Implementing HtDP Teachpacks, Libraries, and
Customized Teaching Languages

Version 5.3.5

June 18, 2013

DrRacket has two different mechanisms for making available additional functions and func-
tionality to students using the teaching languages.

* HtDP Teachpacks are added to a student’s program by clicking on the “Language”
menu and selecting “add Teachpack”. Students can then install a new Teachpack by
clicking “Add Teachpack to List” and choosing the Teachpack file from the filesystem.

» HtDP Libraries are brought into the student’s program using a require statement.

Under the hood, HtDP Teachpacks and HtDP Libraries are implemented the same way, using
normal Racket §6 “Modules”.

When implementing such an extension for students, pay a special attention to two aspects:

1. choice of construct: The teaching languages limit the expressive power in comparison
to plain Racket. One goal is to teach “design subject to constraints,” and the other one
is to help restrict the set of explanations for student errors. With regard to the first,
we consider it imperative that new teachpacks and libraries avoid features intended for
upper-level students or professionals.

2. error messages: The error messages from the teaching languages go to great length to
never confront students messages that uses vocabulary or phrases outside of the scope
of the chosen level. While teachpacks and libraries can be used at all levels, they
should ideally restrict the vocabulary in error message to the lowest level language in
which they are to be used.

This manual describes library support for authors of HtDP Teachpacks, libraries, and cus-
tomized teaching languages. Use the HtDP error reporting functions to create error messages

that integrate smoothly with those of the teaching languages. Before composing new error
messages, we recommend you read the error message composition guidelines that informed
the design of the error messages of DrRacket’s teaching languages.

1 Error Message Composition Guidelines

This section lists some guidelines for writing good error messages for novices, as informed
by our research. Please follow these guidelines when you write code that is intended for
beginners, including libraries and teachpacks. It ensures that error messages from your code
fits messages from the student languages and from other teachpacks.

1.1 General Guidelines

1.2

Frustrated students will peer at the error message for clues on how to proceed. Avoid
offering hints, and avoid proposing any specific modification. Students will follow
well-meaning-but-wrong advice uncritically, if only because they have no reason to
doubt the authoritative voice of the tool.

Be concise and clear. Students give up reading error messages if the text is too long,
uses obscure words, or employs difficult grammar.

Message Structure and Form

Start the message with the name of the construct whose constraint is being violated,
followed by a colon.

State the constraint that was violated (“expected a...”), then contrast with what was
found. For example, “this function expects two arguments, but found only one”. If
needed, explain how what was found fails to satisfy the constraint. Write somewhat
anthropomorphically with an objective voice that is neither friendly nor antagonistic.

If an expression contains multiple errors, report the leftmost error first. E.g., the error
in (define 1 2 3) is “expected the variable name, but found a number”, not “ex-
pected 2 parts after define, but found 3”. Before raising an error about a sub-part of
a macro, call syntax-local-expand-expression on sub-expressions to its left, so
that such errors are shown first.

State the number of parts instead of saying “found too many parts”. Write the code
necessary to make plurals agree.

1.3 Words For Describing Code

Use only the following vocabulary words to describe code:

function variable argument function body
expression part clause top level

structure nametype namefield namebinding

» Use binding for the square-braced pair in a 1et and similar binding forms.

* Use ‘argument’ for actual arguments and ‘variable’ for formal arguments in the header
and body of a definition.

e Use ‘part” when speaking about an s-expression that is not an expression, either be-
cause it is malformed, because it occurs in a non-expression position, or because it is
a valid piece of syntax for a macro invocation. A well-formed and well-placed call to
a function, primitive, or macro is not a ‘part’, it is an ‘expression’.

1.4 Words For Describing Runtime Behavior
Use the following vocabulary words to describe how code runs:

* When specifying a function’s behavior, say “the function takes ... and produces ...”
* When describing a contract violation, say “the function expects ... but received ...”

* As much as possible, identify expressions and the value they evaluate to, e.g. “the
value of (f z) is 5”. If it is necessary to mention evaluation order, such as when
the context discusses mutable state, say that the expression “evaluates to” a value.
Function calls are a special case of expression. Prefer “the function call produces

” to “the function call evaluates to ...”, except when trying to draw attention to the
evaluation of the arguments.

e set! and set-structure-name-field-name! ‘mutate’ variables and structure in-
stances, respectively. Avoid using the verb ‘sets’ when discussing mutation, and re-
serve the verbs ‘changes’ and ‘updates’ for functional updates.

