
Redex: Practical Semantics Engineering
Version 5.93

Robert Bruce Findler
and Casey Klein

January 29, 2014

PLT Redex consists of a domain-specific language for specifying reduction semantics, plus
a suite of tools for working with the semantics.

This manual consists of two parts: a tutorial introduction and a reference for Redex. Also
see http://redex.racket-lang.org/ and the examples subdirectory in the redex col-
lection.

1

http://redex.racket-lang.org/

Contents

1 Amb: A Redex Tutorial 3
1.1 Defining a Language . 3
1.2 Typing . 7
1.3 Testing Typing . 9
1.4 Defining a Reduction Relation . 11
1.5 Testing Reduction Relations . 14
1.6 Random Testing . 16
1.7 Typesetting the Reduction Relation . 19
Bibliography . 23

2 The Redex Reference 24
2.1 Patterns . 24
2.2 Terms . 30
2.3 Languages . 34
2.4 Reduction Relations . 37
2.5 Other Relations . 43
2.6 Testing . 53
2.7 GUI . 72
2.8 Typesetting . 82

2.8.1 Picts, PDF, & PostScript . 82
2.8.2 Customization . 86
2.8.3 Removing the Pink Background 93
2.8.4 LWs . 95

2.9 Macros and Typesetting . 98

Index 102

Index 102

2

1 Amb: A Redex Tutorial

This tutorial is designed for those familiar with the call-by-value λ-calculus (and evaluation
contexts), but not Redex. The tutorial works though a model of the λ-calculus extended with
a variation on McCarthy’s amb operator for ambiguous choice (McCarthy 1963; Zabih et al.
1987).

If you are not familiar with Racket, first try Quick: An Introduction to Racket with Pictures
or More: Systems Programming with Racket.

The model includes a standard evaluation reduction relation and a type system. Along the
way, the tutorial demonstrates Redex’s support for unit testing, random testing, typesetting,
metafunctions, reduction relations, and judgment forms. It also includes a number of exer-
cises to use as jumping off points to explore Redex in more depth, and each of the functions
and syntactic forms used in the examples are linked to more information.

1.1 Defining a Language

To get started, open DrRacket, and put the following two lines at the top of the file (if the
first line is not there already, use the Language|Choose Language... menu item to make sure
that DrRacket is set to use the language declaration in the source).

#lang racket

(require redex)

Those lines tell DrRacket that we’re writing a program in the racket language and we’re
going to be using the redex DSL.

Next, enter the following definition.

(define-language L

(e (e e)

(λ (x t) e)

x

(amb e ...)

number

(+ e ...)

(if0 e e e)

(fix e))

(t (→ t t) num)

(x variable-not-otherwise-mentioned))

The define-language form gives a name to a grammar. In this case, L is the Racket-
level name referring to the grammar containing the non-terminal e, with six productions

3

(application, abstraction, variables, amb expressions, numbers, and addition expressions), the
non-terminal t with two productions, and the non-terminal x that uses the pattern keyword
variable-not-otherwise-mentioned. This special pattern matches all symbols except
those used as literals in the grammar (in this case: λ, amb, +, and→).

Once we have defined the grammar, we can ask Redex if specific terms match the grammar.
This expression checks to see if the e non-terminal (from L) matches the object-language
expression (λ (x) x).

To do this, first click the Run button in DrRacket’s toolbar and then enter the following
expression after the prompt For the remainder of this tutorial, expressions prefixed with a >
are intended to be run in the interactions window (lower pane), and expressions without the
> prefix belong in the definitions window (the upper pane).

> (redex-match

L

e

(term (λ (x) x)))

#f

In general, a redex-match expression first names a language, then a pattern, and then its
third position is an arbitrary Racket expression. In this case, we use term to construct an Re-
dex object-level expression. The term operator is much like Lisp’s quasiquote (typically
written `).

This term does not match e (since e insists the function parameters come with types), so
Redex responds with #f, false.

When an expression does match, as with this one:

> (redex-match

L

e

(term ((λ (x num) (amb x 1))

(+ 1 2))))

(list

(match

(list

(bind

'e

'((λ (x num) (amb x 1)) (+ 1 2))))))

Redex responds with bindings for all of the pattern variables. In this case, there is just one,
e, and it matches the entire expression.

We can also use matching to extract sub-pieces. For example, we can pull out the function
and argument position of an application expression like this:

4

> (redex-match

L

(e_1 e_2)

(term ((λ (x num) (amb x 1))

(+ 1 2))))

(list

(match

(list

(bind 'e_1 '(λ (x num) (amb x 1)))

(bind 'e_2 '(+ 1 2)))))

As you probably noticed, redex-match returns a list of matches, not just a single match.
The previous matches each only matched a single way, so the corresponding lists only have a
single element. But a pattern may be ambiguous, e.g., the following pattern which matches
any non-empty sequence of expressions, but binds different elements of the sequence in
different ways:

> (redex-match

L

(e_1 ... e_2 e_3 ...)

(term ((+ 1 2)

(+ 3 4)

(+ 5 6))))

(list

(match

(list

(bind 'e_1 '())

(bind 'e_2 '(+ 1 2))

(bind 'e_3 '((+ 3 4) (+ 5 6)))))

(match

(list

(bind 'e_1 '((+ 1 2)))

(bind 'e_2 '(+ 3 4))

(bind 'e_3 '((+ 5 6)))))

(match

(list

(bind 'e_1 '((+ 1 2) (+ 3 4)))

(bind 'e_2 '(+ 5 6))

(bind 'e_3 '()))))

Exercise 1

Use redex-match to extract the body of the function from this object-language program:

((λ (x) (+ x 1))

5

17)

Exercise 2

Use redex-match to extract the range portion of the type (→ num (→ num num)).

Exercise 3

Redex’s pattern language supports ambiguity through non-terminals, the in-hole pattern,
and ellipsis placement (as in the example just above). Use the latter source of ambiguity to
design a pattern that matches one way for each adjacent pair of expressions in a sequence.
That is, if you match the sequence (1 2 3 4), then you’d expect one match for 1 & 2, one
match for 2 & 3, and one match for 3 & 4. In general, this pattern should produce n matches
when there are n+1 expressions in the sequence.

To test your solution use redex-match like this:

(redex-match

L

; your solution goes here

(term (1 2 3 4)))

where you expect a result like this

(list

(match (list (bind 'e_1 1) (bind 'e_2 2)))

(match (list (bind 'e_1 2) (bind 'e_2 3)))

(match (list (bind 'e_1 3) (bind 'e_2 4))))

but possibly with more pattern variables in the resulting match.

Exercise 4

The ellipsis pattern can also be “named” via subscripts that, when duplicated, force the
lengths of the corresponding sequences to match. For example, the pattern

((λ (x ...) e) v ...)

matches application expressions where the function may have a different arity than the num-
ber of arguments it receives, but the pattern:

((λ (x ..._1) e) v ..._1)

6

ensures that the number of xs is the same as the number of vs.

Use this facility to write a pattern that matches odd length lists of expressions, returning
one match for each pair of expressions that are equidistant from the ends of the sequence.
For example, if matching the sequence (1 2 3 4 5), there would be two matches, one for
the pair 1 & 5 and another for the pair 2 & 4. Your match should include the the bindings
e_left and e_right that extract these pairs (one element of the pair bound to e_left and
the other to e_right). Test your pattern with redex-match.

1.2 Typing

To support a type system for our language, we need to define type environments, which
we do by extending the language L with a new non-terminal Γ, that we use to represent
environments.

(define-extended-language L+Γ L

[Γ · (x : t Γ)])

The define-extended-language form accepts the name of the new language, the name
of the extended langauge and then a series of non-terminals just like define-language.

In the extended language, we can give all of the typing rules for our language. Ignoring the
#:mode specification for a moment, the beginning of this use of define-judgment-form
has a contract declaration indicating that the judgments all have the shape (types Γ e t).

(define-judgment-form

L+Γ
#:mode (types I I O)

#:contract (types Γ e t)

[(types Γ e_1 (→ t_2 t_3))

(types Γ e_2 t_2)

(types Γ (e_1 e_2) t_3)]

[(types (x : t_1 Γ) e t_2)

(types Γ (λ (x t_1) e) (→ t_1 t_2))]

[(types Γ e (→ (→ t_1 t_2) (→ t_1 t_2)))

(types Γ (fix e) (→ t_1 t_2))]

[---------------------

7

(types (x : t Γ) x t)]

[(types Γ x_1 t_1)

(side-condition (different x_1 x_2))

(types (x_2 : t_2 Γ) x_1 t_1)]

[(types Γ e num) ...

(types Γ (+ e ...) num)]

[--------------------

(types Γ number num)]

[(types Γ e_1 num)

(types Γ e_2 t)

(types Γ e_3 t)

(types Γ (if0 e_1 e_2 e_3) t)]

[(types Γ e num) ...

(types Γ (amb e ...) num)])

The first clause gives the typing rule for aplication expressions, saying that if e_1 has the
type (→ t_2 t_3) and e_2 has the type t_2, then the application expression has the type
t_3.

Similarly, the other clauses give the typing rules for all of the other forms in the language.

Most of the rules use use types, or give base types to atomic expressions, but the fourth rule
is worth a special look. It says that if a variable typechecks in some environment, then it also
type checks in an extended environment, provided that the environment extension does not
use the variable in question.

The different function is a metafunction, defined as you might expect:

(define-metafunction L+Γ
[(different x_1 x_1) #f]

[(different x_1 x_2) #t])

The #:mode specification tells Redex how to compute derivations. In this case, the mode
specification indicates that Γ and e are to be thought of as inputs, and the type position is to
be thought of as an output.

8

Redex then checks that spec, making sure that, given a particular Γ and e, it can compute a
t or, perhaps, multiple ts (if the patterns are ambiguous, or if multiple rules apply to a given
pair of Γ and e).

1.3 Testing Typing

The judgment-holds form checks to see if a potential judgment is derivable. For example,

> (judgment-holds

(types ·

((λ (x num) (amb x 1))

(+ 1 2))

t)

t)

'(num)

computes all of the types that the expression

((λ (x num) (amb x 1))

(+ 1 2))

has, returning a list of them (in this case, just one).

In general, the judgment-holds form’s first argument is an instance of some judgment-
form that should have concrete terms for the I positions in the mode spec, and patterns in
the positions labelled O. Then, the second position in judgment-holds is an expression that
can use the pattern variables inside those O positions. The result of judgment-holds will
be a list of terms, one for each way that the pattern variables in the O positions can be filled
when evaluating judgment-holds’s second position.

For example, if we wanted to extract only the range position of the type of some function,
we could write this:

> (judgment-holds

(types ·

(λ (f (→ num (→ num num))) (f (amb 1 2)))

(→ t_1 t_2))

t_2)

'((→ num num))

The result of this expression is a singleton list containing the function type that maps num-
bers to numbers. The reason you see two open parentheses is that Redex exploits Racket’s
s-expressions to reflect Redex terms as Racket values. Here’s another way to write the same
value

9

> (list (term (→ num num)))

'((→ num num))

Racket’s printer does not know that it should use term for the inner lists and list (or quote)
for the outer list, so it just uses the quote notation for all of them.

We can combine judgment-holds with Redex’s unit test support to build a small test suite:

> (test-equal

(judgment-holds

(types · (λ (x num) x) t)

t)

(list (term (→ num num))))

> (test-equal

(judgment-holds

(types · (amb 1 2 3) t)

t)

(list (term num)))

> (test-equal

(judgment-holds

(types · (+ 1 2) t)

t)

(list (term (→ num num))))

FAILED :27.0
actual: ’(num)

expected: ’((→ num num))

Redex is silent when tests pass and gives the source location for the failures, as above. The
test-equal form accepts two expressions, evaluates them, and checks to see if they are
equal? (structural equality).

To see a summary of the tests run so far, call test-results.

> (test-results)

1 test failed (out of 3 total).

Exercise 5

Remove the different side-condition and demonstrate how one expression now has mul-
tiple types, using judgment-holds. That is, find a use of judgment-holds that returns a
list of length two, with two different types in it.

10

Exercise 6

The typing rule for amb is overly restrictive. In general, it would be better to have a rule like
this one:

[(types Γ e t) ...

(types Γ (amb e ...) t)]

but Redex does not support this rule because the mode specification is not satisfied in the
case that amb has no subexpressions. That is, any type should be okay in this case, but Redex
cannot “guess” which type is the one needed for a particular derivation, so it rejects the entire
define-judgment-form definition. (The error message is different, but this is the ultimate
cause of the problem.)

Fix this by annotating amb expressions with their types, making suitable changes to the
language as well as the define-judgment-form for types. Add new test cases to make
sure you’ve done this properly.

1.4 Defining a Reduction Relation

To reduce terms, Redex provides reduction-relation, a form that defines unary relations
by cases. To define a reduction relation for our amb language, we first need to define the
evaluation contexts and values, so we extend the language a second time.

(define-extended-language Ev L+Γ
(p (e ...))

(P (e ... E e ...))

(E (v E)

(E e)

(+ v ... E e ...)

(if0 E e e)

(fix E)

hole)

(v (λ (x t) e)

(fix v)

number))

To give a suitable notion of evaluation for amb, we define p, a non-terminal for programs.
Each program consists of a sequence of expressions and we will use them to represent the
possible ways in which an amb expression could have been evaluated. Initially, we will
simply wrap an expression in a pair of parentheses to generate a program that consists of
that single expression.

11

The non-terminal P gives the corresponding evaluation contexts for ps and says that evalua-
tion can occur in any of them, without restriction. The grammar for E dictates that reduction
may occur inside application expressions and addition expressions, always from left to right.

To prepare for the reduction relation, we first define a metafunction for summation.

(define-metafunction Ev

Σ : number ... -> number

[(Σ number ...)

,(apply + (term (number ...)))])

This lifts the Racket function + to Redex, giving it the name Σ. The unquote (comma) in
the definition of the metafunction escapes into Racket, using apply and + to sum up the
sequence of numbers that were passed to Σ. As we’ve noted before, the term operator is
like Racket’s quasiquote operator, but it is also sensitive to Redex pattern variables. In this
case, (term (number ...)) produces a list of numbers, extracting the arguments from the
call to Σ.

To define a reduction relation, we also have to define substitution. Generally speaking,
substitution functions are tricky to get right and, since they generally are not shown in papers,
we have defined a workhorse substitution function in Racket that runs in near linear time.
The source code is included with Redex. If you’d like to have a look, evaluate the expression
below in the REPL to find the precise path on your system:

(collection-file-path "tut-subst.rkt" "redex")

(Test cases are in "test/tut-subst-test.rkt", relative to "tut-subst.rkt".)

That file contains the definition of the function subst/proc, which expects four arguments:
a predicate for determining if an expression is a variable, a list of variables to replace, a list
of terms to replace them with, and a term to do the replacement inside (the function has a
hard-wired notion of the shape of all binding forms, but is agnostic to the other expression
forms in the language).

To use this substitution function, we also need to lift it into Redex, just like we did for Σ.

(require redex/tut-subst)

(define-metafunction Ev

subst : x v e -> e

[(subst x v e)

,(subst/proc x? (list (term x)) (list (term v)) (term e))])

(define x? (redex-match Ev x))

In this case, we use term to extract the values of the Redex variables x, v, and e and then
pass them to subst/proc.

12

The definition of x? uses a specialized, more efficient form of redex-match; supplying
redex-match with only two arguments permits Redex to do some processing of the pattern,
and it results in a predicate that matches the pattern in the given language (which we can
supply directly to subst/proc).

Using that substitution function, we can now give the reduction relation.

(define red

(reduction-relation

Ev

#:domain p

(--> (in-hole P (if0 0 e_1 e_2))

(in-hole P e_1)

"if0t")

(--> (in-hole P (if0 v e_1 e_2))

(in-hole P e_2)

(side-condition (not (equal? 0 (term v))))

"if0f")

(--> (in-hole P ((fix (λ (x t) e)) v))

(in-hole P (((λ (x t) e) (fix (λ (x t) e))) v))

"fix")

(--> (in-hole P ((λ (x t) e) v))

(in-hole P (subst x v e))

"βv")
(--> (in-hole P (+ number ...))

(in-hole P (Σ number ...))

"+")

(--> (e_1 ... (in-hole E (amb e_2 ...)) e_3 ...)

(e_1 ... (in-hole E e_2) ... e_3 ...)

"amb")))

The reduction-relation form accepts the name of a language, the domain of the rela-
tion (p in this case), and then a series of rewriting rules, each of the form (--> pattern

pattern).

The first rule replaces if0 expressions when the test position is 0 by the second subexpres-
sion (the true branch). It uses the in-hole pattern, the Redex notation for context decompo-
sition. In this case, it decomposes a program into some P with an approriate if0 expression
inside, and then the right-hand side of the rule places e_1 into the same context.

The rule for the false branch should apply when the test position is any value except 0. To
establish this, we use a side-condition. In general, a side-condition is a Racket expression
that is evaluated for expressions where the pattern matches; if it returns true, then the rule
fires. In this case, we use term to extract the value of v and then compare it with 0.

To explore the behavior of a reduction relation, Redex provides traces and stepper. They
both accept a reduction relation and a term, and then show you how that term reduces in a

13

GUI. The GUI that traces uses is better suited to a quick overview of the reduction graph
and stepper is better for more detailed explorations of reduction graphs that have larger
expressions in them.

Exercise 7

Evaluate

(traces red

(term ((+ (amb 1 2)

(amb 10 20)))))

It does not show all of the terms by default, but one click the Reduce button shows them all.

If you have Graphviz installed, Redex can use it to lay out the graph; click Fix Layout and
Redex will call out to dot to lay out the graph.

Exercise 8

Design a function that accepts a number n and evaluates (ambiguously) to any of the numbers
between n and 0. Call it with 10 and look at the results in both traces and stepper.

Hint: to subtract 1 from n, use (+ n -1)

1.5 Testing Reduction Relations

Redex provides test-->> for using testing the transitive closure of a reduction relation. If
you supply it a reduction relation and two terms, it will reduce the first term and make sure
that it yields the second.

> (test-->>

red

(term ((if0 1 2 3)))

(term (3)))

> (test-->>

red

(term ((+ (amb 1 2)

(amb 10 20))))

(term (11 21 12 22)))

> (test-results)

Both tests passed.

