
DrRacket Plugins
Version 5.3.5

Robert Bruce Findler

June 18, 2013

(require drracket/tool-lib)
(require drscheme/tool-lib)

This manual describes DrRacket’s plugins interface. It assumes familiarity with Racket, as
described in the The Racket Guide, and the The Racket Reference, DrRacket, as described
in DrRacket: The Racket Programming Environment, and the GUI library, as described in
The Racket Graphical Interface Toolkit. The Framework, as described in Framework: Racket
GUI Application Framework, may also come in handy.

The drscheme/tool-lib library is for backward compatibility; it exports all of the bind-
ings of drracket/tool-lib.

1

Contents

1 Implementing DrRacket Plugins 5

2 Adding Languages to DrRacket 10
2.1 #lang-based Languages in DrRacket . 10
2.2 Adding Module-based Languages to DrRacket 11
2.3 Adding Arbitrary Languages to DrRacket 12
2.4 Language Extensions . 13

3 Creating New Kinds of DrRacket Frames 15

4 Extending the Existing DrRacket Classes 16

5 Expanding the User’s Program Text and Breaking 17

6 Editor Modes 18

7 Language-Specific Capabilities 19
7.1 Customizing DrRacket’s Behavior . 19
7.2 Customizing DrRacket’s GUI . 19

8 Check Syntax 20
8.1 Accessing Check Syntax Programmatically 20
8.2 Check Syntax Button . 28
8.3 Disappeared Uses and Bindings . 29

9 Teaching Languages 30

10 drracket:get/extend 31

11 drracket:unit 35

12 drracket:language 51

13 drracket:language-configuration 81

14 drracket:debug 85

15 drracket:rep 90

16 drracket:frame 98

17 drracket:help-desk 103

18 drracket:eval 104

19 drracket:modes 109

2

20 drracket:module-language-tools 111

21 drracket:module-language 114

22 Backwards Compatibility 115

Index 140

Index 140

3

Thanks

Thanks to PLT and the early adopters of the tools interface for their feedback and help.

A special thanks to Eli Barzilay, John Clements, Matthias Felleisen, Cormac Flanagan,
Matthew Flatt, Max Hailperin, Philippe Meunier, and Christian Queinnec for their help being
early clients for DrRacket plugins.

4

1 Implementing DrRacket Plugins

Plugins are designed for major extensions in DrRacket’s functionality. To extend the appear-
ance or the functionality the DrRacket window (say, to annotate programs in certain ways or
to add buttons to the DrRacket frame) use a tool. The Macro Stepper, the Syntax Checker,
the Stepper, and the teaching languages are all implemented as tools.

When DrRacket starts up, it looks for tools by reading fields in the info.rkt file of each
collection and the newest version of each PLaneT package installed on the system. (Techni-
cally, DrRacket looks in a cache of the "info.rkt" files contents created by raco setup.
Be sure to re-run raco setup if you change the contents of the info.rkt files). DrRacket
checks for these fields:

• drracket-tools: (listof (listof string [subcollection-name]))

• drracket-tool-names: (listof (or/c #f string))

• drracket-tool-icons:

(listof (or/c #f
string[relative-pathname]
(cons string[filename]

(listof string[collection-name]))))

• drracket-tool-urls: (listof (or/c #f string [url]))

The drracket-tools field names a list of tools in this collection. Each tool is specified as
a collection path, relative to the collection where the info.rkt file resides. As an example,
if there is only one tool named tool.rkt, this suffices:

(define drracket-tools (list (list "tool.rkt")))

If the drracket-tool-icons or drracket-tool-names fields are present, they must be
the same length as drracket-tools. The drracket-tool-icons field specifies the path
to an icon for each tool and the name of each tool. If it is #f, no tool is shown. If it is a
relative pathname, it must refer to a bitmap and if it is a list of strings, it is treated the same
as the arguments to lib, inside require.

This bitmap and the name show up in the about box, the bug report form, and the splash
screen as the tool is loaded at DrRacket’s startup.

Each of the drracket-tools files must contain a module that provides tool@, which
must be bound to a unit. The unit must import the drracket:tool^ signature, which
is provided by the tool.rkt library in the drscheme collection. The drracket:tool^

5

signature contains all of the names listed in this manual. The unit must export the
drracket:tool-exports^ signature.

The drracket:tool-exports^ signature contains two names: phase1 and phase2.
These names must be bound to thunks. After all of the tools are loaded, all of the phase1
functions are called and then all of the phase2 functions are called. Certain primitives can
only be called during the dynamic extent of those calls.

This mechanism is designed to support DrRacket’s drracket:language:language<%>
extension capabilities. That is, this mechanism enables two tools to cooperate via new ca-
pabilities of languages. The first phase is used for adding functionality that each language
must support and the second is used for creating instances of languages. As an example, a
tool may require certain specialized language-specific information. It uses phase1 to extend
the drracket:language:language<%> interface and supply a default implementation of
the interface extension. Then, other languages that are aware of the extension can supply
non-default implementations of the additional functionality.

Phase 1 functions:

• drracket:language:extend-language-interface

• drracket:unit:add-to-program-editor-mixin

Phase 2 functions:

• drracket:language-configuration:add-language

• drracket:language:get-default-mixin

• drracket:language:get-language-extensions

If the tool raises an error as it is loaded, invoked, or as the phase1 or phase2 thunks are
called, DrRacket catches the error and displays a message box. Then, DrRacket continues to
start up, without the tool.

For example, if the info.rkt file in a collection contains:

#lang setup/infotab
(define drracket-name "Tool Name")
(define drracket-tools (list (list "tool.rkt")))

then the same collection would be expected to contain a tool.rkt file. It might contain
something like this:

6

#lang racket/gui
(require drracket/tool)

(provide tool@)

(define tool@
(unit

(import drracket:tool^)
(export drracket:tool-exports^)
(define (phase1) (message-box "tool example" "phase1"))
(define (phase2) (message-box "tool example" "phase2"))
(message-box "tool example" "unit invoked")))

This tool just opens a few windows to indicate that it has been loaded and that the phase1
and phase2 functions have been called.

Finally, here is a more involved example. This module defines a plugin that adds a button
to the DrRacket frame that, when clicked, reverses the contents of the definitions window.
It also adds an easter egg. Whenever the definitions text is modified, it checks to see if the
definitions text contains the text “egg”. If so, it adds “easter ” just before.

#lang racket/base
(require drracket/tool

racket/class
racket/gui/base
racket/unit
mrlib/switchable-button)

(provide tool@)

(define secret-key "egg")
(define to-insert "easter ")

(define tool@
(unit

(import drracket:tool^)
(export drracket:tool-exports^)

(define easter-egg-mixin
(mixin ((class->interface text%)) ()

(inherit begin-edit-sequence
end-edit-sequence
insert
get-text)

(define/augment (on-insert start len)

7

(begin-edit-sequence))
(define/augment (after-insert start len)

(check-range (max 0 (- start (string-length secret-
key)))

(+ start len))
(end-edit-sequence))

(define/augment (on-delete start len)
(begin-edit-sequence))

(define/augment (after-delete start len)
(check-range (max 0 (- start (string-length secret-

key)))
start)

(end-edit-sequence))

(define/private (check-range start stop)
(let/ec k

(for ((x (in-range start stop)))
(define after-x

(get-text x (+ x (string-length secret-key))))
(when (string=? after-x secret-key)

(define before-x
(get-text (max 0 (- x (string-length to-

insert))) x))
(unless (string=? before-x to-insert)

(insert to-insert x x)
(k (void)))))))

(super-new)))

(define reverse-button-mixin
(mixin (drracket:unit:frame<%>) ()

(super-new)
(inherit get-button-panel

get-definitions-text)
(inherit register-toolbar-button)

(let ((btn
(new switchable-button%

(label "Reverse Definitions")
(callback (λ (button)

(reverse-content
(get-definitions-text))))

(parent (get-button-panel))
(bitmap reverse-content-bitmap))))

(register-toolbar-button btn #:number 11)

8

(send (get-button-panel) change-children
(λ (l)

(cons btn (remq btn l)))))))

(define reverse-content-bitmap
(let* ((bmp (make-bitmap 16 16))

(bdc (make-object bitmap-dc% bmp)))
(send bdc erase)
(send bdc set-smoothing ’smoothed)
(send bdc set-pen "black" 1 ’transparent)
(send bdc set-brush "blue" ’solid)
(send bdc draw-ellipse 2 2 8 8)
(send bdc set-brush "red" ’solid)
(send bdc draw-ellipse 6 6 8 8)
(send bdc set-bitmap #f)
bmp))

(define (reverse-content text)
(for ((x (in-range 1 (send text last-position))))

(send text split-snip x))
(define snips

(let loop ((snip (send text find-first-snip)))
(if snip

(cons snip (loop (send snip next)))
’())))

(define released-snips
(for/list ((snip (in-list snips))

#:when (send snip release-from-owner))
snip))

(for ((x (in-list released-snips)))
(send text insert x 0 0)))

(define (phase1) (void))
(define (phase2) (void))

(drracket:get/extend:extend-definitions-text easter-egg-mixin)
(drracket:get/extend:extend-unit-frame reverse-button-mixin)))

9

2 Adding Languages to DrRacket

2.1 #lang-based Languages in DrRacket

If a language can be implemented as a module (see module for details), then the simplest and
best way to use the language is via the “Use the language declared the in source” checkbox
in the Language dialog. In this case, DrRacket’s appearance can still be customized to the
language; it uses read-language with these arguments as the key argument to the get-
info function to do so:

• drracket:toolbar-buttons

• drracket:opt-out-toolbar-buttons

• color-lexer

If the call to read-language raises an error, DrRacket logs the error via log-debug.

When a language’s get-info procedure responds to ’color-lexer, it is expected to return
a procedure suitable to pass as the get-token argument to start-colorer.

The recognized token styles (specified implicitly via start-colorer’s token-sym-
>style argument) are:

• ’symbol

• ’keyword

• ’comment

• ’string

• ’constant

• ’parenthesis

• ’error

• ’other

These precise colors for these identifiers are controlled by the preferences dialog in Dr-
Racket.

10

2.2 Adding Module-based Languages to DrRacket

For backwards compatibility, DrRacket also supports and info.rkt file-based method for
specifying such languages. Include these definitions:

• drscheme-language-modules: This must be bound to a list of collection path spec-
ifications or strings, one for each language in the collection. Each collection path
specification is the quoted form of what might appear as an argument to require,
using the lib argument (but without the lib). The strings represent relative paths
starting at the directory containing the info.rkt file. They are interpreted like string
arguments to require.

• drscheme-language-positions: This must be bound to a list of language posi-
tions. Each language position corresponds to the position of the language in language
dialog. Each language position is a list of strings whose length must be at least two.

If the first string is the same as (string-constant teaching-languages), then
it is put into the “Teaching Languages” section of the dialog. Otherwise, it goes into
the “Other Languages” section of the dialog.

• drscheme-language-numbers: This is optional. If present, it must be a list of a
list of numbers. Each list corresponds to a single language from this collection. Each
number indicates a sorting order in the language dialog for the corresponding string in
drscheme-language-positions. If absent, it defaults to a list of zeros that has the
same length as drscheme-language-positions. This will rarely be correct.

• drscheme-language-one-line-summaries: This is optional. If present, it must
be a list of strings. Each string is displayed at the bottom of the language dialog when
the corresponding language is selected.

• drscheme-language-urls: This is optional. If present, it must be a list whose
elements are either strings or #f. Clicking the corresponding language’s name in the
interactions window opens a web browser to the url.

• drscheme-language-readers: This is optional. If present, it must be bound to
a quoted list of module specifications (that is, a quoted version of the argument to
require). Each specification must be a module that exports a function named read-
syntax. Each of these read-syntax functions must match Racket’s read-syntax
primitive’s contract, but may read different concrete syntax.

If the module specification is a plain string, it represents a relative path starting at the
directory containing the info.rkt file. It is interpreted like the string arguments to
require.

The lists must have the same length.

As an example, the Essentials of Programming Languages language specification’s
info.rkt used to look like this:

11

#lang setup/infotab
(require string-constants)
(define name "EoPL Support")
(define drscheme-language-modules

(list "eopl-lang.rkt"))
(define drscheme-language-positions

(list (list (string-constant teaching-languages)
"Essentials of Programming Languages")))

This info.rkt file indicates that there is a single language in this collection. The mod-
ule that implements the language is the eopl-lang.rkt file in the same directory as
the info.rkt file. Additionally, the language dialog will contain Essentials of Pro-
gramming Languages as a potential language. The use of the string constant teaching-
languages ensures that EoPL’s language is placed properly in foreign language versions of
DrRacket.

For collections that define multiple (related) languages, if the language-positions contain
multiple strings, the languages whose leading strings match are grouped together. That is, if
two languages have strings:

’("My Text" "First Language")

and

’("My Text" "Second Language")

the two languages will be grouped together in the language dialog.

2.3 Adding Arbitrary Languages to DrRacket

With some additional work, any language that can be compiled to Racket is supported by the
tools interface, not just those that use standard configurations and module.

Each language is a class that implement the drracket:language:language<%> interface.
DrRacket also provides two simpler interfaces: drracket:language:module-based-
language<%> and drracket:language:simple-module-based-language<%>, and
mixins drracket:language:simple-module-based-language->module-based-
language-mixin and drracket:language:module-based-language->language-
mixin that build implementations of drracket:language:language<%>s from these
simpler interfaces.

12

Once you have an implementation of the drracket:language:language<%> interface,
call drracket:language-configuration:add-language to add the language to Dr-
Racket.

Each language comes with its own type, called settings. This can be any type the lan-
guage designer chooses, but to aid documentation, we call it settings here. The settings
type is expected to contain parameters of the language, such as case sensitivity, etc. The
implementor of the language provides a GUI so the user can configure the settings and all of
the language’s operations accept a setting. DrRacket maintains the current settings for each
language.

2.4 Language Extensions

Some tools may require additional functionality from the
drracket:language:language<%> interface. The drracket:language:extend-
language-interface function and the drracket:language:get-default-mixin
mixin make this possible.

For example, the MrFlow tool expands a program, analyzes it and then displays sets of
values for each program point. These sets of values should be rendered in the syntax
of the language that MrFlow analyzes. Since MrFlow doesn’t know which languages are
available, it can call drracket:language:extend-language-interface to extend the
drracket:language:language<%> interface with a method for rendering sets of values
and provide a default implementation of that method. Tools that know about MrFlow can
then override the value rendering method to provide a language-specific implementation of
value rendering. Additionally, since the drracket:language:get-default-mixin adds
the default implementation for the value-set rendering method, all languages at least have
some form of value-set rendering.

In some cases, it is important for one tool to avoid depending on another in the manner
above. For example, if a tool that provides a new language provides an implementation for
the MrFlow-specific method, that tool may fail to load if MrFlow is not present (Indeed, with
the tool manager, this can happen to any tool that depends on another in this manner.)

To avoid this problem, consider writing your tool to first check to see if the base method
is available before extending it. For example, if the MrFlow tool provides the render-
value<%> interface, then a tool that overrides that method can first test to see if the super-
class implements that method before overriding it:

(define (my-language-mixin %)
(if (implementation? % mrflow:render-value<%>)

(class %
(define/override ...)
(super-new))

13

%))

To help test your tool, use the PLTONLYTOOL environment variable to load it in isolation.

14

3 Creating New Kinds of DrRacket Frames

Each frame in DrRacket has certain menus and functionality, most of which is achieved by
using the framework. Additionally, there is one mixin that DrRacket provides to augment
that. It is drracket:frame:basics-mixin. Be sure to mix it into any new frame class
that you add to DrRacket.

15

4 Extending the Existing DrRacket Classes

Each of the names:

• drracket:get/extend:extend-interactions-text

• drracket:get/extend:extend-definitions-text

• drracket:get/extend:extend-interactions-canvas

• drracket:get/extend:extend-definitions-canvas

• drracket:get/extend:extend-unit-frame

• drracket:get/extend:extend-tab

is bound to an extender function. In order to change the behavior of DrRacket, you can
derive new classes from the standard classes for the frame, texts, canvases. Each extender
accepts a function as input. The function it accepts must take a class as its argument and
return a classes derived from that class as its result. For example:

(drracket:get/extend:extend-interactions-text
(lambda (super%)

(class super%
(define/public (method1 x) ...)
(super-new))))

extends the interactions text class with a method named method1.

16

5 Expanding the User’s Program Text and Breaking

Macro-expanding a program may involve arbitrary computation and requires the setup of the
correct language. To aid this, DrRacket’s tool interface provides drracket:eval:expand-
program to help. Use this method to extract the fully expanded program text in a particular
language.

Because expanding the user’s program may require DrRacket to evaluate arbitrary code that
the user wrote, tools that expand the user’s program should also allow the user to break
the expansion. To help with this, the tools interfaces provides these methods: enable-
evaluation and disable-evaluation. Since your tool will be expanding the program
text, you should be both overriding enable-evaluation and disable-evaluation to
disable your tool and calling them to ensure that only one expansion is happening at a time.

Finally, DrRacket provides the set-breakables method. This method controls what be-
havior the Break button has.

17

6 Editor Modes

DrRacket provides support for multiple editor modes. Tools register modes via
drracket:modes:add-mode. Each mode is visible in the Modes submenu of the Edit
menu. Initially, DrRacket only supports two modes: Racket mode and text mode.

DrRacket automatically selects a mode for each open file based on the file’s extension. If
the file ends with .txt, DrRacket uses text mode. Otherwise, DrRacket uses Racket mode.

18

7 Language-Specific Capabilities

7.1 Customizing DrRacket’s Behavior

When using the language declared in the source, DrRacket queries that language via
module-compiled-language-info to determine if an expression in the interactions win-
dow is ready to be submitted to the evaluator (when the user types return). The info pro-
cedure is passed ’drracket:submit-predicate and should return a function with this
contract:

(-> input-port?
boolean?
boolean?)

This function’s first argument is a port that contains the interactions window’s data, starting
from the prompt position to the end of the editor. The second argument is a boolean indi-
cating if the insertion point is followed only by whitespace. The results should be a boolean
indicating if the expression should be evaluated. This function is called in sandbox, but with
no filesystem or networking limits.

7.2 Customizing DrRacket’s GUI

DrRacket’s capability interface provides a mechanism for tools to allow languages to hide
their GUI interface, if the tool does not apply to the language. Tools register capabilities
keyed with symbols via. drracket:language:register-capability. Once registered,
a tool can query a language, via the capability-value method. The result from this
method controls whether or not the tool shows this part of the GUI for DrRacket.

See drracket:language:register-capability for a list of the capabilities registered
by default.

19

8 Check Syntax

Check Syntax is a part of the DrRacket collection, but is implemented via the tools API.

8.1 Accessing Check Syntax Programmatically

(require drracket/check-syntax)

(make-traversal namespace path) →

(->* (syntax?)
((-> any/c void?))
void?)

(-> void?)
namespace : namespace?
path : (or/c #f path-string?)

This function creates some local state about a traversal of syntax objects and returns two
functions. The first one should be called with each of the (fully expanded) syntax objects
that make up a program (there will be only one if the program is a module) and then the
second one should be called to indicate there are no more.

The optional argument to the first function is ignored. It is left there for historical reasons.
In the past it was called for each sequence of binding identifiers encountered in define-
values, define-syntaxes, and define-values-for-syntax.

During the dynamic extent of the call to the two result functions, the value of the current-
annotations parameter is consulted and various methods are invoked in the corresponding
object (if any), to indicate what has been found in the syntax object. These methods will
only be called if the syntax objects have source locations.

(current-annotations)
→ (or/c #f (is-a?/c syncheck-annotations<%>))

(current-annotations ca) → void?
ca : (or/c #f (is-a?/c syncheck-annotations<%>))

The methods of the value of this parameter are invoked by the functions returned from make-
traversal.

(current-max-to-send-at-once)
→ (or/c +inf.0 (and/c exact-integer? (>=/c 2)))

(current-max-to-send-at-once m) → void?
m : (or/c +inf.0 (and/c exact-integer? (>=/c 2)))

See syncheck:add-id-set in syncheck-annotations<%>.

20

syncheck-annotations<%> : interface?

Classes implementing this interface are accceptors of information about a traversal of syntax
objects. See make-traversal.

Do not implement this interface directly, as it is liable to change without warning. In-
stead, use the annotations-mixin and override the methods you’re interested in. The
annotations-mixin will keep in sync with this interface, providing methods that ignore
their arguments.

(send a-syncheck-annotations syncheck:find-source-
object stx)
→ (or/c #f (not/c #f))
stx : syntax?

This should return #f if the source of this syntax object is uninteresting for
annotations (if, for example, the only interesting annotations are those in the
original file and this is a syntax object introduced by a macro and thus has a
source location from some other file).

Otherwise, it should return some (non-#f) value that will then be passed to one
of the other methods below as a source-obj argument.

(send a-syncheck-annotations syncheck:add-background-color
source-obj
start
end
color)

→ void?
source-obj : (not/c #f)
start : exact-nonnegative-integer?
end : exact-nonnegative-integer?
color : string?

Called to indicate that the color color should be drawn on the background of
the given range in the editor, when the mouse moves over it. This method is
typically called in conjuction with some other method that provides some other
annotation on the source.

(send a-syncheck-annotations syncheck:add-require-open-menu
source-obj
start
end
file)

→ void?
source-obj : (not/c #f)

21

start : exact-nonnegative-integer?
end : exact-nonnegative-integer?
file : path-string?

Called to indicate that there is a require at the location from start to end ,
and that it corresponds to file . Check Syntax adds a popup menu.

(send a-syncheck-annotations syncheck:add-docs-menu
source-obj
start
end
id
label
path
tag)

→ void?
source-obj : (not/c #f)
start : exact-nonnegative-integer?
end : exact-nonnegative-integer?
id : symbol?
label : any/c
path : any/c
tag : any/c

Called to indicate that there is something that has documentation between the
range start and end . The documented identifier’s name is given by id and the
docs are found in the html file path at the html tag tag . The label argument
describes the binding for use in the menu item (although it may be longer than
200 characters).

(send a-syncheck-annotations syncheck:add-id-set
all-ids
new-name-interferes?)

→ void?

all-ids :
(listof (list/c (not/c #f)

exact-nonnegative-integer?
exact-nonnegative-integer?))

new-name-interferes? : (-> symbol boolean?)

Called to indicate that all of the locations in the all-ids list refer to the same
identifier.

The new-name-interferes? procedure determines if a potential new name at
one of the corresponding places would interfere with the existing bindings in
the program.

Usually, this method is called with maximal sets in all-ids , in the sense that,
for a given call, either a source location is in the list, or the location it does

22

not contain a identifier that refers to one of the ones in all-ids . If, however,
current-max-to-send-at-once is not +inf.0, then this set might not con-
tain all of the source locations for a given identifier and multiple calls are made.
In the case that multiple calls are made, the intersection of the all-ids lists
(on those multiple calls) is non-empty.

