How to Design Programs Teachpacks

Version 5.92

January 25, 2014

Teaching languages are small subsets of a full programming language. While such restric-
tions simplify error diagnosis and the construction of tools, they also make it impossible
(or at least difficult) to write some interesting programs. To circumvent this restriction, it is
possible to import teachpacks into programs written in a teaching language.

In principle, a teachpack is just a library written in the full language, not the teaching subset.
Like any other library, it may export values, functions, etc. In contrast to an ordinary library,
however, a teachpack must enforce the contracts of the “lowest” teaching language into
which it is imported and signal errors in a way with which students are familiar at that level.

This chapter covers the teachpacks for How to Design Programs.

Contents

[THtDP Teachpacks|

[I.I _Manipulating Images: "image.rkt"|.
................................

|[I.1.3 Creating Basic Shapes|

.4 Basic Image Properties|
omposing Images| o

[[T.6 Manipulating Images|

[CI7 Scenes oo

123 AFwstExample| o o 00,
[1.3_Converting Temperatures: "convert.rkt"|
IE giuessmé Eumgers: "éuess.rkt"|
. MasterMinding: "master.rkt"|

. imple Drawing: "draw.rkt"| oo oL
I1.7.1 DrawingonaCanvas|.
[LZ2 InteractionswithCanvasl

1.8 Hangman: "hangman.rkt"|
|| 9 E!ailng Hangman: "hangman-play.rkt"|
[T.T0 Managing Control AITows: "arrow.TEE"| . . v« v v v v v e e e e e e

2 HtDP/2e Teachpacks|

2. verlaying, Above, and Beside: AHouse|
2. otating and Overlaying: otary Phone Diall

0NN W W W

2.2.3 AlphaBlending|. 0.
2.2.4 Recursive Image Functions|.,
[2.2.5 Rotating and Image Centers|
2.2.6 mage Interoperabality| 0000000
e Nitty Gritty of Pixels, Pens, and Lines|
e Nitty Gritty o phaBlending|

2.3

Images: "image.rkt"|
) B 0ES| . . e e e
D Polygons|

)

.3, Overlaying Images|

34 PlacingTmages & Scenes|.
23’3 Rotating, Scaling, Flipping, Cropping, and Framing Images|

O B 1 P
[2.3.7 Image Properties|
P38 TmagePredicates|

EEE Egua!ltz !estmg of !mages|
2.3.10 Pmholesl.
2.3.11 Exporting ImagestoDisk]

2.4 Worlds and the Universe: "universe.rkt"l.

24.1 Background|. 0 0L

.4, simple Stmulations|o

243 Interactionsl
R.4.4 AFistSample World| o o o0

2.4.5 The World is not Enoughf

2.4.6 The Universe Server

[2.4.77 A First Sample Universe| 0L

R Planet Cute Images| L

2.5.1 Charactersl

056 SBAdOWS . .« o o o

26

Porting World Programs to Universe|

[2.6.1 The Worldis Not Enough|

2.6. Porting World Programs|

.63 Porting Image Programs|

1 HtDP Teachpacks

1.1 Manipulating Images: "image.rkt"
(require htdp/image) package: htdp-1ib

NOTE: This library is deprecated; use 2htdp/image, instead. For the foresee-
able time, we will continue to support the teachpack for your existing programs.

The teachpack provides functions for constructing and manipulating images. Basic, colored
images are created as outlines or solid shapes. Additional functions allow for the composi-
tion of images.

1.1.1 Images

(image? x) — boolean?
x : any/c

Is x an image?

(image=? x y) — boolean?
X : image?
y : image?

Are x and y the same image?

1.1.2 Modes and Colors

Mode (one-of/c ’solid ’outline "solid" "outline")
A Mode is used to specify whether painting a shape fills or outlines the form.

(struct color (red green blue)
#:extra-constructor-name make-color)
red : (and/c natural-number/c (<=/c 255))
green : (and/c natural-number/c (<=/c 255))
blue : (and/c natural-number/c (<=/c 255))

RGB color?

A RGB describes a color via a shade of red, blue, and green colors (e.g., (make-color 100
200 30)).

Color (or/c symbol? string? color?)
A Color is a color-symbol (e.g., >blue) or a color-string (e.g., "blue') or an RGB structure.

(image-color? x) — boolean?
X @ any

Determines if the input is a valid image Color.

1.1.3 Creating Basic Shapes

In DrRacket, you can insert images from your file system. Use PNG images whenever
possible. In addition, you can create basic shapes with the following functions.

(rectangle w h m c¢) — image?
w : (and/c number? (or/c zero? positive?))
h : (and/c number? (or/c zero? positive?))
m : Mode
¢ : Color

Creates a w by h rectangle, filled in according to m and painted in color ¢

(circle r m ¢) — image?
r : (and/c number? (or/c zero? positive?))
m : Mode
¢ : Color

Creates a circle or disk of radius r, filled in according to m and painted in color ¢

(ellipse w h m c) — image?
w : (and/c number? (or/c zero? positive?))
h : (and/c number? (or/c zero? positive?))
m : Mode
¢ : Color

Creates a w by h ellipse, filled in according to m and painted in color ¢

(triangle s m ¢) — image?
s : number?
m : Mode
c : Color

Creates an upward pointing equilateral triangle whose side is s pixels long, filled in accord-
ing to m and painted in color ¢

(star n outer inner m c¢) — image?
n : (and/c number? (>=/c 2))
outer : (and/c number? (>=/c 1))
inner : (and/c number? (>=/c 1))
m : Mode
c : Color

Creates a multi-pointed star with n points, an outer radius for the max distance of the
points to the center, and an inner radius for the min distance to the center.

(regular-polygon s r m c¢ [angle]) — image?

s : side
r : number?
m : Mode
¢ : Color

angle : real? = 0

Creates a regular polygon with s sides inscribed in a circle of radius r, using mode m and
color c. If an angle is specified, the polygon is rotated by that angle.

(line x y ¢) — image?
X : number?
y : number?
¢ : Color

Creates a line colored ¢ from (0,0) to (x ,y). See add-1line below.

(text s £ ¢) — Image
s : string?
f : (and/c number? positive?)
c : Color

Creates an image of the text s at point size f and painted in color c.

1.1.4 Basic Image Properties
To understand how images are manipulated, you need to understand the basic properties of
images.

(image-width i) — integer?
i : image?

Obtain 1i’s width in pixels

(image-height i) — integer?
i : image?

Obtain 1’s height in pixels

For the composition of images, you must know about pinholes. Every image come with a
pinhole. For images created with the above functions, the pinhole is at the center of the
shape except for those created from 1ine and text. The text function puts the pinhole
at the upper left corner of the image, and line puts the pinhole at the beginning of the
line (meaning that if the first two arguments to 1ine are positive, the pinhole is also in the
upper left corner). The pinhole can be moved, of course, and compositions locate pinholes
according to their own rules. When in doubt you can always find out where the pinhole is
and place it where convenient.

(pinhole-x i) — integer?
i : image?

Determines the x coordinate of the pinhole, measuring from the left of the image.

(pinhole-y i) — integer?
i : image?

Determines the y coordinate of the pinhole, measuring from the top (down) of the image.

(put-pinhole i x y) — image?
i : image?
x @ number?
y : number?

Creates a new image with the pinhole in the location specified by x and y, counting from
the left and top (down), respectively.

(move-pinhole i delta-x delta-y) — image?
i : image?
delta-x : number?
delta-y : number?

Creates a new image with the pinhole moved down and right by delta-x and delta-y
with respect to its current location. Use negative numbers to move it up or left.

1.1.5 Composing Images

Images can be composed, and images can be found within compositions.

(add-line i x1 yl1 x2 y2 c) — image?
i : image?
x1 : number?
y1 : number?
x2 : number?
y2 : number?
c : Color

Creates an image by adding a line (colored c) from (x1,y1) to (x2,y2) to image 1.

(overlay img img2 img* ...) — image?
img : image?
img2 : image?
img* : image?

Creates an image by overlaying all images on their pinholes. The pinhole of the resulting
image is the same place as the pinhole in the first image.

(overlay/xy img delta-x delta-y other) — image?
img : image?
delta-x : number?
delta-y : number?
other : image?

Creates an image by adding the pixels of other to img.
Instead of lining the two images up on their pinholes, other’s pinhole is lined up on the

point:

(make-posn (+ (pinhole-x img) delta-x)
(+ (pinhole-y img) delta-y))

The pinhole of the resulting image is the same place as the pinhole in the first image.

The same effect can be had by combining move-pinhole and overlay,

(overlay img
(move-pinhole other
(- delta-x)
(- delta-y)))

(image-inside? img other) — boolean?
img : image?
other : image?

Determines whether the pixels of the second image appear in the first.

Be careful when using this function with jpeg images. If you use an image-editing program
to crop a jpeg image and then save it, image-inside? does not recognize the cropped
image, due to standard compression applied to JPEG images.

(find-image img other) — posn?
img : image?
other : image?

Determines where the pixels of the second image appear in the first, with respect to the pin-
hole of the first image. If (image-inside? img other) isn’t true, find-image signals
an error.

1.1.6 Manipulating Images

Images can also be shrunk. These “shrink” functions trim an image by eliminating extrane-
ous pixels.

(shrink-tl img width height) — image?
img : image?
width : number?
height : number?

Shrinks the image to a width by height image, starting from the top-left corner. The
pinhole of the resulting image is in the center of the image.

(shrink-tr img width height) — image?
img : image?
width : number?
height : number?

Shrinks the image to a width by height image, starting from the fop-right corner. The
pinhole of the resulting image is in the center of the image.

(shrink-bl img width height) — image?
img : image?
width : number?
height : number?

Shrinks the image to a width by height image, starting from the bottom-left corner. The
pinhole of the resulting image is in the center of the image.

(shrink-br img width height) — image?
img : image?
width : number?
height : number?

Shrinks the image to a width by height image, starting from the bottom-right corner. The
pinhole of the resulting image is in the center of the image.

(shrink img left above right below) — image?
img : image?
left : number?
above : number?
right : number?
below : number?

Shrinks an image around its pinhole. The numbers are the pixels to save to left, above, to the
right, and below the pinhole, respectively. The pixel directly on the pinhole is always saved.

1.1.7 Scenes

A scene is an image, but with the pinhole in the upper-left corner, i.e. an image where
pinhole-x and pinhole-y both return 0.

Scenes are particularly useful with the 2htdp/universe and htdp/world teachpacks,
since it displays only scenes in its canvas.

(scene? x) — boolean?
x @ any/c

Is x an scene?

(empty-scene width height) — scene?
width : natural-number/c
height : natural-number/c

creates a plain white, width x height scene.

(place-image img x y s) — scene?
img : image?
X : number?
y : number?
s . scene”

10

creates a scene by placing img at (x, y) into s; (x, y) are computer graphics coordinates,
i.e., they count right and down from the upper-left corner.

(nw:rectangle width
height
solid-or-outline
c) — image?
width : natural-number/c
height : natural-number/c
solid-or-outline : Mode
c : Color

creates a width by height rectangle, solid or outlined as specified by solid-or-outline
and colored according to c, with a pinhole at the upper left corner.

(scenetline s x0 y0 x1 yl1 c) — scene?
s © scene?
x0 : number?
yO0 : number?
x1 : number?
y1 : number?
c : Color

creates a scene by placing a line of color ¢ from (x0, y0) to (x1, y1) using computer
graphics coordinates. In contrast to the add-1line function, scene+line cuts off those
portions of the line that go beyond the boundaries of the given s.

1.1.8 Miscellaneous Image Manipulation and Creation

The last group of functions extracts the constituent colors from an image and converts a list
of colors into an image.

List-of-color : list?
is one of:

; - empty
; - (cons Color List-of-color)
; Interpretation: represents a list of colors.

(image->color-list img) — List-of-color
img : image?

11

Converts an image to a list of colors.

(color-list->image 1 width height x y) — image?
1 : List-of-color
width : natural-number/c
height : natural-number/c
X : natural-number/c
y : natural-number/c

Converts a list of colors 1 to an image with the given width and height and pinhole (x,y)
coordinates, specified with respect to the top-left of the image.

