like operating
systems—notably including Linux—other than Mac OS X. Use “Unix” even when “Gtk”
or “the X11 windowing system” would be more precisely correct, but use “X11” as adjec-
tive when necessary, such as “X11 display.” Racket runs “on” a platform, as opposed to
“under” a platform.

4.2.2 Typesetting Code

Use id or a name that ends -id in defform to mean an identifier, not identifier, vari-
able, name, or symbol. Similarly, use expr or something that ends -expr for an expres-
sion position within a syntactic form. Use body for a form (definition or expression) in an
internal-definition position—always followed by ...+ in a grammar description. Do not use
expr for something that isn’t exactly an expression, id for something that isn’t exactly an
identifier, etc.; instead, use defform/subs to define a new non-terminal.

Beware of using deftogether to define multiple variants of a syntactic form or procedure,
because each defform or defproc creates a definition point, but each form or procedure
should have a single definition point. (Scribble issues a warning when a binding has multiple
definition points.) Instead, use defproc* or defform*.

For function arguments, use v as the meta-variable for “any value.” Use x as a meta-variable
only for numerical values. Other conventions include lst for a list and proc for a procedure.

Pay attention to the difference between identifiers and meta-variables when using racket,
especially outside of defproc or defform. Prefix a meta-variable with _; for example,

@racket[(rator-expr rand-expr ...)]

would be the wrong way to refer to the grammar of a function call, because it produces
(rator-expr rand-expr ...), where rator-expr and rand-expr are typeset as vari-
ables. The correct description is

@racket[(_rator-expr _rand-expr ...)]

which produces (rator-expr rand-expr ...), where rator-expr and rand-expr are

57

typeset as meta-variables. The defproc, defform, etc. forms greatly reduce this burden in
descriptions, since they automatically set up meta-variable typesetting for non-literal iden-
tifiers. In defform, be sure to include literal identifiers (i.e., those not meant as variables,
other than the form name being defined) in a #:literals clause.

To typeset an identifier with no particular interpretation—syntax, variable, meta-variable,
etc.—use racketidfont (e.g., as in rand-expr above). Otherwise, use litchar, not
merely racketfont or verbatim, to refer to a specific sequence of characters.

When a syntactic form synthesizes an identifier from a given identifier, use a combination
of racketidfont and racket to describe the identifiers. For example, if id is combined
with is- and ? to form is-id?, then implement that identifier as @racketidfont{is-

}@racket[id]@racketidfont{?}.

When using defform to describe a syntactic form, don’t confuse the #:contracts clause
with a grammar specification. Use #:contracts only for expressions within the syntactic
form, and the contract is a run-time constraint—not a syntactic constraint, such as requiring
a sub-form to be an identifier. Use defform/subs for syntactic constraints.

When showing example evaluations, use the REPL-snapshot style:

@interaction[

(+ 1 2)

]

See also the scribble/eval library and §4.2.6 “Examples”.

Use four dots,, in place of omitted code, since ... means repetition.

4.2.3 Typesetting Prose

Refrain from referring to documentation “above” or “below,” and instead have a hyperlink
point to the right place.

In prose, use `` and '' quotation marks instead of ". Use --- for an em dash, and do not
include spaces on either side. Use American style for quotation marks and punctuation at the
end of quotation marks (i.e., a sentence-terminating period goes inside the quotation marks).
Of course, this rule does not apply for quotation marks that are part of code.

Do not use a citation reference (as created by cite) as a noun; use it as an annotation.

Do not start a sentence with a Racket variable name, since it is normally lowercase. For
example, use “The thing argument is...” instead of “thing is...”

Use etc for “etc.” when it does not end a sentence, and include a comma after “etc.” unless
it ends a sentence of is followed by other punctuation (such as a parenthesis).

58

4.2.4 Section Titles

Capitalize all words except articles (“the,” “a,” etc.), prepositions, and conjunctions that are
not at the start of the title.

A manual title should normally start with a suitable keyword or key phrase (such as “Scrib-
ble” for this manual) that is in boldface. If the key word is primarily an executable name,
use exec instead of bold. Optionally add further descriptive text in the title after a colon,
where the text starting with the colon is not in boldface.

4.2.5 Indexing

Document and section titles, identifiers that are documented with defproc, defform, etc.
are automatically indexed, as are terms defined with deftech.

Symbols are not indexed automatically. Use indexed-racket instead of racket for the in-
stance of a symbol that roughly defines the use. For an example, try searching for “truncate”
to find 'truncate as used with open-output-file. Do no use something like (index

"'truncate") to index a symbol, because it will not typeset correctly (i.e., in a fixed-width
font with the color of a literal).

Use index, as-index, and section-index as a last resort. Create index entries for terms
that are completely different from terms otherwise indexed. Do not try to index minor vari-
ations of a term or phrase in an attempt to improve search results; if search fails to find a
word or phrase due to a minor variation, then the search algorithm should be fixed, not the
index entry.

4.2.6 Examples

Strive to include examples (using examples) with the documentation of every function and
syntactic form. When writing examples, refrain from using nonsense words like “foo” and
“bar.” For example, when documenting member, resist the temptation to write

> (member "foo" '("bar" "foo" "baz"))

'("foo" "baz")

and instead write something like

> (member "Groucho" '("Harpo" "Groucho" "Zeppo"))

'("Groucho" "Zeppo")

59

4.3 Manual Forms

#lang scribble/manual

The scribble/manual language provides all of scribble/base plus many additional
functions that are specific to writing Racket documentation.

The scribble/manual name can also be used as a library with require, in which case
it provides all of the same bindings, but without setting the reader or setting the default
rendering format to the Racket manual format.

With #lang, scribble/manual associates a latex-defaults style property with its doc
export to select the default Racket manual style for Latex rendering—unless a style is sup-
plied to title that already includes a latex-defaults style property.

4.3.1 Typesetting Code

The codeblock and code forms (see §4.3.1.1 “#lang-Specified Code”) typeset code ver-
batim, adding a layer of color to the code based on the same syntax-coloring parsers that are
used by DrRacket. Input that is parsed as an identifier is further given a lexical context and
hyperlinked via for-label imports.

The racketblock and racket forms (see §4.3.1.2 “Racket Code”) typeset S-expression
code roughly verbatim, but roughly by quoting the source term with syntax. Identifiers in
the quoted S-expression are hyperlinked via for-label imports.

The two different approaches to typesetting code—codeblock and code versus racket-
bock and racket—have different advantages and disadvantages:

• The codeblock and code forms work with non-S-expression syntax, and they give
authors more control over output (e.g., the literal number 2/4 is not normalized to
1/2). The codeblock and code forms do not yet support escapes to Scribble element
mode, and they cannot adapt spacing based on the width of elements in escapes.

• The racketblock and racket forms are more efficient and allow escapes to Scribble
element mode. The racketblock and racket forms are tied to S-expression syntax,
however, and they are based on a syntax representation that tends to normalize source
terms (e.g., the literal number 2/4 is normalized to 1/2).

#lang-Specified Code

(codeblock option ... str-expr ...+)

60

option = #:keep-lang-line? keep-expr

| #:indent indent-expr

| #:expand expand-expr

| #:context context-expr

| #:line-numbers line-number-expr

| #:line-number-sep line-number-sep-expr

keep-expr : any/c

indent-expr : exact-nonnegative-integer?

expand-expr : (or/c #f (syntax-object? . -> . syntax-object?))

context-expr : syntax-object?

line-number-expr : (or/c #f exact-nonnegative-integer?)

line-number-sep-expr : exact-nonnegative-integer?

Parses the code formed by the strings produced by the str-exprs as a Racket module
(roughly) and produces a block that typesets the code inset via nested with the style 'code-
inset.

The str-exprs should normally start with #lang to determine the reader syntax for the
module, but the resulting “module” need not expand or compile—except as needed by
expand-expr . If expand-expr is omitted or produces false, then the input formed by
str-expr is read until an end-of-file is encountered, otherwise a single form is read from
the input.

When keep-expr produces a true value (the default), the first line in the input (which is
typically #lang) is preserved in the typeset output, otherwise the first line is dropped. The
typeset code is indented by the amount specified by indent-expr , which defaults to 0.

When expand-expr produces #f (which is the default), identifiers in the typeset code are
colored and linked based on for-label bindings in the lexical environment of the syntax object
provided by context-expr . The default context-expr has the same lexical context as
the first str-expr . When line-number-expr is true, line number is enabled starting from
line-number-expr , and line-number-sep controls the separation (in spaces; defaults to
1) between the line numbers and code.

When expand-expr produces a procedure, it is used to macro-expand the parsed program,
and syntax coloring is based on the parsed program.

For example,

@codeblock|{

#lang scribble/manual

@codeblock{

#lang scribble/manual

@title{Hello}

61

}

}|

produces the typeset result

#lang scribble/manual

@codeblock{

#lang scribble/manual

@title{Hello}

}

(codeblock0 option ... str-expr ...+)

Like codeblock, but without the 'code-inset nested wrapper.

(code option ... str-expr ...+)

option = #:lang lang-line-expr

| #:expand expand-expr

| #:context context-expr

lang-line-expr : (or/c #f string?)

expand-expr : (or/c #f (syntax-object? . -> . syntax-object?))

context-expr : syntax-object?

Like codeblock, but produces content instead of a block. No #lang line should appear in
the string content; instead, it should be provided #:lang (as a string without "#lang ") if
needed, and the #lang line is always stripped from the output when provided. Also, each
newline in str-exprs is collapsed along with all surrounding whitespace to a single space.

For example,

This is @code[#:lang "at-exp racket"]|{@bold{Hi}}|'s result:

@bold{Hi}.

produces the typeset result

This is @bold{Hi}’s result: Hi.

Racket Code
(racketblock maybe-escape datum ...)

maybe-escape =
| #:escape escape-id

62

Typesets the datum sequence as a table of Racket code inset via nested with the style
'code-inset. The source locations of the datums determine the generated layout. For
example,

(racketblock

(define (loop x)

(loop (not x))))

produces the output

(define (loop x)

(loop (not x)))

with the (loop (not x)) indented under define, because that’s the way it is idented the
use of racketblock. Source-location span information is used to preserve #true versus
#t and #false versus #f, and syntax-object properties are used to preserve square brackets
and curly braces versus parentheses; otherwise, using syntax objects tends to normalize the
form of S-expression elements.

In the above example, define is typeset as a keyword (in black) and as a hyperlink to
define’s definition in the reference manual, because this document was built using a for-
label binding of define (in the source) that matches a definition in the reference manual.
Similarly, not is a hyperlink to its definition in the reference manual.

Like other forms defined via define-code, racketblock expands identifiers that are
bound as element transformers.

An #:escape clause specifies an identifier to escape back to an expression that produces an
element. By default, the escape identifier is unsyntax. For example,

(racketblock

(+ 1 #,(elem (racket x) (subscript "2"))))

produces

(+ 1 x2)

The escape-id that defaults to unsyntax is regonized via free-identifier=?, so a
binding can hide the escape behavior:

(racketblock

(let ([unsyntax #f])

(racketblock

#'(+ 1 #,x))))

63

The RACKETBLOCK form’s default escape is UNSYNTAX instead of unsyntax.

A few other escapes are recognized symbolically:

• (code:line datum ...) typesets as the sequence of datums (i.e., without the
code:line wrapper).

• (code:comment datum) typesets like datum , but colored as a comment and pre-
fixed with a semi-colon. A typical datum escapes from Racket-typesetting mode us-
ing unsyntax and produces a paragraph using t:

(code:comment @#,t{this is a comment})

(Note that @#,foo{...} reads as #,(foo "...").)

• code:blank typesets as a blank space.

• (code:hilite datum) typesets like datum , but with a background highlight.

• (code:quote datum) typesets like (quote datum), but without rendering the
quote as '.

• _id typesets as id, but colored as a variable (like racketvarfont); this escape ap-
plies only if _id has no for-label binding and is not specifically colored as a subform
non-terminal via defform, a variable via defproc, etc.

See also scribble/comment-reader.

(RACKETBLOCK maybe-escape datum ...)

Like racketblock, but with the default expression escape UNSYNTAX instead of unsyntax.

(racketblock0 maybe-escape datum ...)

Like racketblock, but without insetting the code via nested.

(RACKETBLOCK0 maybe-escape datum ...)

Like RACKETBLOCK, but without insetting the code via nested.

(racketresultblock maybe-escape datum ...)

(racketresultblock0 maybe-escape datum ...)

(RACKETRESULTBLOCK maybe-escape datum ...)

(RACKETRESULTBLOCK0 maybe-escape datum ...)

Like racketblock, etc., but colors the typeset text as a result (i.e., a single color with no
hyperlinks) instead of code.

64

(racketinput maybe-escape datum ...)

(RACKETINPUT maybe-escape datum ...)

Like racketblock and RACKETBLOCK, but the datums are typeset after a prompt represent-
ing a REPL.

(racketinput0 maybe-escape datum ...)

(RACKETINPUT0 maybe-escape datum ...)

Like racketinput and RACKETINPUT, but without insetting the code via nested.

(racketmod maybe-file maybe-escape lang datum ...)

maybe-file =
| #:file filename-expr

maybe-escape =
| #:escape escape-id

Like racketblock, but the datum are typeset inside a #lang-form module whose language
is lang .

The source location of lang (relative to the body datums) determines the relative position-
ing of the #lang line in the typeset output. So, line up lang with the left end of the content
code.

If #:file is provided, then the code block is typeset using filebox with filename-expr

as the filename argument.

(racketmod0 maybe-file maybe-escape lang datum ...)

Like racketmod, but without insetting the code via nested.

(racket maybe-escape datum ...)

Like racketblock, but typeset on a single line and wrapped with its enclosing paragraph,
independent of the formatting of datum .

(RACKET maybe-escape datum ...)

Like racket, but with the UNSYNTAX escape like racketblock.

(racketresult maybe-escape datum ...)

65

Like racket, but typeset as a result (i.e., a single color with no hyperlinks).

(racketid maybe-escape datum ...)

Like racket, but typeset as an unbound identifier (i.e., no coloring or hyperlinks).

(schemeblock maybe-escape datum ...)

(SCHEMEBLOCK maybe-escape datum ...)

(schemeblock0 maybe-escape datum ...)

(SCHEMEBLOCK0 maybe-escape datum ...)

(schemeinput maybe-escape datum ...)

(schememod lang maybe-escape datum ...)

(scheme maybe-escape datum ...)

(SCHEME maybe-escape datum ...)

(schemeresult maybe-escape datum ...)

(schemeid maybe-escape datum ...)

Compatibility aliases. Each scheme... name is an alias for the corresponding racket...

binding.

Preserving Comments

#reader scribble/comment-reader

As a reader module, scribble/comment-reader reads a single S-expression that con-
tains ;-based comment lines, and it wraps the comments with code:comment for use with
forms like racketblock. More precisely, scribble/comment-reader extends the current
reader to adjust the parsing of ;.

For example, within a Scribble document that imports scribble/manual,

@#reader scribble/comment-reader

(racketblock

;; This is not a pipe

(make-pipe)

)

generates

; This is not a pipe

(make-pipe)

The initial @ is needed above to shift into S-expression mode, so that #reader is recognized
as a reader declaration instead of literal text. Also, the example uses (racketblock)

instead of @racketblock[....] because the @-reader would drop comments within the
racketblock before giving scribble/comment-reader a chance to convert them.

66

Code Fonts and Styles

(racketmodname datum)
(racketmodname (unsyntax expr))

Like racket, but typeset as a module path. If datum is an identifier or expr produces a
symbol, then it is hyperlinked to the module path’s definition as created by defmodule.

(racketmodlink datum pre-content-expr ...)

Like racketmod, but separating the module path to link from the content to be linked. The
datum module path is always linked, even if it is not an identifier.

(litchar str ...) → element?
str : string?

Typesets strs as a representation of literal text. Use this when you have to talk about the
individual characters in a stream of text, as when documenting a reader extension.

(racketfont pre-content ...) → element?

pre-content : pre-content?

Typesets decoded pre-content as uncolored, unhyperlinked Racket. This procedure is
useful for typesetting things like #lang, which are not readable by themselves.

(racketvalfont pre-content ...) → element?

pre-content : pre-content?

Like racketfont, but colored as a value.

(racketresultfont pre-content ...) → element?

pre-content : pre-content?

Like racketfont, but colored as a REPL result.

(racketidfont pre-content ...) → element?

pre-content : pre-content?

Like racketfont, but colored as an identifier.

(racketvarfont pre-content ...) → element?

pre-content : pre-content?

Like racketfont, but colored as a variable (i.e., an argument or sub-form in a procedure
being documented).

67

(racketkeywordfont pre-content ...) → element?

pre-content : pre-content?

Like racketfont, but colored as a syntactic form name.

(racketparenfont pre-content ...) → element?

pre-content : pre-content?

Like racketfont, but colored like parentheses.

(racketmetafont pre-content ...) → element?

pre-content : pre-content?

Like racketfont, but colored as meta-syntax, such as backquote or unquote.

(racketcommentfont pre-content ...) → element?

pre-content : pre-content?

Like racketfont, but colored as a comment.

(racketerror pre-content ...) → element?

pre-content : pre-content?

Like racketfont, but colored as error-message text.

(racketmodfont pre-content ...) → element?

pre-content : pre-content?

Like racketfont, but colored as module name.

(racketoutput pre-content ...) → element?

pre-content : pre-content?

Like racketfont, but colored as output.

(procedure pre-content ...) → element?

pre-content : pre-content?

Typesets decoded pre-content as a procedure name in a REPL result (e.g., in typewriter
font with a #<procedure: prefix and > suffix.).

(var datum)

68

Typesets datum as an identifier that is an argument or sub-form in a procedure being docu-
mented. Normally, the defproc and defform arrange for racket to format such identifiers
automatically in the description of the procedure, but use var if that cannot work for some
reason.

(svar datum)

Like var, but for subform non-terminals in a form definition.

(schememodname datum)
(schememodname (unsyntax expr))

(schememodlink datum pre-content-expr ...)

(schemefont pre-content ...) → element?

pre-content : pre-content?

(schemevalfont pre-content ...) → element?

pre-content : pre-content?

(schemeresultfont pre-content ...) → element?

pre-content : pre-content?

(schemeidfont pre-content ...) → element?

pre-content : pre-content?

(schemevarfont pre-content ...) → element?

pre-content : pre-content?

(schemekeywordfont pre-content ...) → element?

pre-content : pre-content?

(schemeparenfont pre-content ...) → element?

pre-content : pre-content?

(schememetafont pre-content ...) → element?

pre-content : pre-content?

(schemeerror pre-content ...) → element?

pre-content : pre-content?

(schememodfont pre-content ...) → element?

pre-content : pre-content?

(schemeoutput pre-content ...) → element?

pre-content : pre-content?

Compatibility aliases. Each scheme... name is an alias for the corresponding racket...

binding.

4.3.2 Documenting Modules

(defmodule maybe-req id maybe-sources pre-flow ...)

69

maybe-req =
| #:require-form expr

maybe-sources =
| #:use-sources (mod-path ...)

Produces a sequence of flow elements (encaptured in a splice) to start the documentation
for a module that can be required using the path id . The decoded pre-flows introduce
the module, but need not include all of the module content.

Besides generating text, this form expands to a use of declare-exporting with id ; the
#:use-sources clause, if provided, is propagated to declare-exporting. Consequently,
defmodule should be used at most once in a section, though it can be shadowed with def-

modules in sub-sections.

If a #:require-form clause is provided, the given expression produces an element to use
instead of require for the declaration of the module. This is useful to suggest a different
way of accessing the module instead of through require.

Hyperlinks created by racketmodname are associated with the enclosing section, rather than
the local id text.

(defmodulelang id maybe-sources pre-flow ...)

(defmodulelang content-expr #:module-paths (mod-path ...)

maybe-sources pre-flow ...)

Like defmodule, but documents id as a module path suitable for use by either require or
#lang. If the module path for require is syntactically different from the #lang form, use
the #:module-paths to provide them separately.

(defmodulereader id maybe-sources pre-flow ...)

Like defmodule, but documents id as a module path suitable for use with #reader.

(defmodule* maybe-req (id ...+) maybe-sources pre-flow ...)

(defmodulelang* (id ...+) maybe-sources pre-flow ...)

(defmodulelang* (content-expr ...+) #:module-paths (mod-path ...+)

maybe-sources pre-flow ...)

(defmodulereader* (id ...+) maybe-sources pre-flow ...)

Like defmodule, etc., but introduces multiple module paths instead of just one.

(defmodule*/no-declare maybe-req (id ...) pre-flow ...)

(defmodulelang*/no-declare (id ...) pre-flow ...)

(defmodulelang*/no-declare (content-expr ...)

#:module-paths (mod-path ...+) pre-flow ...)

(defmodulereader*/no-declare (id ...) pre-flow ...)

70

Like defmodule*, etc., but without expanding to declare-exporting. Use this form
when you want to provide a more specific list of modules (e.g., to name both a specific mod-
ule and one that combines several modules) via your own declare-exporting declaration.

(declare-exporting mod-path ... maybe-sources)

maybe-sources =
| #:use-sources (mod-path ...)

Associates the mod-paths to all bindings defined within the enclosing section, except as
overridden by other declare-exporting declarations in nested sub-sections. The list of
mod-paths before #:use-sources is shown, for example, when the user hovers the mouse
over one of the bindings defined within the section.

More significantly, the first mod-path before #:use-sources plus the mod-paths after
#:use-sources determine the binding that is documented by each defform, defproc, or
similar form within the section that contains the declare-exporting declaration:

• If no #:use-sources clause is supplied, then the documentation applies to the given
name as exported by the first mod-path .

• If #:use-sources mod-paths are supplied, then they are tried in order before the
first mod-path . The mod-path that provides an export with the same symbolic name
and free-label-identifier=? to the given name is used as the documented bind-
ing. This binding is assumed to be the same as the identifier as exported by the first
mod-path in the declare-exporting declaration.

Use #:use-sources sparingly, but it is needed when

• bindings are documented as originating from a module M , but the bindings are actually
re-exported from some module P ; and

• other documented modules also re-export the bindings from P , but they are docu-
mented as re-exporting from M .

For example, the parameterize binding of mzscheme is documented as re-exported from
racket/base, but parameterize happens to be implemented in a private module and re-
exported by both racket/base and mzscheme. Importing parameterize from mzscheme

does not go through racket/base, so a search for documentation on parameterize in
mzscheme would not automatically connect to the documentation of racket/base. To
make the connection, the documentation of racket/base declares the private module to
be a source through #:use-sources, so that any re-export of parameterize from the
private module connects to the documentation for racket/base (unless a re-export has its
own documentation, which would override the automatic connection when searching for
documentation).

71

The initial mod-paths sequence can be empty if mod-paths are given with #:use-

sources. In that case, the rendered documentation never reports an exporting module for
identifiers that are documented within the section, but the mod-paths in #:use-sources

provide a binding context for connecting (via hyperlinks) definitions and uses of identifiers.

The declare-exporting form should be used no more than once per section, since the
declaration applies to the entire section, although overriding declare-exporting forms
can appear in sub-sections.

(deprecated replacement additional-notes ...)

replacement = pre-content

additional-notes = pre-content

produces a warning for deprecated modules. Requires a replacement suggestion; additional
notes are welcome.

4.3.3 Documenting Forms, Functions, Structure Types, and Values

(defproc maybe-kind maybe-id prototype

result-contract-expr-datum

pre-flow ...)

prototype = (id arg-spec ...)

| (prototype arg-spec ...)

arg-spec = (arg-id contract-expr-datum)

| (arg-id contract-expr-datum default-expr)

| (keyword arg-id contract-expr-datum)

| (keyword arg-id contract-expr-datum default-expr)

| ellipses

| ellipses+

maybe-kind =
| #:kind kind-string-expr

maybe-id =
| #:id [src-id dest-id-expr]

ellipses = ...

ellipses+ = ...+

Produces a sequence of flow elements (encapsulated in a splice) to document a procedure

72

named id . Nesting prototypes corresponds to a curried function, as in define. The id

is indexed, and it also registered so that racket-typeset uses of the identifier (with the same
for-label binding) are hyperlinked to this documentation.

A defmodule or declare-exporting form (or one of the variants) in an enclosing section
determines the id binding that is being defined. The id should also have a for-label binding
(as introduced by (require (for-label))) that matches the definition binding;
otherwise, the defined id will not typeset correctly within the definition.

Each arg-spec must have one of the following forms:

(arg-id contract-expr-datum)

An argument whose contract is specified by contract-expr-datum which is
typeset via racketblock0.

(arg-id contract-expr-datum default-expr)

Like the previous case, but with a default value. All arguments with a default
value must be grouped together, but they can be in the middle of required argu-
ments.

(keyword arg-id contract-expr-datum)

Like the first case, but for a keyword-based argument.

(keyword arg-id contract-expr-datum default-expr)

Like the previous case, but with a default value.

...

Any number of the preceding argument. This form is normally used at the
end, but keyword-based arguments can sensibly appear afterward. See also the
documentation for append for a use of ... before the last argument.

...+

One or more of the preceding argument (normally at the end, like ...).

73

The result-contract-expr-datum is typeset via racketblock0, and it represents a
contract on the procedure’s result.

The decoded pre-flow documents the procedure. In this description, references to arg-

ids using racket, racketblock, etc. are typeset as procedure arguments.

The typesetting of all information before the pre-flows ignores the source layout, except
that the local formatting is preserved for contracts and default-values expressions. The infor-
mation is formatted to fit (if possible) in the number of characters specified by the current-
display-width parameter.

An optional #:kind specification chooses the decorative label, which defaults to "proce-

dure". A #f result for kind-string-expr uses the default, otherwise kind-string-

expr should produce a string. An alternate label should be all lowercase.

If #:id [src-id dest-id-expr] is supplied, then src-id is the identifier as it appears
in the prototype (to be replaced by a defining instance), and dest-id-expr produces the
identifier to be documented in place of src-id . This split between src-id and dest-id-

expr roles is useful for functional abstraction of defproc.

Examples:

@defproc[(make-sandwich [ingredients (listof ingredient?)])

sandwich?]{

Returns a sandwich given the right ingredients.

}

@defproc[#:kind "sandwich-maker"

(make-reuben [ingredient sauerkraut?] ...

[#:veggie? veggie? any/c #f])

sandwich?]{

Produces a reuben given some number of @racket[ingredient]s.

If @racket[veggie?] is @racket[#f], produces a standard

reuben with corned beef. Otherwise, produces a vegetable

reuben.

}

(defproc* maybe-kind maybe-id

([prototype

result-contract-expr-datum] ...)

pre-flow ...)

Like defproc, but for multiple cases with the same id.

When an id has multiple calling cases, they must be defined with a single defproc*, so that

74

a single definition point exists for the id. However, multiple distinct ids can also be defined
by a single defproc*, for the case that it’s best to document a related group of procedures
at once.

Examples:

@defproc[((make-pb&j)

(make-pb&j [jelly jelly?]))

sandwich?]{

Returns a peanut butter and jelly sandwich. If @racket[jelly]

is provided, then it is used instead of the standard (grape)

jelly.

}

(defform maybe-kind maybe-id maybe-literals form-datum

maybe-contracts

pre-flow ...)

maybe-kind =
| #:kind kind-string-expr

maybe-id =
| #:id id

| #:id [id id-expr]

maybe-literals =
| #:literals (literal-id ...)

maybe-contracts =
| #:contracts ([subform-datum contract-expr-datum]

...)

Produces a sequence of flow elements (encapsulated in a splice) to document a syntatic
form named by id (or the result of id-expr) whose syntax is described by form-datum .
If no #:id is used to specify id , then form-datum must have the form (id . datum).

If #:kind kind-string-expr is supplied, it is used in the same way as for defproc, but
the default kind is "syntax".

If #:id [id id-expr] is supplied, then id is the identifier as it appears in the form-

datum (to be replaced by a defining instance), and id-expr produces the identifier to be
documented. This split between id and id-expr roles is useful for functional abstraction
of defform.

The id (or result of id-expr) is indexed, and it is also registered so that racket-typeset
uses of the identifier (with the same for-label binding) are hyperlinked to this documentation.

75

The defmodule or declare-exporting requirements, as well as the binding requirements
for id (or result of id-expr), are the same as for defproc.

