
The Racket Drawing Toolkit
Version 6.0.1

Matthew Flatt,
Robert Bruce Findler,

and John Clements

May 5, 2014

(require racket/draw) package: draw-lib

The racket/draw library provides all of the class, interface, and procedure bindings defined
in this manual.

1

Contents

1 Overview 4
1.1 Lines and Simple Shapes . 4
1.2 Pen, Brush, and Color Objects . 6
1.3 Transformations . 8
1.4 Drawing Paths . 9
1.5 Text . 13
1.6 Alpha Channels and Alpha Blending . 14
1.7 Clipping . 15
1.8 Portability and Bitmap Variants . 17

2 bitmap% 19

3 bitmap-dc% 26

4 brush% 30

5 brush-list% 34

6 color% 35

7 color-database<%> 37

8 dc<%> 42

9 dc-path% 62

10 font% 67

11 font-list% 71

12 font-name-directory<%> 73

13 gl-config% 76

14 gl-context<%> 79

15 linear-gradient% 81

16 pdf-dc% 84

17 pen% 85

18 pen-list% 91

19 point% 92

2

20 post-script-dc% 93

21 ps-setup% 95

22 radial-gradient% 100

23 record-dc% 103

24 region% 104

25 svg-dc% 109

26 Drawing Functions 110

27 Drawing Contracts 115

28 Signature and Unit 118
28.1 Draw Unit . 118
28.2 Draw Signature . 118

29 Unsafe Libraries 119
29.1 Handle Brushes . 119
29.2 Cairo Library . 120

30 Platform Dependencies 121

Bibliography 122

Index 123

Index 123

3

1 Overview

The racket/draw library provides a drawing API that is based on the PostScript drawing
model. It supports line drawing, shape filling, bitmap copying, alpha blending, and affine
transformations (i.e., scale, rotation, and translation). See §13 “Classes

and Objects” for an
introduction to
classes and
interfaces in
Racket.

Drawing with racket/draw requires a drawing context (DC), which is an instance of the
dc<%> interface. For example, the post-script-dc% class implements a dc<%> for draw-
ing to a PostScript file, while bitmap-dc% draws to a bitmap. When using the racket/gui
library for GUIs, the get-dc method of a canvas returns a dc<%> instance for drawing into
the canvas window. See §1.2 “Drawing

in Canvases” for an
introduction to
drawing in a GUI
window.1.1 Lines and Simple Shapes

To draw into a bitmap, first create the bitmap with make-bitmap, and then create a bitmap-
dc% that draws into the new bitmap:

(define target (make-bitmap 30 30)) ; A 30x30 bitmap

(define dc (new bitmap-dc% [bitmap target]))

Then, use methods like draw-line on the DC to draw into the bitmap. For example, the
sequence

(send dc draw-rectangle

0 10 ; Top-left at (0, 10), 10 pixels down from top-left

30 10) ; 30 pixels wide and 10 pixels high

(send dc draw-line

0 0 ; Start at (0, 0), the top-left corner

30 30) ; and draw to (30, 30), the bottom-right corner

(send dc draw-line

0 30 ; Start at (0, 30), the bottom-left corner

30 0) ; and draw to (30, 0), the top-right corner

draws an “X” on top of a smaller rectangle into the bitmap target. If you save the bitmap
to a file with (send target save-file "box.png" 'png), the "box.png" contains the
image

in PNG format.

4

A line-drawing drawing operation like draw-line uses the DC’s current pen to draw the
line. A pen has a color, line width, and style, where pen styles include 'solid, 'long-
dash, and 'transparent. Enclosed-shape operations like draw-rectangle use both the
current pen and the DC’s current brush. A brush has a color and style, where brush styles
include 'solid, 'cross-hatch, and 'transparent. In DrRacket,

instead of saving
target to a file
viewing the image
from the file, you
can use (require
racket/gui) and
(make-object

image-snip%

target) to view
the bitmap in the
DrRacket
interactions
window.