The remaining functions provide alpha-channel information as well. Alpha channels are a
measure of transparency; O indicates fully opaque and 255 indicates fully transparent.

(struct alpha-color (alpha red green blue)
#:extra-constructor-name make-alpha-color)
alpha : (and/c natural-number/c (<=/c 255))
red : (and/c natural-number/c (<=/c 255))
green : (and/c natural-number/c (<=/c 255))
blue : (and/c natural-number/c (<=/c 255))

A structure representing an alpha color.

(image->alpha-color-list img) — (list-of alpha-color?)
img : image?

to convert an image to a list of alpha colors

(alpha-color-list->image 1 width height x y) — image?
1 : (list-of alpha-color?)
width : integer?
height : integer?
x : integer?
y : integer?

Converts a list of alpha-colors 1 to an image with the given width and height and
pinhole (x,y) coordinates, specified with respect to the top-left of the image.

1.2 Simulations and Animations: "world.rkt"

(require htdp/world) package: htdp-1ib

12

NOTE: This library is deprecated; use 2htdp/universe, instead. For guid-
ance on how to convert your htdp/world programs to use 2htdp/universe,
see(§2.6 “Porting World Programs to Universe’|

Note: For a quick and educational introduction to the teachpack, see How to Design Pro-
grams, Second Edition: Prologue. As of August 2008, we also have a series of projects
available as a small booklet on [How to Design Worlds.

The purpose of this documentation is to give experienced Racketers a concise overview for
using the library and for incorporating it elsewhere. The last section presents[§T.2.3 “A Firs]
for an extremely simple domain and is suited for a novice who knows how to
design conditional functions for symbols.

The teachpack provides two sets of tools. The first allows students to create and display a
series of animated scenes, i.e., a simulation. The second one generalizes the first by adding
interactive GUI features.

1.2.1 Simple Simulations

(run-movie r m) — true
r : (and/c real? positive?)
m : [Listof image?]

run-movie displays the list of images m at the rate of r images per second.

(run-simulation w h r create-image) — true
w : natural-number/c
h : natural-number/c
r : number?
create-image : (-> natural-number/c scene)

creates and shows a canvas of width w and height h , starts a clock, making it tick every r
(usually fractional) seconds. Every time the clock ticks, run-simulation applies create-
image to the number of ticks passed since this function call. The results of these applications
are displayed in the canvas.

Example:

(define (create-UF0-scene height)
(place-image UF0 50 height (empty-scene 100 100)))

(define UFO
(overlay (circle 10 ’solid ’green)

13

http://www.ccs.neu.edu/home/matthias/HtDP/Prologue/book.html
http://www.ccs.neu.edu/home/matthias/HtDP/Prologue/book.html
http://world.cs.brown.edu/

(rectangle 40 4 ’solid ’green)))

(run-simulation 100 100 (/ 1 28) create-UF0-scene)

1.2.2 Interactions

An animation starts from a given “world” and generates new ones in response to events on
the computer. This teachpack keeps track of the “current world” and recognizes three kinds
of events: clock ticks; keyboard presses and releases; and mouse movements, mouse clicks,
etc.

Your program may deal with such events via the installation of handlers. The teachpack
provides for the installation of three event handlers: on-tick-event, on-key-event, and
on-mouse-event. In addition, it provides for the installation of a draw handler, which is
called every time your program should visualize the current world.

The following picture provides an intuitive overview of the workings of "world".

14

(big-bang World_0

(on-tick tock RATE)

(on-draw render WIDTH HEIGHT])

(on-mouse click)
FALSE F.ﬂ.I‘_LSE (on-key react))
dafie dapie
™y
World_0 tock World_1 tock tock
click click o click
react react - react
kN A M iy
renfder renfder
Scene Scene

Wo

The big-bang function installs World_0 as the initial world; the callbacks tock, react, and
click transform one world into another one; done checks each time whether the world is final;
and draw renders each world as a scene.

World any/c

For animated worlds and games, using the teachpack requires that you provide a data defi-
nition for World. In principle, there are no constraints on this data definition. You can even
keep it implicit, even if this violates the Design Recipe.

(big-bang width height r world0) — true
width : natural-number/c

15

height : natural-number/c
r : number?
world0 : World
(big-bang width height r world0 animated-gif?) — true
width : natural-number/c
height : natural-number/c
r : number?
world0 : World
animated-gif? : boolean?

Creates and displays a width x height canvas, starts the clock, makes it tick every r sec-
onds, and makes worldO the current world. If it is called with five instead of four arguments
and the last one (animated-gif?) is true, the teachpack allows the generation of images
from the animation, including an animated GIF image.

(on-tick-event tock) — true
tock : (-> World World)

Tells big-bang to call tock on the current world every time the clock ticks. The result of
the call becomes the current world.

KeyEvent (or/c char? symbol?)

A KeyEvent represents key board events, e.g., keys pressed or released, by the computer’s
user. A char? KeyEvent is used to signal that the user has hit an alphanumeric key. Symbols
such as ’left, ’right, ’up, ’down, ’release denote arrow keys or special events, such
as releasing the key on the keypad.

(key-event? x) — boolean?
x @ any

is x a KeyEvent

(key=7 x y) — boolean?
x : key-event?
y . key-event?

compares two KeyEvent for equality

(on-key-event change) — true
change : (-> World key-event? World)

Tells big-bang to call change on the current world and a KeyEvent for every keystroke the
user of the computer makes. The result of the call becomes the current world.

Here is a typical key-event handler:

16

(define (change w a-key-event)
(cond

[(key=7 a-key-event ’left) (world-go w -DELTA)]

[(key=7 a-key-event ’right) (world-go w +DELTA)]

[(char? a-key-event) w] ; to demonstrate order-free checking
[(key=7 a-key-event ’up) (world-go w -DELTA)]

[(key=7 a-key-event ’down) (world-go w +DELTA)]

[else w]))

MouseEvent (one-of/c ’button-down ’button-up ’drag ’move ’enter ’leave)

A MouseEvent represents mouse events, e.g., mouse movements or mouse clicks, by the
computer’s user.

(on-mouse-event clack) — true
clack : (-> World natural-number/c natural-number/c MouseEvent World)

Tells big-bang to call clack on the current world, the current x and y coordinates of the
mouse, and a MouseEvent for every action of the mouse by the user of the computer. The
result of the call becomes the current world.

(on-redraw to-scene) — true
to-scene : (-> World Scene)

Tells big-bang to call to-scene whenever the canvas must be redrawn. The canvas is
usually re-drawn after a tick event, a keyboard event, or a mouse event has occurred. The
generated scene is displayed in the world’s canvas.

(stop-when last-world?) — true
last-world? : (-> World boolean?)

Tells big-bang to call last-world? whenever the canvas is drawn. If this call produces
true, the clock is stopped; no more tick events, KeyEvents, or MouseEvents are forwarded
to the respective handlers. As a result, the canvas isn’t updated either.

Example: The following examples shows that (run-simulation 100 100 (/ 1 28)

create-UF0-scene) is a short-hand for three lines of code:

(define (create-UFO-scene height)
(place-image UF0 50 height (empty-scene 100 100)))

(define UFD

(overlay (circle 10 ’solid ’green)
(rectangle 40 4 ’solid ’green)))

17

(big-bang 100 100 (/1 28) 0)
(on-tick-event addi)
(on-redraw create-UF0-scene)

Exercise: Add a condition for stopping the flight of the UFO when it reaches the bottom.

1.2.3 A First Example

Understanding a Door

Say we want to represent a door with an automatic door closer. If this kind of door is locked,
you can unlock it. While this doesn’t open the door per se, it is now possible to do so.
That is, an unlocked door is closed and pushing at the door opens it. Once you have passed
through the door and you let go, the automatic door closer takes over and closes the door
again. Of course, at this point you could lock it again.

Here is a picture that translates our words into a graphical representation:

Incked|

unlpck lofk

dnsed|

puth time

The picture displays a so-called "state machine". The three circled words are the states that
our informal description of the door identified: locked, closed (and unlocked), and open.
The arrows specify how the door can go from one state into another. For example, when
the door is open, the automatic door closer shuts the door as time passes. This transition
is indicated by the arrow labeled "time passes." The other arrows represent transitions in a
similar manner:

* "push" means a person pushes the door open (and let’s go);

18

* "lock" refers to the act of inserting a key into the lock and turning it to the locked
position; and

¢ "unlock" is the opposite of "lock".

Simulations of the World

Simulating any dynamic behavior via a program demands two different activities. First, we
must tease out those portions of our "world" that change over time or in reaction to actions,
and we must develop a data representation D for this information. Keep in mind that a good
data definition makes it easy for readers to map data to information in the real world and
vice versa. For all others aspects of the world, we use global constants, including graphical
or visual constants that are used in conjunction with the rendering functions.

Second, we must translate the "world" actions—the arrows in the above diagram—into inter-
actions with the computer that the world teachpack can deal with. Once we have decided to
use the passing of time for one aspect and mouse movements for another, we must develop
functions that map the current state of the world—represented as data—into the next state of
the world. Since the data definition D describes the class of data that represents the world,
these functions have the following general contract and purpose statements:

; tick : D -> D
; deal with the passing of time
(define (tick w) ...)

; click : D Number Number MouseEvent -> D

; deal with a mouse click at (x,y) of kind me
; in the current world w

(define (click w x y me) ...)

; control : D KeyEvent -> D

; deal with a key event (symbol, char) ke
; in the current world w

(define (control w ke) ...)

That is, the contracts of the various hooks dictate what the contracts of these functions are
once we have defined how to represent the world in data.

A typical program does not use all three of these actions and functions but often just one or
two. Furthermore, the design of these functions provides only the top-level, initial design
goal. It often demands the design of many auxiliary functions.

Simulating a Door: Data

Our first and immediate goal is to represent the world as data. In this specific example, the
world consists of our door and what changes about the door is whether it is locked, unlocked
but closed, or open. We use three symbols to represent the three states:

19

SD

; DATA DEF.

; The state of the door (SD) is one of:
; - ?locked

; - ’closed

; - ’open

Symbols are particularly well-suited here because they directly express the state of the door.

Now that we have a data definition, we must also decide which computer actions and in-
teractions should model the various actions on the door. Our pictorial representation of the
door’s states and transitions, specifically the arrow from "open" to "closed" suggests the use
of a function that simulates time. For the other three arrows, we could use either keyboard
events or mouse clicks or both. Our solution uses three keystrokes: #\u for unlocking the
door, #\1 for locking it, and #\space for pushing it open. We can express these choices
graphically by translating the above "state machine" from the world of information into the
world of data:

Wucked|

F*
=
e

Simulating a Door: Functions

Our analysis and data definition leaves us with three functions to design:

* automatic-closer, which closes the time during one tick;
* door-actions, which manipulates the time in response to pressing a key; and

¢ render, which translates the current state of the door into a visible scene.

20

Let’s start with automatic-closer. We know its contract and it is easy to refine the pur-
pose statement, too:

; automatic-closer : SD -> SD
; closes an open door over the period of one tick
(define (automatic-closer state-of-door) ...)

Making up examples is trivial when the world can only be in one of three states:

given state desired state
"locked "locked
"closed "closed
“open "closed

; automatic-closer : SD -> SD
; closes an open door over the period of one tick

(check-expect (automatic-closer ’locked) ’locked)
(check-expect (automatic-closer ’closed) ’closed)
(check-expect (automatic-closer ’open) ’closed)

(define (automatic-closer state-of-door) ...)

The template step demands a conditional with three clauses:

(define (automatic-closer state-of-door)
(cond
[(symbol=?7 ’locked state-of-door) ...]
[(symbol=?7 ’closed state-of-door) ...]
[(symbol=? ’open state-of-door) ...]1))

The examples basically dictate what the outcomes of the three cases must be:

(define (automatic-closer state-of-door)
(cond
[(symbol=7 ’locked state-of-door) ’locked]
[(symbol=?7 ’closed state-of-door) ’closed]
[(symbol=7 ’open state-of-door) ’closed]))

Don’t forget to run the example-tests.
For the remaining three arrows of the diagram, we design a function that reacts to the three

chosen keyboard events. As mentioned, functions that deal with keyboard events consume
both a world and a keyevent:

21

; door-actions

: SD Keyevent -> SD
; key events simulate actions on the door
(define (door-actions s k)

)

given state given keyevent desired state

locked #\u "closed
“closed #\1 "locked
"closed #\space “open
“open — “open

The examples combine what the above picture shows and the choices we made about map-

ping actions to keyboard events.