14

The test--> form is like test-->>, except that it only reduces the term a single step.

> (test-->

red

(term ((+ (amb 1 2) 3)))

(term ((+ 1 3) (+ 2 3))))

> (test-results)

One test passed.

If a term produces multiple results, then each of the results must be listed.

> (test-->

red

(term ((+ 1 2) (+ 3 4)))

(term (3 (+ 3 4)))

(term ((+ 1 2) 7)))

> (test-results)

One test passed.

Technically, when using test-->>, it finds all irreducible terms that are reachable from the
given term, and expects them all to be listed, with one special case: when it detects a cycle in
the reduction graph, then it signals an error. (Watch out: when the reduction graph is infinite
and there are no cycles, then test-->> consumes all available memory.)

> (test-->>

red

(term (((fix (λ (x (→ num num)) x)) 1))))

FAILED :46.0
found a cycle in the reduction graph

> (test-results)

1 test failed (out of 1 total).

To suppress this behavior, pass #:cycles-ok to test-->>.

> (test-->>

red #:cycles-ok

(term (((fix (λ (x (→ num num)) x)) 1))))

> (test-results)

One test passed.

15

This test case has no expected results but still passes, since there are no irreducible terms
reachable from the given term.

Exercise 9

Extend λ to support multiple arguments. Use the notation (λ (x t) ... e) for multi-arity
λ expressions because the subst/proc function works properly with λ expressions of that
shape. Use this definition of subst.

(define-metafunction Ev

subst : (x v) ... e -> e

[(subst (x v) ... e)

,(subst/proc x?

(term (x ...))

(term (v ...))

(term e))])

Also, adjust the typing rules (and do not forget that an ellipsis can be named, as discussed in
exercise 4).

1.6 Random Testing

Random testing is a cheap and easy way to find counter-examples to false claims. Unsur-
prisingly, it is hard to pin down exactly which false claims that random testing can provide
counter-examples to. Hanford (1970) put it best (calling his random test case generator a
syntax machine): “[a]lthough as a writer of test cases, the syntax machine is certainly unin-
telligent, it is also uninhibited. It can test a [language] processor with many combinations
that would not be thought of by a human test case writer.”

To get a sense of how random testing works, we define this Racket predicate

(define (progress-holds? e)

(if (types? e)

(or (v? e)

(reduces? e))

#t))

that captures the statement of the progress result.

The three helper functions types?, v?, and reduces? can be defined by using our earlier
definitions of typing, the grammar, and the reduction relation, plus calls into Redex:

16

(define (types? e)

(not (null? (judgment-holds (types · ,e t)

t))))

(define v? (redex-match Ev v))

(define (reduces? e)

(not (null? (apply-reduction-relation

red

(term (,e))))))

The only new construct here is apply-reduction-relation, which accepts a reduction
and a term, and returns a list of expressions that it reduces to in a single step. Thus,
reduces? returns #t when the given term is reducible and #f otherwise.

Putting all of that together with redex-check will cause Redex to randomly generate 1,000
es and attempt to falsify them:

> (redex-check Ev e (progress-holds? (term e)))

redex-check: no counterexamples in 1000 attempts

The redex-check form accepts the name of a language (Ev in this case), a pattern (e in
this case), and a Racket expression that returns a boolean. It randomly generates expressions
matching the pattern and then invokes the expression in an attempt to elicit #f from the
Racket expression.

We can also ask redex-check how good of a job it is doing. Specifically, this expression
re-runs the same random test, but this time sets up some instrumenting infrastructure to
determine how many of the reduction rules fire during the testing. In this case, we create a
coverage value that indicates that we’re interested in how many of the rules in red fired, and
then we install it using the relation-coverage parameter. In the dynamic extent of the
parameterize, then, the relation will record how it gets tested. Once that returns we can
use covered-cases to see exactly how many times each case fired.

> (let ([c (make-coverage red)])

(parameterize ([relation-coverage (list c)])

(redex-check Ev e (progress-holds? (term e))))

(covered-cases c))

redex-check: no counterexamples in 1000 attempts

'(("+" . 70)

("amb" . 49)

("fix" . 0)

("if0f" . 1)

("if0t" . 1)

("βv" . 0))

17

Not many of them! To improve coverage, we can tell redex-check to try generating expres-
sions using the patterns on the left-hand side of the rules to generate programs, and then
check to see if progress for each of the expressions in the program:

> (check-reduction-relation

red

(λ (p) (andmap progress-holds? p)))

check-reduction-relation: no counterexamples in 1000 attempts

(with each clause)

The check-reduction-relation is a shorthand for using redex-check to generate ele-
ments of the domain of the given reduction relation (red in this case), and then pass them to
the given function, attempting to elicit #f.

In this case, since the domain of red is p, the random generator produces sequences of e
expressions, which are reflected into Redex as lists, and so we simply try to see if progress
holds for each element of the list, using andmap.

Still no test failures, but installing the same coverage testing boilerplate around the call to
check-reduction-relation tells us that we got much better coverage of the reduction
system.

> (let ([c (make-coverage red)])

(parameterize ([relation-coverage (list c)])

(check-reduction-relation

red

(λ (p) (andmap progress-holds? p)))

(covered-cases c)))

check-reduction-relation: no counterexamples in 1000 attempts

(with each clause)

'(("+" . 2050)

("amb" . 2108)

("fix" . 2)

("if0f" . 246)

("if0t" . 106)

("βv" . 53))

Exercise 10

Remove one of the productions from E (except hole) and find an expression in the revised
system that causes progress? to return #f.

See if redex-check can also falsify progress for the same system.

Exercise 11

18

Formulate and randomly check type preservation. Usually, this lemma says that if an expres-
sion has a type and it takes a step, then it produces an expression with the same type. In this
case, however, formulate a predicate that accepts an expression and checks that, if it has a
type and takes a step, then all of the resulting expressions in the new program have the same
type.

1.7 Typesetting the Reduction Relation

Redex’s typsetting facilities accept languages, metafunctions, reduction relations, and
judgment-forms and produce typeset output that can be included directly into a figure in
a paper.

> (render-reduction-relation red)

P[(if0 0 e1 e2)] [if0t]
P[e1]

P[(if0 v e1 e2)] [if0f]
P[e2]

 where (not (equal? 0 v))

P[((fix (λ (x t) e)) v)] [fix]
P[(((λ (x t) e) (fix (λ (x t) e))) v)]

P[((λ (x t) e) v)] [βv]
P[subst[[x, v, e]]]

P[(+ number ...)] [+]
P[Σ[[number, ...]]]

(e1 ... E[(amb e2 ...)] e3 ...) [amb]
(e1 ... E[e2] ... e3 ...)

The result of render-reduction-relation is rendered directly in DrRacket’s interactions
window, and also can be saved as a ".ps" file by passing the name of the file as the second
argument to render-reduction-relation.

Redex’s typesetting also interoperates with the pict library. If we pull it in with a require:

(require pict)

then we can use the pict primitives to combine typeset fragments into a larger whole.

> (scale (vl-append

19

20

(language->pict Ev)

(reduction-relation->pict red))

3/2)

20

p ::= (e ...)
P ::= (e ... E e ...)
E ::= (v E)

 | (E e)
 | (+ v ... E e ...)
 | (if0 E e e)
 | (fix E)
 | []

v ::= (λ (x t) e)
 | (fix v)
 | number

P[(if0 0 e1 e2)] [if0t]
P[e1]

P[(if0 v e1 e2)] [if0f]
P[e2]

 where (not (equal? 0 v))

P[((fix (λ (x t) e)) v)] [fix]
P[(((λ (x t) e) (fix (λ (x t) e))) v)]

P[((λ (x t) e) v)] [βv]
P[subst[[x, v, e]]]

P[(+ number ...)] [+]
P[Σ[[number, ...]]]

(e1 ... E[(amb e2 ...)] e3 ...) [amb]
(e1 ... E[e2] ... e3 ...) 21

Generally speaking, Redex has reasonable default ways to typeset its definitions, except
when they escapes to Racket. In that case, it typsets the code in a fixed-width font and
makes the background pink to call our attention to it. While it is possible to use with-

unquote-rewriter to tell Redex how to typset those regions, often it is easier to define a
metafunction and call it. In this case, we can use different (defined earlier).

(define if0-false-rule

(reduction-relation

Ev #:domain p

(--> (in-hole P (if0 v e_1 e_2))

(in-hole P e_2)

(side-condition (term (different v 0)))

"if0f")))

Now when we typeset this reduction-relation there is no pink.

> (render-reduction-relation if0-false-rule)

P[(if0 v e1 e2)] [if0f]
P[e2]

 where different[[v, 0]]

Still, the typesetting is non-optimal, so we can use with-compound-rewriter to adjust the
way calls to different typeset.

> (with-compound-rewriter

'different

(λ (lws)

(list "" (list-ref lws 2) " 6= " (list-ref lws 3) ""))

(render-reduction-relation if0-false-rule))

P[(if0 v e1 e2)] [if0f]
P[e2]

 where v ≠ 0

The compound rewriter is given a list of lw structs that correspond to the untypeset sequence
for a use of different, and then can replace them with a different set of strings and lws.
For more details on the structure of lw structs and to experiment with them, see to-lw.

Exercise 12

Redex uses the indentation and newlines in the program source code to determine where the
line breaks in the printed output goes, instead of using a pretty-printer, so as to give Redex
programmers fine-grained control over how their models typeset.

Exploit this facility so that this expression produces an expression with a minimum amount
of whitespace within its bounding box. (The call to frame helps to clarify where the bound-
ing box is.)

22

(frame

(vl-append

20

(language->pict Ev)

(reduction-relation->pict red)))

That is, adjust the whitespace in Ev so that it fills as much of the width established by
rendering red.

Exercise 13

Typeset types. Use a compound rewriter so a use of (type Γ e t) is rendered as

Γ ` e : t

Bibliography

Kenneth V. Hanford. Automatic generation of test cases. IBM Systems Journal 9(4), pp. 244–257,
1970.

John McCarthy. A Basis for a Mathematical Theory of Computation. In Computer Programming And
Formal Systems by P. Braffort and D. Hirschberg (Ed.), 1963.

Ramin Zabih, David McAllester, and David Chapman. Non-deterministic Lisp with dependency-
directed backtracking. In Proc. Proceedings of the Sixth National Conference on Artificial Intel-
ligence, pp. 59–64, 1987.

23

2 The Redex Reference

To load Redex use:

(require redex) package: redex-gui-lib

which provides all of the names documented in this library.

Alternatively, use the redex/reduction-semantics and redex/pict modules, which
provide only non-GUI functionality (i.e., everything except redex/gui), making them suit-
able for programs which should not depend on racket/gui/base.

2.1 Patterns

(require redex/reduction-semantics) package: redex-lib

This section covers Redex’s pattern language, used in many of Redex’s forms.

Note that pattern matching is caching (including caching the results of side-conditions). This
means that once a pattern has matched a given term, Redex assumes that it will always match
that term.

This is the grammar for the Redex pattern language. Non-terminal references are wrapped
with angle brackets; otherwise identifiers in the grammar are terminals.

pattern = any

| _

| number

| natural

| integer

| real

| string

| boolean

| variable

| (variable-except <id> ...)

| (variable-prefix <id>)

| variable-not-otherwise-mentioned

| hole

| symbol

| (name <id> <pattern>)

| (in-hole <pattern> <pattern>)

| (hide-hole <pattern>)

| (side-condition <pattern> guard)

| (cross <id>)

| (<pattern-sequence> ...)

24

| <racket-constant>

pattern-sequence = <pattern>

| ... ; literal ellipsis

| ..._id

• The any pattern matches any sexpression. This pattern may also be suffixed with an
underscore and another identifier, in which case they bind the full name (as if it were
an implicit name pattern) and match the portion before the underscore.

• The _ pattern matches any sexpression, but does not bind $pattech[_] as a name, nor
can it be suffixed to bind a name.

• The number pattern matches any number. This pattern may also be suffixed with an
underscore and another identifier, in which case they bind the full name (as if it were
an implicit name pattern) and match the portion before the underscore.

• The natural pattern matches any exact non-negative integer. This pattern may also
be suffixed with an underscore and another identifier, in which case they bind the
full name (as if it were an implicit name pattern) and match the portion before the
underscore.

• The integer pattern matches any exact integer. This pattern may also be suffixed
with an underscore and another identifier, in which case they bind the full name (as if
it were an implicit name pattern) and match the portion before the underscore.

• The real pattern matches any real number. This pattern may also be suffixed with an
underscore and another identifier, in which case they bind the full name (as if it were
an implicit name pattern) and match the portion before the underscore.

• The string pattern matches any string. This pattern may also be suffixed with an
underscore and another identifier, in which case they bind the full name (as if it were
an implicit name pattern) and match the portion before the underscore.

• The boolean pattern matches #true and #false (which are the same as #t and
#f, respectively). This pattern may also be suffixed with an underscore and another
identifier, in which case they bind the full name (as if it were an implicit name pattern)
and match the portion before the underscore.

• The variable pattern matches any symbol. This pattern may also be suffixed with an
underscore and another identifier, in which case they bind the full name (as if it were
an implicit name pattern) and match the portion before the underscore.

• The variable-except pattern matches any symbol except those listed in its argu-
ment. This is useful for ensuring that keywords in the language are not accidentally
captured by variables.

• The variable-prefix pattern matches any symbol that begins with the given prefix.

25

• The variable-not-otherwise-mentioned pattern matches any symbol except
those that are used as literals elsewhere in the language.

• The hole pattern matches anything when inside the first argument to an in-hole pat-
tern. Otherwise, it matches only a hole.

• The symbol pattern stands for a literal symbol that must match exactly, unless it is the
name of a non-terminal in a relevant language or contains an underscore.

If it is a non-terminal, it matches any of the right-hand sides of that non-terminal. If
the non-terminal appears twice in a single pattern, then the match is constrained to
expressions that are the same, unless the pattern is part of a grammar, in which case
there is no constraint.

If the symbol is a non-terminal followed by an underscore, for example e_1, it is
implicitly the same as a name pattern that matches only the non-terminal, (name e_1

e) for the example. Accordingly, repeated uses of the same name are constrainted to
match the same expression.

If the symbol is a non-terminal followed by _!_, for example e_!_1, it is also treated
as a pattern, but repeated uses of the same pattern are constrained to be different. For
example, this pattern:

(e_!_1 e_!_1 e_!_1)

matches lists of three es, but where all three of them are distinct.

Unlike a _ pattern, the _!_ patterns do not bind names.

If _ names and _!_ are mixed, they are treated as separate. That is, this pattern (e_1

e_!_1) matches just the same things as (e e), but the second doesn’t bind any vari-
ables.

If the symbol otherwise has an underscore, it is an error.

• The pattern (name symbol pattern) matches pattern and binds using it to the
name symbol.

• The (in-hole pattern pattern) pattern matches the first pattern . This match
must include exactly one match against the second pattern . If there are zero matches
or more than one match, an exception is raised.

When matching the first argument of in-hole, the hole pattern matches any sexpres-
sion. Then, the sexpression that matched the hole pattern is used to match against the
second pattern.

• The (hide-hole pattern) pattern matches what the embedded pattern matches
but if the pattern matcher is looking for a decomposition, it ignores any holes found in
that pattern .

• The (side-condition pattern guard) pattern matches what the embedded
pattern matches, and then the guard expression is evaluated. If it returns #f, the

26

pattern fails to match, and if it returns anything else, the pattern matches. Any oc-
currences of name in the pattern (including those implicitly there via _ pattersn) are
bound using term-let in the guard.

• The (cross symbol) pattern is used for the compatible closure functions. If the
language contains a non-terminal with the same name as symbol, the pattern (cross

symbol) matches the context that corresponds to the compatible closure of that non-
terminal.

• The (pattern-sequence ...) pattern matches a sexpression list, where each
pattern-sequence element matches an element of the list. In addition, if a list pat-
tern contains an ellipsis, the ellipsis is not treated as a literal, instead it matches any
number of duplications of the pattern that came before the ellipses (including 0). Fur-
thermore, each (name symbol pattern) in the duplicated pattern binds a list of
matches to symbol, instead of a single match. (A nested duplicated pattern creates a
list of list matches, etc.) Ellipses may be placed anywhere inside the row of patterns,
except in the first position or immediately after another ellipses.

Multiple ellipses are allowed. For example, this pattern:

((name x a) ... (name y a) ...)

matches this sexpression:

(term (a a))

three different ways. One where the first a in the pattern matches nothing, and the
second matches both of the occurrences of a, one where each named pattern matches
a single a and one where the first matches both and the second matches nothing.

If the ellipses is named (ie, has an underscore and a name following it, like a variable
may), the pattern matcher records the length of the list and ensures that any other
occurrences of the same named ellipses must have the same length.

As an example, this pattern:

((name x a) ..._1 (name y a) ..._1)

only matches this sexpression:

(term (a a))

one way, with each named pattern matching a single a. Unlike the above, the two
patterns with mismatched lengths is ruled out, due to the underscores following the
ellipses.

Also, like underscore patterns above, if an underscore pattern begins with ..._!_,
then the lengths must be different.

Thus, with the pattern:

27

((name x a) ..._!_1 (name y a) ..._!_1)

and the expression

(term (a a))

two matches occur, one where x is bound to '() and y is bound to '(a a) and one
where x is bound to '(a a) and y is bound to '().

(redex-match lang pattern any)

(redex-match lang pattern)

If redex-match receives three arguments, it matches the pattern (in the language) against
its third argument. If it matches, this returns a list of match structures describing the matches
(see match? and match-bindings). If it fails, it returns #f.

If redex-match receives only two arguments, it builds a procedure for efficiently testing if
expressions match the pattern, using the language lang . The procedures accepts a single
expression and if the expresion matches, it returns a list of match structures describing the
matches. If the match fails, the procedure returns #f.

Examples:

> (define-language nums

(AE number

(+ AE AE)))

> (redex-match nums

(+ AE_1 AE_2)

(term (+ (+ 1 2) 3)))

(list (match (list (bind 'AE_1 '(+ 1 2)) (bind 'AE_2 3))))

> (redex-match nums

(+ AE_1 (+ AE_2 AE_3))

(term (+ (+ 1 2) 3)))

#f

> (redex-match nums

(+ AE_1 AE_1)

(term (+ (+ 1 2) 3)))

#f

(redex-match? lang pattern any)

(redex-match? lang pattern)

Like redex-match, except it returns only a boolean indicating if the match was successful.