(send a-syncheck-annotations syncheck:add-arrow
start-source-obj
start-left
start-right
end-source-obj
end-left
end-right
actual?
phase-level)

→ void?
start-source-obj : (not/c #f)
start-left : exact-nonnegative-integer?
start-right : exact-nonnegative-integer?
end-source-obj : (not/c #f)
end-left : exact-nonnegative-integer?
end-right : exact-nonnegative-integer?
actual? : boolean?
phase-level : (or/c exact-nonnegative-integer? #f)

Called to indicate that there should be an arrow between the locations described
by the first six arguments. The phase-level argument indicates the phase of
the binding and the actual? argument indicates if the binding is a real one,
or a predicted one from a syntax template (predicted bindings are drawn with
question marks in Check Syntax).

(send a-syncheck-annotations syncheck:add-tail-arrow
from-source-obj
from-pos
to-source-obj
to-pos)

→ void?
from-source-obj : (not/c #f)
from-pos : exact-nonnegative-integer?
to-source-obj : (not/c #f)
to-pos : exact-nonnegative-integer?

Called to indicate that there are two expressions, beginning at from-pos and
to-pos that are in tail position with respect to each other.

23

(send a-syncheck-annotations syncheck:add-mouse-over-status
source-obj
pos-left
pos-right
str)

→ void?
source-obj : (not/c #f)
pos-left : exact-nonnegative-integer?
pos-right : exact-nonnegative-integer?
str : string?

Called to indicate that the message in str should be shown when the mouse
passes over the given position.

(send a-syncheck-annotations syncheck:add-jump-to-definition
source-obj
start
end
id
filename
submods)

→ void?
source-obj : (not/c #f)
start : exact-nonnegative-integer?
end : exact-nonnegative-integer?
id : any/c
filename : path-string?
submods : (listof symbol?)

Called to indicate that there is some identifier at the given location (named id)
that is defined in the submods of the file filename (where an empty list in
submods means that the identifier is defined at the top-level module).

(send a-syncheck-annotations syncheck:add-definition-target
source-obj
start
finish
style-name)

→ void?
source-obj : (not/c #f)
start : exact-nonnegative-integer?
finish : exact-nonnegative-integer?
style-name : any/c

24

(send a-syncheck-annotations syncheck:color-range source-obj
start
finish
style-name
mode)

→ void?
source-obj : (not/c #f)
start : exact-nonnegative-integer?
finish : exact-nonnegative-integer?
style-name : any/c
mode : any/c

Called to indicate that the given location should be colored according to the style
style-name when in mode . The mode either indicates regular check syntax or
is used indicate blame for potential contract violations (and still experimental).

(send a-syncheck-annotations syncheck:add-rename-menu
id
all-ids
new-name-interferes?)

→ void?
id : symbol?

all-ids :
(listof (list/c (not/c #f)

exact-nonnegative-integer?
exact-nonnegative-integer?))

new-name-interferes? : (-> symbol boolean?)

This method is listed only for backwards compatibility. It is not called di-
rectly by check syntax, but it is called by the default implementation of
syncheck:add-rename-menu in annotations-mixin.

annotations-mixin : (class? . -> . class?)
result implements: syncheck-annotations<%>

Supplies all of the methods in syncheck-annotations<%> with default behavior. Be sure
to use this mixin to future-proof your code and then override the methods you’re interested
in.

By default:

• The syncheck:find-source-object method ignores its arguments and returns #f;

• the syncheck:add-id-set manufactures a symbol and then passes that and its ar-
guments to syncheck:add-rename-menu (this is for backwards compatibility – the
syncheck:add-rename-menu is not called directly by Check Syntax anymore; the
syncheck:add-id-set calls it instead); and

25

• all of the other methods ignore their arguments and return (void).

Here is an example showing how use this library to extract all of the arrows that Check
Syntax would draw from various expressions:

> (require drracket/check-syntax racket/class)

> (define arrows-collector%
(class (annotations-mixin object%)

(super-new)
(define/override (syncheck:find-source-object stx)

stx)
(define/override (syncheck:add-arrow start-source-obj

start-left
start-right
end-source-obj
end-left
end-right
actual?
phase-level)

(set! arrows
(cons (list start-source-obj end-source-obj)

arrows)))
(define arrows ’())
(define/public (collected-arrows) arrows)))

> (define (arrows form)
(define base-namespace

(make-base-namespace))
(define-values (add-syntax done)

(make-traversal base-namespace #f))
(define collector (new arrows-collector%))
(parameterize ([current-annotations collector]

[current-namespace base-namespace])
(add-syntax (expand form))
(done))

(send collector collected-arrows))

> (define (make-id name pos orig?)
(datum->syntax
#f
name
(list #f #f #f pos (string-length (symbol->string name)))
(and orig? #’is-orig)))

26

> (arrows ‘(λ (,(make-id ’x 1 #t)) ,(make-id ’x 2 #t)))
’((#<syntax::1 x> #<syntax::2 x>))
> (arrows ‘(λ (x) x))
’()
> (arrows ‘(λ (,(make-id ’x 1 #f)) ,(make-id ’x 2 #t)))
’()
> (arrows ‘(λ (,(make-id ’x 1 #t)) x))
’()

syncheck:find-source-object

Bound to an identifier created with define-local-member-name that is used in
syncheck-annotations<%>.

syncheck:add-background-color

Bound to an identifier created with define-local-member-name that is used in
syncheck-annotations<%>.

syncheck:add-require-open-menu

Bound to an identifier created with define-local-member-name that is used in
syncheck-annotations<%>.

syncheck:add-docs-menu

Bound to an identifier created with define-local-member-name that is used in
syncheck-annotations<%>.

syncheck:add-rename-menu

Bound to an identifier created with define-local-member-name that is used in
syncheck-annotations<%>.

syncheck:add-arrow

27

Bound to an identifier created with define-local-member-name that is used in
syncheck-annotations<%>.

syncheck:add-tail-arrow

Bound to an identifier created with define-local-member-name that is used in
syncheck-annotations<%>.

syncheck:add-mouse-over-status

Bound to an identifier created with define-local-member-name that is used in
syncheck-annotations<%>.

syncheck:add-jump-to-definition

Bound to an identifier created with define-local-member-name that is used in
syncheck-annotations<%>.

syncheck:add-id-set

Bound to an identifier created with define-local-member-name that is used in
syncheck-annotations<%>.

syncheck:color-range

Bound to an identifier created with define-local-member-name that is used in
syncheck-annotations<%>.

8.2 Check Syntax Button

(require drracket/syncheck-drracket-button)

syncheck-drracket-button :

(list/c
string?
(is-a?/c bitmap%)
(-> (is-a?/c

top-level-window<%>)
any))

28

This is meant to be used with the ’drracket:toolbar-buttons argument to the info proc
returned from read-language.

syncheck:button-callback

This is defined with define-local-member-name and is bound to a method of no argu-
ments of the DrRacket frame that runs Check Syntax.

syncheck-bitmap : (is-a?/c bitmap%)

The bitmap in the Check Syntax button on the DrRacket frame.

8.3 Disappeared Uses and Bindings

Check Syntax collects the values of the syntax-propertys named ’disappeared-use
and ’disappeared-binding and uses them to add additional arrows to the program text.
These properties are intended for use when a macro discards identifiers that, from the pro-
grammers perspective, should be binding each other.

For example, here is a macro that discards its arguments, but adds properties to the result
syntax object so the arguments are treated as a binding/bound pair by Check Syntax.

(define-syntax (m stx)
(syntax-case stx ()

[(_ id1 id2)
(and (identifier? #’id1) (identifier? #’id2))
(syntax-property
(syntax-property
#’1
’disappeared-use (list (syntax-local-introduce #’id1)))

’disappeared-binding (list (syntax-local-
introduce #’id2)))]))

See also current-recorded-disappeared-uses.

29

9 Teaching Languages

The teaching language are implemented via the tools interface and thus not part of DrRacket
proper, but one helper library is documented here.

(require lang/htdp-langs-save-file-prefix)

htdp-save-file-prefix : (listof string?)

These strings are used as the prefix in a file saved while using the teaching languages. Each
string is on a separate line in the saved file.

(htdp-file-prefix? ip) → boolean?
ip : input-port?

Determines if the contents of ip is one of the possible prefixes that DrRacket saves at the
beginning of a teaching language file.

In the case that this function returns #t, it consumes the entire prefix from ip (and discards
it). In the case that this function returns #f, it does not consume anything from ip .

30

10 drracket:get/extend

(drracket:get/extend:extend-unit-frame
mixin

[before
#:name-for-changes name-for-changes])

→ void?
mixin : (make-mixin-contract drracket:unit:frame%)
before : boolean? = #t
name-for-changes : (or/c #f symbol?) = #f

Extends the class that is used for the frame that implements the main DrRacket window.

The before argument controls if the mixin is applied before or after already installed mix-
ins.

If name-for-changes is a symbol and drracket:get/extend:allow-re-extension!
has been called (without a subsequent call to drracket:get/extend:disallow-re-
extension!) then calling this function replaces any earlier mixins that have been added
that have the same name. Otherwise, calling this with the same name twice is an error and
calling it once drracket:get/extend:get-frame has been called is an error.

(drracket:get/extend:get-unit-frame)
→ (subclass?/c drracket:unit:frame%)

Returns a class whose objects are used for the DrRacket frames.

Once this function is called, drracket:get/extend:extend-unit-frame raises an error,
disallowing any more extensions.

See also drracket:get/extend:allow-re-extension!.

(drracket:get/extend:extend-tab
mixin

[before
#:name-for-changes name-for-changes])

→ void?
mixin : (make-mixin-contract drracket:unit:tab<%>)
before : boolean? = #t
name-for-changes : (or/c #f symbol?) = #f

Like drracket:get/extend:extend-unit-frame, except it extends the class that imple-
ments the tabs in DrRacket. One is created for each tab in a frame (each frame always has
at least one tab, even if the tab bar is not shown).

31

(drracket:get/extend:get-tab)
→ (implementation?/c drracket:unit:tab<%>)

Like drracket:get/extend:get-unit-frame, except it returns the class used for tabs.

(drracket:get/extend:extend-definitions-text
mixin

[before
#:name-for-changes name-for-changes])

→ void?
mixin : (make-mixin-contract drracket:unit:definitions-text<%>)
before : boolean? = #t
name-for-changes : (or/c #f symbol?) = #f

Like drracket:get/extend:extend-unit-frame, except this text is used in the top win-
dow of DrRacket frames.

(drracket:get/extend:get-definitions-text)
→ (implementation?/c drracket:unit:definitions-text<%>)

Like drracket:get/extend:get-unit-frame, except for the text that is used in the top
window of DrRacket frames.

(drracket:get/extend:extend-interactions-text
mixin

[before
#:name-for-changes name-for-changes])

→ void?
mixin : (make-mixin-contract drracket:rep:text<%>)
before : boolean? = #t
name-for-changes : (or/c #f symbol?) = #f

Like drracket:get/extend:extend-unit-frame, except it extends the class that imple-
ments the the editor in the interactions window.

(drracket:get/extend:get-interactions-text)
→ (implementation?/c drracket:rep:text<%>)

Like drracket:get/extend:get-unit-frame except it returns the class that implements
the editor in the interactions window.

32

(drracket:get/extend:extend-definitions-canvas
mixin

[before
#:name-for-changes name-for-changes])

→ void?
mixin : (make-mixin-contract drracket:unit:definitions-canvas%)
before : boolean? = #t
name-for-changes : (or/c #f symbol?) = #f

Like drracket:get/extend:extend-unit-frame, except it extends the class that imple-
ments the definitions window’s editor-canvas%.

(drracket:get/extend:get-definitions-canvas)
→ (subclass?/c drracket:unit:definitions-canvas%)

Like drracket:get/extend:get-unit-frame except it returns the class that implements
the definitions window’s editor-canvas%.

(drracket:get/extend:extend-interactions-canvas
mixin

[before
#:name-for-changes name-for-changes])

→ void?
mixin : (make-mixin-contract drracket:unit:interactions-canvas%)
before : boolean? = #t
name-for-changes : (or/c #f symbol?) = #f

Like drracket:get/extend:extend-unit-frame, except it extends the class that imple-
ments the interactions window’s editor-canvas%.

(drracket:get/extend:get-interactions-canvas)
→ (subclass?/c drracket:unit:interactions-canvas%)

Like drracket:get/extend:get-unit-frame except it returns the class that implements
the definitions window’s editor-canvas%.

(drracket:get/extend:disallow-re-extension!) → void?

Once this is called, re-extension of the mixins described in this section is not al-
lowed. This is the default state of mixin extension, but it can be changed by
drracket:get/extend:allow-re-extension!.

33

(drracket:get/extend:allow-re-extension!) → void?

Once this is called, re-extension of the mixins described in this section are now allowed (see
drracket:get/extend:extend-unit-frame for details of how to effect a re-extension).

This mode is intended to support a faster development cycle, not for production code. Specif-
ically, the issue is that replacing mixins in this manner does not affect any objects that have
already been create and thus there can, in general, be a mixture of old and new objects in a
single DrRacket. If some kind of systematic change to the classes is wanted, consider instead
using the racket/surrogate library.

Once an extension happens, newly created objects will use the new mixins. Mostly, however,
creating a new frame will create a new set of all of the objects that are extended in this
section, so that can be used to experiment more quickly with changes.

34

11 drracket:unit

drracket:unit:tab<%> : interface?
implements: drracket:rep:context<%>

(send a-drracket:unit:tab break-callback) → void?

Specification: This method is called when the break button is clicked and this
tab is the active tab.

Default implementation: By default, breaks any evaluation that may be happen-
ing at this point.

(send a-drracket:unit:tab can-close?) → boolean?

Refine this method with augment.

Specification: This method is called to determine if it is okay to close this tab.

Default implementation: Calls the definitions text’s and interactions text’s can-
close? method.

(send a-drracket:unit:tab disable-evaluation) → void?

Overrides disable-evaluation in drracket:rep:context<%>.

Disables the Run button, and the Run menu item and locks the interactions
window, and the definitions window.

(send a-drracket:unit:tab enable-evaluation) → void?

Overrides enable-evaluation in drracket:rep:context<%>.

Enables the Run button, and the Run menu item and unlocks (via the lock
method) the interactions window and the definitions window.

(send a-drracket:unit:tab get-breakables)

→ (or/c thread? false/c)
(or/c custodian? false/c)

Overrides get-breakables in drracket:rep:context<%>.

(send a-drracket:unit:tab get-defs)
→ (is-a?/c drracket:unit:definitions-text<%>)

This text is initially the top half of the DrRacket window and contains the users
program.

This text defaults to a text% object, but if you change
drracket:get/extend:extend-definitions-text procedure, it will
use the extended class to create the text.

35

(send a-drracket:unit:tab get-directory)
→ (or/c string? false/c)

Overrides get-directory in drracket:rep:context<%>.

This is the directory that the file is saved in, or the directory DrRacket started
up in, if the file has not been saved.

(send a-drracket:unit:tab get-enabled) → boolean?

Indicates if evaluation is currently enabled in this tab. Evaluation is typically
disabled when some evaluation is already running (in another thread).

(send a-drracket:unit:tab get-frame)
→ (is-a?/c drracket:unit:frame%)

Returns the frame that this tab is inside.

(send a-drracket:unit:tab get-ints)
→ (is-a?/c drracket:rep:text%)

This text is initially the bottom half of the DrRacket window and contains the
users interactions with the REPL.

This text defaults to a drracket:rep:text% object, but if you use the
drracket:get/extend:extend-interactions-text procedure, it will use
the extended class to create the text.

(send a-drracket:unit:tab is-current-tab?) → boolean?

Indicates if this tab is the currently active tab.

(send a-drracket:unit:tab is-running?) → boolean?

Indicates if the running message in the bottom right of DrRacket’s frame should
be “running” or “not running” when this frame is active.

(send a-drracket:unit:tab on-close) → void?

Refine this method with augment.

Specification: This method is called when the tab is closed.

Default implementation: Calls the definitions text’s on-close and interactions
text’s on-close methods.

(send a-drracket:unit:tab reset-offer-kill) → void?

Overrides reset-offer-kill in drracket:rep:context<%>.

36

(send a-drracket:unit:tab set-breakables thread
custodian) → void?

thread : (or/c thread? false/c)
custodian : (or/c custodian? false/c)

Overrides set-breakables in drracket:rep:context<%>.

(send a-drracket:unit:tab add-bkg-running-color id
color
label) → void?

id : symbol?
color : (or/c string? (is-a?/c color%))
label : string?

Sets the color of the circle in the bottom-right corner of the DrRacket window
to color with the tooltip window that appears over it containing label . If
multiple coors are registered they are all shown.

See also remove-bkg-running-color.

(send a-drracket:unit:tab remove-bkg-running-
color id) → void?

id : symbol?

Removes the color and label added with id .

See also add-bkg-running-color.

(send a-drracket:unit:tab touched) → void?

Called by the system to indicate that the tab has just been switched to from
another tab in the same frame (when the frame has the focus) or the frame itself
has come to the front (via on-activate) and the tab is the current tab in that
frame.

This method updates the private state that get-last-touched returns.

(send a-drracket:unit:tab get-last-touched) → flonum?

Returns the time that this tab was last focused, as counted by current-
inexact-milliseconds.

drracket:unit:tab% : class?
superclass: object%
extends: drracket:unit:tab<%>

The base class that implements the tab’s functionality.

37

(make-object drracket:unit:tab%)
→ (is-a?/c drracket:unit:tab%)

(send a-drracket:unit:tab clear-annotations) → void?

Overrides clear-annotations in drracket:rep:context<%>.

Clears any error highlighting; calls clear-annotations.

drracket:unit:program-editor-mixin : (class? . -> . class?)
argument extends/implements: text%

editor:basic<%>

This mixes in the ability to reset the highlighting for error message when the user modifies
the buffer. Use it for editors that have program text where errors can occur.

(send a-drracket:unit:program-editor after-delete start
len)

→ void?
start : number
len : number

Overrides after-delete in text%.

Calls the super method.

Resets an error highlighting.

(send a-drracket:unit:program-editor after-insert start
len)

→ void?
start : number
len : number

Overrides after-insert in text%.

Calls the super method.

Resets an error highlighting.

drracket:unit:interactions-canvas% : class?
superclass: canvas:wide-snip%

(new drracket:unit:interactions-canvas% ...superclass-
args...)
→ (is-a?/c drracket:unit:interactions-canvas%)

Passes all arguments to super-init.

38

drracket:unit:frame% : class?
superclass: (drracket:frame:basics-mixin (drracket:frame:mixin frame:searchable%))
extends: drracket:unit:frame<%>

This frame inserts the Racket and Language menus into the menu bar as it is initialized.

(new drracket:unit:frame% ...superclass-args...)
→ (is-a?/c drracket:unit:frame%)

Passes all arguments to super-init.

(send a-drracket:unit:frame add-show-menu-items show-menu)
→ void?
show-menu : (is-a?/c menu%)

Overrides <method not found>.

Adds the “Show Definitions”, “Show Interactions” and “Show Contour” menu
items.

(send a-drracket:unit:frame break-callback) → void?

Specification: This method is called when the user clicks on the break button or
chooses the break menu item.

Default implementation: Breaks the user’s evaluation started by the Run button
(or possibly a queued callback in the user’s eventspace).

(send a-drracket:unit:frame change-to-file file) → void?
file : string?

Loads this file into this already created frame. In normal DrRacket use, this
method is only called if this is the first frame opened and no editing has oc-
curred. It should be safe to call this at anytime, however.

(send a-drracket:unit:frame find-matching-tab p)
→ (or/c (is-a?/c drracket:unit:tab%) #f)
p : path-string?

Returns the tab that is currently editing p , if there is one in this frame. Returns
#f otherwise.

(send a-drracket:unit:frame change-to-tab tab) → void?
tab : (is-a?/c drracket:unit:tab%)

Makes tab visible in this frame.

39

(send a-drracket:unit:frame edit-menu:between-select-all-
and-find)
→ void?

Overrides edit-menu:between-select-all-and-find in
frame:standard-menus<%>.

Adds the "Split" and "Collapse" menu items.

(send a-drracket:unit:frame execute-callback) → void?

Specification: This method is called when the user clicks on the Run button or
chooses the Run menu item.

Default implementation: It calls ensure-rep-shown and then it calls
evaluate-from-port passing in the result of get-interactions-text and
its entire range, unless the first two characters are #! in which case, it skips the
first line.

(send a-drracket:unit:frame file-menu:between-open-and-
revert)
→ void?

Overrides file-menu:between-open-and-revert in
drracket:frame:basics-mixin.

Calls the super method and adds a separator-menu-item% to the menu.

(send a-drracket:unit:frame file-menu:between-print-and-
close)
→ void?

Overrides file-menu:between-print-and-close in
drracket:frame:basics-mixin.

Adds a menu item for printing the interactions.

(send a-drracket:unit:frame file-menu:between-save-as-and-
print)
→ void?

Overrides file-menu:between-save-as-and-print in frame:standard-
menus<%>.

Adds a submenu that contains various save options:

• save definitions as text

• save interactions

• save interactions as

• save interactions as text

40

and adds a separator item.

(send a-drracket:unit:frame file-menu:print-string) → void?

Overrides file-menu:print-string in frame:standard-menus<%>.

returns "Definitions"

(send a-drracket:unit:frame file-menu:save-as-
string) → void?

Overrides file-menu:save-as-string in frame:standard-menus<%>.

Returns "Definitions".

(send a-drracket:unit:frame file-menu:save-string) → void?

Overrides file-menu:save-string in frame:standard-menus<%>.

Returns "Definitions".

(send a-drracket:unit:frame get-break-button)
→ (is-a?/c button%)

Returns the break button. Mostly used for test suites.

(send a-drracket:unit:frame get-button-panel)
→ (is-a?/c horizontal-panel%)

This panel goes along the top of the DrRacket window and has buttons for im-
portant actions the user frequently executes.

A tool can add a button to this panel to make some new functionality easily
accessible to the user.

See also mrlib’s switchable-button%.

(send a-drracket:unit:frame get-canvas)
→ (is-a?/c editor-canvas%)

Overrides get-canvas in frame:editor<%>.

Returns the result of get-definitions-canvas.

(send a-drracket:unit:frame get-canvas%) → (is-
a?/c canvas%)

Overrides get-canvas% in frame:editor<%>.

Returns the result of drracket:get/extend:get-definitions-canvas.

(send a-drracket:unit:frame get-definitions/interactions-
panel-parent)
→ (is-a?/c vertical-panel%)

(send a-drracket:unit:frame get-definitions/interactions-panel-parent)
→ void?

41

Specification: This method is provided so that tools can add area-
container<%>s to the DrRacket frame. Override this method so that it returns
a child of the super-classes’s result and insert new children in between.

Default implementation: First case:

Returns the result of get-area-container

Second case:

(send a-drracket:unit:frame get-editor) → (is-
a?/c editor<%>)

Overrides get-editor in frame:editor<%>.

Returns the result of get-definitions-text.

(send a-drracket:unit:frame get-editor%) → (is-
a?/c editor<%>)

Overrides get-editor% in frame:editor<%>.

Returns the result of drracket:get/extend:get-definitions-text.

(send a-drracket:unit:frame get-execute-button)
→ (is-a?/c button%)

Returns the Run button. Mostly used for test suites.

(send a-drracket:unit:frame get-text-to-search)
→ (is-a?/c text:searching%)

Overrides get-text-to-search in frame:searchable-text-mixin.

returns the text that is active in the last canvas passed to make-searchable

(send a-drracket:unit:frame make-searchable canvas) → void?
canvas : (is-a?/c drracket:unit:interactions-canvas%)

stores the canvas, until get-text-to-search is called.