From here, it is straightforward to turn this into a complete design:

(define (door-actions s k)

(cond

[(and (symbol=? ’locked
[(and (symbol=?7 ’closed

[(and (symbol=?7 ’closed

[else s]))

(check-expect
(check-expect
(check-expect
(check-expect
(check-expect

Last but not least we need a function that renders the current state of the world as a scene.

(door-actions
(door-actions
(door-actions
(door-actions
(door-actions

s) (key=7 #\u k)) ’closed]
s) (key=7 #\1 k)) ’locked]
s) (key=7 #\space k)) ’open]

’locked #\u) ’closed)
’closed #\1) ’locked)
’closed #\space) ’open)
’open ’any) ’open)
’closed ’any) ’closed)

For simplicity, let’s just use a large enough text for this purpose:

; render : SD

; translate the current state of the door into a large text

-> Scene

(define (render s)
(text (symbol->string s) 40 ’red))

(check-expect (render ’closed) (text "closed" 40 ’red))

The function symbol->string translates a symbol into a string, which is needed because
text can deal only with the latter, not the former. A look into the language documentation

revealed that this conversion function exists, and so we use it.

Once everything is properly designed, it is time to run the program. In the case of the world
teachpack, this means we must specify which function takes care of tick events, key events,

and redraws:

22

(big-bang 100 100 1 ’locked)
(on-tick-event automatic-closer)
(on-key-event door-actions)
(on-redraw render)

Now it’s time for you to collect the pieces and run them in big-bang to see whether it all
works.

1.3 Converting Temperatures: '"convert.rkt"

(require htdp/convert) package: htdp-1ib

The teachpack convert.rkt provides three functions for converting Fahrenheit tempera-
tures to Celsius. It is useful for a single exercise in HtDP. Its purpose is to demonstrate the
independence of “form” (user interface) and “function” (also known as “model”).

(convert-gui convert) — true
convert : (-> number? number?)

Consumes a conversion function from Fahrenheit to Celsius and creates a graphical user
interface with two rulers, which users can use to convert temperatures according to the given
temperature conversion function.

(convert-repl convert) — true
convert : (-> number? number?)

Consumes a conversion function from Fahrenheit to Celsius and then starts a read-evaluate-
print loop. The loop prompts users to enter a number and then converts the number according
to the given temperature conversion function. A user can exit the loop by entering “x.”

(convert-file in convert out) — true
in : string?
convert : (-> number? number?)
out : string?

Consumes a file name in, a conversion function from Fahrenheit to Celsius, and a string
out. The program then reads all the number from in, converts them according to convert,
and prints the results to the newly created file out.

Warning: If out already exists, it is deleted.

Example: Create a file with name "in.dat" with some numbers in it, using your favorite
text editor on your computer. Define a function £2c in the Definitions window and set
teachpack to "convert.rkt" and click Run. Then evaluate

23

(convert-gui f2c)

; and

(convert-file "in.dat'" f2c "out.dat'")
; and

(convert-repl f2c)

Finally inspect the file "out.dat" and use the repl to check the answers.

1.4 Guessing Numbers: "guess.rkt"

(require htdp/guess) package: htdp-1ib

The teachpack provides functions to play a guess-the-number game. Each function display a
GUI in which a player can choose specific values for some number of digits and then check
the guess. The more advanced functions ask students to implement more of the game.

(guess-with-gui check-guess) — true
check-guess : (-> number? number? symbol?)

The check-guess function consumes two numbers: guess, which is the user’s guess, and
target, which is the randomly chosen number-to-be-guessed. The result is a symbol that
reflects the relationship of the player’s guess to the target.

(guess-with-gui-3 check-guess) — true
check-guess : (-> digit? digit? digit? number? symbol?)

The check-guess function consumes three digits (digitO, digitl, digit2) and one
number (target). The latter is the randomly chosen number-to-be-guessed; the three digits
are the current guess. The result is a symbol that reflects the relationship of the player’s
guess (the digits converted to a number) to the target.

Note: digitO is the least significant digit that the user chose and digit2 is the most signif-
icant one.

(guess-with-gui-list check-guess) — true
check-guess : (-> (list-of digit?) number? symbol?)

The check-guess function consumes a list of digits (digits) and a number (target). The
former is a list that makes up the user’s guess, and the latter is the randomly chosen number-
to-be-guessed. The result is a symbol that reflects the relationship of the player’s guess (the
digits converted to a number) to the target.

Note: the first item on digits is the least significant digit that the user chose, and the last
one is the most significant digit.

24

1.5 MasterMinding: "master.rkt"

(require htdp/master) package: htdp-1ib

The teachpack implements GUI for playing a simple master mind-like game, based on a
function designed by a student. The player clicks on two colors and the program responds
with an answer that indicates how many colors and places were correct.

(master check-guess) — symbol?
check-guess : (-> symbol? symbol? symbol? symbol? boolean?)

Chooses two “secret” colors and then opens a graphical user interface for playing Master-
Mind. The player is prompted to choose two colors, via a choice tablet and mouse clicks.
Once chosen, master uses check-guess to compare them.

If the two guesses completely match the two secret colors, check-guess must return ’Per-
fectGuess; otherwise it must return a different, informative symbol.

1.6 Playing MasterMind: "master-play.rkt"

(require htdp/master-play) package: htdp-1ib

The teachpack implements the MasterMind game so that students can play the game and get
an understanding of what we expect from them.

(go name) — true

name : symbol?

chooses a “secret” three-letter word, opens a canvas and a menu, and asks the player to guess
the word.

1.7 Simple Drawing: "draw.rkt"

(require htdp/draw) package: htdp-1ib

The teachpack provides two sets of functions: one for drawing into a canvas and one for
reacting to canvas events.

NOTE: This library is deprecated; use 2htdp/image (probably in conjunc-
tion with 2htdp/universe), instead. You may continue to use the library for
solving exercises from How To Design Programs, First Edition but do consider
switching to How To Design Programs, Second Edition instead.

25

http://www.ccs.neu.edu/home/matthias/HtDP2e/

1.7.1 Drawing on a Canvas

DrawColor: (and/c symbol? (one-of/c ’white ’yellow ’red ’blue ’green
’black)) These six colors are definitely provided. If you want other colors, guess! For
example, ’orange works, but “mauve doesn’t. If you apply the function to a symbol that it
doesn’t recognize as a color, it raises an error.

(start width height) — true
width : number?
height : number?

Opens a width X height canvas.

(start/cartesian-plane width height) — true
width : number?
height : number?

Opens a width x height canvas and draws a Cartesian plane.

(stop) — true

Closes the canvas.

(draw-circle p r c) — true
p : posn?
r : number?
¢ : DrawColor

Draws a c circle at p with radius r.

(draw-solid-disk p r c) — true
p : posn?
r : number?
¢ : DrawColor

Draws a c¢ disk at p with radius r.

(draw-solid-rect ul width height c) — true
ul : posn?
width : number?
height : number?
¢ : DrawColor

Draws a width x height, c rectangle with the upper-left corner at ul.

26

(draw-solid-line strt end c) — true
strt : posn?
end : posn?
¢ : DrawColor

Draws a c line from strt to end.

(draw-solid-string p s) — true
p : posn?
s : string?

Draws s at p.

(sleep-for-a-while s) — true
s : number?

Suspends evaluation for s seconds.

The teachpack also provides clear- functions for each draw- function:

(clear-circle p r c) — true
p : posn?
r : number?
¢ : DrawColor

clears a c circle at p with radius r.

(clear-solid-disk p r ¢) — true
p : posn?
r : number?
¢ : DrawColor

clears a ¢ disk at p with radius r.

(clear-solid-rect ul width height c) — true
ul : posn?
width : number?
height : number?
¢ : DrawColor

clears a width x height, c rectangle with the upper-left corner at ul.

(clear-solid-line strt end c) — true
strt : posn?
end : posn?
¢ : DrawColor

27

clears a c line from strt to end.
(clear-solid-string p s) — true
p : posn?
s : string?
clears s at p.

(clear-all) — true

clears the entire screen.

1.7.2 Interactions with Canvas

(wait-for-mouse-click) — posn?

Waits for the user to click on the mouse, within the canvas.

DrawKeyEvent. (or/c char? symbol?) A DrawKeyEvent represents keyboard events:

e char?, if the user pressed an alphanumeric key;

* symbol?, if the user pressed, for example, an arror key: *up ’down ’left *right

(get-key-event) — (or/c false DrawKeyEvent)

Checks whether the user has pressed a key within the window; false if not.

DrawWorld: For proper interactions, using the teachpack requires that you provide a data
definition for DrawWorld . In principle, there are no constraints on this data definition. You
can even keep it implicit, even if this violates the Design Recipe.

The following functions allow programs to react to events from the canvas.

(big-bang n w) — true
n : number?
w : DrawWorld

Starts the clock, one tick every n (fractal) seconds; w becomes the first “current” world.

(on-key-event change) — true
change : (-> DrawKeyEvent DrawWorld DrawWorld)

28

Adds change to the world. The function reacts to keyboard events and creates a new Draw-
World.

(on-tick-event tock) — true
tock : (-> DrawWorld DrawWorld)

Adds tock to the world. The function reacts to clock tick events, creating a new current
world.

(end-of-time) — DrawWorld

Stops the world; returns the current world.

1.8 Hangman: "hangman.rkt"

(require htdp/hangman) package: htdp-1ib

The teachpack implements the callback functions for playing a Hangman game, based on a
function designed by a student. The player guesses a letter and the program responds with
an answer that indicates how many times, if at all, the letter occurs in the secret word.

(hangman make-word reveal draw-next-part) — true
make-word : (-> symbol? symbol? symbol? word?)
reveal : (-> word? word? word?)
draw-next-part : (-> symbol? true)

Chooses a “secret” three-letter word and uses the given functions to manage the Hangman
game.

(hangman-list reveal-for-list
draw-next-part) — true
(-> symbol? (list-of symbol?) (list-of symbol?)
(list-of symbol?))
draw-next-part : (-> symbol? true)

reveal-for-1list

Chooses a “secret” word—a list of symbolic letters—and uses the given functions to man-
age the Hangman game: reveal-for-1list determines how many times the chosen letter
occurs in the secret word; draw-next-part is given the symbolic name of a body part and
draws it on a separately managed canvas.

In addition, the teachpack re-exports the entire functionality of the drawing library; see[§1.7]
[*Simple Drawing: "draw.rkt"”|for documentation.

29

1.9 Playing Hangman: "hangman-play.rkt"

(require htdp/hangman-play) package: htdp-1ib

The teachpack implements the Hangman game so that students can play the game and get an
understanding of what we expect from them.

(go name) — true
name : symbol?

chooses a “secret” three-letter word, opens a canvas and a menu, and asks the player to guess

the word.

1.10 Managing Control Arrows: "arrow.rkt"

(require htdp/arrow) package: htdp-1ib
The teachpack implements a controller for moving shapes across a canvass.

(control-left-right shape n move draw) — true
shape : Shape
n : number?
move : (-> number? Shape Shape)
draw : (-> Shape true)

Moves shape n pixels left (negative) or right (positive).

(control-up-down shape n move draw) — true
shape : Shape
n : number?
move : (-> number? Shape Shape)
draw : (-> Shape true)

Moves shape n pixels up (negative) or down (positive).

(control shape n move-lr move-ud draw) — true
shape : Shape
n : number?
move-1lr : (-> number? Shape Shape)
move-ud : (-> number? Shape Shape)
draw : (-> Shape true)

Moves shape N pixels left or right and up or down, respectively.