For example, set the brush and pen before the drawing operations to draw a thick, red “X”
on a green rectangle with a thin, blue border:

(send dc set-brush "green" 'solid)

(send dc set-pen "blue" 1 'solid)

(send dc draw-rectangle 0 10 30 10)

(send dc set-pen "red" 3 'solid)

(send dc draw-line 0 0 30 30)

(send dc draw-line 0 30 30 0)

To draw a filled shape without an outline, set the pen to 'transparent mode (with any
color and line width). For example,

(send dc set-pen "white" 1 'transparent)

(send dc set-brush "black" 'solid)

(send dc draw-ellipse 5 5 20 20)

By default, a bitmap-dc% draws solid pixels without smoothing the boundaries of shapes.
To enable smoothing, set the smoothing mode to either 'smoothed or 'aligned:

(send dc set-smoothing 'aligned)

(send dc set-brush "black" 'solid)

(send dc draw-ellipse 4 4 22 22) ; a little bigger

The difference between 'aligned mode and 'smoothed mode is related to the relatively
coarse granularity of pixels in a bitmap. Conceptually, drawing coordinates correspond to
the lines between pixels, and the pen is centered on the line. In 'smoothed mode, drawing
on a line causes the pen to draw at half strength on either side of the line, which produces
the following result for a 1-pixel black pen:

5

but 'aligned mode shifts drawing coordinates to make the pen fall on whole pixels, so a
1-pixel black pen draws a single line of pixels:

1.2 Pen, Brush, and Color Objects

The set-pen and set-brush methods of a DC accept pen% and brush% objects, which
group together pen and brush settings.

(require racket/math)

(define no-pen (new pen% [style 'transparent]))

(define no-brush (new brush% [style 'transparent]))

(define blue-brush (new brush% [color "blue"]))

(define yellow-brush (new brush% [color "yellow"]))

(define red-pen (new pen% [color "red"] [width 2]))

(define (draw-face dc)

(send dc set-smoothing 'aligned)

(send dc set-pen no-pen)

(send dc set-brush blue-brush)

(send dc draw-ellipse 25 25 100 100)

(send dc set-brush yellow-brush)

(send dc draw-rectangle 50 50 10 10)

(send dc draw-rectangle 90 50 10 10)

(send dc set-brush no-brush)

(send dc set-pen red-pen)

(send dc draw-arc 37 37 75 75 (* 5/4 pi) (* 7/4 pi)))

(define target (make-bitmap 150 150))

(define dc (new bitmap-dc% [bitmap target]))

(draw-face dc)

6

The get-pen and get-brush methods return a DC’s current pen and brush, so they can be
restored after changing them temporarily for drawing.

Besides grouping settings, a pen% or brush% object includes extra settings that are not avail-
able by using set-pen or set-brush directly. For example, a pen or brush can have a
stipple, which is a bitmap that is used instead of a solid color when drawing. For example,
if "water.png" has the image

then it can be loaded with read-bitmap and installed as the stipple for blue-brush:

(send blue-brush set-stipple (read-bitmap "water.png"))

(send dc erase)

(draw-face dc)

7

Along similar lines, a color% object lets you specify a color through its red, green, and blue
components instead of a built-in color name. Due to the way that color% initialization is
overloaded, use make-object instead of new to instantiate color%, or use the make-color
function:

(define red-pen

(new pen% [color (make-color 200 100 150)] [width 2]))

(send dc erase)

(draw-face dc)

1.3 Transformations

Any coordinates or lengths supplied to drawing commends are transformed by a DC’s cur-
rent transformation matrix. The transformation matrix can scale an image, draw it at an
offset, or rotate all drawing. The transformation can be set directly, or the current transfor-
mation can be transformed further with methods like scale, translate, or rotate:

(send dc erase)

(send dc scale 0.5 0.5)

(draw-face dc)

(send dc rotate (/ pi 2))

(send dc translate 0 150)

(draw-face dc)

(send dc translate 0 -150)

(send dc rotate (/ pi 2))

(send dc translate 150 150)

(draw-face dc)

(send dc translate -150 -150)

(send dc rotate (/ pi 2))

(send dc translate 150 0)

(draw-face dc)

8

Use the get-transformation method to get a DC’s current transformation, and restore a
saved transformation (or any affine transformation) using set-transformation.

1.4 Drawing Paths

Drawing functions like draw-line and draw-rectangle are actually convenience func-
tions for the more general draw-path operation. The draw-path operation takes a path,
which describes a set of line segments and curves to draw with the pen and—in the case of
closed set of lines and curves—fill with the current brush.

An instance of dc-path% holds a path. Conceptually, a path has a current pen position that
is manipulated by methods like move-to, line-to, and curve-to. The move-to method
starts a sub-path, and line-to and curve-to extend it. The close method moves the pen
from its current position in a straight line to its starting position, completing the sub-path
and forming a closed path that can be filled with the brush. A dc-path% object can have
multiple closed sub-paths and one final open path, where the open path is drawn only with
the pen.