The decoded pre-flow documents the form. In this description, a reference to any identi-
fier in form-datum via racket, racketblock, etc. is typeset as a sub-form non-terminal.
If #:literals clause is provided, however, instances of the literal-ids are typeset nor-
mally (i.e., as determined by the enclosing context).

If a #:contracts clause is provided, each subform-datum (typically an identifier that
serves as a meta-variable in form-datum) is shown as producing a value that must satisfy
the contract described by contract-expr-datum . Use #:contracts only to specify con-
straints on a value produced by an expression; for constraints on the syntax of a subform-

datum , use grammar notation instead, possibly through an auxiliary grammar specified us-
ing defform/subs.

The typesetting of form-datum , subform-datum , and contract-expr-datum preserves
the source layout, like racketblock.

Examples:

@defform[(sandwich-promise sandwich-expr)

#:contracts ([sandwich-expr sandwich?])]{

Returns a promise to construct a sandwich. When forced, the promise

will produce the result of @racket[sandwich-expr].

}

@defform[#:literals (sandwich mixins)

(sandwich-promise* [sandwich sandwich-expr]

[mixins ingredient-expr ...])

#:contracts ([sandwich-expr sandwich?]

[ingreient-expr ingredient?])]{

Returns a promise to construct a sandwich. When forced, the promise

will produce the result of @racket[sandwich-

expr]. Each result of

the @racket[ingredient-expr]s will be mixed into the resulting

sandwich.

}

(defform* maybe-kind maybe-id maybe-literals [form-datum ...+]

maybe-contracts

pre-flow ...)

Like defform, but for multiple forms using the same id .

Examples:

76

@defform*[((call-with-current-sandwich expr)

(call-with-current-sandwich expr sandwich-handler-

expr))]{

Runs @racket[expr] and passes it the value of the current

sandwich. If @racket[sandwich-handler-expr] is provided, its result

is invoked when the current sandwich is eaten.

}

(defform/subs maybe-kind maybe-id maybe-literals form-datum

([nonterm-id clause-datum ...+] ...)

maybe-contracts

pre-flow ...)

Like defform, but including an auxiliary grammar of non-terminals shown with the id

form. Each nonterm-id is specified as being any of the corresponding clause-datums,
where the formatting of each clause-datum is preserved.

Examples:

@defform/subs[(sandwich-factory maybe-name factory-component ...)

[(maybe-name (code:line)

name)

(factory-component (code:line #:protein protein-

expr)

[vegetable vegetable-expr])]]{

Constructs a sandwich factory. If @racket[maybe-

name] is provided,

the factory will be named. Each of the @racket[factory-

component]

clauses adds an additional ingredient to the sandwich pipeline.

}

(defform*/subs maybe-kind maybe-id maybe-literals [form-datum ...+]

([nonterm-id clause-datum ...+] ...)

maybe-contracts

pre-flow ...)

Like defform/subs, but for multiple forms for id .

(defform/none maybe-kind maybe-literal form-datum maybe-contracts

pre-flow ...)

Like defform, but without registering a definition.

77

(defidform maybe-kind id pre-flow ...)

Like defform, but with a plain id as the form.

(defidform/inline id)
(defidform/inline (unsyntax id-expr))

Like defidform, but id (or the result of id-expr , analogous to defform) is typeset as an
inline element. Use this form sparingly, because the typeset form does not stand out to the
reader as a specification of id .

(specform maybe-literals datum maybe-contracts

pre-flow ...)

Like defform, but without indexing or registering a definition, and with indenting on the
left for both the specification and the pre-flows.

(specsubform maybe-literals datum maybe-contracts

pre-flow ...)

Similar to defform, but without any specific identifier being defined, and the table and flow
are typeset indented. This form is intended for use when refining the syntax of a non-terminal
used in a defform or other specsubform. For example, it is used in the documentation for
defproc in the itemization of possible shapes for arg-spec .

The pre-flows list is parsed as a flow that documents the procedure. In this description, a
reference to any identifier in datum is typeset as a sub-form non-terminal.

(specsubform/subs maybe-literals datum

([nonterm-id clause-datum ...+] ...)

maybe-contracts

pre-flow ...)

Like specsubform, but with a grammar like defform/subs.

(specspecsubform maybe-literals datum maybe-contracts

pre-flow ...)

Like specsubform, but indented an extra level. Since using specsubform within the body
of specsubform already nests indentation, specspecsubform is for extra indentation with-
out nesting a description.

(specspecsubform/subs maybe-literals datum

([nonterm-id clause-datum ...+] ...)

maybe-contracts

pre-flow ...)

78

Like specspecsubform, but with a grammar like defform/subs.

(defparam id arg-id contract-expr-datum pre-flow ...)

Like defproc, but for a parameter. The contract-expr-datum serves as both the result
contract on the parameter and the contract on values supplied for the parameter. The arg-id
refers to the parameter argument in the latter case.

Examples:

@defparam[current-sandwich sandwich sandwich?]{

A parameter that defines the current sandwich for operations that

involve eating a sandwich.

}

(defboolparam id arg-id pre-flow ...)

Like defparam, but the contract on a parameter argument is any/c, and the contract on the
parameter result is boolean?.

(defthing maybe-kind id contract-expr-datum pre-flow ...)

Like defproc, but for a non-procedure binding.

If #:kind kind-string-expr is supplied as maybe-kind , it is used in the same way as
for defproc, but the default kind is "value".

Examples:

@defthing[moldy-sandwich sandwich?]

Don't eat this. Provided for backwards compatibility.

}

(defstruct* struct-name ([field-name contract-expr-datum] ...)

maybe-mutable maybe-non-opaque maybe-constructor

pre-flow ...)

79

(defstruct struct-name ([field-name contract-expr-datum] ...)

maybe-mutable maybe-non-opaque maybe-constructor

pre-flow ...)

struct-name = id

| (id super-id)

maybe-mutable =
| #:mutable

maybe-non-opaque =
| #:prefab

| #:transparent

maybe-constructor =
| #:constructor-name constructor-id

| #:extra-constructor-name constructor-id

Similar to defform or defproc, but for a structure definition. The defstruct* form cor-
responds to struct, while defstruct corresponds to define-struct.

Examples:

@defstruct[sandwich ([protein ingredient?] [sauce ingredient?])]{

A strucure type for sandwiches. Sandwiches are a pan-

human foodstuff

composed of a partially-enclosing bread material and various

ingredients.

}

(deftogether [def-expr ...] pre-flow ...)

Combines the definitions created by the def-exprs into a single definition box. Each def-

expr should produce a definition point via defproc, defform, etc. Each def-expr should
have an empty pre-flow ; the decoded pre-flow sequence for the deftogether form
documents the collected bindings.

Examples:

@deftogether[(@defthing[test-sandwich-1 sandwich?]

@defthing[test-sandwich-2 sandwich?])]{

Two high-quality sandwiches. These are provided for convenience

in writing test cases

}

80

(racketgrammar maybe-literals id clause-datum ...+)

maybe-literals =
| #:literals (literal-id ...)

Creates a table to define the grammar of id . Each identifier mentioned in a clause-datum
is typeset as a non-terminal, except for the identifiers listed as literal-ids, which are
typeset as with racket.

(racketgrammar* maybe-literals [id clause-datum ...+] ...)

Like racketgrammar, but for typesetting multiple productions at once, aligned around the
= and |.

(defidentifier id

[#:form? form?

#:index? index?

#:show-libs? show-libs?]) → element?

id : identifier?

form? : boolean? = #f

index? : boolean? = #t

show-libs? : boolean? = #t

Typesets id as a Racket identifier, and also establishes the identifier as the definition of a
binding in the same way as defproc, defform, etc. As always, the library that provides
the identifier must be declared via defmodule or declare-exporting for an enclosing
section.

If form? is a true value, then the identifier is documented as a syntactic form, so that uses of
the identifier (normally including id itself) are typeset as a syntactic form.

If index? is a true value, then the identifier is registered in the index.

If show-libs? is a true value, then the identifier’s defining module may be exposed in the
typeset form (e.g., when viewing HTML and the mouse hovers over the identifier).

(schemegrammar maybe-literals id clause-datum ...+)

(schemegrammar* maybe-literals [id clause-datum ...+] ...)

Compatibility aliases for racketgrammar and racketgrammar*.

(current-display-width) → exact-nonnegative-integer?

(current-display-width w) → void?

w : exact-nonnegative-integer?

Specifies the target maximum width in characters for the output of defproc and defstruct.

81

4.3.4 Documenting Classes and Interfaces

(defclass id super (intf-id ...) pre-flow ...)

super = super-id

| (mixin-id super)

Creates documentation for a class id that is a subclass of super and implements each
interface intf-id . Each identifier in super (except object%) and intf-id must be doc-
umented somewhere via defclass or definterface.

The decoding of the pre-flow sequence should start with general documentation about the
class, followed by constructor definition (see defconstructor), and then field and method
definitions (see defmethod). In rendered form, the constructor and method specification are
indented to visually group them under the class definition.

(defclass/title id super (intf-id ...) pre-flow ...)

Like defclass, also includes a title declaration with the style 'hidden. In addition, the
constructor and methods are not left-indented.

This form is normally used to create a section to be rendered on its own HTML. The 'hid-
den style is used because the definition box serves as a title.

(definterface id (intf-id ...) pre-flow ...)

Like defclass, but for an interfaces. Naturally, pre-flow should not generate a construc-
tor declaration.

(definterface/title id (intf-id ...) pre-flow ...)

Like definterface, but for single-page rendering as in defclass/title.

(defmixin id (domain-id ...) (range-id ...) pre-flow ...)

Like defclass, but for a mixin. Any number of domain-id classes and interfaces are
specified for the mixin’s input requires, and any number of result classes and (more likely)
interfaces are specified for the range-id . The domain-ids supply inherited methods.

(defmixin/title id (domain-id ...) (range-id ...) pre-flow ...)

Like defmixin, but for single-page rendering as in defclass/title.

(defconstructor (arg-spec ...) pre-flow ...)

arg-spec = (arg-id contract-expr-datum)

| (arg-id contract-expr-datum default-expr)

82

Like defproc, but for a constructor declaration in the body of defclass, so no return
contract is specified. Also, the new-style keyword for each arg-spec is implicit from the
arg-id .

(defconstructor/make (arg-spec ...) pre-flow ...)

Like defconstructor, but specifying by-position initialization arguments (for use with
make-object) instead of by-name arguments (for use with new).

(defconstructor*/make [(arg-spec ...) ...] pre-flow ...)

Like defconstructor/make, but with multiple constructor patterns analogous defproc*.

(defconstructor/auto-super [(arg-spec ...) ...] pre-flow ...)

Like defconstructor, but the constructor is annotated to indicate that additional initializa-
tion arguments are accepted and propagated to the superclass.

(defmethod maybe-mode (id arg-spec ...)

result-contract-expr-datum

pre-flow ...)

maybe-mode =
| #:mode override

| #:mode override-final

| #:mode public-final

| #:mode augment

| #:mode augment-final

| #:mode pubment

| #:mode extend

| #:mode extend-final

Like defproc, but for a method within a defclass or definterface body.

The maybe-mode specifies whether the method overrides a method from a superclass, and so
on. (For these purposes, use #:mode override when refining a method of an implemented
interface.) The extend mode is like override, but the description of the method should
describe only extensions to the superclass implementation.

(defmethod* maybe-mode

([(id arg-spec ...)

result-contract-expr-datum] ...)

pre-flow ...)

Like defproc*, but for a method within a defclass or definterface body. The maybe-
mode specification is as in defmethod.

83

(method class/intf-id method-id)

Creates a hyperlink to the method named by method-id in the class or interface named by
class/intf-id . The hyperlink names the method, only; see also xmethod.

For-label binding information is used with class/intf-id , but not method-id .

(xmethod class/intf-id method-id)

Like method, but the hyperlink shows both the method name and the containing
class/interface.
(this-obj)

Within a defmethod or similar form, typesets as a meta-variable that stands for the target
of the method call. Use (this-obj) to be more precise than prose such as “this method’s
object.”

4.3.5 Documenting Signatures

(defsignature id (super-id ...) pre-flow ...)

Defines a signature id that extends the super-id signatures. Any elements defined in de-
coded pre-flows—including forms, procedures, structure types, classes, interfaces, and
mixins—are defined as members of the signature instead of direct bindings. These defini-
tions can be referenced through sigelem instead of racket.

The decoded pre-flows inset under the signature declaration in the typeset output, so no
new sections, etc. can be started.

(defsignature/splice id (super-id ...) pre-flow ...)

Like defsignature, but the decoded pre-flows are not typeset under the signature decla-
ration, and new sections, etc. can be started in the pre-flows.

(signature-desc pre-flow ...) → any/c

pre-flow : pre-flow?

Produces an opaque value that defsignature recognizes to outdent in the typeset form.
This is useful for text describing the signature as a whole to appear right after the signature
declaration.
(sigelem sig-id id)

Typesets the identifier id with a hyperlink to its definition as a member of the signature
named by sig-id .

84

4.3.6 Various String Forms

(aux-elem pre-content ...) → element?

pre-content : pre-content?

Like elem, but adds an 'aux style property.

(defterm pre-content ...) → element?

pre-content : pre-content?

Typesets the decoded pre-content as a defined term (e.g., in italic). Consider using
deftech instead, though, so that uses of tech can hyper-link to the definition.

(onscreen pre-content ...) → element?

pre-content : pre-content?

Typesets the decoded pre-content as a string that appears in a GUI, such as the name of a
button.

(menuitem menu-name item-name) → element?
menu-name : string?

item-name : string?

Typesets the given combination of a GUI’s menu and item name.

(filepath pre-content ...) → element?

pre-content : pre-content?

Typesets the decoded pre-content as a file name (e.g., in typewriter font and in quotes).

(exec pre-content ...) → element?

pre-content : pre-content?

Typesets the decoded pre-content as a command line (e.g., in typewriter font).

(envvar pre-content ...) → element?

pre-content : pre-content?

Typesets the given decoded pre-content as an environment variable (e.g., in typewriter
font).

(Flag pre-content ...) → element?

pre-content : pre-content?

85

Typesets the given decoded pre-content as a flag (e.g., in typewriter font with a leading
-).

(DFlag pre-content ...) → element?

pre-content : pre-content?

Typesets the given decoded pre-content a long flag (e.g., in typewriter font with two
leading -s).

(PFlag pre-content ...) → element?

pre-content : pre-content?

Typesets the given decoded pre-content as a + flag (e.g., in typewriter font with a leading
+).

(DPFlag pre-content ...) → element?

pre-content : pre-content?

Typesets the given decoded pre-content a long + flag (e.g., in typewriter font with two
leading +s).

4.3.7 Links

See also §3.1.5 “Links”.

(racketlink id #:style style-expr pre-content ...)

(racketlink id pre-content ...)

id : identifier?

pre-content : pre-content?

An element where the decoded pre-content is hyperlinked to the definition of id .

(schemelink id pre-content ...)

Compatibility alias for racketlink.

(link url

pre-content ...

[#:underline? underline?

#:style style]) → element?

url : string?

pre-content : any/c

underline? : any/c = #t

style : (or/c style? string? symbol? #f)

= (if underline? #f "plainlink")

86

Alias of hyperlink for backward compatibility.

(other-manual module-path

[#:underline? underline?]) → element?

module-path : module-path?

underline? : any/c = #t

Alias of other-doc for backward compatibility.

(deftech pre-content

...

[#:normalize? normalize?

#:style? style?]) → element?

pre-content : pre-content?

normalize? : any/c = #t

style? : any/c = #t

Produces an element for the decoded pre-content , and also defines a term that can be
referenced elsewhere using tech.

The content->string result of the decoded pre-content is used as a key for references;
if normalize? is true, then the string is normalized as follows:

• The string is case-folded.

• A trailing “ies” is replaced by “y”.

• A trailing “s” is removed.

• Consecutive hyphens and whitespaces are all replaced by a single space.

These normalization steps help support natural-language references that differ slightly from
a defined form. For example, a definition of “bananas” can be referenced with a use of
“banana”.

If style? is true, then defterm is used on pre-content .

(tech pre-content

...

[#:key key

#:normalize? normalize?

#:doc module-path

#:tag-prefixes prefixes]) → element?

pre-content : pre-content?

key : (or/c string? #f) = #f

normalize? : any/c = #t

module-path : (or/c module-path? #f) = #f

prefixes : (or/c (listof string?) #f) = #f

87

Produces an element for the decoded pre-content , and hyperlinks it to the definition of the
key as established by deftech. If key is false, the decoded content is converted to a string
(using content->string) to use as a key; in either case, if normalize? is true, the key is
normalized in the same way as for deftech. The #:doc and #:tag-prefixes arguments
support cross-document and section-specific references, like in secref.

With the default style files, the hyperlink created by tech is somewhat quieter than most
hyperlinks: the underline in HTML output is gray, instead of blue, and the term and underline
turn blue only when the mouse is moved over the term.

In some cases, combining both natural-language uses of a term and proper linking can re-
quire some creativity, even with the normalization performed on the term. For example,
if “bind” is defined, but a sentence uses the term “binding,” the latter can be linked to the
former using @tech{bind}ing.

(techlink pre-content

...

[#:key key

#:normalize? normalize?

#:doc module-path

#:tag-prefixes prefixes]) → element?

pre-content : pre-content?

key : (or/c string? #f) = #f

normalize? : any/c = #t

module-path : (or/c module-path? #f) = #f

prefixes : (or/c (listof string?) #f) = #f

Like tech, but the link is not quiet. For example, in HTML output, a hyperlink underline
appears even when the mouse is not over the link.

4.3.8 Indexing

See also §3.1.6 “Indexing”.

(indexed-racket datum ...)

A combination of racket and as-index, with the following special cases when a single
datum is provided:

• If datum is a quote form, then the quote is removed from the key (so that it’s sorted
using its unquoted form).

• If datum is a string, then quotes are removed from the key (so that it’s sorted using
the string content).

88

(indexed-scheme datum ...)

Compatibility alias for indexed-racket.

(idefterm pre-content ...) → element?

pre-content : pre-content?

Combines as-index and defterm. The content normally should be plural, rather than
singular. Consider using deftech, instead, which always indexes.

(pidefterm pre-content ...) → element?

pre-content : pre-content?

Like idefterm, but plural: adds an “s” on the end of the content for the index entry. Con-
sider using deftech, instead.

(indexed-file pre-content ...) → element?

pre-content : pre-content?

A combination of file and as-index, but where the sort key for the index iterm does not
include quotes.

(indexed-envvar pre-content ...) → element?

pre-content : pre-content?

A combination of envvar and as-index.

4.3.9 Images

(image/plain filename-relative-to-source

pre-element ...) → element?

filename-relative-to-source : string?

pre-element : any/c

An alias for image for backward compatibility.

4.3.10 Bibliography
See also
scriblib/autobib.

(cite key ...+) → element?

key : string?

89

Links to a bibliography entry, using the keys both to indicate the bibliography entry and, in
square brackets, as the link text.

(bibliography [#:tag tag] entry ...) → part?

tag : string? = "doc-bibliography"

entry : bib-entry?

Creates a bibliography part containing the given entries, each of which is created with bib-

entry. The entries are typeset in order as given.

(bib-entry #:key key

#:title title

[#:is-book? is-book?

#:author author

#:location location

#:date date

#:url url]) → bib-entry?

key : string?

title : (or/c #f pre-content?)

is-book? : boolean? = #f

author : (or/c #f pre-content?) = #f

location : (or/c #f pre-content?) = #f

date : (or/c #f pre-content?) = #f

url : (or/c #f pre-content?) = #f

Creates a bibliography entry. The key is used to refer to the entry via cite. The other
arguments are used as elements in the entry:

• title is the title of the cited work. It will be surrounded by quotes in typeset form if
is-book? is #f, otherwise it is typeset via italic.

• author lists the authors. Use names in their usual order (as opposed to “last, first”),
and separate multiple names with commas using “and” before the last name (where
there are multiple names). The author is typeset in the bibliography as given, or it is
omitted if given as #f.

• location names the publication venue, such as a conference name or a journal with
volume, number, and pages. The location is typeset in the bibliography as given, or
it is omitted if given as #f.

• date is a date, usually just a year (as a string). It is typeset in the bibliography as
given, or it is omitted if given as #f.

• url is an optional URL. It is typeset in the bibliography using tt and hyperlinked, or
it is omitted if given as #f.

90

(bib-entry? v) → boolean?

v : any/c

Returns #t if v is a bibliography entry created by bib-entry, #f otherwise.

4.3.11 Miscellaneous

(t pre-content ...) → paragraph?

pre-content : pre-content?

Wraps the decoded pre-content as a paragraph.

etc : element?

Like "etc.", but with an abbreviation-ending period for use in the middle of a sentence.

PLaneT : element?

"PLaneT" (to help make sure you get the letters in the right case).

(hash-lang) → element?

Returns an element for #lang that is hyperlinked to an explanation.

void-const : element?

Returns an element for #<void>.

undefined-const : element?

Returns an element for #<undefined>.

(commandline pre-content ...) → paragraph?

pre-content : pre-content?

Produces an inset command-line example (e.g., in typewriter font).

(centerline pre-flow ...) → nested-flow?

pre-flow : pre-flow?

An alias for centered for backward compatibility.

91

(math pre-content ...) → element?

pre-content : any/c

The decoded pre-content is further transformed:

• Any immediate 'rsquo is converted to 'prime.

• Parentheses and sequences of decimal digits in immediate strings are left as-is, but
any other immediate string is italicized.

• When _ appears before a non-empty sequence of numbers and letters, the sequence is
typeset as a subscript.

• When ^ appears before a non-empty sequence of numbers and letters, the sequence is
typeset as a superscript.

(filebox filename pre-flow ...) → block?

filename : (or/c string? element?)

pre-flow : pre-flow?

Typesets the pre-flows as the content of filename . For example, the content may be inset
on the page with filename above it. If filename is a string, it is passed to "filepath"

to obtain an element.

4.3.12 Index-Entry Descriptions

(require scribble/manual-struct)

The scribble/manual-struct library provides types used to describe index entries cre-
ated by scribble/manual functions. These structure types are provided separate from
scribble/manual so that scribble/manual need not be loaded when deserializing cross-
reference information that was generated by a previously rendered document.

(struct module-path-index-desc ()

#:extra-constructor-name make-module-path-index-desc)

Indicates that the index entry corresponds to a module definition via defmodule and com-
pany.

(struct exported-index-desc (name from-libs)

#:extra-constructor-name make-exported-index-desc)

name : symbol?

from-libs : (listof module-path?)

92

Indicates that the index entry corresponds to the definition of an exported binding. The
name field and from-libs list correspond to the documented name of the binding and the
primary modules that export the documented name (but this list is not exhaustive, because
new modules can re-export the binding).

(struct form-index-desc exported-index-desc ()

#:extra-constructor-name make-form-index-desc)

Indicates that the index entry corresponds to the definition of a syntactic form via defform
and company.

(struct procedure-index-desc exported-index-desc ()

#:extra-constructor-name make-procedure-index-desc)

Indicates that the index entry corresponds to the definition of a procedure binding via def-
proc and company.

(struct thing-index-desc exported-index-desc ()

#:extra-constructor-name make-thing-index-desc)

Indicates that the index entry corresponds to the definition of a binding via defthing and
company.

(struct struct-index-desc exported-index-desc ()

#:extra-constructor-name make-struct-index-desc)

Indicates that the index entry corresponds to the definition of a structure type via defstruct
and company.

(struct class-index-desc exported-index-desc ()

#:extra-constructor-name make-class-index-desc)

Indicates that the index entry corresponds to the definition of a class via defclass and
company.

(struct interface-index-desc exported-index-desc ()

#:extra-constructor-name make-interface-index-desc)

Indicates that the index entry corresponds to the definition of an interface via definterface
and company.

(struct mixin-index-desc exported-index-desc ()

#:extra-constructor-name make-mixin-index-desc)

Indicates that the index entry corresponds to the definition of a mixin via defmixin and
company.

93

(struct method-index-desc exported-index-desc (method-name

class-tag)

#:extra-constructor-name make-method-index-desc)

method-name : symbol?

class-tag : tag?

Indicates that the index entry corresponds to the definition of an method via defmethod

and company. The name field from exported-index-desc names the class or interface
that contains the method. The method-name field names the method. The class-tag field
provides a pointer to the start of the documentation for the method’s class or interface.

(struct constructor-index-desc exported-index-desc (class-tag)

#:extra-constructor-name make-constructor-index-desc)

class-tag : tag?

Indicates that the index entry corresponds to a constructor via defconstructor and com-
pany. The name field from exported-index-desc names the class or interface that con-
tains the method. The class-tag field provides a pointer to the start of the documentation
for the method’s class or interface.

4.4 Racket

(require scribble/racket)

(require scribble/scheme)

The scribble/racket library (or scribble/scheme for backward compatibility) pro-
vides utilities for typesetting Racket code. The scribble/manual forms provide a higher-
level interface.

(define-code id typeset-expr)

(define-code id typeset-expr uncode-id)

(define-code id typeset-expr uncode-id d->s-expr)

(define-code id typeset-expr uncode-id d->s-expr stx-prop-expr)

Binds id to a form similar to racket or racketblock for typesetting code. The form
generated by define-code handles source-location information, escapes via unquote by
default, preserves binding and property information, and supports element transformers.

The supplied typeset-expr expression should produce a procedure that performs the ac-
tual typesetting. This expression is normally to-element or to-paragraph. The argument
supplied to typeset-expr is normally a syntax object, but more generally it is the result of
applying d->s-expr .

94

The optional uncode-id specifies the default escape from literal code to be recognized by
id , and the default for uncode-id is unsyntax. A use of the id form can specify an
alternate escape via #:escape, as in racketblock and racket.

The optional d->s-expr should produce a procedure that accepts three arguments suitable
for datum->syntax: a syntax object or #f, an arbitrary value, and a vector for a source
location. The result should record as much or as little of the argument information as needed
by typeset-expr to typeset the code. Normally, d->s-expr is datum->syntax.

The stx-prop-expr should produce a procedure for recording a 'paren-shape property
when the source expression uses with id has such a property. The default is syntax-

property.

(to-paragraph v

[#:expr? expr?

#:color? color?

#:wrap-elem wrap-elem]) → block?

v : any/c

expr? : any/c = #f

color? : any/c = #t

wrap-elem : (element? . -> . element?) = (lambda (e) e)

Typesets an S-expression that is represented by a syntax object, where source-location infor-
mation in the syntax object controls the generated layout.

Identifiers that have for-label bindings are typeset and hyperlinked based on defi-
nitions declared elsewhere (via defproc, defform, etc.). The identifiers code:line,
code:comment, code:blank, code:hilite, and code:quote are handled as in rack-

etblock, as are identifiers that start with _.

In addition, the given v can contain var-id, shaped-parens, just-context, or
literal-syntax structures to be typeset specially (see each structure type for details),
or it can contain element structures that are used directly in the output.

If expr? is true, then v is rendered in expression style, much like print with the print-

as-expression parameter set to #t. In that case, for-label bindings on identifiers are
ignored, since the identifiers are all quoted in the output. Typically, expr? is set to true for
printing result values.

If color? is #f, then the output is typeset without coloring.

The wrap-elem procedure is applied to each element constructed for the resulting block.
When combined with #f for color?, for example, the wrap-elem procedure can be used
to give a style to an element.

95

((to-paragraph/prefix prefix1

prefix

suffix)

v

[#:expr? expr?

#:color? color?

#:wrap-elem wrap-elem]) → block?

prefix1 : any/c

prefix : any/c

suffix : any/c

v : any/c

expr? : any/c = #f

color? : any/c = #f

wrap-elem : (element? . -> . element?) = (lambda (e) e)

Like to-paragraph, but prefix1 is prefixed onto the first line, prefix is prefix to any
subsequent line, and suffix is added to the end. The prefix1 , prefix , and suffix

arguments are used as content, except that if suffix is a list of elements, it is added to the
end on its own line.

(to-element v [#:expr? expr?]) → element?

v : any/c

expr? : any/c = #f

Like to-paragraph, except that source-location information is mostly ignored, since the
result is meant to be inlined into a paragraph.

