
Distributed Places
Version 6.0.1

Kevin Tew

May 5, 2014

See also §20.3
“Distributed
Places” in The
Racket Guide.

(require racket/place/distributed)

package: distributed-places-lib

Distributed places support programs whose computation may span physical machines. The
design relies on machine nodes that perform computation. The programmer configures a
new distributed system using a declarative syntax and callbacks. A node begins life with
one initial place: the message router. After a node has been configured, its message router
is activated by calling the message-router function. The message router listens on a TCP
port for incoming connections from other nodes in the distributed system. Places can be
spawned within the node by sending place-spawn request messages to the node’s message
router.

The distributed places implementation relies on two assumptions:

• The user’s ".ssh/config" and ".ssh/authorized_keys" files are configured cor-
rectly to allow passwordless connection to remote hosts via public key authentication.

• Distributed places does not support the specification of ssh usernames. If a non-default
ssh username is required the ".ssh/config" file should be used to specifiy the user-
name.

• All machines run the same version of Racket. Futures versions of distributed places
may use the zo binary data format for serialization.

The following example illustrates a configuration and use of distributed places that starts a
new node on the current machine and passes it a "Hello World" string:

Example:

> (module hello-world-example racket/base

(require racket/place/distributed

1

racket/place)

(provide hello-world)

(define (hello-world)

(place ch

(printf "hello-world received: ∼a\n" (place-channel-

get ch))

(place-channel-put ch "Hello World\n")

(printf "hello-world sent: Hello World\n")))

(module+ main

; 1) spawns a node running at "localhost" and listenting on

port

; 6344 for incomming connections.

; 2) connects to the node running at localhost:6344 and cre-

ates a

; place on that node by calling the hello-world procedure

from

; the current module.

; 3) returns a remote-node% instance (node) and a

; remote-connection% instance (pl) for communicating with

the

; new node and place

(define-values (node pl)

(spawn-node-supervise-place-at "localhost"

#:listen-port 6344

#:thunk #t

(quote-module-path "..")

'hello-world))

; starts a message router which adds three event-

container<%>s to

; its list of events to handle: the node and two after-

seconds

; event containers . Two seconds after the launch of the

message-router, a

; message will be sent to the pl place. After six seconds,

the

; program and all spawned nodes and places will terminate.

(message-router

node

(after-seconds 2

(*channel-put pl "Hello")

(printf "message-router received: ∼a\n" (*channel-

2

get pl)))

(after-seconds 6

(exit 0)))))

(message-router ec ...+) → void?

ec : (is-a?/c event-container<%>)

Waits in an endless loop for one of many events to become ready. The message-router

procedure constructs a node% instance to serve as the message router for the node. The
message-router procedure then adds all the declared event-container<%>s to the
node% and finally calls the never ending loop sync-events method, which handles events
for the node.

(spawn-node-with-place-at

hostname

instance-module-path

instance-place-function-name

[#:listen-port port

#:initial-message initial-message

#:racket-path racket-path

#:ssh-bin-path ssh-path

#:distributed-launch-path launcher-path

#:restart-on-exit restart-on-exit

#:named place-name

#:thunk thunk])
→ (is-a?/c remote-connection%)

hostname : string?

instance-module-path : module-path?

instance-place-function-name : symbol?

port : port-no? = DEFAULT-ROUTER-PORT

initial-message : any = #f

racket-path : string-path? = (racket-path)

ssh-path : string-path? = (ssh-bin-path)

launcher-path : string-path?

= (path->string distributed-launch-path)

restart-on-exit : any/c = #f

place-name : (or/c #f symbol?) = #f

thunk : (or/c #f #t) = #f

Spawns a new remote node at hostname with one instance place specified by the
instance-module-path and instance-place-function-name .

When thunk is #f, the place is created as the result of the framework calling (dynamic-

place instance-module-path instance-place-function-name). in the new node.

3

When thunk is #t the instance-place-function-name function should use dynamic-
place or place to create and return an initial place in the new node.

When the place-name symbol is present a named place is created. The place-name sym-
bol is used to establish later connections to the named place.

The result is a remote-node% instance, not a remote-connection%. Use get-first-

place on the result to obtain a remote-connection%.