(send a-drracket:unit:frame on-close) → void?

Overrides on-close in frame:standard-menus<%>.

Sends the result of get-interactions-text the shutdown and on-close
methods.

Calls the super method.

(send a-drracket:unit:frame on-size) → void?

Overrides on-size in window<%>.

Updates the preferences for the window width and height so next time a Dr-
Racket window is opened, it will be this width and height.

42

(send a-drracket:unit:frame still-untouched?) → boolean?

Specification: determines if the definitions window has not been modified. Used
in conjunction with change-to-file.

Default implementation: Returns #t if the buffer is empty, it has not been saved
and it is unmodified.

(send a-drracket:unit:frame update-save-button modified?)
→ void?
modified? : any/c

This method hides or shows the save button, based on the modified? argument.

If the save button has not been created yet, it remembers the modified? argu-
ment as an initial visibility for the save button.

This method is called by the set-modified method.

(send a-drracket:unit:frame update-save-
message name) → void?

name : string?

Updates the save message on the DrRacket frame. This method is called by the
set-filename method.

(send a-drracket:unit:frame update-shown) → void?

Overrides <method not found>.

Updates the interactions, definitions, and contour menu items based on the con-
tents of the windows.

drracket:unit:frame<%> : interface?

(send a-drracket:unit:frame get-language-menu)
→ (is-a?/c menu%)

Returns the language-specific menu. This menu is called the Racket menu in the
Racket language but is, in general, controlled by the ’drscheme:language-
menu-title capability (see drracket:language:register-capability
for details on capabilities).

(send a-drracket:unit:frame ensure-defs-shown) → void?

Ensures that the definitions window is visible.

(send a-drracket:unit:frame ensure-rep-hidden) → void?

43

Makes sure the rep is hidden (by making the definitions window visible).

(send a-drracket:unit:frame ensure-rep-shown) → void?

Shows the interactions window

(send a-drracket:unit:frame get-current-tab)
→ (is-a?/c drracket:unit:tab<%>)

Returns the currently active tab.

(send a-drracket:unit:frame get-tab-filename i) → string?
i : (<=/c 0 (get-tab-count))

Returns a string naming the file in the i th tab or, if the file is not saved, some-
thing like “Untitled”.

(send a-drracket:unit:frame get-tab-count)
→ exact-positive-integer?

Returns the number of open tabs in the frame.

(send a-drracket:unit:frame open-in-new-
tab filename) → void?

filename : (or/c path-string? #f)

Opens a new tab in this frame. If filename is a path-string?, It loads that
file in the definitions window of the new tab.

(send a-drracket:unit:frame create-new-tab) → void?

Creates a new tab.

(send a-drracket:unit:frame next-tab) → void?

Switches to the next tab.

(send a-drracket:unit:frame prev-tab) → void?

Switches to the previous tab.

(send a-drracket:unit:frame close-current-tab) → void?

Closes the current tab, making some other tab visible. If there is only one tab
open, this method does nothing.

(send a-drracket:unit:frame get-definitions-canvas)
→ (is-a?/c drracket:unit:definitions-canvas%)

44

This canvas is the canvas containing the get-definitions-text. It is initially
the top half of the DrRacket window.

This canvas defaults to a drracket:unit:definitions-canvas% object, but
if you change the drracket:get/extend:extend-definitions-canvas
procedure, it will use the class in the parameter to create the canvas.

(send a-drracket:unit:frame get-definitions-text)
→ (is-a?/c drracket:unit:definitions-text%)

Calls result of get-current-tab’s get-defs method.

(send a-drracket:unit:frame get-insert-menu) → (is-
a?/c menu%)

Specification: Returns the Insert menu.

(send a-drracket:unit:frame get-interactions-canvas)
→ (instanceof (derivedfrom drracket:unit:interactions-canvas%))

This canvas is the canvas containing the get-interactions-text. It is ini-
tially the bottom half of the DrRacket window.

This canvas defaults to a drracket:unit:interactions-canvas% object,
but if you use the drracket:get/extend:extend-interactions-canvas
procedure, it will use the extended class to create the canvas.

(send a-drracket:unit:frame get-interactions-text)
→ (is-a?/c drracket:rep:text%)

Calls result of get-current-tab’s get-ints method.

(send a-drracket:unit:frame get-tabs)
→ (listof (is-a?/c drracket:unit:tab<%>))

Returns the list of tabs in this frame.

(send a-drracket:unit:frame on-tab-change from-tab
to-tab) → void?

from-tab : (is-a?/c drracket:unit:tab<%>)
to-tab : (is-a?/c drracket:unit:tab<%>)

Refine this method with augment.

Specification: Called after a new tab becomes the selected tab in the frame.

Default implementation: The from-tab argument is the previously selected
tab, and the to-tab argument is the newly selected tab.

45

(send a-drracket:unit:frame register-capability-menu-item
key
menu)

→ void?
key : symbol
menu : (is-a? menu%)

Registers the menu item that was most recently added as being controlled by the
capability key . This means that the (boolean) value of the capability determines
if the menu item is present in the menu (the capability is checked when the
menus are clicked on).

This assumes that the menu items in this menu are not moved around, except by
the this capability. If they are, things can go funny (i.e., no good checks are in
place).

Note that the capability must be registered separately, via
drracket:language:register-capability.

(send a-drracket:unit:frame register-toolbar-button
tb

[#:number num])
→ void?
tb : (is-a?/c switchable-button%)
num : (or/c #f real?) = #f

Registers the toolbar button tb .

The num argument controls the ordering of tb with respect to other toolbar
buttons. If it is #f, then a number one smaller than the currently smallest number
is used.

The buttons are sorted by their numbers, from left to right in horizontal mode
and from top to bottom in vertical mode. If buttons are in sub-panels they can-
not, in general, be sorted entirely by number without changing the panel struc-
ture, but when a sub-panel appears as a sibling of some toolbar buttons, the sort-
ing routine looks for the smallest number appearing in a button in the sub-panel,
and uses that number when sorting the panel that appears with the buttons.

A number of buttons already come with numbers: the Stop button’s number is
101, the Run button’s number is 100, the Scribble PDF button’s number is 99,
the Scribble HTML button’s number is 98, the Macro Stepper button’s number
is 70, the Debug button’s number is 60, the Stepper button’s number is 59, and
the Check Syntax button’s number is 50.

All three are children of the panel returned by get-button-panel.

Registration is required so that the toolbar buttons properly switch orientation
when the toolbar’s position is moved and the ordering via the number argument
is preserved. See also sort-toolbar-buttons-panel.

46

(send a-drracket:unit:frame register-toolbar-buttons
tbs

[#:numbers nums])
→ void?
tbs : (listof (is-a?/c switchable-button%))
nums : (listof (or/c real? #f)) = (make-list (length tbs) #f)

Simultaneously registers the toolbar buttons tbs .

See also register-toolbar-button.

(send a-drracket:unit:frame unregister-toolbar-button tb)
→ void?
tb : (is-a?/c switchable-button%)

Unregisters the toolbar button tb . Use this method to ensure that the button is
not referenced by this frame and thus can be gc’d.

(send a-drracket:unit:frame sort-toolbar-buttons-panel)
→ void?

Sorts the children of get-button-panel, according to the number argument
passed to register-toolbar-button.

drracket:unit:definitions-text% : class?
superclass: (drracket:rep:drs-bindings-keymap-mixin (drracket:unit:program-editor-mixin (racket:text-mixin text:info%)))
extends: drracket:unit:definitions-text<%>

(new drracket:unit:definitions-text%)
→ (is-a?/c drracket:unit:definitions-text%)

Passes all arguments to super-init.

(send a-drracket:unit:definitions-text set-filename) → void?

Overrides <method not found>.

Calls update-save-message.

(send a-drracket:unit:definitions-text set-modified) → void?

Overrides <method not found>.

Calls update-save-button.

47

drracket:unit:definitions-text<%> : interface?

This interface is implemented by the definitions text.

(send a-drracket:unit:definitions-text after-set-next-
settings language-settings)
→ void?
language-settings : language-settings

Refine this method with augment.

Specification: Called when the next settings changes. See also get-next-
settings.

Default implementation:

(send a-drracket:unit:definitions-text begin-metadata-
changes)
→ void?

Augment this method to be notified when DrRacket is changing the buffer to
insert metadata. The metadata is only inserted during saving, so tools that track
changes to DrRacket will need to ignore changes that occur after this method is
called, and before end-metadata-changes is called.

A call to begin-metadata-changes will always be followed with a call to
end-metadata-changes (ie, the calls cannot be nested).

(send a-drracket:unit:definitions-text end-metadata-changes)
→ void?

Called when the changes to insert metadata are done, and the editor is back to
its state at the time of the call to begin-metadata-changes.

A call to begin-metadata-changes will always be followed with a call to
end-metadata-changes (ie, the calls cannot be nested).

(send a-drracket:unit:definitions-text get-next-settings)
→ language-settings

This method returns the language-settings that will be used when the user next
clicks Run in this DrRacket window.

(send a-drracket:unit:definitions-text get-tab)
→ (is-a?/c drracket:unit:tab%)

Returns the editor’s enclosing tab.

48

(send a-drracket:unit:definitions-text set-needs-execution-
message msg)
→ void?
msg : string?

Specification: This method, when called, puts this DrRacket window in a state
such that interactions submitted to the REPL will trigger a yellow warning mes-
sage. The state is reset when the program is next Run.

Default implementation: Records msg and uses it the next time the user submits
an interaction (unless the Runs first).

(send a-drracket:unit:definitions-text set-next-settings
language-settings

[update-prefs?])
→ void?
language-settings : language-settings
update-prefs? : any/c = #t

Changes the language settings for this window. If update-prefs? is a true
value, the preference is changed, which affects newly created windows.

See also after-set-next-settings and get-next-settings.

drracket:unit:definitions-canvas% : class?
superclass: editor-canvas%

Initializes the visibility of the save button.

(drracket:unit:get-program-editor-mixin)
→ ((subclass?/c text%) . -> . (subclass?/c text%))

Returns a mixin that must be mixed in to any text% object that might contain program text
(and thus can be in the source field of some syntax object).

See also drracket:unit:add-to-program-editor-mixin.

(drracket:unit:add-to-program-editor-mixin mixin) → void?
mixin : ((subclass?/c text%) . -> . (subclass?/c text%))

This function can only be called in phase 1 (see §1 “Implementing DrRacket Plugins” for
details).

Adds mixin to the result of drracket:unit:get-program-editor-mixin.

49

(drracket:unit:open-drscheme-window)
→ (is-a?/c drracket:unit:frame%)

(drracket:unit:open-drscheme-window filename)
→ (is-a?/c drracket:unit:frame%)
filename : (or/c string? false/c)

Opens a DrRacket frame that displays filename , or nothing if filename is #f or not
supplied.

(drracket:unit:add-search-help-desk-menu-item text
menu
position

[add-sep]) → void?
text : (is-a?/c text%)
menu : (is-a?/c menu-item-container<%>)
position : exact-nonnegative-integer?
add-sep : (-> any) = void

Adds a menu item to menu that searches in Help Desk for the word around position in
text .

If there is only whitespace around position , then no menu-item%s are added, and add-
sep is not called. If there is something to be added, then add-sep is called before the menu
item is created.

50

12 drracket:language

drracket:language:simple-module-based-language<%> : interface?

This interface represents the bare essentials when defining a module-based language.
Use the drracket:language:simple-module-based-language->module-based-
language-mixin mixin to construct an implementation of drracket:language:module-
based-language<%> from an implementation of this interface.

The class drracket:language:simple-module-based-language% provides an imple-
mentation of this interface.

(send a-drracket:language:simple-module-based-language get-
language-numbers)
→ (cons number (listof number))

Returns a list of numbers, whose length must be the same as the result of get-
language-position. Each number indicates the sorted order of the language
positions in the language dialog.

(send a-drracket:language:simple-module-based-language get-
language-position)
→ (cons string (listof string))

This method is the same as get-language-position.

(send a-drracket:language:simple-module-based-language get-
module)
→ s-expression

This method specifies the module that defines the language.

This method replaces front-end/complete-program and front-
end/interaction.

The result is expected to be the module (its initial require) except as value, ie
quoted.

(send a-drracket:language:simple-module-based-language get-
one-line-summary)
→ (or/c #f string?)

The result of this method is shown in a tooltip in the language dialog when the
user mouses over this language. If the result is #f, no tooltip is shown.

(send a-drracket:language:simple-module-based-language get-
reader)
→ (->* () (any/c input-port?) (or/c syntax? eof-object?))

51

This method must return a procedure that is used to read syntax from a port in
the same manner as read-syntax. It is used as the reader for this language.

drracket:language:simple-module-based-language% : class?
superclass: object%
extends: drracket:language:simple-module-based-language<%>

(make-object drracket:language:simple-module-based-language%
module
language-position

[language-numbers
one-line-summary
documentation-reference]
reader
language-id)

→ (is-a?/c drracket:language:simple-module-based-language%)
module : s-expression
language-position : (cons string (listof string))
language-numbers : (cons number (listof number))

= (map (lambda (x) 0) language-position)
one-line-summary : string? = ""
documentation-reference : (or/c false/c something-else) = #f
reader : (->* () (any/c input-port?) (or/c syntax? eof-object?))
language-id : string?

The init args are used as the results of the get-module and get-language-
position methods.

(send a-drracket:language:simple-module-based-language get-
language-numbers)
→ (cons number (listof number))

Overrides get-language-numbers in drracket:language:simple-
module-based-language<%>.

returns the corresponding init arg.

(send a-drracket:language:simple-module-based-language get-
language-position)
→ s-expression

Overrides get-language-position in drracket:language:simple-
module-based-language<%>.

returns the corresponding init arg.

52

(send a-drracket:language:simple-module-based-language get-
module)
→ (cons string (listof string))

Overrides get-module in drracket:language:simple-module-based-
language<%>.

returns the corresponding init arg.

(send a-drracket:language:simple-module-based-language get-
one-line-summary)
→ string?

Overrides get-one-line-summary in drracket:language:simple-
module-based-language<%>.

returns the corresponding initialization argument.

(send a-drracket:language:simple-module-based-language get-
reader)
→ (->* () (any/c input-port?) (or/c syntax? eof-object?))

Overrides get-reader in drracket:language:simple-module-based-
language<%>.

returns the corresponding init arg.

drracket:language:simple-module-based-language->module-based-
language-mixin : (class? . -> . class?)

argument extends/implements: drracket:language:simple-module-based-language<%>
result implements: drracket:language:module-based-language<%>

This mixin uses a struct definition for its settings:

(define-struct drracket:language:simple-settings
(case-sensitive ; boolean?
printing-style ; (symbols ’constructor ’quasiquote ’write

’print)
fraction-style ; (symbols ’mixed-fraction ’mixed-fraction-e

; ’repeating-decimal ’repeating-decimal-e)
show-sharing ; boolean?
insert-newlines ; boolean?
annotations)) ; (symbols ’none ’debug ’debug/profile

; ’test-coverage)

The settings in this structure reflect the settings show in the language configuration dialog
for languages constructed with this mixin. The first controls the input for the language.

53

The rest specify printing controls for the language. The style ’print is the default style,
as normally used in the Racket REPL. The sharing field determines if cycles and sharing
in values are displayed when the value is rendered. The insert newlines field determines
if values in the repl are formatted with write style-line printouts, or with pretty-print
multi-line printouts.

(send a-drracket:language:simple-module-based-language-
>module-based-language config-panel)
→ (case-> (-> settings) (settings -> void))

Overrides <method not found>.

Constructs a configuration panel that lets the user configure all of the settings
for this language.

See also drracket:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixin’s settings type.

(send a-drracket:language:simple-module-based-language-
>module-based-language default-settings)
→ settings

Overrides <method not found>.

The defaults for the settings are

• case-sensitive is #f

• printing-style is ’write

• show-sharing is #f

• insert-newlines is #t

See also drracket:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixins settings type.

(send a-drracket:language:simple-module-based-language-
>module-based-language default-settings?)
→ boolean?

Overrides <method not found>.

(send a-drracket:language:simple-module-based-language-
>module-based-language get-init-code settings)
→ sexpression
settings : settings

54

Overrides <method not found>.

Creates an s-expression of a module that sets the current-inspector, read-
case-sensitive, and error-value->string parameters. Additionally, it
may load errortrace, if debugging is enabled.

(send a-drracket:language:simple-module-based-language-
>module-based-language get-transformer-module)
→ s-expression

Overrides <method not found>.

Returns ’mzscheme.

(send a-drracket:language:simple-module-based-language-
>module-based-language marshall-settings)
→ writable

Overrides <method not found>.

Constructs a vector from the structure.

See also drracket:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixins settings type.

(send a-drracket:language:simple-module-based-language-
>module-based-language on-execute)
→ void?

Overrides <method not found>.

Sets the case sensitivity of the language.

Sets the structure inspector to a new inspector, saving the original inspector for
use during printing.

Sets the global-port-print-handler to print based on the settings struc-
ture, but without any newlines.

If debugging is enabled, it sets the current-eval handler to one that annotates
each evaluated program with debugging annotations. Additionally, it sets the
error-display-handler to show the debugging annotations when an error is
raised.

See also drracket:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixin’s settings type.

(send a-drracket:language:simple-module-based-language-
>module-based-language render-value)
→ void?

55

Overrides <method not found>.

Translates the value to a string, based on the settings.

Restores a super struct inspector to render structs properly. (See also on-
execute)

See also drracket:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixin’s settings type.

(send a-drracket:language:simple-module-based-language-
>module-based-language render-value/format)
→ void?

Overrides <method not found>.

Translates the value to a string, based on the settings.

Restores a super struct inspector to render structs properly. (See also on-
execute.)

See also drracket:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixin’s settings type.

(send a-drracket:language:simple-module-based-language-
>module-based-language unmarshall-settings)
→ (or/c false/c settings)

Overrides <method not found>.

Builds a settings structure from the vector, or #f if the vector doesn’t match the
types of the structure.

See also drracket:language:simple-module-based-language-
>module-based-language-mixin for details of the simple-settings structure,
this mixin’s settings type.

(send a-drracket:language:simple-module-based-language-
>module-based-language use-mred-launcher)
→ boolean?

Overrides <method not found>.

Returns #t.

drracket:language:module-based-language<%> : interface?

This interface is for languages that can be implemented with Racket modules.

Use the drracket:language:module-based-language->language-mixin mixin to
construct an implementation of drracket:language:language<%> from an implemen-
tation of this interface.

56

(send a-drracket:language:module-based-language config-
panel parent)
→ (case-> (-> settings) (settings -> void))
parent : (is-a?/c panel%)

This method is the same as config-panel.

(send a-drracket:language:module-based-language default-
settings)
→ settings

This method is the same as default-settings.

(send a-drracket:language:module-based-language default-
settings? settings)
→ boolean?
settings : settings

This method is the same as default-settings?.

(send a-drracket:language:module-based-language get-init-
code settings)
→ sexp
settings : settings

Returns a module in sexpression form that is used for creating executables. The
module must provide a thunk, called init-code.

When either a stand-alone executable or a launcher is created, the module is
required, and init-code is invoked. This procedure is expected to set up the
environment, based on the settings.

(send a-drracket:language:module-based-language get-
language-numbers)
→ (cons number (listof number))

This method is the same as get-language-numbers.

(send a-drracket:language:module-based-language get-
language-position)
→ (cons string (listof string))

This method is the same as get-language-position.

(send a-drracket:language:module-based-language get-module)
→ s-expression

57

This method specifies the module that defines the language. It is used to initial-
ize the user’s namespace.

The result is expected to be the module (its initial require) except as value, ie
quoted.

See also get-transformer-module.

(send a-drracket:language:module-based-language get-one-
line-summary)
→ string?

The result of this method is shown in the language dialog when the user selects
this language.

(send a-drracket:language:module-based-language get-reader)
→ (->* () (any/c input-port?) (or/c syntax? eof-object?))

This method must return a procedure that is used to read syntax from a port in
the same manner as read-syntax. It is used as the reader for this language.

(send a-drracket:language:module-based-language get-
transformer-module)
→ (or/c quoted-module-path #f)

This method specifies the module that defines the transformation language. It is
used to initialize the transformer portion of the user’s namespace.

The result is expected to be the module (its initial require) except as value, i.e.,
quoted or #f.

If the result is #f, no module is required into the transformer part of the names-
pace.

See also get-module.

(send a-drracket:language:module-based-language marshall-
settings settings)
→ writable
settings : settings

This method is the same as marshall-settings.

(send a-drracket:language:module-based-language on-execute
settings
run-on-user-thread)

→ void?
settings : settings
run-on-user-thread : ((-> void) -> void)

This method is the same as on-execute.

58

(send a-drracket:language:module-based-language render-value
value
settings
port)

→ void?
value : TST
settings : settings
port : port

This method is the same as render-value.

(send a-drracket:language:module-based-language render-value/format
value
settings
port
width)

→ void?
value : TST
settings : settings
port : port
width : (or/c number (symbols ’infinity))

This method is the same as render-value/format.

(send a-drracket:language:module-based-language unmarshall-
settings input)
→ (or/c settings false/c)
input : writable

This method is the same as unmarshall-settings.

(send a-drracket:language:module-based-language use-mred-
launcher)
→ boolean?

This method is called when an executable is created to determine if the exe-
cutable should use the GRacket or the Racket binary.

(send a-drracket:language:module-based-language use-
namespace-require/copy?)
→ boolean?

Specification: The result of this method controls how the module is attached
to the user’s namespace. If the method returns #t, the Racket primitive
namespace-require/copy is used and if it returns #f, namespace-require
is used. Default implementation: Returns #f by default.

59

drracket:language:module-based-language->language-mixin : (class? . ->
. class?)

argument extends/implements: drracket:language:module-based-language<%>
result implements: drracket:language:language<%>

(send a-drracket:language:module-based-language-
>language front-end/complete-program)
→ (-> (or/c sexp/c syntax? eof-object?))

Overrides <method not found>.

Reads a syntax object, from input. Does not use settings.

For languages that use these mixins, there is no difference between this method
and front-end/interaction.

(send a-drracket:language:module-based-language-
>language front-end/interaction)
→ (-> (or/c sexp/c syntax? eof-object?))

Overrides <method not found>.

Reads a syntax object, from input. Does not use settings.

For languages that use these mixins, there is no difference between this method
and front-end/complete-program.

(send a-drracket:language:module-based-language-
>language get-language-name)
→ string?

Overrides <method not found>.

Returns the last element of the list returned by get-language-position.

(send a-drracket:language:module-based-language-
>language on-execute)
→ void?

Overrides on-execute in drracket:language:module-based-
language<%>.

Calls the super method.

Uses namespace-require to install the result of get-module and
Uses namespace-transformer-require to install the result of get-
transformer-module into the user’s namespace.

drracket:language:language<%> : interface?

Implementations of this interface are languages that DrRacket supports.

See §2 “Adding Languages to DrRacket” for an overview of adding languages to DrRacket.