(to-element/no-color v [#:expr? expr?]) → element?

v : any/c

expr? : any/c = #f

Like to-element, but for-syntax bindings are ignored, and the generated text is uncol-
ored. This variant is typically used to typeset results.

(struct var-id (sym)

#:extra-constructor-name make-var-id)

sym : (or/c symbol? identifier?)

When to-paragraph and variants encounter a var-id structure, it is typeset as sym in the
variable font, like racketvarfont—unless the var-id appears under quote or quasiquote,
in which case sym is typeset as a symbol.

(struct shaped-parens (val shape)

#:extra-constructor-name make-shaped-parens)

val : any/c

shape : char?

96

When to-paragraph and variants encounter a shaped-parens structure, it is typeset like
a syntax object that has a 'paren-shape property with value shape.

(struct long-boolean (val)

#:extra-constructor-name make-long-boolean)

val : boolean?

When to-paragraph and variants encounter a long-boolean structure, it is typeset as
#true or #false, as opposed to #t or #f.

(struct just-context (val context)

#:extra-constructor-name make-just-context)

val : any/c

context : syntax?

When to-paragraph and variants encounter a just-context structure, it is typeset using
the source-location information of val just the lexical context of ctx.

(struct literal-syntax (stx)

#:extra-constructor-name make-literal-syntax)

stx : any/c

When to-paragraph and variants encounter a literal-syntax structure, it is typeset as
the string form of stx. This can be used to typeset a syntax-object value in the way that the
default printer would represent the value.

(element-id-transformer? v) → boolean?
v : any/c

Provided for-syntax; returns #t if v is an element transformer created by make-element-
id-transformer, #f otherwise.

(make-element-id-transformer proc) → element-id-transformer?

proc : (syntax? . -> . syntax?)

Provided for-syntax; creates an element transformer. When an identifier has a trans-
former binding to an element transformer, then forms generated by define-code (including
racket and racketblock) typeset the identifier by applying the proc to the identifier. The
result must be an expression whose value, typically an element, is passed on to functions
like to-paragraph .

(variable-id? v) → boolean?
v : any/c

Provided for-syntax; returns #t if v is an element transformer created by make-

variable-id, #f otherwise.

97

(make-variable-id sym) → variable-id?

sym : (or/c symbol? identifier?)

Provided for-syntax; like make-element-id-transformer for a transformer that pro-
duces sym typeset as a variable (like racketvarfont)—unless it appears under quote or
quasiquote, in which case sym is typeset as a symbol.

output-color : style?

input-color : style?

input-background-color : style?

no-color : style?

reader-color : style?

result-color : style?

keyword-color : style?

comment-color : style?

paren-color : style?

meta-color : style?

value-color : style?

symbol-color : style?

variable-color : style?

opt-color : style?

error-color : style?

syntax-link-color : style?

value-link-color : style?

module-color : style?

module-link-color : style?

block-color : style?

highlighted-color : style?

Styles that are used for coloring Racket programs, results, and I/O.

4.5 Evaluation and Examples

(require scribble/eval)

The scribble/eval library provides utilities for evaluating code at document-build time
and incorporating the results in the document, especially to show example uses of defined
procedures and syntax.

(interaction maybe-eval maybe-escape datum ...)

98

maybe-eval =
| #:eval eval-expr

maybe-escape =
| #:escape escape-id

Like racketinput, except that the result for each input datum is shown on the next line.
The result is determined by evaluating the quoted form of the datum using the evaluator
produced by eval-expr , if provided.

The eval-expr must produce a sandbox evaluator via make-evaluator or make-module-
evaluator with the sandbox-output and sandbox-error-output parameters set to
'string. If eval-expr is not provided, an evaluator is created using make-base-eval.
See also make-eval-factory.

If the value of current-print in the sandbox is changed from its default value, or if
print-as-expression in the sandbox is set to #f, then each evaluation result is formatted
to a port by applying (current-print) to the value; the output port is set to a pipe that
supports specials in the sense of write-special, and non-character values written to the
port are used as content. Otherwise, when the default current-print is in place, result
values are typeset using to-element/no-color.

Certain patterns in datum are treated specially:

• A datum of the form (code:line code-datum (code:comment comment-

datum ...)) is treated as code-datum for evaluation.

• Other uses of code:comment and code:blank are stripped from each datum before
evaluation.

• A datum of the form (eval:alts show-datum eval-datum) is treated as show-
datum for typesetting and eval-datum for evaluation.

• A datum of the form (eval:check eval-datum expect-datum) is treated like
eval-datum , but check-datum is also evaluated, and an error is raised if they are
not equal?.

• A datum of the form (eval:result content-expr out-expr err-expr) in-
volves no sandboxed evaluation; instead, the content result of content-expr is used
as the typeset form of the result, out-expr is treated as output printed by the expres-
sion, and err-expr is error output printed by the expression. The out-expr and/or
err-expr can be omitted, in which case they default to empty strings.

Normally, eval:result is used in the second part of an eval:alts combination.

• A datum of the form (eval:results content-list-expr out-expr err-

expr) is treated like an eval:result form, except that content-list-expr

should produce a list of content for multiple results of evaluation. As with
eval:result, out-expr and err-expr are optional.

99

As an example,

#lang scribble/manual

@(require racket/sandbox

scribble/eval)

@(define my-evaluator

(parameterize ([sandbox-output 'string]

[sandbox-error-output 'string])

(make-evaluator 'typed/racket/base)))

@interaction[#:eval my-evaluator

(: my-sqr (Real -> Real))

(define (my-sqr x)

(* x x))

(my-sqr 42)]

uses an evaluator whose language is typed/racket/base.

(interaction0 maybe-eval maybe-escape datum ...)

Like interaction, but without insetting the code via nested.

(interaction-eval maybe-eval maybe-escape datum)

Like interaction, evaluates the quoted form of datum , but returns the empty string.

(interaction-eval-show maybe-eval maybe-escape datum)

Like interaction-eval, but produces an element representing the printed form of the
evaluation result.

(racketblock+eval maybe-eval maybe-escape datum ...)

Combines racketblock and interaction-eval.

(racketblock0+eval maybe-eval maybe-escape datum ...)

Combines racketblock0 and interaction-eval.

(racketmod+eval maybe-eval maybe-escape name datum ...)

Combines racketmod and interaction-eval.

(def+int maybe-eval maybe-escape defn-datum expr-datum ...)

100

Like interaction, except the defn-datum is typeset as for racketblock (i.e., no prompt)
and a line of space is inserted before the expr-datums.

(defs+int maybe-eval maybe-escape (defn-datum ...) expr-datum ...)

Like def+int, but for multiple leading definitions.

(examples maybe-eval maybe-escape datum ...)

Like interaction, but with an “Examples:” label prefixed.

(defexamples maybe-eval maybe-escape datum ...)

Like examples, but each definition using define or define-struct among the datums is
typeset without a prompt, and with line of space after it.

(make-base-eval [#:pretty-print? pretty-print?])
→ (any/c . -> . any)

pretty-print? : any/c = #t

Creates an evaluator using (make-evaluator 'racket/base), setting sandbox parame-
ters to disable limits, setting the outputs to 'string, and not adding extra security guards.

If pretty-print? is true, the sandbox’s printer is set to pretty-print-handler.

(make-base-eval-factory mod-paths

[#:pretty-print? pretty-print?])
→ (-> (any/c . -> . any))

mod-paths : (listof module-path?)

pretty-print? : any/c = #t

Produces a function that is like make-base-eval, except that each module in mod-paths is
attached to the evaluator’s namespace. The modules are loaded and instantiated once (when
the returned make-base-eval-like function is called the first time) and then attached to
each evaluator that is created.

(make-eval-factory mod-paths

[#:pretty-print? pretty-print?])
→ (-> (any/c . -> . any))

mod-paths : (listof module-path?)

pretty-print? : any/c = #t

Like make-base-eval-factory, but each module in mod-paths is also required into the
top-level environment for each generated evaluator.

101

(close-eval eval) → (one-of/c "")
eval : (any/c . -> . any)

Shuts down an evaluator produced by make-base-eval. Use close-eval when garbage
collection cannot otherwise reclaim an evaluator (e.g., because it is defined in a module
body).

(scribble-eval-handler)
→ ((any/c . -> . any) any/c boolean? . -> . any)

(scribble-eval-handler handler) → void?

handler : ((any/c . -> . any) any/c boolean? . -> . any)

A parameter that serves as a hook for evaluation. The evaluator to use is supplied as the first
argument to the parameter’s value, and the second argument is the form to evaluate. The last
argument is #t if exceptions are being captured (to display exception results), #f otherwise.

4.6 In-Source Documentation

The scribble/srcdoc and scribble/extract libraries support writing documentation
within the documented code along with an export contract, similar to using JavaDoc. With
this approach, a single contract specification is used both for the run-time contract and the
documentation of an exported binding.

The scribble/srcdoc library provides forms for exporting a binding with associated doc-
umentation. The scribble/extract library is used to pull scribble/srcdoc-based doc-
umentation into a Scribble document (perhaps for multiple libraries).

Although documentation is written with a library’s implementation when using scrib-

ble/srcdoc, the documentation creates no run-time overhead for the library. Similarly,
typesetting the documentation does not require running the library. The two phases (run
time versus documentation time) are kept separate in much the same way that the module
system keeps expansion-time code separate from run-time code, and documentation infor-
mation is recorded in a submodule to be separately loadable from the enclosing module.

For an example use, see the "file" collection’s "gif.rkt" source file and the correspond-
ing extraction in "scribblings/gif.scrbl". As that example illustrates, starting the
module declaration with

#lang at-exp

enables the @-reader, which is handy for writing documentation expressions.

102

4.6.1 Source Annotations for Documentation

(require scribble/srcdoc)

Documentation information generated by scribble/srcdoc forms are accumulated into
a srcdoc submodule. The generated submodule is accessed by the bindings of scrib-
ble/extract.

(for-doc require-spec ...)

A require sub-form for bindings that are needed at documentation time (and
documentation-expansion time, etc.) instead of run time (and expansion time, etc.). A
for-doc import has no effect on a normal use of the library; it affects only documenta-
tion extraction.

Typically, a library that uses scribble/srcdoc includes at least (require (for-doc

scribble/base scribble/manual)) to get core Racket forms and basic Scribble func-
tions to use in documentation expressions.

(proc-doc/names id contract arg-specs desc-expr)

arg-specs = ((arg-id ...) ((arg-id default-expr) ...))

| (arg-id ...)

contract = (-> arg ... result)

| (->* (mandatory ...) (optional ...) result)

| (case-> (-> arg ... result) ...)

mandatory = contract-expr

| keyword contract-expr

optional = contract-expr

| keyword contract-expr

A provide sub-form that exports id with the contract described by contract just like
using contract-out.

The arg-spec specifies the names of arguments and the default values, which are not nor-
mally written as part of a contract. They are combined with the contract expression to
generate the description of the binding in the documentation via defproc. The (arg-id

default-expr) pairs specify the names and default values of the optional arguments. If the
contract supports optional arguments, then the first arg-specs form must be used, otherwise
the second must be used.

The desc-expr is a documentation-time expression that produces prose to describe the
exported binding—that is, the last part of the generated defproc, so the description can
refer to the arg-ids using racket.

103

The normal requires of the enclosing library are effectively converted into for-label

requires when generating documentation, so that identifiers in the contracts are linked
to their corresponding documentation. Similarly, any binding that is available in the run-time
phase of the enclosing library can be referenced in documentation prose using the racket

form.

(proc-doc id contract desc-expr)

contract = (-> result)

| (->i (arg ...) () (values ress ...))

| (->i (arg ...) () #:pre (pre-id ...) condition (values ress ...))

| (->i (arg ...) () res)

| (->i (arg ...) () #:pre (pre-id ...) condition [name res])

| (->i (arg ...) () #:rest rest res)

| (->d (arg ...) () (values [id result] ...))

| (->d (arg ...) () #:pre-cond expr (values [id result] ...))

| (->d (arg ...) () [id result])

| (->d (arg ...) () #:pre-cond expr [id result])

| (->d (arg ...) () #:rest id rest [id result])

Like proc-doc, but supporting contract forms that embed argument names. Only a subset
of ->i and ->d forms are currently supported.

(thing-doc id contract-expr dec-expr)

Like proc-doc, but for an export of an arbitrary value.

(parameter-doc id (parameter/c contract-expr) arg-id desc-expr)

Like proc-doc, but for exporting a parameter.

(generate-delayed-documents)

Causes documentation information to be recorded as a macro that is expanded (along
with any for-doc imports) in the module that uses include-extracted or provide-
extracted, instead of within (a submodule of) the module that declares the information.

Delaying document generation in this way allows (for-doc (for-label)) imports
that would otherwise create cyclic module dependencies.

To avoid problems with accumulated for-doc imports across modules, generate-

delayed-documents declaration should appear before any for-doc import.

(require/doc require-spec ...)

A legacy shorthand for (require (for-doc require-spec ...)).

104

(provide/doc spec ...)

A legacy alternative to (provide spec ...)

4.6.2 Extracting Documentation from Source

(require scribble/extract)

(include-extracted module-path)

Expands to a sequence of documentation forms extracted from module-path , which is
expected to be a module that uses scribble/srcdoc (so that the module has a srcdoc

submodule).

(provide-extracted module-path)

Similar to include-extracted, but the documentation is packaged and exported as ex-
ported, instead of left inline.

Use this form in combination with include-previously-extracted when documenta-
tion from a single source is to be split and typeset among multiple documentation loca-
tions. The provide-extracted form extracts the documentation once, and then include-

previously-extracted form extracts documentation for specific bindings as needed.

(include-previously-extracted module-path regexp)

Similar to include-extracted, but instead of referring to the source that contains its own
documentation, module-path refers to a module that uses provide-extracted. The
include-previously-extracted form expands to documentation forms for all identi-
fiers whose string forms match regexp .

4.7 BNF Grammars

(require scribble/bnf)

The scribble/bnf library provides utilities for typesetting grammars.

For example,

@(let ([open @litchar{(}]

[close @litchar{)}])

105

@BNF[(list @nonterm{expr}

@nonterm{id}

@BNF-seq[open @kleeneplus[@nonterm{expr}] close]

@BNF-seq[open @litchar{lambda}

open @kleenestar[@nonterm{id}] close

@nonterm{expr} close]

@nonterm{val})

(list @nonterm{val}

@BNF-alt[@nonterm{number} @nonterm{primop}])

(list @nonterm{id}

@elem{any name except for @litchar{lambda}})])

produces the output

〈expr〉 ::= 〈id〉
| (〈expr〉+)

| (lambda (〈id〉*) 〈expr〉)

| 〈val〉
〈val〉 ::= 〈number〉 | 〈primop〉
〈id〉 ::= any name except for lambda

See also racketgrammar.

(BNF prod ...) → table?

prod : (cons element? (listof (or/c block? element?)))

Typesets a grammar table. Each production starts with an element (typically constructed
with nonterm) for the non-terminal being defined, and then a list of possibilities (typically
constructed with BNF-seq, etc.) to show on separate lines.

(nonterm pre-content ...) → element?

pre-content : any/c

Typesets a non-terminal: italic in angle brackets.

(BNF-seq elem ...) → element?

elem : element?

Typesets a sequence.

(BNF-seq-lines elems ...) → block?

elems : (listof element?)

Typesets a sequence that is broken into multiple lines, where each elems is one line.

(BNF-group pre-content ...) → element?

pre-content : any/c

106

Typesets a group surrounded by curly braces (so the entire group can be repeated, for exam-
ple).

(optional pre-content ...) → element?

pre-content : any/c

Typesets an optional element: in square brackets.

(kleenestar pre-content ...) → element?

pre-content : any/c

Typesets a 0-or-more repetition.

(kleeneplus pre-content ...) → element?

pre-content : any/c

Typesets a 1-or-more repetition.

(kleenerange n m pre-content ...) → element?

n : any/c

m : any/c

pre-content : any/c

Typesets a n -to-m repetition. The n and m arguments are converted to a string using (format
"∼a" n) and (format "∼a" m).

(BNF-alt elem ...) → element?
elem : element?

Typesets alternatives for a production’s right-hand side to appear on a single line. The result
is normally used as a single possibility in a production list for BNF.

BNF-etc : string?

A string to use for omitted productions or content.

4.8 Compatibility Libraries

4.8.1 Compatibility Structures And Processing

(require scribble/struct)

107

The scribble/struct compatibility library mostly re-exports scribble/core, but using
some different names (e.g., blockquote instead of nested-flow).

The following structure types and functions are re-exported directly:

collect-info resolve-info tag? block?

delayed-block collected-info delayed-element

part-relative-element collect-info-parents

collect-element render-element generated-tag

tag-key content->string element->string

block-width element-width

info-key? part-collected-info collect-put!

resolve-get resolve-get/tentative resolve-get/ext?

resolve-search resolve-get-keys

The following structure types are re-exported, but the constructors and some selectors are
replaced as documented further below:

part paragraph table itemization compound-paragraph

element toc-element target-element toc-target-element

page-target-element redirect-target-element link-element

index-element

Several additional compatibility functions and structure types are also exported.

(make-part tag-prefix

tags

title-content

style

to-collect

blocks

parts) → part?

tag-prefix : (or/c false/c string?)

tags : (listof tag?)

title-content : (or/c false/c list?)

style : any/c

to-collect : list?

blocks : (listof block?)

parts : (listof part?)

For backward compatibility. Compared to the normal constructor for part, parses style to
convert old formats to the current one. Also, if title-content is a list with a single item,
the item by itself is stored in the resulting part.

(part-flow p) → (listof block?)

p : part?

108

For backward compatibility. An alias for part-blocks.

(part-title-content p) → list?

p : part?

For backward compatibility. Like the normal selector, but if the result would not be a list, it
is coerced to one.

(make-versioned-part tag-prefix

tags

title-content

style

to-collect

blocks

parts

version) → part?

tag-prefix : (or/c false/c string?)

tags : (listof tag?)

title-content : (or/c false/c list?)

style : any/c

to-collect : list?

blocks : (listof block?)

parts : (listof part?)

version : string?

(versioned-part? v) → boolean?

v : any/c

For backward compatibility. Like make-part, but adds a the document-version style
property using the given version . The versioned-part? predicate recognizes a part

with a document-version property.

(make-unnumbered-part tag-prefix

tags

title-content

style

to-collect

blocks

parts) → part?

tag-prefix : (or/c false/c string?)

tags : (listof tag?)

title-content : (or/c false/c list?)

style : any/c

to-collect : list?

blocks : (listof block?)

parts : (listof part?)

(unnumbered-part? v) → boolean?

v : any/c

109

For backward compatibility. Like make-part, but adds the 'unnumbered style property.
The unnumbered-part? predicate recognizes a part with the 'unnumbered property.

(make-paragraph content) → paragraph?

content : list?

For backward compatibility. Compared to the normal constructor for paragraph, omits a
style argument. Also, if content is a list containing a single item, the item by itself is stored
in the resulting paragraph.

(paragraph-content p) → list?

p : paragraph?

For backward compatibility. Like the normal selector, but if the result would not be a list, it
is coerced to one.

(make-styled-paragraph content style) → paragraph?

content : list?

style : any/c

(styled-paragraph? v) → boolean?

v : any/c

(styled-paragraph-style p) → style?

p : paragraph?

For backward compatibility. Compared to the normal constructor for paragraph, parses
style to convert old formats to the current one. The styled-paragraph? predicate and
styled-paragraph-style accessor are aliases for paragraph? and paragraph-style.

(make-omitable-paragraph content) → paragraph?

content : list?

(omitable-paragraph? v) → boolean?

v : any/c

For backward compatibility. Like make-paragraph, but adds the 'omitable style prop-
erty. The omitable-paragraph? predicate checks for a paragraph with the property.

(make-table style blocksss) → table?

style : any/c

blocksss : (listof (listof (or/c (listof block?) (one-of/c 'cont))))

For backward compatibility. Compared to the normal constructor for table, the style is
converted, and each cell has a list of blocks instead of a single block. If any such list has
multiple blocks, they are combined into a nested-flow.

(table-flowss table)
→ (listof (listof (or/c (listof block?) (one-of/c 'cont))))

table : table?

110

For backward compatibility. Like table-blockss, but adds a list wrapper to be consistent
with make-table.

(make-itemization blockss) → itemization?
blockss : (listof (listof block?))

For backward compatibility. Compared to the normal constructor for itemization, omits
a style argument.

(make-styled-itemization style blockss) → itemization?

style : any/c

blockss : (listof (listof block?))

(styled-itemization? v) → boolean?

v : any/c

(styled-itemization-style i) → style?

i : itemization?

For backward compatibility. Compared to the normal constructor for itemization, parses
style to convert old formats to the current one. The styled-itemization? pred-
icate is an alias for itemization?, and styled-itemization-style is an alias for
itemization-style.

(make-blockquote style blocks) → nested-flow?

style : any/c

blocks : (listof block?)

For backward compatibility. Like make-nested-flow, but style is parsed to the current
format.

(make-auxiliary-table style blocksss) → table?

style : any/c

blocksss : (listof (listof (or/c (listof block?) (one-of/c 'cont))))

(auxiliary-table? v) → boolean?

v : any/c

For backward compatibility. Like make-table, but adds the 'aux style property. The
auxiliary-table? predicate recognizes tables with the 'aux property.

(make-compound-paragraph style blocks) → compound-paragraph?

style : any/c

blocks : (listof block?)

For backward compatibility. Compared to the normal constructor for compound-

paragraph, parses style to convert old formats to the current one.

111

(make-element style content) → element?

style : any/c

content : list?

(make-toc-element style content toc-content) → toc-element?

style : any/c

content : list?

toc-content : list?

(make-target-element style content tag) → target-element?

style : any/c

content : list?

tag : tag?

(make-toc-target-element style content tag) → toc-target-element?

style : any/c

content : list?

tag : tag?

(make-page-target-element style content tag)

→ page-target-element?

style : any/c

content : list?

tag : tag?

(make-redirect-target-element style

content

tag

alt-path

alt-anchor)

→ redirect-target-element?

style : any/c

content : list?

tag : tag?

alt-path : path-string?

alt-anchor : string?

(make-link-element style content tag) → link-element?

style : any/c

content : list?

tag : tag?

112

(make-index-element style

content

tag

plain-seq

entry-seq

desc) → index-element?

style : any/c

content : list?

tag : tag?

plain-seq : (and/c pair? (listof string?))

entry-seq : list?

desc : any/c

For backward compatibility. Compared to the normal constructors, parses style to convert
old formats to the current one.

(element? v) → boolean?
v : any/c

(element-content e) → list?
e : element?

(element-style e) → element-style?

e : element?

For backward compatibility. A content list is treated as an element by these functions, and
the result of element-content is always a list.

(make-aux-element style content) → element?

style : any/c

content : list?

For backward compatibility. Like make-element, but adds the 'aux style property.

(make-hover-element style content text) → element?

style : any/c

content : list?

text : string?

For backward compatibility. Like make-element, but adds hover-property containing
text to the element’s style.

(make-script-element style

content

type

script) → element?

style : any/c

113

content : list?

type : string?

script : (or/c path-string? (listof string?))

For backward compatibility. Like make-element, but adds script-property containing
type and script to the element’s style.

(struct with-attributes (style assoc)

#:extra-constructor-name make-with-attributes)

style : any/c

assoc : (listof (cons/c symbol? string?))

For backward compatibility. Used for an element’s style to combine a base style with
arbitrary HTML attributes. When the style field is itself an instance of with-attributes,
its content is automatically flattened into the enclosing with-attributes when it is used
(when, e.g., rendering an element or paragraph).

(struct target-url (addr style)

#:extra-constructor-name make-target-url)

addr : path-string?

style : any/c

For backward compatibility. Used as a style for an element. The style at this layer is a
style for the hyperlink.

(struct image-file (path scale)

#:extra-constructor-name make-image-file)

path :
(or/c path-string?

(cons/c 'collects (listof bytes?)))

scale : real?

For backward compatibility. Used as a style for an element to inline an image. The path

field can be a result of path->main-collects-relative.

(element->string element) → string?

element : content?

(element->string element renderer p info) → string?

element : content?

renderer : any/c

p : part?

info : resolve-info?

For backward compatibility. An alias for content->string.

114

4.8.2 Compatibility Basic Functions

(require scribble/basic)

The scribble/basic compatibility library mostly just re-exports scribble/base.

(span-class style-name pre-content ...) → element?

style-name : string?

pre-content : any/c

For backward compatibility. Wraps the decoded pre-content as an element with style
style-name .

(itemize itm ... [#:style style]) → itemization?

itm : (or/c whitespace? an-item?)

style : (or/c style? string? symbol? #f) = #f

For backward compatibility. Like itemlist, but whitespace strings among the itms are
ignored.

115

5 Literate Programming

Programs written using scribble/lp are simultaneously two things: a program and a doc-
ument describing the program.

Programs in scribble/lp are viewed in two different ways, either by running the program
directly or by including it with lp-include. When running the program, all of the chunk

expressions are collected and stitched together into a program, and the rest of the module is
discarded. When using lp-include, the entire contents of the module are preserved and are
treated like an ordinary Scribble document, where chunks are typeset in a manner similar to
codeblock.

For example, consider this program:

#lang scribble/lp

Literate programs have chunks of code, like this one:

@chunk[<f>

(define (f x)

<fs-body>)]

and this one:

@chunk[<fs-body>

(* x x)]

that, when assembled, produce a complete program, in this case:

@racketblock[(define (f x)

(* x x))]

When this file is required in the normal manner, it defines a function f that squares its
argument, and the documentation is ignored. When it is included with lp-include, it looks
like this:

Literate programs have chunks of code, like this one:

<f> ::=

(define (f x)

<fs-body>)

116

and this one:

<fs-body> ::=

(* x x)

that, when assembled, produce a complete program, in this case:

(define (f x)

(* x x))

5.1 scribble/lp Language

#lang scribble/lp

The scribble/lp language provides core support for literate programming.

(chunk id form ...)

Introduces a chunk, binding id for use in other chunks. Normally, id starts with < and ends
with >.

When running a scribble program only the code inside the chunks is run; the rest is ignored.

If id is <*>, then this chunk is used as the main chunk in the file. If <*> is never used, then
the first chunk in the file is treated as the main chunk. If some chunk is not referenced from
the main chunk (possibly indirectly via other chunks that the main chunk references), then it
is not included in the program and thus is not run.

5.2 scribble/lp-include Module

(require scribble/lp-include)

The scribble/lp-include library is normally used within a Scribble document—that
is, a module that starts with something like #lang scribble/base or #lang scrib-

ble/manual, instead of #lang racket.

(lp-include filename)

Includes the source of filename as the typeset version of the literate program.

117

6 Text Generation

#lang scribble/text

The scribble/text language provides everything from racket/base with a few changes
that make it suitable as a text generation or a preprocessor language:

• The language uses read-syntax-inside to read the body of the module, similar to
§7.7 “Document Reader”. This means that by default, all text is read in as Racket
strings; and @-forms can be used to use Racket functions and expression escapes.

• Values of expressions are printed with a custom output function. This function dis-
plays most values in a similar way to display, except that it is more convenient for a
textual output.

6.1 Writing Text Files

The combination of the two features makes text in files in the scribble/text language
be read as strings, which get printed out when the module is required, for example, when
a file is given as an argument to racket. (In these example the left part shows the source
input, and the right part the printed result.)

#lang scribble/text

Programming languages should

be designed not by piling

feature on top of feature, but

blah blah blah.

→

Programming languages should

be designed not by piling

feature on top of feature, but

blah blah blah.

Using @-forms, we can define and use Racket functions.

#lang scribble/text

@(require racket/list)

@(define Foo "Preprocessing")

@(define (3x . x)

;; racket syntax here

(add-between (list x x x) " "))

@Foo languages should

be designed not by piling

feature on top of feature, but

@3x{blah}.

→

Preprocessing languages should

be designed not by piling

feature on top of feature, but

blah blah blah.

As demonstrated in this case, the output function simply scans nested list structures recur-
sively, which makes them convenient for function results. In addition, output prints most
values similarly to display — notable exceptions are void and false values which cause no
output to appear. This can be used for convenient conditional output.

118

#lang scribble/text

@(define (errors n)

(list n

" error"

(and (not (= n 1)) "s")))

You have @errors[3] in your code,

I fixed @errors[1].