For example,

(define zee (new dc-path%))

(send zee move-to 0 0)

(send zee line-to 30 0)

(send zee line-to 0 30)

(send zee line-to 30 30)

creates an open path. Drawing this path with a black pen of width 5 and a transparent brush
produces

9

Drawing a single path with three line segments is not the same as drawing three separate
lines. When multiple line segments are drawn at once, the corner from one line to the next
is shaped according to the pen’s join style. The image above uses the default 'round join
style. With 'miter, line lines are joined with sharp corners:

If the sub-path in zee is closed with close, then all of the corners are joined, including the
corner at the initial point:

(send zee close)

Using blue-brush instead of a transparent brush causes the interior of the path to be filled:

When a sub-path is not closed, it is implicitly closed for brush filling, but left open for pen
drawing. When both a pen and brush are available (i.e., not transparent), then the brush is
used first, so that the pen draws on top of the brush.

At this point we can’t resist showing an extended example using dc-path% to draw the
Racket logo:

(define red-brush (new brush% [stipple (read-bitmap "fire.png")]))

(define left-lambda-path

(let ([p (new dc-path%)])

(send p move-to 153 44)

(send p line-to 161.5 60)

10

(send p curve-to 202.5 49 230 42 245 61)

(send p curve-to 280.06 105.41 287.5 141 296.5 186)

(send p curve-to 301.12 209.08 299.11 223.38 293.96 244)

(send p curve-to 281.34 294.54 259.18 331.61 233.5 375)

(send p curve-to 198.21 434.63 164.68 505.6 125.5 564)

(send p line-to 135 572)

p))

(define left-logo-path

(let ([p (new dc-path%)])

(send p append left-lambda-path)

(send p arc 0 0 630 630 (* 47/72 2 pi) (* 121/360 2 pi) #f)

p))

(define bottom-lambda-path

(let ([p (new dc-path%)])

(send p move-to 135 572)

(send p line-to 188.5 564)

(send p curve-to 208.5 517 230.91 465.21 251 420)

(send p curve-to 267 384 278.5 348 296.5 312)

(send p curve-to 301.01 302.98 318 258 329 274)

(send p curve-to 338.89 288.39 351 314 358 332)

(send p curve-to 377.28 381.58 395.57 429.61 414 477)

(send p curve-to 428 513 436.5 540 449.5 573)

(send p line-to 465 580)

(send p line-to 529 545)

p))

(define bottom-logo-path

(let ([p (new dc-path%)])

(send p append bottom-lambda-path)

(send p arc 0 0 630 630 (* 157/180 2 pi) (* 47/72 2 pi) #f)

p))

(define right-lambda-path

(let ([p (new dc-path%)])

(send p move-to 153 44)

(send p curve-to 192.21 30.69 233.21 14.23 275 20)

(send p curve-to 328.6 27.4 350.23 103.08 364 151)

(send p curve-to 378.75 202.32 400.5 244 418 294)

(send p curve-to 446.56 375.6 494.5 456 530.5 537)

(send p line-to 529 545)

p))

(define right-logo-path

(let ([p (new dc-path%)])

11

(send p append right-lambda-path)

(send p arc 0 0 630 630 (* 157/180 2 pi) (* 121/360 2 pi) #t)

p))

(define lambda-path

(let ([p (new dc-path%)])

(send p append left-lambda-path)

(send p append bottom-lambda-path)

(let ([t (new dc-path%)])

(send t append right-lambda-path)

(send t reverse)

(send p append t))

(send p close)

p))

(define (paint-racket dc)

(send dc set-pen "black" 0 'transparent)

(send dc set-brush "white" 'solid)

(send dc draw-path lambda-path)

(send dc set-pen "black" 4 'solid)

(send dc set-brush red-brush)

(send dc draw-path left-logo-path)

(send dc draw-path bottom-logo-path)

(send dc set-brush blue-brush)

(send dc draw-path right-logo-path))

(define racket-logo (make-bitmap 170 170))

(define dc (new bitmap-dc% [bitmap racket-logo]))

(send dc set-smoothing 'smoothed)

(send dc translate 5 5)

(send dc scale 0.25 0.25)

(paint-racket dc)

12

In addition to the core move-to, line-to, curve-to, and close methods, a dc-path%

includes many convenience methods, such as ellipse for adding a closed elliptical sub-
path to the path.