30

Example:

; A shape is a structure:
; (make-posn num num)

; RAD : the radius of the simple disk moving across a canvas
(define RAD 10)

; move : number shape -> shape or false
; to move a shape by delta according to translate
; effect: to redraw it
(define (move delta sh)
(cond
[(and (clear-solid-disk sh RAD)
(draw-solid-disk (translate sh delta) RAD))
(translate sh delta)]
[else false]))

; translate : shape number -> shape
; to translate a shape by delta in the x direction
(define (translate sh delta)

(make-posn (+ (posn-x sh) delta) (posn-y sh)))

; draw-it : shape -> true
; to draw a shape on the canvas: a disk with radius
(define (draw-it sh)

(draw-solid-disk sh RAD))

; Run:

; this creates the canvas
(start 100 50)

; this creates the controller GUI

(control-left-right (make-posn 10 20) 10 move draw-it)

1.11 Manipulating Simple HTML Documents: "docs.rkt"

(require htdp/docs) package: htdp-1ib
The teachpack provides three functions for creating simple “HTML” documents:

Annotation An Annotation is a symbol that starts with “<”” and ends in “>". An end anno-
tation is one that starts with “</”.

31

(atom? x) — boolean?
x @ any/c

Determines whether or not a value is a number, a symbol, or a string.
(annotation? x) — boolean?
x @ any/c

Determines whether or not a symbol is a document annotation.

(end-annotation x) — Annotation
x . Annotation

Consumes an annotation and produces a matching ending annotation.

(write-file 1) — true
1 : (list-of atom)

Consumes a list of symbols and annotations and prints them out as a "file".

Sample session: set teachpack to "docs.rkt" and click Run:

> (annotation? 0)

false

> (annotation? ’<bold>)

true

> (end-annotation 0)

end-annotation: not an annotation: 0
> (write-file (list ’a ’b))

ab

1.12 Working with Files and Directories: "dir.rkt"

(require htdp/dir) package: htdp-1ib
The teachpack provides structures and functions for working with files and directories:

(struct dir (name dirs files)
#:extra-constructor-name make-dir)
name : symbol?
dirs : (listof dir?)
files : (listof file?)

32

(struct file (name size content)
#:extra-constructor-name make-file)
name : symbol?
size : integer?
content : (listof char?)

(create-dir path) — dir?
path : symbol?

Turns the directory found at path on your computer into an instance of dir?.

Sample: Set teachpack to "dir.rkt" and click Run:

> (create-dir ".")
(make-dir
N
empty
(cons (make-file ’balll.gif 1289 empty)
(cons (make-file ’blueball.gif 205 empty)
(cons (make-file ’greenbal.gif 204 empty)
(cons (make-file ’redball.gif 203 empty)
(cons (make-file ’ufo.gif 1044 empty)
(cons (make-file ’gif-
test.rkt 5811 empty)
empty)))))))

@

Using “.” usually means the directory in which your program is located. In this case, the
directory contains no sub-directories and six files.

Note: Soft links are always treated as if they were empty files.

1.13 Graphing Functions: "graphing.rkt"

(require htdp/graphing) package: htdp-1ib

The teachpack provides two functions for graphing functions in the regular (upper right)
quadrant of the Cartesian plane (between 0 and 10 in both directions):

(graph-fun f color) — true
f : (-> number? number?)
color : symbol?

33

Draws the graph of f with the given color.

(graph-line line color) — true
line : (-> number? number?)
color : symbol?

Draws line, a function representing a straight line, with a given color.

For color symbols, see(§1.7 “Simple Drawing: "draw.rkt"}

In addition, the teachpack re-exports the entire functionality of the drawing library; see[§1.7]
[*Simple Drawing: "draw.rkt"”|for documentation.

1.14 Simple Graphical User Interfaces: "gui.rkt"

(require htdp/gui) package: htdp-1ib

The teachpack provides functions for creating and manipulating graphical user interfaces.
We recommend using 2htdp/universe instead.

Window A Window is a data representation of a visible window on your computer screen.

GUI-ITEM A GUI-Item is a data representation of an active component of a window on your
computer screen.

(create-window g) — Window
g : (listof (listof GUI-ITEM))

Creates a window from the “matrix” of gui items g.
(window? x) — boolean?
x : any/c
Is the given value a window?
(show-window w) — true

w : Window

Shows w.

(hide-window w) — true
w : window

Hides w.

34

(make-button label callback) — GUI-ITEM
label : string>
callback : (-> event), boolean)

Creates a button with 1abel and callback function. The latter receives an argument that

it may safely ignore.

(make-message msg) — GUI-ITEM
msg : string?

Creates a message item from msg.

(draw-message g m) — true
g : GUI-ITEM
m : string?

Displays m in message item g and erases the current message.

(make-text txt) — GUI-ITEM
txt : string?

Creates an text editor (with label txt) that allows users to enter text.

(text-contents g) — string?
g : GUI-ITEM

Determines the current contents of a text GUI-ITEM.

(make-choice choices) — GUI-ITEM
choices : (listof string?)

Creates a choice menu from choices that permits users to choose from some alternatives.

(choice-index g) — natural-number/c
g : GUI-ITEM

Determines the choice that is currently selected in a choice GUI-ITEM; the result is the

0-based index in the choice menu

Example 1:

35

> (define w

(create-window

(list (list (make-button "QUIT" (lambda (e) (hide-

window w)))))))
; A button appears on the screen.
; Click on the button and it will disappear.
> (show-window w)
; The window disappears.

Example 2:

; textl : GUI-ITEM
(define textl
(make-text "Please enter your name"))

; msgl : GUI-ITEM
(define msgl

(make-message (string-append "Hello, World" (make-
string 33 #\space))))

; Event -> true
; draws the current contents of textl into msgl, prepended with
"Hello, "
(define (respond e)
(draw-message msgl (string-append "Hello, " (text-
contents textl))))

; set up window with three "lines":
; a text field, a message, and two buttons
; fill in text and click OKAY
(define w
(create-window
(list
(list textl)
(list msgl)
(list (make-button "OKAY" respond)
(make-button "QUIT" (lambda (e) (hide-window w)))))))

1.15 An Arrow GUI: "arrow-gui.rkt"

(require htdp/arrow-gui) package: htdp-1ib

The teachpack provides functions for creating and manipulating an arrow GUI. We recom-
mend using 2htdp/universe instead.

36

modelT (-> button), event’, true)

A modelT is a function that accepts and ignores two arguments.

(control) — symbol?

Reads out the current state of the message field.
(view s) — true
s : (or/c string? symbol?)
Displays s in the message field.

(connect 1 r u d) — true

1 : modelT
r : modelT
u : modelT
d : modelT

Connects four controllers with the four directions in the arrow window.

Example:

; Advanced
(define (make-model dir)
(lambda (b e)
(begin
(view dir)
(printf "~a ~mn" (control)))))

(connect (make-model "left'")
(make-model "right')

(make-model "up")
(make-model "down"))

Now click on the four arrows. The message field contains the current direction, the print-out
the prior contents of the message field.

1.16 Controlling an Elevator: "elevator.rkt"

(require htdp/elevator) package: htdp-1ib

The teachpack implements an elevator simulator.

37

It displays an eight-floor elevator and accepts mouse clicks from the user, which are trans-
lated into service demands for the elevator.

(run NextFloor) — any/c
NextFloor : number?

Creates an elevator simulator that is controlled by NextFIloor. This function consumes the
current floor, the direction in which the elevator is moving, and the current demands. From
that, it computes where to send the elevator next.

Example: Define a function that consumes the current state of the elevator (three arguments)
and returns a number between 1 and 8. Here is a non-sensical definition:

(define (controller x y z) 7)

It moves the elevator once, to the 7th floor.

Second, set the teachpack to "elevator.rkt", click Run, and evaluate

(run controller)

1.17 Lookup GUI: "lkup-gui.rkt"

(require htdp/lkup-gui) package: htdp-1ib

The teachpack provides three functions:

(control index) — symbol?
index : natural-number?

reads out the indexth guess choice, starting with O

(view msg) — true/c
msg : (or/c string? symbol?)

displays its msg argument in the message panel
(connect event-handler) — true/c

event-handler : (-> button’, event), true/c)

connects a controller (handler) with the Check button displays frame

Example:

38

(connect
(lambda (e b)
(view (control))))

This example simply mirrors what the user types in to the message field.

1.18 Guess GUI: "guess-gui.rkt"

(require htdp/guess-gui) package: htdp-1ib
The teachpack provides three functions:

(control index) — symbol?
index : natural-number?

reads out the indexth guess choice, starting with O
(view msg) — true/c
msg : (or/c string? symbol?)
displays its msg argument in the message panel
(connect handler) — true/c
handler : (-> button}, event’, true/c)
connects a controller (handler) with the Check button displays frame
Example:
(connect (lambda (e b)
(begin

(printf "Oth digit: ~s~n" (control 0))
(view (control 0)))))

1.19 Queens: "show-queen.rkt"

(require htdp/show-queen) package: htdp-1ib

The teachpack provides the function show-queen, which implements a GUI for exploring
the n-queens problem.

39

(show-queen board) — true
board : (list-of (list-of boolean?))

The function show-queen consumes a list of lists of booleans that describes a board. Each
of the inner lists must have the same length as the outer list. The trues correspond to
positions where queens are, and the falses correspond to empty squares. The function
returns nothing.

In the GUI window that show-queen opens, the red and orange dots show where the queens
are. The green dot shows where the mouse cursor is. Each queen that threatens the green
spot is shown in red, and the queens that do not threaten the green spot are shown in orange.

1.20 Matrix Functions: "matrix.rkt"

(require htdp/matrix) package: htdp-1ib

The experimental teachpack supports matrices and matrix functions. A matrix is just a rect-
angle of “objects’. It is displayed as an image, just like the images from|[§1.1 “Manipulating]|
mages: "image.rkt" | Matrices are images and, indeed, scenes in the sense of the [§1.2]

No educational materials involving matrices exist.

The functions access a matrix in the usual (school-mathematics) manner: row first, column
second.

The functions aren’t tuned for efficiency so don’t expect to build programs that process lots
of data.

Rectangle A Rectangle (of X) is a non-empty list of lists containing X where all elements of
the list are lists of equal (non-zero) length.

(matrix? o) — boolean?
o : any/c
determines whether the given object is a matrix?
(matrix-rows m) — natural-number/c
m : matrix?
determines how many rows this matrix m has
(matrix-cols m) — natural-number/c

m : matrix?

40

determines ow many columns this matrix m has

(rectangle->matrix r) — matrix?
r : Rectangle

creates a matrix from the given Rectangle

(matrix->rectangle m) — Rectangle
m : matrix?

creates a rectangle from this matrix m

(make-matrix n m 1) — matrix?
n : natural-number/c
m : natural-number/c
1 : (Listof X)

creates an n by m matrix from 1

NOTE: make-matrix would consume an optional number of entries, if it were like make-
vector

(build-matrix n m f) — matrix?
n : natural-number/c
m : natural-number/c
(-> (and/c natural-number/c (</c m))
f (and/c natural-number/c (</c n))
any/c)

creates an n by m matrix by applying f to (0 ,0), (0 ,1), ..., ((subl m) ,(subl n))

(matrix-ref m i j) — any/c
m : matrix?
i : (and/c natural-number/c (</c (matrix-rows m)))
j : (and/c natural-number/c (</c (matrix-rows m)))

retrieve the item at (i,j) in matrix m

(matrix-set m i j x) — matrix?
m : matrix?
i : (and/c natural-number/c (</c (matrix-rows m)))
j : (and/c natural-number/c (</c (matrix-rows m)))
x : any/c

creates a new matrix with x at (i,5) and all other places the same as in m

41

(matrix-where? m pred?) — (listof posn?)
m : matrix?
pred? : (-> any/c boolean?)

(matrix-where? M P) produces a list of (make-posn i j) such that (P (matrix-ref
M i j)) holds

(matrix-render m) — Rectangle
m : matrix?
renders this matrix m as a rectangle of strings
(matrix-minor m i j) — matrix?
m : matrix?

i : (and/c natural-number/c (</c (matrix-rows m)))
j ¢ (and/c natural-number/c (</c (matrix-rows m)))

creates a matrix minor from m at (i,j)

42

2 HtDP/2e Teachpacks

2.1 Batch Input/Output: "batch-io.rkt"

(require 2htdp/batch-io) package: htdp-1ib

The batch-io teachpack introduces several functions and a form for reading content from
files and one function for writing to a file.