→ You have 3 errors in your code,

I fixed 1 error.

Using the scribble @-forms syntax, you can write functions more conveniently too.

#lang scribble/text

@(define (errors n)

;; note the use of `unless'

@list{@n error@unless[(= n 1)]{s}})

You have @errors[3] in your code,

I fixed @errors[1].

→ You have 3 errors in your code,

I fixed 1 error.

Following the details of the scribble reader, you may notice that in these examples there are
newline strings after each definition, yet they do not show in the output. To make it easier to
write definitions, newlines after definitions and indentation spaces before them are ignored.

#lang scribble/text

@(define (plural n)

(unless (= n 1) "s"))

@(define (errors n)

@list{@n error@plural[n]})

You have @errors[3] in your code,

@(define fixed 1)

I fixed @errors[fixed].

→ You have 3 errors in your code,

I fixed 1 error.

These end-of-line newline strings are not ignored when they follow other kinds of expres-
sions, which may lead to redundant empty lines in the output.

#lang scribble/text

@(define (count n str)

(for/list ([i (in-range 1 (add1 n))])

@list{@i @str,@"\n"}))

Start...

@count[3]{Mississippi}

... and I'm done.

→

Start...

1 Mississippi,

2 Mississippi,

3 Mississippi,

... and I'm done.

There are several ways to avoid having such empty lines in your output. The simplest way
is to arrange for the function call’s form to end right before the next line begins, but this is

119

often not too convenient. An alternative is to use a @; comment, which makes the scribble
reader ignore everything that follows it up to and including the newline. (These methods can
be applied to the line that precedes the function call too, but the results are likely to have
what looks like erroneous indentation. More about this below.)

#lang scribble/text

@(define (count n str)

(for/list ([i (in-range 1 (+ n 1))])

@list{@i @str,@"\n"}))

Start...

@count[3]{Mississippi

}... done once.

Start again...

@count[3]{Massachusetts}@;

... and I'm done again.

→

Start...

1 Mississippi,

2 Mississippi,

3 Mississippi,

... done once.

Start again...

1 Massachusetts,

2 Massachusetts,

3 Massachusetts,

... and I'm done again.

A better approach is to generate newlines only when needed.

#lang scribble/text

@(require racket/list)

@(define (counts n str)

(add-between

(for/list ([i (in-range 1 (+ n 1))])

@list{@i @str,})

"\n"))

Start...

@counts[3]{Mississippi}

... and I'm done.

→

Start...

1 Mississippi,

2 Mississippi,

3 Mississippi,

... and I'm done.

In fact, this is common enough that the scribble/text language provides a convenient
facility: add-newlines is a function that is similar to add-between using a newline string
as the default separator, except that false and void values are filtered out before doing so.

#lang scribble/text

@(define (count n str)

(add-newlines

(for/list ([i (in-range 1 (+ n 1))])

@list{@i @str,})))

Start...

@count[3]{Mississippi}

... and I'm done.

→

Start...

1 Mississippi,

2 Mississippi,

3 Mississippi,

... and I'm done.

120

#lang scribble/text

@(define (count n str)

(add-newlines

(for/list ([i (in-range 1 (+ n 1))])

@(and (even? i) @list{@i @str,}))))

Start...

@count[6]{Mississippi}

... and I'm done.

→

Start...

2 Mississippi,

4 Mississippi,

6 Mississippi,

... and I'm done.

The separator can be set to any value.

#lang scribble/text

@(define (count n str)

(add-newlines #:sep ",\n"

(for/list ([i (in-range 1 (+ n 1))])

@list{@i @str})))

Start...

@count[3]{Mississippi}.

... and I'm done.

→

Start...

1 Mississippi,

2 Mississippi,

3 Mississippi.

... and I'm done.

6.2 Defining Functions and More

(Note: most of the tips in this section are applicable to any code that uses the Scribble @-
form syntax.)

Because the Scribble reader is uniform, you can use it in place of any expression where it
is more convenient. (By convention, we use a plain S-expression syntax when we want a
Racket expression escape, and an @-form for expressions that render as text, which, in the
scribble/text language, is any value-producing expression.) For example, you can use
an @-form for a function that you define.

#lang scribble/text

@(define @bold[text] @list{*@|text|*})

An @bold{important} note.

→ An *important* note.

This is not commonly done, since most functions that operate with text will need to accept
a variable number of arguments. In fact, this leads to a common problem: what if we want
to write a function that consumes a number of “text arguments” rathen than a single “rest-
like” body? The common solution for this is to provide the separate text arguments in the
S-expression part of an @-form.

121

#lang scribble/text

@(define (choose 1st 2nd)

@list{Either @1st, or @|2nd|@"."})

@(define who "us")

@choose[@list{you're with @who}

@list{against @who}]

→ Either you're with us, or against us.

You can even use @-forms with a Racket quote or quasiquote as the “head” part to make it
shorter, or use a macro to get grouping of sub-parts without dealing with quotes.

#lang scribble/text

@(define (choose 1st 2nd)

@list{Either @1st, or @|2nd|@"."})

@(define who "us")

@choose[@list{you're with @who}

@list{against @who}]

@(define-syntax-rule (compare (x ...) ...)

(add-newlines

(list (list "* " x ...) ...)))

Shopping list:

@compare[@{apples}

@{oranges}

@{@(* 2 3) bananas}]

→

Either you're with us, or against us.

Shopping list:

* apples

* oranges

* 6 bananas

Yet another solution is to look at the text values and split the input arguments based on a
specific token. Using match can make it convenient — you can even specify the patterns
with @-forms.

#lang scribble/text

@(require racket/match)

@(define (features . text)

(match text

[@list{@|1st|@...

@|2nd|@...}

@list{>> Pros <<

@1st;

>> Cons <<

@|2nd|.}]))

@features{fast,

reliable

expensive,

ugly}

→

>> Pros <<

fast,

reliable;

>> Cons <<

expensive,

ugly.

In particular, it is often convenient to split the input by lines, identified by delimiting "\n"

strings. Since this can be useful, a split-lines function is provided.

122

#lang scribble/text

@(require racket/list)

@(define (features . text)

(add-between (split-lines text)

", "))

@features{red

fast

reliable}.

→ red, fast, reliable.

Finally, the Scribble reader accepts any expression as the head part of an @-form — even an
@ form. This makes it possible to get a number of text bodies by defining a curried function,
where each step accepts any number of arguments. This, however, means that the number of
body expressions must be fixed.

#lang scribble/text

@(define ((choose . 1st) . 2nd)

@list{Either you're @1st, or @|2nd|.})

@(define who "me")

@@choose{with @who}{against @who}

→ Either you're with me, or against me.

6.3 Using Printouts

Because the text language simply displays each toplevel value as the file is run, it is possible
to print text directly as part of the output.

#lang scribble/text

First

@display{Second}

Third

→
First

Second

Third

Taking this further, it is possible to write functions that output some text instead of returning
values that represent the text.

#lang scribble/text

@(define (count n)

(for ([i (in-range 1 (+ n 1))])

(printf "∼a Mississippi,\n" i)))

Start...

@count[3]@; avoid an empty line

... and I'm done.

→

Start...

1 Mississippi,

2 Mississippi,

3 Mississippi,

... and I'm done.

This can be used to produce a lot of output text, even infinite.

123

#lang scribble/text

@(define (count n)

(printf "∼a Mississippi,\n" n)

(count (add1 n)))

Start...

@count[1]

this line is never printed!

→

Start...

1 Mississippi,

2 Mississippi,

3 Mississippi,

4 Mississippi,

5 Mississippi,

...

However, you should be careful not to mix returning values with printouts, as the results are
rarely desirable.

#lang scribble/text

@list{1 @display{two} 3}
→ two1 3

Note that you don’t need side-effects if you want infinite output. The output function
iterates thunks and (composable) promises, so you can create a loop that is delayed in either
form.

#lang scribble/text

@(define (count n)

(cons @list{@n Mississippi,@"\n"}

(lambda ()

(count (add1 n)))))

Start...

@count[1]

this line is never printed!

→

Start...

1 Mississippi,

2 Mississippi,

3 Mississippi,

4 Mississippi,

5 Mississippi,

...

6.4 Indentation in Preprocessed output

An issue that can be very important in many text generation applications is the indentation of
the output. This can be crucial in some cases, if you’re generating code for an indentation-
sensitive language (e.g., Haskell, Python, or C preprocessor directives). To get a better
understanding of how the pieces interact, you may want to review how the Scribble reader
section, but also remember that you can use quoted forms to see how some form is read.

#lang scribble/text

@(format "∼s" '@list{

a

b

c})

→ (list "a" "\n" " " "b" "\n" "c")

The Scribble reader ignores indentation spaces in its body. This is an intentional feature,
since you usually do not want an expression to depend on its position in the source. But the
question is whether we can render some output text with proper indentation. The output

function achieves that by introducing blocks. Just like a list, a block contains a list of
elements, and when one is rendered, it is done in its own indentation level. When a newline

124

is part of a block’s contents, it causes the following text to appear with indentation that
corresponds to the column position at the beginning of the block.

In addition, lists are also rendered as blocks by default, so they can be used for the same
purpose. In most cases, this makes the output appear “as intended” where lists are used for
nested pieces of text — either from a literal list expression, or an expression that evaluates
to a list, or when a list is passed on as a value; either as a toplevel expression, or as a nested
value; either appearing after spaces, or after other output.

#lang scribble/text

foo @block{1

2

3}

foo @list{4

5

6}

→

foo 1

2

3

foo 4

5

6

#lang scribble/text

@(define (code . text)

@list{begin

@text

end})

@code{first

second

@code{

third

fourth}

last}

→

begin

first

second

begin

third

fourth

end

last

end

#lang scribble/text

@(define (enumerate . items)

(add-newlines #:sep ";\n"

(for/list ([i (in-naturals 1)]

[item (in-list items)])

@list{@|i|. @item})))

Todo: @enumerate[@list{Install Racket}

@list{Hack, hack, hack}

@list{Profit}].

→
Todo: 1. Install Racket;

2. Hack, hack, hack;

3. Profit.

There are, however, cases when you need more refined control over the output. The scrib-
ble/text language provides a few functions for such cases in addition to block. The
splice function groups together a number of values but avoids introducing a new inden-
tation context. Furthermore, lists are not always rendered as blocks — instead, they are
rendered as splices when they are used inside one, so you essentially use splice to avoid
the “indentation group” behavior, and block to restore it.

125

#lang scribble/text

@(define (blah . text)

@splice{{

blah(@block{@text});

}})

start

@splice{foo();

loop:}

@list{if (something) @blah{one,

two}}

end

→

start

foo();

loop:

if (something) {

blah(one,

two);

}

end

The disable-prefix function disables all indentation printouts in its contents, including
the indentation before the body of the disable-prefix value itself. It is useful, for exam-
ple, to print out CPP directives.

#lang scribble/text

@(define (((IFFOO . var) . expr1) . expr2)

(define (array e1 e2)

@list{[@e1,

@e2]})

@list{var @var;

@disable-prefix{#ifdef FOO}

@var = @array[expr1 expr2];

@disable-prefix{#else}

@var = @array[expr2 expr1];

@disable-prefix{#endif}})

function blah(something, something_else) {

@disable-prefix{#include "stuff.inc"}

@@@IFFOO{i}{something}{something_else}

}

→

function blah(something, something_else) {

#include "stuff.inc"

var i;

#ifdef FOO

i = [something,

something_else];

#else

i = [something_else,

something];

#endif

}

If there are values after a disable-prefix value on the same line, they will get indented to
the goal column (unless the output is already beyond it).

126

#lang scribble/text

@(define (thunk name . body)

@list{function @name() {

@body

}})

@(define (ifdef cond then else)

@list{@disable-prefix{#}ifdef @cond

@then

@disable-prefix{#}else

@else

@disable-prefix{#}endif})

@thunk['do_stuff]{

init();

@ifdef["HAS_BLAH"

@list{var x = blah();}

@thunk['blah]{

@ifdef["BLEHOS"

@list{@disable-prefix{#}@;

include <bleh.h>

bleh();}

@list{error("no bleh");}]

}]

more_stuff();

}

→

function do_stuff() {

init();

ifdef HAS_BLAH

var x = blah();

else

function blah() {

ifdef BLEHOS

include <bleh.h>

bleh();

else

error("no bleh");

endif

}

endif

more_stuff();

}

There are cases where each line should be prefixed with some string other than a plain
indentation. The add-prefix function causes its contents to be printed using some given
string prefix for every line. The prefix gets accumulated to an existing indentation, and
indentation in the contents gets added to the prefix.

#lang scribble/text

@(define (comment . body)

@add-prefix["// "]{@body})

@comment{add : int int -> string}

char *foo(int x, int y) {

@comment{

skeleton:

allocate a string

print the expression into it

@comment{...more work...}

}

char *buf = malloc(@comment{FIXME!

This is bad}

100);

}

→

// add : int int -> string

char *foo(int x, int y) {

// skeleton:

// allocate a string

// print the expression into it

// // ...more work...

char *buf = malloc(// FIXME!

// This is bad

100);

}

127

When combining add-prefix and disable-prefix there is an additional value that can
be useful: flush. This is a value that causes output to print the current indentation and
prefix. This makes it possible to get the “ignored as a prefix” property of disable-prefix
but only for a nested prefix.

#lang scribble/text

@(define (comment . text)

(list flush

@add-prefix[" *"]{

@disable-prefix{/*} @text */}))

function foo(x) {

@comment{blah

more blah

yet more blah}

if (x < 0) {

@comment{even more

blah here

@comment{even

nested}}

do_stuff();

}

}

→

function foo(x) {

/* blah

* more blah

* yet more blah */

if (x < 0) {

/* even more

* blah here

* /* even

* * nested */ */

do_stuff();

}

}

6.5 Using External Files

Using additional files that contain code for your preprocessing is trivial: the source text is
still source code in a module, so you can require additional files with utility functions.

#lang scribble/text

@(require "itemize.rkt")

Todo:

@itemize[@list{Hack some}

@list{Sleep some}

@list{Hack some

more}]

itemize.rkt: #lang racket

(provide itemize)

(define (itemize . items)

(add-between (map (lambda (item)

(list "* " item))

items)

"\n"))

→

Todo:

* Hack some

* Sleep some

* Hack some

more

Note that the at-exp language can often be useful here, since such files need to deal with
texts. Using it, it is easy to include a lot of textual content.

128

#lang scribble/text

@(require "stuff.rkt")

Todo:

@itemize[@list{Hack some}

@list{Sleep some}

@list{Hack some

more}]

@summary
stuff.rkt: #lang at-exp racket/base

(require racket/list)

(provide (all-defined-out))

(define (itemize . items)

(add-between (map (lambda (item)

@list{* @item})

items)

"\n"))

(define summary

@list{If that's not enough,

I don't know what is.})

→

Todo:

* Hack some

* Sleep some

* Hack some

more

If that's not enough,

I don't know what is.

Of course, the extreme side of this will be to put all of your content in a plain Racket module,
using @-forms for convenience. However, there is no need to use the text language in this
case; instead, you can (require scribble/text), which will get all of the bindings that
are available in the scribble/text language. Using output, switching from a prepro-
cessed files to a Racket file is very easy —- choosing one or the other depends on whether it
is more convenient to write a text file with occasional Racket expressions or the other way.

129

#lang at-exp racket/base

(require scribble/text racket/list)

(define (itemize . items)

(add-between (map (lambda (item)

@list{* @item})

items)

"\n"))

(define summary

@list{If that's not enough,

I don't know what is.})

(output

@list{

Todo:

@itemize[@list{Hack some}

@list{Sleep some}

@list{Hack some

more}]

@summary

})

→

Todo:

* Hack some

* Sleep some

* Hack some

more

If that's not enough,

I don't know what is.

However, you might run into a case where it is desirable to include a mostly-text file from
a scribble/text source file. It might be because you prefer to split the source text to
several files, or because you need to use a template file that cannot have a #lang header (for
example, an HTML template file that is the result of an external editor). In these cases, the
scribble/text language provides an include form that includes a file in the preprocessor
syntax (where the default parsing mode is text).

130

#lang scribble/text

@(require racket/list)

@(define (itemize . items)

(list

""

(add-between

(map (lambda (item)

@list{@|item|})

items)

"\n")

""))

@(define title "Todo")

@(define summary

@list{If that's not enough,

I don't know what is.})

@include["template.html"]
template.html: <html>

<head><title>@|title|</title></head>

<body>

<h1>@|title|</h1>

@itemize[@list{Hack some}

@list{Sleep some}

@list{Hack some

more}]

<p><i>@|summary|</i></p>

</body>

</html>

→

<html>

<head><title>Todo</title></head>

<body>

<h1>Todo</h1>

Hack some

Sleep some

Hack some

more

<p><i>If that's not enough,

I don't know what is.</i></p>

</body>

</html>

(Using require with a text file in the scribble/text language will not work as intended:
the language will display the text is when the module is invoked, so the required file’s con-
tents will be printed before any of the requiring module’s text does. If you find yourself in
such a situation, it is better to switch to a Racket-with-@-expressions file as shown above.)

131

7 Low-Level Scribble API

7.1 Scribble Layers

Scribble is made of independently usable parts. For example, the Scribble reader can be
used in any situation that requires lots of free-form text. You can also skip Scribble’s special
reader support, and instead use the document-generation structure directly.

7.1.1 Typical Composition

A Scribble document normally starts

#lang scribble/manual

but it could also start

#lang scribble/base

or

#lang scribble/doc

The last one introduces the smallest number of typesetting bindings in the document body.
Using scribble/base after #lang is the same as using scribble/doc plus (require

scribble/base), and using scribble/manual after #lang is the same as using scrib-

ble/doc plus (require scribble/manual).

Besides making the file a module, each of the #lang declarations selects the Scribble reader
(instead of the usual Racket reader), and it starts the body of the file in “text” mode. The
reader layer mostly leaves text alone, but @ forms escape to S-expression mode.

A module written as

#lang scribble/doc

@(require scribble/manual)

@(define to-be "To Be")

@title{@|to-be| or Not @|to-be|}

@bold{That} is the question.

Whether 'tis nobler...

132

reads as

(module 〈name〉 scribble/doc

(require scribble/manual)

"\n"

(define to-be "To Be") "\n"

"\n"

(title to-be " or Not " to-be) "\n"

"\n"

(bold "That") " is the question." "\n"

"Whether 'tis nobler..." "\n")

As shown in this example, the read result is a module whose content mingles text and def-
initions. The scribble/doc language lifts definitions, requires, and provides to the
beginning of the module, while everything else is collected into a document bound to the
provided identifier doc. That is, the module is transformed to something like this:

(module 〈name〉 racket/base

(require scribble/decode

scribble/manual)

(define to-be "To Be")

(define doc

(decode

"\n" "\n" "\n"

(title to-be " or Not " to-be) "\n"

"\n"

(bold "That") " is the question." "\n"

"Whether 'tis nobler..." "\n"))

(provide doc))

The decode function produces a part structure instance that represents the document. To
build the part instance, it inspects its arguments to find a title-decl value created by
title to name the part, part-start values created by section to designate sub-parts,
etc.

A part is the input to a rendering back-end, such as the HTML renderer. All renderers
recognize a fixed structure hierarchy: the content of a part is a flow, which is a sequence of
flow elements, such as paragraphs and tables; a table, in turn, consists of a list of list of flows;
a paragraph is a list of elements, which can be instances of the element structure type, plain
strings, or certain special symbols.

The value bound to doc in the example above is something like

(make-part

(list "To Be" " or Not " "To Be") ; title

....

133

(make-flow

(list

(make-paragraph

(list (make-element 'bold (list "That"))

" is the question." "\n"

"Whether " 'rsquo "tis nobler..."))))

....)

Notice that the ' in the input’s 'tis has turned into 'rsquo (rendered as a curly apostrophe).
The conversion to use 'rsquo was performed by decode via decode-flow via decode-

paragraph via decode-content via decode-string.

In contrast, (make-element 'bold (list "That")) was produced by the bold func-
tion. The decode operation is a function, not a syntactic form, and so bold has control over
its argument before decode sees the result. Also, decoding traverses only immediate string
arguments.

As it turns out, bold also decodes its argument, because the bold function is implemented
as

(define (bold . strs)

(make-element 'bold (decode-content strs)))

The verbatim function, however, does not decode its content, and instead typesets its text
arguments directly.

A document module can construct elements directly using make-element, but normally
functions like bold and verbatim are used to construct them. In particular, the scrib-

ble/manual library provides many functions and forms to typeset elements and flow ele-
ments.

The part structure hierarchy includes built-in element types for setting hyperlink targets
and references. Again, this machinery is normally packaged into higher-level functions and
forms, such as secref, defproc, and racket.

7.1.2 Layer Roadmap

Working roughly from the bottom up, the Scribble layers are:

• scribble/reader: A reader that extends the syntax of Racket with @-forms for
conveniently embedding a mixin of text and escapes. See §2 “@ Syntax”.

• scribble/core: A set of document datatypes and utilities that define the basic layout
and processing of a document. For example, the part datatype is defined in this layer.
See §7.3 “Structures And Processing”.

134

• scribble/base-render with scribble/html-render, scribble/latex-

render, or scribble/text-render: A base renderer and mixins that generate
documents in various formats from instances of the scribble/struct datatypes.
See §7.4 “Renderers”.

• scribble/decode: Processes a stream of text, section-start markers, etc. to produce
instances of the scribble/core datatypes. See §7.5 “Decoding Text”.

• scribble/doclang: A language to be used for the initial import of a module; pro-
cesses the module top level through scribble/decode, and otherwise provides all of
racket/base. See §7.6 “Document Language”.

• scribble/doc: A language that combines scribble/reader with scrib-

ble/doclang. See §7.7 “Document Reader”.

• scribble/base: A library of basic document operators—such as title, section,
and secref—for use with scribble/decode and a renderer. This library name also
can be used as a language, where it combines scribble/doc with the exports of
scribble/base. See §3.1 “Base Document Format”.

• scribble/racket: A library of functions for typesetting Racket code. See §4.4
“Racket”. These functions are not normally used directly, but instead used through
scribble/manual.

• scribble/manual: A library of functions for writing Racket documentation; re-
exports scribble/base. Also, the scribble/manual-struct library provides
types for index-entry descriptions created by functions in scribble/manual. See
§4.3 “Manual Forms”.

• scribble/eval: A library of functions for evaluating code at document-build time,
especially for showing examples. See §4.5 “Evaluation and Examples”.

• scribble/bnf: A library of support functions for writing grammars. See §4.7 “BNF
Grammars”.

• scribble/xref: A library of support functions for using cross-reference infor-
mation, typically after a document is rendered (e.g., to search). See §7.8 “Cross-
Reference Utilities”.

• scribble/text: A language that uses scribble/reader preprocessing text files.

The scribble command-line utility generates output with a specified renderer. More specif-
ically, the executable installs a renderer, loads the modules specified on the command line,
extracts the doc export of each module (which must be an instance of part), and renders
each—potentially with links that span documents.

135

7.2 @ Reader Internals

7.2.1 Using the @ Reader

You can use the reader via Racket’s #reader form:

#reader scribble/reader @foo{This is free-form text!}

or use the at-exp meta-language as described in §7.2.3 “Adding @-expressions to a Lan-
guage”.

Note that the Scribble reader reads @-forms as S-expressions. This means that it is up to
you to give meanings for these expressions in the usual way: use Racket functions, define
your functions, or require functions. For example, typing the above into racket is likely
going to produce a “reference to undefined identifier” error, unless foo is defined. You can
use string-append instead, or you can define foo as a function (with variable arity).

A common use of the Scribble @-reader is when using Scribble as a documentation system
for producing manuals. In this case, the manual text is likely to start with

#lang scribble/doc

which installs the @ reader starting in “text mode,” wraps the file content afterward into a
Racket module where many useful Racket and documentation related functions are avail-
able, and parses the body into a document using scribble/decode. See §7.7 “Document
Reader” for more information.

Another way to use the reader is to use the use-at-readtable function to switch the
current readtable to a readtable that parses @-forms. You can do this in a single command
line:

racket -ile scribble/reader "(use-at-readtable)"

7.2.2 Syntax Properties

The Scribble reader attaches properties to syntax objects. These properties might be useful
in some rare situations.

Forms that Scribble reads are marked with a 'scribble property, and a value of a list of
three elements: the first is 'form, the second is the number of items that were read from
the datum part, and the third is the number of items in the body part (strings, sub-forms,
and escapes). In both cases, a 0 means an empty datum/body part, and #f means that the
corresponding part was omitted. If the form has neither parts, the property is not attached

136

to the result. This property can be used to give different meanings to expressions from the
datum and the body parts, for example, implicitly quoted keywords:

(define-syntax (foo stx)

(let ([p (syntax-property stx 'scribble)])

(printf ">>> ∼s\n" (syntax->datum stx))

(syntax-case stx ()

[(_ x ...)

(and (pair? p) (eq? (car p) 'form) (even? (cadr p)))

(let loop ([n (/ (cadr p) 2)]

[as '()]

[xs (syntax->list #'(x ...))])

(if (zero? n)

(with-syntax ([attrs (reverse as)]

[(x ...) xs])

#'(list 'foo `attrs x ...))

(loop (sub1 n)

(cons (with-syntax ([key (car xs)]

[val (cadr xs)])

#'(key ,val))

as)

(cddr xs))))])))

> @foo[x 1 y (* 2 3)]{blah}

>>> (foo x 1 y (* 2 3) "blah")

'(foo ((x 1) (y 6)) "blah")

In addition, the Scribble parser uses syntax properties to mark syntax items that are not phys-
ically in the original source — indentation spaces and newlines. Both of these will have a
'scribble property; an indentation string of spaces will have 'indentation as the value
of the property, and a newline will have a '(newline S) value where S is the original new-
line string including spaces that precede and follow it (which includes the indentation for the
following item). This can be used to implement a verbatim environment: drop indentation
strings, and use the original source strings instead of the single-newline string. Here is an
example of this.

(define-syntax (verb stx)

(syntax-case stx ()

[(_ cmd item ...)

#`(cmd

#,@(let loop ([items (syntax->list #'(item ...))])

(if (null? items)

'()

(let* ([fst (car items)]

[prop (syntax-property fst 'scribble)]

[rst (loop (cdr items))])

137

(cond [(eq? prop 'indentation) rst]

[(not (and (pair? prop)

(eq? (car prop) 'newline)))

(cons fst rst)]

[else (cons (datum->syntax-object

fst (cadr prop) fst)

rst)])))))]))

> @verb[string-append]{

foo

bar

}

"foo\n bar"

7.2.3 Adding @-expressions to a Language

#lang at-exp

The at-exp language installs @-reader support in the readtable, and then chains to the
reader of another language that is specified immediately after at-exp.

For example, #lang at-exp racket/base adds @-reader support to racket/base, so
that

#lang at-exp racket/base

(define (greet who) @string-append{Hello, @|who|.})

(greet "friend")

reports "Hello, friend.".

7.2.4 Interface

(require scribble/reader)

The scribble/reader module provides direct Scribble reader functionality for advanced
needs.

(read [in]) → any

in : input-port? = (current-input-port)

(read-syntax [source-name in]) → (or/c syntax? eof-object?)

138

source-name : any/c = (object-name in)

in : input-port? = (current-input-port)

These procedures implement the Scribble reader. They do so by constructing a reader table
based on the current one, and using that for reading.

(read-inside [in]) → any

in : input-port? = (current-input-port)

(read-syntax-inside [source-name in]) → (or/c syntax? eof-object?)

source-name : any/c = (object-name in)

in : input-port? = (current-input-port)

These -inside variants parse as if starting inside a @{...}, and they return a (syntactic) list.
Useful for implementing languages that are textual by default (see "docreader.rkt" for
example).

(make-at-readtable [#:readtable readtable

#:command-char command-char

#:datum-readtable datum-readtable

#:syntax-post-processor syntax-post-proc])
→ readtable?

readtable : readtable? = (current-readtable)

command-char : character? = #\@

datum-readtable :
(or/c readtable? boolean?

(readtable? . -> . readtable?))

= #t

syntax-post-proc : (syntax? . -> . syntax?) = values

Constructs an @-readtable. The keyword arguments can customize the resulting reader in
several ways:

• readtable — a readtable to base the @-readtable on.