1.5 Prohibited Words

These guidelines use few terms intentionally, emphasizing commonality among concepts
rather than technical precision (which most students do not appreciate anyway).

Instead of Use

procedure, primitive name, primitive operator, predicate, selector, constructor “function””

s-expression “expression”

identifier “argument” or “variable”, depending on th
defined name “function” or “variable”

sequence “at least one (in parentheses)”

function header “after define”, “after the name”, “after the
keyword mention the construct directly by name, suc

built-in Nothing — avoid this term
macro Nothing — avoid this term

1.6 General Vocabulary Guidelines

* Avoid modifiers that are not necessary to disambiguate. Write ‘variable’ instead of
‘local variable’, ‘defined variable’, or ‘input variable’. Write ‘clause’ instead of
‘question-answer clause’. If they appear necessary for disambiguation, try to find
some other way to achieve this (and drop the modifier).

* When introducing macros with sub-parts, reuse existing vocabulary words, such as
‘clause’ or ‘binding’ (if appropriate), or just ‘part’, instead of defining new terms.

* Use ‘name’ only when describing the syntax of a definition form. For example, the de-
fine form in BSL should say “expected at least one variable after the function name”.
Outside of the definition form, simply use the word ‘function’ rather than distinguish
between (1) a function, (2) the variable that binds the function, and (3) the name of
that variable.

[Rationale: Students learn this distinction when they learn about lambda. The first
is the lambda implicit in the definition, the second is the variable introduced by the
definition that can appear as the first argument to set!, the third is the particular
sequence of letters. But BSL should avoid this complexity, and ASL’s error messages
should maintain consistency with BSL.]

* Avoid introducing technical vocabulary, even if well-known to a mathematician.

1.7 Punctuation

* Do not use any punctuation beyond those of the normal English language. Do not
write <> around type names, and do not write quotes around keywords.

1.8 Supporting Research

These guidelines arose from a collections of research studies held at the Worcester Polytech-
nic Institute, Brown University, and Northeastern University. Further experiment details and
results are described in:

* Mind Your Language: On Novices’ Interactions with Error Messages

This paper reports on a series of studies that explore beginning students’ interactions
with the vocabulary and source-expression highlighting in DrRacket. Our findings
demonstrate that the error message DrRacket’s old error messages significantly failed
to convey information accurately to students.

http://www.cs.brown.edu/~sk/Publications/Papers/Published/mfk-mind-lang-novice-inter-error-msg/

* Measuring the Effectiveness of Error Messages Designed for Novice Programmers

This paper presents a fine-grained grading rubric for evaluating the performance of
individual error messages. We applied the rubric to a course worth of student work,
which allowed us to characterize some ways error messages fail.

http://www.cs.brown.edu/~sk/Publications/Papers/Published/mfk-measur-effect-error-msg-novice-sigcse/

2 Error Reporting Functions

(require htdp/error)

To provide uniform error messages from teachpacks, this module provides several functions:

(check-arg name chk expected position given) — void?
name : (or/c symbol? string?)
chk : boolean?
expected : any/c
position : (or/c (and/c positive? integer?) string?)
given : any/c

Checks an flat-valued argument to function name. Reports an error for function name telling
students what kind of data is expected at the position-th argument and displaying what
value was actually given, unless chk is true.

(check-arity name [arg#] args) — void?
name : (or/c symbol? string?)
arg# : (or/c (and/c positive? integer?) string?) = 7
args : list?

Checks the arity of a procedure-valued argument to function name. Reports an error for
function name telling students that (length args) arguments were provided but arg#
were expected, unless (= (length args) arg#) produces true.

(check-proc name proc expected arg# arg-err) — void?
name : (or/c symbol? string?)
proc : any/c
expected : natural?
arg# : (or/c (and/c positive? integer?) string?)
arg-err : string?