Examples:

28

> (define-language nums

(AE number

(+ AE AE)))

> (redex-match? nums

(+ AE_1 AE_2)

(term (+ (+ 1 2) 3)))

#t

> (redex-match? nums

(+ AE_1 AE_1)

(term (+ (+ 1 2) 3)))

#t

(match? val) → boolean?
val : any/c

Determines if a value is a match structure.

(match-bindings m) → (listof bind?)

m : match?

This returns a list of bind structs that binds the pattern variables in this match.

(struct bind (name exp)

#:extra-constructor-name make-bind)

name : symbol?

exp : any/c

Instances of this struct are returned by redex-match. Each bind associates a name with an
s-expression from the language, or a list of such s-expressions, if the (name ...) clause is
followed by an ellipsis. Nested ellipses produce nested lists.

(caching-enabled?) → boolean?

(caching-enabled? on?) → void?

on? : boolean?

When this parameter is #t (the default), Redex caches the results of pattern matching and
metafunction evaluation. There is a separate cache for each pattern and metafunction; when
one fills (see set-cache-size!), Redex evicts all of the entries in that cache.

Caching should be disabled when matching a pattern that depends on values other than the
in-scope pattern variables or evaluating a metafunction that reads or writes mutable external
state.

(set-cache-size! size) → void?
size : positive-integer?

29

Changes the size of the per-pattern and per-metafunction caches.

The default size is 350.

(check-redudancy) → boolean?

(check-redudancy check?) → void?

check? : boolean?

Ambiguous patterns can slow down Redex’s pattern matching implementation significantly.
To help debug such performance issues, set the check-redundancy parameter to #t. This
causes Redex to, at runtime, report any redundant matches that it encounters.

2.2 Terms

Object language expressions in Redex are written using term. It is similar to Racket’s quote
(in many cases it is identical) in that it constructs lists as the visible representation of terms.

The grammar of terms is (note that an ellipsis stands for repetition unless otherwise indi-
cated):

term = identifier

| (term-sequence ...)

| ,racket-expression

| (in-hole term term)

| hole

| #t

| #f

| string

term-sequence = term

| ,@racket-expression

| ... ; literal ellipsis

• A term written identifier is equivalent to the corresponding symbol, unless the
identifier is bound by term-let, define-term, or a pattern variable or the identifier
is hole (as below).

• A term written (term-sequence ...) constructs a list of the terms constructed by
the sequence elements.

• A term written ,racket-expression evaluates the racket-expression and sub-
stitutes its value into the term at that point.

• A term written ,@racket-expression evaluates the racket-expression, which
must produce a list. It then splices the contents of the list into the expression at that
point in the sequence.

30

• A term written (in-hole tttterm tttterm) is the dual to the pattern in-hole –
it accepts a context and an expression and uses plug to combine them.

• A term written hole produces a hole.

• A term written as a literal boolean or a string produces the boolean or the string.

(term term)
(term term #:lang lang-id)

Used for construction of a term.

It behaves similarly to quasiquote, except for a few special forms that are recognized
(listed below) and that names bound by term-let are implicitly substituted with the values
that those names were bound to, expanding ellipses as in-place sublists (in the same manner
as syntax-case patterns).

The optional #:lang keyword must supply an identifier bound by define-language, and
adds a check that any symbol containing an underscore in term could have been bound by a
pattern in the language referenced by lang-id . In practice, this means that the underscore
must be preceded by a non-terminal in that langauge or a built-in pattern such as number.
This form of term is used internally by default, so this check is applied to terms that are
constructed by Redex forms such as reduction-relation and define-metafunction.

For example,

(term-let ([body '(+ x 1)]

[(expr ...) '(+ - (values * /))]

[((id ...) ...) '((a) (b) (c d))])

(term (let-values ([(id ...) expr] ...) body)))

evaluates to

'(let-values ([(a) +]

[(b) -]

[(c d) (values * /)])

(+ x 1))

It is an error for a term variable to appear in an expression with an ellipsis-depth different
from the depth with which it was bound by term-let. It is also an error for two term-let-
bound identifiers bound to lists of different lengths to appear together inside an ellipsis.

hole

Recognized specially within term. A hole form is an error elsewhere.

31

in-hole

Recognized specially within reduction-relation. An in-hole form is an error else-
where.

(term-let ([tl-pat expr] ...) body)

tl-pat = identifier

| (tl-pat-ele ...)

tl-pat-ele = tl-pat

| tl-pat ... ; a literal ellipsis

Matches each given id pattern to the value yielded by evaluating the corresponding expr
and binds each variable in the id pattern to the appropriate value (described below). These
bindings are then accessible to the term syntactic form.

Note that each ellipsis should be the literal symbol consisting of three dots (and the ... else-
where indicates repetition as usual). If tl-pat is an identifier, it matches any value and
binds it to the identifier, for use inside term. If it is a list, it matches only if the value being
matched is a list value and only if every subpattern recursively matches the corresponding
list element. There may be a single ellipsis in any list pattern; if one is present, the pattern
before the ellipses may match multiple adjacent elements in the list value (possibly none).

This form is a lower-level form in Redex, and not really designed to be used directly. For
let-like forms that use Redex’s full pattern matching facilities, see redex-let, redex-
let*, term-match, term-match/single.

(redex-let language ([pattern expression] ...) body ...+)

Like term-let but the left-hand sides are Redex patterns, interpreted according to the spec-
ified language. It is a syntax error for two left-hand sides to bind the same pattern variable.

This form raises an exception recognized by exn:fail:redex? if any right-hand side does
not match its left-hand side in exactly one way.

In some contexts, it may be more efficient to use term-match/single (lifted out of the
context).

(redex-let* language ([pattern expression] ...) body ...+)

The let* analog of redex-let.

(define-term identifier term)

32

Defines identifier for use in term templates.

(term-match language [pattern expression] ...)

This produces a procedure that accepts term (or quoted) expressions and checks them against
each pattern. The function returns a list of the values of the expression where the pattern
matches. If one of the patterns matches multiple times, the expression is evaluated multiple
times, once with the bindings in the pattern for each match.

When evaluating a term-match expression, the patterns are compiled in an effort to speed
up matching. Using the procedural result multiple times to avoid compiling the patterns
multiple times.

(term-match/single language [pattern expression] ...)

This produces a procedure that accepts term (or quoted) expressions and checks them against
each pattern. The function returns the expression behind the first sucessful match. If that
pattern produces multiple matches, an error is signaled. If no patterns match, an error is
signaled.

Raises an exception recognized by exn:fail:redex? if no clauses match or if one of the
clauses matches multiple ways.

When evaluating a term-match/single expression, the patterns are compiled in an effort
to speed up matching. Using the procedural result multiple times to avoid compiling the
patterns multiple times.

(plug context expression) → any

context : any/c

expression : any/c

The first argument to this function is an sexpression to plug into. The second argument is the
sexpression to replace in the first argument. It returns the replaced term. This is also used
when a term sub-expression contains in-hole.

(variable-not-in t var) → symbol?

t : any/c

var : symbol?

This helper function accepts an sexpression and a variable. It returns a variable not in the
sexpression with a prefix the same as the second argument.

(variables-not-in t vars) → (listof symbol?)

t : any/c

vars : (listof symbol?)

33

This function, like variable-not-in, makes variables that do no occur in its first argument, but
it returns a list of such variables, one for each variable in its second argument.

Does not expect the input symbols to be distinct, but does produce variables that are always
distinct.

(exn:fail:redex? v) → boolean?
v : any/c

Returns #t if its argument is a Redex exception record, and #f otherwise.

2.3 Languages

(define-language lang-name

non-terminal-def ...)

non-terminal-def = (non-terminal-name ...+ ::= pattern ...+)

| (non-terminal-name pattern ...+)

| ((non-terminal-name ...+) pattern ...+)

This form defines the grammar of a language. It allows the definition of recursive pat-
terns, much like a BNF, but for regular-tree grammars. It goes beyond their expressive
power, however, because repeated name patterns and side-conditions can restrict matches in
a context-sensitive way.

A non-terminal-def comprises one or more non-terminal names (considered aliases) fol-
lowed by one or more productions.

For example, the following defines lc-lang as the grammar of the λ-calculus:

(define-language lc-lang

(e (e e ...)

x

v)

(c (v ... c e ...)

hole)

(v (λ (x ...) e))

(x variable-not-otherwise-mentioned))

with non-terminals e for the expression language, x for variables, c for the evaluation con-
texts and v for values.

::=

34

A non-terminal’s names and productions may be separated by the keyword ::=. Use of the
::= keyword outside a language definition is a syntax error.

(define-extended-language extended-lang base-lang

non-terminal-def ...)

non-terminal-def = (non-terminal-name ...+ ::= pattern ...+)

| (non-terminal-name pattern ...+)

| ((non-terminal-name ...+) pattern ...+)

This form extends a language with some new, replaced, or extended non-terminals. For
example, this language:

(define-extended-language lc-num-lang

lc-lang

(v ; extend the previous `v' non-terminal

number

+)

(x (variable-except λ +)))

extends lc-lang with two new alternatives (+ and number) for the v non-terminal, carries
forward the e and c non-terminals, and replaces the x non-terminal with a new one (which
happens to be equivalent to the one that would have been inherited).

The four-period ellipses indicates that the new language’s non-terminal has all of the alter-
natives from the original language’s non-terminal, as well as any new ones. If a non-terminal
occurs in both the base language and the extension, the extension’s non-terminal replaces the
originals. If a non-terminal only occurs in either the base language, then it is carried forward
into the extension. And, of course, extend-language lets you add new non-terminals to the
language.

If a language is has a group of multiple non-terminals defined together, extending any one
of those non-terminals extends all of them.

(define-union-language L base/prefix-lang ...)

base/prefix-lang = lang-id

| (prefix lang-id)

Constructs a language that is the union of all of the languages listed in the base/prefix-

lang .

If the two languages have non-terminals in common, then define-union-language will
combine all of the productions of the common non-terminals. For example, this definition
of L :

35

(define-language L1

(e ::=

(+ e e)

number))

(define-language L2

(e ::=

(if e e e)

true

false))

(define-union-language L L1 L2)

is equivalent to this one:

(define-language L

(e ::=

(+ e e)

number

(if e e e)

true

false))

If a language has a prefix, then all of the non-terminals from that language have the corre-
sponding prefix in the union language. The prefix helps avoid unintended collisions between
the constituent language’s non-terminals.

For example, with two these two languages:

(define-language UT

(e (e e)

(λ (x) e)

x))

(define-language WT

(e (e e)

(λ (x t) e)

x)

(t (→ t t)

num))

then this declaration:

(define-union-language B (ut. UT) (wt. WT))

36

will create a language named B containing the non-terminals ut.e, wt.e, and wt.t consist-
ing of the productions listed in the original languages.

(language-nts lang) → (listof symbol?)

lang : compiled-lang?

Returns the list of non-terminals (as symbols) that are defined by this language.

(compiled-lang? l) → boolean?

l : any/c

Returns #t if its argument was produced by language, #f otherwise.

2.4 Reduction Relations

(reduction-relation language domain base-arrow

reduction-case ...

shortcuts)

37

domain =
| #:domain pattern

base-arrow =
| #:arrow base-arrow-name

reduction-case = (arrow-name pattern term red-extras ...)

red-extras = rule-name

| (fresh fresh-clause ...)

| (side-condition racket-expression)

| (where pattern term)

| (judgment-holds (judgment-form-id pat/term ...))

| (side-condition/hidden racket-expression)

| (where/hidden pattern term)

shortcuts =
| with shortcut ...

shortcut = [(old-arrow-name pattern term)

(new-arrow-name identifier identifier)]

rule-name = identifier

| string

| (computed-name racket-expression)

fresh-clause = var

| ((var1 ...) (var2 ...))

pat/term = pattern

| term

Defines a reduction relation casewise, one case for each of the reduction-case clauses.

The optional domain clause provides a contract for the relation, in the form of a pattern that
defines the relation’s domain and codomain.

The arrow-name in each reduction-case clause is either base-arrow-name (default
-->) or an arrow name defined by shortcuts (described below). In either case, the pattern
refers to language and binds variables in the corresponding term. Following the pattern
and term can be the name of the reduction rule and declarations of fresh variables and side-
conditions.

For example, the expression

(reduction-relation

38

lc-lang

(--> (in-hole c_1 ((λ (variable_i ...) e_body) v_i ...))

(in-hole c_1 ,(foldl lc-subst

(term e_body)

(term (v_i ...))

(term (variable_i ...))))

beta-v))

defines a reduction relation for the lc-lang grammar.

A rule’s name (used in typesetting, the stepper, traces, and apply-reduction-

relation/tag-with-names) can be given as a literal (an identifier or a string) or as an
expression that computes a name using the values of the bound pattern variables (much like
the rule’s right-hand side). Some operations require literal names, so a rule definition may
provide both a literal name and a computed name. In particular, only rules that include a
literal name may be replaced using extend-reduction-relation, used as breakpoints
in the stepper, and selected using render-reduction-relation-rules. The output of
apply-reduction-relation/tag-with-names, traces, and the stepper prefers the
computed name, if it exists. Typesetting a rule with a computed name shows the expression
that computes the name only when the rule has no literal name or when it would not typeset
in pink due to with-unquote-rewriters in the context; otherwise, the literal name (or
nothing) is shown.

Fresh variable clauses generate variables that do not occur in the term being reduced. If the
fresh-clause is a variable, that variable is used both as a binding in the term and as the
prefix for the freshly generated variable. (The variable does not have to be a non-terminal in
the language of the reduction relation.)

The second form of fresh-clauses generates a sequence of variables. In that case, the
ellipses are literal ellipses; that is, you must actually write ellipses in your rule. The variable
var1 is like the variable in first case of a fresh-clause ; namely it is used to determine
the prefix of the generated variables and it is bound in the right-hand side of the reduction
rule, but unlike the single-variable fresh clause, it is bound to a sequence of variables. The
variable var2 is used to determine the number of variables generated and var2 must be
bound by the left-hand side of the rule.

The expressions within side-condition clauses and side-condition/hidden clauses
are collected with and and used as guards on the case being matched. The argument to
each side-condition should be a Racket expression, and the pattern variables in the pat-

tern are bound in that expression. A side-condition/hidden clause is the same as
a side-condition clause, except that the condition is not rendered when typesetting via
redex/pict.

Each where clause acts as a side condition requiring a successful pattern match, and it
can bind pattern variables in the side-conditions (and where clauses) that follow and in the
metafunction result. The bindings are the same as bindings in a term-let expression. A

39

where/hidden clause is the same as a where clause, but the clause is not rendered when
typesetting via redex/pict.

Each judgment-holds clause acts like a where clause, where the left-hand side pattern
incorporates each of the patterns used in the judgment form’s output positions.

Each shortcut clause defines arrow names in terms of base-arrow-name and earlier
shortcut definitions. The left- and right-hand sides of a shortcut definition are iden-
tifiers, not patterns and terms. These identifiers need not correspond to non-terminals in
language .

For example, this expression

(reduction-relation

lc-num-lang

(==> ((λ (variable_i ...) e_body) v_i ...)

,(foldl lc-subst

(term e_body)

(term (v_i ...))

(term (variable_i ...))))

(==> (+ number_1 ...)

,(apply + (term (number_1 ...))))

with

[(--> (in-hole c_1 a) (in-hole c_1 b))

(==> a b)])

defines reductions for the λ-calculus with numbers, where the ==> shortcut is defined by
reducing in the context c.

A fresh clause in reduction-case defined by shortcut refers to the entire term, not just
the portion matched by the left-hand side of shortcut’s use.

(extend-reduction-relation reduction-relation language more ...)

This form extends the reduction relation in its first argument with the rules specified in more .
They should have the same shape as the rules (including the with clause) in an ordinary
reduction-relation .

If the original reduction-relation has a rule with the same name as one of the rules specified
in the extension, the old rule is removed.

In addition to adding the rules specified to the existing relation, this form also reinterprets
the rules in the original reduction, using the new language.

(union-reduction-relations r ...) → reduction-relation?
r : reduction-relation?

40

Combines all of the argument reduction relations into a single reduction relation that steps
when any of the arguments would have stepped.

(reduction-relation->rule-names r) → (listof symbol?)

r : reduction-relation?

Returns the names of the reduction relation’s named clauses.

(compatible-closure reduction-relation lang non-terminal)

This accepts a reduction, a language, the name of a non-terminal in the language and returns
the compatible closure of the reduction for the specified non-terminal.

(context-closure reduction-relation lang pattern)

This accepts a reduction, a language, a pattern representing a context (ie, that can be used
as the first argument to in-hole; often just a non-terminal) in the language and returns the
closure of the reduction in that context.

(reduction-relation? v) → boolean?
v : any/c

Returns #t if its argument is a reduction-relation, and #f otherwise.

(apply-reduction-relation r t) → (listof any/c)

r : reduction-relation?

t : any/c

This accepts reduction relation, a term, and returns a list of terms that the term reduces to.

(apply-reduction-relation/tag-with-names r

t)

→ (listof (list/c (union false/c string?) any/c))

r : reduction-relation?

t : any/c

Like apply-reduction-relation, but the result indicates the names of the reductions that
were used.

(apply-reduction-relation* r

t

[#:cache-all? cache-all?

#:stop-when stop-when])
→ (listof any/c)

r : reduction-relation?

t : any/c

cache-all? : boolean? = (current-cache-all?)

stop-when : (-> any/c any) = (λ (x) #f)

41

Accepts a reduction relation and a term. Starting from t , it follows every reduction path and
returns all of the terms that do not reduce further. If there are infinite reduction sequences
that do not repeat, this function will not terminate (it does terminate if the only infinite
reduction paths are cyclic).

If the cache-all? argument is #t, then apply-reduction-relation* keeps a cache of
all visited terms when traversing the graph and does not revisit any of them. This cache can,
in some cases, use a lot of memory, so it is off by default and the cycle checking happens by
keeping track only of the current path it is traversing through the reduction graph.

The stop-when argument controls the stopping criterion. Specifically, it is called with each
term that apply-reduction-relation* encounters. If it ever returns a true value (any-
thing except #f), then apply-reduction-relation* considers the term to be irreducible
(and so returns it and does not try to reduce it further).