The restart-on-exit argument can be #t to instruct the remote-connection% instance
to respawn the place on the remote node should it exit or terminate at any time. It can also
be a procedure of zero arguments to implement the restart procedure, or it can be an object
that support a restart method that takes a place argument.}

(spawn-node-supervise-place-at

hostname

instance-module-path

instance-place-function-name

[#:listen-port port

#:initial-message initial-message

#:racket-path racket-path

#:ssh-bin-path ssh-path

#:distributed-launch-path launcher-path

#:restart-on-exit restart-on-exit

#:named named

#:thunk thunk])

→ (is-a?/c remote-node%)

(is-a?/c remote-connection%)

hostname : string?

instance-module-path : module-path?

instance-place-function-name : symbol?

port : port-no? = DEFAULT-ROUTER-PORT

initial-message : any = #f

racket-path : string-path? = (racket-path)

ssh-path : string-path? = (ssh-bin-path)

launcher-path : string-path?

= (path->string distributed-launch-path)

restart-on-exit : any/c = #f

named : (or/c #f string?) = #f

thunk : (or/c #f #t) = #f

Like spawn-node-with-dynamic-place-at, but the result is two values: the new
remote-node% and its remote-connection% instance.

4

(spawn-remote-racket-node

hostname

[#:listen-port port

#:racket-path racket-path

#:ssh-bin-path ssh-path

#:distributed-launch-path launcher-path]
#:use-current-ports use-current-ports)

→ (is-a?/c remote-node%)

hostname : string?

port : port-no? = DEFAULT-ROUTER-PORT

racket-path : string-path? = (racket-path)

ssh-path : string-path? = (ssh-bin-path)

launcher-path : string-path?

= (path->string distributed-launch-path)

use-current-ports : #f

Spawns a new remote node at hostname and returns a remote-node% handle.

(create-place-node hostname

[#:listen-port port

#:racket-path racket-path

#:ssh-bin-path ssh-path

#:distributed-launch-path launcher-path

#:use-current-ports use-current-ports])
→ (is-a?/c remote-node%)

hostname : string?

port : port-no? = DEFAULT-ROUTER-PORT

racket-path : string-path? = (racket-path)

ssh-path : string-path? = (ssh-bin-path)

launcher-path : string-path?

= (path->string distributed-launch-path)

use-current-ports : boolean? = #t

Like spawn-remote-racket-node, but the current-output-port and current-

error-port are used as the standard ports for the spawned process instead of new pipe
ports.

(supervise-place-at remote-node

instance-module-path

instance-place-function-name

[#:restart-on-exit restart-on-exit

#:named named

#:thunk thunk])
→ (is-a?/c remote-connection%)

remote-node : (is-a?/c remote-node%)

instance-module-path : module-path?

5

instance-place-function-name : symbol?

restart-on-exit : any/c = #f

named : (or/c #f symbol?) = #f

thunk : (or/c #f #t) = #f

When thunk is #f, creates a new place on remote-node by using dynamic-place to
invoke instance-place-function-name from the module instance-module-path .

When thunk is #t, creates a new place at remote-node by executing the thunk exported
as instance-place-function-name from the module instance-module-path . The
function should use dynamic-place or place to create and return a place in the new node.

When the place-name symbol is present a named place is created. The place-name sym-
bol is used to establish later connections to the named place.

(supervise-process-at hostname

commandline-argument ...+

[#:listen-port port])
→ (is-a?/c remote-process%)

hostname : string?

commandline-argument : string?

port : port-no? = DEFAULT-ROUTER-PORT

Spawns an attached external process at host hostname .

(supervise-thread-at remote-node

instance-module-path

instance-thunk-function-name

[#:restart-on-exit restart-on-exit])
→ (is-a?/c remote-connection%)

remote-node : (is-a?/c remote-node%)

instance-module-path : module-path?

instance-thunk-function-name : symbol?

restart-on-exit : any/c = #f

Creates a new threadon the remote-node by using dynamic-require to invoke
instance-place-function-name from the module instance-module-path .

(restart-every seconds

[#:retry retry

#:on-final-fail on-final-fail])
→ (is-a/c respawn-and-fire%)

seconds : (number?)

retry : (or/c number? #f) = #f

on-final-fail : (or/c #f (-> any/c)) = #f

6

Returns a restarter% instance that should be supplied to a #:restart-on-exit argu-
ment.