• command-char — the character used for @-forms.

• datum-readtable — determines the readtable used for reading the datum part. A
#t values uses the @-readtable, otherwise it can be a readtable, or a readtable-to-
readtable function that will construct one from the @-readtable. The idea is that you
may want to have completely different uses for the datum part, for example, introduc-
ing a convenient key=val syntax for attributes.

139

• syntax-post-proc — function that is applied on each resulting syntax value after
it has been parsed (but before it is wrapped quoting punctuations). You can use this to
further control uses of @-forms, for example, making the command be the head of a
list:

(use-at-readtable

#:syntax-post-processor

(lambda (stx)

(syntax-case stx ()

[(cmd rest ...) #'(list 'cmd rest ...)]

[else (error "@ forms must have a body")])))

(make-at-reader #:syntax? syntax?

#:inside? inside? ...) → procedure?

syntax? : #t

inside? : #f

Constructs a variant of a @-readtable. The arguments are the same as in make-at-

readtable, with two more that determine the kind of reader function that will be created:
syntax? chooses between a read- or read-syntax-like function, and inside? chooses a
plain reader or an -inside variant.

The resulting function has a different contract and action based on these inputs. The expected
inputs are as in read or read-syntax depending on syntax?; the function will read a single
expression or, if inside? is true, the whole input; it will return a syntactic list of expressions
rather than a single one in this case.

Note that syntax? defaults to #t, as this is the more expected common case when you’re
dealing with concrete-syntax reading.

Note that if syntax? is true, the read-like function is constructed by simply converting a
syntax result back into a datum.

(use-at-readtable ...) → void?

Passes all arguments to make-at-readtable, and installs the resulting readtable using
current-readtable. It also enables line counting for the current input-port via port-

count-lines!.

This is mostly useful for playing with the Scribble syntax on the REPL.

7.3 Structures And Processing

(require scribble/core)

140

A document is represented as a part, as described in §7.3.1 “Parts, Flows, Blocks, and Para-
graphs”. This representation is intended to be independent of its eventual rendering, and it is
intended to be immutable; rendering extensions and specific data in a document can collude
arbitrarily, however.

A document is processed in four passes:

• The traverse pass traverses the document content in document order so that informa-
tion from one part of a document can be communicated to other parts of the same
document. The information is transmitted through a symbol-keyed mapping that can
be inspected and extended by traverse-elements and traverse-blocks in the
document. The traverse pass iterates the traversal until it obtains a fixed point (i.e., the
mapping from one iteration is unchanged from the previous iteration).

• The collect pass globally collects information in the document that can span docu-
ments that are built at separate times, such as targets for hyperlinking.

• The resolve pass matches hyperlink references with targets and expands delayed ele-
ments (where the expansion should not contribute new hyperlink targets).

• The render pass generates the result document.

None of the passes mutate the document representation. Instead, the traverse pass, collect
pass, and resolve pass accumulate information in a side hash table, collect-info table, and
resolve-info table. The collect pass and resolve pass are effectively specialized version
of traverse pass that work across separately built documents.

7.3.1 Parts, Flows, Blocks, and Paragraphs

This diagram shows the large-scale structure of the type hierarchy for Scribble documents.
A box represents a struct or a built-in Racket type; for example part is a struct. The bottom
portion of a box shows the fields; for example part has three fields, title, blocks, and
subparts. The substruct relationship is shown vertically with navy blue lines connected
by a triangle; for example, a compound-paragraph is a block. The types of values on
fields are shown via dark red lines in the diagram. Doubled lines represent lists and tripled
lines represent lists of lists; for example, the blocks field of compound-paragraph is a
list of blocks. Dotted lists represent functions that compute elements of a given field; for
example, the block field of a traverse-block struct is a function that computes a block.

The diagram is not completely accurate: a table may have 'cont in place of a block in its
cells field, and the types of fields are only shown if they are other structs in the diagram.
A prose description with more detail follows the diagram.

141

part

title
blocks
subparts

block

compound-
paragraph

style
blocks

paragraph

style
content

itemization

style
items

table

style
cells

nested-
flow

style
blocks

delayed-block

block

traverse-
block

block

content

element

style
content

collect-
element

collect

multiarg-
element

tag

target-
element

tag

toc-target-
element

page-target-
element

redirect-target-
element

alt-path
alt-anchor

link-
element

tag

image-
element

path
suffixes
scale

index-
element

tag
keywords

convertible

render-
element

content

pict

delayed-
element

content

symbol

part-
relative-
element

resolve

string

traverse-
element

content

list

142

A part is an instance of part; among other things, it has a title content, an initial flow,
and a list of subsection parts. There is no difference between a part and a full document;
a particular source module just as easily defines a subsection (incorporated via include-

section) as a document.

A flow is a list of blocks.

A block is either a table, an itemization, a nested flow, a paragraph, a compound paragraph,
a traverse block, or a delayed block.

• A table is an instance of table; it has a list of list of blocks corresponding to table
cells.

• A itemization is an instance of itemization; it has a list of flows.

• A nested flow is an instance of nested-flow; it has a flow that is typeset as sub-flow.

• A paragraph is an instance of paragraph; it has a content:

– An content can be a string, one of a few symbols, an instance of element (pos-
sibly link-element, etc.), a multiarg-element, a a traverse element, part-
relative element, a delayed element, or a list of content.

* A string is included in the result document verbatim, except for space,
and unless the content’s enclosing style is 'hspace. In a style other than
'hspace, consecutive spaces in the output may be collapsed togther or re-
placed with a line break. In the style 'hspace, all text is converted to un-
collapsable spaces that cannot be broken across lines.

* A symbol content is either 'mdash, 'ndash, 'ldquo, 'lsquo, 'rdquo,
'rsquo, 'larr, 'rarr, or 'prime; it is rendered as the corresponding
HTML entity (even for Latex output).

* An instance of element has a content plus a style. The style’s interpretation
depends on the renderer, but it can be one of a few special symbols (such as
'bold) that are recognized by all renderers.

* An instance of link-element has a tag for the target of the link.

* An instance of target-element has a tag to be referenced by link-

elements. An instance of the subtype toc-target-element is treated
like a kind of section label, to be shown in the “on this page” table for
HTML output.

* An instance of index-element has a tag (as a target), a list of strings for
the keywords (for sorting and search), and a list of contents to appear in the
end-of-document index.

* An instance of image-element incorporates an image from a file into the
rendered document.

* An instance of multiarg-element combines a style with a list of content,
where the style corresponds to a rendered command that takes multiple ar-
guments.

143

* An instance of collect-element has a procedure that is called in the col-
lect pass of document processing to record information used by later passes.

* A traverse element is an instance of traverse-element, which ultimately
produces content, but can accumulate and inspect information in the traverse
pass.

* A part-relative element is an instance of part-relative-element, which
has a procedure that is called in the collect pass of document processing to
obtain content. When the part-relative element’s procedure is called, col-
lected information is not yet available, but information about the enclosing
parts is available.

* A delayed element is an instance of delayed-element, which has a pro-
cedure that is called in the resolve pass of document processing to obtain
content.

* An instance of render-element has a procedure that is called in the render
pass of document processing.

• A compound paragraph is an instance of compound-paragraph; like blockquote, it
has list of blocks, but the blocks are typeset as a single paragraph (e.g., no indentation
after the first block) instead of inset.

• A traverse block is an instance of traverse-block, which ultimately produces an-
other block, but can accumulate and inspect information during the traverse pass.

• A delayed block is an instance of delayed-block, which has a procedure that is
called in the resolve pass of document processing to obtain a block.

7.3.2 Tags

A tag is a list containing a symbol and either a string, a generated-tag instance, or an
arbitrary list. The symbol effectively identifies the type of the tag, such as 'part for a tag
that links to a part, or 'def for a Racket function definition. The symbol also effectively
determines the interpretation of the second half of the tag.

A part can have a tag prefix, which is effectively added onto the second item within each
tag whose first item is 'part or 'tech. The prefix is added to a string value by creating
a list containing the prefix and string, and it is added to a list value using cons; a prefix is
not added to a generated-tag instance. The prefix is used for reference outside the part,
including the use of tags in the part’s tags field. Typically, a document’s main part has a tag
prefix that applies to the whole document; references to sections and defined terms within
the document from other documents must include the prefix, while references within the
same document omit the prefix. Part prefixes can be used within a document as well, to help
disambiguate references within the document.

Some procedures accept a “tag” that is just the string part of the full tag, where the symbol
part is supplied automatically. For example, section and secref both accept a string “tag”,
where 'part is implicit.

144

The scribble/tag library provides functions for constructing tags.

7.3.3 Styles

A style combines a style name with a list of style properties in a style structure. A style
name is either a string, symbol, of #f. A style property can be anything, including a symbol
a structure such as color-property.

A style has a single style name, because the name typically corresponds to a configurable
instruction to a renderer. For example, with Latex output, a string style name corresponds to
a Latex command or environment. For more information on how string style names interact
with configuration of a renderer, see §7.10 “Extending and Configuring Scribble Output”.
Symbolic style names, meanwhile, provide a simple layer of abstraction between the ren-
derer and documents for widely supported style; for example, the 'italic style name is
supported by all renderers.

Style properties within a style compose with style names and other properties. Again, sym-
bols are often used for properties that are directly supported by renderers. For example,
'unnumbered style property for a part renders the part without a section number. Many
properties are renderer-specific, such as a hover-property structure that associates text
with an element to be shown in an HTML display when the mouse hovers over the text.

7.3.4 Collected and Resolved Information

The collect pass, resolve pass, and render pass processing steps all produce information that
is specific to a rendering mode. Concretely, the operations are all represented as methods on
a render<%> object.

The result of the collect method is a collect-info instance. This result is provided
back as an argument to the resolve method, which produces a resolve-info value that
encapsulates the results from both iterations. The resolve-info value is provided back to
the resolve method for final rendering.

Optionally, before the resolve method is called, serialized information from other docu-
ments can be folded into the collect-info instance via the deserialize-info method.
Other methods provide serialized information out of the collected and resolved records.

During the collect pass, the procedure associated with a collect-element instance can
register information with collect-put!.

During the resolve pass, collected information for a part can be extracted with part-

collected-info, which includes a part’s number and its parent part (or #f). More gen-
erally, the resolve-get method looks up information previously collected. This resolve-
time information is normally obtained by the procedure associated with a delayed block or

145

delayed element.

The resolve-get information accepts both a part and a resolve-info argument. The
part argument enables searching for information in each enclosing part before sibling parts.

7.3.5 Structure Reference

(struct part (tag-prefix

tags

title-content

style

to-collect

blocks

parts)

#:extra-constructor-name make-part)

tag-prefix : (or/c false/c string?)

tags : (listof tag?)

title-content : (or/c false/c list?)

style : style?

to-collect : list?

blocks : (listof block?)

parts : (listof part?)

The tag-prefix field determines the optional tag prefix for the part.

The tags indicates a list of tags that each link to the section. Normally, tags should be a
non-empty list, so that hyperlinks can target the section.

The title-content field holds the part’s title, if any.

For the style field, the currently recognized symbolic style names are as follows:

• 'index — The part represents an index.

The recognized style properties are as follows:

• 'unnumbered — A section number is computed for an unnumbered section during
the collect pass, but the number is not rendered.

• 'toc — Sub-parts of the part are rendered on separate pages for multi-page HTML
mode.

• 'non-toc — Initial sub-parts of the part are not rendered on separate pages for multi-
page HTML mode; this style applies only to the main part.

146

• 'reveal — Shows sub-parts when this part is displayed in a table-of-contents panel
in HTML output (which normally shows only the top-level sections).

• 'hidden — The part title is not shown in rendered HTML output, and the part title is
not shown in Latex output if it is empty. The 'toc-hidden style usually should be
included with 'hidden.

• 'toc-hidden — The part title is not shown in tables of contents, including in “on
this page” boxes.

• 'quiet — In HTML output and most other output modes, hides entries for sub-parts
of this part in a table-of-contents or local-table-of-contents listing except
when those sub-parts are top-level entries in the listing.

• 'no-toc — As a style for the main part of a document, causes the HTML output to
not include a margin box for the main table of contents; the “on this page” box that
contains toc-element and toc-target-element links (and that only includes an
“on this page” label for multi-page documents) takes on the location and color of the
main table of contents, instead.

• document-version structure — A version number for this part and its sub-parts
(except as overridden). When it is not "" may be used when rendering a document;
at a minimum, a non-"" version is rendered when it is attached to a part representing
the whole document. The default version for a document is (version). In rendered
form, the version is normally prefixed with the word “Version,” but this formatting
can be controlled by overriding .version:before and/or .versionNoNav:before
in CSS for HTML rendering or by redefining the \SVersionBefore macro for Latex
rendering (see §7.10 “Extending and Configuring Scribble Output”).

• document-date structure — A date for the part, normally used on a document’s
main part for for Latex output. The default date for a document is #f, which avoids
explicitly specifying a date at the Latex level, so that the current date is used as the
document date. Set the date to "" to suppress a date in an output document.

• body-id structure — Generated HTML uses the given string id attribute of the
<body> tag; this style can be set separately for parts that start different HTML pages,
otherwise it is effectively inherited by sub-parts; the default is "scribble-racket-
lang.org", but setup-plt installs "doc-racket-lang.org" as the id for any
document that it builds.

• attributes structure — Provides additional HTML attributes for the <html> tag
when the part corresponds to its own HTML page.

• head-extra structure — Provides additional HTML content for the <head> tag when
the part corresponds to its own HTML page.

The to-collect field contains content that is inspected during the collect pass, but ignored
in later passes (i.e., it doesn’t directly contribute to the output).

147

The blocks field contains the part’s initial flow (before sub-parts).

The parts field contains sub-parts.

(struct paragraph (style content)

#:extra-constructor-name make-paragraph)

style : style?

content : content?

A paragraph has a style and a content.

For the style field, a string style name corresponds to a CSS class for HTML output or a
macro for Latex output (see §7.10.1 “Implementing Styles”). The following symbolic style
names are recognized:

• 'author — Typeset as the author of a document. Such paragraphs normally should
appear only in the initial flow of a part for a document, where they are treated spe-
cially by the Latex renderer by moving the author information to the title.

• 'pretitle — Typeset before the title of the enclosing part.

• 'wraps — Like a #f style name, but not boxable in the sense of box-mode for Latex
output.

When a paragraph’s style is #f, then it is boxable in the sense of box-mode for Latex output.

The currently recognized style properties are as follows:

• 'omitable — When a table cell contains a single paragraph with the 'omitable

style property, then when rendering to HTML, no <p> tag wraps the cell content.

• 'div — Generates <div> HTML output instead of <p> (unless a alt-tag property
is provided).

• alt-tag structure — Generates the indicated HTML tag instead of <p> or <div>.

• attributes structure — Provides additional HTML attributes for the <p>, <div>, or
alternate tag.

• body-id structure — For HTML, uses the given string as an id attribute of the <p>,
<div>, or alternate tag.

• 'never-indents — For Latex and compound paragraphs; see compound-

paragraph.

• box-mode structure — For Latex output, uses an alternate rendering form for boxing
contexts (such as a table cell); see box-mode.

148

(struct table (style blockss)

#:extra-constructor-name make-table)

style : style?

blockss : (listof (listof (or/c block? (one-of/c 'cont))))

See also the tabular function.

A table has, roughly, a list of list of blocks. A cell in the table can span multiple columns by
using 'cont instead of a block in the following columns (i.e., for all but the first in a set of
cells that contain a single block).

Within style, a string style name corresponds to a CSS class for HTML output or an en-
vironment for Latex output (see §7.10.1 “Implementing Styles”). The following symbolic
style names are also recognized:

• 'boxed — Renders as a definition.

• 'centered — Centers HTML output horizontally.

• 'block — Prevents pages breaks in Latex output.

The following style properties are currently recognized:

• table-columns structure — Provides column-specific styles, but only column-

attributes properties (if any) are used if a table-cells structure is included as a
style property.

• table-cells structure — Provides cell-specific styles.

• attributes structure — Provides additional HTML attributes for the <table> tag.

• body-id structure — For HTML, uses the given string as an id attribute of the <ta-
ble> tag.

• 'aux — For HTML, include the table in the table-of-contents display for the enclosing
part.

• 'never-indents — For Latex and compound paragraphs; see compound-

paragraph.

For Latex output, a paragraph as a cell value is not automatically line-wrapped, unless a
vertical alignment is specified for the cell through a table-cells or table-columns

style property. To get a line-wrapped paragraph, use a compound-paragraph or use an
element with a string style and define a corresponding Latex macro in terms of \parbox.
For Latex output of blocks in the flow that are nested-flows, itemizations, compound-
paragraphs, or delayed-blocks, the block is wrapped with minipage using \linewidth
divided by the column count as the width.

149

(struct itemization (style blockss)

#:extra-constructor-name make-itemization)

style : style?

blockss : (listof (listof block?))

A itemization has a style and a list of flows.

In style, a string style name corresponds to a CSS class for HTML output or a macro for
Latex output (see §7.10.1 “Implementing Styles”). In addition, the following symbolic style
names are recognized:

• 'compact — Reduces space between items.

• 'ordered — Generates HTML output instead of or an Latex enumeration
instead of an itemization.

The following style properties are currently recognized:

• attributes structure — Provides additional HTML attributes for the or
tag.

• body-id structure — For HTML, uses the given string as an id attribute of the
or tag.

• 'never-indents — For Latex and compound paragraphs; see compound-

paragraph.

(struct nested-flow (style blocks)

#:extra-constructor-name make-nested-flow)

style : any/c

blocks : (listof block?)

A nested flow has a style and a flow.

In style, the style name is normally a string that corresponds to a CSS class for HTML
<blockquote> output or a Latex environment (see §7.10.1 “Implementing Styles”). The
following symbolic style names are recognized:

• 'inset — Insets the nested flow relative to surrounding text.

• 'code-inset — Insets the nested flow relative to surrounding text in a way suitable
for code. If the nested flow has a single block, then it is boxable in the sense of
box-mode for Latex output.

150

• 'vertical-inset — Insets the nested flow vertically relative to surrounding text,
but not horizontally. If the nested flow has a single block, then it is boxable in the
sense of box-mode for Latex output.

The following style properties are currently recognized:

• 'command — For Latex output, a string style name is used as a command name instead
of an environment name.

• 'multicommand — For Latex output, a string style name is used as a command name
with a separate argument for each block in blocks.

• attributes structure — Provides additional HTML attributes for the <blockquote>
tag.

• body-id structure — For HTML, uses the given string as an id attribute of the
<blockquote> tag.

• 'never-indents — For Latex and compound paragraphs; see compound-

paragraph.

• box-mode structure — For Latex output, uses an alternate rendering form for boxing
contexts (such as a table cell); see box-mode.

• 'decorative — The content of the nested flow is intended for decoration. Text
output skips a decorative nested flow.

• alt-tag structure — Generates the indicated HTML tag instead of <blockquote>.

(struct compound-paragraph (style blocks)

#:extra-constructor-name make-compound-paragraph)

style : style?

blocks : (listof block?)

A compound paragraph has a style and a list of blocks.

For HTML, a paragraph block in blocks is rendered without a <p> tag, unless the para-
graph has a style with a non-#f style name. For Latex, each block in blocks is rendered with
a preceding \noindent, unless the block has the 'never-indents property (checking re-
cursively in a nested-flow or compound-paragraph if the nested-flow or compound-
paragraph itself has no 'never-indents property).

The style field of a compound paragraph is normally a string that corresponds to a CSS
class for HTML output or Latex environment for Latex output (see §7.10.1 “Implementing
Styles”). The following style properties are currently recognized:

151

• 'command — For Latex output, a string style name is used as a command name instead
of an environment name.

• alt-tag structure — Generates the given HTML tag instead of <p>.

• attributes structure — Provides additional HTML attributes for the <p> or alternate
tag.

• body-id structure — For HTML, uses the given string as an id attribute of the <p>

or alternate tag.

• 'never-indents — For Latex within another compound paragraph; see above.

(struct traverse-block (traverse)

#:extra-constructor-name make-traverse-block)

traverse : block-traverse-procedure/c

Produces another block during the traverse pass, eventually.

The traverse procedure is called with get and set procedures to get and set symbol-
keyed information; the traverse procedure should return either a block (which effectively
takes the traverse-block’s place) or a procedure like traverse to be called in the next
iteration of the traverse pass.

All traverse-element and traverse-blocks that have not been replaced are forced in
document order relative to each other during an iteration of the traverse pass.

The get procedure passed to traverse takes a symbol and any value to act as a default;
it returns information registered for the symbol or the given default if no value has been
registered. The set procedure passed to traverse takes a symbol and a value to registered
for the symbol. See

also cond-block in
scriblib/render-cond.The symbol 'scribble:current-render-mode is automatically registered to a list of

symbols that describe the target of document rendering. The list contains 'html when ren-
dering to HTML, 'latex when rendering via Latex, and 'text when rendering to text. The
registration of 'scribble:current-render-mode cannot be changed via set .

(struct delayed-block (resolve)

#:extra-constructor-name make-delayed-block)

resolve : (any/c part? resolve-info? . -> . block?)

The resolve procedure is called during the resolve pass to obtain a normal block. The first
argument to resolve is the renderer.

(struct element (style content)

#:extra-constructor-name make-element)

style : element-style?

content : content?

152

Styled content within an enclosing paragraph or other content.

The style field can be a style structure, but it can also be just a style name.

In style, a string style name corresponds to a CSS class for HTML output and a macro
name for Latex output (see §7.10.1 “Implementing Styles”). The following symbolic style
names are recognized:

• 'tt, 'italic, 'bold, 'sf, 'url, 'subscript, 'superscript, 'smaller,
'larger — Basic styles recognized by all renders.

• 'hspace — Renders its content as monospace blanks.

• 'newline — Renders a line break independent of the content.

• 'no-break — Prevents line breaks when rendering content.

The following style properties are currently recognized:

• target-url structure — Generates a hyperlink.

• url-anchor structure — For HTML, inserts a hyperlink target before content.

• color-property structure — Applies a color to the text of content.

• background-color-property structure — Applies a color to the background of
content.

• alt-tag structure — Generates the given HTML tag instead of the default one
(, b, etc.).

• attributes structure — Provides additional HTML attributes for a tag.

• hover-property structure — For HTML, adds a text label to the content to be shown
when the mouse hovers over it.

• script-property structure — For HTML, supplies a script alternative to content.

• body-id structure — For HTML uses the given string as an id attribute of the
tag.

• 'aux — Intended for use in titles, where the auxiliary part of the title can be omitted
in hyperlinks. See, for example, secref.

• 'tt-chars — For Latex output, when the style name is a string, render the element’s
content with escapes suitable for Latex tt mode.

• 'exact-chars — For Latex output, when the style name is a string, render the ele-
ments content exactly (without escapes).

153

(struct image-element element (path suffixes scale)

#:extra-constructor-name make-image-element)

path :
(or/c path-string?

(cons/c 'collects (listof bytes?)))

suffixes : (listof #rx"^[.]")

scale : real?

Used as a style for an element to inline an image. The path field can be a result of path-
>main-collects-relative.

For each string in suffixes, if the rendered works with the corresponding suffix, the suffix
is added to path and used if the resulting path refers to a file that exists. The order in
suffixes determines the order in which suffixes are tried. The HTML renderer supports
".png", ".gif", and ".svg", while the Latex renderer supports ".png", ".pdf", and
".ps" (but rendering Latex output to PDF will not work with ".ps" files, while rendering
to Latex DVI output works only with ".ps" files). If suffixes is empty or if none of the
suffixes lead to files that exist, path is used as-is.

The scale field scales the image in its rendered form.

(struct target-element element (tag)

#:extra-constructor-name make-target-element)

tag : tag?

Declares the content as a hyperlink target for tag.

(struct toc-target-element target-element ()

#:extra-constructor-name make-toc-target-element)

Like target-element, the content is also a kind of section label to be shown in the “on this
page” table for HTML output.

(struct page-target-element target-element ()

#:extra-constructor-name make-page-target-element)

Like target-element, but a link to the element goes to the top of the containing page.

(struct redirect-target-element target-element (alt-path

alt-anchor)

#:extra-constructor-name make-redirect-target-element)

alt-path : path-string?

alt-anchor : string?

Like target-element, but a link to the element is redirected to the given URL.

154

(struct toc-element element (toc-content)

#:extra-constructor-name make-toc-element)

toc-content : content?

Similar to toc-target-element, but with specific content for the “on this page” table
specified in the toc-content field.

(struct link-element element (tag)

#:extra-constructor-name make-link-element)

tag : tag?

Hyperlinks the content to tag.

When tag is a part tag and the content of the element is null, then the hyperlink uses the
target part’s number and/or title as the content. In that case, if the section number is pre-
ceded by a word, the word starts in uppercase if the element’s style includes a 'uppercase
property.

(struct index-element element (tag plain-seq entry-seq desc)

#:extra-constructor-name make-index-element)

tag : tag?

plain-seq : (and/c pair? (listof string?))

entry-seq : (listof content?)

desc : any/c

The plain-seq specifies the keys for sorting, where the first string is the main key, the
second is a sub-key, etc. For example, an “night” portion of an index might have sub-
entries for “night, things that go bump in” and “night, defender of the”. The former would
be represented by plain-seq '("night" "things that go bump in"), and the latter
by '("night" "defender of the"). Naturally, single-string plain-seq lists are the
common case, and at least one word is required, but there is no limit to the word-list length.
The strings in plain-seq must not contain a newline character.

The entry-seq list must have the same length as plain-seq. It provides the form of each
key to render in the final document.

The desc field provides additional information about the index entry as supplied by the entry
creator. For example, a reference to a procedure binding can be recognized when desc is
an instance of procedure-index-desc. See scribble/manual-struct for other typical
types of desc values.

See also index.
(struct multiarg-element (style contents)

#:extra-constructor-name make-multiarg-element)

style : element-style?

contents : (listof content?)

155

Like element with a list for content, except that for Latex output, if the style name in style

is a string, then it corresponds to a Latex command that accepts as many arguments (each in
curly braces) as elements of contents.

(struct traverse-element (traverse)

#:extra-constructor-name make-traverse-element)

traverse : element-traverse-procedure/c

Like traverse-block, but the traverse procedure must eventually produce content, See also
cond-element in
scriblib/render-cond.

rather than a block.

(struct delayed-element (resolve sizer plain)

#:extra-constructor-name make-delayed-element)

resolve : (any/c part? resolve-info? . -> . content?)

sizer : (-> any/c)

plain : (-> any/c)

The render procedure’s arguments are the same as for delayed-block, but the result is
content. Unlike delayed-block, the result of the render procedure’s argument is remem-
bered on the first call for re-use for a particular resolve pass.

The sizer field is a procedure that produces a substitute content for the delayed element for
the purposes of determining the delayed element’s width (see element-width).

The plain field is a procedure that produces a substitute content when needed before the
collect pass, such as when element->string is used before the collect pass.

(struct part-relative-element (resolve sizer plain)

#:extra-constructor-name make-part-relative-element)

resolve : (collect-info? . -> . content?)

sizer : (-> any/c)

plain : (-> any/c)

Similar to delayed-block, but the replacement content is obtained in the collect pass by
calling the function in the resolve field.

The resolve function can call collect-info-parents to obtain a list of parts that enclose
the element, starting with the nearest enclosing section. Functions like part-collected-

info and collected-info-number can extract information like the part number.

(struct collect-element element (collect)

#:extra-constructor-name make-collect-element)

collect : (collect-info . -> . any)

Like element, but the collect procedure is called during the collect pass. The collect

procedure normally calls collect-put!.

156

Unlike delayed-element or part-relative-element, the element remains intact (i.e.,
it is not replaced) by either the collect pass or resolve pass.

(struct render-element element (render)

#:extra-constructor-name make-render-element)

render : (any/c part? resolve-info? . -> . any)

Like delayed-element, but the render procedure is called during the render pass.

If a render-element instance is serialized (such as when saving collected info), it is re-
duced to a element instance.
(struct collected-info (number parent info)

#:extra-constructor-name make-collected-info)

number : (listof (or/c false/c integer?))

parent : (or/c false/c part?)

info : any/c

Computed for each part by the collect pass.

(struct target-url (addr)

#:extra-constructor-name make-target-url)

addr : path-string?