Checks [the properties of] a procedure-valued argument to function name. Reports an error
for function name telling students that a procedure was expected at position arg# and that
this procedure should be of arity expected, unless the proc is a function and has the
expected arity. The string arg-err is used to describe the higher-order argument.

(check-result name pred? kind returned ...+) — void?
name : (or/c symbol? string?)
pred? : (-> any/c boolean?)
kind : (or/c symbol? string?)
returned : any/c

Checks the expected result of a procedure-valued argument. If the result satisfies pred?, it
is returned. Otherwise, the function reports an error for function name telling students what

kind of value is expected and what the returned value is. NOTE: if there is more than one
returned value, the function uses the second value. (MF: I forgot why.)

(check-list-1list name chk pred? given) — void?
name : (or/c symbol? string?)
chk : (or/c string? false/c)
pred? : any/c
given : any/c

Checks a list-of-lists-valued argument to function name. Reports an error for function name
if a list-of-lists contains a value of the wrong kind—signaled via a string-valued chk. The
given value is the element that went wrong. Rarely used.

(check-color name arg# given) — void?
name : (or/c symbol? string?)
arg# : natural?
given : any/c

Checks a color-valued argument to function name . Deprecated. Use image-color? instead.

(check-fun-res f pred? type) — void?
f : procedure?
pred? : (-> any/c boolean?)
type : (or/c symbol? string?)

Creates a callback from f and uses check-result to make sure the result is a piece of data
that satisfies pred?, described as type.

(natural? o) — boolean?
o : any/c

Determines whether the given value is a natural number.

(find-non pred? 1) — (or/c any/c false/c)
pred? : (-> any/c boolean?)
1 : 1list?

Find an element of 1 for which (pred? 1) produces true; otherwise return false.

(check-dependencies name chk fmt arg ...) — void?
name : (or/c symbol? string?)
chk : boolean?
fmt . format-string?
arg : any/c

Unless chk is true, it raises an error called name whose message is composed from fmt

and the args.

(tp-error name fmt arg ...) — void?

name : (or/c symbol? string?)
fmt : format-string?
arg : any/c

Signals an exn:fail:contract from fmt and arg for a function called name.

(tp-exn? o) — boolean?
o : any/c

Determine whether the given object is a teachpack exception MF: Guillaume seems to have
deprecated these structures.

(number->ord n) — string?
n : natural?

Convert a position number into a string, e.g., 1 into “first” and so on.

MEF: These library and its uses needs to be cleaned up.

3 Testing

(require htdp/testing)
The library re-exports the following identifiers from test-engine/racket-tests

(build-test-engine) — void?
(builder) — void?
(display-results) — void?
(error-handler) — void?
(exn:fail:wish) — void?
(get-test-engine) — void?
(reset-tests) — void?
(run-tests) — void?
(scheme-test-data) — void?
(signature-test-info%) — void?

(generate-report) — void?

The same as test.

10

4 HtDP Languages as Libraries

4.1 HtDP Beginning Student

(require lang/htdp-beginner)

The lang/htdp-beginner module provides the Beginning Student Language; see §1 “Be-
ginning Student”.

4.2 HtDP Beginning Student with Abbreviations

(require lang/htdp-beginner-abbr)

The lang/htdp-beginner-abbr module provides the Beginning Student with Abbrevia-
tions language; see §2 “Beginning Student with List Abbreviations”.

4.3 HtDP Intermediate Student

(require lang/htdp-intermediate)

The lang/htdp-intermediate module provides the Intermediate Student language; see
§3 “Intermediate Student”.

4.4 HtDP Intermediate Student with Lambda

(require lang/htdp-intermediate-lambda)

The lang/htdp-intermediate-lambda module provides the Intermediate Student with
Lambda language; see §4 “Intermediate Student with Lambda”.

4.5 HtDP Advanced Student

(require lang/htdp-advanced)

The lang/htdp-advanced module provides the Advanced Student language; see §5 “Ad-
vanced Student”.