(current-cache-all?) → boolean?
(current-cache-all? cache-all?) → void?

cache-all? : boolean?

Controls the behavior of apply-reduction-relation* and test-->>’s cycle checking.
See apply-reduction-relation* for more details.

Examples:

> (define-language empty-lang)

> (define R

(reduction-relation

empty-lang

(--> 0 1)

(--> 0 2)

(--> 2 3)

(--> 3 3)))

> (apply-reduction-relation R 0)

'(2 1)

> (apply-reduction-relation* R 0)

'(1)

-->

Recognized specially within reduction-relation. A --> form is an error elsewhere.

fresh

Recognized specially within reduction-relation. A fresh form is an error elsewhere.

42

with

Recognized specially within reduction-relation. A with form is an error elsewhere.

2.5 Other Relations

(define-metafunction language

metafunction-contract

[(name pattern ...) term metafunction-extras ...]

...)

metafunction-contract =
| id : pattern-sequence ... -> range

maybe-pre-condition

maybe-pre-condition = #:pre term

|

range = pattern

| pattern or range

| pattern ∨ range

| pattern ∪ range

metafunction-extras = (side-condition racket-expression)

| (side-condition/hidden racket-expression)

| (where pat term)

| (where/hidden pat term)

| (judgment-holds

(judgment-form-id pat/term ...))

| (clause-name name)

The define-metafunction form builds a function on sexpressions according to the pattern
and right-hand-side expressions. The first argument indicates the language used to resolve
non-terminals in the pattern expressions. Each of the rhs-expressions is implicitly wrapped
in term .

The contract, if present, is matched against every input to the metafunction and, if the match
fails, an exception is raised. If present, the term inside the maybe-pre-condition is eval-
uated after a successful match to the input pattern in the contract (with any variables from
the input contract bound). If it returns #f, then the input contract is considered to not have
matched and an error is also raised.

The side-condition, hidden-side-condition, where, and where/hidden clauses be-
have as in the reduction-relation form.

43

The resulting metafunction raises an exception recognized by exn:fail:redex? if no
clauses match or if one of the clauses matches multiple ways (and that leads to different
results for the different matches).

The side-condition extra is evaluated after a successful match to the corresponding ar-
gument pattern. If it returns #f, the clause is considered not to have matched, and the next
one is tried. The side-condition/hidden extra behaves the same, but is not typeset.

The where and where/hidden extra are like side-condition and side-

condition/hidden, except the match guards the clause.

The judgment-holds clause is like side-condition and where, except the given judg-
ment must hold for the clause to be taken.

The clause-name is used only when typesetting. See metafunction-cases.

Note that metafunctions are assumed to always return the same results for the same inputs,
and their results are cached, unless caching-enabled? is set to #f. Accordingly, if a
metafunction is called with the same inputs twice, then its body is only evaluated a single
time.

As an example, these metafunctions finds the free variables in an expression in the lc-lang
above:

(define-metafunction lc-lang

free-vars : e -> (x ...)

[(free-vars (e_1 e_2 ...))

(∪ (free-vars e_1) (free-vars e_2) ...)]

[(free-vars x) (x)]

[(free-vars (λ (x ...) e))

(- (free-vars e) (x ...))])

The first argument to define-metafunction is the grammar (defined above). Following that
are three cases, one for each variation of expressions (e in lc-lang). The free variables of an
application are the free variables of each of the subterms; the free variables of a variable is
just the variable itself, and the free variables of a λ expression are the free variables of the
body, minus the bound parameters.

Here are the helper metafunctions used above.

(define-metafunction lc-lang

∪ : (x ...) ... -> (x ...)

[(∪ (x_1 ...) (x_2 ...) (x_3 ...) ...)

(∪ (x_1 ... x_2 ...) (x_3 ...) ...)]

[(∪ (x_1 ...))

(x_1 ...)]

[(∪) ()])

44

(define-metafunction lc-lang

- : (x ...) (x ...) -> (x ...)

[(- (x ...) ()) (x ...)]

[(- (x_1 ... x_2 x_3 ...) (x_2 x_4 ...))

(- (x_1 ... x_3 ...) (x_2 x_4 ...))

(side-condition (not (memq (term x_2) (term (x_3 ...)))))]

[(- (x_1 ...) (x_2 x_3 ...))

(- (x_1 ...) (x_3 ...))])

Note the side-condition in the second case of -. It ensures that there is a unique match for
that case. Without it, (term (- (x x) x)) would lead to an ambiguous match.

(define-metafunction/extension f language

metafunction-contract

[(g pattern ...) term metafunction-extras ...]

...)

Defines a metafunction g as an extension of an existing metafunction f . The metafunction
g behaves as if f ’s clauses were appended to its definition (with occurrences of f changed
to g in the inherited clauses).

For example, define-metafunction/extension may be used to extend the free-vars
function above to the forms introduced by the language lc-num-lang.

(define-metafunction/extension free-vars lc-num-lang

free-vars-num : e -> (x ...)

[(free-vars-num number)

()]

[(free-vars-num (+ e_1 e_2))

(∪ (free-vars-num e_1)

(free-vars-num e_2))])

(in-domain? (metafunction-name term ...))

Returns #t if the inputs specified to metafunction-name are legtimate inputs according to
metafunction-name ’s contract, and #f otherwise.

(define-judgment-form language

mode-spec

contract-spec

rule rule ...)

45

mode-spec = #:mode (form-id pos-use ...)

contract-spec =
| #:contract (form-id pattern-sequence ...)

pos-use = I

| O

rule = [premise

...

dashes rule-name

conclusion]

| [conclusion

premise

...

rule-name]

conclusion = (form-id pat/term ...)

premise = (judgment-form-id pat/term ...) maybe-ellipsis

| (where pattern term)

| (where/hidden pattern term)

| (side-condition term)

| (side-condition/hidden term)

rule-name =
| string

| non-ellipsis-non-hypens-var

pat/term = pattern

| term

maybe-ellipsis =
| ...

dashes = ---

| ----

| -----

| etc.

Defines form-id as a relation on terms via a set of inference rules. Each rule must be such
that its premises can be evaluated left-to-right without “guessing” values for any of their
pattern variables. Redex checks this property using the mandatory mode-spec declaration,
which partitions positions into inputs I and outputs O. Output positions in conclusions and
input positions in premises must be terms; input positions in conclusions and output po-

46

sitions in premises must be patterns. When the optional contract-spec declaration is
present, Redex dynamically checks that the terms flowing through these positions match the
provided patterns, raising an exception recognized by exn:fail:redex if not.

For example, the following defines addition on natural numbers:

> (define-language nats

(n ::= z (s n)))

> (define-judgment-form nats

#:mode (sum I I O)

#:contract (sum n n n)

[----------- "zero"

(sum z n n)]

[(sum n_1 n_2 n_3)

------------------------- "add1"

(sum (s n_1) n_2 (s n_3))])

The judgment-holds form checks whether a relation holds for any assignment of pattern
variables in output positions.

Examples:

> (judgment-holds (sum (s (s z)) (s z) (s (s (s z)))))

#t

> (judgment-holds (sum (s (s z)) (s z) (s (s (s n)))))

#t

> (judgment-holds (sum (s (s z)) (s z) (s (s (s (s n))))))

#f

Alternatively, this form constructs a list of terms based on the satisfying pattern variable
assignments.

Examples:

> (judgment-holds (sum (s (s z)) (s z) (s (s (s n)))) n)

'(z)

> (judgment-holds (sum (s (s z)) (s z) (s (s (s (s n))))) n)

'()

> (judgment-holds (sum (s (s z)) (s z) (s (s (s n)))) (s n))

'((s z))

Declaring different modes for the same inference rules enables different forms of computa-
tion. For example, the following mode allows judgment-holds to compute all pairs with a
given sum.

47

> (define-judgment-form nats

#:mode (sumr O O I)

#:contract (sumr n n n)

[------------

(sumr z n n)]

[(sumr n_1 n_2 n_3)

(sumr (s n_1) n_2 (s n_3))])

> (judgment-holds (sumr n_1 n_2 (s (s z))) (n_1 n_2))

'(((s (s z)) z) ((s z) (s z)) (z (s (s z))))

A rule’s where and where/hidden premises behave as in reduction-relation and
define-metafunction.

Examples:

> (define-judgment-form nats

#:mode (le I I)

#:contract (le n n)

[--------

(le z n)]

[(le n_1 n_2)

(le (s n_1) (s n_2))])

> (define-metafunction nats

pred : n -> n or #f

[(pred z) #f]

[(pred (s n)) n])

> (define-judgment-form nats

#:mode (gt I I)

#:contract (gt n n)

[(where n_3 (pred n_1))

(le n_2 n_3)

(gt n_1 n_2)])

> (judgment-holds (gt (s (s z)) (s z)))

#t

> (judgment-holds (gt (s z) (s z)))

#f

48

A rule’s side-condition and side-condition/hidden premises are similar to those
in reduction-relation and define-metafunction, except that they do not implicitly
unquote their right-hand sides. In other words, a premise of the form (side-condition

term) is equivalent to the premise (where #t term), except it does not typeset with the
“#t = ”, as that would.

Judgments with exclusively I mode positions may also be used in terms in a manner similar
to metafunctions, and evaluate to a boolean.

Examples:

> (term (le (s z) (s (s z))))

#t

> (term (le (s z) z))

#f

A literal ellipsis may follow a judgment premise when a template in one of the judgment’s
input positions contains a pattern variable bound at ellipsis-depth one.

Examples:

> (define-judgment-form nats

#:mode (even I)

#:contract (even n)

[-------- "evenz"

(even z)]

[(even n)

---------------- "even2"

(even (s (s n)))])

> (define-judgment-form nats

#:mode (all-even I)

#:contract (all-even (n ...))

[(even n) ...

(all-even (n ...))])

> (judgment-holds (all-even (z (s (s z)) z)))

#t

> (judgment-holds (all-even (z (s (s z)) (s z))))

#f

Redex evaluates premises depth-first, even when it doing so leads to non-termination. For
example, consider the following definitions:

49

> (define-language vertices

(v a b c))

> (define-judgment-form vertices

#:mode (edge I O)

#:contract (edge v v)

[(edge a b)]

[(edge b c)])

> (define-judgment-form vertices

#:mode (path I I)

#:contract (path v v)

[----------

(path v v)]

[(path v_2 v_1)

(path v_1 v_2)]

[(edge v_1 v_2)

(path v_2 v_3)

(path v_1 v_3)])

Due to the second path rule, the follow query fails to terminate:

> (judgment-holds (path a c))

The "examples" directory demonstrates three use cases:

• "typing-rules.rkt" — defines a type system in a way that supports mechanized
typesetting. When a typing judgment form can be given a mode, it can also be encoded
as a metafunction using where clauses as premises, but Redex cannot typeset that
encoding as inference rules.

• "sos.rkt" — defines an SOS-style semantics in a way that supports mechanized
typesetting.

• "multi-val.rkt" — defines a judgment form that serves as a multi-valued meta-
function.

(define-extended-judgment-form language judgment-form-id

option ...

rule ...)

50

http://git.racket-lang.org/plt/tree/HEAD:/collects/redex/examples/
http://git.racket-lang.org/plt/blob/HEAD:/collects/redex/examples/define-judgment-form/typing-rules.rkt
http://git.racket-lang.org/plt/blob/HEAD:/collects/redex/examples/define-judgment-form/sos.rkt
http://git.racket-lang.org/plt/blob/HEAD:/collects/redex/examples/define-judgment-form/multi-val.rkt

Defines a new judgment form that extends judgment-form-id with additional rules. The
options and rules are as in define-judgment-form.

The mode specification in this judgment form and the original must be the same.

(judgment-holds judgment)

(judgment-holds judgment term)

judgment = (judgment-form-id pat/term ...)

In its first form, checks whether judgment holds for any assignment of the pattern variables
in judgment-id’s output positions. In its second form, produces a list of terms by instan-
tiating the supplied term template with each satisfying assignment of pattern variables. See
define-judgment-form for examples.

(build-derivations judgment)

Constructs all of the derivation trees for judgment .

Example:

> (build-derivations (even (s (s z))))

(list

(derivation

'(even (s (s z)))

"even2"

(list (derivation '(even z) "evenz" '()))))

(struct derivation (term name subs)

#:extra-constructor-name make-derivation)

term : any/c

name : (or/c string? #f)

subs : (listof derivation?)

Represents a derivation from a judgment form.

The term field holds an s-expression based rendering of the conclusion of the derivation, the
name field holds the name of the clause with term as the conclusion, and subs contains the
sub-derivations.

See also build-derivations.

I

Recognized specially within define-judgment-form, the I keyword is an error elsewhere.

51

O

Recognized specially within define-judgment-form, the O keyword is an error elsewhere.

(define-relation language

relation-contract

[(name pattern ...)

term ...

metafunction-extras ...] ...)

relation-contract =
| form-id ⊂ pattern x ... x pattern

| form-id ⊆ pattern × ... × pattern

Similar to define-judgment-form but suitable only when every position is an input. There
is no associated form corresponding to judgment-holds; querying the result uses the same
syntax as metafunction application.

The contract specification for a relation restricts the patterns that can be used as input to a
relation. For each argument to the relation, there should be a single pattern, using x or × to
separate the argument contracts.

Examples:

> (define-language types

((τ σ) int

num

(τ → τ)))

> (define-relation types

subtype ⊆ τ × τ
[(subtype int num)]

[(subtype (τ_1 → τ_2) (σ_1 → σ_2))
(subtype σ_1 τ_1)
(subtype τ_2 σ_2)]

[(subtype τ τ)])

> (term (subtype int num))

#t

> (term (subtype (int → int) (num → num)))

#f

> (term (subtype (num → int) (num → num)))

#t
(current-traced-metafunctions) → (or/c 'all (listof symbol?))

(current-traced-metafunctions traced-metafunctions) → void?

traced-metafunctions : (or/c 'all (listof symbol?))

52

Controls which metafunctions are currently being traced. If it is 'all, all of them are.
Otherwise, the elements of the list name the metafunctions to trace.

The tracing looks just like the tracing done by the racket/trace library, except that the
first column printed by each traced call indicate if this call to the metafunction is cached.
Specifically, a c is printed in the first column if the result is just returned from the cache and
a space is printed if the metafunction call is actually performed.

Defaults to '().

2.6 Testing

(test-equal e1 e2)

Tests to see if e1 is equal to e2 .

(test-->> rel-expr option ... e1-expr e2-expr ...)

option = #:cycles-ok

| #:equiv pred-expr

| #:pred pred-expr

rel-expr : reduction-relation?

pred-expr : (--> any/c any)

e1-expr : any/c

e2-expr : any/c

Tests to see if the term e1-expr , reduces to the terms e2-expr under rel-expr , using
pred-expr to determine equivalence.

If #:pred is specified, it is applied to each reachable term until one of the terms fails to
satify the predicate (i.e., the predicate returns #f). If that happens, then the test fails and a
message is printed with the term that failed to satisfy the predicate.

This test uses apply-reduction-relation*, so it does not terminate when the resulting
reduction graph is infinite, although it does terminate if there are cycles in the (finite) graph.

If #:cycles-ok is not supplied then any cycles detected are treated as a test failure. If a
pred-expr is supplied, then it is used to compare the expected and actual results.

(test--> rel-expr option ... e1-expr e2-expr ...)

option = #:equiv pred-expr

53

rel-expr : reduction-relation?

pred-expr : (--> any/c any/c any/c)

e1-expr : any/c

e2-expr : any/c

Tests to see if the term e1-expr , reduces to the terms e2-expr in a single rel-expr step,
using pred-expr to determine equivalence.

Examples:

> (define-language L

(i integer))

> (define R

(reduction-relation

L

(--> i i)

(--> i ,(add1 (term i)))))

> (define (mod2=? i j)

(= (modulo i 2) (modulo j 2)))

> (test--> R #:equiv mod2=? 7 1)

FAILED :46.0
expected: 1

actual: 8
actual: 7

> (test--> R #:equiv mod2=? 7 1 0)

> (test-results)

1 test failed (out of 2 total).

(test-->>∃ option ... rel-expr start-expr goal-expr)

option = #:steps steps-expr

rel-expr : reduction-relation?

start-expr : any/c

goal-expr :
(or/c (-> any/c any/c)

(not/c procedure?))

steps-expr : (or/c natural-number/c +inf.0)

Tests to see if the term start-expr reduces according to the reduction relation rel-expr

54

to a term specified by goal-expr in steps-expr or fewer steps (default 1,000). The
specification goal-expr may be either a predicate on terms or a term itself.

test-->>E

An alias for test-->>∃.

Examples:

> (define-language L

(n natural))

> (define succ-mod8

(reduction-relation

L

(--> n ,(modulo (add1 (term n)) 8))))

> (test-->>∃ succ-mod8 6 2)

> (test-->>∃ succ-mod8 6 even?)

> (test-->>∃ succ-mod8 6 8)

FAILED :53.0
term 8 not reachable from 6

> (test-->>∃ #:steps 6 succ-mod8 6 5)

FAILED :54.0
term 5 not reachable from 6 (within 6 steps)

> (test-results)

2 tests failed (out of 4 total).

(test-predicate p? e)

Tests to see if the value of e matches the predicate p?.

(test-results) → void?

Prints out how many tests passed and failed, and resets the counters so that next time this
function is called, it prints the test results for the next round of tests.

(make-coverage subject)

subject = metafunction

| relation-expr

55

Constructs a structure (recognized by coverage?) to contain per-case test coverage of the
supplied metafunction or reduction relation. Use with relation-coverage and covered-

cases.

(coverage? v) → boolean?

v : any/c

Returns #t for a value produced by make-coverage and #f for any other.

(relation-coverage) → (listof coverage?)

(relation-coverage tracked) → void?

tracked : (listof coverage?)

Redex populates the coverage records in tracked (default null), counting the times that
tests exercise each case of the associated metafunction and relations.

(covered-cases c) → (listof (cons/c string? natural-number/c))

c : coverage?

Extracts the coverage information recorded in c , producing an association list mapping
names (or source locations, in the case of metafunctions or unnamed reduction-relation
cases) to application counts.

Examples:

> (define-language empty-lang)

> (define-metafunction empty-lang

[(plus number_1 number_2)

,(+ (term number_1) (term number_2))])

> (define equals

(reduction-relation

empty-lang

(--> (+) 0 "zero")

(--> (+ number) number)

(--> (+ number_1 number_2 number ...)