Used as a style property for an element. A path is allowed for addr, but a string is inter-
preted as a URL rather than a file path.

(struct document-version (text)

#:extra-constructor-name make-document-version)

text : (or/c string? false/c)

Used as a style property for a part to indicate a version number.

(struct document-date (text)

#:extra-constructor-name make-document-date)

text : (or/c string? false/c)

Used as a style property for a part to indicate a date (which is typically used for Latex
output).

(struct color-property (color)

#:extra-constructor-name make-color-property)

color : (or/c string? (list/c byte? byte? byte?))

Used as a style property for an element to set its color. Recognized string names for color
depend on the renderer, but at the recognized set includes at least "white", "black", "red",
"green", "blue", "cyan", "magenta", and "yellow". When color is a list of bytes, the
values are used as RGB levels.

157

(struct background-color-property (color)

#:extra-constructor-name make-background-color-property)

color : (or/c string? (list/c byte? byte? byte?))

Like color-property, but sets the background color.

(struct table-cells (styless)

#:extra-constructor-name make-table-cells)

styless : (listof (listof style?))

Used as a style property for a table to set its cells’ styles.

If a cell style has a string name, it is used as an HTML class for the <td> tag or as a Latex
command name.

The following symbols are recognized as cell-style properties:

• 'left — Left-align the cell content.

• 'right — Right-align the cell content top baselines.

• 'center — Center the cell content horizontally.

• 'top — Top-align the cell content.

• 'baseline — Align the cell content top baselines.

• 'bottom — bottom-align the cell content.

• 'vcenter — Center the cell content vertically.

In addition, for HTML output, attributes structures as style properties can add arbitrary
attributes to a cell’s <td> tag.

(struct table-columns (styles)

#:extra-constructor-name make-table-columns)

styles : (listof style?)

Like table-cells, but with support for a column-attributes property in each style,
and the styles list is otherwise duplicated for each row in the table. The non-column-
attributes parts of a table-columns are used only when a table-cells property is
not present along with the table-columns property.

For HTML table rendering, for each column that has a column-attributes property in the
corresponding element of styles, the attributes are put into an HTML col tag within the
table.

158

(struct box-mode (top-name center-name bottom-name)

#:extra-constructor-name make-box-mode)

top-name : string?

center-name : string?

bottom-name : string?

(box-mode* name) → box-mode?
name : string?

As a style property, indicates that a nested flow or paragraph is boxable when it is used in
a boxing context for Latex output, but a nested flow is boxable only if its content is also
boxable.

A boxing context starts with a table cell in a multi-column table, and the content of a block in
a boxing context is also in a boxing context. If the cell’s content is boxable, then the content
determines the width of the cell, otherwise a width is imposed. A paragraph with a #f style
name is boxable as a single line; the 'wraps style name makes the paragraph non-boxable
so that its width is imposed and its content can use multiple lines. A table is boxable when
that all of its cell content is boxable.

To generate output in box mode, the box-mode property supplies Latex macro names to
apply to the nested flow or paragraph content. The top-name macro is used if the box’s top
line is to be aligned with other boxes, center-name if the box’s center is to be aligned, and
bottom-name if the box’s bottom line is to be aligned. The box-mode* function creates a
box-mode structure with the same name for all three fields.

A box-mode style property overrides any automatic boxed rendering (e.g., for a paragraph
with style name #f). If a block has both a box-mode style property and a 'multicommand
style property, then the Latex macro top-name, center-name, or bottom-name is applied
with a separate argument for each of its content.

(block? v) → boolean?
v : any/c

Returns #t if v is a paragraph, table, itemization, nested-flow, traverse-block,
or delayed-block, #f otherwise.

(content? v) → boolean?
v : any/c

Returns #t if v is a string, symbol, element, multiarg-element, traverse-element,
delayed-element, part-relative-element, a convertible value in the sense of
convertible?, or list of content. Otherwise, it returns #f.

(struct style (name properties)

#:extra-constructor-name make-style)

159

name : (or/c string? symbol? #f)

properties : list?

Represents a style.

plain : style?

A style (make-style #f null).

(element-style? v) → boolean?

v : any/c

Returns #t if v is a string, symbol, #f, or style structure.

(tag? v) → boolean?

v : any/c

Returns #t if v is acceptable as a link tag, which is a list containing a symbol and either a
string, a generated-tag instance, or a non-empty list of serializable? values.

(struct generated-tag ()

#:extra-constructor-name make-generated-tag)

A placeholder for a tag to be generated during the collect pass. Use tag-key to convert a
tag containing a generated-tag instance to one containing a string.

(content->string content) → string?

content : content?

(content->string content renderer p info) → string?

content : content?

renderer : any/c

p : part?

info : resolve-info?

Converts content to a single string (essentially rendering the content as “plain text”).

If p and info arguments are not supplied, then a pre-“collect” substitute is obtained for
delayed elements. Otherwise, the two arguments are used to force the delayed element (if it
has not been forced already).

(content-width c) → exact-nonnegative-integer?

c : content?

Returns the width in characters of the given content.

160

(block-width e) → exact-nonnegative-integer?

e : block?

Returns the width in characters of the given block.

(struct collect-info (ht

ext-ht

ext-demand

parts

tags

gen-prefix

relatives

parents)

#:extra-constructor-name make-collect-info)

ht : any/c

ext-ht : any/c

ext-demand : (tag? collect-info? . -> . any/c)

parts : any/c

tags : any/c

gen-prefix : any/c

relatives : any/c

parents : (listof part?)

Encapsulates information accumulated (or being accumulated) from the collect pass. The
fields are exposed, but not currently intended for external use, except that collect-info-
parents is intended for external use.

(struct resolve-info (ci delays undef)

#:extra-constructor-name make-resolve-info)

ci : any/c

delays : any/c

undef : any/c

Encapsulates information accumulated (or being accumulated) from the resolve pass. The
fields are exposed, but not currently intended for external use.

(info-key? v) → boolean?

v : any/c

Returns #t if v is an info key: a list of at least two elements whose first element is a symbol.
The result is #f otherwise.

For a list that is an info tag, the interpretation of the second element of the list is effectively
determined by the leading symbol, which classifies the key. However, a #f value as the

161

second element has an extra meaning: collected information mapped by such info keys is
not propagated out of the part where it is collected; that is, the information is available within
the part and its sub-parts, but not in ancestor or sibling parts.

Note that every tag is an info key.

(collect-put! ci key val) → void?

ci : collect-info?

key : info-key?

val : any/c

Registers information in ci . This procedure should be called only during the collect pass.

(resolve-get p ri key) → any/c

p : (or/c part? false/c)

ri : resolve-info?

key : info-key?

Extract information during the resolve pass or render pass for p from ri , where the infor-
mation was previously registered during the collect pass. See also §7.3.4 “Collected and
Resolved Information”.

The result is #f if the no value for the given key is found. Furthermore, the search failure is
recorded for potential consistency reporting, such as when racket setup is used to build
documentation.

(resolve-get/ext? p ri key) → any/c boolean?

p : (or/c part? false/c)

ri : resolve-info?

key : info-key?

Like render-get, but returns a second value to indicate whether the resulting information
originated from an external source (i.e., a different document).

(resolve-search dep-key p ri key) → void?

dep-key : any/c

p : (or/c part? false/c)

ri : resolve-info?

key : info-key?

Like resolve-get, but a shared dep-key groups multiple searches as a single request for
the purposes of consistency reporting and dependency tracking. That is, a single success for
the same dep-key means that all of the failed attempts for the same dep-key have been
satisfied. However, for dependency checking, such as when using racket setup to re-
build documentation, all attempts are recorded (in case external changes mean that an earlier
attempt would succeed next time).

162

(resolve-get/tentative p ri key) → any/c

p : (or/c part? false/c)

ri : resolve-info?

key : info-key?

Like resolve-search, but without dependency tracking. For multi-document settings
where dependencies are normally tracked, such as when using racket setup to build doc-
umentation, this function is suitable for use only for information within a single document.

(resolve-get-keys p ri pred) → list?

p : (or/c part? false/c)

ri : resolve-info?

pred : (info-key? . -> . any/c)

Applies pred to each key mapped for p in ri , returning a list of all keys for which pred

returns a true value.

(part-collected-info p ri) → collected-info?

p : part?

ri : resolve-info?

Returns the information collected for p as recorded within ri .

(tag-key t ri) → tag?

t : tag?

ri : resolve-info?

Converts a generated-tag value with t to a string.

(traverse-block-block b i) → block?
b : traverse-block?

i : (or/c resolve-info? collect-info?)

Produces the block that replaces b .

(traverse-element-content e i) → content?
e : traverse-element?

i : (or/c resolve-info? collect-info?)

Produces the content that replaces e .

block-traverse-procedure/c : contract?

Defined as

163

(recursive-contract

((symbol? any/c . -> . any/c)

(symbol? any/c . -> . any)

. -> . (or/c block-traverse-procedure/c

block?)))

element-traverse-procedure/c : contract?

Defined as

(recursive-contract

((symbol? any/c . -> . any/c)

(symbol? any/c . -> . any)

. -> . (or/c element-traverse-procedure/c

content?)))

7.3.6 HTML Style Properties

(require scribble/html-properties)

The scribble/html-properties library provides datatypes used as style properties for
HTML rendering.

(struct attributes (assoc)

#:extra-constructor-name make-attributes)

assoc : (listof (cons/c symbol? string?))

Used as a style property to add arbitrary attributes to an HTML tag.

(struct alt-tag (name)

#:extra-constructor-name make-alt-tag)

name : (and/c string? #rx"^[a-zA-Z0-9]+$")

Use as a style property for an element, paragraph, or compound-paragraph to substitute
an alternate HTML tag (instead of , <p>, div, etc.).

(struct column-attributes (assoc)

#:extra-constructor-name make-column-attributes)

assoc : (listof (cons/c symbol? string?))

Used as a style property on a style with table-columns to add arbitrary attributes to an
HTML col tag within the table.

164

(struct url-anchor (name)

#:extra-constructor-name make-url-anchor)

name : string?

Used as a style property with element to insert an anchor before the element.

(struct hover-property (text)

#:extra-constructor-name make-hover-property)

text : string?

Used as a style property with element to add text that is shown when the mouse hovers over
the element.

(struct script-property (type script)

#:extra-constructor-name make-script-property)

type : string?

script : (or/c path-string? (listof string?))

Used as a style property with element to supply a script alternative to the element content.

(struct css-addition (path)

#:extra-constructor-name make-css-addition)

path :

(or/c path-string?

(cons/c 'collects (listof bytes?))

url?

bytes?)

Used as a style property to supply a CSS file (if path is a path, string, or list), URL (if path
is a url) or content (if path is a byte string) to be referenced or included in the generated
HTML. This property can be attached to any style, and all additions are collected to the top
of the generated HTML page.

The path field can be a result of path->main-collects-relative.

(struct js-addition (path)

#:extra-constructor-name make-js-addition)

path :

(or/c path-string?

(cons/c 'collects (listof bytes?))

url?

bytes?)

Like css-addition, but for a Javascript file instead of a CSS file.

(struct body-id (value)

#:extra-constructor-name make-body-id)

value : string?

165

Used as a style property to associate an id attribute with an HTML tag.

(struct html-defaults (prefix style extra-files)

#:extra-constructor-name make-html-defaults)

prefix :
(or/c bytes? path-string?

(cons/c 'collects (listof bytes?)))

style :
(or/c bytes? path-string?

(cons/c 'collects (listof bytes?)))

extra-files :
(listof (or/c path-string?

(cons/c 'collects (listof bytes?))))

Like latex-defaults, but use for the scribble command-line tool’s --html and
--htmls modes.

(struct head-extra (xexpr)

#:extra-constructor-name make-head-extra)

xexpr : xexpr/c

For a part that corresponds to an HTML page, adds content to the <head> tag.

7.3.7 Latex Style Properties

(require scribble/latex-properties)

The scribble/latex-properties library provides datatypes used as style properties for
Latex rendering.

(struct tex-addition (path)

#:extra-constructor-name make-tex-addition)

path :
(or/c path-string?

(cons/c 'collects (listof bytes?))

bytes?)

Used as a style property to supply a ".tex" file (if path is a path, string, or list) or content
(if path is a byte string) to be included in the generated Latex. This property can be attached
to any style, and all additions are collected to the top of the generated Latex file.

The path field can be a result of path->main-collects-relative.

(struct latex-defaults (prefix style extra-files)

#:extra-constructor-name make-latex-defaults)

prefix :
(or/c bytes? path-string?

(cons/c 'collects (listof bytes?)))

style :
(or/c bytes? path-string?

(cons/c 'collects (listof bytes?)))

166

extra-files :
(listof (or/c path-string?

(cons/c 'collects (listof bytes?))))

Used as a style property on the main part of a document to set a default prefix file, style file,
and extra files (see §7.10.2 “Configuring Output”). The defaults are used by the scribble

command-line tool for and --latex or --pdf mode if none are supplied via --prefix and
--style (where extra-files are used only when prefix is used). A byte-string value
is used directly like file content, and a path can be a result of path->main-collects-
relative.

Languages (used with #lang) like scribble/manual and scribble/sigplan add this
property to a document to specify appropriate files for Latex rendering.

See also scribble/latex-prefix.

(struct latex-auto-extra-files (paths)

#:extra-constructor-name make-latex-auto-extra-files)

paths :
(listof (or/c path-string?

(cons/c 'collects (listof bytes?))))

Used as a style property for the main part of a document to supply extra files needed to
build the document via the scribble command-line tool (for --latex and --pdf mode).

Languages (used with #lang) like scribble/sigplan add this property to a document to
specify appropriate extra files.

7.4 Renderers

A renderer is an object that provides four main methods: traverse, collect, resolve,
and render. Each method corresponds to a pass described in §7.3 “Structures And Process-
ing”, and they are chained together by the render function to render a document.

7.4.1 Rendering Driver

(require scribble/render)

167

(render docs

names

[#:render-mixin render-mixin

#:dest-dir dest-dir

#:helper-file-prefix helper-file-prefix

#:prefix-file prefix-file

#:style-file style-file

#:style-extra-files style-extra-files

#:extra-files extra-files

#:xrefs xrefs

#:info-in-files info-in-files

#:info-out-file info-out-file

#:redirect redirect

#:redirect-main redirect-main

#:quiet? quiet?

#:warn-undefined? warn-undefined?]) → void?

docs : (listof part?)

names : (listof path-string?)

render-mixin : (class? . -> . class?) = render-mixin

dest-dir : (or/c #f path-string?) = #f

helper-file-prefix : (or/c #f string?) = #f

prefix-file : (or/c #f path-string?) = #f

style-file : (or/c #f path-string?) = #f

style-extra-files : (listof path-string?) = #f

extra-files : (listof path-string?) = #f

xrefs : (listof xref?) = null

info-in-files : (listof path-string?) = null

info-out-file : (or/c #f path-string?) = #f

redirect : (or/c #f string?) = #f

redirect-main : (or/c #f string?) = #f

quiet? : any/c = #t

warn-undefined? : any/c = (not quiet?)

Renders the given docs , each with an output name derived from the corresponding element
of names . A directory path (if any) for a name in names is discarded, and the file suffix is
replaced (if any) with a suitable suffix for the output format.

The render-mixin argument determines the output format. By default, it is render-

mixin from scribble/html-render.

The dest-dir argument determines the output directory, which is created using make-

directory* if it is non-#f and does not exist already.

The helper-file-prefix , prefix-file , style-file , extra-style-files, and
extra-files arguments are passed on to the render% constructor.

168

The xrefs argument provides extra cross-reference information to be used during the docu-
ments’ resolve pass. The info-in-files arguments supply additional cross-reference in-
formation in serialized form. When the info-out-file argument is not #f, cross-reference
information for the rendered documents is written in serialized for to the specified file.

The redirect and redirect-main arguments correspond to the set-external-tag-

path and set-external-root-url methods of render-mixin from scribble/html-

render, so they should be non-#f only for HTML rendering.

If quiet? is a false value, output-file information is written to the current output port.

If warn-undefined? is a true value, then references to missing cross-reference targets trig-
ger a warning message on the current error port.

7.4.2 Base Renderer

(require scribble/base-render)

The scribble/base-render module provides render%, which implements the core of a
renderer. This rendering class must be refined with a mixin from scribble/text-render,
scribble/markdown-render, or scribble/html-render, or scribble/latex-

render.

The mixin structure is meant to support document-specific extensions to the renderers. For
example, the scribble command-line tool might, in the future, extract rendering mixins
from a document module (in addition to the document proper).

See the "base-render.rkt" source for more information about the methods of the ren-
derer. Documents built with higher layers, such as scribble/manual, generally do not call
the render object’s methods directly.

render<%> : interface?

(send a-render traverse srcs dests) → (and/c hash? immutable?)
srcs : (listof part?)

dests : (listof path-string?)

Performs the traverse pass, producing a hash table that contains the replace-
ments for and traverse-blocks and traverse-elementss. See render for
information on the dests argument.

(send a-render collect srcs dests fp [demand]) → collect-

info?
srcs : (listof part?)

dests : (listof path-string?)

169

fp : (and/c hash? immutable?)

demand : (tag? collect-info? . -> . any/c)

= (lambda (tag ci) #f)

Performs the collect pass. See render for information on the dests arguments.
The fp argument is a result from the traverse method.

The demand argument supplies external tag mappings on demand. When the
collect-info result is later used to find a mapping for a tag and no map-
ping is already available, demand is called with the tag and the collect-info.
The demand function returns true to indicate when it adds information to the
collect-info so that the lookup should be tried again; the demand function
should return #f if it does not extend collect-info.

(send a-render resolve srcs dests ci) → resolve-info?
srcs : (listof part?)

dests : (listof path-string?)

ci : collect-info?

Performs the resolve pass. See render for information on the dests argument.
The ci argument is a result from the collect method.

(send a-render render srcs dests ri) → void?
srcs : (listof part?)

dests : (listof path-string?)

ri : resolve-info?

Produces the final output. The ri argument is a result from the render method.

The dests provide names of files for Latex or single-file HTML output, or
names of sub-directories for multi-file HTML output. If the dests are relative,
they’re relative to the current directory; normally, they should indicates a path
within the dest-dir supplied on initialization of the render% object.

(send a-render serialize-info ri) → any/c

ri : resolve-info?

Serializes the collected info in ri .

(send a-render serialize-infos ri count doc) → list?
ri : resolve-info?

count : exact-positive-integer?

doc : part?

Like serialize-info, but produces count results that together have the same
information as produced by serialize-info. The structure of doc is used to
drive the partitioning (on the assumption that ri is derived from doc).

170

(send a-render deserialize-info v

ci

[#:root root-path]) → void?

v : any/c

ci : collect-info?

root-path : (or/c path-string? false/c) = #f

Adds the deserialized form of v to ci .

If root-path is not #f, then file paths that are recorded in ci as relative to
an instantiation-supplied root-path are deserialized as relative instead to the
given root-path .

(send a-render get-defined ci) → (listof tag?)

ci : collect-info?

Returns a list of tags that were defined within the documents represented by ci .

(send a-render get-defineds ci count doc)

→ (listof (listof tag?))

ci : collect-info?

count : exact-positive-integer?

doc : part?

Analogous to serialize-infos: returns a list of tags for each of count par-
titions of the result of get-defined, using the structure of doc to drive the
partitioning.

(send a-render get-external ri) → (listof tag?)

ri : resolve-info?

Returns a list of tags that were referenced but not defined within the documents
represented by ri (though possibly found in cross-reference information trans-
ferred to ri via xref-transfer-info).

(send a-render get-undefined ri) → (listof tag?)

ri : resolve-info?

Returns a list of tags that were referenced by the resolved documents with no tar-
get found either in the resolved documents represented by ri or cross-reference
information transferred to ri via xref-transfer-info.

If multiple tags were referenced via resolve-search and a target was found
for any of the tags using the same dependency key, then no tag in the set is
included in the list of undefined tags.

171

render% : class?
superclass: object%

extends: render<%>

Represents a renderer.

(new render%

[dest-dir dest-dir]

[[refer-to-existing-files refer-to-existing-files]

[root-path root-path]

[prefix-file prefix-file]

[style-file style-file]

[style-extra-files style-extra-files]

[extra-files extra-files]])
→ (is-a?/c render%)

dest-dir : path-string?

refer-to-existing-files : any/c = #f

root-path : (or/c path-string? #f) = #f

prefix-file : (or/c path-string? #f) = #f

style-file : (or/c path-string? #f) = #f

style-extra-files : (listof path-string?) = null

extra-files : (listof path-string?) = null

Creates a renderer whose output will go to dest-dir . For example, dest-dir
could name the directory containing the output Latex file, the HTML file for a
single-file output, or the output sub-directory for multi-file HTML output.

If refer-to-existing-files is true, then when a document refers to exter-
nal files, such as an image or a style file, then the file is referenced from its
source location instead of copied to the document destination.

If root-path is not #f, it is normally the same as dest-dir or a parent of
dest-dir . It causes cross-reference information to record destination files rel-
ative to root-path ; when cross-reference information is serialized, it can be
deserialized via deserialize-info with a different root path (indicating that
the destination files have moved).

The prefix-file , style-file , and style-extra-files arguments set
files that control output styles in a formal-specific way; see §7.10.2 “Config-
uring Output” for more information.

The extra-files argument names files to be copied to the output location,
such as image files or extra configuration files.

172

7.4.3 Text Renderer

(require scribble/text-render)

render-mixin : (class? . -> . class?)
argument extends/implements: render<%>

Specializes a render<%> class for generating plain text.

7.4.4 Markdown Renderer

(require scribble/markdown-render)

render-mixin : (class? . -> . class?)
argument extends/implements: render<%>

Specializes a render<%> class for generating Markdown text.