1.5 Text

Draw text using the draw-text method, which takes a string to draw and a location for the
top-left of the drawn text:

(define text-target (make-bitmap 100 30))

(define dc (new bitmap-dc% [bitmap text-target]))

(send dc set-brush "white" 'transparent)

(send dc draw-rectangle 0 0 100 30)

(send dc draw-text "Hello, World!" 5 1)

The font used to draw text is determined by the DC’s current font. A font is described by a
font% object and installed with set-font. The color of drawn text which is separate from
either the pen or brush, can be set using set-text-foreground.

(send dc erase)

(send dc set-font (make-font #:size 14 #:family 'roman

#:weight 'bold))

(send dc set-text-foreground "blue")

13

(send dc draw-rectangle 0 0 100 30)

(send dc draw-text "Hello, World!" 5 1)

To compute the size that will be used by drawn text, use get-text-extent, which returns
four values: the total width, total height, difference between the baseline and total height, and
extra space (if any) above the text in a line. For example, the result of get-text-extent
can be used to position text within the center of a box:

(send dc erase)

(send dc draw-rectangle 0 0 100 30)

(define-values (w h d a) (send dc get-text-extent "Hello,

World!"))

(send dc draw-text "Hello, World!" (/ (- 100 w) 2) (/ (- 30 h) 2))

1.6 Alpha Channels and Alpha Blending

When you create or erase a bitmap, the content is nothing. “Nothing” isn’t the same as
white; it’s the absence of drawing. For example, if you take text-target from the previous
section and copy it onto another DC using draw-bitmap, then the black rectangle and blue
text is transferred, and the background is left alone:

(define new-target (make-bitmap 100 30))

(define dc (new bitmap-dc% [bitmap new-target]))

(send dc set-pen "black" 1 'transparent)

(send dc set-brush "pink" 'solid)

(send dc draw-rectangle 0 0 100 30)

(send dc draw-bitmap text-target 0 0)

The information about which pixels of a bitmap are drawn (as opposed to “nothing”) is the
bitmap’s alpha channel. Not all DCs keep an alpha channel, but bitmaps created with make-

bitmap keep an alpha channel by default. Bitmaps loaded with read-bitmap preserve
transparency in the image file through the bitmap’s alpha channel.

14

An alpha channel isn’t all or nothing. When the edges text is anti-aliased by draw-text,
for example, the pixels are partially transparent. When the pixels are transferred to another
DC, the partially transparent pixel is blended with the target pixel in a process called alpha
blending. Furthermore, a DC has an alpha value that is applied to all drawing operations; an
alpha value of 1.0 corresponds to solid drawing, an alpha value of 0.0 makes the drawing
have no effect, and values in between make the drawing translucent.

For example, setting the DC’s alpha to 0.25 before calling draw-bitmap causes the blue
and black of the “Hello, World!” bitmap to be quarter strength as it is blended with the
destination image:

(send dc erase)

(send dc draw-rectangle 0 0 100 30)

(send dc set-alpha 0.25)

(send dc draw-bitmap text-target 0 0)

1.7 Clipping

In addition to tempering the opacity of drawing operations, a DC has a clipping region that
constrains all drawing to inside the region. In the simplest case, a clipping region corre-
sponds to a closed path, but it can also be the union, intersection, subtraction, or exclusive-or
of two paths.

For example, a clipping region could be set to three circles to clip the drawing of a rectangle
(with the 0.25 alpha still in effect):

(define r (new region%))

(let ([p (new dc-path%)])

(send p ellipse 0 0 35 30)

(send p ellipse 35 0 30 30)

(send p ellipse 65 0 35 30)

(send r set-path p))

(send dc set-clipping-region r)

(send dc set-brush "green" 'solid)

(send dc draw-rectangle 0 0 100 30)

The clipping region can be viewed as a convenient alternative to path filling or drawing with

15

stipples. Conversely, stippled drawing can be viewed as a convenience alternative to clipping
repeated calls of draw-bitmap.

Combining regions with pen% objects that have gradients, however, is more than just a con-
venience, as it allows us to draw shapes in combinations we could not otherwise draw. To
illustrate, here is some code that draws text with its reflection below it.

; First compute the size of the text we're going to draw,

; using a small bitmap that we never draw into.

(define bdc (new bitmap-dc% [bitmap (make-bitmap 1 1)]))

(define str "Racketeers, ho!")