2.1.1 IO Functions

All functions that read a file consume the name of a file and possibly additional arguments.
They assume that the specified file exists in the same folder as the program; if not they signal
an error:

(read-file f) — string?
f : (or/c ’standard-in ’stdin (and/c string? file-exists?))

reads the standard input device (until closed) or the content of file £ and produces it
as a string, including newlines.

Example:

> (read-file "data.txt'")
"hello world \n good bye \n\ni, for 1, am done "

assuming the file named "data.txt" has this shape:

hello world
good bye

i, for 1, am domne

Note how the leading space in the second line translates into the space between the
newline indicator and the word "good" in the result.

(read-1strings f) — (listof 1string?)
f : (or/c ’standard-in ’stdin (and/c string? file-exists?))

reads the standard input device (until closed) or the content of file £ and produces it
as a list of one-char strings, one per character.

Example:

43

> (read-1strings "data.txt")
’("h"

lle"

l|1||

l|l||

lloll

llwll
lloll

llrll

lllll
lldll

ll\nll
llgll

lloll

lloll
lldll

ll'bll

y
llell
non

ll\nll
n\nu

1
non
b

llfll

l|oll

llrll

"non
l|1|l
non
" ’ "
llall
llmll
nn
lldll
lloll
llnll

llell

" ll)

Note how this function reproduces all parts of the file faithfully, including spaces and

44

newlines.

(read-lines f) — (listof string?)
f : (or/c ’standard-in ’stdin (and/c string? file-exists?))

reads the standard input device (until closed) or the content of file £ and produces it
as a list of strings, one per line.

Example:

> (read-lines "data.txt")
’("hello world " " good bye " "" "i, for 1, am done ")

when "data.txt" is the name of the same file as in the preceding item. And again,
the leading space of the second line shows up in the second string in the list.

(read-words f) — (listof string?)
f : (or/c ’standard-in ’stdin (and/c string? file-exists?))

reads the standard input device (until closed) or the content of file £ and produces it
as a list of strings, one per white-space separated token in the file.

Example:

> (read-words "data.txt")
b (llhelloll "World" |lgood|| llbyell lli, " "forﬂ ||1 s " ||am" lldonell)

This time, however, the extra leading space of the second line of "data.txt" has
disappeared in the result. The space is considered a part of the separator that surrounds
the word "good".

(read-words/line f) — (listof string?)
f : (or/c ’standard-in ’stdin (and/c string? file-exists?))

reads the standard input device (until closed) or the content of file £ and produces it
as a list of lists, one per line; each line is represented as a list of strings.

Example:
> (read-words/line '"data.txt")

’(("hello" "WOI‘ld") ("good" "bye") () ("i," "for" "1," "am"
"done"))

The results is similar to the one that read-words produces, except that the organiza-

tion of the file into lines is preserved. In particular, the empty third line is represented
as an empty list of words.

45

(read-words-and-numbers/line f) — (listof (or number? string?))
f : (or/c ’standard-in ’stdin (and/c string? file-exists?))

reads the standard input device (until closed) or the content of file £ and produces it
as a list of lists, one per line; each line is represented as a list of strings and numbers.

Example:

> (read-words-and-numbers/line '"data.txt")
b (("hello" llworld") ("good" Ubye") () (lli," llforll |l1,l| |laml|
udoneu))

The results is like the one that read-words/line produces, except strings that can
be parsed as numbers are represented as numbers.

(read-csv-file f) — (listof (listof any/c))
f : (or/c ’standard-in ’stdin (and/c string? file-exists?))

reads the standard input device (until closed) or the content of file £ and produces it
as a list of lists of comma-separated values.

Example:

> (read-csv-file "data.csv")
J (("hello" llworldll) ("good" Ubye") ("ill llaInU lldone"))

where the file named "data.csv" has this shape:

hello, world
good, bye
i, am, done

It is important to understand that the rows don’t have to have the same length. Here
the third line of the file turns into a row of three elements.

(read-csv-file/rows f s) — (listof X7)
f : (or/c ’standard-in ’stdin (and/c string? file-exists?))
s : (-> (listof any/c) X7)

reads the standard input device (until closed) or the content of file £ and produces it
as reads the content of file £ and produces it as list of rows, each constructed via s.

Examples:
> (read-csv-file/rows "data.csv'" (lambda (x) x))
b ((llhelloll "WOI‘ld") ("good" ||bye|l) (Ilill ||a_-[nl| lldonell))

> (read-csv-file/rows "data.csv" length)
(2 2 3)

46

The first example shows how read-csv-file is just a short form for read-csv-
file/rows; the second one simply counts the number of separated tokens and the
result is just a list of numbers. In many cases, the function argument is used to con-
struct a structure from a row.

(read-xexpr f) — xexpr?
f : (or/c ’standard-in ’stdin (and/c string? file-exists?))

reads the standard input device (until closed) or the content of file £ and produces it
as an X-expression, including whitespace such as tabs and newlines.

Assumption: the file £ or the selected input device contains an XML element. It
assumes the file contains HTML-like text and reads it as XML.

Example:

> (read-xexpr "data.xml")
>(pre () "\nhello world\ngood bye\n\ni, for 1, am done\n")

assuming the file named "data.xml1" has this shape:

<pre>
hello world
good bye

i, for 1, am domne
</pre>

Note how the result includes "\\n" for the newlines.

(read-plain-xexpr f) — xexpr?
f : (or/c ’standard-in ’stdin (and/c string? file-exists?))

reads the standard input device (until closed) or the content of file £ and produces it
as an X-expression, without whitespace.

Assumption: the file f or the selected input device contains an XML element and the
content of this element are other XML elements and whitespace. In particular, the
XML element does not contain any strings as elements other than whitespace.

Example:

> (read-plain-xexpr 'data-plain.xml")
’ (pre

0O

(1ine ((text "hello world")))

(1ine ((text "good bye")))

(1ine)

(line ((text "i, for 1, am done"))))

47

assuming the file named "data-plain.xml" has this shape:

<pre>
<line text="hello world" />

<line text="good bye" />

<line />

<line text="i, for 1, am done" />
</pre>

Compare this result with the one for read-xexpr.

There is only one writer function at the moment:

(write-file f cntnt) — string?
f : (or/c ’standard-out ’stdout string?)
cntnt : string?

sends cntnt to the standard output device or turns cntnt into the content of file
£, located in the same folder (directory) as the program. If the write succeeds, the
function produces the name of the file (£); otherwise it signals an error.

Example:

> (if (string=7 (write-file '"output.txt" "good
bye") "output.txt")
(write-file "output.txt" "cruel world")
(write-file "output.txt" "cruel world"))
"output.txt"

After evaluating this examples, the file named "output.txt" looks like this: cruel
world Explain why.

Warning: The file IO functions in this teachpack are platform dependent. That is, as long as
your programs and your files live on the same platform, you should not have any problems
reading the files that programs wrote and vice versa. If, however, one of your programs
writes a file on a Windows operating system and if you then copy this output file to a Mac,
reading the copied text file may produce extraneous “return” characters. Note that this de-
scribes only one example of possible malfunction; there are other cases when trans-platform
actions may cause this teachpack to fail.

2.1.2 Web Functions

All functions that read a web-based XML consume a URL and possibly additional argu-
ments. They assume that the computer is connected to specified part of the web, though they
tolerate non-existent web pages (404 errors)

48

(read-xexpr/web u) — xexpr?
u : string?

reads the content of URL u and produces the first XML element as an xexpr? in-
cluding whitespace such as tabs and newlines. If possible, the function interprets the

HTML at the specified URL as XML. The function returns #f if the web page does
not exist (404)

(read-plain-xexpr/web u) — xexpr?
u : string?

reads the content of URL u and produces the first XML element as an xexpr? without

whitespace. If possible, the function interprets the HTML at the specified URL as
XML. The function returns #f if the web page does not exist (404)

(url-exists? u) — boolean?
u : string?

ensures that the specified URL u does not produce a 404 error.

(xexpr? u) — boolean?
u : any?

checks that the given value is an X-expression in the following sense:

; Xexpr is one of:

; - symbol?

; - string?

; - number?

;- (cons symbol? (cons [List-of Attribute] [List-of Xexpr]))
; - (cons symbol? [List-of Xexpr])

; Attribute is:

; (1ist symbol? string?)

; (list ’a "some text") is called an a-Attribute
; and "some text" is a’s value.

Note that full Racket uses a wider notion of X-expression.

(xexpr-as-string x) — string?
X Xexpr?

renders the given X-expression as a string.

49

(url-html-neighbors u) — (listof string?)
u : string?

retrieves the content of URL u and produces the list of all URLs that refer to .html
pages via an <a> tag.

2.1.3 Testing

(simulate-file process str ...)

simulates a file system for the function process, which reads a file and may produce one.
Note: this form is under development and will be documented in a precise manner after it is
finalized and useful for a wide audience.

2.2 Image Guide

This section introduces the 2htdp/image library through a series of increasingly complex
image constructions and discusses some subtle details of cropping and outline images.

2.2.1 Overlaying, Above, and Beside: A House

To build a simple-looking house, we can place a triangle above a rectangle.

> (above (triangle 40 "solid" "red")
(rectangle 40 30 "solid" "black"))

We can give the house two roofs by putting two triangles next to each other.

> (above (beside (triangle 40 "solid" "red")
(triangle 40 "solid" "red"))
(rectangle 80 40 "solid" "black"))

50

But if we want the new roof to be a little smaller, then they do not line up properly.

> (above (beside (triangle 40 "solid" "red")
(triangle 30 "solid" "red"))
(rectangle 70 40 "solid" "black"))

A

Instead, we can use beside/align to line up the two triangles along their bottoms instead
of along the middles (which is what beside does).

> (define victorian
(above (beside/align "bottom"
(triangle 40 "solid" "red")
(triangle 30 "solid" "red"))
(rectangle 70 40 "solid" "black")))

> victorian

To add a door to the house, we can overlay a brown rectangle, aligning it with the center
bottom of the rest of the house.

> (define door (rectangle 15 25 "solid" "brown'"))

> (overlay/align "center" "bottom" door victorian)

51

We can use a similar technique to put a doorknob on the door, but instead of overlaying the
doorknob on the entire house, we can overlay it just on the door.

> (define door-with-knob
(overlay/align "right" "center" (circle 3 "solid" "yellow") door))

> (overlay/align '"center" "bottom" door-with-knob victorian)

2.2.2 Rotating and Overlaying: A Rotary Phone Dial

A rotary phone dial can be built by from a black disk and 10 little white ones by placing the
white disks, one at a time, at the top of the black disk and then rotating the entire black disk.
To get started, lets define a function to make little white disks with numbers on them:

> (define (a-number digit)
(overlay
(text (number->string digit) 12 "black")
(circle 10 "solid" "white")))

We’ll use place-and-turn to put the numbers onto the disk:

> (define (place-and-turn digit dial)
(rotate 30
(overlay/align "center" "top"
(a-number digit)
dial)))

For example:

52

> (place-and-turn
0
(circle 60 "solid" "black"))

0

> (place-and-turn

8

(place-and-turn
9
(place-and-turn

0
(circle 60 "solid" "black"))))

%

We can write a single function to put all of the numbers together into the dial:

> (define (place-all-numbers dial)
(place-and-turn
1
(place-and-turn
2
(place-and-turn
3
(place-and-turn
4
(place-and-turn
5

53

(place-and-turn
6
(place-and-turn
-
(place-and-turn
8
(place-and-turn
9
(place-and-turn
0
dial))))))3))))

> (place-all-numbers (circle 60 "solid" '"black"))

That definition is long and tedious to write. We can shorten it using fold1:

> (define (place-all-numbers dial)
(foldl place-and-turn
dial
’(0987654321)))

> (place-all-numbers (circle 60 "solid" '"black"))

To finish off the dial, we need to rotate it a little bit to its natural position and put a white
disk in the center of it. Here’s the inner dial:

54

> (define inner-dial
(overlay
(text "555-1234" 9 "black")
(circle 30 "solid" "white")))

and here’s a function to build the entire rotary dial, with an argument that scales the dial:

> (define (rotary-dial f)
(scale
f
(overlay
inner-dial
(rotate
-90
(place-all-numbers (circle 60 "solid" "black"))))))

> (rotary-dial 2)

Looking at the image, it feels like the numbers are too close to the edge of the dial. So
we can adjust the place-and-turn function to put a little black rectangle on top of each
number. The rectangle is invisible because it ends up on top of the black dial, but it does
serve to push the digits down a little.