60

(send a-drracket:language:language capability-
value key) → any

key : symbol

Specification: Returns the language-specific value for some capability. See
also drracket:language:register-capability. Default implementation:
By default, returns the value from: drracket:language:get-capability-
default.

(send a-drracket:language:language config-panel parent)
→ (case-> (-> settings) (settings -> void))
parent : (is-a?/c panel%)

This method used by the language configuration dialog to construct the “details”
panel for this language. It accepts a parent panel and returns a get/set function
that either updates the GUI to the argument or returns the settings for the current
GUI.

(send a-drracket:language:language create-executable
settings
parent
program-filename)

→ void?
settings : settings
parent : (or/c (is-a?/c dialog%) (is-a?/c frame%))
program-filename : string?

This method creates an executable in the given language. The program-
filename is the name of the program to store in the executable and
executable-filename is the name of a file where the executable goes.

See also drracket:language:create-module-based-stand-alone-
executable and drracket:language:create-module-based-launcher.

(send a-drracket:language:language default-settings)
→ settings

Specifies the default settings for this language.

(send a-drracket:language:language default-
settings? settings)
→ boolean?
settings : settings

Return #t if the input settings matches the default settings obtained via
default-settings.

61

(send a-drracket:language:language first-opened settings)
→ void?
settings : settings

This method is called after the language is initialized, but no program has yet
been run. It is called from the user’s eventspace’s main thread.

See also initialize-console.

Calling this method should not escape. DrRacket calls this method in a param-
eterize where the error-escape-handler is set to an escaping continuation
that continues initializing the interactions window. Thus, raising an exception
will report the error in the user’s interactions window as if this were a bug in
the user’s program. Escaping in any other way, however, can cause DrRacket to
fail to start up.

Also, IO system will deadlock if the first-opened method does IO on the
user’s IO ports, so the calling context of first-opened sets the current-
output-port and current-error-port to ports that just collect all of the IO
that happened and then replay it later in the initialization of the user’s program.

Contrary to the method contract spec, DrRacket will also invoke this method if it
has zero arguments, passing nothing; the zero argument version is for backwards
compatibility and is not recommended.

(send a-drracket:language:language front-end/complete-program
port
settings)

→ (-> (or/c sexp/c syntax? eof-object?))
port : port
settings : settings

front-end/complete-program method reads and parses a program in the
language. The port argument contains all of the data to be read (until eof) and
the name of the port (obtained via object-name) is a value representing the
source of the program (typically an editor, but may also be a string naming a
file or some other value). The settings argument is the current settings for
the language.

The front-end/complete-program method is expected to return a thunk that
is called repeatedly to get all of the expressions in the program. When all ex-
pressions have been read, the thunk is expected to return eof.

This method is only called for programs in the definitions window. Notably, it
is not called for programs that are loaded or evaled. See current-load and
current-eval for those.

This method is expected to raise an appropriate exception if the program is
malformed, eg an exn:syntax or exn:read.

This is called on the user’s thread, as is the thunk it returns.

62

Implementations of this method should not return fully expanded expressions,
since there are two forms of expansion, using either expand or expand-top-
level-with-compile-time-evals and the use of the expanded code dictates
which applies.

See also front-end/interaction and front-end/finished-complete-
program.

(send a-drracket:language:language front-end/finished-
complete-program settings)
→ any
settings : settings

This method is called when Run is clicked, but only after front-
end/complete-program has been called. Specifically, front-
end/complete-program is first called to get a thunk that reads from
the program. That thunk is called some number of times, eventually returning
eof, or raising an exception. Then, this method is called.

This method is called on the user’s main eventspace thread, and without a
prompt or other control delimiter. It must return without raising an error, or
else the DrRacket window will be wedged.

(send a-drracket:language:language front-end/interaction
port
settings)

→ (-> (or/c sexp/c syntax? eof-object?))
port : input-port
settings : settings

This method is just like front-end/complete-program except that it is called
with program fragments, for example the expressions entered in the interactions
window. It is also used in other contexts by tools to expand single expressions.

See also front-end/finished-complete-program.

(send a-drracket:language:language get-comment-character)
→ string? char?

Returns text to be used for the “Insert Large Letters” menu item in DrRacket.
The first result is a prefix to be placed at the beginning of each line and the
second result is a character to be used for each pixel in the letters.

(send a-drracket:language:language get-language-name)
→ string?

Returns the name of the language, as shown in the REPL when executing pro-
grams in the language and in the bottom left of the DrRacket window.

63

(send a-drracket:language:language get-language-numbers)
→ (cons number (listof number))

This method is used in a manner analogous to get-language-position.

Each element in the list indicates how the names at that point in dialog will be
sorted. Names with lower numbers appear first. If two languages are added
to DrRacket with the same strings (as given by the get-language-position
method) the corresponding numbers returned by this method must be the same.
Additionally, no two languages can have the same set of numbers.

(Note: this method should always return the same result, for the same language.)

(send a-drracket:language:language get-language-position)
→ (cons string (listof string))

This method returns a list of strings that is used to organize this language with
the other languages. Each entry in that list is a category or subcategory of the
language and the last entry in the list is the name of the language itself. In the
language dialog, each element in the list except for the last will be a nested turn
down triangle on the left of the dialog. The final entry will be the name that
the user can choose to select this language. Names that are the same will be
combined into the same turndown entry.

For example, if one language’s position is:

(list "General Category" "Specific Category" "My Lan-
guage")

and another’s is:

(list "General Category" "Specific Category" "My Other
Language")

The language dialog will collapse the first two elements in the list, resulting in
only a pair of nested turn-down triangles, not parallel pairs of nested turn-down
triangles.

(send a-drracket:language:language get-language-url)
→ (or/c string? false/c)

Specification: Returns a url for the language. Default implementation: If the
result isn’t #f, the name of the language is clickable in the interactions window
and clicking takes you to this url.

(send a-drracket:language:language get-metadata modname
settings)

→ string?
modname : symbol?
settings : any/c

64

This method is only called when get-reader-module returns an sexp.

It is expected to return a string that contains N lines, where N is the result of
calling get-metadata-lines. The string is prefixed to the buffer before the
file is saved by DrRacket, and removed from the buffer after it is opened in
DrRacket.

The string is expect to be a prefix to the file that sets up a reader for files in this
language, using #reader.

The modname argument’s printed form is the same as the file’s name, but with-
out the path, and without an extension. The settings argument is the current
language’s settings value.

See also metadata->settings, get-metadata-lines, and get-reader-
module.

(send a-drracket:language:language get-metadata-lines)
→ number

This method is only called when get-reader-module returns an sexp.

The result of the method is a count of the number of lines in the strings that get-
metadata returns. The get-metadata function does not necessarily return the
same string each time it is called (see metadata->settings) but it is expected
to always return a string with a fixed number of lines, as indicated by the result
of this method.

(send a-drracket:language:language get-one-line-summary)
→ string?

Specification: The result of this method is shown in the language dialog when
the user selects this language. Default implementation:

(send a-drracket:language:language get-reader-module)
→ (or/c sexp-representing-a-require-spec false/c)

The result of this method is used when saving or loading files.

If the result is a sexp, saved files get a prefix inserted at the beginning (the
prefix is determined by calling get-metadata). When the file is then loaded,
DrRacket recognizes this prefix and sets the language back to match the saved
file.

See also metadata->settings, get-metadata-lines, and get-metadata.

(send a-drracket:language:language get-style-delta)
→ (or/c #f (is-a?/c style-delta%) (listof (list/c (is-a?/c style-delta%) number? number?)))

The style delta that this method returns is used in the language dialog and the
DrRacket REPL when the language’s name is printed.

65

When it is #f, no styling is used.

If the result is a list, each element is expected to be a list of three items, a style-
delta, and two numbers. The style delta will be applied to the corresponding
portion of the name.

(send a-drracket:language:language extra-repl-information
settings
port)

→ void?
settings : settings
port : output-port?

This method is called on the DrRacket eventspace main thread to insert extra
information into the REPL to reflect the state of the program.

It is used, for example, to print out the “Teachpack” lines in the HtDP languages.

(send a-drracket:language:language marshall-
settings settings)
→ writable
settings : settings

Translates an instance of the settings type into a Racket object that can be written
out to disk.

(send a-drracket:language:language metadata-
>settings metadata)
→ settings
metadata : string?

This method is only called when get-reader-module returns an sexp.

When a file is opened in DrRacket, if this language’s get-reader-module
returns an sexp, the prefix of the file (the first N lines, where N is the number
returned by get-metadata-lines) is scanned for "#reader" followed by the
result of get-reader-module. If that pattern is found, the language is set to
this language. Also, the entire prefix is passed, as a string, to this method which
returns a settings value, used as the settings for this language.

(send a-drracket:language:language on-execute
settings
run-on-user-thread)

→ any
settings : settings
run-on-user-thread : ((-> any) -> any)

The on-execute method is called on DrRacket’s eventspace’s main thread be-
fore any evaluation happens when the Run button is clicked. It is also called

66

when a new DrRacket tab (or window) is created to initialize the empty interac-
tions window.

Use this method to initialize Racket’s §10.3.2 “Parameters” for the user. When
this function is called, the user’s thread has already been created, as has its
custodian. These parameters have been changed from the defaults in Racket:

• current-custodian is set to a new custodian.

• current-namespace has been set to a newly created empty namespace.
This namespace has the following modules copied (with namespace-
attach-module) from DrRacket’s original namespace:

– ’mzscheme
– ’mred

• read-curly-brace-as-paren is #t,

• read-square-bracket-as-paren is #t,

• The port-write-handler and port-display-handler have been set
to procedures that call pretty-print and pretty-display instead of
write and display. When pretty-print and pretty-display are
called by these parameters, the pretty-print-columns parameter is set
to ’infinity, so the output looks just like write and display. This is
done so that special scheme values can be displayed as snips.

• The current-print-covert-hook is to a procedure so that snip%s are
just returned directly to be inserted into the interactions text% object.

• The output and input ports are set to point to the interactions window with
these parameters: current-input-port, current-output-port, and
current-error-port.

• The event-dispatch-handler is set so that DrRacket can perform
some initial setup and close down around the user’s code.

• The current-directory and current-load-relative-directory
are set to the directory where the definitions file is saved, or if it isn’t
saved, to the initial directory where DrRacket started up.

• The snip-class-list, returned by get-the-snip-class-list is initial-
ized with all of the snipclasses in DrRacket’s eventspace’s snip-class-list.

• The error-print-source-location parameter is set to #f and the
error-display-handler is set to a handler that creates an error mes-
sage from the exception record, with font and color information and inserts
that error message into the definitions window.

The run-on-user-thread arguments accepts thunks and runs them on the
user’s eventspace’s main thread. The output ports are not yet functioning, so
print outs should be directed to the original DrRacket output port, if necessary.

This thunk is wrapped in a with-handlers that catches all exceptions match-
ing exn:fail? and then prints out the exception message to the original output
port of the DrRacket process.

67

(send a-drracket:language:language order-manuals manuals)
→ (listof bytes?) boolean?
manuals : (listof bytes?)

Returns a sublist of its input, that specifies the manuals (and their order) to
search in. The boolean result indicates if doc.txt files should be searched.

(send a-drracket:language:language render-value value
settings
port)

→ void?
value : TST
settings : settings
port : port

This method is just like render-value/format except that it is expected to
put the entire value on a single line with no newline after the value.

(send a-drracket:language:language render-value/format
value
settings
port
width)

→ void?
value : TST
settings : settings
port : port
width : (or/c number (symbols ’infinity))

This method is used to print values into a port, for display to a user. The final
argument is a maximum width to use (in characters) when formatting the value.

This method is expected to format the value by inserting newlines in appropriate
places and is expected to render a newline after the value.

See also render-value.

(send a-drracket:language:language unmarshall-
settings input)
→ (or/c settings false/c)
input : writable

Translates a Racket value into a settings, returning #f if that is not possible.

drracket:language:object/c : contract?

68

(object-contract
(config-panel (-> (is-a?/c area-container<%>)

(case-> (-> any/c void?)
(-> any/c))))

(create-executable (-> any/c
(or/c (is-a?/c dialog%) (is-a?/c frame%))
path?
void?))

(default-settings (-> any/c))
(default-settings? (-> any/c boolean?))
(front-end/complete-program (-> input-port?

any/c
(-> any/c)))

(front-end/interaction (-> input-port?
any/c
(-> any/c)))

(get-language-name (-> string?))
(get-language-numbers (-> (cons/c number? (listof number?))))
(get-language-position (-> (cons/c string? (listof string?))))
(get-language-url (-> (or/c false/c string?)))
(get-one-line-summary (-> (or/c #f string?)))
(get-comment-character (-> (values string? char?)))
(get-style-delta
(-> (or/c false/c

(is-a?/c style-delta%)
(listof
(list/c (is-a?/c style-delta%)

number?
number?)))))

(marshall-settings (-> any/c printable/c))
(on-execute (-> any/c (-> (-> any) any) any))
(render-value (-> any/c

any/c
output-port?
void?))

(render-value/format (-> any/c
any/c
output-port?
(or/c number? (symbols ’infinity))
any))

(unmarshall-settings (-> printable/c any))

(capability-value
(->i ((s (and/c symbol?

drracket:language:capability-registered?)))
(res (s) (drracket:language:get-capability-contract s)))))

69

(drracket:language:register-capability s
the-contract
default) → void?

s : symbol?
the-contract : contract?
default : the-contract

Registers a new capability with a default value for each language and a contract on the values
the capability might have.

By default, these capabilities are registered as DrRacket starts up:

• ’drracket:check-syntax-button : boolean? = #t— controls the visiblity of
the check syntax button

• ’drracket:language-menu-title : string? = (string-constant
scheme-menu-name)— controls the name of the menu just to the right of the
language menu (named “Racket” by default)

• ’drscheme:define-popup : (or/c #f (list/c string? string?
string?) (cons/c string? string?)) = (list "(define" "(define
...)" "δ")— specifies the prefix that the define popup should look for and what
label it should have, or #f if it should not appear at all.

If the list of three strings alternative is used, the first string is the prefix that is looked
for when finding definitions. The second and third strings are used as the label of the
control, in horizontal and vertical mode, respectively.

The pair of strings alternative is deprecated. If it is used, the pair (cons a-str b-
str) is the same as (list a-str b-str "δ").

• ’drscheme:help-context-term : (or/c false/c string?) = #f— speci-
fies a context query for documentation searches that are initiated in this language,
can be #f (no change to the user’s setting) or a string to be used as a context query
(note: the context is later maintained as a cookie, "" is different from #f in that it
clears the stored context)

• ’drscheme:special:insert-fraction : boolean? = #t— determines if the
insert fraction menu item in the special menu is visible

• ’drscheme:special:insert-lambda : boolean? = #t— determines if the in-
sert lambda menu item in the special menu is visible

• ’drscheme:special:insert-large-letters : boolean? = #t— determines
if the insert large letters menu item in the special menu is visible

• ’drscheme:special:insert-image : boolean? = #t— determines if the in-
sert image menu item in the special menu is visible

70

• ’drscheme:special:insert-comment-box : boolean? = #t— determines if
the insert comment box menu item in the special menu is visible

• ’drscheme:special:insert-gui-tool : boolean? = #t— determines if the
insert gui menu item in the special menu is visible

• ’drscheme:special:slideshow-menu-item : boolean? = #t— determines
if the insert pict box menu item in the special menu is visible

• ’drscheme:special:insert-text-box : boolean? = #t— determines if the
insert text box menu item in the special menu is visible

• ’drscheme:special:xml-menus : boolean? = #t— determines if the insert
scheme box, insert scheme splice box, and the insert xml box menu item in the special
menu are visible

• ’drscheme:autocomplete-words : (listof string?) = ’()— determines
the list of words that are used when completing words in this language

• ’drscheme:tabify-menu-callback : (or/c false/c (-> (is-a?/c
text%) number? number? void?)) = (λ (t a b) (send t tabify-
selection a b))— is used as the callback when the “Reindent” or “Reindent All”
menu is selected. The first argument is the editor, and the second and third are a range
in the editor.

(drracket:language:capability-registered? s) → boolean?
s : symbol?

Indicates if drracket:language:register-capability has been called with s .

(drracket:language:get-capability-default s)
→ (drracket:language:get-capability-contract s)
s : (and/c symbol? drracket:language:capability-registered?)

Returns the default for a particular capability.

(drracket:language:get-capability-contract s) → contract?
s : (and/c symbol? drracket:language:capability-registered?)

Returns the contract for a given capability, which was specified when
drracket:language:register-capability was called.

71

(drracket:language:add-snip-value test-value
convert-value

[setup-thunk]) → void?
test-value : (-> any/c boolean?)
convert-value : (-> any/c (is-a?/c snip%))
setup-thunk : (-> any/c) = void

Registers a handler to convert values into snips as they are printed in the REPL.

The test-snip argument is called to determine if this handler can convert the value and the
convert-value argument is called to build a snip. The (optional) setup-thunk is called
just after the user’s namespace and other setings are built, but before any of the user’s code
is evaluated.

All three functions are called on the user’s thread and with the user’s settings.

(drracket:language:extend-language-interface
interface
default-implementation)

→ void?
interface : interface?
default-implementation : (make-mixin-contract drracket:language:language<%>)

This function can only be called in phase 1 (see §1 “Implementing DrRacket Plugins” for
details).

Each language added passed to drracket:language-configuration:add-language
must implement interface .

The default-implementation is a mixin that provides a default implementation of in-
terface . Languages that are unaware of the specifics of extension use default-
implementation via drracket:language:get-default-mixin.

(drracket:language:get-default-mixin)
→ (make-mixin-contract drracket:language:language<%>)

This function can only be called in phase 2 (see §1 “Implementing DrRacket Plugins” for
details).

The result of this function is the composite of all of the default-implementation argu-
ments passed to drracket:language:extend-language-interface.

(drracket:language:get-language-extensions)
→ (listof interface?)

72

This function can only be called in phase 2 (see §1 “Implementing DrRacket Plugins” for
details).

Returns a list of the interfaces passed to drracket:language:extend-language-
interface.

(drracket:language:put-executable parent
program-filename
mode
mred?
title)

→ (or/c false/c path?)
parent : (is-a?/c top-level-window<%>)
program-filename : path?
mode : (or/c boolean? (symbols ’launcher ’standalone ’distribution))
mred? : boolean?
title : string?

Calls the GRacket primitive put-file with arguments appropriate for creating an exe-
cutable from the file program-filename .

The arguments mred? and mode indicates what type of executable this should be (and the
dialog may be slightly different on some platforms, depending on these arguments). For
historical reasons, #f is allowed for mode as an alias for ’launcher, and #t is allowed for
mode as an alias for ’stand-alone.

The title argument is used as the title to the primitive put-file or get-directory
primitive.

(drracket:language:create-executable-gui parent
program-name
show-type
show-base)

→

(or/c false/c
(list/c (symbols ’no-show ’launcher ’stand-alone ’distribution)

(symbols ’no-show ’mred ’mzscheme)
string?))

parent : (or/c false/c (is-a?/c top-level-window<%>))
program-name : (or/c false/c string?)
show-type : (or/c (λ (x) (eq? x #t)) (symbols ’launcher ’standalone ’distribution))
show-base : (or/c (λ (x) (eq? x #t)) (symbols ’mzscheme ’mred))

Opens a dialog to prompt the user about their choice of executable. If show-type is #t,
the user is prompted about a choice of executable: stand-alone, launcher, or distribution;

73

otherwise, the symbol determines the type. If show-base is #t, the user is prompted about
a choice of base binary: mzscheme or mred; otherwise the symbol determines the base.

The program-name argument is used to construct the default executable name in a platform-
specific manner.

The parent argument is used for the parent of the dialog.

The result of this function is #f if the user cancel’s the dialog and a list of three items
indicating what options they chose. If either show-type or show-base was not #t, the
corresponding result will be ’no-show, otherwise it will indicate the user’s choice.

(drracket:language:create-module-based-stand-alone-executable
program-filename
executable-filename
module-language-spec
transformer-module-language-spec
init-code
gui?
use-copy?)

→ void?
program-filename : (or/c path? string?)
executable-filename : (or/c path? string?)
module-language-spec : any/c
transformer-module-language-spec : any/c
init-code : any/c
gui? : boolean?
use-copy? : boolean?

This procedure creates a stand-alone executable in the file executable-filename that runs
the program program-filename .

The arguments module-language-spec and transformer-module-language-spec
specify the settings of the initial namespace, both the transformer portion and the regular
portion. Both may be #f to indicate there are no initial bindings.

The init-code argument is an s-expression representing the code for a module. This mod-
ule is expected to provide the identifier init-code , bound to a procedure of no arguments.
That module is required and the init-code procedure is executed to initialize language-
specific settings before the code in program-filename runs.

The gui? argument indicates if a GRacket or Racket stand-alone executable is created.

The use-copy? argument indicates if the initial namespace should be populated with
namespace-require/copy or namespace-require.

74

(drracket:language:create-module-based-distribution
program-filename
distribution-filename
module-language-spec
transformer-module-language-spec
init-code
gui?
use-copy?)

→ void?
program-filename : (or/c path? string?)
distribution-filename : (or/c path? string?)
module-language-spec : any/c
transformer-module-language-spec : any/c
init-code : any/c
gui? : boolean?
use-copy? : boolean?

Like drracket:language:create-module-based-stand-alone-executable, but
packages the stand-alone executable into a distribution.

(drracket:language:create-distribution-for-executable
distribution-filename
gui?
make-executable)

→ void?
distribution-filename : (or/c path? string?)
gui? : boolean?
make-executable : (-> path? void?)

Creates a distribution where the given make-executable procedure creates the stand-
alone executable to be distributed. The make-executable procedure is given the name
of the executable to create. The gui? argument is needed in case the executable’s name
(which drracket:language:create-distribution-for-executable must generate)
depends on the type of executable. During the distribution-making process, a progress dialog
is shown to the user, and the user can click an Abort button that sends a break to the current
thread.

75

(drracket:language:create-module-based-launcher
program-filename
executable-filename
module-language-spec
transformer-module-language-spec
init-code
gui?
use-copy?)

→ void?
program-filename : (or/c path? string?)
executable-filename : (or/c path? string?)
module-language-spec : any/c
transformer-module-language-spec : any/c
init-code : any/c
gui? : boolean?
use-copy? : boolean?

This procedure is identical to drracket:language:create-module-based-stand-
alone-executable, except that it creates a launcher instead of a stand-alone executable.

(drracket:language:simple-module-based-language-convert-value
value
settings)

→ any
value : any/c
settings : drracket:language:simple-settings?

The result can be either one or two values. The first result is the converted value. The second
result is #t if the converted value should be printed with write (or pretty-write), #f if
the converted result should be printed with print (or pretty-print); the default second
result is #t.

The default implementation of this method depends on the simple-settings-printing-
style field of settings . If it is ’print, the result is (values value #f). If it is ’write
or ’trad-write, the result is just value . Otherwise, the result is produce by adjusting the
constructor-style-printing and show-sharing parameters based on settings , set-
ting current-print-convert-hook to ignore snips, and then applying print-convert
to value .

(drracket:language:setup-printing-parameters thunk
settings
width) → any

thunk : (-> any)
settings : drracket:language:simple-settings?
width : (or/c number? ’infinity)

76

Equivalent to (drracket:language:make-setup-printing-parameters).