Code blocks are marked using the Github convention

```scheme

so that they are lexed and formatted as Scheme code.

7.4.5 HTML Renderer

(require scribble/html-render)

render-mixin : (class? . -> . class?)
argument extends/implements: render<%>

Specializes a render<%> class for generating HTML output.

(send a-render set-external-tag-path url) → void?

url : string?

Configures the renderer to redirect links to external via url , adding a tag query
element to the end of the URL that contains the Base64-encoded, printed,
serialized original tag (in the sense of link-element) for the link.

173

http://github.github.com/github-flavored-markdown/


(send a-render set-external-root-url url) → void?
url : string?

Configures the renderer to redirect links to documents installed in the distribu-
tion’s documentation directory to the given URL, using the URL as a replace-
ment to the path of the distribution’s document directory.

render-multi-mixin : (class? . -> . class?)
argument extends/implements: render<%>

Further specializes a rendering class produced by render-mixin for generating multiple
HTML files.

7.4.6 Latex Renderer

(require scribble/latex-render)

render-mixin : (class? . -> . class?)
argument extends/implements: render<%>

Specializes a render<%> class for generating Latex input.

7.4.7 PDF Renderer

(require scribble/pdf-render)

render-mixin : (class? . -> . class?)
argument extends/implements: render<%>

Specializes a render<%> class for generating PDF output via Latex, building on render-

mixin from scribble/latex-render.

7.4.8 Contract (Blue boxes) Renderer

(require scribble/contract-render)

174



override-render-mixin-multi : (class? . -> . class?)
argument extends/implements: render<%>

Overrides the render method of given renderer to record the content of the blue boxes
(generated by defproc, defform, etc) that appear in the document.

(send an-override-render-mixin-multi render srcs

dests

ri) → void?

srcs : (listof part?)

dests : (listof path?)

ri : render-info?

Overrides render in render<%>.

In addition to doing whatever the super method does, also save the content of
the blue boxes (rendered via a scribble/text-render renderer).

It saves this information in three pieces in a file inside the dests directories
called "blueboxes.rktd". The first piece is a single line containing a (dec-
imal, ASCII) number. That number is the number of bytes that the second
piece of information occupies in the file. The second piece of information is
a hash that maps tag? values to a list of offsets and line numbers that follow
the hash table. For example, if the hash maps '(def ((lib "x/main.rkt")

abcdef)) to '((10 . 3)), then that means that the documentation for the
abcdef export from the x collection starts 10 bytes after the end of the hash ta-
ble and continues for 3 lines. Multiple elements in the list mean that that tag?
has multiple blue boxes and each shows where one of the boxes appears in the
file.

override-render-mixin-single : (class? . -> . class?)
argument extends/implements: render<%>

Just like override-render-mixin-multi, except it saves the resulting files in a different
place.

(send an-override-render-mixin-single render srcs

dests

ri) → void?

srcs : (listof part?)

dests : (listof path?)

ri : render-info?

Overrides render in render<%>.

Just like render, except that it saves the file "blueboxes.rktd" in the same
directory where each dests element resides.

175



7.5 Decoding Text

(require scribble/decode)

The scribble/decode library helps you write document content in a natural way—more
like plain text, except for @ escapes. Roughly, it processes a stream of strings to produces
instances of the scribble/struct datatypes (see §4.8.1 “Compatibility Structures And
Processing”).

At the flow level, decoding recognizes a blank line as a paragraph separator. Blocks and
paragraphs without blank lines in between are collected into a compound paragraph.

At the content level, decoding makes just a few special text conversions:

• ---: converted to 'mdash

• --: converted to 'ndash

• ``: converted to 'ldquo, which is fancy open quotes: “

• '': converted to 'rdquo, which is fancy closing quotes: ”

• ': converted to 'rsquo, which is a fancy apostrophe: ’

• `: converted to 'lsquo, which is a fancy quote: ‘

Some functions decode a sequence of pre-flow or pre-content arguments using
decode-flow or decode-content, respectively. For example, the bold function accepts
any number of pre-content arguments, so that in

@bold{``apple''}

the ``apple'' argument is decoded to use fancy quotes, and then it is bolded.

(pre-content? v) → boolean?

v : any/c

Returns #t if v is a pre-content value: a string or other non-list content, a list of pre-content
values, or a splice containing a list of pre-content values; otherwise returns #f.

Pre-content is decoded into content by functions like decode-content and decode-

paragraph.

(pre-flow? v) → boolean?

v : any/c

176



Returns #t if v is a pre-flow value: a string or other non-list content, a block, #<void>, a
list of pre-flow values, or a splice containing a list of pre-flow values; otherwise returns
#f.

Pre-flow is decoded into a flow (i.e., a list of blocks) by functions like decode-flow.

(pre-part? v) → boolean?

v : any/c

Returns #t if v is a pre-part value: a string or other non-list content, a block, a part, a
title-decl, a part-start, a part-index-decl, a part-collect-decl, a part-tag-
decl, #<void>, a list of pre-part values, or a splice containing a list of pre-part values;
otherwise returns #f.

A pre-part sequence is decoded into a part by functions like decode and decode-part.

(decode lst) → part?

lst : (listof pre-part?)

Decodes a document, producing a part. In lst , lists and instances of splice are inlined into
the list, and #<void>s are dropped. An instance of title-decl supplies the title for the
part, plus tag, style and version information. Instances of part-index-decl (that precede
any sub-part) add index entries that point to the section. Instances of part-collect-decl
add elements to the part that are used only during the collect pass. Instances of part-tag-
decl add hyperlink tags to the section title. Instances of part-start at level 0 trigger
sub-part parsing. Instances of section trigger are used as-is as subsections, and instances
of paragraph and other flow-element datatypes are used as-is in the enclosing flow.

Portions of lst are within a part are decoded using decode-flow.

(decode-part lst tags title depth) → part?

lst : (listof pre-part?)

tags : (listof string?)

title : (or/c #f list?)

depth : exact-nonnegative-integer?

Like decode, but given a list of tag string for the part, a title (if #f, then a title-decl

instance is used if found), and a depth for part-starts to trigger sub-part parsing.

(decode-flow lst) → (listof block?)
lst : (listof pre-flow?)

Decodes a flow. In lst , lists and instances of splice are inlined into the list. A sequence
of two or more newlines separated only by whitespace is parsed as a compound-paragraph
separator.

177



Portions of lst are within a compound paragraph are decoded using decode-compound-

paragraph.

(decode-compound-paragraph lst) → block?

lst : (listof pre-flow?)

Decodes a compound paragraph. In lst , lists and instances of splice are inlined into the
list. Instances of paragraph and other block datatypes are used as-is in the result. If the
compound paragraph contains a single block, the block is returned without a compound-

paragraph wrapper.

Portions of lst that are separated by blocks are decoded using decode-content.

(decode-paragraph lst) → paragraph?

lst : (listof pre-content?)

Decodes a paragraph using decode-content to decode lst as the paragraph’s content.

(decode-content lst) → list?
lst : (listof pre-content?)

Decodes content. Lists and splices in lst are flattened into the list. Plain strings are de-
coded; non-string, non-list content is included in the result as-is.

(decode-elements lst) → list?
lst : (listof pre-content?)

An alias for decode-content.

(decode-string s) → (listof content?)

s : string?

Decodes a single string to produce content.

(whitespace? s) → boolean?

s : string?

Returns #t if s contains only whitespace, #f otherwise.

(struct title-decl (tag-prefix tags version style content)

#:extra-constructor-name make-title-decl)

tag-prefix : (or/c #f string?)

tags : (listof string?)

version : (or/c string? #f)

style : style?

content : content?

178



See decode and decode-part. The tag-prefix and style fields are propagated to the
resulting part. If the version field is not #f, it is propagated as a document-version

style property on the part.

(struct part-start (depth tag-prefix tags style title)

#:extra-constructor-name make-part-start)

depth : integer?

tag-prefix : (or/c #f string?)

tags : (listof string?)

style : style?

title : content?

Like title-decl, but for a sub-part. See decode and decode-part.

(struct part-index-decl (plain-seq entry-seq)

#:extra-constructor-name make-part-index-decl)

plain-seq : (listof string?)

entry-seq : list?

See decode. The two fields are as for index-element.
(struct part-collect-decl (element)

#:extra-constructor-name make-part-collect-decl)

element : (or/c element? part-relative-element?)

See decode.
(struct part-tag-decl (tag)

#:extra-constructor-name make-part-tag-decl)

tag : tag?

See decode.
(struct splice (run)

#:extra-constructor-name make-splice)

run : list?

See decode, decode-part, and decode-flow.

(spliceof ctc) → flat-contract?

ctc : flat-contract?

Produces a contract for a splice instance whose run elements satisfy ctc .

(clean-up-index-string str) → string?

str : string?

Trims leading and trailing whitespace, and converts non-empty sequences of whitespace to
a single space character.

179



7.6 Document Language

#lang scribble/doclang2

The scribble/doclang2 language provides everything from racket/base, except that it
replaces the #%module-begin form.

The scribble/doclang2 #%module-begin essentially packages the body of the module
into a call to decode, binds the result to doc, and exports doc.

Any module-level form other than an expression (e.g., a require or define) remains at the
top level, and the doc binding is put at the end of the module. As usual, a module-top-level
begin slices into the module top level.

For example:

#lang racket

(module example scribble/doclang2

"hello world, this is"

" an example document")

(require 'example)

doc

The behavior of scribble/doclang2 can be customized by providing #:id, #:post-
process, and #:exprs arguments at the very beginning of the module.

• #:id names the top-level documentation binding. By default, this is doc.

• #:post-process processes the body of the module after decode. By default, this is
values.

• #:exprs prepends an additional sequence of expressions to the beginning of the mod-
ule’s body. By default, this is the empty sequence ().

This example explicitly uses the defaults for all three keywords:

#lang racket

(module example scribble/doclang2

#:id doc

#:post-process values

#:exprs ()

"hello world, this is an example document")

(require 'example)

doc

180



The next toy example uses a different name for the documentation binding, and also adds an
additional binding with a count of the parts in the document:

#lang racket

(module example scribble/doclang2

#:id documentation

#:post-process (lambda (decoded-doc)

(set! number-of-parts (length (part-

parts decoded-doc)))

decoded-doc)

#:exprs ((title "My first expression!"))

(require scribble/core

scribble/base)

(define number-of-parts #f)

(provide number-of-parts)

(section "part 1")

"hello world"

(section "part 2")

"this is another document")

(require 'example)

number-of-parts

documentation

7.6.1 scribble/doclang

#lang scribble/doclang

The scribble/doclang language provides the same functionality as scrib-

ble/doclang2, where the configuration options are positional and mandatory. The
first three elements in the #%module-begin’s body must be the id, post-process, and
exprs arguments.

Example:

#lang racket

(module* example scribble/doclang

doc

values

()

(require scribble/base)

(provide (all-defined-out))

181



(define foo (para "hello again"))

"hello world, this is an example document"

(para "note the " (bold "structure")))

(module+ main

(require (submod ".." example))

(printf "I see doc is: ∼s\n\n" doc)

(printf "I see foo is: ∼s" foo))

7.7 Document Reader

#lang scribble/doc

The scribble/doc language is the same as scribble/doclang, except that read-

syntax-inside is used to read the body of the module. In other words, the module body
starts in Scribble “text” mode instead of S-expression mode.

7.8 Cross-Reference Utilities

(require scribble/xref)

The scribble/xref library provides utilities for querying cross-reference information that
was collected from a document build.

(xref? v) → boolean?
v : any/c

Returns #t if v is a cross-reference record created by load-xref, #f otherwise.

(load-xref sources

[#:demand-source demand-source

#:render% using-render%

#:root root-path ]) → xref?

sources : (listof (-> any/c))

demand-source : (tag? -> (or/c (-> any/c) #f))

= (lambda (tag) #f)

using-render% : (implementation?/c render<%>)

= (render-mixin render%)

root-path : (or/c path-string? false/c) = #f

Creates a cross-reference record given a list of functions that each produce a serialized in-
formation obtained from serialize-info in render<%>. If a sources element produces
#f, its result is ignored.

182



The demand-source function can effectively add a new source to sources in response
to a search for information on the given tag. The demand-source function returns #f to
indicate that no new sources satisfy the given tag.

Since the format of serialized information is specific to a rendering class, the optional
using-render% argument accepts the relevant class. It defaults to HTML rendering, partly
because HTML-format information is usable by other formats (including Latex/PDF and
text).

If root-path is not #f, then file paths that are serialized as relative to an instantiation-
supplied root-path are deserialized as relative instead to the given root-path .

Use load-collections-xref from setup/xref to get all cross-reference information for
installed documentation.

(xref-binding->definition-tag xref

binding

mode) → (or/c tag? false/c)

xref : xref?

binding :

(or/c identifier?

(list/c (or/c module-path?

module-path-index?)

symbol?)

(listof module-path-index?

symbol?

module-path-index?

symbol?

(one-of/c 0 1)

(or/c exact-integer? false/c)

(or/c exact-integer? false/c)))

mode : (or/c exact-integer? false/c)

Locates a tag in xref that documents a module export. The binding is specified in one
of several ways, as described below; all possibilities encode an exporting module and a
symbolic name. The name must be exported from the specified module. Documentation is
found either for the specified module or, if the exported name is re-exported from other other
module, for the other module (transitively).

The mode argument specifies the relevant phase level for the binding. The binding is
specified in one of four ways:

• If binding is an identifier, then identifier-binding is used with mode to deter-
mine the binding.

• If binding is a two-element list, then the first element provides the exporting module
and the second the exported name. The mode argument is effectively ignored.

183



• If binding is a seven-element list, then it corresponds to a result from identifier-

binding using mode .

• If binding is a five-element list, then the first element is as for the two-element-list
case, and the remain elements are as in the last four elements of the seven-element
case.

If a documentation point exists in xref , a tag is returned, which might be used with xref-

tag->path+anchor or embedded in a document rendered via xref-render. If no defini-
tion point is found in xref , the result is #f.

(xref-tag->path+anchor xref

tag

[#:external-root-url root-url

#:render% using-render% ])

→ (or/c false/c path?)

(or/c false/c string?)

xref : xref?

tag : tag?

root-url : (or/c string? #f) = #f

using-render% : (implementation?/c render<%>)

= (render-mixin render%)

Returns a path and anchor string designated by the key tag according the cross-reference
xref . The first result is #f if no mapping is found for the given tag. The second result is #f
if the first result is #f, and it can also be #f if the tag refers to a page rather than a specific
point in a page.

If root-url is provided, then references to documentation in the main installation are redi-
rected to the given URL.

The optional using-render% argument is as for load-xref.

(xref-tag->index-entry xref tag) → (or/c false/c entry?)

xref : xref?

tag : tag?

Extract an entry structure that provides addition information about the definition (of any)
referenced by tag . This function can be composed with xref-binding->definition-

tag to obtain information about a binding, such as the library that exports the binding and
its original name.

(xref-render xref

doc

dest

[#:render% using-render%

#:refer-to-existing-files? use-existing?])

184



→ (or/c void? any/c)

xref : xref?

doc : part?

dest : (or/c path-string? false/c)

using-render% : (implemenation?/c render<%>)

= (render-mixin render%)

use-existing? : any/c = (not dest)

Renders doc using the cross-reference info in xref to the destination dest . For example,
doc might be a generated document of search results using link tags described in xref .

If dest is #f, no file is written, and the result is an X-expression for the rendered page.
Otherwise, the file dest is written and the result is #<void>.

The optional using-render% argument is as for load-xref. It determines the kind of
output that is generated.

If use-existing? is true, then files referenced during rendering (such as image files) are
referenced from their existing locations, instead of copying to the directory of dest .

(xref-transfer-info renderer ci xref) → void?
renderer : (is-a?/c render<%>)

ci : collect-info?

xref : xref?

Transfers cross-reference information to ci , which is the initially collected information from
renderer .

(xref-index xref) → (listof entry?)

xref : xref?

Converts indexing information xref into a list of entry structures.

(struct entry (words content tag desc)

#:extra-constructor-name make-entry)

words : (and/c (listof string?) cons?)

content : list?

tag : tag?

desc : any/c

Represents a single entry in a Scribble document index.

The words list corresponds to index-element-plain-seq. The content list corresponds
to index-element-entry-seq. The desc value corresponds to index-element-desc.
The tag is the destination for the index link into the main document.

185



7.9 Tag Utilities

(require scribble/tag)

The scribble/tag library provides utilities for constructing cross-reference tags. The li-
brary is re-exported by scribble/base.

(make-section-tag name

[#:doc doc-mod-path

#:tag-prefixes tag-prefixes ]) → tag?

name : string?

doc-mod-path : (or/c module-path? #f) = #f

tag-prefixes : (or/c #f (listof string?)) = #f

Forms a tag that refers to a section whose “tag” (as provided by the #:tag argument to
section, for example) is name . If doc-mod-path is provided, the tag references a section
in the document implemented by doc-mod-path from outside the document. Additional
tag prefixes (for intermediate sections, typically) can be provided as tag-prefixes .

(make-module-language-tag lang) → tag?

lang : symbol?

Forms a tag that refers to a section that contains defmodulelang for the language lang .

(taglet? v) → boolean?

v : any/c

Returns #t if v is a taglet, #f otherwise.

A taglet is a value that can be combined with a symbol via list to form a tag, but that is
not a generated-tag. A taglet is therefore useful as a piece of a tag, and specifically as a
piece of a tag that can gain a prefix (e.g., to refer to a section of a document from outside the
document).

(doc-prefix mod-path taglet) → taglet?

mod-path : (or/c #f module-path?)

taglet : taglet?

(doc-prefix mod-path extra-prefixes taglet) → taglet?

mod-path : (or/c #f module-path?)

extra-prefixes : (or/c #f (listof taglet?))

taglet : taglet?

Converts part of a cross-reference tag that would work within a document implemented by
mod-path to one that works from outside the document, assuming that mod-path is not #f.
That is, mod-path is converted to a taglet and added as prefix to an existing taglet .

186



If extra-prefixes is provided, then its content is added as a extra prefix elements before
the prefix for mod-path is added. A #f value for extra-prefixes is equivalent to '().

If mod-path is #f, then taglet is returned without a prefix (except adding extra-

prefixes , if provided).

(module-path-prefix->string mod-path) → string?

mod-path : module-path?

Converts a module path to a string by resolving it to a path, and using path->main-

collects-relative.

(module-path-index->taglet mpi) → taglet?

mpi : module-path-index?

Converts a module path index to a taglet—a normalized encoding of the path as an S-
expression—that is interned via intern-taglet.

The string form of the taglet is used as prefix in a tag to form cross-references into the
document that is implemented by the module referenced by mpi .

(intern-taglet v) → any/c

v : any/c

Returns a value that is equal? to v , where multiple calls to intern-taglet for equal? vs
produce the same (i.e., eq?) value.

7.10 Extending and Configuring Scribble Output

Sometimes, Scribble’s primitives and built-in styles are insufficient to produce the output
that you need. The cases in which you need to extend or configure Scribble fall into two
groups:

• You may need to drop into the back-end “language” of CSS or Latex to create a spe-
cific output effect. For this kind of extension, you will mostly likely attach a css-

addition or tex-addition style property to style, where the addition implements
the style name. This kind of extension is described in §7.10.1 “Implementing Styles”.

• You may need to produce a document whose page layout is different from the Racket
documentation style. For that kind of configuration, you can run the scribble

command-line tool and supply flags like --prefix or ++style, or you can asso-
ciate a html-defaults or latex-defaults style property to the main document’s
style. This kind of configuration is described in §7.10.2 “Configuring Output”.

187



7.10.1 Implementing Styles

When a string is uses as a style in an element, a multiarg-element, paragraph, ta-
ble, itemization, nested-flow, or compound-paragraph, it corresponds to a CSS
class for HTML output or a Latex macro/environment for Latex output. In Latex output,
the string is used as a command name for a paragraph and an environment name for a ta-
ble, itemization, nested-flow, or compound-paragraph; if the style has a 'command
style property for a nested-flow or compound-paragraph, then the style name is used as
a command instead of an environment; and if the style has a 'multicommand style property
for a nested-flow, then the style name is used as a command with multiple arguments. In
addition, for an itemization, the style string is suffixed with "Item" and used as a CSS class
or Latex macro name to use for the itemization’s items (in place of \item in the case of
Latex).

To add a mapping from your own style name to a CSS configuration, add a css-addition
structure instance to a style’s style property list. To map a style name to a Latex macro or
environment, add a tex-addition structure instance. A css-addition or tex-addition
is normally associated with the style whose name is implemented by the adition, but it can
also be added to the style for an enclosing part.

Scribble includes a number of predefined styles that are used by the exports of
scribble/base. You can use them or redefine them. The styles are specified by
"scribble.css" and "scribble.tex" in the "scribble" collection.

The styles used by scribble/manual are implemented by "racket.css" and
"racket.tex" in the "scribble" collection. Other libraries, such as scrib-

lib/autobib, similarly implement styles through files that are associated by css-

addition and tex-addition style properties.

To avoid collisions with future additions to Scribble, start your style name with an uppercase
letter that is not S. An uppercase letter helps to avoid collisions with macros defined by
Latex packages, and future styles needed by scribble/base and scribble/manual will
start with S.

For example, a Scribble document

#lang scribble/manual

@(require scribble/core

scribble/html-properties

scribble/latex-properties)

(define inbox-style

(make-style "InBox"

(list (make-css-addition "inbox.css")

(make-tex-addition "inbox.tex"))))

188



@title{Quantum Pet}

Do not open: @elem[#:style inbox-style]{Cat}

combined with an "inbox.css" that contains

.inbox {

padding: 0.2em;

border: 1px solid #000000;

}

and an "inbox.tex" that contains

\newcommand{\InBox}[1]{\fbox{#1}}

generates

Quantum Pet
Do not open: Cat

7.10.2 Configuring Output

The implementation of styles used by libraries depends to some degree on separately con-
figurable parameters, and configuration is also possible by replacing style implementations.
Latex output is more configurable in the former way, since a document class determines a set
of page-layout and font properties that are used by other commands. The style-replacement
kind of configuration corresponds to re-defining Latex macros or overriding CSS class at-
tributes. When setup-plt builds PDF documentation, it uses both kinds of configuration
to produce a standard layout for Racket manuals; that is, it selects a particular page layout,
and it replaces some racket/base styles.

Two kinds of files implement the two kinds of configuration:

• A prefix file determines the DOCTYPE line for HTML output or the \documentclass
configuration (and perhaps some addition package uses or other configurations) for
Latex output.

The default prefix files are "scribble-prefix.html" and "scribble-

prefix.tex" in the "scribble" collection.

• A style file refines the implementation of styles used in the document—typically just
the “built-in” styles used by scribble/base.

The default style files, "scribble-style.css" and "scribble-style.tex" in the
"scribble" collection, change no style implementations.

189



For a given configuration of output, typically a particular prefix file works with a particular
style file. Some prefix or style files may be more reusable. For now, reading the default
files is the best way to understand how they interact. A prefix and/or style file may also
require extra accomanying files; for example, a prefix file for Latex mode may require a
corresponding Latex class file. The default prefix and style files require no extra files.

When rendering a document through the scribble command-line tool, use flags to select a
prefix file, style file, and additional accompanying files:

• Select the prefix file using the --prefix flag. (Selecting the prefix file also cancels
the default list of accompanying files, if any.)

• Replace the style file using the --style flag. Add additional style definitions and
re-definitions using the ++style flag.

• Add additional accompanying files with ++extra.

When using the scribble command-line utility, a document can declare its default style,
prefix, and extra files through a html-defaults and/or latex-defaults style property.
In particular, when using the scribble command-line tool to generate Latex or PDF a
document whose main part is implemented with #lang scribble/manual, the result has
the standard Racket manual configuration, because scribble/manual associates a latex-
defaults style property with the exported document. The scribble/sigplan language
similarly associates a default configuration with an exported document. As libraries im-
ported with require, however, scribble/manual and scribble/sigplan simply imple-
ment new styles in a composable way.

Whether or not a document has a default prefix- and style-file configuration through a style
property, the defaults can be overridden using scribble command-line flags. Furthermore,
languages like scribble/manual and scribble/sigplan add a html-defaults and/or
latex-defaults style property to a main-document part only if it does not already have
such a property added through the #:style argument of title.

7.10.3 Predefined Latex Macros

The "scribble.tex" Latex configuration includes several macros and environments that
you can redefine to adjust the output style:

• \preDoc — called before the document content; the default does nothing, while the
scribble/manual configuration enabled \sloppy.

• \postDoc — called after the document content; the default does nothing.

• \sectionNewpage — called before each top-level section starts; the default does
nothing, while the scribble/manual configuration uses \newpage to start each
chapter on a new page.

190



• \SecRef{}{} — the first argument is a section number, and the second argument
is a section title. This macro is used by secref to reference a section (other than a
document or top-level section within a document), and the default shows “section” fol-
lowed by the section number (ignoring the title). The scribble/manual redefinition
of this macro shows “§”, the section number, and the title in quotes.

• \ChapRef{}{} — like \SecRef, but for a top-level section with a document. The
default implementation defers to \SecRef.

• \BookRef{}{} — like \SecRef, but for a document (as opposed to a section within
the document). The default implementation shows the title in italic.

• \SecRefUC{}{} — like \SecRef, but for Secref. The default shows “Section” fol-
lowed by the section number.

• \ChapRefUC{}{} — like \SecRefUC, but for a top-level section with a document.
The default implementation defers to \SecRefUC.

• \SecRefUC{}{} — like \BookRef, but for Secref. The default shows defers to
\BookRef.

• \Ssection{}{}, \Ssubsection{}{}, \Ssubsubsection{}{}, \Ssubsubsub-

section{}{}, \Ssubsubsubsubsection{}{} — for a top-level section, a second-
level section, etc., where the last variant is used for all sections that are deeper than
four levels. The first argument corresponds to the optional argument to \section,
which is used for the table of contents.

• \Ssectionstar{}, \Ssubsectionstar{}, \Ssubsubsectionstar{}, \Ssub-

subsubsectionstar{}, \Ssubsubsubsubsectionstar{} — like \Ssection,
etc., but for unnumbered sections.

• \Ssectionhidden{}, \Ssubsectionhidden{}, \Ssubsubsectionhidden{},
\Ssubsubsubsectionhidden{}, \Ssubsubsubsubsectionhidden{} — like
\Ssection, etc., but for sections with the 'hidden style property.

7.10.4 Latex Prefix Support

(require scribble/latex-prefix)

Provides a string that is useful for constructing a Latex document prefix.

unicode-encoding-packages : string?

A string containing Latex code that is useful after a \documentclass declaration to make
Latex work with Unicode characters.

191



8 Running scribble

The scribble command-line tool (also available as raco scribble) runs a Scribble doc-
ument and renders it to a specific format. Select a format with one of the following flags,
where the output name fn is by default the document source name without its file suffix:

• --html — a single HTML page "fn .html", plus CSS sources and needed image
files; this mode is the default if no format is specified

• --htmls — multiple HTML pages (and associated files) in a "fn " directory, starting
with "fn /index.html"

• --latex — LaTeX source "fn .tex", plus any needed additional files (such as non-
standard class files) needed to run latex or pdflatex