(every-seconds seconds-expr body)

Returns a respawn-and-fire% instance that should be supplied to a message-router.
The respawn-and-fire% instance executes bodys once every N seconds, where N is the
result of seconds-expr .

(after-seconds seconds-expr body)

Returns a after-seconds% instance that should be supplied to a message-router. The
after-seconds% instance executes the bodys after a delay of N seconds from the start of
the event loop, where N is the result of seconds-expr .

(connect-to-named-place node name)

→ (is-a?/c remote-connection%)

node : (is-a?/c remote-node%)

name : symbol?

Connects to a named place on the node named name and returns a remote-connection%
object.

(log-message severity msg) → void?

severity : (or/c 'fatal 'error 'warning 'info 'debug)

msg : string?

Logs a message at the root node.

event-container<%> : interface?

All objects that are supplied to the message-router must implement the event-

container<%> interface. The message-router calls the register method on each sup-
plied event-container<%> to obtain a list of events on which the event loop should wait.

(send an-event-container register events) → (listof events?)

events : (listof events?)

Returns the list of events inside the event-container<%> that should be
waited on by the message-router.

The following classes all implement event-container<%> and can be
supplied to a message-router: spawned-process%, place-socket-

bridge%, node%, remote-node%, remote-connection%, place% connec-

tion%, respawn-and-fire%, and after-seconds%.

7

spawned-process% : class?
superclass: object%

extends: event-container<%>

(send a-spawned-process get-pid) → exact-positive-integer?

(new spawned-process%

[cmdline-list cmdline-list]

[[parent parent]])
→ (is-a?/c spawned-process%)

cmdline-list : (listof (or/c string? path?))

parent : (is-a?/c remote-node%) = #f

The cmdline-list is a list of command line arguments of type string and/or
path.

The parent argument is a remote-node% instance that will be notified when
the process dies via a (send parent process-died this) call.

place-socket-bridge% : class?
superclass: object%

extends: event-container<%>

(send a-place-socket-bridge get-sc-id)

→ exact-positive-integer?

(new place-socket-bridge%

[pch pch]

[sch sch]

[id id])

→ (is-a?/c place-socket-bridge%)

pch : place-channel?

sch : (is-a?/c socket-connection%)

id : exact-positive-integer?

The pch argument is a place-channel. Messages received on pch

are forwarded to the socket-connection% sch via a dcgm message.
e.g. (sconn-write-flush sch (dcgm DCGM-TYPE-INTER-DCHANNEL id

id msg)) The id is a exact-positive-integer that identifies the socket-
connection subchannel for this inter-node place connection.

8

socket-connection% : class?
superclass: object%

extends: event-container<%>

(new socket-connection%

[[host host]

[port port]

[retry-times retry-times]

[delay delay]

[background-connect? background-connect?]

[in in]

[out out]

[remote-node remote-node]])
→ (is-a?/c socket-connection%)

host : (or/c string? #f) = #f

port : (or/c port-no? #f) = #f

retry-times : exact-nonnegative-integer? = 30

delay : number? = 1

background-connect? : any/c = #f

in : (or/c input-port? #f) = #f

out : (or/c output-port #f) = #f

remote-node : (or/c (is-a?/c remote-node%) #f) = #f

When a host and port are supplied a new tcp connection is established. If a
input-port? and output-port? are supplied as in and out , the ports are
used as a connection to the remote host. The retry-times argument specifies
how many times to retry the connection attempt should it fail to connect and
defaults to 30 retry attempts. Often a remote node is still booting up when a
connection is attempted and the connection needs to be retried several times.
The delay argument specifies how many seconds to wait between retry at-
tempts. The background-connect? argument defaults to #t and specifies
that the constructor should retry immediately and that connecion establishment
should occur in the background. Finally, the remote-node argument specifies
the remote-node% instance that should be notified should the connection fail.

node% : class?
superclass: object%

extends: event-container<%>

The node% instance controls a distributed places node. It launches places and routes inter-
node place messages in the distributed system. The message-router form constructs a
node% instance under the hood. Newly spawned nodes also have a node% instance in their
initial place that serves as the node’s message router.

9

(new node% [[listen-port listen-port]]) → (is-a?/c node%)

listen-port : tcp-listen-port? = #f

Constructs a node% that will listen on listen-port for inter-node connections.

(send a-node sync-events) → void?