(define the-font (make-font #:size 24 #:family 'swiss

#:weight 'bold))

(define-values (tw th)

(let-values ([(tw th ta td)

(send dc get-text-extent str the-font)])

(values (inexact->exact (ceiling tw))

(inexact->exact (ceiling th)))))

; Now we can create a correctly sized bitmap to

; actually draw into and enable smoothing.

(send bdc set-bitmap (make-bitmap tw (* th 2)))

(send bdc set-smoothing 'smoothed)

; next, build a path that contains the outline of the text

(define upper-path (new dc-path%))

(send upper-path text-outline the-font str 0 0)

; next, build a path that contains the mirror image

; outline of the text

(define lower-path (new dc-path%))

(send lower-path text-outline the-font str 0 0)

(send lower-path transform (vector 1 0 0 -1 0 0))

(send lower-path translate 0 (* 2 th))

; This helper accepts a path, sets the clipping region

; of bdc to be the path (but in region form), and then

; draws a big rectangle over the whole bitmap.

; The brush will be set differently before each call to

; draw-path, in order to draw the text and then to draw

; the shadow.

(define (draw-path path)

(define rgn (new region%))

(send rgn set-path path)

(send bdc set-clipping-region rgn)

(send bdc set-pen "white" 1 'transparent)

16

(send bdc draw-rectangle 0 0 tw (* th 2))

(send bdc set-clipping-region #f))

; Now we just draw the upper-path with a solid brush

(send bdc set-brush "black" 'solid)

(draw-path upper-path)

; To draw the shadow, we set up a brush that has a

; linear gradient over the portion of the bitmap

; where the shadow goes

(define stops

(list (list 0 (make-color 0 0 0 0.4))

(list 1 (make-color 0 0 0 0.0))))

(send bdc set-brush

(new brush%

[gradient

(new linear-gradient%

[x0 0]

[y0 th]

[x1 0]

[y1 (* th 2)]

[stops stops])]))

(draw-path lower-path)

And now the bitmap in bdc has “Racketeers, ho!” with a mirrored version below it.

1.8 Portability and Bitmap Variants

Drawing effects are not completely portable across platforms, across different classes that
implement dc<%>, or different kinds of bitmaps. Fonts and text, especially, can vary across
platforms and types of DC, but so can the precise set of pixels touched by drawing a line.

Different kinds of bitmaps can produce different results:

• Drawing to a bitmap produced by make-bitmap (or instantiated from bitmap%)

17

draws in the most consistent way across platforms.

• Drawing to a bitmap produced by make-platform-bitmap uses platform-specific
drawing operations as much as possible. On Windows, however, a bitmap produced
by make-platform-bitmap has no alpha channel, and it uses more constrained re-
sources than one produced by make-bitmap (due to a system-wide, per-process GDI
limit).

As an example of platform-specific difference, text is smoothed by default with sub-
pixel anti-aliasing on Mac OS X, while text smoothing in a make-bitmap result uses
only grays. Line or curve drawing may touch different pixels than in a bitmap pro-
duced by make-bitmap, and bitmap scaling may differ.

A possible approach to dealing with the GDI limit under Windows is to draw into
the result of a make-platform-bitmap and then copy the contents of the drawing
into the result of a make-bitmap. This approach preserves the drawing results of
make-platform-bitmap, but it retains constrained resources only during the draw-
ing process.

• Drawing to a bitmap produced by make-screen-bitmap from racket/gui/base

or by make-bitmap in canvas% uses the same platform-specific drawing operations
as drawing into a canvas% instance. A bitmap produced by make-screen-bitmap

is the same as one produced by make-platform-bitmap on Windows or Mac OS
X, but it may be sensitive to the X11 server on Unix. On Mac OS X, when the main
screen is in Retina mode (at the time that the bitmap is created), the bitmap is also
internally scaled so that one drawing unit uses two pixels.

Use make-screen-bitmap when drawing to a bitmap as an offscreen buffer before
transferring an image to the screen, or when consistency with screen drawing is needed
for some other reason.

• Drawing to a bitmap produced by make-screen-bitmap from racket/gui/base

uses the same platform-specific drawing operations as drawing into a canvas% in-
stance. A bitmap produced by make-screen-bitmap is the same as one produced
by make-platform-bitmap on Windows or Mac OS X, but it may be sensitive to
the X11 server on Unix. On Mac OS X, when the main screen is in Retina mode (at
the time that the bitmap is created), the bitmap is also internally scaled so that one
drawing unit uses two pixels.