(drracket:language:make-setup-printing-parameters)
→ (-> (-> any) drracket:language:simple-settings? (or/c number? ’infinity) any)

Returns a procedure that accepts three arguments: a thunk, settings, and a pretty-print width.
The result procedure, when invoked sets all of the pretty-print and print-convert
parameters either to the defaults to values based on settings and then invokes thunk,
returning what it returns.

When drracket:language:make-setup-printing-parameters is invoked, it
dynamic-requires slideshow/pict-convert and closes over the results, using them to
convert values when the resulting procedure is invoked.

(drracket:language:text/pos-text text/pos) → (is-a?/c text%)
text/pos : drracket:language:text/pos?

Selects the text% from a text/pos.

(drracket:language:text/pos-start text/pos) → number?
text/pos : drracket:language:text/pos?

Selects the starting position from a text/pos.

(drracket:language:text/pos-end text/pos) → number?
text/pos : drracket:language:text/pos?

Selects the ending position from a text/pos.

(drracket:language:text/pos? val) → boolean?
val : any/c

Returns #t if val is a text/pos, and #f otherwise.

(drracket:language:text/pos text start end)
→ drracket:language:text/pos?
text : (is-a?/c text%)
start : number?
end : number?

77

Constructs a text/pos.

(drracket:language:make-text/pos text
start
end)

→ drracket:language:text/pos?
text : (is-a?/c text%)
start : number?
end : number?

An alias for drracket:language:text/pos

(drracket:language:simple-settings-case-sensitive simple-settings)
→ boolean?
simple-settings : drracket:language:simple-settings?

Extracts the case-sensitive setting from a simple-settings.

(drracket:language:simple-settings-printing-style simple-settings)
→ (symbols ’constructor ’quasiquote ’write ’trad-write ’print)
simple-settings : drracket:language:simple-settings?

Extracts the printing-style setting from a simple-settings.

(drracket:language:simple-settings-fraction-style simple-settings)

→

(symbols ’mixed-fraction
’mixed-fraction-e
’repeating-decimal
’repeating-decimal-e)

simple-settings : drracket:language:simple-settings?

Extracts the fraction-style setting from a simple-settings.

(drracket:language:simple-settings-show-sharing simple-settings)
→ boolean?
simple-settings : drracket:language:simple-settings?

Extracts the show-sharing setting from a simple-settings.

78

(drracket:language:simple-settings-insert-newlines simple-settings)
→ boolean?
simple-settings : drracket:language:simple-settings?

Extracts the insert-newline setting from a simple-settings.

(drracket:language:simple-settings-annotations simple-settings)
→ (symbols ’none ’debug ’debug/profile ’test-coverage)
simple-settings : drracket:language:simple-settings?

Extracts the debugging setting from a simple-settings.

(drracket:language:simple-settings? val) → boolean?
val : any/c

Determines if val is a simple-settings.

(drracket:language:simple-settings case-sensitive
printing-style
fraction-style
show-sharing
insert-newlines
annotations)

→ drracket:language:simple-settings?
case-sensitive : boolean?
printing-style : (symbols ’constructor ’quasiquote ’write ’trad-write ’print)
fraction-style : (symbols ’mixed-fraction ’mixed-fraction-e ’repeating-decimal ’repeating-decimal-e)
show-sharing : boolean?
insert-newlines : boolean?
annotations : (symbols ’none ’debug ’debug/profile ’test-coverage)

Constructs a simple settings.

(drracket:language:make-simple-settings case-sensitive
printing-style
fraction-style
show-sharing
insert-newlines
annotations)

→ drracket:language:simple-settings?
case-sensitive : boolean?

79

printing-style : (symbols ’constructor ’quasiquote ’write ’trad-write ’print)
fraction-style : (symbols ’mixed-fraction ’mixed-fraction-e ’repeating-decimal ’repeating-decimal-e)
show-sharing : boolean?
insert-newlines : boolean?
annotations : (symbols ’none ’debug ’debug/profile ’test-coverage)

An alias for drracket:language:simple-settings.

(drracket:language:simple-settings->vector simple-settings)
→ vector?
simple-settings : drracket:language:simple-settings?

Constructs a vector whose elements are the fields of simple-settings .

80

13 drracket:language-configuration

(drracket:language-configuration:get-languages)
→ (listof (is-a?/c drracket:language:language<%>))

This can only be called after all of the tools initialization phases have completed.

Returns the list of all of the languages installed in DrRacket.

(drracket:language-configuration:add-language
language

[#:allow-executable-creation? allow-executable-creation?])
→ void?

language :
(and/c (is-a?/c drracket:language:language<%>)

drracket:language:object/c)
allow-executable-creation? : boolean? = #f

This function can only be called in phase 2 (see §1 “Implementing DrRacket Plugins” for
details).

Adds language to the languages offered by DrRacket.

If allow-executable-creation? is #f, then choosing the Create Executable... menu
item results in a dialog box saying that executable creation is disabled. If it is #t, then the
create-executable is called when that menu item is selected (after checking to make sure
the file is saved).

(drracket:language-configuration:get-settings-preferences-symbol)
→ symbol?

Returns the symbol that is used to store the user’s language settings. Use as an argument to
either preferences:get or preferences:set.

(drracket:language-configuration:language-settings language
settings)

→ drracket:language-configuration:language-settings?

language :
(or/c (is-a?/c drracket:language:language<%>)

drracket:language:object/c)
settings : any/c

This is the constructor for a record consisting of two elements, a language and its settings.

81

The settings is a language-specific record that holds a value describing a parameterization of
the language.

It has two selectors, drracket:language-configuration:language-settings-
language and drracket:language-configuration:language-settings-
settings, and a predicate, drracket:language-configuration:language-
settings?

(drracket:language-configuration:language-settings-settings ls)
→ any/c
ls : drracket:language-configuration:language-settings?

Extracts the settings field of a language-settings.

(drracket:language-configuration:language-settings-language ls)

→ (or/c (is-a?/c drracket:language:language<%>)
drracket:language:object/c)

ls : drracket:language-configuration:language-settings?

Extracts the language field of a language-settings.

(drracket:language-configuration:language-settings? val)
→ boolean?
val : any/c

Determines if the argument is a language-settings or not.

(drracket:language-configuration:language-dialog
show-welcome?
language-settings-to-show

[parent])
→ (or/c false/c drracket:language-configuration:language-settings?)
show-welcome? : boolean?
language-settings-to-show : drracket:language-configuration:language-settings?
parent : (or/c false/c (is-a?/c top-level-window<%>)) = #t

Opens the language configuration dialog. See also drracket:language-
configuration:fill-language-dialog.

The show-welcome? argument determines if if a “Welcome to DrRacket” message and some
natural language buttons are shown.

82

The language-settings-to-show argument must be some default language settings that
the dialog is initialized to. If unsure of a default, the currently set language in the user’s
preferences can be obtained via:

(preferences:get
(drracket:language-configuration:get-settings-preferences-

symbol))

The parent argument is used as the parent to the dialog.

The result if #f when the user cancells the dialog, and the selected language if they hit ok.

(drracket:language-configuration:fill-language-dialog
panel
button-panel
language-setting

[re-center
ok-handler])

→
(-> (is-a?/c drracket:language:language<%>))
(-> any/c)
(-> any/c (is-a?/c mouse-event%) any)

panel : (is-a?/c vertical-panel%)
button-panel : (is-a?/c area-container<%>)
language-setting : drracket:language-configuration:language-settings?
re-center : (or/c false/c (is-a?/c top-level-window<%>)) = #f
ok-handler : (-> symbol? void?) = void

This procedure accepts two parent panels and fills them with the contents of the language
dialog. It is used to include language configuration controls in some larger context in another
dialog.

The panel argument is the main panel where the language controls will be placed. The
function adds buttons to the button-panel to revert a language to its default settings and
to show the details of a language.

The language-setting is the default language to show in the dialog.

The re-center argument is used when the Show Details button is clicked. If that argument
is a top-level-window<%>, the Show Details callback will recenter the window each time
it is clicked. Otherwise, the argument is not used.

ok-handler is a function that is in charge of interfacing the OK button. It should accept
a symbol message: ’enable and ’disable to toggle the button, and ’execute to run
the desired operation. (The language selection dialog also uses an internal ’enable-sync
message.)

83

The first two results of the function return a language object and a settings for that language,
as chosen by the user using the dialog. The final function should be called when keystrokes
are typed in the enclosing frame. It is used to implement the shortcuts that choose the two
radio buttons in the language dialog.

84

14 drracket:debug

drracket:debug:profile-unit-frame-mixin : (class? . -> . class?)
argument extends/implements: drracket:frame:<%>

drracket:unit:frame<%>

drracket:debug:profile-interactions-text-mixin : (class? . -> .
class?)

argument extends/implements: drracket:rep:text<%>

drracket:debug:profile-definitions-text-mixin : (class? . -> . class?)
argument extends/implements: drracket:unit:definitions-text<%>

text%

(drracket:debug:error-display-handler/stacktrace
msg
exn

[stack
#:definitions-text defs
#:interactions-text ints])

→ any/c
msg : string?
exn : any/c
stack : (or/c false/c (listof srcloc?)) = #f
defs : (or/c #f (is-a?/c drracket:unit:definitions-text<%>))

= #f
ints : (or/c #f (is-a?/c drracket:rep:text<%>)) = #f

Displays the error message represented by the string, adding embellishments like those that
appears in the DrRacket REPL, specifically a clickable icon for the stack trace (if the srcloc
location is not empty), and a clickable icon for the source of the error (read & syntax errors
show their source locations and otherwise the first place in the stack trace is shown).

If stack is false, then the stack traces embedded in the exn argument (if any) are used.
Specifically, this function looks for a stacktrace via errortrace-key in the continuation
marks of exn and continuation-mark-set->context.

If stack is not false, that stack is added to the stacks already in the exception.

85

This should be called in the same eventspace and on the same thread as the error.

(drracket:debug:make-debug-error-display-handler oedh)
→ (-> string? (or/c any/c exn?) any)
oedh : (-> string? (or/c any/c exn?) any)

This function implements an error-display-handler in terms of another error-display-handler.

See also Racket’s error-display-handler parameter.

If the current-error-port is the definitions window in DrRacket, this error handler inserts
some debugging annotations, calls oedh , and then highlights the source location of the run-
time error.

It looks for both stack trace information in the continuation marks both via the
errortrace/errortrace-key module and via continuation-mark-set->context.

(drracket:debug:hide-backtrace-window) → void?

Hides the backtrace window.

(drracket:debug:add-prefs-panel) → void?

Adds the profiling preferences panel.

(drracket:debug:open-and-highlight-in-file debug-info
[edition-pair])

→ void?
debug-info : (or/c srcloc? (listof srcloc?))

edition-pair :

(or/c #f (cons/c (λ (x) (and (weak-box? x)
(let ([v (weak-box-value x)])

(or (not v)
(is-a?/c v editor<%>)))))

number?))
= #f

This function opens a DrRacket to display debug-info . Only the src the position and the
span fields of the srcloc are considered.

The edition-pair is used to determine if a warning message is shown when before open-
ing the file. If the edition-pair is not #f, it is compared with the result of get-edition-
number of the editor that is loaded to determine if the file has been edited since the source
location was recorded. If so, it puts up a warning dialog message to that effect.

86

(drracket:debug:show-backtrace-window/edition-pairs
error-message
dis
editions-pairs
defs
ints)

→ void?
error-message : string?
dis : (listof srcloc?)

editions-pairs :

(listof
(or/c
#f
(cons/c (λ (x)

(and (weak-box? x)
(let ([v (weak-box-value x)])

(or (not v)
(is-a?/c v editor<%>)))))

number?)))
defs : (or/c #f (is-a?/c drracket:unit:definitions-text<%>))
ints : (or/c #f (is-a?/c drracket:rep:text<%>))

Same as drracket:debug:show-backtrace-window/edition-pairs/two, where the
dis2 and editions-pairs2 arguments are both ’()

(drracket:debug:show-backtrace-window/edition-pairs/two
error-message
dis1
editions-pairs1
dis2
editions-pairs2
defs
ints)

→ void?
error-message : string?
dis1 : (listof srcloc?)

editions-pairs1 :

(listof
(or/c
#f
(cons/c (λ (x)

(and (weak-box? x)
(let ([v (weak-box-value x)])

(or (not v)
(is-a?/c v editor<%>)))))

number?)))

87

dis2 : (listof srcloc?)

editions-pairs2 :

(listof
(or/c
#f
(cons/c (λ (x)

(and (weak-box? x)
(let ([v (weak-box-value x)])

(or (not v)
(is-a?/c v editor<%>)))))

number?)))
defs : (or/c #f (is-a?/c drracket:unit:definitions-text<%>))
ints : (or/c #f (is-a?/c drracket:rep:text<%>))

Shows the backtrace window you get when clicking on the bug in DrRacket’s REPL.

The error-message argument is the text of the error, dis1 and dis2 are the stack-
trace information, extracted from the continuation mark in the exception record, using
errortrace-key and using continuation-mark-set->context.

The editions1 and editions2 arguments indicate the editions of any editors that are open
editing the files corresponding to the source locations. The lists must have the same length
as dis1 and dis2 .

The defs argument should be non-#f if there are possibly stacktrace frames that contain
unsaved versions of the definitions window from DrRacket. Similarly, the ints argument
should be non-#f if there are possibly stacktrace frames that contain unsaved versions of the
interactions window.

Use drracket:rep:current-rep to get the rep during evaluation of a program.

(drracket:debug:show-backtrace-window error-message
dis

[rep
defs]) → void?

error-message : string?

dis :
(or/c exn?

(listof srcloc?)
(non-empty-listof (cons/c string? (listof srcloc?))))

rep : (or/c #f (is-a?/c drracket:rep:text<%>)) = #f
defs : (or/c #f (is-a?/c drracket:unit:definitions-text<%>))

= #f

Shows the backtrace window you get when clicking on the bug in DrRacket’s REPL.

This function simply calls drracket:debug:show-backtrace-window/edition-
pairs, using drracket:debug:srcloc->edition/pair.

88

(drracket:debug:srcloc->edition/pair srcloc
ints
defs

[cache])

→

(or/c #f (cons/c (let ([weak-box-containing-an-editor?
(λ (x) (and (weak-box? x)

(let ([v (weak-box-value x)])
(or (not v)

(is-a?/c v editor<%>)))))])
weak-box-containing-an-editor?)

number?))
srcloc : srcloc?
ints : (or/c #f (is-a?/c drracket:rep:text<%>))
defs : (or/c #f (is-a?/c drracket:unit:definitions-text<%>))
cache : (or/c #f (and/c hash? hash-equal?)) = #f

Constructs a edition pair from a source location, returning the current edition of the editor
editing the source location (if any).

The ints and defs arguments are used to map source locations, in the case that the source
location corresponds to the definitions window (when it has not been saved) or the interac-
tions window. This calls normalize-path, so to avoid the severe performance penalty that
can incur on some filesystems, the cache argument is consulted and updated, when it is pro-
vided. Use this argument if you’re calling drracket:debug:srcloc->edition/pair a
number of times in a loop, when you do not expect the filesystem to change across iterations
of the loop. The initial argument should be an empty equal hash (e.g., (make-hash)).

89

15 drracket:rep

drracket:rep:text<%> : interface?

drracket:rep:text% : class?
superclass: racket:text%
extends: drracket:rep:text<%>

This class implements a read-eval-print loop for DrRacket. User submitted evaluations in
DrRacket are evaluated asynchronously, in an eventspace created for the user. No evaluations
carried out by this class affect the implementation that uses it.

(make-object drracket:rep:text% context)
→ (is-a?/c drracket:rep:text%)
context : (implements drracket:rep:context<%>)

(send a-drracket:rep:text after-delete) → void?

Overrides after-delete in mode:host-text-mixin.

Resets any error highlighting in this editor.

(send a-drracket:rep:text after-insert) → void?

Overrides after-insert in mode:host-text-mixin.

Resets any error highlighting in this editor.

(send a-drracket:rep:text display-results results) → void?
results : (list-of TST)

This displays each of the elements of results in the interactions window, ex-
pect those elements of results that are void. Those are just ignored.

(send a-drracket:rep:text evaluate-from-port
port
complete-program?
cleanup)

→ any
port : input-port?
complete-program? : boolean?
cleanup : (-> void)

90

Evaluates the program in the port argument. If complete-program? is #t,
this method calls the front-end/complete-program to evaluate the program.
If it is #f, it calls front-end/interaction method. When evaluation fin-
ishes, it calls cleanup on the user’s main thread.

Just before calling cleanup , this invokes the thunk in drracket:rep:after-
expression (if any). It takes the value of the drracket:rep:after-
expression parameter on the DrRacket main thread, but invokes the thunk
on the user’s thread.

This method must be called from the DrRacket main thread.

(send a-drracket:rep:text after-many-evals) → any

Augments <method not found>.

Called from the DrRacket main thread after evaluate-from-port finishes (no
matter how it finishes).

(send a-drracket:rep:text on-execute run-on-user-
thread) → any

run-on-user-thread : (-> any)

Use run-on-user-thread to initialize the user’s parameters, etc.

Called from the DrRacket thread after the language’s on-execute method has
been invoked, and after the special values have been setup (the ones registered
via drracket:language:add-snip-value).

Do not print to current-output-port or current-error-port during the
dynamic extent of the thunk passed to run-on-user-thread becuase this
can deadlock. IO is still, in general, fine, but the current-error-port and
current-output-port are set to the user’s ports that print into the interac-
tions window and are not in a good state during those calls.

(send a-drracket:rep:text get-error-range)
→ (or/c false/c (list/c (is-a?/c text:basic%) number? number?))

Specification: Indicates the highlighted error range. The state for the error range
is shared across all instances of this class, so there can only be one highlighted
error region at a time.

Default implementation: If #f, no region is highlighted. If a list, the first ele-
ment is the editor where the range is highlighted and the second and third are
the beginning and ending regions, respectively.

(send a-drracket:rep:text get-user-custodian)
→ (or/c false/c custodian?)

This is the custodian controlling the user’s program.

91

(send a-drracket:rep:text get-user-eventspace)
→ (or/c false/c eventspace?)

This is the user’s eventspace. The result of get-user-thread is the main
thread of this eventspace.

(send a-drracket:rep:text get-user-language-settings)
→ language-settings

Returns the user’s language-settings for the most recently run program. Con-
sider using get-next-settings instead, since the user may have selected a
new language since the program was last run.

(send a-drracket:rep:text get-user-namespace)
→ (or/c false/c namespace?)

Returns the user’s namespace. This method returns a new namespace each time
Run is clicked.

(send a-drracket:rep:text get-user-thread)
→ (or/c false/c thread?)

This method returns the thread that the user’s code runs in. It returns a different
result each time the user runs the program.

It is #f before the first time the user click on the Run button or the evaluation
has been killed.

This thread has all of its parameters initialized according to the settings of the
current execution. See §10.3.2 “Parameters” for more information about param-
eters.

(send a-drracket:rep:text highlight-errors locs
[error-arrows])

→ void?
locs : (listof srcloc?)
error-arrows : (or/c #f (listof srcloc?)) = #f

Call this method to highlight errors associated with this repl. See also reset-
highlighting, and highlight-errors/exn.

This method highlights a series of dis-contiguous ranges in the editor.

It puts the caret at the location of the first error.

(send a-drracket:rep:text highlight-
errors/exn exn) → void?

exn : exn

92

Highlights the errors associated with the exn (only syntax and read errors – does
not extract any information from the continuation marks)

See also highlight-errors.

(send a-drracket:rep:text initialize-console) → void?

This inserts the “Welcome to DrRacket” message into the interactions buffer,
calls reset-console, insert-prompt, and clear-undos.

Once the console is initialized, this method calls first-opened. Accordingly,
this method should not be called to initialize a REPL when the user’s evalua-
tion is imminent. That is, this method should be called when new tabs or new
windows are created, but not when the Run button is clicked.

This method calls the first-opened from the user’s eventspace’s main thread
and, when first-opened returns, it enqueue’s a callback that ends an edit
sequence on the REPL and calls clear-undos. Accordingly, if the first-
opened method does not return, the interactions text will be in an unclosed edit
sequence.

(send a-drracket:rep:text insert-prompt) → void?

Inserts a new prompt at the end of the text.

(send a-drracket:rep:text kill-evaluation) → void?

This method is called when the user chooses the kill menu item.

(send a-drracket:rep:text on-close) → void?

Overrides on-close in editor:basic<%>.

Calls shutdown.

Calls the super method.

(send a-drracket:rep:text queue-output thnk) → void?
thnk : (-> void?)

Specification: This method queues thunks for DrRacket’s eventspace in a spe-
cial output-related queue.

(send a-drracket:rep:text reset-console) → void?

Kills the old eventspace, and creates a new parameterization for it.

(send a-drracket:rep:text reset-highlighting) → void?

This method resets the highlighting being displayed for this repl. See also:
highlight-errors, and highlight-errors/exn.

93

(send a-drracket:rep:text run-in-evaluation-
thread f) → void?

f : (-> void)

Specification: This function runs its arguments in the user evaluation thread.
This thread is the same as the user’s eventspace main thread.

Default implementation: Calls f , after switching to the user’s thread.

(send a-drracket:rep:text shutdown) → void?

Shuts down the user’s program and all windows. Reclaims any resources the
program allocated. It is expected to be called from DrRacket’s main eventspace
thread.

(send a-drracket:rep:text wait-for-io-to-complete) → void?

This waits for all pending IO in the rep to finish and then returns.

This method must only be called from the main thread in DrRacket’s eventspace

(send a-drracket:rep:text wait-for-io-to-complete/user)
→ void?

This waits for all pending IO in the rep to finish and then returns.

This method must only be called from the main thread in the user’s eventspace

drracket:rep:drs-bindings-keymap-mixin : (class? . -> . class?)
argument extends/implements: editor:keymap<%>

This mixin adds some DrRacket-specific keybindings to the editor it is mixed onto.

(send a-drracket:rep:drs-bindings-keymap get-keymaps)
→ (listof (is-a?/c keymap%))

Overrides get-keymaps in editor:keymap<%>.

Calls the super method and adds in a keymap with the DrRacket-specific key-
bindings:

• f5 - Run

• c:x;o - toggles the focus between the definition and interactions windows.

drracket:rep:context<%> : interface?

Objects that match this interface provide all of the services that the drracket:rep:text%
class needs to connect with its context.

94

(send a-drracket:rep:context clear-annotations) → void?

Specification: Call this method to clear any annotations in the text before exe-
cuting or analyzing or other such activities that should process the program.

Tools that annotate the program text should augment this method to clear their
own annotations on the program text.

DrRacket calls this method before a program is run (via the Run button).

Default implementation: Clears any error highlighting in the definitions win-
dow.

(send a-drracket:rep:context disable-evaluation) → void?

Call this method to disable evaluation GUI evaluation while some evaluation (or
expansion) is taking place on another thread.

Override this method if you add a GUI-based mechanism for initiating evalua-
tion in the frame.

This method is also called when the user switches tabs.

See also enable-evaluation.

(send a-drracket:rep:context enable-evaluation) → void?

This method must disable the GUI controls that start user-sponsored evaluation.
It is called once the user starts some evaluation to ensure that only one evaluation
proceeds at a time.