Starts the never ending event loop for this distributed places node.

remote-node% : class?
superclass: object%

extends: event-container<%>

Like node%, but for the remote API to a distributed places node. Instances of remote-node%
are returned by create-place-node, spawn-remote-racket-node, and spawn-node-

supervise-place-at.

A remote-node% is a place location in the sense of place-location?, which means that
it can be supplied as the #:at argument to dynamic-place.

(new remote-node%

[[listen-port listen-port]

[restart-on-exit restart-on-exit]])
→ (is-a?/c remote-node%)

listen-port : tcp-listen-port? = #f

restart-on-exit : any/c = #f

Constructs a node% that will listen on listen-port for inter-node connections.

When set to true the restart-on-exit parameter causes the specified node to
be restarted when the ssh session spawning the node dies.

(send a-remote-node get-first-place)

→ (is-a?/c remote-connection%)

Returns the remote-connection% object instance for the first place spawned
on this node.

(send a-remote-node get-first-place-channel) → place-

channel?

Returns the communication channel for the first place spawned on this node.

(send a-remote-node get-log-prefix) → string?

Returns (format "PLACE ∼a:∼a" host-name listen-port)

10

(send a-remote-node launch-place

place-exec

[#:restart-on-exit restart-on-exit

#:one-sided-place? one-sided-place?])
→ (is-a?/c remote-connection%)

place-exec : list?

restart-on-exit : any/c = #f

one-sided-place? : any/c = #f

Launches a place on the remote node represented by this remote-node% in-
stance.

The place-exec argument describes how the remote place should be launched,
and it should have one of the following shapes:

• (list 'place place-module-path place-thunk)

• (list 'dynamic-place place-module-path place-func)

The difference between these two launching methods is that the 'place version
of place-exec expects a thunk to be exported by the module place-module-
path. Executing the thunk is expected to create a new place and return a place
descriptor to the newly created place. The 'dynamic-place version of place-
exec expects place-func to be a function taking a single argument, the initial
channel argument, and calls dynamic-place on behalf of the user and creates
the new place from the place-module-path and place-func.

The restart-on-exit argument is treated in the same way as for spawn-
node-with-dynamic-place-at.

The one-sided-place? argument is an internal use argument for launching
remote places from within a place using the old design pattern.

(send a-remote-node remote-connect name) → remote-

connection%
name : string?

Connects to a named place on the remote node represented by this remote-

node% instance.

(send a-remote-node send-exit) → void?

Sends a message instructing the remote node represented by this remote-

node% instance to exit immediately

(node-send-exit remote-node%) → void?
remote-node% : node

Sends node a message telling it to exit immediately.

11

(node-get-first-place remote-node%)

→ (is-a?/c remote-connection%)

remote-node% : node

Returns the remote-connection% instance of the first place spawned at this node

(distributed-place-wait remote-connection%) → void?

remote-connection% : place

Waits for place to terminate.

remote-connection% : class?
superclass: object%

extends: event-container<%>

The remote-connection% instance provides a remote api to a place running on a remote
distributed places node. It launches a places or connects to a named place and routes inter-
node place messages to the remote place.

(new remote-connection%

[node node]

[place-exec place-exec]

[name name]

[restart-on-exit restart-on-exit]

[one-sided-place? one-sided-place?]

[on-channel on-channel])

→ (is-a?/c remote-connection%)

node : (is-a?/c remote-node%)

place-exec : list?

name : string?

restart-on-exit : #f

one-sided-place? : #f

on-channel : #f

Constructs a remote-connection% instance.

The place-exec argument describes how the remote place should be launched
in the same way as for launch-place in remote-node%.

The restart-on-exit argument is treated in the same way as for spawn-
node-with-dynamic-place-at.

The one-sided-place? argument is an internal use argument for launching
remote places from within a place using the old design pattern.

See set-on-channel! for description of on-channel argument.

12

(send a-remote-connection set-on-channel! callback) → void?
callback : (-> channel msg void?)

Installs a handler function that handles messages from the remote place. The
setup/distributed-docs module uses this callback to handle job comple-
tion messages.

place% : class?
superclass: object%

extends: event-container<%>

The place% instance represents a place launched on a distributed places node at that node.
It launches a compute places and routes inter-node place messages to the place.