• --pdf — PDF "fn .pdf" that is generated via pdflatex

• --latex-section 〈n〉 — LaTeX source "fn .tex" plus additional ".tex" files to
be included in the enclosing document’s preamble, where the enclosing document
must use the UTF-8 input encoding and T1 font encoding; use 1 for 〈n〉 to make the
rendered document a section, 2 for a subsection, etc.

• --text — plain text in a single file "fn .txt", with non-ASCII content encoded as
UTF-8

• --markdown — Markdown text in a single file "fn .md", with non-ASCII content
encoded as UTF-8

Use --dest-name to specify a fn other than the default name, but only when a single source
file is provided. Use the --dest flag to specify a destination directory (for any number
of source files). Use --dest-base to add a prefix to the name of each support file that is
generated or copied to the destination.

After all flags, provide one or more document sources. When multiple documents are ren-
dered at the same time, cross-reference information in one document is visible to the other
documents. See §8.2 “Handling Cross-References” for information on references that cross
documents that are built separately.

8.1 Extra and Format-Specific Files

Use the --style flag to specify a format-specific file to adjust the output style file for certain
formats. For HTML (single-page or multi-page) output, the style file should be a CSS file
that is applied after all other CSS files, and that may therefore override some style properties.
For Latex (or PDF) output, the style file should be a ".tex" file that can redefine Latex
commands. When a particular Scribble function needs particular CSS or Latex support,

192



however, a better option is to use a css-addition or tex-addition style property so
that the support is included automatically; see §7.10 “Extending and Configuring Scribble
Output” for more information.

In rare cases, use the --style flag to specify a format-specific base style file. For HTML
(single-page or multi-page) output, the style file should be a CSS file to substitute for
"scribble.css" in the "scribble" collection. For Latex (or PDF) output, the style
file should be a ".tex" file to substitute for "scribble.tex" in the "scribble" col-
lection. The --style flag is rarely useful, because the content of "scribble.css" or
"scribble.tex" is weakly specified; replacements must define all of the same styles, and
the set of styles can change across versions of Racket.

Use --prefix to specify an alternate format-specific start of the output file. For HTML
output, the starting file specifies the DOCTYPE declaration of each output HTML file as a sub-
stitute for "scribble-prefix.html" in the "scribble" collection. For Latex (or PDF)
output (but not Latex-section output), the starting file specifies the \documentclass decla-
ration and initial \usepackage declarations as a substitute for "scribble-prefix.tex"
in the "scribble" collection. See also html-defaults, latex-defaults, and §7.10
“Extending and Configuring Scribble Output”.

For any output form, use the ++extra flag to add a needed file to the build destination, such
as an image file that is referenced in the generated output but not included via image (which
copies the file automatically).

8.2 Handling Cross-References

Cross references within a document or documents rendered together are always resolved.
When cross references span documents that are rendered separately, cross-reference infor-
mation needs to be saved and loaded explicitly. Cross-reference information is format-
specific, but HTML-format information is usable for Latex (or PDF) or text rendering.

A Racket installation includes HTML-format cross-reference information for all installed
documentation. Each document’s information is in a separate file, so that loading all relevant
files would be tedious. The +m or ++main-xref-in flag loads cross-reference information
for all installed documentation, so

scribble +m mine.scrbl

renders "mine.scrbl" to "mine.html" with cross-reference links to the Racket installa-
tion’s documentation.

The ++xref-in flag loads cross-reference information by calling a specified module’s func-
tion. The setup/xref module provides load-collections-xref to load cross-reference
information for all installed documentation, and +m or ++main-xref-in is just a shorthand
for ++xref-in setup/xref load-collections-xref.

193



The --redirect-main flag redirects links to the local installation’s documentation to a
given URL, such as http://docs.racket-lang.org/. Beware that documentation links
sometimes change (although Scribble generates HTML paths and anchors in a relatively sta-
ble way), so http://download.racket-lang.org/docs/version/html/ may be more
reliable when building with an installation for version.

The --redirect flag is similar to --redirect-main, except that it builds on the given
URL to indicate a cross-reference tag that is more stable than an HTML path and anchor (in
case the documentation for a function changes sections, for example). No server currently
exists to serve such tag requests, however.

For cross-references among documentation that is not part of the Racket installation, use
--info-out to save information from a document build and use ++info-in to load previ-
ously saved information. For example, if "c.scrbl" refers to information in "a.scrbl"

and "b.scrbl", then

scribble --info-out a.sxref a.scrbl

scribble --info-out b.sxref b.scrbl

scribble ++info-in a.sxref ++info-in b.sxref c.scrbl

builds "c.html" with cross-reference links into "a.html" and "b.html".

194



Index
#lang-Specified Code, 60
++extra, 190
++style, 190
--prefix, 190
--style, 190
-∼-, 40
._, 40
.__, 40
10pt, 45
?-, 40
@ Reader Internals, 136
@ Syntax, 19
@ Syntax Basics, 15
A First Example, 8
abstract, 46
abstract, 47
abstract, 48
Adding @-expressions to a Language, 138
affiliation, 48
affiliation-mark, 48
affiliation-sep, 48
alt-tag, 164
alt-tag-name, 164
alt-tag?, 164
Alternative Body Syntax, 26
as-index, 43
at-exp, 138
attributes, 164
attributes-assoc, 164
attributes?, 164
author, 48
author, 34
author+email, 34
author/short, 48
authorinfo, 46
authors, 49
aux-elem, 85
auxiliary-table?, 111
background-color-property, 158
background-color-property-color,

158
background-color-property?, 158
Base Document Format, 32
Base Renderer, 169
bib-entry, 90
bib-entry?, 91
Bibliography, 89
bibliography, 90
block, 143
block-color, 98
block-traverse-procedure/c, 163
block-width, 161
block?, 159
Blocks, 35
BNF, 106
BNF Grammars, 105
BNF-alt, 107
BNF-etc, 107
BNF-group, 106
BNF-seq, 106
BNF-seq-lines, 106
body-id, 165
body-id-value, 165
body-id?, 165
bold, 38
BookRef, 191
box-mode, 159
box-mode*, 159
box-mode-bottom-name, 159
box-mode-center-name, 159
box-mode-top-name, 159
box-mode?, 159
boxable, 159
boxing context, 159
category, 46
centered, 35
Centering, 12
centerline, 91
ChapRef, 191
ChapRefUC, 191
chunk, 117
cite, 89

195



class-index-desc, 93
class-index-desc?, 93
clean-up-index-string, 179
close-eval, 102
code, 62
Code Fonts and Styles, 67
code:blank, 64
code:comment, 64
code:hilite, 64
code:line, 64
code:line, 99
code:quote, 64
codeblock, 60
codeblock0, 62
collect, 169
collect pass, 141
collect-element, 156
collect-element-collect, 156
collect-element?, 156
collect-info, 161
collect-info-ext-demand, 161
collect-info-ext-ht, 161
collect-info-gen-prefix, 161
collect-info-ht, 161
collect-info-parents, 161
collect-info-parts, 161
collect-info-relatives, 161
collect-info-tags, 161
collect-info?, 161
collect-put!, 162
Collected and Resolved Information, 145
collected-info, 157
collected-info-info, 157
collected-info-number, 157
collected-info-parent, 157
collected-info?, 157
color-property, 157
color-property-color, 157
color-property?, 157
column-attributes, 164
column-attributes-assoc, 164
column-attributes?, 164

commandline, 91
comment-color, 98
Comments, 27
Compatibility Basic Functions, 115
Compatibility Libraries, 107
Compatibility Structures And Processing,

107
compound paragraph, 144
compound-paragraph, 151
compound-paragraph-blocks, 151
compound-paragraph-style, 151
compound-paragraph?, 151
conferenceinfo, 46
Configuring Output, 189
constructor-index-desc, 94
constructor-index-desc-class-tag,

94
constructor-index-desc?, 94
content, 143
content->string, 160
content-width, 160
content?, 159
Contract (Blue boxes) Renderer, 174
copyrightdata, 46
copyrightyear, 46
Cross-Reference Utilities, 182
css-addition, 165
css-addition-path, 165
css-addition?, 165
current-display-width, 81
declare-exporting, 71
decode, 177
decode, 176
decode-compound-paragraph, 178
decode-content, 178
decode-elements, 178
decode-flow, 177
decode-paragraph, 178
decode-part, 177
decode-string, 178
Decoding Sequences, 17
Decoding Text, 176

196



def+int, 100
defboolparam, 79
defclass, 82
defclass/title, 82
defconstructor, 82
defconstructor*/make, 83
defconstructor/auto-super, 83
defconstructor/make, 83
defexamples, 101
defform, 75
defform*, 76
defform*/subs, 77
defform/none, 77
defform/subs, 77
defidentifier, 81
defidform, 78
defidform/inline, 78
define-code, 94
Defining Functions and More, 121
Defining Racket Bindings, 53
definterface, 82
definterface/title, 82
defmethod, 83
defmethod*, 83
defmixin, 82
defmixin/title, 82
defmodule, 69
defmodule*, 70
defmodule*/no-declare, 70
defmodulelang, 70
defmodulelang*, 70
defmodulelang*/no-declare, 70
defmodulereader, 70
defmodulereader*, 70
defmodulereader*/no-declare, 70
defparam, 79
defproc, 72
defproc*, 74
defs+int, 101
defsignature, 84
defsignature/splice, 84
defstruct, 80

defstruct*, 79
deftech, 87
defterm, 85
defthing, 79
deftogether, 80
delayed block, 144
delayed element, 144
delayed-block, 152
delayed-block-resolve, 152
delayed-block?, 152
delayed-element, 156
delayed-element-plain, 156
delayed-element-resolve, 156
delayed-element-sizer, 156
delayed-element?, 156
deprecated, 72
deserialize-info, 171
DFlag, 86
doc-prefix, 186
Document Language, 180
Document Reader, 182
Document Structure, 32
Document Styles, 10
document-date, 157
document-date-text, 157
document-date?, 157
document-version, 157
document-version-text, 157
document-version?, 157
Documenting Classes and Interfaces, 82
Documenting Forms, Functions, Structure

Types, and Values, 72
Documenting Modules, 69
Documenting Signatures, 84
DPFlag, 86
elem, 38
element, 152
element transformer, 97
element->string, 114
element-content, 113
element-content, 152
element-id-transformer?, 97

197



element-style, 152
element-style, 113
element-style?, 160
element-traverse-procedure/c, 164
element?, 113
element?, 152
elemref, 43
elemtag, 42
email, 49
emph, 39
entry, 185
entry-content, 185
entry-desc, 185
entry-tag, 185
entry-words, 185
entry?, 185
envvar, 85
error-color, 98
etc, 91
eval:alts, 99
eval:check, 99
eval:result, 99
eval:results, 99
Evaluation and Examples, 98
Examples, 59
examples, 101
exec, 85
exported-index-desc, 92
exported-index-desc-from-libs, 92
exported-index-desc-name, 92
exported-index-desc?, 92
Extending and Configuring Scribble Output,

187
Extra and Format-Specific Files, 192
Extracting Documentation from Source, 105
filebox, 92
filepath, 85
Flag, 85
flow, 143
for-doc, 103
form-index-desc, 93
form-index-desc?, 93

generate-delayed-documents, 104
generated-tag, 160
generated-tag?, 160
get-defined, 171
get-defineds, 171
get-external, 171
get-undefined, 171
Getting Started, 8
Getting Started with Documentation, 50
Handling Cross-References, 193
hash-lang, 91
head-extra, 166
head-extra-xexpr, 166
head-extra?, 166
High-Level Scribble API, 32
highlighted-color, 98
hover-property, 165
hover-property-text, 165
hover-property?, 165
hspace, 40
HTML Renderer, 173
HTML Style Properties, 164
html-defaults, 166
html-defaults-extra-files, 166
html-defaults-prefix, 166
html-defaults-style, 166
html-defaults?, 166
hyperlink, 41
idefterm, 89
image, 39
image-element, 154
image-element-path, 154
image-element-scale, 154
image-element-suffixes, 154
image-element?, 154
image-file, 114
image-file-path, 114
image-file-scale, 114
image-file?, 114
image/plain, 89
Images, 89
Implementing Styles, 188

198



In-Source Documentation, 102
include-abstract, 48
include-abstract, 46
include-abstract, 47
include-extracted, 105
include-previously-extracted, 105
include-section, 34
Indentation in Preprocessed output, 124
index, 43
index*, 43
index-element, 155
index-element-desc, 155
index-element-entry-seq, 155
index-element-plain-seq, 155
index-element-tag, 155
index-element?, 155
Index-Entry Descriptions, 92
index-section, 44
indexed-envvar, 89
indexed-file, 89
indexed-racket, 88
indexed-scheme, 89
Indexing, 59
Indexing, 43
Indexing, 88
info key, 161
info-key?, 161
input-background-color, 98
input-color, 98
institute, 49
institutes, 49
interaction, 98
interaction-eval, 100
interaction-eval-show, 100
interaction0, 100
Interface, 138
interface-index-desc, 93
interface-index-desc?, 93
intern-taglet, 187
italic, 38
item, 36
item?, 36

itemization, 150
itemization, 143
itemization-blockss, 150
itemization-style, 150
itemization?, 150
Itemizations, 13
itemize, 115
itemlist, 36
items/c, 36
JavaDoc, 102
JFP Paper Format, 47
js-addition, 165
js-addition-path, 165
js-addition?, 165
just-context, 97
just-context-context, 97
just-context-val, 97
just-context?, 97
keyword-color, 98
keywords, 47
kleeneplus, 107
kleenerange, 107
kleenestar, 107
larger, 38
Latex Prefix Support, 191
Latex Renderer, 174
Latex Style Properties, 166
latex-auto-extra-files, 167
latex-auto-extra-files-paths, 167
latex-auto-extra-files?, 167
latex-defaults, 166
latex-defaults-extra-files, 166
latex-defaults-prefix, 166
latex-defaults-style, 166
latex-defaults?, 166
Layer Roadmap, 134
linebreak, 40
link, 86
link-element, 155
link-element-tag, 155
link-element?, 155
Links, 41

199



Links, 86
litchar, 67
literal, 39
literal-syntax, 97
literal-syntax-stx, 97
literal-syntax?, 97
Literate Programming, 116
LNCS Paper Format, 48
load-xref, 182
local-table-of-contents, 44
long-boolean, 97
long-boolean-val, 97
long-boolean?, 97
Low-Level Scribble API, 132
lp-include, 117
make-alt-tag, 164
make-at-reader, 140
make-at-readtable, 139
make-attributes, 164
make-aux-element, 113
make-auxiliary-table, 111
make-background-color-property, 158
make-base-eval, 101
make-base-eval-factory, 101
make-blockquote, 111
make-body-id, 165
make-box-mode, 159
make-class-index-desc, 93
make-collect-element, 156
make-collect-info, 161
make-collected-info, 157
make-color-property, 157
make-column-attributes, 164
make-compound-paragraph, 111
make-compound-paragraph, 151
make-constructor-index-desc, 94
make-css-addition, 165
make-delayed-block, 152
make-delayed-element, 156
make-document-date, 157
make-document-version, 157
make-element, 152

make-element, 112
make-element-id-transformer, 97
make-entry, 185
make-eval-factory, 101
make-exported-index-desc, 92
make-form-index-desc, 93
make-generated-tag, 160
make-head-extra, 166
make-hover-element, 113
make-hover-property, 165
make-html-defaults, 166
make-image-element, 154
make-image-file, 114
make-index-element, 113
make-index-element, 155
make-interface-index-desc, 93
make-itemization, 111
make-itemization, 150
make-js-addition, 165
make-just-context, 97
make-latex-auto-extra-files, 167
make-latex-defaults, 166
make-link-element, 155
make-link-element, 112
make-literal-syntax, 97
make-long-boolean, 97
make-method-index-desc, 94
make-mixin-index-desc, 93
make-module-language-tag, 186
make-module-path-index-desc, 92
make-multiarg-element, 155
make-nested-flow, 150
make-omitable-paragraph, 110
make-page-target-element, 112
make-page-target-element, 154
make-paragraph, 148
make-paragraph, 110
make-part, 146
make-part, 108
make-part-collect-decl, 179
make-part-index-decl, 179
make-part-relative-element, 156

200



make-part-start, 179
make-part-tag-decl, 179
make-procedure-index-desc, 93
make-redirect-target-element, 112
make-redirect-target-element, 154
make-render-element, 157
make-resolve-info, 161
make-script-element, 113
make-script-property, 165
make-section-tag, 186
make-shaped-parens, 96
make-splice, 179
make-struct-index-desc, 93
make-style, 159
make-styled-itemization, 111
make-styled-paragraph, 110
make-table, 110
make-table, 149
make-table-cells, 158
make-table-columns, 158
make-target-element, 112
make-target-element, 154
make-target-url, 114
make-target-url, 157
make-tex-addition, 166
make-thing-index-desc, 93
make-title-decl, 178
make-toc-element, 155
make-toc-element, 112
make-toc-target-element, 154
make-toc-target-element, 112
make-traverse-block, 152
make-traverse-element, 156
make-unnumbered-part, 109
make-url-anchor, 165
make-var-id, 96
make-variable-id, 98
make-versioned-part, 109
make-with-attributes, 114
Manual Forms, 60
Margin Notes, 12
margin-note, 35

margin-note*, 35
Markdown Renderer, 173
math, 92
menuitem, 85
meta-color, 98
method, 84
method-index-desc, 94
method-index-desc-class-tag, 94
method-index-desc-method-name, 94
method-index-desc?, 94
Miscellaneous, 91
mixin-index-desc, 93
mixin-index-desc?, 93
module-color, 98
module-link-color, 98
module-path-index->taglet, 187
module-path-index-desc, 92
module-path-index-desc?, 92
module-path-prefix->string, 187
More Functions, 11
Multi-Page Sections, 55
multiarg-element, 155
multiarg-element-contents, 155
multiarg-element-style, 155
multiarg-element?, 155
Multiple Sections, 9
nested, 35
nested flow, 143
nested-flow, 150
nested-flow-blocks, 150
nested-flow-style, 150
nested-flow?, 150
Next Steps, 18
no-color, 98
nocopyright, 45
nonbreaking, 40
nonterm, 106
noqcourier, 45
notimes, 45
omitable-paragraph?, 110
onecolumn, 45
onscreen, 85

201



opt-color, 98
optional, 107
other-doc, 42
other-manual, 87
output-color, 98
override-render-mixin-multi, 175
override-render-mixin-single, 175
page-target-element, 154
page-target-element?, 154
para, 35
paragraph, 148
paragraph, 143
paragraph-content, 148
paragraph-content, 110
paragraph-style, 148
paragraph?, 148
parameter-doc, 104
paren-color, 98
part, 146
part, 143
part-blocks, 146
part-collect-decl, 179
part-collect-decl-element, 179
part-collect-decl?, 179
part-collected-info, 163
part-flow, 108
part-index-decl, 179
part-index-decl-entry-seq, 179
part-index-decl-plain-seq, 179
part-index-decl?, 179
part-parts, 146
part-relative element, 144
part-relative-element, 156
part-relative-element-plain, 156
part-relative-element-resolve, 156
part-relative-element-sizer, 156
part-relative-element?, 156
part-start, 179
part-start-depth, 179
part-start-style, 179
part-start-tag-prefix, 179
part-start-tags, 179

part-start-title, 179
part-start?, 179
part-style, 146
part-tag-decl, 179
part-tag-decl-tag, 179
part-tag-decl?, 179
part-tag-prefix, 146
part-tags, 146
part-title-content, 109
part-title-content, 146
part-to-collect, 146
part?, 146
Parts, Flows, Blocks, and Paragraphs, 141
PDF Renderer, 174
PFlag, 86
Pictures, 18
pidefterm, 89
plain, 160
PLaneT, 91
postDoc, 190
pre-content, 176
pre-content?, 176
pre-flow, 177
pre-flow?, 176
pre-part, 177
pre-part?, 177
Predefined Latex Macros, 190
preDoc, 190
prefix file, 189
preprint, 45
Preprocessor, 118
Preserving Comments, 66
proc-doc, 104
proc-doc/names, 103
procedure, 68
procedure-index-desc, 93
procedure-index-desc?, 93
Prose and Terminology, 56
provide-extracted, 105
provide/doc, 105
Racket, 94
RACKET, 65

202



racket, 65
Racket Code, 62
Racket Expression Escapes, 26
Racket Manual Format, 44
Racket Typesetting and Hyperlinks, 51
RACKETBLOCK, 64
racketblock, 62
racketblock+eval, 100
RACKETBLOCK0, 64
racketblock0, 64
racketblock0+eval, 100
racketcommentfont, 68
racketerror, 68
racketfont, 67
racketgrammar, 81
racketgrammar*, 81
racketid, 66
racketidfont, 67
racketinput, 65
RACKETINPUT, 65
RACKETINPUT0, 65
racketinput0, 65
racketkeywordfont, 68
racketlink, 86
racketmetafont, 68
racketmod, 65
racketmod+eval, 100
racketmod0, 65
racketmodfont, 68
racketmodlink, 67
racketmodname, 67
racketoutput, 68
racketparenfont, 68
racketresult, 65
racketresultblock, 64
RACKETRESULTBLOCK, 64
racketresultblock0, 64
RACKETRESULTBLOCK0, 64
racketresultfont, 67
racketvalfont, 67
racketvarfont, 67
raco scribble, 192

read, 138
read-inside, 139
read-syntax, 138
read-syntax-inside, 139
reader-color, 98
redirect-target-element, 154
redirect-target-element-alt-

anchor, 154
redirect-target-element-alt-path,

154
redirect-target-element?, 154
render, 168
render, 175
render, 175
render, 170
render pass, 141
new, 172
render%, 172
render-element, 157
render-element-render, 157
render-element?, 157
render-mixin, 174
render-mixin, 173
render-mixin, 173
render-mixin, 174
render-mixin, 173
render-multi-mixin, 174
render<%>, 169
Renderers, 167
Rendering Driver, 167
require/doc, 104
resolve, 170
resolve pass, 141
resolve-get, 162
resolve-get-keys, 163
resolve-get/ext?, 162
resolve-get/tentative, 163
resolve-info, 161
resolve-info-ci, 161
resolve-info-delays, 161
resolve-info-undef, 161
resolve-info?, 161

203



resolve-search, 162
result-color, 98
Running scribble, 192
SCHEME, 66
scheme, 66
schemeblock, 66
SCHEMEBLOCK, 66
SCHEMEBLOCK0, 66
schemeblock0, 66
schemeerror, 69
schemefont, 69
schemegrammar, 81
schemegrammar*, 81
schemeid, 66
schemeidfont, 69
schemeinput, 66
schemekeywordfont, 69
schemelink, 86
schememetafont, 69
schememod, 66
schememodfont, 69
schememodlink, 69
schememodname, 69
schemeoutput, 69
schemeparenfont, 69
schemeresult, 66
schemeresultfont, 69
schemevalfont, 69
schemevarfont, 69
Scribble, comments, 16
Scribble Layers, 132
scribble-eval-handler, 102
scribble/base, 32
scribble/base-render, 169
scribble/basic, 115
scribble/bnf, 105
scribble/comment-reader, 66
scribble/contract-render, 174
scribble/core, 140
scribble/decode, 176
scribble/doc, 182
scribble/doclang, 181

scribble/doclang, 181
scribble/doclang2, 180
scribble/eval, 98
scribble/extract, 105
scribble/html-properties, 164
scribble/html-render, 173
scribble/jfp, 47
scribble/latex-prefix, 191
scribble/latex-properties, 166
scribble/latex-render, 174
scribble/lncs, 48
scribble/lp, 117
scribble/lp Language, 117
scribble/lp-include, 117
scribble/lp-include Module, 117
scribble/manual, 60
scribble/manual-struct, 92
scribble/markdown-render, 173
scribble/pdf-render, 174
scribble/racket, 94
scribble/reader, 138
scribble/render, 167
scribble/scheme, 94
scribble/sigplan, 45
scribble/srcdoc, 103
scribble/struct, 107
scribble/tag, 186
scribble/text, 118
scribble/text-render, 173
scribble/xref, 182
Scribble: The Racket Documentation Tool, 1
'scribble:current-render-mode, 152
Scribbling Documentation, 50
script-property, 165
script-property-script, 165
script-property-type, 165
script-property?, 165
seclink, 42
secref, 41
Secref, 42
SecRef, 191
SecRefUC, 191

204



SecRefUC, 191
section, 33
Section Hyperlinks, 52
Section Titles, 59
section-index, 43
sectionNewpage, 190
serialize-info, 170
serialize-infos, 170
set-external-root-url, 174
set-external-tag-path, 173
Setting Up Library Documentation, 50
shaped-parens, 96
shaped-parens-shape, 96
shaped-parens-val, 96
shaped-parens?, 96
Showing Racket Examples, 54
sigelem, 84
signature-desc, 84
SIGPLAN Paper Format, 45
smaller, 38
Source Annotations for Documentation, 103
Spaces, Newlines, and Indentation, 28
Spacing, 40
span-class, 115
specform, 78
specspecsubform, 78
specspecsubform/subs, 78
specsubform, 78
specsubform/subs, 78
splice, 179
splice-run, 179
splice?, 179
spliceof, 179
Splitting the Document Source, 9
Ssection, 191
Ssectionhidden, 191
Ssectionstar, 191
Ssubsection, 191
Ssubsectionhidden, 191
Ssubsectionstar, 191
Ssubsubsection, 191
Ssubsubsectionhidden, 191

Ssubsubsectionstar, 191
Ssubsubsubsection, 191
Ssubsubsubsectionhidden, 191
Ssubsubsubsectionstar, 191
Ssubsubsubsubsection, 191
Ssubsubsubsubsectionhidden, 191
Ssubsubsubsubsectionstar, 191
struct-index-desc, 93
struct-index-desc?, 93
struct:alt-tag, 164
struct:attributes, 164
struct:background-color-property,

158
struct:body-id, 165
struct:box-mode, 159
struct:class-index-desc, 93
struct:collect-element, 156
struct:collect-info, 161
struct:collected-info, 157
struct:color-property, 157
struct:column-attributes, 164
struct:compound-paragraph, 151
struct:constructor-index-desc, 94
struct:css-addition, 165
struct:delayed-block, 152
struct:delayed-element, 156
struct:document-date, 157
struct:document-version, 157
struct:element, 152
struct:entry, 185
struct:exported-index-desc, 92
struct:form-index-desc, 93
struct:generated-tag, 160
struct:head-extra, 166
struct:hover-property, 165
struct:html-defaults, 166
struct:image-element, 154
struct:image-file, 114
struct:index-element, 155
struct:interface-index-desc, 93
struct:itemization, 150
struct:js-addition, 165

205



struct:just-context, 97
struct:latex-auto-extra-files, 167
struct:latex-defaults, 166
struct:link-element, 155
struct:literal-syntax, 97
struct:long-boolean, 97
struct:method-index-desc, 94
struct:mixin-index-desc, 93
struct:module-path-index-desc, 92
struct:multiarg-element, 155
struct:nested-flow, 150
struct:page-target-element, 154
struct:paragraph, 148
struct:part, 146
struct:part-collect-decl, 179
struct:part-index-decl, 179
struct:part-relative-element, 156
struct:part-start, 179
struct:part-tag-decl, 179
struct:procedure-index-desc, 93
struct:redirect-target-element, 154
struct:render-element, 157
struct:resolve-info, 161
struct:script-property, 165
struct:shaped-parens, 96
struct:splice, 179
struct:struct-index-desc, 93
struct:style, 159
struct:table, 149
struct:table-cells, 158
struct:table-columns, 158
struct:target-element, 154
struct:target-url, 157
struct:target-url, 114
struct:tex-addition, 166
struct:thing-index-desc, 93
struct:title-decl, 178
struct:toc-element, 155
struct:toc-target-element, 154
struct:traverse-block, 152
struct:traverse-element, 156
struct:url-anchor, 165

struct:var-id, 96
struct:with-attributes, 114
Structure Reference, 146
Structures And Processing, 140
style, 159
style, 145
style file, 189
Style Guide, 56
style name, 145
style property, 145
style-name, 159
style-properties, 159
style?, 159
styled-itemization-style, 111
styled-itemization?, 111
styled-paragraph-style, 110
styled-paragraph?, 110
Styles, 145
subscript, 38
subsection, 33
subsubsection, 34
subsubsub*section, 34
superscript, 38
svar, 69
symbol-color, 98
Syntax Properties, 136
syntax-link-color, 98
t, 91
table, 149
table, 143
table-blockss, 149
table-cells, 158
table-cells-styless, 158
table-cells?, 158
table-columns, 158
table-columns-styles, 158
table-columns?, 158
table-flowss, 110
table-of-contents, 44
table-style, 149
table?, 149
Tables, 13

206



Tables of Contents, 44
tabular, 36
tag, 144
tag prefix, 144
Tag Utilities, 186
tag-key, 163
tag?, 160
taglet, 186
taglet?, 186
Tags, 44
Tags, 144
target-element, 154
target-element-tag, 154
target-element?, 154
target-url, 114
target-url, 157
target-url-addr, 114
target-url-addr, 157
target-url-style, 114
target-url?, 157
target-url?, 114
tech, 87
techlink, 88
terms, 47
tex-addition, 166
tex-addition-path, 166
tex-addition?, 166
Text Generation, 118
Text Mode vs. Racket Mode for Arguments,

13
Text Renderer, 173
Text Styles and Content, 37
The Body Part, 25
The Command Part, 23
The Datum Part, 24
The Scribble Syntax at a Glance, 19
thing-doc, 104
thing-index-desc, 93
thing-index-desc?, 93
this-obj, 84
title, 32
title-decl, 178

title-decl-content, 178
title-decl-style, 178
title-decl-tag-prefix, 178
title-decl-tags, 178
title-decl-version, 178
title-decl?, 178
to-element, 96
to-element/no-color, 96
to-paragraph, 95
to-paragraph/prefix, 96
toc-element, 155
toc-element-toc-content, 155
toc-element?, 155
toc-target-element, 154
toc-target-element?, 154
traverse, 169
traverse block, 144
traverse element, 144
traverse pass, 141
traverse-block, 152
traverse-block-block, 163
traverse-block-traverse, 152
traverse-block?, 152
traverse-element, 156
traverse-element-content, 163
traverse-element-traverse, 156
traverse-element?, 156
tt, 38
Typesetting Code, 57
Typesetting Code, 60
Typesetting Prose, 58
Typical Composition, 132
undefined-const, 91
unicode-encoding-packages, 191
unnumbered-part?, 109
url, 41
url-anchor, 165
url-anchor-name, 165
url-anchor?, 165
use-at-readtable, 140
Using External Files, 128
Using Printouts, 123

207



Using the @ Reader, 136
value-color, 98
value-link-color, 98
var, 68
var-id, 96
var-id-sym, 96
var-id?, 96
variable-color, 98
variable-id?, 97
Various String Forms, 85
verbatim, 37
versioned-part?, 109
void-const, 91
whitespace?, 178
with-attributes, 114
with-attributes-assoc, 114
with-attributes-style, 114
with-attributes?, 114
Writing Text Files, 118
xmethod, 84
xref-binding->definition-tag, 183
xref-index, 185
xref-render, 184
xref-tag->index-entry, 184
xref-tag->path+anchor, 184
xref-transfer-info, 185
xref?, 182
∼, 40

208


	1 Getting Started
	1.1 A First Example
	1.2 Multiple Sections
	1.3 Splitting the Document Source
	1.4 Document Styles
	1.5 More Functions
	1.5.1 Centering
	1.5.2 Margin Notes
	1.5.3 Itemizations
	1.5.4 Tables

	1.6 Text Mode vs. Racket Mode for Arguments
	1.7 @ Syntax Basics
	1.8 Decoding Sequences
	1.9 Pictures
	1.10 Next Steps

	2 @ Syntax
	2.1 The Scribble Syntax at a Glance
	2.2 The Command Part
	2.3 The Datum Part
	2.4 The Body Part
	2.4.1 Alternative Body Syntax
	2.4.2 Racket Expression Escapes
	2.4.3 Comments
	2.4.4 Spaces, Newlines, and Indentation


	3 High-Level Scribble API
	3.1 Base Document Format
	3.1.1 Document Structure
	3.1.2 Blocks
	3.1.3 Text Styles and Content
	3.1.4 Spacing
	3.1.5 Links
	3.1.6 Indexing
	3.1.7 Tables of Contents
	3.1.8 Tags

	3.2 Racket Manual Format
	3.3 SIGPLAN Paper Format
	3.4 JFP Paper Format
	3.5 LNCS Paper Format

	4 Scribbling Documentation
	4.1 Getting Started with Documentation
	4.1.1 Setting Up Library Documentation
	4.1.2 Racket Typesetting and Hyperlinks
	4.1.3 Section Hyperlinks
	4.1.4 Defining Racket Bindings
	4.1.5 Showing Racket Examples
	4.1.6 Multi-Page Sections

	4.2 Style Guide
	4.2.1 Prose and Terminology
	4.2.2 Typesetting Code
	4.2.3 Typesetting Prose
	4.2.4 Section Titles
	4.2.5 Indexing
	4.2.6 Examples

	4.3 Manual Forms
	4.3.1 Typesetting Code
	4.3.2 Documenting Modules
	4.3.3 Documenting Forms, Functions, Structure Types, and Values
	4.3.4 Documenting Classes and Interfaces
	4.3.5 Documenting Signatures
	4.3.6 Various String Forms
	4.3.7 Links
	4.3.8 Indexing
	4.3.9 Images
	4.3.10 Bibliography
	4.3.11 Miscellaneous
	4.3.12 Index-Entry Descriptions

	4.4 Racket
	4.5 Evaluation and Examples
	4.6 In-Source Documentation
	4.6.1 Source Annotations for Documentation
	4.6.2 Extracting Documentation from Source

	4.7 BNF Grammars
	4.8 Compatibility Libraries
	4.8.1 Compatibility Structures And Processing
	4.8.2 Compatibility Basic Functions


	5 Literate Programming
	5.1 blueIdentifierColorscribble/lp Language
	5.2 blueIdentifierColorscribble/lp-include Module

	6 Text Generation
	6.1 Writing Text Files
	6.2 Defining Functions and More
	6.3 Using Printouts
	6.4 Indentation in Preprocessed output
	6.5 Using External Files

	7 Low-Level Scribble API
	7.1 Scribble Layers
	7.1.1 Typical Composition
	7.1.2 Layer Roadmap

	7.2 @ Reader Internals
	7.2.1 Using the @ Reader
	7.2.2 Syntax Properties
	7.2.3 Adding @-expressions to a Language
	7.2.4 Interface

	7.3 Structures And Processing
	7.3.1 Parts, Flows, Blocks, and Paragraphs
	7.3.2 Tags
	7.3.3 Styles
	7.3.4 Collected and Resolved Information
	7.3.5 Structure Reference
	7.3.6 HTML Style Properties
	7.3.7 Latex Style Properties

	7.4 Renderers
	7.4.1 Rendering Driver
	7.4.2 Base Renderer
	7.4.3 Text Renderer
	7.4.4 Markdown Renderer
	7.4.5 HTML Renderer
	7.4.6 Latex Renderer
	7.4.7 PDF Renderer
	7.4.8 Contract (Blue boxes) Renderer

	7.5 Decoding Text
	7.6 Document Language
	7.6.1 blueIdentifierColorscribble/doclang

	7.7 Document Reader
	7.8 Cross-Reference Utilities
	7.9 Tag Utilities
	7.10 Extending and Configuring Scribble Output
	7.10.1 Implementing Styles
	7.10.2 Configuring Output
	7.10.3 Predefined Latex Macros
	7.10.4 Latex Prefix Support


	8 Running scribble
	8.1 Extra and Format-Specific Files
	8.2 Handling Cross-References

	Index