(+ (plus number_1 number_2)

number ...)

"add")))

> (let ([equals-coverage (make-coverage equals)]

[plus-coverage (make-coverage plus)])

(parameterize ([relation-coverage (list equals-coverage

plus-coverage)])

(apply-reduction-relation* equals (term (+ 1 2 3)))

56

(values (covered-cases equals-coverage)

(covered-cases plus-coverage))))

'(("#f:58:0" . 1) ("add" . 2) ("zero" . 0))

'(("#f:57:0" . 2))
(generate-term from-pattern)

(generate-term from-judgment-form)

(generate-term from-metafunction)

(generate-term from-reduction-relation)

from-pattern = language pattern size-expr kw-args ...

| language pattern

| language pattern #:i-th index-expr

| language pattern #:i-th

from-judgment-form = language #:satisfying

(judgment-form-id pattern ...)

| language #:satisfying

(judgment-form-id pattern ...)

size-expr

from-metafunction = language #:satisfying

(metafunction-id pattern ...) = pattern

| language #:satisfying

(metafunction-id pattern ...) = pattern

size-expr

| #:source metafunction size-expr kw-args

| #:source metafunction

from-reduction-relation = #:source reduction-relation-expr

size-expr kw-args ...

| #:source reduction-relation-expr

kw-args = #:attempt-num attempts-expr

| #:retries retries-expr

size-expr : natural-number/c

attempt-num-expr : natural-number/c

retries-expr : natural-number/c

Generates terms in a number of different ways:

• from-pattern : In the first case, randomly makes an expression matching the given
pattern whose size is bounded by size-expr ; the second returns a function that ac-
cepts a size bound and returns a random term. Calling this function (even with the
same size bound) may be more efficient than using the first case.

57

Examples:

> (define-language L

(e ::=

(e e)

(λ (x) e)

x)

(x ::= a b c))

> (for/list ([i (in-range 10)])

(generate-term L e 3))

'((b (b (c c)))

(λ (b) ((λ (c) b) (c b)))

((λ (b) b) a)

((λ (b) (λ (c) b)) (λ (b) (c c)))

(((b a) (λ (c) c)) (λ (a) b))

b

(b (λ (b) (λ (b) a)))

((λ (a) b) ((λ (b) b) (λ (a) b)))

c

b)

The #:i-th option uses an enumeration of the non-terminals in a language. If index-
expr is supplied, generate-term returns the corresponding term and if it isn’t,
generate-term returns a function from indicies to terms.

Example:

> (for/list ([i (in-range 9)])

(generate-term L e #:i-th i))

'(a (a a) b (λ (a) a) c (a (a a)) (λ (b) a) ((a a) a) (λ (c)

a))

Base type enumerations such as boolean, natural and integer are what you might
expect:

Examples:

> (for/list ([i (in-range 10)])

(generate-term L boolean #:i-th i))

'(#t #f #t #f #t #f #t #f #t #f)

> (for/list ([i (in-range 10)])

(generate-term L natural #:i-th i))

'(0 1 2 3 4 5 6 7 8 9)

> (for/list ([i (in-range 10)])

(generate-term L integer #:i-th i))

'(0 1 -1 2 -2 3 -3 4 -4 5)

58

The real base type enumeration consists of all integers and flonums, and the number
pattern consists of complex numbers with real and imaginary parts taken from the
real enumeration.

Examples:

> (for/list ([i (in-range 20)])

(generate-term L real #:i-th i))

'(0

+inf.0

1

-inf.0

-1

+nan.0

2

0.0

-2

4.9406564584125e-324

3

-4.9406564584125e-324

-3

9.8813129168249e-324

4

-9.8813129168249e-324

-4

1.4821969375237e-323

5

-1.4821969375237e-323)

> (for/list ([i (in-range 20)])

(generate-term L number #:i-th i))

'(0

0+inf.0i

+inf.0

0+1i

1

+inf.0+inf.0i

-inf.0

0-inf.0i

-1

+inf.0+1.0i

+nan.0

1.0+inf.0i

2

0-1i

0.0

+inf.0-inf.0i

-2

59

1+1i

4.9406564584125e-324

-inf.0+inf.0i)

The string enumeration produces all single character strings before going on to
strings with multiple characters. For each character it starts the lowercase Latin char-
acters, then upercase Latin, and then every remaining Unicode character. The vari-

able enumeration is the same, except it produces symbols instead of strings.

Examples:

> (generate-term L string #:i-th 0)

""

> (generate-term L string #:i-th 1)

"a"

> (generate-term L string #:i-th 26)

"z"

> (generate-term L string #:i-th 27)

"A"

> (generate-term L string #:i-th 52)

"Z"

> (generate-term L string #:i-th 53)

"\u0000"

> (generate-term L string #:i-th 956)

"λ"
> (generate-term L variable #:i-th 1)

'a

> (generate-term L variable #:i-th 27)

'A

The variable-prefix, variable-except, and variable-not-otherwise-

mentioned are defined similarly, as you expect.

Examples:

> (define-language L

(used ::= a b c)

(except ::= (variable-except a))

(unused ::= variable-not-otherwise-mentioned))

> (for/list ([i (in-range 10)])

(generate-term L (variable-prefix a:) #:i-th i))

'(a: a:a a:b a:c a:d a:e a:f a:g a:h a:i)

> (for/list ([i (in-range 10)])

(generate-term L except #:i-th i))

'(|| b c d e f g h i j)

> (for/list ([i (in-range 10)])

(generate-term L unused #:i-th i))

60

'(|| d e f g h i j k l)

Finally, the any pattern enumerates sexpressions of the above base-types.

Example:

> (for/list ([i (in-range 20)])

(generate-term L any #:i-th i))

'(()

(())

0

(() ())

""

((()))

0+inf.0i

(() . 0)

#t

((()) ())

+inf.0

(0)

"a"

(() () ())

0+1i

((()) . 0)

||

(0 ())

1

((() ())))

In addition, all other pattern types are supported except for mismatch !_ patterns,
mismatch repeat ..._!_ patterns and side-condition patterns.

The enumerators do not repeat terms unless the given pattern is ambiguous. Roughly
speaking, the enumerator generates all possible ways that a pattern might be parsed
and since ambiguous patterns have multiple ways they might be parsed, those multiple
parsings turn into repeated elements in the enumeration.

Example:

> (for/list ([i (in-range 9)])

(generate-term L (boolean_1 ... boolean_2 ...) #:i-th i))

'(() (#t) (#t) (#f) (#t #t) (#f) (#t #t) (#t #f) (#f #t))

Other sources of ambiguity are in-hole and overlapping non-terminals.

Examples:

> (define-language L

(e ::= (e e) (λ (x) e) x)

(E ::= hole (e E) (E e))

(x ::= a b c))

61

> (for/list ([i (in-range 9)])

(generate-term L (in-hole E e) #:i-th i))

'(a (a a) (a a) b (a (a a)) (a a) (λ (a) a) (a b) ((a a) a))

> (define-language L

(overlap ::= natural integer))

> (for/list ([i (in-range 10)])

(generate-term L overlap #:i-th i))

'(0 0 1 1 2 -1 3 2 4 -2)

• from-judgment-form : Randomly picks a term that satisfies the given use of the
judgment form.

Examples:

> (define-language L

(nat ::= Z (S nat)))

> (define-judgment-form L

#:mode (sum I I O)

[---------------

(sum Z nat nat)]

[(sum nat_1 nat_2 nat_3)

(sum (S nat_1) nat_2 (S nat_3))])

> (for/list ([i (in-range 10)])

(generate-term L #:satisfying

(sum nat_1 nat_2 nat_3)

3))

'((sum Z Z Z)

(sum (S (S (S Z))) Z (S (S (S Z))))

(sum (S Z) (S Z) (S (S Z)))

(sum Z Z Z)

(sum Z Z Z)

(sum (S Z) (S Z) (S (S Z)))

(sum (S (S Z)) Z (S (S Z)))

(sum (S Z) Z (S Z))

(sum Z (S (S Z)) (S (S Z)))

(sum (S (S (S Z))) Z (S (S (S Z)))))

• from-metafunction : The first form randomly picks a term that satisfies the given
invocation of the metafunction, using techniques similar to how the from-judgment-
form case works. The second form uses a more naive approach; it simply generates
terms that match the patterns of the cases of the metafunction; it does not consider
the results of the metafunctions, nor does it consider patterns from earlier cases when

62

generating terms based on a particular case. The third case is like the second, except
it returns a function that accepts the size and keywords arguments that may be more
efficient if multiple random terms are generated.

Examples:

> (define-language L

(n number))

> (define-metafunction L

[(F one-clause n) ()]

[(F another-clause n) ()])

> (for/list ([i (in-range 10)])

(generate-term #:source F 5))

'((another-clause 2)

(one-clause 1)

(another-clause 2)

(another-clause 0)

(one-clause 1)

(one-clause 4)

(another-clause 0)

(one-clause 4)

(another-clause 0)

(one-clause 2))

• from-reduction-relation : In the first case, generate-term randomly picks a
rule from the reduction relation and tries to pick a term that satisfies its domain pattern,
returning that. The second case returns a function that accepts the size and keyword
arguments that may be more efficient if multiple random terms are generated.

Examples:

> (define-language L

(n number))

> (for/list ([i (in-range 10)])

(generate-term

#:source

(reduction-relation

L

(--> (one-clause n) ())

(--> (another-clause n) ()))

5))

'((one-clause 1)

(one-clause 0)

(another-clause 0)

(another-clause 0)

63

(another-clause 2)

(one-clause 0)

(one-clause 2)

(one-clause 3)

(another-clause 2)

(another-clause 3))

The argument size-expr bounds the height of the generated term (measured as the height
of its parse tree).

The optional keyword argument attempt-num-expr (default 1) provides coarse grained
control over the random decisions made during generation; increasing attempt-num-expr

tends to increase the complexity of the result. For example, the absolute values of numbers
chosen for integer patterns increase with attempt-num-expr.

The random generation process does not actively consider the constraints imposed by side-
condition or _!_ patterns; instead, it uses a “guess and check” strategy in which it freely gen-
erates candidate terms then tests whether they happen to satisfy the constraints, repeating as
necessary. The optional keyword argument retries-expr (default 100) bounds the num-
ber of times that generate-term retries the generation of any pattern. If generate-term
is unable to produce a satisfying term after retries-expr attempts, it raises an exception
recognized by exn:fail:redex:generation-failure?.

(redex-check template property-expr kw-arg ...)

template = language pattern

| language pattern #:enum enum-expr

| language #:satisfying

(judgment-form-id pattern ...)

| language #:satisfying

(metafunction-id pattern ...) = pattern

kw-arg = #:attempts attempts-expr

| #:source metafunction

| #:source relation-expr

| #:retries retries-expr

| #:print? print?-expr

| #:attempt-size attempt-size-expr

| #:prepare prepare-expr

| #:keep-going? keep-going?-expr

64

property-expr : any/c

attempts-expr : natural-number/c

relation-expr : reduction-relation?

retries-expr : natural-number/c

print?-expr : any/c

attempt-size-expr : (-> natural-number/c natural-number/c)

prepare-expr : (-> any/c any/c)

Searches for a counterexample to property-expr , interpreted as a predicate universally
quantified over the pattern variables bound by the pattern(s) in template . redex-check
constructs and tests a candidate counterexample by choosing a random term t based on
template and then evaluating property-expr using the match-bindings produced by
matching t against pattern. The form of template controls how t is generated:

• language pattern : In this case, redex-check randomly generates terms that match
pattern .

• language pattern : In this case, redex-check uniformly at random picks a number
less than the value of enum-expr (which must be a non-negative integer) and then
uses that to index into an enumeration of pattern .

• language #:satisfying (judgment-form-id pattern ...): Generates
terms that match pattern and satisfy the judgment form.

• language #:satisfying (metafunction-id pattern ...) = pattern :
Generates terms matching the two patterns, such that if the first is the argument to
the metafunction, the second will be the result.

redex-check generates at most attempts-expr (default (default-check-attempts))
random terms in its search. The size and complexity of these terms tend to increase with
each failed attempt. The #:attempt-size keyword determines the rate at which terms
grow by supplying a function that bounds term size based on the number of failed attempts
(see generate-term’s size-expr argument). By default, the bound grows according to
the default-attempt-size function.

When print?-expr produces any non-#f value (the default), redex-check prints the test
outcome on current-output-port. When print?-expr produces #f, redex-check
prints nothing, instead

• returning a counterexample structure when the test reveals a counterexample,

• returning #t when all tests pass, or

• raising a exn:fail:redex:test when checking the property raises an exception.

65

The optional #:prepare keyword supplies a function that transforms each generated ex-
ample before redex-check checks property-expr . This keyword may be useful when
property-expr takes the form of a conditional, and a term chosen freely from the gram-
mar is unlikely to satisfy the conditional’s hypothesis. In some such cases, the prepare

keyword can be used to increase the probability that an example satisfies the hypothesis.

The #:retries keyword behaves identically as in generate-term, controlling the number
of times the generation of any pattern will be reattempted. It can’t be used together with
#:satisfying.

If keep-going?-expr produces any non-#f value, redex-check will stop only when it
hits the limit on the number of attempts showing all of the errors it finds. This argument is
allowed only when print?-expr is not #f.

When passed a metafunction or reduction relation via the optional #:source argument,
redex-check distributes its attempts across the left-hand sides of that metafunction/relation
by using those patterns, rather than pattern, as the basis of its generation. It is an error if
any left-hand side generates a term that does not match pattern. #:source cannot be used
with #:satisfying.

Examples:

> (define-language empty-lang)

> (random-seed 0)

> (redex-check

empty-lang

((number_1 ...)

(number_2 ...))

(equal? (reverse (append (term (number_1 ...))

(term (number_2 ...))))

(append (reverse (term (number_1 ...)))

(reverse (term (number_2 ...))))))

redex-check: counterexample found after 5 attempts:

((1 0) (0))

> (redex-check

empty-lang

((number_1 ...)

(number_2 ...))

(equal? (reverse (append (term (number_1 ...))

(term (number_2 ...))))

(append (reverse (term (number_2 ...)))

(reverse (term (number_1 ...)))))

#:attempts 200)

redex-check: no counterexamples in 200 attempts

66

> (let ([R (reduction-relation

empty-lang

(--> (Σ) 0)

(--> (Σ number) number)

(--> (Σ number_1 number_2 number_3 ...)

(Σ ,(+ (term number_1) (term number_2))

number_3 ...)))])

(redex-check

empty-lang

(Σ number ...)

(printf "∼s\n" (term (number ...)))

#:attempts 3

#:source R))

()

(1)

(3 0)

redex-check: no counterexamples in 1 attempt (with each clause)

> (redex-check

empty-lang

number

(begin

(printf "checking ∼s\n" (term number))

(positive? (term number)))

#:prepare (λ (n)

(printf "preparing ∼s; " n)

(add1 (abs n)))

#:attempts 3)

preparing 0; checking 1

preparing 0; checking 1

preparing 1; checking 2

redex-check: no counterexamples in 3 attempts

> (define-language L

(nat ::= Z (S nat)))

> (define-judgment-form L

#:mode (sum I I O)

[---------------

(sum Z nat nat)]

[(sum nat_1 nat_2 nat_3)

(sum (S nat_1) nat_2 (S nat_3))])

> (redex-check L

67

#:satisfying

(sum nat_1 nat_2 nat_3)

(equal? (judgment-holds

(sum nat_1 nat_2 nat_4) nat_4)

(term (nat_3)))

#:attempts 100)

redex-check: no counterexamples in 100 attempts

> (redex-check L

#:satisfying

(sum nat_1 nat_2 nat_3)

(equal? (term nat_1) (term nat_2)))

redex-check: counterexample found after 1 attempt:

(sum Z (S Z) (S Z))

(redex-generator language-id satisfying size-expr)

satisfying = (judgment-form-id pattern ...)

| (metafunction-id pattern ...) = pattern

size-expr : natural-number/c

WARNING: redex-generator is a new, experimental form, and its API may change.

Returns a thunk that, each time it is called, either generates a random s-expression based
on satisfying or fails to (and returns #f). The terms returned by a particular thunk are
guaranteed to be distinct.

Examples:

> (define-language L

(nat ::= Z (S nat)))

> (define-judgment-form L

#:mode (sum I I O)

[---------------

(sum Z nat nat)]

[(sum nat_1 nat_2 nat_3)

(sum (S nat_1) nat_2 (S nat_3))])

> (define gen-sum (redex-generator L (sum nat_1 nat_2 nat_3) 3))

> (for/list ([_ (in-range 5)])

(gen-sum))

68

'((sum Z (S Z) (S Z))

(sum (S (S (S Z))) (S Z) (S (S (S (S Z)))))

(sum (S (S (S (S Z)))) (S (S Z)) (S (S (S (S (S (S Z)))))))

(sum (S (S Z)) Z (S (S Z)))

(sum (S Z) (S (S Z)) (S (S (S Z)))))

(struct counterexample (term)

#:extra-constructor-name make-counterexample

#:transparent)

term : any/c

Produced by redex-check, check-reduction-relation, and check-metafunction

when testing falsifies a property.

(struct exn:fail:redex:test exn:fail:redex (source term)

#:extra-constructor-name make-exn:fail:redex:test)

source : exn:fail?

term : any/c

Raised by redex-check, check-reduction-relation, and check-metafunction

when testing a property raises an exception. The exn:fail:redex:test-source compo-
nent contains the exception raised by the property, and the exn:fail:redex:test-term

component contains the term that induced the exception.

(check-reduction-relation relation property kw-args ...)

kw-arg = #:attempts attempts-expr

| #:retries retries-expr

| #:print? print?-expr

| #:attempt-size attempt-size-expr

| #:prepare prepare-expr

property : (-> any/c any/c)

attempts-expr : natural-number/c

retries-expr : natural-number/c

print?-expr : any/c

attempt-size-expr : (-> natural-number/c natural-number/c)

prepare-expr : (-> any/c any/c)

Tests relation as follows: for each case of relation , check-reduction-relation
generates attempts random terms that match that case’s left-hand side and applies prop-
erty to each random term.