(new place%

[node node]

[place-exec place-exec]

[ch-id ch-id]

[sc sc]

[[on-place-dead on-place-dead]]) → (is-a?/c place%)

node : (is-a?/c remote-connection%)

place-exec : list?

ch-id : exact-positive-integer?

sc : (is-a?/c socket-connection%)

on-place-dead : (-> event void?) = default-on-place-dead

Constructs a remote-connection% instance. The place-exec argument
describes how the remote place should be launched in the same way as for
launch-place in remote-node%. The ch-id and sc arguments are inter-
nally used to establish routing between the remote node spawning this place
and the place itself. The on-place-dead callback handles the event when the
newly spawned place terminates.

(send a-place wait-for-die) → void?

Blocks and waits for the subprocess representing the remote-node% to exit.

connection% : class?
superclass: object%

extends: event-container<%>

The connection% instance represents a connection to a named-place instance running on
the current node. It routes inter-node place messages to the named place.

13

(new connection%

[node node]

[name name]

[ch-id ch-id]

[sc sc]) → (is-a?/c connection%)

node : (is-a?/c remote-node%)

name : string?

ch-id : exact-positive-integer?

sc : (is-a?/c socket-connection%)

Constructs a remote-connection% instance. The place-exec argument de-
scribes how the remote place should be launched in the same way as for
launch-place in remote-node%. The ch-id and sc arguments are inter-
nally used to establish routing between the remote node and this named-place.

respawn-and-fire% : class?
superclass: object%

extends: event-container<%>

The respawn-and-fire% instance represents a thunk that should execute every n seconds.

(new respawn-and-fire%

[seconds seconds]

[thunk thunk])

→ (is-a?/c respawn-and-fire%)

seconds : (and/c real? (not/c negative?))

thunk : (-> void?)

Constructs a respawn-and-fire% instance that when placed inside a
message-router construct causes the supplied thunk to execute every n sec-
onds.

after-seconds% : class?
superclass: object%

extends: event-container<%>

The after-seconds% instance represents a thunk that should execute after n seconds.

(new after-seconds%

[seconds seconds]

[thunk thunk])

→ (is-a?/c after-seconds%)

14

seconds : (and/c real? (not/c negative?))

thunk : (-> void?)

Constructs an after-seconds% instance that when placed inside a message-

router construct causes the supplied thunk to execute after n seconds.

restarter% : class?
superclass: after-seconds%

extends: event-container<%>

The restarter% instance represents a restart strategy.

(new restarter%

[seconds seconds]

[[retry retry]

[on-final-fail on-final-fail]])
→ (is-a?/c restarter%)

seconds : number?

retry : (or/c number? #f) = #f

on-final-fail : (or/c #f (-> any/c)) = #f

Constructs an restarter% instance that when supplied to a #:restart-on-

exit argument, attempts to restart the process every seconds . The retry

argument specifies how many time to attempt to restart the process before giving
up. If the process stays alive for (* 2 seconds) the attempted retries count is
reset to 0. The on-final-fail thunk is called when the number of retries is
exceeded

distributed-launch-path : path?

Contains the local path to the distributed places launcher. The distributed places launcher is
the bootsrap file that launches the message router on a new node.

(ssh-bin-path) → string?

Returns the path to the ssh binary on the local system in string form.

Example:

> (ssh-bin-path)

#<path:/usr/bin/ssh>

(racket-path) → path?

15

Returns the path to the currently executing Racket binary on the local system.

(build-distributed-launch-path collects-path) → string?

collects-path : path-string?

Returns the path to the distributed places launch file. The function can take an optional
argument specifying the path to the collects directory.

(spawn-node-at hostname

[#:listen-port port

#:racket-path racket-path

#:ssh-bin-path ssh-path

#:distributed-launch-path launcher-path])
→ channel?

hostname : string?

port : port-no? = DEFAULT-ROUTER-PORT

racket-path : string-path? = (racket-path)

ssh-path : string-path? = (ssh-bin-path)

launcher-path : string-path?

= (path->string distributed-launch-path)

Spawns a node in the background using a Racket thread and returns a channel that becomes
ready with a remote-node% once the node has spawned successfully

(spawn-nodes/join nodes-descs) → void?

nodes-descs : list?

Spawns a list of nodes by calling (lambda (x) (apply keyword-apply spawn-node-

at x)) for each node description in nodes-descs and then waits for each node to spawn.