It is also called when the user switches tabs.

See also disable-evaluation.

(send a-drracket:rep:context ensure-rep-shown rep) → void?
rep : (is-a?/c drracket:rep:text<%>)

This method is called to force the rep window to be visible when, for example,
an error message is put into the rep. Also ensures that the appropriate tab is
visible, if necessary.

(send a-drracket:rep:context get-breakables)

→ (or/c thread? false/c)
(or/c custodian? false/c)

Returns the last values passed to set-breakables.

(send a-drracket:rep:context get-directory)
→ (union string false/c)

The result of this method is used as the initial directory for the user’s program
to be evaluated in.

95

(send a-drracket:rep:context needs-execution)
→ (or/c string? false/c)

This method should return an explanatory string when the state of the program
that the repl reflects has changed. It should return #f otherwise.

(send a-drracket:rep:context reset-offer-kill) → void?

The break button typically offers to kill if it has been pushed twice in a row. If
this method is called, however, it ignores any prior clicks.

(send a-drracket:rep:context set-breakables thread
custodian) → void?

thread : (or/c thread false/c)
custodian : (or/c custodian false/c)

Calling this method with a thread and a custodian means that the next time the
break button is clicked, it will either break the thread or shutdown the custodian.

See also get-breakables.

(send a-drracket:rep:context update-
running running?) → void?

running? : any/c

This method should update some display in the gui that indicates whether or not
evaluation is currently proceeding in the user’s world.

(drracket:rep:get-welcome-delta) → (is-a?/c style-delta%)

Returns a style delta that matches the style and color of the phrase “Welcome to” in the
beginning of the interactions window.

(drracket:rep:get-dark-green-delta) → (is-a?/c style-delta%)

Returns a style delta that matches the style and color of the name of a language in the
interactions window.

(drracket:rep:get-drs-bindings-keymap) → (is-a?/c keymap%)

Returns a keymap that binds various DrRacket-specific keybindings. This keymap is used in
the definitions and interactions window.

By default, binds C-x;o to a function that switches the focus between the definitions and
interactions windows. Also binds f5 to Execute and f1 to Help Desk.

96

(drracket:rep:current-rep)
→ (or/c false/c (is-a?/c drracket:rep:text%))

This is a parameter whose value should not be set by tools. It is initialized to the repl that
controls this evaluation in the user’s thread.

It only returns #f if the program not running in the context of a repl (eg, the test suite
window).

(drracket:rep:current-value-port) → (or/c false/c port?)

This is a parameter whose value is a port that prints in the REPL in blue. It is used to print
the values of toplevel expressions in the REPL.

It is only initialized on the user’s thread.

(drracket:rep:after-expression) → (or/c #f (-> any))
(drracket:rep:after-expression top-level-expression) → void?

top-level-expression : (or/c #f (-> any))

This parameter is used by evaluate-from-port. When it is a thunk, then DrRacket in-
vokes the thunk on the user’s thread as the last thing it does (before cleaning up).

97

16 drracket:frame

drracket:frame:name-message% : class?
superclass: canvas%

This class implements the little filename button in the top-right hand side of DrRacket’s
frame.

(make-object drracket:frame:name-message% parent)
→ (is-a?/c drracket:frame:name-message%)
parent : (is-a?/c area-container<%>)

(send a-drracket:frame:name-message set-message name
short-name)

→ void?
name : (or/c string? false/c)
short-name : string?

Specification: Sets the names that the button shows.

Default implementation: The string short-name is the name that is shown
on the button and name is shown when the button is clicked on, in a separate
window. If name is #f, a message indicating that the file hasn’t been saved is
shown.

drracket:frame:mixin : (class? . -> . class?)
argument extends/implements: drracket:frame:basics<%>

frame:text-info<%>
frame:editor<%>

result implements: drracket:frame:<%>

Provides an implementation of drracket:frame:<%>

drracket:frame:basics-mixin : (class? . -> . class?)
argument extends/implements: frame:standard-menus<%>
result implements: drracket:frame:basics<%>

Use this mixin to establish some common menu items across various DrRacket windows.

(send a-drracket:frame:basics edit-menu:between-find-and-
preferences)

98

→ void?

Overrides edit-menu:between-find-and-preferences in
frame:standard-menus<%>.

Adds a separator-menu-item%. Next, adds the "Keybindings" menu item
to the edit menu. Finally, if the current-eventspace-has-standard-
menus? procedure returns #f, creates another separator-menu-item%.

(send a-drracket:frame:basics file-menu:between-open-and-
revert file-menu)
→ void?
file-menu : (is-a?/c menu%)

Overrides file-menu:between-open-and-revert in frame:standard-
menus<%>.

Adds an “Install .plt File...” menu item, which downloads and installs .plt files
from the web, or installs them from the local disk. After that, calls the super
method.

(send a-drracket:frame:basics file-menu:between-print-and-
close file-menu)
→ void?
file-menu : (is-a?/c menu%)

Overrides file-menu:between-print-and-close in frame:standard-
menus<%>.

Calls the super method. Then, creates a menu item for multi-file searching.
Finally, adds a separator-menu-item%.

(send a-drracket:frame:basics file-menu:new-callback item
evt)

→ void?
item : (is-a?/c menu-item%)
evt : (is-a?/c control-event%)

Overrides file-menu:new-callback in frame:standard-menus<%>.

Opens a new, empty DrRacket window.

(send a-drracket:frame:basics file-menu:new-
string) → string?

Overrides file-menu:new-string in frame:standard-menus<%>.

Returns the empty string.

(send a-drracket:frame:basics file-menu:open-callback item
evt)

→ void?
item : (is-a?/c menu-item%)
evt : (is-a?/c control-event%)

99

Overrides file-menu:open-callback in frame:standard-menus<%>.

Calls handler:edit-file.

(send a-drracket:frame:basics file-menu:open-
string) → string?

Overrides file-menu:open-string in frame:standard-menus<%>.

Returns the empty string.

(send a-drracket:frame:basics get-additional-important-urls)
→ (listof (list string string))

Specification: Each string in the result of this method is added as a menu item
to DrRacket’s “Related Web Sites” menu item. The first string is the name of
the menu item and the second string is a url that, when the menu item is chosen,
is sent to the user’s browser.

Default implementation: Returns the empty list by default.

(send a-drracket:frame:basics help-menu:about-callback item
evt)

→ void?
item : (is-a?/c menu-item%)
evt : (is-a?/c control-event%)

Overrides help-menu:about-callback in frame:standard-menus<%>.

Opens an about box for DrRacket.

(send a-drracket:frame:basics help-menu:about-string)
→ string?

Overrides help-menu:about-string in frame:standard-menus<%>.

Returns the string "DrRacket".

(send a-drracket:frame:basics help-menu:before-about help-
menu)
→ void?
help-menu : (is-a?/c menu%)

Overrides help-menu:before-about in frame:standard-menus<%>.

Adds the Help Desk menu item and the Welcome to DrRacket menu item.

(send a-drracket:frame:basics help-menu:create-about?)
→ boolean?

Overrides help-menu:create-about? in frame:standard-menus<%>.

Returns #t.

100

drracket:frame:basics<%> : interface?
implements: frame:standard-menus<%>

This interface is the result of the drracket:frame:basics-mixin

drracket:frame:<%> : interface?
implements: frame:editor<%>

frame:text-info<%>
drracket:frame:basics<%>

(send a-drracket:frame: add-show-menu-items show-
menu) → void?

show-menu : (is-a?/c menu%)

Specification: This method is called during the construction of the View menu.
This method is intended to be overridden with the overriding methods adding
other Show/Hide menu items to the View menu.

See also set-show-menu-sort-key and get-show-menu. Default implemen-
tation: Does nothing.

(send a-drracket:frame: set-show-menu-sort-key item
key) → void?

item : (is-a?/c menu-item<%>)
key : (and/c real? positive?)

Controls the ordering of items in the View menu.

The number determines the sorting order and where separators in the menu
appear (smaller numbers first).

These are the numbers for many of the View menu items that come built-in to
DrRacket:

Toolbar 1
Split 2
Collapse 3
Show Definitions 101
Show Interactions 102
Use Horizontal Layout 103
Show Log 205
Show Tracing 206
Hide Profile 207
Show Program Contour 301
Show Line Numbers 302

101

Show Module Browser 401

In addition, a separator is inserted for each 100. So, for example, a separator is
inserted between Collapse and Show Definitions.

Note that the argument may be a rational number, effectively allowing insertion
between any two menu items already in the menu. For this reason, avoid using
0, or any number is that 0 modulo 100.

(send a-drracket:frame: get-show-menu) → (is-a?/c menu%)

returns the View menu, for use by the update-shown method.

See also add-show-menu-items.

The method (and others) uses the word show to preserve backwards compati-
bility from when the menu itself was named the Show menu.

(send a-drracket:frame: update-shown) → void?

Specification: This method is intended to be overridden. It’s job is to update
the "View" menu to match the state of the visible windows. In the case of the
standard DrRacket window, it change the menu items to reflect the visibility of
the definitions and interaction editor-canvas%s.

Call this method whenever the state of the show menu might need to change.

See also get-show-menu.

Default implementation: Does nothing.

102

17 drracket:help-desk

(drracket:help-desk:help-desk [search-key
search-context]) → any

search-key : (or/c #f string?) = #f
search-context : (or/c #f string? (list/c string? string?))

= #f

if search-key is a string, calls perform-search with search-key and search-
context .

Otherwise, calls send-main-page with no arguments.

103

18 drracket:eval

(drracket:eval:set-basic-parameters
snipclasses

[#:gui-modules? gui-modules])
→ void?
snipclasses : (listof (is-a?/c snip-class%))
gui-modules : boolean? = #t

Sets the parameters that are shared between the repl’s initialization and
drracket:eval:build-user-eventspace/custodian.

Specifically, it sets these parameters:

• current-namespace has been set to a newly created empty namespace. This names-
pace has the following modules shared (with namespace-attach-module) from Dr-
Racket’s original namespace:

– racket/base

– ’#%foreign

– mzlib/pconvert-prop

– planet/terse-info

If the gui-modules? parameter is a true value, then these modules are also shared:

– mred/mred

– mrlib/cache-image-snip

– mrlib/image-core

– mrlib/matrix-snip

• read-curly-brace-as-paren is #t;

• read-square-bracket-as-paren is #t;

• error-print-width is set to 250;

• current-ps-setup is set to a newly created ps-setup% object;

• the exit-handler is set to a parameter that kills the user’s custodian; and

• the snip-class-list, returned by get-the-snip-class-list is initialized with all of
the snipclasses in DrRacket’s eventspace’s snip-class-list.

(drracket:eval:get-snip-classes)
→ (listof (is-a?/c snip-class%))

104

Returns a list of all of the snipclasses in the current eventspace.

(drracket:eval:expand-program input
language-settings
eval-compile-time-part?
init
kill-termination
iter

[#:gui-modules? gui-modules?])
→ void?
input : (or/c port? drracket:language:text/pos?)
language-settings : drracket:language-configuration:language-settings?
eval-compile-time-part? : boolean?
init : (-> void?)
kill-termination : (-> void?)

iter :
(-> (or/c eof-object? syntax? (cons/c string? any/c))

(-> any)
any)

gui-modules? : boolean? = #t

Use this function to expand the contents of the definitions window for use with external
program processing tools.

This function uses drracket:eval:build-user-eventspace/custodian to build
the user’s environment. The arguments language-settings , init , kill-
termination , and gui-modules? are passed to drracket:eval:build-user-
eventspace/custodian.

The input argument specifies the source of the program.

The eval-compile-time-part? argument indicates if expand is called or if expand-
top-level-with-compile-time-evals is called when the program is expanded.
Roughly speaking, if your tool will evaluate each expression itself by calling eval then
pass #f. Otherwise, if your tool just processes the expanded program, be sure to pass #t.

This function calls front-end/complete-program to expand the program. Unlike when
the Run is clicked, however, it does not call front-end/finished-complete-program.

The first argument to iter is the expanded program (represented as syntax) or eof. The
iter argument is called for each expression in the expanded program and once more with
eof, unless an error is raised during expansion. It is called from the user’s thread. If an
exception is raised during expansion of the user’s program, iter is not called. Consider
setting the exception-handler during init to handle this situation.

The second argument to iter is a thunk that continues expanding the rest of the contents
of the definitions window. If the first argument to iter was eof, this argument is just the

105

primitive void.

See also drracket:eval:expand-program/multiple.

(drracket:eval:traverse-program/multiple
language-settings
init
kill-termination

[#:gui-modules? gui-modules])

→

(-> (or/c port? drracket:language:text/pos?)
(-> (or/c eof-object? syntax? (cons/c string? any/c))

(-> any)
any)

boolean?
void?)

language-settings : drracket:language-configuration:language-settings?
init : (-> void?)
kill-termination : (-> void?)
gui-modules : boolean? = #t

This function is similar to drracket:eval:expand-program/multiple The only differ-
ence is that it does not expand the program in the editor; instead the processing function can
decide how to expand the program.

(drracket:eval:expand-program/multiple
language-settings
eval-compile-time-part?
init
kill-termination

[#:gui-modules? gui-modules?])

→

(-> (or/c port? drracket:language:text/pos?)
(-> (or/c eof-object? syntax? (cons/c string? any/c))

(-> any)
any)

boolean?
void?)

language-settings : drracket:language-configuration:language-settings?
eval-compile-time-part? : boolean?
init : (-> void?)
kill-termination : (-> void?)
gui-modules? : boolean? = #t

This function is just like drracket:eval:expand-program except that it is curried and
the second application can be used multiple times. Use this function if you want to initialize

106

the user’s thread (and namespace, etc) once but have program text that comes from multiple
sources.

The extra boolean argument to the result function determines if
drracket:language:language front-end/complete-program<%> or
drracket:language:language front-end/interaction<%> is called.

(drracket:eval:build-user-eventspace/custodian
language-settings
init
kill-termination

[#:gui-modules? gui-modules?])
→ eventspace? custodian?
language-settings : drracket:language-configuration:language-settings?
init : (-> void?)
kill-termination : (-> void?)
gui-modules? : boolean? = #t

This function creates a custodian and an eventspace (on the new custodian) to expand
the user’s program. It does not kill this custodian, but it can safely be shutdown (with
custodian-shutdown-all) after the expansion is finished.

It initializes the user’s eventspace’s main thread with several parameters:

• current-custodian is set to a new custodian.

• In addition, it calls drracket:eval:set-basic-parameters, passing the #:gui-
modules? parameter along.

The language-settings argument is the current language and its settings. See
drracket:language-configuration:language-settings for details on that struc-
ture.

If the program is associated with a DrRacket frame, get the frame’s language settings from
the get-next-settings method of drracket:unit:definitions-text<%>. Also,
the most recently chosen language in the language dialog is saved via the framework’s
preferences. Apply preferences:get to drracket:language-configuration:get-
settings-preferences-symbol for that language-settings .

The init argument is called after the user’s parameters are all set, but before the program
is run. It is called on the user’s thread. The current-directory and current-load-
relative-directory parameters are not set, so if there are appropriate directories, the
init argument is a good place to set them.

The kill-termination argument is called when the main thread of the eventspace ter-
minates, no matter if the custodian was shutdown, or the thread was killed. This proce-

107

dure is also called when the thread terminates normally. This procedure is called from a
new, dedicated thread (i. e., not the thread created to do the expansion, nor the thread that
drracket:eval:build-user-eventspace/custodian was called from.)

108

19 drracket:modes

(drracket:modes:add-mode name
surrogate
repl-submit
matches-language)

→ drracket:modes:mode?
name : string?
surrogate : (or/c false/c (is-a?/c mode:surrogate-text<%>))
repl-submit : ((is-a?/c drracket:rep:text%) number? . -> . boolean?)
matches-language : ((or/c false/c (listof string?)) . -> . boolean?)

Adds a mode to DrRacket. Returns a mode value that identifies the mode.

The first argument, name , is the name of the mode, used in DrRacket’s GUI to allow the
user to select this mode.

The surrogate argument is set to the definitions text and the interactions text (via the
mode:host-text set-surrogate<%> method) whenever this mode is enabled.

The repl-submit procedure is called whenever the user types a return in the interactions
window. It is passed the interactions editor and the position where the last prompt occurs. If
it returns #t, the text after the last prompt is treated as a program fragment and evaluated,
according to the language settings. If it returns #f, the text is assumed to be an incomplete
program fragment, and the keystroke is not treated specially.

The matches-language predicate is called whenever the language changes. If it returns
#t this mode is installed. It is passed the list of strings that correspond to the names of the
language in the language dialog.

Modes are tested in the opposite order that they are added. That is, the last mode to be added
gets tested first when the filename changes or when the language changes.

See also drracket:modes:get-modes.

(drracket:modes:mode? val) → boolean?
val : any/c

Determines if val is a mode.

(drracket:modes:get-modes) → (listof drracket:modes:mode?)

Returns all of the modes currently added to DrRacket.

See also drracket:modes:add-mode.

109

(drracket:modes:mode-name mode) → string?
mode : drracket:modes:mode?

Extracts the name of the mode.

See also drracket:modes:add-mode.

(drracket:modes:mode-surrogate mode)
→ (or/c false/c (is-a?/c mode:surrogate-text<%>))
mode : drracket:modes:mode?

Extracts the surrogate of the mode.

See also drracket:modes:add-mode.

(drracket:modes:mode-repl-submit mode) → any
mode : drracket:modes:mode?

Extracts the repl submission predicate of the mode.

See also drracket:modes:add-mode.

(drracket:modes:mode-matches-language mode)
→ ((or/c false/c (listof string?)) . -> . boolean?)
mode : drracket:modes:mode?

Extracts the language matching predicate of the mode.

See also drracket:modes:add-mode.

110

20 drracket:module-language-tools

If the result of read-language for a language is a function, DrRacket will query it to
determine if there are any new toolbar buttons to be used when editing files in this language
(when DrRacket’s language is set to the Module language).

Specifically, DrRacket will pass ’drracket:toolbar-buttons to the function and expect
back a value matching this contract:

(or/c (listof (list/c string?
(is-a?/c bitmap%)
(-> (is-a?/c drracket:unit:frame<%>) any)
(or/c real? #f)))

#f)

which is then used to create new toolbar buttons, one for each list in the first. The string is the
label on the button; the bitmap is the icon (it should be 16x16); the function is called when
the button is clicked; and the number is passed as the #:number argument to register-
toolbar-button.

If the result is #f, then no toolbar buttons are created.

To implement functionality similar to the Run button, call the execute-callback method.
You may also want to use the drracket:rep:after-expression parameter.

If ’drracket:toolbar-buttons is not recognized, DrRacket will also pass
’drscheme:toolbar-buttons; this is for backwards compatibility and new code
should not use it. Similarly, if the fourth element from the list (the argument to #:number)
is not present, then it is treated as #f.

(drracket:module-language-tools:add-opt-out-toolbar-button
make-button
id

[#:number number])
→ void?

make-button :
(-> (is-a?/c top-level-window<%>)

(is-a?/c area-container<%>)
(is-a?/c switchable-button%))

id : symbol?
number : (or/c real? #f) = #f

Call this function to add another button to DrRacket’s toolbar. When buttons are added this
way, DrRacket monitors the #lang line at the top of the file; when it changes DrRacket
queries the language to see if this button should be included. These buttons are “opt out”,

111

meaning that if the language doesn’t explicitly ask to not have this button (or all such but-
tons), the button will appear.

The number argument is the same as the number argument to register-toolbar-
button.

See read-language for more details on how a language can opt out. DrRacket will invoke
the get-info proc from read-language with ’drracket:opt-out-toolbar-buttons
(and ’drscheme:opt-out-toolbar-buttons for backwards compatibility). If the result
is a list of symbols, the listed symbols are opted out. If the result is #f, all buttons are opted
out. The default is the empty list, meaning that all opt-out buttons appear.

(drracket:module-language-tools:add-online-expansion-handler
mod-path
id
local-handler)

→ void?
mod-path : path-string?
id : symbol?

local-handler :
(-> (is-a?/c drracket:unit:definitions-text<%>)

any/c
any)

Registers a pair of procedures with DrRacket’s online expansion machinery.

The first two arguments name a procedure in a module that is loaded by dynamic-require
is a separate place. When DrRacket detects that the editor has been modified, it sends the
contents of the editor over to that separate place, expands the program there, and then sup-
plies the fully expanded object to that first procedure. (The procedure is called in the same
context as the expansion process.)

The contract for that procedure is

(-> syntax? path? any/c custodian?
any)

There are three other arguments.

• The path? argument is the path that was the current-directory when the code was
expanded. This directory should be used as the current-directory when resolving
module paths obtained from the syntax object.

• The third argument is the source object used in the syntax objects that come from the
definitions window in DrRacket. It may be a path (if the file was saved), but it also

112

might not be. Use equal? to compare it with the syntax-source field of syntax
objects to determine if they come from the definitions window.

• Note that the thread that calls this procedure may be killed at any time: DrRacket may
kill it when the user types in the buffer (in order to start a new expansion), but bizarro
code may also create a separate thread during expansion that lurks around and then
mutates arbitrary things.

Some code, however, should be longer running, surviving such custodian shutdowns.
To support this, the procedure called in the separate place is supplied with a more
powerful custodian that is not shut down.

The result of the procedure is expected to be something that can be sent across a place-
channel, which is then sent back to the original place where DrRacket itself is running and
passed to the local-handler argument. At this point, the only code running is trusted code
(DrRacket itself and other tools), but any long running computations may freeze DrRacket’s
GUI, since this procedure is invoked on DrRacket’s eventspace’s handler thread.

(drracket:module-language-tools:register-online-expansion-pref func)
→ void?
func : (-> (is-a?/c vertical-panel%) void?)

Registers func so that it is called while building the preferences panel. The function is
passed a panel that contains other configuration controls for online expansion.

113

21 drracket:module-language

drracket:language:module-language<%> : interface?

The only language that implements this interface is DrRacket’s “Use the language declared
in the source” language.

(send a-drracket:language:module-language get-users-language-
name)
→ string

Returns the name of the language that is declared in the source, as a string.

(drracket:module-language:add-module-language) → any

Adds the module language to DrRacket. This is called during DrRacket’s startup.

(drracket:module-language:module-language-put-file-mixin super%)
→ (implementation?/c text:basic<%>)
super% : (implementation?/c text:basic<%>)

Extends super% by overriding the put-file method to use a default name from the buffer,
if the buffer contains something like (module name ...).