> (define (place-and-turn digit dial)

55

(rotate 30
(overlay/align "center" "top"
(above
(rectangle 1 5 "solid" "black")
(a-number digit))
dial)))

> (rotary-dial 2)

2.2.3 Alpha Blending

With shapes that have opaque colors like "red" and "blue", overlaying one on top com-
pletely blots out the one one the bottom.

For example, the red rectangle here completely covers the blue one.

> (overlay
(rectangle 60 100 "solid" (color 127 255 127))
(rectangle 100 60 "solid" (color 127 127 255)))

56

But 2htdp/image also supports colors that are not completely opaque, via the (optional)
fourth argument to color.

> (overlay
(rectangle 60 100 "solid" (color 0 255 0 127))
(rectangle 100 60 "solid" (color O 0 255 127)))

In this example, the color (color 0 255 0 127) looks just like the color (color 127
255 127) when the background is white. Since white is (color 255 255 255), we end
up getting 1/2 of 255 for the red and blue components and 255 for the green one.

We can also use alpha blending to make some interesting effects. For example, the function
spin-alot takes an image argument and repeatedly places it on top of itself, rotating it each
time by 1 degree.

> (define (spin-alot t)
(local [(define (spin-more i 0)
(cond
[(= 6 360) 1i]
[else
(spin-more (overlay i (rotate 6 t))

+ 0 1))IN1]
(spin-more t 0)))

Here are some uses of spin-alot, first showing the original shape and then the spun shape.

57

> (rectangle 12 120 "solid" (color 0 0 255))

> (spin-alot (rectangle 12 120 "solid" (color 0 0 255 1)))

> (triangle 120 "solid" (color 0 0 255))

> (spin-alot (triangle 120 "solid" (color 0 0 255 1)))

> (isosceles-triangle 120 30 "solid" (color O 0 255))

58

> (spin-alot (isosceles-triangle 120 30 "solid" (color O 0 255 1)))

2.2.4 Recursive Image Functions

It is also possible to make interesting looking shapes with little recursive functions. For
example, this function repeatedly puts white circles that grow, evenly spaced around the
edge of the given shape:

> (define (swoosh image s)
(cond
[(zero? s) imagel
[else (swoosh
(overlay/align "center" "top"
(circle (x s 1/2) "solid" "white'")
(rotate 4 image))
(- s 1)1

> (swoosh (circle 100 "solid" "black")
94)

59

More conventional fractal shapes can also be written using the image library, e.g.:

> (define (sierpinski-carpet n)
(cond

[(zero? n) (square 1 "solid" "black")]

[else

(local [(define c (sierpinski-carpet (- n 1)))
(define i (square (image-width c) "solid" "white"))]

(above (beside c ¢ c)

(beside c i c)
(beside c ¢ ¢)))1))

> (sierpinski-carpet 5)

60

We can adjust the carpet to add a little color:

> (define (colored-carpet colors)
(cond

[(empty? (rest colors))

(square 1 "solid" (first colors))]

[else

(local [(define c (colored-carpet (rest colors)))
(define i (square (image-width c¢) "solid" (car colors)))]

(above (beside ¢ ¢ c)

(beside c i c)
(beside c ¢ ¢)))1))

> (colored-carpet
(list (color 51 0 255)
(color 102 0 255)
(color 153 0 255)
(color 204 0 255)
(color 255 0 255)
(color 255 204 0)))

61

The Koch curve can be constructed by simply placing four curves next to each other, rotated
appropriately:

> (define (koch-curve n)
(cond

[(zero? n) (square 1 "solid" "black")]

[else

(local [(define smaller (koch-curve (- n 1)))]

(beside/align "bottom"

smaller
(rotate 60 smaller)
(rotate -60 smaller)
smaller))]))

> (koch-curve 5)

62

ﬂ}‘\,m”}\ﬂgwh} (2

And then put three of them together to form the Koch snowflake.

> (above
(beside
(rotate 60 (koch-curve 5))
(rotate -60 (koch-curve 5)))
(flip-vertical (koch-curve 5)))

63

64

2.2.5 Rotating and Image Centers

When rotating an image, some times the image looks best when it rotates around a point that
is not the center of the image. The rotate function, however, just rotates the image as a
whole, effectively rotating it around the center of its bounding box.

For example, imagine a game where the hero is represented as a triangle:

> (define (hero)
(triangle 30 "solid" (color 255 0 0 a)))

> (hero 255)

>

rotating the hero at the prompt looks reasonable:

> (rotate 10 (hero 255))

| 4

> (rotate 20 (hero 255))

\ 4

> (rotate 30 (hero 255))

v

but if the hero has to appear to spin in place, then it will not look right, as you can kind of
see if we use a-blending to represent old positions of the hero:

> (overlay (rotate 0 (hero 255))
(rotate 10 (hero 125))
(rotate 20 (hero 100))
(rotate 30 (hero 75))
(rotate 40 (hero 50))
(rotate 50 (hero 25)))

A

What we’d really want is for the hero to appear to rotate around the centroid of the triangle.

65

To achieve this effect, we can put the hero onto a transparent circle such that the center of
the whole image lines up with the centroid of the triangle:

> (define (hero-on-blank «)
(define the-hero (hero a))

(define
(define
(define
(define
(define
(define

w (image-width the-hero))

h (image-height the-hero))
d (max w h))

dx (/ w 2)) ; centroid
dy (* 2/3 h)) ; centroid y offset
(circle d "solid"

(place-image/align the-hero (- d

blank

and now the rotating hero looks reasonable:

> (overlay (rotate 0

A

(rotate
(rotate
(rotate
(rotate
(rotate

10
20
30
40
50

(hero-on-blank
(hero-on-blank
(hero-on-blank
(hero-on-blank
(hero-on-blank
(hero-on-blank

2.2.6 Image Interoperability

Images can connect to other libraries. Specifically:

x offset

(color 255 255 255 0)))
dx) (- d dy) "left" "top" blank))

255))

125))

100))
75))
50))
25)))

images are snipy objects, so can be inserted into text? and pasteboard} objects

they implement the convert protocol for *png-bytes

they implement the pict-convert protocol, and

there is a low-level interface for drawing directly into a dc<%> object: render-image.

66

2.2.7 The Nitty Gritty of Pixels, Pens, and Lines

The image library treats coordinates as if they are in the upper-left corner of each pixel, and
infinitesimally small (unlike pixels which have some area).

Thus, when drawing a solid square of whose side-length is 10, the image library colors in
all of the pixels enclosed by the square starting at the upper left corner of (0,0) and going
down to the upper left corner of (10,10), so the pixel whose upper left at (9,9) is colored
in, but the pixel at (10,10) is not. All told, 100 pixels get colored in, just as expected for a
square with a side length of 10.

When drawing lines, however, things get a bit more complex. Specifically, imagine drawing
the outline of that rectangle. Since the border is between the pixels, there really isn’t a natural
pixel to draw to indicate the border. Accordingly, when drawing an outline square (without
a pen specification, but just a color as the last argument), the image library uses a pen whose
width is 1 pixel, but draws a line centered at the point (0.5,0.5) that goes down and around to
the point (10.5,10.5). This means that the outline slightly exceeds the bounding box of the
shape. Specifically, the upper and left-hand lines around the square are within the bounding
box, but the lower and right-hand lines are just outside.

This kind of rectangle is useful when putting rectangles next to each other and avoiding extra
thick lines on the interior. For example, consider building a grid like this:

> (define sl1 (square 20 ’outline ’black))
> (define rl1 (beside sl sl s1 s1 s1 s1))

> (above r1l rl rl rl ri ri)

The reason interior lines in this grid are the same thickness as the lines around the edge is
because the rectangles overlap with each other. That is, the upper-left rectangle’s right edge
is right on top of the next rectangle’s left edge.

The special case of adding 0.5 to each coordinate when drawing the square applies to all
outline polygon-based shapes that just pass color, but does not apply when a pen is passed
as the last argument to create the shape. For example, if using a pen of thickness 2 to draw

67

a rectangle, we get a shape that has a border drawing the row of pixels just inside and just
outside the shape. One might imagine that a pen of thickness 1 would draw an outline around
the shape with a 1 pixel thick line, but this would require 1/2 of each pixel to be illuminated,
something that is not possible. Instead, the same pixels are lit up as with the 2 pixel wide
pen, but with only 1/2 of the intensity of the color. So a 1 pixel wide black pen object draws
a 2 pixel wide outline, but in gray.

> (define pl (make-pen "black" 1 "solid" "round" "round"))

> (rectangle 20 20 "outline" pl)

When combining pens and cropping, we can make a rectangle that has a line that is one
pixel wide, but where the line is drawn entirely within the rectangle. This rectangle has a
two-pixel wide black pen, but we can crop out the outer portion of the pen.

> (define p2 (make-pen "black" 2 '"solid" "round" '"round"))
> (define s2 (crop 0 0 20 20 (rectangle 20 20 "outline" p2)))

> g2

Using that we can build a grid now too, but this grid has doubled lines on the interior.

> (define r2 (beside s2 s2 s2 s2 s2 s2))

> (above 12 r2 r2 r2 r2 r2)

While this kind of rectangle is not useful for building grids, it is important to be able to
build rectangles whose drawing does not exceed its bounding box. Specifically, this kind of

68

drawing is used by frame and empty-scene so that the extra drawn pixels are not lost if the
image is later clipped to its bounding box.

When using image->color-1list with outline shapes, the results can be surprising for the
same reasons. For example, a 2x2 black, outline rectangle consists of nine black pixels, as
discussed above, but since image->color-1list only returns the pixels that are within the
bounding box, we see only three black pixels and one white one.

> (image->color-list
(rectangle 2 2 "outline" "black"))
(list
(color 0 0 O 255)
(color 0 0 O 255)
(color 0 0 O 255)
(color 255 255 255 0))

The black pixels are (most of) the upper and left edge of the outline shape, and the one white
pixel is the pixel in the middle of the shape.

2.2.8 The Nitty Gritty of Alpha Blending

Alpha blending can cause imprecision in color comparisons resulting in shapes that appear
equal? even though they were created with different colors. This section explains how that
happens.

To start, consider the color (make-color 1 1 1 50). This color is nearly the darkest
shade of black, but with lots of transparency, to it renders a light gray color on a white
background, e.g.:

> (rectangle 100 100 "solid" (make-color 1 1 1 50))

If the background had been green, the same rectangle would look like a darker shade of
green:

69

> (overlay
(rectangle 100 100 "solid" (make-color 1 1 1 50))
(rectangle 200 200 "solid" "green'))

Surprisingly, this shape is equal to one that (apparently) has a different color in it:

> (equal?
(rectangle 100 100 ’solid (make-color 1 1 1 50))
(rectangle 100 100 ’solid (make-color 2 2 2 50)))
#t

To understand why, we must look more carefully at how alpha blending and image equality
work. Image equality’s definition is straightforward: two images are equality if they are
both drawn the same. That is, image equality is defined by simply drawing the two shapes
on a white background and then comparing all of the pixels for the two drawings (it is
implemented more efficiently in some cases, however).