(*channel-put ch msg) → void?

ch :
(or/c place-channel? async-bi-channel?

channel? (is-a?/c remote-connection%))

msg : any

Sends msg over ch channel.

(*channel-get ch) → any

ch :
(or/c place-channel? async-bi-channel?

channel? (is-a?/c remote-connection%))

Returns a message received on ch channel.

(*channel? v) → boolean?
v : any/c

16

Returns #t if v is one of place-channel?, async-bi-channel?, channel?, or (is-
a?/c remote-connection%).

(send-new-place-channel-to-named-dest ch

src-id

dest-list)

→ place-channel?

ch : *channel?

src-id : any

dest-list : (listof string? port-no? string?)

Creates and returns a new place channel connection to a named place at dest-list . The
dest-list argument is a list of a remote-hostname remote-port and named-place name.
The channel ch should be a connection to a message-router.

(mr-spawn-remote-node mrch

host

[#:listen-port listen-port

#:solo solo]) → void?

mrch : *channel?

host : string?

listen-port : port-no? = DEFAULT-ROUTER-PORT

solo : boolean? = #f

Sends a message to a message router over mrch channel asking the message router to spawn
a new node at host listening on port listen-port . If the #:solo keyword argument
is supplied the new node is not folded into the complete network with other nodes in the
distributed system.

(mr-supervise-named-dynamic-place-at mrch

dest

name

path

func) → void?

mrch : *channel?

dest : (listof string? port-no?)

name : string?

path : string?

func : symbol?

Sends a message to a message router over mrch channel asking the message router to spawn
a named place at dest named name . The place is spawned at the remote node by calling
dynamic place with module-path path and function func . The dest parameter should be
a list of remote-hostname and remote-port.

17

(mr-connect-to mrch dest name) → void?
mrch : *channel?

dest : (listof string? port-no?)

name : string?

Sends a message to a message router over mrch channel asking the message router to create
a new connection to the named place named name at dest . The dest parameter should be
a list of remote-hostname and remote-port.

(start-message-router/thread [#:listen-port listen-port

#:nodes nodes])
→ thread? channel?

listen-port : port-no? = DEFAULT-ROUTER-PORT

nodes : list? = null

Starts a message router in a Racket thread connected to nodes , listening on port listen-
port , and returns a channel? connection to the message router.

(port-no? no) → boolean?

no : (and/c exact-nonnegative-integer? (integer-in 0 65535))

Returns #t if no is a exact-nonnegative-integer? between 0 and 65535.

DEFAULT-ROUTER-PORT : port-no?

The default port for distributed places message router.

named-place-typed-channel% : class?
superclass: object%

(new named-place-typed-channel% [ch ch])

→ (is-a?/c named-place-typed-channel%)

ch : place-channel?

The ch argument is a place-channel.

(send a-named-place-typed-channel get type) → any

type : symbol?

Returns the first message received on ch that has the type type . Messages
are lists and their type is the first item of the list which should be a symbol?.
Messages of other types that are received are queued for later get requests.

18

(tc-get type ch) → void?

type : symbol?

ch : place-channel?

Gets a message of type type from the named-place-typed-channel% ch .

(write-flush datum port) → void?

datum : any

port : port?

Writes datum to port and then flushes port .

(printf/f format args ...) → void?

format : string?

args : any

Calls printf followed by a call to flush-output.

(displayln/f item) → void?

item : any

Calls displayln followed by a call to flush-output.

Example:

> (write-flush "Hello World" (current-output-port))

"Hello World"

19

1 Define Remote Server

(require racket/place/define-remote-server)

package: distributed-places-lib

(define-remote-server [name identifier?] rpc-forms ...+)

(define-named-remote-server [name identifier?] rpc-forms ...+)

The define-remote-server and define-named-remote-server forms are nearly iden-
tical. The define-remote-server form should be used with supervise-dynamic-

place-at to build a private rpc server, while the define-named-remote-server form
should be used with supervise-named-dynamic-place-at to build a rpc server inside a
named place.

The define-named-remote-server form takes an identifier and a list of custom expres-
sions as its arguments. From the identifier a function is created by prepending the make-

prefix. This procedure takes a single argument a place-channel. In the example below, the
make-tuple-server identifier is the place-function-name given to the supervise-

named-dynamic-place-at form to spawn an rpc server. The server created by the make-
tuple-server procedure sits in a loop waiting for rpc requests from the define-rpc func-
tions documented below.