This form provides a more convenient notation for

69

(redex-check L any (property (term any))

#:attempts (* n attempts)

#:source relation)

when relation is a relation on L with n rules.

(check-metafunction metafunction property kw-args ...)

kw-arg = #:attempts attempts-expr

| #:retries retries-expr

| #:print? print?-expr

| #:attempt-size attempt-size-expr

| #:prepare prepare-expr

property : (-> (listof any/c) any/c)

attempts-expr : natural-number/c

retries-expr : natural-number/c

print?-expr : any/c

attempt-size-expr : (-> natural-number/c natural-number/c)

prepare-expr : (-> (listof any/c) (listof any/c))

Like check-reduction-relation but for metafunctions. check-metafunction calls
property with lists containing arguments to the metafunction. Similarly, prepare-expr
produces and consumes argument lists.

Examples:

> (define-language empty-lang)

> (define-metafunction empty-lang

Σ : number ... -> number

[(Σ) 0]

[(Σ number) number]

[(Σ number_1 number_2) ,(+ (term number_1) (term number_2))]

[(Σ number_1 number_2 ...) (Σ number_1 (Σ number_2 ...))])

> (check-metafunction Σ (λ (args)

(printf "trying ∼s\n" args)

(equal? (apply + args)

(term (Σ ,@args))))

#:attempts 2)

trying ()

trying ()

trying (0)

70

trying (0)

trying (2 1)

trying (0 1)

trying (0)

trying (1)

check-metafunction: no counterexamples in 2 attempts (with each

clause)

(default-attempt-size n) → natural-number/c

n : natural-number/c

The default value of the #:attempt-size argument to redex-check and the other ran-
domized testing forms, this procedure computes an upper bound on the size of the next test
case from the number of previously attempted tests n . Currently, this procedure computes
the base 5 logarithm, but that behavior may change in future versions.

(default-check-attempts) → natural-number/c

(default-check-attempts attempts) → void?

attempts : natural-number/c

Determines the default value for redex-check’s optional #:attempts argument. By de-
fault, attempts is 1,000.

(redex-pseudo-random-generator) → pseudo-random-generator?

(redex-pseudo-random-generator generator) → void?

generator : pseudo-random-generator?

generate-term and the randomized testing forms (e.g., redex-check) use the parameter
generator to construct random terms. The parameter’s initial value is (current-pseudo-
random-generator).

(exn:fail:redex:generation-failure? v) → boolean?

v : any/c

Recognizes the exceptions raised by generate-term, redex-check, etc. when those forms
are unable to produce a term matching some pattern.

Debugging PLT Redex Programs

It is easy to write grammars and reduction rules that are subtly wrong. Typically such mis-
takes result in examples that get stuck when viewed in a traces window.

The best way to debug such programs is to find an expression that looks like it should reduce,
but doesn’t, then try to find out which pattern is failing to match. To do so, use the redex-
match form.

71

In particular, first check if the term in question matches the your system’s main non-terminal
(typically the expression or program non-terminal). If it does not match, simplify the term
piece by piece to determine whether the problem is in the term or the grammar.

If the term does match your system’s main non-terminal, determine by inspection which
reduction rules should apply. For each such rule, repeat the above term-pattern debugging
procedure, this time using the rule’s left-hand side pattern instead of the system’s main non-
terminal. In addition to simplifying the term, also consider simplifying the pattern.

If the term matches the left-hand side, but the rule does not apply, then one of the rule’s
side-condition or where clauses is not satisfied. Using the bindings reported by redex-

match, check each side-condition expression and each where pattern-match to discover
which clause is preventing the rule’s application.

2.7 GUI

(require redex/gui) package: redex-gui-lib

This section describes the GUI tools that Redex provides for exploring reduction sequences.

(traces reductions

expr

[#:multiple? multiple?

#:reduce reduce

#:pred pred

#:pp pp

#:colors colors

#:racket-colors? racket-colors?

#:scheme-colors? scheme-colors?

#:filter term-filter

#:x-spacing x-spacing

#:y-spacing y-spacing

#:layout layout

#:edge-labels? edge-labels?

#:edge-label-font edge-label-font

#:graph-pasteboard-mixin graph-pasteboard-mixin])
→ void?

reductions : reduction-relation?

expr : (or/c any/c (listof any/c))

multiple? : boolean? = #f

reduce :
(-> reduction-relation? any/c

(listof (list/c (union false/c string?) any/c)))

= apply-reduction-relation/tag-with-names

pred :
(or/c (-> sexp any)

(-> sexp term-node? any))
= (λ (x) #t)

72

pp :
(or/c (any -> string)

(any output-port number (is-a?/c text%) -> void))

= default-pretty-printer

colors :

(listof

(cons/c string?

(and/c (listof (or/c string? (is-a?/c color%)))

(λ (x) (<= 0 (length x) 6)))))

= '()

racket-colors? : boolean? = #t

scheme-colors? : boolean? = racket-colors?

term-filter : (-> any/c (or/c #f string?) any/c)

= (λ (x y) #t)

x-spacing : number? = 15

y-spacing : number? = 15

layout : (-> (listof term-node?) void?) = void

edge-labels? : boolean? = #t

edge-label-font : (or/c #f (is-a?/c font%)) = #f

graph-pasteboard-mixin : (make-mixin-contract graph-pasteboard<%>)

= values

This function opens a new window and inserts each expression in expr (if multiple? is
#t – if multiple? is #f, then expr is treated as a single expression). Then, it reduces the
terms until at least reduction-steps-cutoff (see below) different terms are found, or no
more reductions can occur. It inserts each new term into the gui. Clicking the reduce button
reduces until reduction-steps-cutoff more terms are found.

The reduce function applies the reduction relation to the terms. By default, it is apply-
reduction-relation/tag-with-names; it may be changed to only return a subset of
the possible reductions, for example, but it must satisfy the same contract as apply-

reduction-relation/tag-with-names.

The pred function indicates if a term has a particular property. If it returns #f, the term
is displayed with a pink background. If it returns a string or a color% object, the term is
displayed with a background of that color (using the-color-database to map the string
to a color). If it returns any other value, the term is displayed normally. If the pred function
accepts two arguments, a term-node corresponding to the term is passed to the predicate.
This lets the predicate function explore the (names of the) reductions that led to this term,
using term-node-children, term-node-parents, and term-node-labels.

The pred function may be called more than once per node. In particular, it is called each
time an edge is added to a node. The latest value returned determines the color.

The pp function is used to specially print expressions. It must either accept one or four
arguments. If it accepts one argument, it will be passed each term and is expected to return
a string to display the term.

73

If the pp function takes four arguments, it should render its first argument into the port (its
second argument) with width at most given by the number (its third argument). The final
argument is the text where the port is connected – characters written to the port go to the end
of the editor. Use write-special to send snip% objects or 2htdp/image images (or other
things that subscribe to file/convertible or pict/convert) directly to the editor.

The colors argument, if provided, specifies a list of reduction-name/color-list pairs. The
traces gui will color arrows drawn because of the given reduction name with the given color
instead of using the default color.

The cdr of each of the elements of colors is a list of colors, organized in pairs. The first
two colors cover the colors of the line and the border around the arrow head, the first when
the mouse is over a graph node that is connected to that arrow, and the second for when
the mouse is not over that arrow. Similarly, the next colors are for the text drawn on the
arrow and the last two are for the color that fills the arrow head. If fewer than six colors
are specified, the specified colors are used and then defaults are filled in for the remaining
colors.

The racket-colors? argument (along with scheme-colors?, retained for backward com-
patibility), controls the coloring of each window. When racket-colors? is #t (and
scheme-colors? is #t too), traces colors the contents according to DrRacket’s Racket-
mode color scheme; otherwise, traces uses a black color scheme.

The term-filter function is called each time a new node is about to be inserted into the
graph. If the filter returns false, the node is not inserted into the graph.

The x-spacing and y-spacing control the amount of space put between the snips in the
default layout.

The layout argument is called (with all of the terms) when new terms are inserted into the
window. In general, it is called after new terms are inserted in response to the user clicking
on the reduce button, and after the initial set of terms is inserted. See also term-node-set-

position!.

If edge-labels? is #t (the default), then edge labels are drawn; otherwise not.

The edge-label-font argument is used as the font on the edge labels. If #f is suppled,
the dc<%> object’s default font is used.

The traces library uses an instance of the mrlib/graph library’s graph-pasteboard<%>
interface to layout the graphs. Sometimes, overriding one of its methods can help give finer-
grained control over the layout, so the graph-pasteboard-mixin is applied to the class
before it is instantiated. Also note that all of the snips inserted into the editor by this library
have a get-term-node method which returns the snip’s term-node.

For a more serious example of traces, please see §1 “Amb: A Redex Tutorial”, but for a
silly one that demonstates how the pp argument lets us use images, we can take the pairing

74

functions discussed in Matthew Szudzik’s An Elegant Pairing Function presentation:

(define/contract (unpair z)

(-> exact-nonnegative-integer?

(list/c exact-nonnegative-integer? exact-nonnegative-

integer?))

(define i (integer-sqrt z))

(define i2 (* i i))

(cond

[(< (- z i2) i)

(list (- z i2) i)]

[else

(list i (- z i2 i))]))

(define/contract (pair x y)

(-> exact-nonnegative-integer? exact-nonnegative-integer?

exact-nonnegative-integer?)

(if (= x (max x y))

(+ (* x x) x y)

(+ (* y y) x)))

and build a reduction relation out of them:

(define-language L (n ::= natural))

(define red

(reduction-relation

L

(--> (n_1 n_2)

,(unpair (+ 1 (pair (term n_1)

(term n_2)))))))

(traces red (term (0 0)))

We can then turn those two numbers into two stars, where the number indicates the number
of points in the star:

(require 2htdp/image)

(define/contract (two-stars point-count1 point-count2)

(-> (>=/c 2) (>=/c 2) image?)

(overlay

(radial-star (+ 2 point-count1)

10 60

"solid"

(make-color 255 0 255 150))

75

(radial-star (+ 2 point-count2)

10 60

"solid"

"cornflowerblue")))

and then use the pp function to show those in the traces window instead of just the numbers.

(traces red

(term (0 0))

#:pp

(λ (term port w txt)

(write-special

(two-stars (+ 2 (list-ref term 0))

(+ 2 (list-ref term 1)))

port)))

(traces/ps reductions

expr

file

[#:multiple? multiple?

#:reduce reduce

#:pred pred

#:pp pp

#:colors colors

#:filter term-filter

#:layout layout

#:x-spacing x-spacing

#:y-spacing y-spacing

#:edge-labels? edge-labels?

#:edge-label-font edge-label-font

#:graph-pasteboard-mixin graph-pasteboard-mixin]
#:post-process post-process)

→ void?

reductions : reduction-relation?

expr : (or/c any/c (listof any/c))

file : (or/c path-string? path?)

multiple? : boolean? = #f

reduce :
(-> reduction-relation? any/c

(listof (list/c (union false/c string?) any/c)))

= apply-reduction-relation/tag-with-names

pred :
(or/c (-> sexp any)

(-> sexp term-node? any))
= (λ (x) #t)

pp :
(or/c (any -> string)

(any output-port number (is-a?/c text%) -> void))

= default-pretty-printer

76

colors :

(listof

(cons/c string?

(and/c (listof (or/c string? (is-a?/c color%)))

(λ (x) (<= 0 (length x) 6)))))

= '()

term-filter : (-> any/c (or/c #f string?) any/c)

= (λ (x y) #t)

layout : (-> (listof term-node?) void?) = void

x-spacing : number? = 15

y-spacing : number? = 15

edge-labels? : boolean? = #t

edge-label-font : (or/c #f (is-a?/c font%)) = #f

graph-pasteboard-mixin : (make-mixin-contract graph-pasteboard<%>)

= values

post-process : (-> (is-a?/c graph-pasteboard<%>) any/c)

This function behaves just like the function traces, but instead of opening a window to
show the reduction graph, it just saves the reduction graph to the specified file .

All of the arguments behave like the arguments to traces, with the exception of the post-
process argument. It is called just before the PostScript is created with the graph paste-
board.

(stepper reductions t [pp]) → void?

reductions : reduction-relation?

t : any/c

pp :
(or/c (any -> string)

(any output-port number (is-a?/c text%) -> void))

= default-pretty-printer

This function opens a stepper window for exploring the behavior of the term t in the reduc-
tion system given by reductions .

The pp argument is the same as to the traces function but is here for backwards compat-
ibility only and should not be changed for most uses, but instead adjusted with pretty-

print-parameters. Specifically, the highlighting shown in the stepper window can be
wrong if default-pretty-printer does not print sufficiently similarly to how pretty-

print prints (when adjusted by pretty-print-parameters’s behavior, of course).

(stepper/seed reductions seed [pp]) → void?

reductions : reduction-relation?

seed : (cons/c any/c (listof any/c))

pp :
(or/c (any -> string)

(any output-port number (is-a?/c text%) -> void))

= default-pretty-printer

77

Like stepper, this function opens a stepper window, but it seeds it with the reduction-
sequence supplied in seed .

(show-derivations derivations

[#:pp pp

#:racket-colors? racket-colors?

#:init-derivation init-derivation]) → any

derivations : (cons/c derivation? (listof derivation?))

pp :
(or/c (any -> string)

(any output-port number (is-a?/c text%) -> void))

= default-pretty-printer

racket-colors? : boolean? = #f

init-derivation : exact-nonnegative-integer? = 0

Opens a window to show derivations .

The pp and racket-colors? arguments are like those to traces.

The initial derivation shown in the window is chosen by init-derivation , used as an
index into derivations .

(derivation/ps derivation

filename

[#:pp pp

#:racket-colors? racket-colors?]
#:post-process post-process) → void?

derivation : derivation?

filename : path-string?

pp :
(or/c (any -> string)

(any output-port number (is-a?/c text%) -> void))

= default-pretty-printer

racket-colors? : boolean? = #f

post-process : (-> (is-a?/c pasteboard%) any)

Like show-derivations, except it prints a single derivation in PostScript to filename .

(term-node-children tn) → (listof term-node?)
tn : term-node?

Returns a list of the children (ie, terms that this term reduces to) of the given node.

Note that this function does not return all terms that this term reduces to – only those that
are currently in the graph.

(term-node-parents tn) → (listof term-node?)

tn : term-node?

78

Returns a list of the parents (ie, terms that reduced to the current term) of the given node.

Note that this function does not return all terms that reduce to this one – only those that are
currently in the graph.

(term-node-labels tn) → (listof (or/c false/c string?))

tn : term-node?

Returns a list of the names of the reductions that led to the given node, in the same order
as the result of term-node-parents. If the list contains #f, that means that the corresponding
step does not have a label.

(term-node-set-color! tn color) → void?
tn : term-node?

color : (or/c string? (is-a?/c color%) false/c)

Changes the highlighting of the node; if its second argument is #f, the coloring is removed,
otherwise the color is set to the specified color% object or the color named by the string.
The color-database<%> is used to convert the string to a color% object.

(term-node-color tn) → (or/c string? (is-a?/c color%) false/c)

tn : term-node?

Returns the current highlighting of the node. See also term-node-set-color!.

(term-node-set-red! tn red?) → void?
tn : term-node?

red? : boolean?

Changes the highlighting of the node; if its second argument is #t, the term is colored pink,
if it is #f, the term is not colored specially.

(term-node-expr tn) → any

tn : term-node?

Returns the expression in this node.

(term-node-set-position! tn x y) → void?

tn : term-node?

x : (and/c real? positive?)

y : (and/c real? positive?)

Sets the position of tn in the graph to (x ,y).

79

(term-node-x tn) → real?
tn : term-node?

Returns the x coordinate of tn in the window.

(term-node-y tn) → real?

tn : term-node?

Returns the y coordinate of tn in the window.

(term-node-width tn) → real?
tn : term-node?

Returns the width of tn in the window.

(term-node-height tn) → real?

tn : term-node?

Returns the height of tn in the window.

(term-node? v) → boolean?
v : any/c

Recognizes term nodes.

(reduction-steps-cutoff) → number?

(reduction-steps-cutoff cutoff) → void?

cutoff : number?

A parameter that controls how many steps the traces function takes before stopping.

(initial-font-size) → number?
(initial-font-size size) → void?

size : number?

A parameter that controls the initial font size for the terms shown in the GUI window.

(initial-char-width) → (or/c number? (-> any/c number?))

(initial-char-width width) → void?

width : (or/c number? (-> any/c number?))

80

A parameter that determines the initial width of the boxes where terms are displayed (mea-
sured in characters) for both the stepper and traces.

If its value is a number, then the number is used as the width for every term. If its value is a
function, then the function is called with each term and the resulting number is used as the
width.

(dark-pen-color) → (or/c string? (is-a?/c color<%>))

(dark-pen-color color) → void?

color : (or/c string? (is-a?/c color<%>))

(dark-brush-color) → (or/c string? (is-a?/c color<%>))

(dark-brush-color color) → void?

color : (or/c string? (is-a?/c color<%>))

(light-pen-color) → (or/c string? (is-a?/c color<%>))

(light-pen-color color) → void?

color : (or/c string? (is-a?/c color<%>))

(light-brush-color) → (or/c string? (is-a?/c color<%>))

(light-brush-color color) → void?

color : (or/c string? (is-a?/c color<%>))

(dark-text-color) → (or/c string? (is-a?/c color<%>))

(dark-text-color color) → void?

color : (or/c string? (is-a?/c color<%>))

(light-text-color) → (or/c string? (is-a?/c color<%>))

(light-text-color color) → void?

color : (or/c string? (is-a?/c color<%>))

These six parameters control the color of the edges in the graph.

The dark colors are used when the mouse is over one of the nodes that is connected to this
edge. The light colors are used when it isn’t.

The pen colors control the color of the line. The brush colors control the color used to fill
the arrowhead and the text colors control the color used to draw the label on the edge.

(pretty-print-parameters) → (-> (-> any/c) any/c)

(pretty-print-parameters f) → void?

f : (-> (-> any/c) any/c)

A parameter that is used to set other pretty-print parameters.

Specifically, whenever default-pretty-printer prints something it calls f with a thunk
that does the actual printing. Thus, f can adjust pretty-print’s parameters to adjust how
printing happens.

(default-pretty-printer v port width text) → void?

v : any/c

port : output-port?

81

width : exact-nonnegative-integer?

text : (is-a?/c text%)

This is the default value of pp used by traces and stepper and it uses pretty-print.