So, for those shapes to be equal, they must be drawn with the same colors. To see what
colors were actually drawn, we can use image->color-1list. Since these images use the
same color in every pixel, we can examine just the first one:

> (first

(image->color-list

(rectangle 100 100 ’solid (make-color 1 1 1 50))))
(color 0 0 0 50)
> (first

(image->color-list

70

(rectangle 100 100 ’solid (make-color 2 2 2 50))))
(color 0 0 0 50)

As expected from the equal? test, the two colors are the same, but why should they be the
same? This is where a subtle aspect of alpha blending and drawing comes up. In general,
alpha blending works by taking the color of any shapes below the one being drawn and
then combining that color with the new color. The precise amount of the combination is
controlled by the alpha value. So, if a shape has an alpha value of «, then the drawing
library multiplies the new shapes color by (/ « 255) and the existing shape’s color by (-
1 (/ a 255)) and then adds the results to get the final color. (It does this for each of the
red, green, and blue components separately.)

Going back to the two example rectangles, the drawing library multiplies 50/255 by 1 for
the first shape and multiplies 50/255 by 2 for the second shape (since they are both drawn
on a white background). Then rounds them to integers, which results in O for both colors,
making the images the same.

2.3 Images: "image.rkt"

(require 2htdp/image) package: htdp-1ib

The image teachpack provides a number of basic image construction functions, along with
combinators for building more complex images out of existing images. Basic images include
various polygons, ellipses and circles, and text, as well as bitmaps. Existing images can be
rotated, scaled, flipped, and overlaid on top of each other.

2.3.1 Basic Images

(circle radius mode color) — image?
radius : (and/c real? (not/c negative?))
mode : mode?
color : image-color?

(circle radius outline-mode pen-or-color) — image?
radius : (and/c real? (not/c negative?))
outline-mode : (or/c ’outline "outline")
pen-or-color : (or/c pen? image-color?)

Constructs a circle with the given radius, mode, and color.

Note that when the mode is ’outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See [§2.2.7]
[“The Nitty Gritty of Pixels, Pens, and Lines”| (in the[§2.2 “Image Guide™) for a more careful
explanation of the ramifications of this fact.

71

In the context of
this documentation,
a bitmap denotes a
special form of
image?, namely a
collection of pixels
associated with an
image. It does not
refer to the
bitmap class.
Typically such
image-bitmaps
come about via the
Insert Image...
menu item in
DrRacket

If the mode argument is outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is ’solid or "solid", then the last argument must
be an image-color?.

Examples:

> (circle 30 "outline" "red")

I/F\I
N

> (circle 20 "solid" "blue")

> (circle 20 100 "blue")

(ellipse width height mode color) — image?
width : (and/c real? (not/c negative?))
height : (and/c real? (not/c negative?))
mode : mode?
color : image-color?
(ellipse width height mode pen-or-color) — image?
width : (and/c real? (not/c negative?))
height : (and/c real? (not/c negative?))
mode : (or/c ’outline "outline")
pen-or-color : (or/c image-color? pen?)

Constructs an ellipse with the given width, height, mode, and color.

Note that when the mode is ’outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See
|“The Nitty Gritty of Pixels, Pens, and Lines”|(in the[§2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is ’outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is ’solid or "solid", then the last argument must
be an image-color?.

Examples:

> (ellipse 60 30 "outline" "black'")

72

C D

> (ellipse 30 60 "solid" "blue")

> (ellipse 30 60 100 "blue")

(line x1 y1 pen-or-color) — image?
x1 : real?
y1 : real?
pen-or-color : (or/c pen? image-color?)

Constructs an image representing a line segment that connects the points (0,0) to (x1,y1).

Examples:

> (line 30 30 "black")

> (line -30 20 "red")
> (line 30 -20 "red")

(add-line image x1 y1 x2 y2 pen-or-color) — image?

image : image?
x1 : real?
y1 : real?
x2 : real?
y2 : real?

pen-or-color : (or/c pen? image-color?)

Adds a line to the image image, starting from the point (x1,y1) and going to the point
(x2,y2). Unlike scene+line, if the line passes outside of image, the image gets larger to
accommodate the line.

73

Examples:

> (add-line (ellipse 40 40 "outline" "maroon"
0 40 40 O "maroon")

> (add-line (rectangle 40 40 "solid" "gray")
-10 50 50 -10 "maroon")

> (add-line
(rectangle 100 100 "solid" "darkolivegreen")
25 25 75 75

(add-curve image
x1
y1
anglel
pulll
x2
y2
angle2
pull2
pen-or-color) — image?
image : image?
x1 : real?
y1 : real?
anglel : angle?
pulll : real?
x2 @ real?
y2 : real?
angle2 : angle?

74

(make-pen "goldenrod" 30 "solid" "round" "round"))

pull2 : real?
pen-or-color : (or/c pen? image-color?)

Adds a curve to image, starting at the point (x1,y1), and ending at the point (x2,y2).

The anglel and angle2 arguments specify the angle that the curve has as it leaves the
initial point and as it reaches the final point, respectively.

The pulll and pull2 arguments control how long the curve tries to stay with that angle.
Larger numbers mean that the curve stays with the angle longer.

Unlike scene+curve, if the line passes outside of image, the image gets larger to accom-
modate the curve.

Examples:

> (add-curve (rectangle 100 100 "solid" "black")
20 20 0 1/3
80 80 0 1/3
"white")

> (add-curve (rectangle 100 100 "solid" "black")
20200 1
80 80 0 1

"white")

> (add-curve
(add-curve
(rectangle 40 100 "solid" "black")
20 10 180 1/2
20 90 180 1/2

75

(make-pen "white" 4 "solid" "round" "round"))
20 10 0 1/2
20 90 0 1/2

(make-pen "white" 4 "solid" "round" "round"))

> (add-curve (rectangle 100 100 "solid" "black")

-20 -20 0 1

120 120 0 1

HredH)
—

y

(text string font-size color) — image?
string : string?
font-size : (and/c integer? (<=/c 1 255))
color : image-color?

Constructs an image that draws the given string, using the font size and color.

Examples:

> (text "Hello" 24 "olive")

Hello

> (text "Goodbye" 36 "indigo")

Goodbye

76

(text/font string
font-size
color
face
family
style
weight
underline?) — image?
string : string?
font-size : (and/c integer? (<=/c 1 255))
color : image-color?
face : (or/c string? #f)
(or/c ’default ’decorative ’roman ’script
’swiss ’modern ’symbol ’system)
style : (or/c ’normal ’italic ’slant)
weight : (or/c ’normal ’bold ’light)
underline? : any/c

family :

Constructs an image that draws the given string, using a complete font specification.

The face and the family combine to give the complete typeface. If face is available on
the system, it is used, but if not then a default typeface based on the family is chosen. The
style controls if the face is italic or not (on Windows and Mac OS X, ’slant and ’italic
are the same), the weight controls if it is boldface (or light), and underline? determines
if the face is underlined. For more details on these arguments, see font%, which ultimately
is what this code uses to draw the font.

Examples:

> (text/font "Hello" 24 "olive"
"Gill Sans" ’swiss ’normal ’bold #f)

Hello

> (text/font "Goodbye" 18 "indigo"
#f ’modern ’italic ’normal #f)

Goodbye

> (text/font "not really a link" 18 "blue"
#f ’roman ’normal ’normal #t)

not really a link

empty-image : image?
The empty image. Its width and height are both zero and it does not draw at all.

71

Examples:

> (image-width empty-image)
0
> (equal? (above empty-image
(rectangle 10 10 "solid" "red"))
(beside empty-image
(rectangle 10 10 "solid" "red")))
#t

In most cases, combining an image with empty-image produces the original image (as
shown in the above example). In some situations, however, the combination can cause the
resulting pict to have a different baseline (see image-baseline) and thus not be equal.

Examples:

> (image-baseline (above (text "Hello" 24 '"olive") empty-image))
30
> (image-baseline (text "Hello" 24 "olive"))
23
> (equal? (above (text "Hello" 24 "olive") empty-image)
(text "Hello" 24 "olive"))
#f

2.3.2 Polygons

(triangle side-length mode color) — image?
side-length : (and/c real? (not/c negative?))
mode : mode?
color : image-color?

(triangle side-length

outline-mode

pen-or-color) — image?
side-length : (and/c real? (not/c negative?))
outline-mode : (or/c ’outline "outline")
pen-or-color : (or/c pen? image-color?)

Constructs a upward-pointing equilateral triangle. The side-Iength argument determines
the length of the side of the triangle.

Note that when the mode is ’outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See
|"The Nitty Gritty of Pixels, Pens, and Lines™|(in the|§2.2 “Image Guide™) for a more careful
explanation of the ramifications of this fact.

78

If the mode argument is outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is ’solid or "solid", then the last argument must
be an image-color?.

Example:

> (triangle 40 "solid" "tan")

(right-triangle side-lengthl
side-length?2
mode
color) — image?
side-lengthl : (and/c real? (not/c negative?))
side-length2 : (and/c real? (not/c negative?))
mode : mode?
color : image-color?
(right-triangle side-lengthl
side-length?2
outline-mode
pen-or-color) — image?
side-lengthl : (and/c real? (not/c negative?))
side-length2 : (and/c real? (not/c negative?))
outline-mode : (or/c ’outline "outline")
pen-or-color : (or/c pen? image-color?)

Constructs a triangle with a right angle where the two sides adjacent to the right angle have
lengths side-lengthl and side-length2.

Note that when the mode is ’outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See [§2.2.7]
|"The Nitty Gritty of Pixels, Pens, and Lines™| (in the[§2.2 “Tmage Guide™) for a more careful
explanation of the ramifications of this fact.

If the mode argument is ’outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is ’solid or "solid", then the last argument must
be an image-color?.

Example:

> (right-triangle 36 48 "solid" "black")

79

(isosceles-triangle side-length
angle
mode
color) — image?
side-length : (and/c real? (not/c negative?))
angle : angle?
mode : mode?
color : image-color?
(isosceles-triangle side-length
angle
outline-mode
pen-or-color) — image?
side-length : (and/c real? (not/c negative?))
angle : angle?
outline-mode : (or/c ’outline "outline")
pen-or-color : (or/c pen? image-color?)

Creates a triangle with two equal-length sides, of length side-length where the angle
between those sides is angle. The third leg is straight, horizontally. If the angle is less than
180, then the triangle will point up and if the angle is more, then the triangle will point
down.

Note that when the mode is ’outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See [§2.2.7]
|"The Nitty Gritty of Pixels, Pens, and Lines”|(in the[§2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is *outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is ’solid or "solid", then the last argument must
be an image-color?.

Examples:

> (isosceles-triangle 200 170 "solid" "seagreen")

T T e

> (isosceles-triangle 60 30 "solid" "aquamarine")

> (isosceles-triangle 60 330 "solid" "lightseagreen'")

80

To create a triangle given known sides and angles, the following family of functions are
useful:

* triangle/sss, if all three sides are known

* triangle/ass, triangle/sas, or triangle/ssa, if two sides and their included
angle are known

e triangle/aas, triangle/asa, or triangle/saa, if two angles and their shared
side are known.

They all construct a triangle oriented as follows:

A C

(triangle/sss side-length-a

side-length-b

side-length-c

mode

color) — image?
side-length-a : (and/c real? (not/c negative?))
side-length-b : (and/c real? (not/c negative?))
side-length-c : (and/c real? (not/c negative?))
mode : mode?
color : image-color?

81

(triangle/sss side-length-a

side-length-b

side-length-c

outline-mode

pen-or-color) — image?
side-length-a : (and/c real? (not/c negative?))
side-length-b : (and/c real? (not/c negative?))
side-length-c : (and/c real? (not/c negative?))
outline-mode : (or/c ’outline "outline")
pen-or-color : (or/c pen? image-color?)

Creates a triangle where the side lengths a, b, and, ¢ are given by side-length-a, side-
length-b, and, side-Ilength-c respectively.

Note that when the mode is ’outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See [§2.2.7]
[“The Nitty Gritty of Pixels, Pens, and Lines”|(in the|§2.2 “Image Guide”)) for a more careful
explanation of the ramifications of this fact.

If the mode argument is >outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is ’solid or "solid", then the last argument must
be an image-color?.

Examples:

> (triangle/sss 40 60 80 "solid" '"seagreen'")

> (triangle/sss 80 40 60 "solid" "aquamarine")

> (triangle/sss 80 80 40 "solid" "lightseagreen")

(triangle/ass angle-a
side-length-b
side-length-c
mode
color) — image?