114

22 Backwards Compatibility

This section lists the bindings that begin with drscheme: provided by the tools library; they
are here for backwards compatibility and to provide links to the drracket: versions of the
names.

drscheme:debug:profile-definitions-text-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:debug:profile-definitions-text-mixin instead.

drscheme:debug:profile-tab-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:debug:profile-tab-mixin instead.

drscheme:debug:profile-unit-frame-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:debug:profile-unit-frame-mixin instead.

drscheme:debug:test-coverage-interactions-text-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:debug:test-coverage-interactions-text-mixin instead.

drscheme:debug:test-coverage-definitions-text-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:debug:test-coverage-definitions-text-mixin instead.

drscheme:debug:test-coverage-tab-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:debug:test-coverage-tab-mixin instead.

drscheme:unit:tab% : any/c

115

This is provided for backwards compatibility; new code should use drracket:unit:tab%
instead.

drscheme:unit:frame% : any/c

This is provided for backwards compatibility; new code should use
drracket:unit:frame% instead.

drscheme:unit:definitions-canvas% : any/c

This is provided for backwards compatibility; new code should use
drracket:unit:definitions-canvas% instead.

drscheme:unit:get-definitions-text% : any/c

This is provided for backwards compatibility; new code should use drracket:unit:get-
definitions-text% instead.

drscheme:unit:interactions-canvas% : any/c

This is provided for backwards compatibility; new code should use
drracket:unit:interactions-canvas% instead.

drscheme:rep:drs-bindings-keymap-mixin : any/c

This is provided for backwards compatibility; new code should use drracket:rep:drs-
bindings-keymap-mixin instead.

drscheme:rep:text% : any/c

This is provided for backwards compatibility; new code should use drracket:rep:text%
instead.

drscheme:rep:text<%> : any/c

This is provided for backwards compatibility; new code should use
drracket:rep:text<%> instead.

116

drscheme:frame:mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:frame:mixin instead.

drscheme:frame:basics-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:frame:basics-mixin instead.

drscheme:language:language<%> : any/c

This is provided for backwards compatibility; new code should use
drracket:language:language<%> instead.

drscheme:language:module-based-language<%> : any/c

This is provided for backwards compatibility; new code should use
drracket:language:module-based-language<%> instead.

drscheme:language:simple-module-based-language<%> : any/c

This is provided for backwards compatibility; new code should use
drracket:language:simple-module-based-language<%> instead.

drscheme:language:simple-module-based-language% : any/c

This is provided for backwards compatibility; new code should use
drracket:language:simple-module-based-language% instead.

drscheme:language:simple-module-based-language->module-based-
language-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:language:simple-module-based-language->module-based-
language-mixin instead.

117

drscheme:language:module-based-language->language-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:language:module-based-language->language-mixin instead.

drscheme:tracing:tab-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:tracing:tab-mixin instead.

drscheme:tracing:frame-mixin : any/c

This is provided for backwards compatibility; new code should use
drracket:tracing:frame-mixin instead.

drscheme:module-language:module-language<%> : any/c

This is provided for backwards compatibility; new code should use drracket:module-
language:module-language<%> instead.

drscheme:module-language-tools:frame-mixin : any/c

This is provided for backwards compatibility; new code should use drracket:module-
language-tools:frame-mixin instead.

drscheme:module-language-tools:tab-mixin : any/c

This is provided for backwards compatibility; new code should use drracket:module-
language-tools:tab-mixin instead.

drscheme:module-language-tools:definitions-text-mixin : any/c

This is provided for backwards compatibility; new code should use drracket:module-
language-tools:definitions-text-mixin instead.

drscheme:frame:basics<%> : any/c

118

This is provided for backwards compatibility; new code should use
drracket:frame:basics<%> instead.

drscheme:frame:<%> : any/c

This is provided for backwards compatibility; new code should use drracket:frame:<%>
instead.

drscheme:unit:frame<%> : any/c

This is provided for backwards compatibility; new code should use
drracket:unit:frame<%> instead.

drscheme:unit:definitions-text<%> : any/c

This is provided for backwards compatibility; new code should use
drracket:unit:definitions-text<%> instead.

drscheme:unit:tab<%> : any/c

This is provided for backwards compatibility; new code should use
drracket:unit:tab<%> instead.

drscheme:rep:context<%> : any/c

This is provided for backwards compatibility; new code should use
drracket:rep:context<%> instead.

drscheme:module-language-tools:definitions-text<%> : any/c

This is provided for backwards compatibility; new code should use drracket:module-
language-tools:definitions-text<%> instead.

drscheme:module-language-tools:tab<%> : any/c

This is provided for backwards compatibility; new code should use drracket:module-
language-tools:tab<%> instead.

119

drscheme:module-language-tools:frame<%> : any/c

This is provided for backwards compatibility; new code should use drracket:module-
language-tools:frame<%> instead.

drscheme:debug:error-display-handler/stacktrace :

(->* (string? any/c)
((or/c false/c (listof srcloc?))
#:definitions-text (or/c #f (is-a?/c drracket:unit:definitions-text<%>))
#:interactions-text (or/c #f (is-a?/c drracket:rep:text<%>)))

any/c)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:debug:error-display-handler/stacktrace instead.

drscheme:debug:make-debug-error-display-handler :
(-> (-> string? (or/c any/c exn?) any)

(-> string? (or/c any/c exn?) any))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:debug:make-debug-error-display-handler instead.

drscheme:debug:hide-backtrace-window : (-> void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:debug:hide-backtrace-window instead.

drscheme:debug:add-prefs-panel : (-> void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:debug:add-prefs-panel instead.

drscheme:debug:open-and-highlight-in-file :

(->* ((or/c srcloc? (listof srcloc?)))
((or/c #f (cons/c (λ (x) (and (weak-box? x)

(let ([v (weak-box-value x)])
(or (not v)

(is-a?/c v editor<%>)))))
number?)))

void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:debug:open-and-highlight-in-file instead.

120

drscheme:debug:show-backtrace-window/edition-pairs :

(-> string?
(listof srcloc?)
(listof
(or/c
#f
(cons/c (λ (x)

(and (weak-box? x)
(let ([v (weak-box-value x)])

(or (not v)
(is-a?/c v editor<%>)))))

number?)))
(or/c #f (is-a?/c drracket:unit:definitions-text<%>))
(or/c #f (is-a?/c drracket:rep:text<%>))
void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:debug:show-backtrace-window/edition-pairs instead.

drscheme:debug:show-backtrace-window/edition-pairs/two :

(-> string?
(listof srcloc?)
(listof
(or/c
#f
(cons/c (λ (x)

(and (weak-box? x)
(let ([v (weak-box-value x)])

(or (not v)
(is-a?/c v editor<%>)))))

number?)))
(listof srcloc?)
(listof
(or/c
#f
(cons/c (λ (x)

(and (weak-box? x)
(let ([v (weak-box-value x)])

(or (not v)
(is-a?/c v editor<%>)))))

number?)))
(or/c #f (is-a?/c drracket:unit:definitions-text<%>))
(or/c #f (is-a?/c drracket:rep:text<%>))
void?)

121

#<undefined>This is provided for backwards compatibility; new code should use
drracket:debug:show-backtrace-window/edition-pairs/two instead.

drscheme:debug:show-backtrace-window :

(->* (string?
(or/c exn?

(listof srcloc?)
(non-empty-listof (cons/c string? (listof srcloc?)))))

((or/c #f (is-a?/c drracket:rep:text<%>))
(or/c #f (is-a?/c drracket:unit:definitions-text<%>)))

void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:debug:show-backtrace-window instead.

drscheme:debug:srcloc->edition/pair :

(->* (srcloc?
(or/c #f (is-a?/c drracket:rep:text<%>))
(or/c #f (is-a?/c drracket:unit:definitions-text<%>)))

((or/c #f (and/c hash? hash-equal?)))
(or/c #f (cons/c (let ([weak-box-containing-an-editor?

(λ (x) (and (weak-box? x)
(let ([v (weak-box-value x)])

(or (not v)
(is-a?/c v editor<%>)))))])

weak-box-containing-an-editor?)
number?)))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:debug:srcloc->edition/pair instead.

drscheme:eval:set-basic-parameters :
(->* ((listof (is-a?/c snip-class%)))

(#:gui-modules? boolean?)
void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:eval:set-basic-parameters instead.

drscheme:eval:get-snip-classes : (-> (listof (is-a?/c snip-class%)))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:eval:get-snip-classes instead.

122

drscheme:eval:expand-program :

(->* ((or/c port? drracket:language:text/pos?)
drracket:language-configuration:language-settings?
boolean?
(-> void?)
(-> void?)
(-> (or/c eof-object? syntax? (cons/c string? any/c))

(-> any)
any))

(#:gui-modules? boolean?)
void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:eval:expand-program instead.

drscheme:eval:traverse-program/multiple :

(->* (drracket:language-configuration:language-settings?
(-> void?)
(-> void?))

(#:gui-modules? boolean?)
(-> (or/c port? drracket:language:text/pos?)

(-> (or/c eof-object? syntax? (cons/c string? any/c))
(-> any)
any)

boolean?
void?))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:eval:traverse-program/multiple instead.

drscheme:eval:expand-program/multiple :

(->* (drracket:language-configuration:language-settings?
boolean?
(-> void?)
(-> void?))

(#:gui-modules? boolean?)
(-> (or/c port? drracket:language:text/pos?)

(-> (or/c eof-object? syntax? (cons/c string? any/c))
(-> any)
any)

boolean?
void?))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:eval:expand-program/multiple instead.

123

drscheme:eval:build-user-eventspace/custodian :

(->* (drracket:language-configuration:language-settings?
(-> void?)
(-> void?))

(#:gui-modules? boolean?)
(values eventspace? custodian?))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:eval:build-user-eventspace/custodian instead.

drscheme:get/extend:extend-unit-frame :

(->i ([mixin (make-mixin-contract drracket:unit:frame%)])
([before boolean?]
#:name-for-changes [name-for-changes (or/c #f symbol?)])

[result void?])

#<undefined>This is provided for backwards compatibility; new code should use
drracket:get/extend:extend-unit-frame instead.

drscheme:get/extend:get-unit-frame : (-> (subclass?/c drracket:unit:frame%))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:get/extend:get-unit-frame instead.

drscheme:get/extend:extend-tab :

(->i ([mixin (make-mixin-contract drracket:unit:tab<%>)])
([before boolean?]
#:name-for-changes [name-for-changes (or/c #f symbol?)])

[result void?])

#<undefined>This is provided for backwards compatibility; new code should use
drracket:get/extend:extend-tab instead.

drscheme:get/extend:get-tab : (-> (implementation?/c drracket:unit:tab<%>))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:get/extend:get-tab instead.

drscheme:get/extend:extend-definitions-text :

(->i ([mixin (make-mixin-contract drracket:unit:definitions-text<%>)])
([before boolean?]
#:name-for-changes [name-for-changes (or/c #f symbol?)])

[result void?])

124

#<undefined>This is provided for backwards compatibility; new code should use
drracket:get/extend:extend-definitions-text instead.

drscheme:get/extend:get-definitions-text : (-> (implementation?/c drracket:unit:definitions-
text<%>))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:get/extend:get-definitions-text instead.

drscheme:get/extend:extend-interactions-text :

(->i ([mixin (make-mixin-contract drracket:rep:text<%>)])
([before boolean?]
#:name-for-changes [name-for-changes (or/c #f symbol?)])

[result void?])

#<undefined>This is provided for backwards compatibility; new code should use
drracket:get/extend:extend-interactions-text instead.

drscheme:get/extend:get-interactions-text : (-> (implementation?/c drracket:rep:text<%>))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:get/extend:get-interactions-text instead.

drscheme:get/extend:extend-definitions-canvas :

(->i ([mixin (make-mixin-contract drracket:unit:definitions-canvas%)])
([before boolean?]
#:name-for-changes [name-for-changes (or/c #f symbol?)])

[result void?])

#<undefined>This is provided for backwards compatibility; new code should use
drracket:get/extend:extend-definitions-canvas instead.

drscheme:get/extend:get-definitions-canvas : (-> (subclass?/c drracket:unit:definitions-
canvas%))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:get/extend:get-definitions-canvas instead.

drscheme:get/extend:extend-interactions-canvas :

(->i ([mixin (make-mixin-contract drracket:unit:interactions-canvas%)])
([before boolean?]
#:name-for-changes [name-for-changes (or/c #f symbol?)])

[result void?])

125

#<undefined>This is provided for backwards compatibility; new code should use
drracket:get/extend:extend-interactions-canvas instead.

drscheme:get/extend:get-interactions-canvas : (-> (subclass?/c drracket:unit:interactions-
canvas%))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:get/extend:get-interactions-canvas instead.

drscheme:get/extend:disallow-re-extension! : (-> void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:get/extend:disallow-re-extension! instead.

drscheme:get/extend:allow-re-extension! : (-> void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:get/extend:allow-re-extension! instead.

drscheme:help-desk:help-desk :

(->* ()
((or/c #f string?)
(or/c #f string? (list/c string? string?)))

any)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:help-desk:help-desk instead.

drscheme:language-configuration:get-languages : (-> (listof (is-
a?/c drracket:language:language<%>)))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language-configuration:get-languages instead.

drscheme:language-configuration:add-language :

(->* ((and/c (is-a?/c drracket:language:language<%>)
drracket:language:object/c))

(#:allow-executable-creation? boolean?)
void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language-configuration:add-language instead.

126

drscheme:language-configuration:get-settings-preferences-
symbol : (-> symbol?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language-configuration:get-settings-preferences-symbol instead.

drscheme:language-configuration:language-settings :

((or/c (is-a?/c drracket:language:language<%>)
drracket:language:object/c)

any/c
. -> .
drracket:language-configuration:language-settings?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language-configuration:language-settings instead.

drscheme:language-configuration:language-settings-settings :
(-> drracket:language-configuration:language-settings?

any/c)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language-configuration:language-settings-settings instead.

drscheme:language-configuration:language-settings-language :

(drracket:language-configuration:language-settings?
. -> .
(or/c (is-a?/c drracket:language:language<%>)

drracket:language:object/c))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language-configuration:language-settings-language instead.

drscheme:language-configuration:language-settings? : (any/c . ->
. boolean?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language-configuration:language-settings? instead.

drscheme:language-configuration:language-dialog :
(->* (boolean? drracket:language-configuration:language-settings?)

((or/c false/c (is-a?/c top-level-window<%>)))
(or/c false/c drracket:language-configuration:language-settings?))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language-configuration:language-dialog instead.

127

drscheme:language-configuration:fill-language-dialog :

(->*
((is-a?/c vertical-panel%)
(is-a?/c area-container<%>)
drracket:language-configuration:language-settings?)

((or/c false/c (is-a?/c top-level-window<%>))
(-> symbol? void?))

(values (-> (is-a?/c drracket:language:language<%>))
(-> any/c)
(-> any/c (is-a?/c mouse-event%) any)))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language-configuration:fill-language-dialog instead.

drscheme:language:register-capability :

(->i ([s symbol?]
[the-contract contract?]
[default (the-contract) the-contract])

()
[res void?])

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:register-capability instead.

drscheme:language:capability-registered? : (-> symbol? boolean?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:capability-registered? instead.

drscheme:language:get-capability-default :
(->i ([s (and/c symbol? drracket:language:capability-registered?)])

()
[res (s) (drracket:language:get-capability-contract s)])

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:get-capability-default instead.

drscheme:language:get-capability-contract :
(-> (and/c symbol? drracket:language:capability-registered?)

contract?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:get-capability-contract instead.

128

drscheme:language:add-snip-value :

(->* ((-> any/c boolean?)
(-> any/c (is-a?/c snip%)))

((-> any/c))
void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:add-snip-value instead.

drscheme:language:extend-language-interface :
(-> interface?

(make-mixin-contract drracket:language:language<%>)
void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:extend-language-interface instead.

drscheme:language:get-default-mixin : (-> (make-mixin-
contract drracket:language:language<%>))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:get-default-mixin instead.

drscheme:language:get-language-extensions : (-> (listof interface?))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:get-language-extensions instead.

drscheme:language:put-executable :

((is-a?/c top-level-window<%>)
path?
(or/c boolean? (symbols ’launcher ’standalone ’distribution))
boolean?
string?
. -> . (or/c false/c path?))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:put-executable instead.

129

drscheme:language:create-executable-gui :

((or/c false/c (is-a?/c top-level-window<%>))
(or/c false/c string?)
(or/c (λ (x) (eq? x #t)) (symbols ’launcher ’standalone ’distribution))
(or/c (λ (x) (eq? x #t)) (symbols ’mzscheme ’mred))
. -> .
(or/c false/c

(list/c (symbols ’no-show ’launcher ’stand-alone ’distribution)
(symbols ’no-show ’mred ’mzscheme)
string?)))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:create-executable-gui instead.

drscheme:language:create-module-based-stand-alone-executable :

((or/c path? string?)
(or/c path? string?) any/c any/c any/c boolean? boolean?
. -> .
void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:create-module-based-stand-alone-executable instead.

drscheme:language:create-module-based-distribution :

((or/c path? string?)
(or/c path? string?) any/c any/c any/c boolean? boolean?
. -> .
void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:create-module-based-distribution instead.

drscheme:language:create-distribution-for-executable :

((or/c path? string?)
boolean?
(-> path? void?)
. -> .
void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:create-distribution-for-executable instead.

drscheme:language:create-module-based-launcher :
((or/c path? string?) (or/c path? string?) any/c any/c any/c boolean? boolean?

. -> .
void?)

130

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:create-module-based-launcher instead.

drscheme:language:simple-module-based-language-convert-
value : (-> any/c drracket:language:simple-settings? any)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:simple-module-based-language-convert-value instead.

drscheme:language:setup-printing-parameters : (-> (-> any) drracket:language:simple-
settings? (or/c number? ’infinity) any)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:setup-printing-parameters instead.

drscheme:language:make-setup-printing-parameters : (-> (-> (-> any) drracket:language:simple-
settings? (or/c number? ’infinity) any))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:make-setup-printing-parameters instead.

drscheme:language:text/pos-text : (drracket:language:text/pos? . ->
. (is-a?/c text%))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:text/pos-text instead.

drscheme:language:text/pos-start : (drracket:language:text/pos? . ->
. number?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:text/pos-start instead.

drscheme:language:text/pos-end : (drracket:language:text/pos? . ->
. number?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:text/pos-end instead.

131

drscheme:language:text/pos? : (any/c . -> . boolean?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:text/pos? instead.

drscheme:language:text/pos :
((is-a?/c text%) number? number?

. -> .
drracket:language:text/pos?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:text/pos instead.

drscheme:language:make-text/pos :
((is-a?/c text%) number? number?

. -> .
drracket:language:text/pos?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:make-text/pos instead.

drscheme:language:simple-settings-case-sensitive : (drracket:language:simple-
settings? . -> . boolean?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:simple-settings-case-sensitive instead.

drscheme:language:simple-settings-printing-style :
(drracket:language:simple-settings?
. -> .
(symbols ’constructor ’quasiquote ’write ’trad-write ’print))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:simple-settings-printing-style instead.

drscheme:language:simple-settings-fraction-style :

(drracket:language:simple-settings?
. -> .
(symbols ’mixed-fraction

’mixed-fraction-e
’repeating-decimal
’repeating-decimal-e))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:simple-settings-fraction-style instead.

132

drscheme:language:simple-settings-show-sharing :
(drracket:language:simple-settings?
. -> .
boolean?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:simple-settings-show-sharing instead.

drscheme:language:simple-settings-insert-newlines :
(drracket:language:simple-settings?
. -> .
boolean?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:simple-settings-insert-newlines instead.

drscheme:language:simple-settings-annotations :
(drracket:language:simple-settings?
. -> .
(symbols ’none ’debug ’debug/profile ’test-coverage))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:simple-settings-annotations instead.

drscheme:language:simple-settings? : (any/c . -> . boolean?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:simple-settings? instead.

drscheme:language:simple-settings :

(-> boolean?
(symbols ’constructor ’quasiquote ’write ’trad-write ’print)
(symbols ’mixed-fraction ’mixed-fraction-e ’repeating-decimal ’repeating-decimal-e)
boolean?
boolean?
(symbols ’none ’debug ’debug/profile ’test-coverage)
drracket:language:simple-settings?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:simple-settings instead.

133

drscheme:language:make-simple-settings :

(-> boolean?
(symbols ’constructor ’quasiquote ’write ’trad-write ’print)
(symbols ’mixed-fraction ’mixed-fraction-e ’repeating-decimal ’repeating-decimal-e)
boolean?
boolean?
(symbols ’none ’debug ’debug/profile ’test-coverage)
drracket:language:simple-settings?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:make-simple-settings instead.

drscheme:language:simple-settings->vector : (drracket:language:simple-
settings? . -> . vector?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:language:simple-settings->vector instead.

drscheme:modes:add-mode :

(string?
(or/c false/c (is-a?/c mode:surrogate-text<%>))
((is-a?/c drracket:rep:text%) number? . -> . boolean?)
((or/c false/c (listof string?)) . -> . boolean?)
. -> .
drracket:modes:mode?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:modes:add-mode instead.

drscheme:modes:mode? : (any/c . -> . boolean?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:modes:mode? instead.

drscheme:modes:get-modes : (-> (listof drracket:modes:mode?))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:modes:get-modes instead.

drscheme:modes:mode-name : (drracket:modes:mode? . -> . string?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:modes:mode-name instead.

134

drscheme:modes:mode-surrogate : (drracket:modes:mode? . ->
. (or/c false/c (is-a?/c mode:surrogate-text<%>)))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:modes:mode-surrogate instead.

drscheme:modes:mode-repl-submit : (drracket:modes:mode? . -> . any)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:modes:mode-repl-submit instead.

drscheme:modes:mode-matches-language : (drracket:modes:mode? . ->
. ((or/c false/c (listof string?)) . -> . boolean?))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:modes:mode-matches-language instead.

drscheme:module-language-tools:add-opt-out-toolbar-button :

(->* ((-> (is-a?/c top-level-window<%>)
(is-a?/c area-container<%>)
(is-a?/c switchable-button%))

symbol?)
(#:number (or/c real? #f))
void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:module-language-tools:add-opt-out-toolbar-button instead.

drscheme:module-language-tools:add-online-expansion-handler :

(-> path-string? symbol? (-> (is-a?/c drracket:unit:definitions-text<%>)
any/c
any)

void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:module-language-tools:add-online-expansion-handler instead.

drscheme:module-language-tools:register-online-expansion-
pref : (-> (-> (is-a?/c vertical-panel%) void?) void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:module-language-tools:register-online-expansion-pref instead.

135

drscheme:module-language:add-module-language : (-> any)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:module-language:add-module-language instead.

drscheme:module-language:module-language-put-file-
mixin : (-> (implementation?/c text:basic<%>) (implementation?/c text:basic<%>))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:module-language:module-language-put-file-mixin instead.

drscheme:rep:get-welcome-delta : (-> (is-a?/c style-delta%))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:rep:get-welcome-delta instead.

drscheme:rep:get-dark-green-delta : (-> (is-a?/c style-delta%))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:rep:get-dark-green-delta instead.

drscheme:rep:get-drs-bindings-keymap : (-> (is-a?/c keymap%))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:rep:get-drs-bindings-keymap instead.

drscheme:rep:current-rep : (-> (or/c false/c (is-
a?/c drracket:rep:text%)))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:rep:current-rep instead.

drscheme:rep:current-value-port : (-> (or/c false/c port?))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:rep:current-value-port instead.

136

137

drscheme:rep:after-expression :

(parameter/c

(or/c #f (-> any)))

138

#<undefined>This is provided for backwards compatibility; new code should use
drracket:rep:after-expression instead.

drscheme:unit:get-program-editor-mixin : (-> ((subclass?/c text%) . ->
. (subclass?/c text%)))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:unit:get-program-editor-mixin instead.

drscheme:unit:add-to-program-editor-mixin : (((subclass?/c text%) . ->
. (subclass?/c text%)) . -> . void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:unit:add-to-program-editor-mixin instead.

drscheme:unit:open-drscheme-window :
(case->
(-> (is-a?/c drracket:unit:frame%))
((or/c string? false/c) . -> . (is-a?/c drracket:unit:frame%)))

#<undefined>This is provided for backwards compatibility; new code should use
drracket:unit:open-drscheme-window instead.

drscheme:unit:add-search-help-desk-menu-item : (->* ((is-
a?/c text%) (is-a?/c menu-item-container<%>) exact-nonnegative-
integer?) ((-> any)) void?)