Use make-screen-bitmap when drawing to a bitmap as an offscreen buffer before
transferring an image to the screen, or when consistency with screen drawing is needed
for some other reason.

• A bitmap produced by make-bitmap in canvas% from racket/gui/base is like a
bitmap from make-screen-bitmap, but on Mac OS X, the bitmap is optimized for
drawing to the screen (by taking advantage of system APIs that can, in turn, take
advantage of graphics hardware).

18

2 bitmap%

bitmap% : class?
superclass: object%

A bitmap% object is a pixel-based image, either monochrome, color, or color with an al-
pha channel. See also make-bitmap, make-platform-bitmap, make-screen-bitmap
(from racket/gui/base), make-bitmap in canvas% (from racket/gui/base), and §1.8
“Portability and Bitmap Variants”.

A bitmap has a backing scale, which is the number of pixels that correspond to a drawing unit
for the bitmap, either when the bitmap is used as a target for drawing or when the bitmap is
drawn into another context. For example, on Mac OS X when the main monitor is in Retina
mode, make-screen-bitmap returns a bitmap whose backing scale is 2.0. A monochrome
bitmap always has a backing scale of 1.0.

A bitmap is convertible to 'png-bytes through the file/convertible protocol.

(make-object bitmap% width

height

[monochrome?
alpha?

backing-scale]) → (is-a?/c bitmap%)

width : exact-positive-integer?

height : exact-positive-integer?

monochrome? : any/c = #f

alpha? : any/c = #f

backing-scale : (>/c 0.0) = 1.0

(make-object bitmap% in

[kind
bg-color

complain-on-failure?

backing-scale]) → (is-a?/c bitmap%)

in : (or/c path-string? input-port?)

kind :

(or/c 'unknown 'unknown/mask 'unknown/alpha

'gif 'gif/mask 'gif/alpha

'jpeg 'jpeg/alpha

'png 'png/mask 'png/alpha

'xbm 'xbm/alpha 'xpm 'xpm/alpha

'bmp 'bmp/alpha)

= 'unknown

bg-color : (or/c (is-a?/c color%) #f) = #f

complain-on-failure? : any/c = #f

backing-scale : (>/c 0.0) = 1.0

(make-object bitmap% bits width height) → (is-a?/c bitmap%)

bits : bytes?

width : exact-positive-integer?

19

height : exact-positive-integer?

The make-bitmap, make-monochrome-bitmap, and read-bitmap functions create
bitmap% instances, but they are also preferred over using make-object with bitmap% di-
rectly, because the functions are less overloaded and they enable alpha channels by default.
See also §1.8 “Portability and Bitmap Variants”.

When width and height are provided: Creates a new bitmap. If monochrome? is true, the
bitmap is monochrome; if monochrome? is #f and alpha? is true, the bitmap has an alpha
channel; otherwise, the bitmap is color without an alpha channel. The backing-scale

argument sets the bitmap’s backing scale, and it must be 1.0 if monochrome is true. The
initial content of the bitmap is “empty”: all white, and with zero alpha in the case of a bitmap
with an alpha channel.

When in is provided: Creates a bitmap from a file format, where kind specifies the format.
See load-file for details. The backing-scale argument sets the bitmap’s backing scale,
so that the bitmap’s size (as reported by get-width and get-height) is the ceiling of
the bitmap’s size from in divided by backing-scale ; the backing scale must be 1.0 if the
bitmap is monocrhome or loaded with a mask.

When a bits byte string is provided: Creates a monochrome bitmap from an array of
bit values, where each byte in bits specifies eight bits, and padding bits are added so
that each bitmap line starts on a character boundary. A 1 bit value indicates black, and
0 indicates white. If width times height is larger than 8 times the length of bits , an
exn:fail:contract exception is raised.

Changed in version 1.1 of package draw-lib: Added the backing-scale optional arguments.

(send a-bitmap get-argb-pixels x

y

width

height

pixels

[just-alpha?
pre-multiplied?

#:unscaled? unscaled?]) → void?

x : real?

y : real?

width : exact-nonnegative-integer?

height : exact-nonnegative-integer?

pixels : (and/c bytes? (not/c immutable?))

just-alpha? : any/c = #f

pre-multiplied? : any/c = #f

unscaled? : any/c = #f

Produces the same result as get-argb-pixels in bitmap-dc% when unscaled? is #f,

20

but the bitmap does not have to be selected into the DC (and this method works even if the
bitmap is selected into another DC, attached as a button label, etc.).