82

angle-a : angle?
side-length-b : (and/c real? (not/c negative?))
side-length-c : (and/c real? (not/c negative?))
mode : mode?
color : image-color?
(triangle/ass angle-a

side-length-b

side-length-c

outline-mode

pen-or-color) — image?
angle-a : angle?
side-length-b : (and/c real? (not/c negative?))
side-length-c : (and/c real? (not/c negative?))
outline-mode : (or/c ’outline "outline")
pen-or-color : (or/c pen? image-color?)

Creates a triangle where the angle A and side length a and b, are given by angle-a, side-
length-b, and, side-length-c respectively. See above for a diagram showing where
which sides and which angles are which.

Note that when the mode is ’outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See [§2.2.7]
|"The Nitty Gritty of Pixels, Pens, and Lines™|(in the[§2.2 “Image Guide™) for a more careful
explanation of the ramifications of this fact.

If the mode argument is ’outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is ’solid or "solid", then the last argument must
be an image-color?.

Examples:

> (triangle/ass 10 60 100 "solid" "seagreen")

> (triangle/ass 90 60 100 "solid" "aquamarine")

> (triangle/ass 130 60 100 "solid" "lightseagreen")

83

(triangle/sas side-length-a
angle-b
side-length-c
mode
color) — image?

side-length-a : (and/c real? (not/c negative?))

angle-b : angle?

side-length-c : (and/c real? (not/c negative?))

mode : mode?
color : image-color?
(triangle/sas side-length-a
angle-b
side-length-c
outline-mode
pen-or-color) — image?

side-length-a : (and/c real? (not/c negative?))

angle-b : angle?

side-length-c : (and/c real? (not/c negative?))

outline-mode : (or/c ’outline "outline")
pen-or-color : (or/c pen? image-color?)

Creates a triangle where the side length a, angle B, and, side length c given by side-
length-a, angle-b, and, side-Iength-c respectively. See above for a diagram showing

where which sides and which angles are which.

Note that when the mode is ’outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See [§2.2.7]

[“The Nitty Gritty of Pixels, Pens, and Lines™|(in the[§2.2 “Image Guide”) for a more careful

explanation of the ramifications of this fact.

If the mode argument is ’outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is ’solid or "solid", then the last argument must

be an image-color?.
Examples:

> (triangle/sas 60 10 100 "solid" '"seagreen')

> (triangle/sas 60 90 100 "solid" "aquamarine")

> (triangle/sas 60 130 100 "solid" "lightseagreen')

84

(triangle/ssa side-length-a

side-length-b

angle-c

mode

color) — image?
side-length-a : (and/c real? (not/c negative?))
side-length-b : (and/c real? (not/c negative?))
angle-c : angle?
mode : mode?
color : image-color?

(triangle/ssa side-length-a

side-length-b

angle-c

outline-mode

pen-or-color) — image?
side-length-a : (and/c real? (not/c negative?))
side-length-b : (and/c real? (not/c negative?))
angle-c : angle?
outline-mode : (or/c ’outline "outline")
pen-or-color : (or/c pen? image-color?)

Creates a triangle where the side length a, side length b, and, angle ¢ given by side-
length-a, side-length-b, and, angle-c respectively. See above for a diagram showing
where which sides and which angles are which.

Note that when the mode is ’outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See [§2.2.7]
[“The Nitty Gritty of Pixels, Pens, and Lines™|(in the|§2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is ’outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is ’solid or "solid", then the last argument must
be an image-color?.

Examples:

> (triangle/ssa 60 100 10 "solid" "seagreen")

> (triangle/ssa 60 100 90 "solid" "aquamarine")

85

> (triangle/ssa 60 100 130 "solid" "lightseagreen")

(triangle/aas angle-a
angle-b
side-length-c
mode
color) — image?
angle-a : angle?
angle-b : angle?
side-length-c : (and/c real? (not/c negative?))
mode : mode?
color : image-color?
(triangle/aas angle-a
angle-b
side-length-c
outline-mode
pen-or-color) — image?
angle-a : angle?
angle-b : angle?
side-length-c : (and/c real? (not/c negative?))
outline-mode : (or/c ’outline "outline")
pen-or-color : (or/c pen? image-color?)

Creates a triangle where the angle A, angle B, and, side length ¢ given by angle-a, angle-
b, and, side-length-c respectively. See above for a diagram showing where which sides
and which angles are which.

Note that when the mode is ’outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See
["The Nitty Gritty of Pixels, Pens, and Lines™|(in the|$2.2 *Image Guide™) for a more careful
explanation of the ramifications of this fact.

If the mode argument is >outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is ’solid or "solid", then the last argument must
be an image-color?.

Examples:

> (triangle/aas 10 40 200 "solid" '"seagreen')

86

. 4

90 40 200 "solid" "aquamarine")

> (triangle/aas

> (triangle/aas 130 40 40 '"solid" "lightseagreen")

(triangle/asa angle-a
side-length-b
angle-c
mode
color) — image?
angle-a : angle?
side-length-b : (and/c real? (not/c negative?))
angle-c : angle?
mode : mode?
color : image-color?
(triangle/asa angle-a
side-length-b
angle-c
outline-mode
pen-or-color) — image?
angle-a : angle?
side-length-b : (and/c real? (not/c negative?))

87

angle-c : angle?
outline-mode : (or/c ’outline "outline")
pen-or-color : (or/c pen? image-color?)

Creates a triangle where the angle A, side length b, and, angle C given by angle-a, side-
length-b, and, angle-c respectively. See above for a diagram showing where which sides
and which angles are which.

Note that when the mode is ’outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See [§2.2.7]
|"The Nitty Gritty of Pixels, Pens, and Lines”|(in the[§2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is ’solid or "solid", then the last argument must
be an image-color?.

Examples:

> (triangle/asa 10 200 40 "solid" "seagreen")

> (triangle/asa 90 200 40 "solid" "aquamarine")

> (triangle/asa 130 40 40 "solid" "lightseagreen")

(triangle/saa side-length-a
angle-b
angle-c
mode
color) — image?
side-length-a : (and/c real? (not/c negative?))
angle-b : angle?
angle-c : angle?
mode : mode?
color : image-color?
(triangle/saa side-length-a
angle-b
angle-c
outline-mode
pen-or-color) — image?
side-length-a : (and/c real? (not/c negative?))
angle-b : angle?
angle-c : angle?
outline-mode : (or/c ’outline "outline")
pen-or-color : (or/c pen? image-color?)

Creates a triangle where the side length a, angle B, and, angle C given by side-length-a,
angle-b, and, angle-c respectively. See above for a diagram showing where which sides
and which angles are which.

Note that when the mode is ’outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See [§2.2.7]
[“The Nitty Gritty of Pixels, Pens, and Lines™|(in the[§2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is ’outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is ’solid or "solid", then the last argument must
be an image-color?.

Examples:

> (triangle/saa 200 10 40 "solid" '"seagreen')

> (triangle/saa 200 90 40 "solid" "aquamarine")

89

> (triangle/saa 40 130 40 "solid" "lightseagreen")

(square side-len mode color) — image?
side-len : (and/c real? (not/c negative?))
mode : mode?
color : image-color?

(square side-len outline-mode pen-or-color) — image?
side-len : (and/c real? (not/c negative?))
outline-mode : (or/c ’outline "outline")
pen-or-color : (or/c pen? image-color?)

Constructs a square.

Note that when the mode is ’outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See [§2.2.7]
[FThe Nitty Gritty of Pixels, Pens, and Lines”| (in the[§2.2 “Tmage Guide)) for a more careful
explanation of the ramifications of this fact.

If the mode argument is ’outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is ’solid or "solid", then the last argument must
be an image-color?.

Examples:

> (square 40 "solid" "slateblue")

> (square 50 "outline" "darkmagenta')

(rectangle width height mode color) — image?
width : (and/c real? (not/c negative?))
height : (and/c real? (not/c negative?))
mode : mode?
color : image-color?

(rectangle width

height

outline-mode

pen-or-color) — image?
width : (and/c real? (not/c negative?))
height : (and/c real? (not/c negative?))
outline-mode : (or/c ’outline "outline")
pen-or-color : (or/c pen? image-color?)

Constructs a rectangle with the given width, height, mode, and color.

Note that when the mode is ’outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See [§2.2.7]
|"The Nitty Gritty of Pixels, Pens, and Lines™|(in the[§2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is ’solid or "solid", then the last argument must
be an image-color?.

Examples:

> (rectangle 40 20 "outline" "black")

> (rectangle 20 40 "solid" "blue")

(rhombus side-length angle mode color) — image?

91

side-length : (and/c real? (not/c negative?))
angle : angle?
mode : mode?
color : image-color?
(rhombus side-length
angle
outline-mode
pen-or-color) — image?
side-length : (and/c real? (not/c negative?))
angle : angle?
outline-mode : (or/c ’outline "outline")
pen-or-color : (or/c pen? image-color?)

Constructs a four sided polygon with all equal sides and thus where opposite angles are equal
to each other. The top and bottom pair of angles is angle and the left and right are (- 180
angle).

Note that when the mode is ’outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See [§2.2.7]
|“The Nitty Gritty of Pixels, Pens, and Lines”|(in the[§2.2 “Image Guide”) for a more careful
explanation of the ramifications of this fact.

If the mode argument is >outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is ’solid or "solid", then the last argument must
be an image-color?.

Examples:

> (rhombus 40 45 "solid" "magenta')

> (rhombus 80 150 "solid" "mediumpurple')

(star side-length mode color) — image?
side-length : (and/c real? (not/c negative?))
mode : mode?
color : image-color?

(star side-length outline-mode color) — image?

92

side-length : (and/c real? (not/c negative?))
outline-mode : (or/c ’outline "outline")
color : (or/c pen? image-color?)

Constructs a star with five points. The side-length argument determines the side length
of the enclosing pentagon.

Note that when the mode is ’outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See [§2.2.7]
|"The Nitty Gritty of Pixels, Pens, and Lines™|(in the|§2.2 “Image Guide™) for a more careful
explanation of the ramifications of this fact.

If the mode argument is outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is ’solid or "solid", then the last argument must
be an image-color?.

Example:

> (star 40 "solid" "gray")

(star-polygon side-length
side-count
step-count
mode
color) — image?
side-length : (and/c real? (not/c negative?))
side-count : side-count?
step-count : step-count?
mode : mode?
color : image-color?
(star-polygon side-length
side-count
step-count
outline-mode
pen-or-color) — image?
side-length : (and/c real? (not/c negative?))
side-count : side-count?
step-count : step-count?
outline-mode : (or/c ’outline "outline")
pen-or-color : (or/c pen? image-color?)

Constructs an arbitrary regular star polygon (a generalization of the regular polygons). The

93

polygon is enclosed by a regular polygon with side-count sides each side-length long.
The polygon is actually constructed by going from vertex to vertex around the regular pol-
gon, but connecting every step-count-th vertex (i.e., skipping every (- step-count 1)
verticies).

For example, if side-count is 5 and step-count is 2, then this function produces a shape
just like star.

Note that when the mode is ’outline or "outline", the shape may draw outside of its
bounding box and thus parts of the image may disappear when it is cropped. See [§2.2.7]
|"The Nitty Gritty of Pixels, Pens, and Lines™|(in the|§2.2 “Image Guide™) for a more careful
explanation of the ramifications of this fact.

If the mode argument is >outline or "outline", then the last argument can be a pen struct
or an image-color?, but if the mode is ’*solid or "solid", then the last argument must
be an image-color?.

Examples:

> (star-polygon 40 5 2 "solid" "seagreen")

) o

> (star-polygon 40 7 3 "outline" "darkred")

"

> (star-polygon 20 10 3 '"solid" "cornflowerblue')

%

(radial-star point-count
inner-radius
outer-radius
mode
color) — image?
point-count : (and/c integer? (>=/c 2))

94

inner-radius : (and/c real? (not/c negative?))
outer-radius : (and/c real? (not/c negative?))
mode : mode?
color : image-color?
(radial-star point-count

inner-radius

outer-radius

outline-mode

pen-or-color) — image?
point-count : (and/c integer? (>=/c 2))
inner-radius : (and/c re