This function uses the value of pretty-print-parameters to adjust how it prints.

It sets the pretty-print-columns parameter to width , and it sets pretty-print-size-
hook and pretty-print-print-hook to print holes and the symbol 'hole to match the
way they are input in a term expression.

2.8 Typesetting

(require redex/pict) package: redex-pict-lib

The redex/pict library provides functions designed to automatically typeset grammars,
reduction relations, and metafunction written with plt redex.

Each grammar, reduction relation, and metafunction can be saved in a .ps file (as encapsu-
lated postscript), or can be turned into a pict for viewing in the REPL or using with Slideshow
(see the pict library).

2.8.1 Picts, PDF, & PostScript

This section documents two classes of operations, one for direct use of creating
postscript figures for use in papers and for use in DrRacket to easily adjust the type-
setting: render-term, render-language, render-reduction-relation, render-

relation, render-judgment-form, render-metafunctions, and render-lw, and
one for use in combination with other libraries that operate on picts term->pict,
language->pict, reduction-relation->pict, relation->pict, judgment-form-
>pict, metafunction->pict, and lw->pict. The primary difference between these func-
tions is that the former list sets dc-for-text-size and the latter does not.

(render-term lang term)

(render-term lang term file)

Renders the term term . If file is #f or not present, render-term produces a pict; if file
is a path, it saves Encapsulated PostScript in the provided filename, unless the filename ends
with ".pdf", in which case it saves PDF.

The term argument must be a literal; it is not an evaluated position. For example, this:

82

(define-language L)

(define x (term (+ 1 2)))

(render-term L x)

will render the term x, not the term (+ 1 2).

See render-language for more details on the construction of the pict.

(term->pict lang term)

Produces a pict like render-term, but without adjusting dc-for-text-size.

The first argument is expected to be a compiled-language? and the second argument is
expected to be a term (without the term wrapper). The formatting in the term argument is
used to determine how the resulting pict will look.

This function is primarily designed to be used with Slideshow or with other tools that com-
bine picts together.

(render-term/pretty-write lang

term

filename

#:width width) → void?

lang : compiled-lang?

term : any/c

filename : path-string?

width : #f

Like render-term, except that the term argument is evaluated, and expected to return a
term. Then, pretty-write is used to determine where the line breaks go, using the width
argument as a maximum width (via pretty-print-columns).

(term->pict/pretty-write lang

term

filename

#:width width) → pict?

lang : compiled-lang?

term : any/c

filename : (or/c path-string? #f)

width : #f

Like term->pict, but with the same change that render-term/pretty-write has from
render-term.

(render-language lang [file #:nts nts]) → (if file void? pict?)

83

lang : compiled-lang?

file : (or/c false/c path-string?) = #f

nts : (or/c false/c (listof (or/c string? symbol?)))

= (render-language-nts)

Renders a language. If file is #f, it produces a pict; if file is a path, it saves Encapsulated
PostScript in the provided filename, unless the filename ends with ".pdf", in which case it
saves PDF. See render-language-nts for information on the nts argument.

This function parameterizes dc-for-text-size to install a relevant dc: a bitmap-dc% or
a post-script-dc%, depending on whether file is a path.

See language->pict if you are using Slideshow or are otherwise setting dc-for-text-

size.

(language->pict lang [#:nts nts]) → pict?

lang : compiled-lang?

nts : (or/c false/c (listof (or/c string? symbol?)))

= (render-language-nts)

Produce a pict like render-language, but without adjusting dc-for-text-size.

This function is primarily designed to be used with Slideshow or with other tools that com-
bine picts together.

(render-reduction-relation rel

[file
#:style style])

→ (if file void? pict?)

rel : reduction-relation?

file : (or/c false/c path-string?) = #f

style : reduction-rule-style/c = (rule-pict-style)

Renders a reduction relation. If file is #f, it produces a pict; if file is a path, it saves
Encapsulated PostScript in the provided filename, unless the filename ends with ".pdf", in
which case it saves PDF. See rule-pict-style for information on the style argument.

This function parameterizes dc-for-text-size to install a relevant dc: a bitmap-dc%

or a post-script-dc%, depending on whether file is a path. See also reduction-

relation->pict.

The following forms of arrows can be typeset:

--> -+> ==> -> => ..> >-> ∼∼> ∼> :-> :�> c-> �>>

>� �< >>� �<<

84

(reduction-relation->pict r [#:style style]) → pict?

r : reduction-relation?

style : reduction-rule-style/c = (rule-pict-style)

Produces a pict like render-reduction-relation, but without setting dc-for-text-

size.

This function is primarily designed to be used with Slideshow or with other tools that com-
bine picts together.

(render-metafunction metafunction-name)

(render-metafunction metafunction-name filename)

(render-metafunctions metafunction-name ...)

(render-metafunctions metafunction-name ... #:file filename)

Like render-reduction-relation but for metafunctions.

Similarly, render-metafunctions accepts multiple metafunctions and renders them to-
gether, lining up all of the clauses together.

This function sets dc-for-text-size. See also metafunction->pict and
metafunctions->pict.

(metafunction->pict metafunction-name)

This produces a pict, but without setting dc-for-text-size. It is suitable for use in
Slideshow or other libraries that combine picts.

(metafunctions->pict metafunction-name ...)

Like metafunction->pict, this produces a pict, but without setting dc-for-text-size
and is suitable for use in Slideshow or other libraries that combine picts. Like render-

metafunctions, it accepts multiple metafunctions and renders them together.

(render-relation relation-name)

(render-relation relation-name filename)

Like render-metafunction but for relations.

This function sets dc-for-text-size. See also relation->pict.

(render-judgment-form judgment-form-name)

(render-judgment-form judgment-form-name filename)

85

Like render-metafunction but for judgment forms.

This function sets dc-for-text-size. See also judgment-form->pict.

(relation->pict relation-name)

This produces a pict, but without setting dc-for-text-size. It is suitable for use in
Slideshow or other libraries that combine picts.

(judgment-form->pict judgment-form-name)

This produces a pict, but without setting dc-for-text-size. It is suitable for use in
Slideshow or other libraries that combine picts.

2.8.2 Customization

(render-language-nts) → (or/c false/c (listof symbol?))

(render-language-nts nts) → void?

nts : (or/c false/c (listof symbol?))

The value of this parameter controls which non-terminals render-language and
language->pict render by default. If it is #f (the default), all non-terminals are rendered.
If it is a list of symbols, only the listed symbols are rendered.

See also language-nts.

(extend-language-show-union) → boolean?

(extend-language-show-union show?) → void?

show? : boolean?

If this is #t, then a language constructed with extend-language is shown as if the language
had been constructed directly with language. If it is #f, then only the last extension to the
language is shown (with four-period ellipses, just like in the concrete syntax).

Defaults to #f.

Note that the #t variant can look a little bit strange if are used and the original version
of the language has multi-line right-hand sides.

(render-reduction-relation-rules)

→

(or/c false/c

(listof (or/c symbol?

string?

exact-nonnegative-integer?)))

86

(render-reduction-relation-rules rules) → void?

rules :

(or/c false/c

(listof (or/c symbol?

string?

exact-nonnegative-integer?)))

This parameter controls which rules in a reduction relation will be rendered. The strings and
symbols match the names of the rules and the integers match the position of the rule in the
original definition.

(rule-pict-style) → reduction-rule-style/c

(rule-pict-style style) → void?

style : reduction-rule-style/c

This parameter controls the style used by default for the reduction relation. It can be 'hor-
izontal, where the left and right-hand sides of the reduction rule are beside each other or
'vertical, where the left and right-hand sides of the reduction rule are above each other.
The 'compact-vertical style moves the reduction arrow to the second line and uses less
space between lines. The 'vertical-overlapping-side-conditions variant, the side-
conditions don’t contribute to the width of the pict, but are just overlaid on the second line of
each rule. The 'horizontal-left-align style is like the 'horizontal style, but the left-
hand sides of the rules are aligned on the left, instead of on the right. The ''horizontal-
side-conditions-same-line is like 'horizontal, except that side-conditions are on
the same lines as the rule, instead of on their own line below.

reduction-rule-style/c : flat-contract?

A contract equivalent to

(or/c 'vertical

'compact-vertical

'vertical-overlapping-side-conditions

'horizontal

'horizontal-left-align

'horizontal-side-conditions-same-line)

(arrow-space) → natural-number/c

(arrow-space space) → void?

space : natural-number/c

This parameter controls the amount of extra horizontal space around the reduction relation
arrow. Defaults to 0.

(label-space) → natural-number/c

(label-space space) → void?

space : natural-number/c

87

This parameter controls the amount of extra space before the label on each rule, except in
the 'vertical and 'vertical-overlapping-side-conditions modes, where it has no
effect. Defaults to 0.

(metafunction-pict-style)

→

(or/c 'left-right

'up-down

'left-right/vertical-side-conditions

'up-down/vertical-side-conditions

'left-right/compact-side-conditions

'up-down/compact-side-conditions

'left-right/beside-side-conditions)

(metafunction-pict-style style) → void?

style :

(or/c 'left-right

'up-down

'left-right/vertical-side-conditions

'up-down/vertical-side-conditions

'left-right/compact-side-conditions

'up-down/compact-side-conditions

'left-right/beside-side-conditions)

This parameter controls the style used for typesetting metafunctions. The 'left-right

style means that the results of calling the metafunction are displayed to the right of the
arguments and the 'up-down style means that the results are displayed below the arguments.

The 'left-right/vertical-side-conditions and 'up-down/vertical-side-

conditions variants format side conditions each on a separate line, instead of all on the
same line.

The 'left-right/compact-side-conditions and 'up-down/compact-side-

conditions variants move side conditions to separate lines to avoid making the rendered
form wider than it would be otherwise.

The 'left-right/beside-side-conditions variant is like 'left-right, except it
puts the side-conditions on the same line, instead of on a new line below the case.

(delimit-ellipsis-arguments?) → any/c

(delimit-ellipsis-arguments? delimit?) → void?

delimit? : any/c

This parameter controls the typesetting of metafunction definitions and applications. When
it is non-#f (the default), commas precede ellipses that represent argument sequences; when
it is #f no commas appear in those positions.

(linebreaks) → (or/c #f (listof boolean?))
(linebreaks breaks) → void?

breaks : (or/c #f (listof boolean?))

88

This parameter controls which cases in the metafunction are rendered on two lines and which
are rendered on one.

If its value is a list, the length of the list must match the number of cases and each boolean
indicates if that case has a linebreak or not.

This influences the 'left/right styles only.

(metafunction-cases)

→
(or/c #f (and/c (listof (or/c exact-nonnegative-integer?

string?))

pair?))

(metafunction-cases cases) → void?

cases :
(or/c #f (and/c (listof (or/c exact-nonnegative-integer?

string?))

pair?))

Controls which cases in a metafunction are rendered. If it is #f (the default), then all of the
cases appear. If it is a list, then only the selected cases appear. The numbers indicate the
cases counting from 0 and the strings indicate cases named with clause-name.

This parameter also controls how which clauses in judgment forms are rendered, but only in
the case that judgment-form-cases is #f (and in that case, only the numbers are used).

(judgment-form-cases)

→

(or/c #f

(and/c (listof (or/c exact-nonnegative-integer?

string?))

pair?))

(judgment-form-cases cases) → void?

cases :

(or/c #f

(and/c (listof (or/c exact-nonnegative-integer?

string?))

pair?))

Controls which clauses in a judgment form are rendered. If it is #f (the default), then all of
them are rendered. If it is a list, then only the selected clauses appear (numbers count from
0, and strings correspond to the labels in a judgment form).

(label-style) → text-style/c

(label-style style) → void?

style : text-style/c

(grammar-style) → text-style/c

(grammar-style style) → void?

style : text-style/c

(paren-style) → text-style/c

(paren-style style) → void?

style : text-style/c

89

(literal-style) → text-style/c

(literal-style style) → void?

style : text-style/c

(metafunction-style) → text-style/c

(metafunction-style style) → void?

style : text-style/c

(non-terminal-style) → text-style/c

(non-terminal-style style) → void?

style : text-style/c

(non-terminal-subscript-style) → text-style/c

(non-terminal-subscript-style style) → void?

style : text-style/c

(non-terminal-superscript-style) → text-style/c

(non-terminal-superscript-style style) → void?

style : text-style/c

(default-style) → text-style/c

(default-style style) → void?

style : text-style/c

These parameters determine the font used for various text in the picts. See text in the texpict
collection for documentation explaining text-style/c. One of the more useful things it
can be is one of the symbols 'roman, 'swiss, or 'modern, which are a serif, sans-serif, and
monospaced font, respectively. (It can also encode style information, too.)

The label-style is used for the reduction rule label names. The literal-style is used
for names that aren’t non-terminals that appear in patterns. The metafunction-style is
used for the names of metafunctions. The paren-style is used for the parentheses (includ-
ing “[”, “]”, “{”, and “}”, as well as “(” and “)”), but not for the square brackets used for
in-hole decompositions, which use the default-style. The grammar-style is used for
the “::=” and “|” in grammars.

The non-terminal-style parameter is used for the names of non-terminals. Two parame-
ters style the text in the (optional) "underscore" component of a non-terminal reference. The
first, non-terminal-subscript-style, applies to the segment between the underscore
and the first caret (^) to follow it; the second, non-terminal-superscript-style, ap-
plies to the segment following that caret. For example, in the non-terminal reference x_y^z,
x has style non-terminal-style, y has style non-terminal-subscript-style, and z

has style non-terminal-superscript-style.

The default-style is used for parenthesis, the dot in dotted lists, spaces, the "where" and
"fresh" in side-conditions, and other places where the other parameters aren’t used.

(label-font-size) → (and/c (between/c 1 255) integer?)

(label-font-size size) → void?

size : (and/c (between/c 1 255) integer?)

90

(metafunction-font-size) → (and/c (between/c 1 255)

integer?)

(metafunction-font-size size) → void?

size :
(and/c (between/c 1 255)

integer?)

(default-font-size) → (and/c (between/c 1 255) integer?)

(default-font-size size) → void?

size : (and/c (between/c 1 255) integer?)

These parameters control the various font sizes. The default-font-size is used for all of the
font sizes except labels and metafunctions.

(reduction-relation-rule-separation)

→ (parameter/c (and/c integer? positive? exact?))

(reduction-relation-rule-separation sep) → void?

sep : (parameter/c (and/c integer? positive? exact?))

Controls the amount of space between clauses in a reduction relation. Defaults to 4.

(curly-quotes-for-strings) → boolean?

(curly-quotes-for-strings on?) → void?

on? : boolean?

Controls if the open and close quotes for strings are turned into “ and ” or are left as merely
".

Defaults to #t.
(current-text) → (-> string? text-style/c number? pict?)

(current-text proc) → void?

proc : (-> string? text-style/c number? pict?)

This parameter’s function is called whenever Redex typesets some part of a grammar, reduc-
tion relation, or metafunction. It defaults to the pict library’s text function.

(arrow->pict arrow) → pict?

arrow : symbol?

Returns the pict corresponding to arrow .

(set-arrow-pict! arrow proc) → void?

arrow : symbol?

proc : (-> pict?)

This functions sets the pict for a given reduction-relation symbol. When typesetting a reduc-
tion relation that uses the symbol, the thunk will be invoked to get a pict to render it. The
thunk may be invoked multiple times when rendering a single reduction relation.

91

(white-bracket-sizing)

→ (-> string? number? (values number? number? number? number?))

(white-bracket-sizing proc) → void?

proc : (-> string? number? (values number? number? number? number?))

This parameter is used when typesetting metafunctions to determine how to create the [[]]
characters. Rather than using those characters directly (since glyphs tend not to be available
in PostScript fonts), they are created by combining two ‘[’ characters or two ‘]’ characters
together.

The procedure accepts a string that is either "[" or "]", and returns four numbers. The
first two numbers determine the offset (from the left and from the right respectively) for the
second square bracket, and the second two two numbers determine the extra space added (to
the left and to the right respectively).

The default value of the parameter is:

(λ (str size)

(let ([inset-amt (floor/even (max 4 (* size 1/2)))])

(cond

[(equal? str "[")

(values inset-amt

0

0

(/ inset-amt 2))]

[else

(values 0

inset-amt

(/ inset-amt 2)

0)])))

where floor/even returns the nearest even number below its argument. This means that
for sizes 9, 10, and 11, inset-amt will be 4, and for 12, 13, 14, and 15, inset-amt will be
6.

(horizontal-bar-spacing)

→ (parameter/c exact-nonnegative-integer?)

(horizontal-bar-spacing space) → void?

space : (parameter/c exact-nonnegative-integer?)

Controls the amount of space around the horizontal bar when rendering a relation (that was
created by define-relation). Defaults to 4.

92

(relation-clauses-combine)
→ (parameter/c (-> (listof pict?) pict?))

(relation-clauses-combine combine) → void?

combine : (parameter/c (-> (listof pict?) pict?))

The combine function is called with the list of picts that are obtained by rendering a relation;
it should put them together into a single pict. It defaults to (λ (l) (apply vc-append

20 l))

(where-make-prefix-pict) → (parameter/c (-> pict?))

(where-make-prefix-pict make-prefix) → void?

make-prefix : (parameter/c (-> pict?))

The make-prefix function is called with no arguments to generate a pict that prefixes
where clauses. It defaults to a function that produces a pict for “where” surrounded by
spaces using the default style.

(where-combine) → (parameter/c (-> pict? pict? pict?))

(where-combine combine) → void?

combine : (parameter/c (-> pict? pict? pict?))

The combine function is called with picts for the left and right side of a where clause, and
it should put them together into a single pict. It defaults to (λ (l r) (hbl-append l

=-pict r)), where =-pict is an equal sign surrounded by spaces using the default style.

2.8.3 Removing the Pink Background

When reduction rules, a metafunction, or a grammar contains unquoted Racket code or side-
conditions, they are rendered with a pink background as a guide to help find them and pro-
vide an alternative typesetting for them. In general, a good goal for a PLT Redex program
that you intend to typeset is to only include such things when they correspond to standard
mathematical operations, and the Racket code is an implementation of those operations.

To replace the pink code, use:

(with-unquote-rewriter proc expression)

Installs proc as the current unquote rewriter and evaluates expression . If that expression
computes any picts, the unquote rewriter specified is used to remap them.