If the bitmap has a backing scale other than 1.0 and unscaled? is true, then the result
corresponds to the bitmap’s pixels ignoring the backing scale. In that case, x , y , width , and
height are effectively in pixels instead of drawing units.

Changed in version 1.1 of package draw-lib: Added the #:unscaled? optional argument.

(send a-bitmap get-backing-scale) → (>/c 0.0)

Returns the bitmap’s backing scale.

Added in version 1.1 of package draw-lib.

(send a-bitmap get-depth) → exact-nonnegative-integer?

Gets the color depth of the bitmap, which is 1 for a monochrome bitmap and 32 for a color
bitmap. See also is-color?.

(send a-bitmap get-handle) → cpointer?

Returns a low-level handle to the bitmap content. Currently, on all platforms, a handle is a
cairo_surface_t. For a bitmap created with make-bitmap, the handle is specifically a
Cairo image surface.

(send a-bitmap get-height) → exact-positive-integer?

Gets the height of the bitmap in drawing units (which is the same as pixels if the backing
scale is 1.0).

(send a-bitmap get-loaded-mask) → (or/c (is-a?/c bitmap%) #f)

Returns a mask bitmap that is stored with this bitmap.

When a GIF file is loaded with 'gif/mask or 'unknown/mask and the file contains a trans-
parent “color,” a mask bitmap is generated to identify the transparent pixels. The mask
bitmap is monochrome, with white pixels where the loaded bitmap is transparent and black
pixels everywhere else.

When a PNG file is loaded with 'png/mask or 'unknown/mask and the file contains a
mask or alpha channel, a mask bitmap is generated to identify the mask or alpha channel. If
the file contains a mask or an alpha channel with only extreme values, the mask bitmap is
monochrome, otherwise it is grayscale (representing the alpha channel inverted).

When an XPM file is loaded with 'xpm/mask or 'unknown/mask, a mask bitmap is gener-
ated to indicate which pixels are set.

21

When 'unknown/alpha and similar modes are used to load a bitmap, transparency infor-
mation is instead represented by an alpha channel, not by a mask bitmap.

Unlike an alpha channel, the mask bitmap is not used automatically by drawing routines. The
mask bitmap can be extracted and supplied explicitly as a mask (e.g., as the sixth argument
to draw-bitmap). The mask bitmap is used by save-file when saving a bitmap as 'png
if the mask has the same dimensions as the saved bitmap. The mask bitmap is also used
automatically when the bitmap is a control label.

(send a-bitmap get-width) → exact-positive-integer?

Gets the width of the bitmap in drawing units (which is the same as pixels of the backing
scale is 1.0).

(send a-bitmap has-alpha-channel?) → boolean?

Returns #t if the bitmap has an alpha channel, #f otherwise.

(send a-bitmap is-color?) → boolean?

Returns #f if the bitmap is monochrome, #t otherwise.

(send a-bitmap load-file in

[kind
bg-color

complain-on-failure?]) → boolean?

in : (or/c path-string? input-port?)

kind :

(or/c 'unknown 'unknown/mask 'unknown/alpha

'gif 'gif/mask 'gif/alpha

'jpeg 'jpeg/alpha

'png 'png/mask 'png/alpha

'xbm 'xbm/alpha 'xpm 'xpm/alpha

'bmp 'bmp/alpha)

= 'unknown

bg-color : (or/c (is-a?/c color%) #f) = #f

complain-on-failure? : any/c = #f

Loads a bitmap from a file format that read from in , unless the bitmap was produced by
make-platform-bitmap, make-screen-bitmap, or make-bitmap in canvas% (in which
case an exn:fail:contract exception is raised). If the bitmap is in use by a bitmap-dc%
object or a control, the image data is not loaded. The bitmap changes its size and depth to
match that of the loaded image. If an error is encountered when reading the file format, an
exception is raised only if complain-on-failure? is true (which is not the default).