(define-state id value)

Expands to a define, which is closed over by the define-rpc functions to form local state.

(define-rpc (id args ...) body ...)

Expands to a client rpc function name-id which sends id and args ... to the rpc
server rpc-place and waits for a response. (define (name-id rpc-place args ...)

body)

(define-cast (id args ...) body ...)

Expands to a client rpc function name-id which sends id and args ... to the rpc server
rpc-place but does not receive any response. A cast is a one-way communication tech-
nique. (define (name-id rpc-place args ...) body)

The define-state custom form translates into a simple define form, which is closed over
by the define-rpc forms.

The define-rpc form is expanded into two parts. The first part is the client stubs that
call the rpc functions. The client function name is formed by concatenating the define-

named-remote-server identifier, tuple-server, with the RPC function name set to
form tuple-server-set. The RPC client functions take a destination argument which

20

is a remote-connection% descriptor and then the RPC function arguments. The RPC
client function sends the RPC function name, set, and the RPC arguments to the destination
by calling an internal function named-place-channel-put. The RPC client then calls
named-place-channel-get to wait for the RPC response.

The second expansion part of define-rpc is the server implementation of the RPC call.
The server is implemented by a match expression inside the make-tuple-server function.
The match clause for tuple-server-set matches on messages beginning with the 'set

symbol. The server executes the RPC call with the communicated arguments and sends the
result back to the RPC client.

The define-cast form is similar to the define-rpc form except there is no reply message
from the server to client

Example:

> (module tuple-server-example racket/base

(require racket/match

racket/place/define-remote-server)

(define-named-remote-server tuple-server

(define-state h (make-hash))

(define-rpc (set k v)

(hash-set! h k v)

v)

(define-rpc (get k)

(hash-ref h k #f))

(define-cast (hello)

(printf "Hello from define-cast\n")

(flush-output))))

Example:

> (module bank-server-example racket/base

(require racket/match

racket/place/define-remote-server)

(define-remote-server bank

(define-state accounts (make-hash))

(define-rpc (new-account who)

(match (hash-has-key? accounts who)

[#t '(already-exists)]

[else

(hash-set! accounts who 0)

(list 'created who)]))

(define-rpc (remove who amount)

21

(cond

[(hash-ref accounts who (lambda () #f)) =>

(lambda (balance)

(cond [(<= amount balance)

(define new-balance (- balance amount))

(hash-set! accounts who new-balance)

(list 'ok new-balance)]

[else

(list 'insufficient-funds balance)]))]

[else

(list 'invalid-account who)]))

(define-rpc (add who amount)

(cond

[(hash-ref accounts who (lambda () #f)) =>

(lambda (balance)

(define new-balance (+ balance amount))

(hash-set! accounts who new-balance)

(list 'ok new-balance))]

[else

(list 'invalid-account who)]))))

(log-to-parent msg [#:severity severity]) → void?

msg : string?

severity : symbol? = 'info

The log-to-parent procedure can be used inside a define-remote-server or define-
named-remote-server form to send a logging message to the remote owner of the rpc
server.

22

2 Async Bidirectional Channels

(require racket/place/private/async-bi-channel)

package: base

(make-async-bi-channel) → async-bi-channel?

Creates and returns an opaque structure, which is the async bidirectional channel.

(async-bi-channel? ch) → boolean?

ch : any

A predicate that returns #t for async bidirectional channels.

(async-bi-channel-get ch) → any

ch : async-bi-channel?

Returns the next available message from the async bidirectional channel ch .

(async-bi-channel-put ch msg) → void?

ch : async-bi-channel?

msg : any

Sends message msg to the remote end of the async bidirectional channel ch .

23

3 Distributed Places MPI

(require racket/place/distributed/rmpi)

package: distributed-places-lib

(struct rmpi-comm (id cnt channels))

id : exact-nonnegative-integer?

cnt : exact-positive-integer?

channels : vector?

The communicator struct rmpi-comm contains the rmpi process rank id, the quantity of
processes in the communicator group, cnt, and a vector of place-channels, one for each
process in the group.

(rmpi-id comm) → exact-nonnegative-integer?

comm : rmpi-comm?

Takes a rmpi communicator structure, comm , and returns the node id of the RMPI process.

(rmpi-cnt comm) → exact-positive-integer?

comm : rmpi-comm?