#<undefined>This is provided for backwards compatibility; new code should use
drracket:unit:add-search-help-desk-menu-item instead.

139

Index
#lang-based Languages in DrRacket, 10
Accessing Check Syntax Programmatically,

20
add-bkg-running-color, 37
add-show-menu-items, 101
add-show-menu-items, 39
Adding Arbitrary Languages to DrRacket,

12
Adding Languages to DrRacket, 10
adding languages to DrRacket, 10
Adding Module-based Languages to Dr-

Racket, 11
after-delete, 90
after-delete, 38
after-insert, 90
after-insert, 38
after-many-evals, 91
after-set-next-settings, 48
annotations-mixin, 25
Backwards Compatibility, 115
begin-metadata-changes, 48
break button, 17
break-callback, 35
break-callback, 39
breaking, 17
can-close?, 35
capability-value, 61
change-to-file, 39
change-to-tab, 39
Check Syntax, 20
Check Syntax Button, 28
clear-annotations, 38
clear-annotations, 95
close-current-tab, 44
’comment, 10
config-panel, 54
config-panel, 61
config-panel, 57
’constant, 10
create-executable, 61
create-new-tab, 44

Creating New Kinds of DrRacket Frames, 15
current-annotations, 20
current-max-to-send-at-once, 20
Customizing DrRacket’s Behavior, 19
Customizing DrRacket’s GUI, 19
default-settings, 61
default-settings, 54
default-settings, 57
default-settings?, 54
default-settings?, 57
default-settings?, 61
disable-evaluation, 95
disable-evaluation, 35
Disappeared Uses and Bindings, 29
disappeared-use, disappeared-binding, 29
display-results, 90
DrRacket Plugins, 1
drracket-tool-icons, 5
drracket-tool-names, 5
drracket-tool-urls, 5
drracket-tools, 5
drracket/check-syntax, 20
drracket/syncheck-drracket-button,

28
drracket/tool-lib, 1
drracket:debug, 85
drracket:debug:add-prefs-panel, 86
drracket:debug:error-display-
handler/stacktrace, 85

drracket:debug:hide-backtrace-
window, 86

drracket:debug:make-debug-error-
display-handler, 86

drracket:debug:open-and-
highlight-in-file, 86

drracket:debug:profile-
definitions-text-mixin, 85

drracket:debug:profile-
interactions-text-mixin, 85

drracket:debug:profile-unit-
frame-mixin, 85

drracket:debug:show-backtrace-
window, 88

140

drracket:debug:show-backtrace-
window/edition-pairs, 87

drracket:debug:show-backtrace-
window/edition-pairs/two, 87

drracket:debug:srcloc-
>edition/pair, 89

drracket:eval, 104
drracket:eval:build-user-
eventspace/custodian, 107

drracket:eval:expand-program, 105
drracket:eval:expand-
program/multiple, 106

drracket:eval:get-snip-classes, 104
drracket:eval:set-basic-
parameters, 104

drracket:eval:traverse-
program/multiple, 106

drracket:frame, 98
drracket:frame:<%>, 101
drracket:frame:basics-mixin, 98
drracket:frame:basics<%>, 101
drracket:frame:mixin, 98
make-object, 98
drracket:frame:name-message%, 98
drracket:get/extend, 31
drracket:get/extend:allow-re-
extension!, 34

drracket:get/extend:disallow-re-
extension!, 33

drracket:get/extend:extend-
definitions-canvas, 33

drracket:get/extend:extend-
definitions-text, 32

drracket:get/extend:extend-
interactions-canvas, 33

drracket:get/extend:extend-
interactions-text, 32

drracket:get/extend:extend-tab, 31
drracket:get/extend:extend-unit-
frame, 31

drracket:get/extend:get-
definitions-canvas, 33

drracket:get/extend:get-

definitions-text, 32
drracket:get/extend:get-
interactions-canvas, 33

drracket:get/extend:get-
interactions-text, 32

drracket:get/extend:get-tab, 32
drracket:get/extend:get-unit-
frame, 31

drracket:help-desk, 103
drracket:help-desk:help-desk, 103
drracket:language, 51
drracket:language-configuration, 81
drracket:language-
configuration:add-language, 81

drracket:language-
configuration:fill-language-
dialog, 83

drracket:language-
configuration:get-languages,
81

drracket:language-
configuration:get-settings-
preferences-symbol, 81

drracket:language-
configuration:language-dialog,
82

drracket:language-
configuration:language-settings,
81

drracket:language-
configuration:language-settings-
language, 82

drracket:language-
configuration:language-settings-
settings, 82

drracket:language-
configuration:language-
settings?, 82

drracket:language:add-snip-value,
72

drracket:language:capability-
registered?, 71

drracket:language:create-
distribution-for-executable,

141

75
drracket:language:create-
executable-gui, 73

drracket:language:create-module-
based-distribution, 75

drracket:language:create-module-
based-launcher, 76

drracket:language:create-module-
based-stand-alone-executable,
74

drracket:language:extend-
language-interface, 72

drracket:language:get-capability-
contract, 71

drracket:language:get-capability-
default, 71

drracket:language:get-default-
mixin, 72

drracket:language:get-language-
extensions, 72

drracket:language:language<%>, 60
drracket:language:make-setup-
printing-parameters, 77

drracket:language:make-simple-
settings, 79

drracket:language:make-text/pos, 78
drracket:language:module-based-
language->language-mixin, 60

drracket:language:module-based-
language<%>, 56

drracket:language:module-
language<%>, 114

drracket:language:object/c, 68
drracket:language:put-executable,

73
drracket:language:register-
capability, 70

drracket:language:setup-printing-
parameters, 76

make-object, 52
drracket:language:simple-module-
based-language%, 52

drracket:language:simple-module-
based-language->module-based-

language-mixin, 53
drracket:language:simple-module-
based-language-convert-value,
76

drracket:language:simple-module-
based-language<%>, 51

drracket:language:simple-settings,
79

drracket:language:simple-settings, 53
drracket:language:simple-
settings->vector, 80

drracket:language:simple-
settings-annotations, 79

drracket:language:simple-
settings-case-sensitive, 78

drracket:language:simple-
settings-fraction-style, 78

drracket:language:simple-
settings-insert-newlines, 79

drracket:language:simple-
settings-printing-style, 78

drracket:language:simple-
settings-show-sharing, 78

drracket:language:simple-
settings?, 79

drracket:language:text/pos, 77
drracket:language:text/pos-end, 77
drracket:language:text/pos-start,

77
drracket:language:text/pos-text, 77
drracket:language:text/pos?, 77
drracket:modes, 109
drracket:modes:add-mode, 109
drracket:modes:get-modes, 109
drracket:modes:mode-matches-
language, 110

drracket:modes:mode-name, 110
drracket:modes:mode-repl-submit,

110
drracket:modes:mode-surrogate, 110
drracket:modes:mode?, 109
drracket:module-language, 114
drracket:module-language-tools, 111

142

drracket:module-language-
tools:add-online-expansion-
handler, 112

drracket:module-language-
tools:add-opt-out-toolbar-
button, 111

drracket:module-language-
tools:register-online-expansion-
pref, 113

drracket:module-language:add-
module-language, 114

drracket:module-language:module-
language-put-file-mixin, 114

drracket:rep, 90
drracket:rep:after-expression, 97
drracket:rep:context<%>, 94
drracket:rep:current-rep, 97
drracket:rep:current-value-port, 97
drracket:rep:drs-bindings-keymap-
mixin, 94

drracket:rep:get-dark-green-delta,
96

drracket:rep:get-drs-bindings-
keymap, 96

drracket:rep:get-welcome-delta, 96
make-object, 90
drracket:rep:text%, 90
drracket:rep:text<%>, 90
drracket:tool-exports^, 6
drracket:tool^, 5
’drracket:toolbar-buttons, 111
drracket:unit, 35
drracket:unit:add-search-help-
desk-menu-item, 50

drracket:unit:add-to-program-
editor-mixin, 49

drracket:unit:definitions-canvas%,
49

new, 47
drracket:unit:definitions-text%, 47
drracket:unit:definitions-text<%>,

48
new, 39

drracket:unit:frame%, 39
drracket:unit:frame<%>, 43
drracket:unit:get-program-editor-
mixin, 49

new, 38
drracket:unit:interactions-
canvas%, 38

drracket:unit:open-drscheme-
window, 50

drracket:unit:program-editor-
mixin, 38

make-object, 38
drracket:unit:tab%, 37
drracket:unit:tab<%>, 35
drscheme-language-modules, 11
drscheme-language-numbers, 11
drscheme-language-one-line-
summaries, 11

drscheme-language-positions, 11
drscheme-language-readers, 11
drscheme-language-urls, 11
drscheme/tool-lib, 1
drscheme:debug:add-prefs-panel, 120
drscheme:debug:error-display-
handler/stacktrace, 120

drscheme:debug:hide-backtrace-
window, 120

drscheme:debug:make-debug-error-
display-handler, 120

drscheme:debug:open-and-
highlight-in-file, 120

drscheme:debug:profile-
definitions-text-mixin, 115

drscheme:debug:profile-tab-mixin,
115

drscheme:debug:profile-unit-
frame-mixin, 115

drscheme:debug:show-backtrace-
window, 122

drscheme:debug:show-backtrace-
window/edition-pairs, 121

drscheme:debug:show-backtrace-
window/edition-pairs/two, 121

143

drscheme:debug:srcloc-
>edition/pair, 122

drscheme:debug:test-coverage-
definitions-text-mixin, 115

drscheme:debug:test-coverage-
interactions-text-mixin, 115

drscheme:debug:test-coverage-tab-
mixin, 115

drscheme:eval:build-user-
eventspace/custodian, 124

drscheme:eval:expand-program, 123
drscheme:eval:expand-
program/multiple, 123

drscheme:eval:get-snip-classes, 122
drscheme:eval:set-basic-
parameters, 122

drscheme:eval:traverse-
program/multiple, 123

drscheme:frame:<%>, 119
drscheme:frame:basics-mixin, 117
drscheme:frame:basics<%>, 118
drscheme:frame:mixin, 117
drscheme:get/extend:allow-re-
extension!, 126

drscheme:get/extend:disallow-re-
extension!, 126

drscheme:get/extend:extend-
definitions-canvas, 125

drscheme:get/extend:extend-
definitions-text, 124

drscheme:get/extend:extend-
interactions-canvas, 125

drscheme:get/extend:extend-
interactions-text, 125

drscheme:get/extend:extend-tab, 124
drscheme:get/extend:extend-unit-
frame, 124

drscheme:get/extend:get-
definitions-canvas, 125

drscheme:get/extend:get-
definitions-text, 125

drscheme:get/extend:get-
interactions-canvas, 126

drscheme:get/extend:get-
interactions-text, 125

drscheme:get/extend:get-tab, 124
drscheme:get/extend:get-unit-
frame, 124

drscheme:help-desk:help-desk, 126
drscheme:language-
configuration:add-language, 126

drscheme:language-
configuration:fill-language-
dialog, 128

drscheme:language-
configuration:get-languages,
126

drscheme:language-
configuration:get-settings-
preferences-symbol, 127

drscheme:language-
configuration:language-dialog,
127

drscheme:language-
configuration:language-settings,
127

drscheme:language-
configuration:language-settings-
language, 127

drscheme:language-
configuration:language-settings-
settings, 127

drscheme:language-
configuration:language-
settings?, 127

drscheme:language:add-snip-value,
129

drscheme:language:capability-
registered?, 128

drscheme:language:create-
distribution-for-executable,
130

drscheme:language:create-
executable-gui, 130

drscheme:language:create-module-
based-distribution, 130

drscheme:language:create-module-

144

based-launcher, 130
drscheme:language:create-module-
based-stand-alone-executable,
130

drscheme:language:extend-
language-interface, 129

drscheme:language:get-capability-
contract, 128

drscheme:language:get-capability-
default, 128

drscheme:language:get-default-
mixin, 129

drscheme:language:get-language-
extensions, 129

drscheme:language:language<%>, 117
drscheme:language:make-setup-
printing-parameters, 131

drscheme:language:make-simple-
settings, 134

drscheme:language:make-text/pos,
132

drscheme:language:module-based-
language->language-mixin, 118

drscheme:language:module-based-
language<%>, 117

drscheme:language:put-executable,
129

drscheme:language:register-
capability, 128

drscheme:language:setup-printing-
parameters, 131

drscheme:language:simple-module-
based-language%, 117

drscheme:language:simple-module-
based-language->module-based-
language-mixin, 117

drscheme:language:simple-module-
based-language-convert-value,
131

drscheme:language:simple-module-
based-language<%>, 117

drscheme:language:simple-settings,
133

drscheme:language:simple-

settings->vector, 134
drscheme:language:simple-
settings-annotations, 133

drscheme:language:simple-
settings-case-sensitive, 132

drscheme:language:simple-
settings-fraction-style, 132

drscheme:language:simple-
settings-insert-newlines, 133

drscheme:language:simple-
settings-printing-style, 132

drscheme:language:simple-
settings-show-sharing, 133

drscheme:language:simple-
settings?, 133

drscheme:language:text/pos, 132
drscheme:language:text/pos-end, 131
drscheme:language:text/pos-start,

131
drscheme:language:text/pos-text,

131
drscheme:language:text/pos?, 132
drscheme:modes:add-mode, 134
drscheme:modes:get-modes, 134
drscheme:modes:mode-matches-
language, 135

drscheme:modes:mode-name, 134
drscheme:modes:mode-repl-submit,

135
drscheme:modes:mode-surrogate, 135
drscheme:modes:mode?, 134
drscheme:module-language-
tools:add-online-expansion-
handler, 135

drscheme:module-language-
tools:add-opt-out-toolbar-
button, 135

drscheme:module-language-
tools:definitions-text-mixin,
118

drscheme:module-language-
tools:definitions-text<%>, 119

drscheme:module-language-
tools:frame-mixin, 118

145

drscheme:module-language-
tools:frame<%>, 120

drscheme:module-language-
tools:register-online-expansion-
pref, 135

drscheme:module-language-
tools:tab-mixin, 118

drscheme:module-language-
tools:tab<%>, 119

drscheme:module-language:add-
module-language, 136

drscheme:module-language:module-
language-put-file-mixin, 136

drscheme:module-language:module-
language<%>, 118

’drscheme:opt-out-toolbar-buttons,
112

drscheme:rep:after-expression, 138
drscheme:rep:context<%>, 119
drscheme:rep:current-rep, 136
drscheme:rep:current-value-port,

136
drscheme:rep:drs-bindings-keymap-
mixin, 116

drscheme:rep:get-dark-green-delta,
136

drscheme:rep:get-drs-bindings-
keymap, 136

drscheme:rep:get-welcome-delta, 136
drscheme:rep:text%, 116
drscheme:rep:text<%>, 116
’drscheme:toolbar-buttons, 111
drscheme:tracing:frame-mixin, 118
drscheme:tracing:tab-mixin, 118
drscheme:unit:add-search-help-
desk-menu-item, 139

drscheme:unit:add-to-program-
editor-mixin, 139

drscheme:unit:definitions-canvas%,
116

drscheme:unit:definitions-text<%>,
119

drscheme:unit:frame%, 116

drscheme:unit:frame<%>, 119
drscheme:unit:get-definitions-
text%, 116

drscheme:unit:get-program-editor-
mixin, 139

drscheme:unit:interactions-
canvas%, 116

drscheme:unit:open-drscheme-
window, 139

drscheme:unit:tab%, 115
drscheme:unit:tab<%>, 119
edit-menu:between-find-and-
preferences, 98

edit-menu:between-select-all-and-
find, 40

Editor Modes, 18
enable-evaluation, 35
enable-evaluation, 95
end-metadata-changes, 48
ensure-defs-shown, 43
ensure-rep-hidden, 43
ensure-rep-shown, 44
ensure-rep-shown, 95
’error, 10
evaluate-from-port, 90
execute-callback, 40
Expanding the User’s Program Text and

Breaking, 17
expanding user programs, 17
Extending the Existing DrRacket Classes, 16
extra-repl-information, 66
file-menu:between-open-and-revert,

40
file-menu:between-open-and-revert,

99
file-menu:between-print-and-close,

99
file-menu:between-print-and-close,

40
file-menu:between-save-as-and-
print, 40

file-menu:new-callback, 99
file-menu:new-string, 99

146

file-menu:open-callback, 99
file-menu:open-string, 100
file-menu:print-string, 41
file-menu:save-as-string, 41
file-menu:save-string, 41
find-matching-tab, 39
first-opened, 62
front-end/complete-program, 60
front-end/complete-program, 62
front-end/finished-complete-
program, 63

front-end/interaction, 60
front-end/interaction, 63
get-additional-important-urls, 100
get-break-button, 41
get-breakables, 35
get-breakables, 95
get-button-panel, 41
get-canvas, 41
get-canvas%, 41
get-comment-character, 63
get-current-tab, 44
get-definitions-canvas, 44
get-definitions-text, 45
get-definitions/interactions-
panel-parent, 41

get-defs, 35
get-directory, 95
get-directory, 36
get-editor, 42
get-editor%, 42
get-enabled, 36
get-error-range, 91
get-execute-button, 42
get-frame, 36
get-init-code, 57
get-init-code, 54
get-insert-menu, 45
get-interactions-canvas, 45
get-interactions-text, 45
get-ints, 36
get-keymaps, 94

get-language-menu, 43
get-language-name, 63
get-language-name, 60
get-language-numbers, 52
get-language-numbers, 51
get-language-numbers, 64
get-language-numbers, 57
get-language-position, 51
get-language-position, 64
get-language-position, 57
get-language-position, 52
get-language-url, 64
get-last-touched, 37
get-metadata, 64
get-metadata-lines, 65
get-module, 57
get-module, 53
get-module, 51
get-next-settings, 48
get-one-line-summary, 51
get-one-line-summary, 65
get-one-line-summary, 58
get-one-line-summary, 53
get-reader, 51
get-reader, 53
get-reader, 58
get-reader-module, 65
get-show-menu, 102
get-style-delta, 65
get-tab, 48
get-tab-count, 44
get-tab-filename, 44
get-tabs, 45
get-text-to-search, 42
get-transformer-module, 55
get-transformer-module, 58
get-user-custodian, 91
get-user-eventspace, 92
get-user-language-settings, 92
get-user-namespace, 92
get-user-thread, 92
get-users-language-name, 114

147

help-menu:about-callback, 100
help-menu:about-string, 100
help-menu:before-about, 100
help-menu:create-about?, 100
highlight-errors, 92
highlight-errors/exn, 92
htdp-file-prefix?, 30
htdp-save-file-prefix, 30
Implementing DrRacket Plugins, 5
initialize-console, 93
insert-prompt, 93
is-current-tab?, 36
is-running?, 36
’keyword, 10
kill-evaluation, 93
lang/htdp-langs-save-file-prefix,

30
Language Extensions, 13
Language-Specific Capabilities, 19
make-searchable, 42
make-traversal, 20
marshall-settings, 55
marshall-settings, 58
marshall-settings, 66
metadata->settings, 66
modes, 18
needs-execution, 96
next-tab, 44
on-close, 42
on-close, 93
on-close, 36
on-execute, 66
on-execute, 91
on-execute, 55
on-execute, 60
on-execute, 58
on-size, 42
on-tab-change, 45
open-in-new-tab, 44
order-manuals, 68
’other, 10
’parenthesis, 10

phase1, 5
phase2, 5
prev-tab, 44
queue-output, 93
racket mode, 18
register-capability-menu-item, 46
register-toolbar-button, 46
register-toolbar-buttons, 47
remove-bkg-running-color, 37
render-value, 59
render-value, 68
render-value, 55
render-value/format, 59
render-value/format, 56
render-value/format, 68
reset-console, 93
reset-highlighting, 93
reset-offer-kill, 96
reset-offer-kill, 36
run-in-evaluation-thread, 94
scheme mode, 18
set-breakables, 96
set-breakables, 37
set-filename, 47
set-message, 98
set-modified, 47
set-needs-execution-message, 49
set-next-settings, 49
set-show-menu-sort-key, 101
shutdown, 94
sort-toolbar-buttons-panel, 47
still-untouched?, 43
’string, 10
’symbol, 10
syncheck-annotations<%>, 21
syncheck-bitmap, 29
syncheck-drracket-button, 28
syncheck:add-arrow, 27
syncheck:add-arrow, 23
syncheck:add-background-color, 27
syncheck:add-background-color, 21
syncheck:add-definition-target, 24

148

syncheck:add-docs-menu, 22
syncheck:add-docs-menu, 27
syncheck:add-id-set, 28
syncheck:add-id-set, 22
syncheck:add-jump-to-definition, 28
syncheck:add-jump-to-definition, 24
syncheck:add-mouse-over-status, 24
syncheck:add-mouse-over-status, 28
syncheck:add-rename-menu, 27
syncheck:add-rename-menu, 25
syncheck:add-require-open-menu, 27
syncheck:add-require-open-menu, 21
syncheck:add-tail-arrow, 28
syncheck:add-tail-arrow, 23
syncheck:button-callback, 29
syncheck:color-range, 25
syncheck:color-range, 28
syncheck:find-source-object, 21
syncheck:find-source-object, 27
Teaching Languages, 30
touched, 37
unmarshall-settings, 68
unmarshall-settings, 56
unmarshall-settings, 59
unregister-toolbar-button, 47
update-running, 96
update-save-button, 43
update-save-message, 43
update-shown, 102
update-shown, 43
use-mred-launcher, 59
use-mred-launcher, 56
use-namespace-require/copy?, 59
View menu, 102
wait-for-io-to-complete, 94
wait-for-io-to-complete/user, 94

149

	1 Implementing DrRacket Plugins
	2 Adding Languages to DrRacket
	2.1 #lang-based Languages in DrRacket
	2.2 Adding Module-based Languages to DrRacket
	2.3 Adding Arbitrary Languages to DrRacket
	2.4 Language Extensions

	3 Creating New Kinds of DrRacket Frames
	4 Extending the Existing DrRacket Classes
	5 Expanding the User's Program Text and Breaking
	6 Editor Modes
	7 Language-Specific Capabilities
	7.1 Customizing DrRacket's Behavior
	7.2 Customizing DrRacket's GUI

	8 Check Syntax
	8.1 Accessing Check Syntax Programmatically
	8.2 Check Syntax Button
	8.3 Disappeared Uses and Bindings

	9 Teaching Languages
	10 drracket:get/extend
	11 drracket:unit
	12 drracket:language
	13 drracket:language-configuration
	14 drracket:debug
	15 drracket:rep
	16 drracket:frame
	17 drracket:help-desk
	18 drracket:eval
	19 drracket:modes
	20 drracket:module-language-tools
	21 drracket:module-language
	22 Backwards Compatibility
	Index
	Index