11

4.6 Pretty Big Text (Legacy Language)

(require lang/plt-pretty-big-text)

The lang/plt-pretty-big-text module is similar to the HtDP Advanced Student
language, but with more of Racket’s libraries in legacy form. It provides the bind-
ings of mzscheme, mzlib/etc, mzlib/file, mzlib/list, mzlib/class, mzlib/unit,
mzlib/include, mzlib/defmacro, mzlib/pretty, mzlib/string, mzlib/thread,
mzlib/math, mzlib/match, mzlib/shared, and lang/posn.

4.7 Pretty Big (Legacy Language)

(require lang/plt-pretty-big)

The lang/plt-pretty-big module extends lang/plt-pretty-big-text with
racket/gui/base and lang/imageeq. This language corresponds to the Pretty Big
legacy language in DrRacket.

4.8 posnsin HtDP Languages

(require lang/posn)

(struct posn (x y)
#:extra-constructor-name make-posn)
X : any/c
y : any/c

The posn structure type that is also provided by lang/htdp-beginner.

4.9 Image Equality in HtDP Languages

(require lang/imageeq)

(image=7 i1 i2) — boolean?
i1 : (is-a?/c image-snip})
i2 : (is-a?/c image-snip¥)

The image-comparison operator that is also provided by lang/htdp-beginner.

12

4.10 Primitives in HtDP Beginner

(require lang/prim)

The 1lang/prim module several syntactic forms for use by the implementors of teachpacks,
when the teachpack is to be used with the Beginner Student Language. In Beginner Student,
primitive names (for built-in procedures) are distinguished from other types of expressions,
so that they can be syntactically restricted to application positions.

(define-primitive id proc-id)

Defines id to be a primitive operator whose implementation is proc-id, and that takes no
procedures as arguments. Normally, id is exported from the teachpack and proc-id is not.

(provide-primitive id)

Like define-primitive, but the existing function id is exported as the primitive operator
named id. An alternative to define-primitive.

(provide-primitives id ...)

Multiple-identifier version of provide-primitive.

(define-higher-order-primitive id proc-id (arg ...))

Defines id to be a primitive operator whose implementation is proc-id. Normally, id is
exported from the teachpack and proc-id is not.

For each non-procedure argument, the corresponding arg should be an underscore. For each
procedure argument, the corresponding arg should be the usual name of the procedure.

Examples:

(define-higher-order-primitive convert-gui convert-gui/proc (f2c))
(provide-higher-order-primitive id (arg ...))

Like define-higher-order-primitive, but the existing function id is exported as the
primitive operator named id. An alternative to define-higher-order-primitive.

(first-order->higher-order expression)

If expression is the name of a first-order function (either a primitive or a function defined
within Beginner Student), produces the function as a value; otherwise, the form is equivalent
to expression.

This form is mainly useful for implementing syntactic forms that, like the application of a
higher-order primitive, allow first-order bindings to be used in an expression position.

13

5 Color and Alpha Color Structs

(require htdp/color-structs)

(struct color (red green blue)
#:extra-constructor-name make-color)
red : any/c
green : any/c
blue : any/c

This is the color sturct that is also exported by htdp/image, but here it is exported via
(provide (struct-out color)).

(struct alpha-color (alpha red green blue)
#:extra-constructor-name make-alpha-color)
alpha : any/c
red : any/c
green : any/c
blue : any/c

This is the color sturct that is also exported by htdp/image, but here it is exported via
(provide (struct-out alpha-color)).

14

	1 Error Message Composition Guidelines
	1.1 General Guidelines
	1.2 Message Structure and Form
	1.3 Words For Describing Code
	1.4 Words For Describing Runtime Behavior
	1.5 Prohibited Words
	1.6 General Vocabulary Guidelines
	1.7 Punctuation
	1.8 Supporting Research

	2 Error Reporting Functions
	3 Testing
	4 HtDP Languages as Libraries
	4.1 HtDP Beginning Student
	4.2 HtDP Beginning Student with Abbreviations
	4.3 HtDP Intermediate Student
	4.4 HtDP Intermediate Student with Lambda
	4.5 HtDP Advanced Student
	4.6 Pretty Big Text (Legacy Language)
	4.7 Pretty Big (Legacy Language)
	4.8 IdentifierColorblueposns in HtDP Languages
	4.9 Image Equality in HtDP Languages
	4.10 Primitives in HtDP Beginner

	5 Color and Alpha Color Structs