Takes a rmpi communicator structure, comm , and returns the count of the RMPI processes in
the communicator group.

(rmpi-send comm dest val) → void?

comm : rmpi-comm?

dest : exact-nonnegative-integer?

val : any

Sends val to destination rmpi process number dest using the RMPI communicator struc-
ture comm .

(rmpi-recv comm src) → any

comm : rmpi-comm?

src : exact-nonnegative-integer?

Receives a message from source rmpi process number src using the RMPI communicator
structure comm .

(rmpi-init ch) →
rmpi-comm?

(listof any)

(is-a?/c named-place-typed-channel%)

ch : place-channel?

24

Creates the rmpi-comm structure instance using the named place’s original place-channel
ch . In addition to the communicator structure, rmpi-init returns a list of initial arguments
and the original place-channel ch wrapped in a named-place-typed-channel%. The
named-place-typed-channel% wrapper allows for the reception of list messages typed
by an initial symbol.

(rmpi-broadcast comm src) → any

comm : rmpi-comm?

src : exact-nonnegative-integer?

(rmpi-broadcast comm src val) → any

comm : rmpi-comm?

src : exact-nonnegative-integer?

val : any

Broadcasts val from src to all rmpi processes in the communication group using a hyper-
cube algorithm. Receiving processes call (rmpi-broadcast comm src).

(rmpi-reduce comm dest op val) → any

comm : rmpi-comm?

dest : exact-nonnegative-integer?

op : procedure?

val : any

Reduces val using the op operator to dest rmpi node using a hypercube algorithm.

(rmpi-barrier comm) → void?

comm : rmpi-comm?

Introduces a synchronization barrier for all rmpi processes in the communcication group
comm .

(rmpi-allreduce comm op val) → any

comm : rmpi-comm?

op : procedure?

val : any

Reduces val using the op operator to rmpi node 0 and then broadcasts the reduced value to
all nodes in the communication group.

(rmpi-partition comm num) → exact-nonnegative-integer?

exact-nonnegative-integer?

comm : rmpi-comm?

num : exact-nonnegative-integer?

Partitions num into rmpi-cnt equal pieces and returns the offset and length for the rmpi-

idth piece.

25

(rmpi-build-default-config

#:racket-path racket-path

#:distributed-launch-path distributed-launch-path

#:mpi-module mpi-module

#:mpi-func mpi-func

#:mpi-args mpi-args)

→ hash?

racket-path : string?

distributed-launch-path : string?

mpi-module : string?

mpi-func : symbol?

mpi-args : (listof any)

Builds a hash from keywords to keyword arguments for use with the rmpi-launch func-

tion.

(rmpi-launch default-node-config config) → void?

default-node-config : hash?

config :
(listof (list/c string? port-no? symbol?

exact-nonnegative-integer?))

Launches distributed places nodes running #:mpi-func in #:mpi-module with #:mpi-

args. The config is a list of node configs, where each node config consists of a host-
name, port, named place symbol and rmpi id number, followed by and optional hash
of keyword #:racket-path, #:distributed-launch-path, #:mpi-module, #:mpi-
func, and #:mpi-args to keyword arguments. Missing optional keyword arguments will
be taken from the default-node-config hash of keyword arguments.

(rmpi-finish comm tc) → void?

comm : rmpi-comm?

tc : (is-a?/c named-place-typed-channel%)

Rendezvous with the rmpi-launch, using the tc returned by rmpi-launch, to indicate
that the RMPI module is done executing and that rmpi-launch can return control to its
caller.

Example:

> (rmpi-launch

(rmpi-build-default-config

#:racket-path "/tmp/mplt/bin/racket"

#:distributed-launch-path (build-distributed-launch-path

"/tmp/mplt/collects")

#:mpi-module "/tmp/mplt/kmeans.rkt"

#:mpi-func 'kmeans-place

26

#:mpi-args (list "/tmp/mplt/color100.bin" #t 100

9 10 1e-07))

(list (list "nodea.example.com" 6340 'kmeans_0 0)

(list "nodeb.example.com" 6340 'kmeans_1 1)

(list "nodec.example.com" 6340 'kmeans_2 2)

(list "noded.example.com" 6340 'kmeans_3 3)))

27

	1 Define Remote Server
	2 Async Bidirectional Channels
	3 Distributed Places MPI