The proc must match the contract (-> lw? lw?). Its result should be the rewritten version
version of the input.

93

(with-atomic-rewriter name-symbol

string-or-thunk-returning-pict

expression)

This extends the current set of atomic-rewriters with one new one that rewrites the value of
name-symbol to string-or-pict-returning-thunk (applied, in the case of a thunk), during the
evaluation of expression.

name-symbol is expected to evaluate to a symbol. The value of string-or-thunk-returning-
pict is used whenever the symbol appears in a pattern.

(with-compound-rewriter name-symbol

proc

expression)

This extends the current set of compound-rewriters with one new one that rewrites the value
of name-symbol via proc, during the evaluation of expression.

name-symbol is expected to evaluate to a symbol. The value of proc is called with a
(listof lw), and is expected to return a new (listof (or/c lw? string? pict?)),
rewritten appropriately.

The list passed to the rewriter corresponds to the lw for the sequence that has name-symbol’s
value at its head.

The result list is constrained to have at most 2 adjacent non-lws. That list is then transformed
by adding lw structs for each of the non-lws in the list (see the text just below the description
of lw for a explanation of logical space):

• If there are two adjacent lws, then the logical space between them is filled with whites-
pace.

• If there is a pair of lws with just a single non-lw between them, a lw will be created
(containing the non-lw) that uses all of the available logical space between the lws.

• If there are two adjacent non-lws between two lws, the first non-lw is rendered right
after the first lw with a logical space of zero, and the second is rendered right before
the last lw also with a logical space of zero, and the logical space between the two lws
is absorbed by a new lw that renders using no actual space in the typeset version.

One useful way to take advantage of with-compound-rewriters is to return a list that
begins and ends with "" (the empty string). In that situation, any extra logical space that
would have been just outside the sequence is replaced with an lw that does not draw anything
at all.

94

(with-compound-rewriters ([name-symbol proc] ...)

expression)

Shorthand for nested with-compound-rewriter expressions.

2.8.4 LWs

(struct lw (e

line

line-span

column

column-span

unq?

metafunction?)

#:extra-constructor-name make-lw

#:mutable)

e :

(or/c string?

symbol?

pict?

(listof (or/c (symbols 'spring) lw?)))

line : exact-positive-integer?

line-span : exact-positive-integer?

column : exact-positive-integer?

column-span : exact-positive-integer?

unq? : boolean?

metafunction? : boolean?

The lw data structure corresponds represents a pattern or a Racket expression that is to
be typeset. The functions listed above construct lw structs, select fields out of them, and
recognize them. The lw binding can be used with copy-struct.

The values of the unq? and metafunction? fields, respectively, indicate whether the lw

represents an unquoted expression or a metafunction application. See to-lw for the mean-
ings of the other fields.

(build-lw e line line-span column column-span) → lw?

e :

(or/c string?

symbol?

pict?

(listof (or/c (symbols 'spring) lw?)))

line : exact-positive-integer?

line-span : exact-positive-integer?

column : exact-positive-integer?

column-span : exact-positive-integer?

95

Like make-lw but specialized for constructing lws that do not represent unquoted expres-
sions or metafunction applications.

(to-lw arg)

This form turns its argument into lw structs that contain all of the spacing information just
as it would appear when being used to typeset.

Each sub-expression corresponds to its own lw, and the element indicates what kind of
subexpression it is. If the element is a list, then the lw corresponds to a parenthesized se-
quence, and the list contains a lw for the open paren, one lw for each component of the
sequence and then a lw for the close parenthesis. In the case of a dotted list, there will also
be a lw in the third-to-last position for the dot.

For example, this expression:

(a)

becomes this lw (assuming the above expression appears as the first thing in the file):

(build-lw (list (build-lw "(" 0 0 0 1)

(build-lw 'a 0 0 1 1)

(build-lw ")" 0 0 2 1))

0 0 0 3)

If there is some whitespace in the sequence, like this one:

(a b)

then there is no lw that corresponds to that whitespace; instead there is a logical gap between
the lws.

(build-lw (list (build-lw "(" 0 0 0 1)

(build-lw 'a 0 0 1 1)

(build-lw 'b 0 0 3 1)

(build-lw ")" 0 0 4 1))

0 0 0 5)

In general, identifiers are represented with symbols and parenthesis are represented with
strings and picts can be inserted to render arbitrary pictures.

The line, line-span, column, and column-span correspond to the logical spacing for the redex
program, not the actual spacing that will be used when they are rendered. The logical spacing
is only used when determining where to place typeset portions of the program. In the absence

96

of any rewriters, these numbers correspond to the line and column numbers in the original
program.

The line and column are absolute numbers from the beginning of the file containing the
expression. The column number is not necessarily the column of the open parenthesis in
a sequence – it is the leftmost column that is occupied by anything in the sequence. The
line-span is the number of lines, and the column span is the number of columns on the last
line (not the total width).

When there are multiple lines, lines are aligned based on the logical space (ie, the
line/column & line-span/column-span) fields of the lws. As an example, if this is the original
pattern:

(all good boys

deserve fudge)

then the leftmost edges of the words "good" and "deserve" will be lined up underneath each
other, but the relative positions of "boys" and "fudge" will be determined by the natural size
of the words as they rendered in the appropriate font.

When 'spring appears in the list in the e field of a lw struct, then it absorbs all of the space
around it. It is also used by to-lw when constructing the picts for unquoted strings. For
example, this expression

,x

corresponds to these structs:

(build-lw (list (build-lw "" 1 0 9 0)

'spring

(build-lw x 1 0 10 1))

1 0 9 2)

and the 'spring causes there to be no space between the empty string and the x in the
typeset output.

(to-lw/stx stx) → lw?
stx : syntax?

This is the runtime variant on to-lw; it accepts a syntax object and returns the corresponding
lw structs. It only uses the location information in the syntax object, so metafunctions will
not be rendered properly.

(render-lw language/nts lw) → pict?

language/nts : (or/c (listof symbol?) compiled-lang?)

lw : lw?

97

Produces a pict that corresponds to the lw object argument, using language/nts to deter-
mine which of the identifiers in the lw argument are non-terminals.

This function sets dc-for-text-size. See also lw->pict.

(lw->pict language/ntw lw) → pict?

language/ntw : (or/c (listof symbol?) compiled-lang?)

lw : lw?

Produces a pict that corresponds to the lw object argument, using language/nts to deter-
mine which of the identifiers in the lw argument are non-terminals.

This does not set the dc-for-text-size parameter. See also render-lw.

(just-before stuff lw) → lw?

stuff : (or/c pict? string? symbol?)

lw : lw?

(just-after stuff lw) → lw?

stuff : (or/c pict? string? symbol?)

lw : lw?

These two helper functions build new lws whose contents are the first argument, and whose
line and column are based on the second argument, making the new loc wrapper be either
just before or just after that argument. The line-span and column-span of the new lw is
always zero.

2.9 Macros and Typesetting

When you have a macro that abstracts over variations in Redex programs, then typesetting
is unlikely to work without some help from your macros.

To see the issue, consider this macro abstraction over a Redex grammar:

> (define-syntax-rule

(def-my-lang L prim ...)

(define-language L

(e ::=

(λ (x) e)

(e e)

prim ...

x)

(x ::= variable-not-otherwise-mentioned)))

> (def-my-lang L + - *)

98

> (render-language L)

eject: lines going backwards (current-line 3 line 2 atom
#<pict> tokens (#(struct:string-token 0 1 "*" swiss)
#(struct:pict-token 1 0 #<pict>) #(struct:string-token 0 1
"-" swiss) #(struct:pict-token 1 0 #<pict>)
#(struct:string-token 0 1 "+" swiss) #(struct:pict-token 0 0
#<pict>) #(struct:spacer-token 0 0)))

Redex thinks that the grammar is going “backwards” because of the way macro expansion
synthesizes source locations. In particular, in the result of the macro expansion, the third
production for e appears to come later in the file than the fourth production and this confuses
Redex, making it unable to typeset this language.

One simple, not-very-general work-around is to just avoid typesetting the parts that come
from the macro arguments. For example if you move the primitives into their own non-
terminal and then just avoid typesetting that, Redex can cope:

(define-syntax-rule

(def-my-lang L prim ...)

(define-language L

(e ::=

(λ (x) e)

(e e)

prims

x)

(prims ::= prim ...)

(x ::= variable-not-otherwise-mentioned)))

> (def-my-lang L + - *)

> (render-language L #:nts '(e x))

e ::= (λ (x) e)
 | (e e)
 | prims
 | x

x ::= variable-not-otherwise-mentioned

You can also, however, exploit Racket’s macro system to rewrite the source locations in a
way that tells Redex where the macro-introduced parts of the language are supposed to be,
and then typesetting will work normally. For example, here is one way to do this with the
original language:

(define-syntax (def-my-lang stx)

(syntax-case stx ()

99

[(_ L a ...)

(let ()

(define template

#'(define-language L

(e (λ (x) e)

(e e)

HERE

x)

(x variable-not-otherwise-mentioned)))

(car

(let loop ([stx template])

(syntax-case stx (HERE)

[HERE

(let loop ([as (syntax->list #'(a ...))]

[pos (syntax-position stx)]

[col (syntax-column stx)])

(cond

[(null? as) '()]

[else

(define a (car as))

(define span

(string-length

(symbol->string (syntax-e a))))

(define srcloc

(vector (syntax-source stx)

(syntax-line stx)

col

pos

span))

(cons

(datum->syntax a

(syntax-e a)

srcloc

a)

(loop (cdr as)

(+ pos span 1)

(+ col span 1)))]))]

[(a ...)

(list

(datum->syntax

stx

(apply append (map loop (syntax->list #'(a ...))))

stx

stx))]

[a

(list stx)]))))]))

100

> (def-my-lang L + - *)

> (render-language L)

e ::= (λ (x) e)
 | (e e)
 | + | - | *
 | x

x ::= variable-not-otherwise-mentioned

And one final caveat: when Racket compiles source files to bytecode format, it discards
source location information in syntax constants, which means that if a file containing a macro
like the one above is compiled to bytecode, then it cannot properly adjust the source locations
and the typeset language will not look right (the important constant whose source locations
are lost is template, above).

The simplest way to avoid this problem is to just avoid creating bytecode for these files.

It is possible to write the constant in the source code, however, and then process it so the
compiled version of the file contains different data structures that record the source locations
of the expressions. Redex does this internally so that compiled files that use, e.g., define-
language, still correctly typeset. But when you write macros that expand into define-

language, you must also take this step yourself (or avoid .zo files).

101

Index
-->, 42
::=, 34
_, 25
Amb: A Redex Tutorial, 3
any, 25
apply-reduction-relation, 41
apply-reduction-relation*, 41
apply-reduction-relation/tag-

with-names, 41
arrow->pict, 91
arrow-space, 87
bind, 29
bind-exp, 29
bind-name, 29
bind?, 29
boolean, 25
build-derivations, 51
build-lw, 95
caching-enabled?, 29
check-metafunction, 70
check-reduction-relation, 69
check-redudancy, 30
compatible-closure, 41
compiled-lang?, 37
context-closure, 41
counterexample, 69
counterexample-term, 69
counterexample?, 69
coverage?, 56
covered-cases, 56
cross, 27
curly-quotes-for-strings, 91
current-cache-all?, 42
current-text, 91
current-traced-metafunctions, 52
Customization, 86
dark-brush-color, 81
dark-pen-color, 81
dark-text-color, 81
Debugging PLT Redex Programs, 71

default-attempt-size, 71
default-check-attempts, 71
default-font-size, 91
default-pretty-printer, 81
default-style, 90
define-extended-judgment-form, 50
define-extended-language, 35
define-judgment-form, 45
define-language, 34
define-metafunction, 43
define-metafunction/extension, 45
define-relation, 52
define-term, 32
define-union-language, 35
Defining a Language, 3
Defining a Reduction Relation, 11
delimit-ellipsis-arguments?, 88
derivation, 51
derivation-name, 51
derivation-subs, 51
derivation-term, 51
derivation/ps, 78
derivation?, 51
exn:fail:redex:generation-

failure?, 71
exn:fail:redex:test, 69
exn:fail:redex:test-source, 69
exn:fail:redex:test-term, 69
exn:fail:redex:test?, 69
exn:fail:redex?, 34
extend-language-show-union, 86
extend-reduction-relation, 40
fresh, 42
generate-term, 57
grammar-style, 89
GUI, 72
hide-hole, 26
hole, 31
hole, 26
horizontal-bar-spacing, 92
I, 51
in-domain?, 45

102

in-hole, 32
in-hole, 26
initial-char-width, 80
initial-font-size, 80
integer, 25
judgment-form->pict, 86
judgment-form-cases, 89
judgment-holds, 51
just-after, 98
just-before, 98
label-font-size, 90
label-space, 87
label-style, 89
language->pict, 84
language-nts, 37
Languages, 34
lc-lang, 34
light-brush-color, 81
light-pen-color, 81
light-text-color, 81
linebreaks, 88
literal-style, 90
lw, 95
lw->pict, 98
lw-column, 95
lw-column-span, 95
lw-e, 95
lw-line, 95
lw-line-span, 95
lw-metafunction?, 95
lw-unq?, 95
lw?, 95
LWs, 95
Macros and Typesetting, 98
make-bind, 29
make-counterexample, 69
make-coverage, 55
make-derivation, 51
make-exn:fail:redex:test, 69
make-lw, 95
match-bindings, 29
match?, 29

metafunction->pict, 85
metafunction-cases, 89
metafunction-font-size, 91
metafunction-pict-style, 88
metafunction-style, 90
metafunctions->pict, 85
name, 26
natural, 25
non-terminal-style, 90
non-terminal-subscript-style, 90
non-terminal-superscript-style, 90
number, 25
O, 52
Other Relations, 43
paren-style, 89
pattern, 24
pattern-sequence, 27
Patterns, 24
Picts, PDF, & PostScript, 82
plug, 33
pretty-print-parameters, 81
Random Testing, 16
real, 25
redex, 24
Redex Pattern, variable-prefix, 25
Redex Pattern, variable-not-otherwise-

mentioned, 26
Redex Pattern, variable-except, 25
Redex Pattern, variable, 25
Redex Pattern, symbol, 26
Redex Pattern, string, 25
Redex Pattern, side-condition, 26
Redex Pattern, real, 25
Redex Pattern, pattern-sequence, 27
Redex Pattern, number, 25
Redex Pattern, natural, 25
Redex Pattern, name, 26
Redex Pattern, integer, 25
Redex Pattern, in-hole, 26
Redex Pattern, hole, 26
Redex Pattern, hide-hole, 26
Redex Pattern, cross, 27

103

Redex Pattern, boolean, 25
Redex Pattern, any, 25
Redex Pattern, _, 25
redex-check, 64
redex-generator, 68
redex-let, 32
redex-let*, 32
redex-match, 28
redex-match?, 28
redex-pseudo-random-generator, 71
redex/gui, 72
redex/pict, 82
redex/reduction-semantics, 24
Redex: Practical Semantics Engineering, 1
Reduction Relations, 37
reduction-relation, 37
reduction-relation->pict, 85
reduction-relation->rule-names, 41
reduction-relation-rule-

separation, 91
reduction-relation?, 41
reduction-rule-style/c, 87
reduction-steps-cutoff, 80
relation->pict, 86
relation-clauses-combine, 93
relation-coverage, 56
Removing the Pink Background, 93
render-judgment-form, 85
render-language, 83
render-language-nts, 86
render-lw, 97
render-metafunction, 85
render-metafunctions, 85
render-reduction-relation, 84
render-reduction-relation-rules, 86
render-relation, 85
render-term, 82
render-term/pretty-write, 83
rule-pict-style, 87
set-arrow-pict!, 91
set-cache-size!, 29
set-lw-column!, 95

set-lw-column-span!, 95
set-lw-e!, 95
set-lw-line!, 95
set-lw-line-span!, 95
set-lw-metafunction?!, 95
set-lw-unq?!, 95
show-derivations, 78
side-condition, 26
side-condition clause, 39
side-condition/hidden clause, 39
stepper, 77
stepper/seed, 77
string, 25
struct:bind, 29
struct:counterexample, 69
struct:derivation, 51
struct:exn:fail:redex:test, 69
struct:lw, 95
symbol, 26
term, 31
term, 30
term->pict, 83
term->pict/pretty-write, 83
term-let, 32
term-match, 33
term-match/single, 33
term-node-children, 78
term-node-color, 79
term-node-expr, 79
term-node-height, 80
term-node-labels, 79
term-node-parents, 78
term-node-set-color!, 79
term-node-set-position!, 79
term-node-set-red!, 79
term-node-width, 80
term-node-x, 80
term-node-y, 80
term-node?, 80
Terms, 30
test-->, 53
test-->>, 53

104

test-->>E, 55
test-->>∃, 54
test-equal, 53
test-predicate, 55
test-results, 55
Testing, 53
Testing Reduction Relations, 14
Testing Typing, 9
The Redex Reference, 24
to-lw, 96
to-lw/stx, 97
traces, 72
traces/ps, 76
Typesetting, 82
Typesetting the Reduction Relation, 19
Typing, 7
union-reduction-relations, 40
variable, 25
variable-except, 25
variable-not-in, 33
variable-not-otherwise-mentioned,

26
variable-prefix, 25
variables-not-in, 33
where clause, 39
where-combine, 93
where-make-prefix-pict, 93
where/hidden clause, 40
white-bracket-sizing, 92
with, 43
with-atomic-rewriter, 94
with-compound-rewriter, 94
with-compound-rewriters, 95
with-unquote-rewriter, 93

105

	1 Amb: A Redex Tutorial
	1.1 Defining a Language
	1.2 Typing
	1.3 Testing Typing
	1.4 Defining a Reduction Relation
	1.5 Testing Reduction Relations
	1.6 Random Testing
	1.7 Typesetting the Reduction Relation
	Bibliography

	2 The Redex Reference
	2.1 Patterns
	2.2 Terms
	2.3 Languages
	2.4 Reduction Relations
	2.5 Other Relations
	2.6 Testing
	2.7 GUI
	2.8 Typesetting
	2.8.1 Picts, PDF, & PostScript
	2.8.2 Customization
	2.8.3 Removing the Pink Background
	2.8.4 LWs

	2.9 Macros and Typesetting

	Index
	Index