The kind argument specifies the file’s format:

22

• 'unknown — examine the file to determine its format; creates either a monochrome
or color bitmap without an alpha channel

• 'unknown/mask — like 'unknown, but see get-loaded-mask

• 'unknown/alpha— like 'unknown, but if the bitmap is color, it has an alpha channel,
and transparency in the image file is recorded in the alpha channel

• 'gif — load a GIF bitmap file, creating a color bitmap

• 'gif/mask — like 'gif, but see get-loaded-mask

• 'gif/alpha — like 'gif, but with an alpha channel

• 'jpeg — load a JPEG bitmap file, creating a color bitmap

• 'jpeg/alpha — like 'jpeg, but with an alpha channel

• 'png — load a PNG bitmap file, creating a color or monochrome bitmap

• 'png/mask — like 'png, but see get-loaded-mask

• 'png/alpha — like 'png, but always color and with an alpha channel

• 'xbm — load an X bitmap (XBM) file; creates a monochrome bitmap

• 'xbm/alpha — like 'xbm, but creates a color bitmap with an alpha channel

• 'xpm — load an XPM bitmap file, creating a color bitmap

• 'xpm/alpha — like 'xpm, but with an alpha channel

• 'bmp — load a Windows bitmap file, creating a color bitmap

• 'bmp/alpha — like 'bmp, but with an alpha channel

An XBM image is always loaded as a monochrome bitmap. A 1-bit grayscale PNG without
a mask or alpha channel is also loaded as a monochrome bitmap. An image in any other
format is always loaded as a color bitmap.

For PNG loading, if bg-color is not #f, then it is combined with the file’s alpha channel
or mask (if any) while loading the image; in this case, no separate mask bitmap is generated
and the alpha channel fills the bitmap, even if 'unknown/mask, 'png/mask is specified for
the format. If the format is specified as 'unknown or 'png and bg-color is not specified,
the PNG file is consulted for a background color to use for loading, and white is used if no
background color is indicated in the file.

In all PNG-loading modes, gamma correction is applied when the file provides a gamma
value, otherwise gamma correction is not applied. The current display’s gamma factor is
determined by the SCREEN_GAMMA environment variable if it is defined. If the preference
and environment variable are both undefined, a platform-specific default is used.

After a bitmap is created, load-file can be used only if the bitmap’s backing scale is 1.0.

23

(send a-bitmap make-dc) → (is-a?/c bitmap-dc%)

Return (make-object bitmap-dc% this).

(send a-bitmap ok?) → boolean?

Returns #t if the bitmap is valid in the sense that an image file was loaded successfully. If
ok? returns #f, then drawing to or from the bitmap has no effect.

(send a-bitmap save-file name

kind

[quality
#:unscaled? unscaled?]) → boolean?

name : (or/c path-string? output-port?)

kind : (or/c 'png 'jpeg 'xbm 'xpm 'bmp)

quality : (integer-in 0 100) = 75

unscaled? : any/c = #f

Writes a bitmap to the named file or output stream.

The kind argument determined the type of file that is created, one of:

• 'png — save a PNG file

• 'jpeg — save a JPEG file

• 'xbm — save an X bitmap (XBM) file

• 'xpm — save an XPM bitmap file

• 'bmp — save a Windows bitmap file

The quality argument is used only for saving as 'jpeg, in which case it specifies the
trade-off between image precision (high quality matches the content of the bitmap% object
more precisely) and size (low quality is smaller).

When saving as 'png, if get-loaded-mask returns a bitmap of the same size as this one, a
grayscale version is included in the PNG file as the alpha channel.

A monochrome bitmap saved as 'png without a mask bitmap produces a 1-bit grayscale
PNG file (which, when read with load-file, creates a monochrome bitmap% object.)

If the bitmap has a backing scale other than 1.0, then it is effectively converted to a single
pixel per drawing unit before saving unless unscaled? is true.

Changed in version 1.1 of package draw-lib: Added the #:unscaled? optional argument.

24

(send a-bitmap set-argb-pixels x

y

width

height

pixels

[just-alpha?
pre-multiplied?

#:unscaled? unscaled?]) → void?

x : real?

y : real?

width : exact-nonnegative-integer?

height : exact-nonnegative-integer?

pixels : bytes?

just-alpha? : any/c = #f

pre-multiplied? : any/c = #f

unscaled? : any/c = #f

The same as set-argb-pixels in bitmap-dc% when unscaled? is #f, but the bitmap
does not have to be selected into the DC.

If the bitmap has a backing scale other than 1.0 and unscaled? is true, then pixel values are
installed ignoring the backing scale. In that case, x , y , width , and height are effectively
in pixels instead of drawing units.

Changed in version 1.1 of package draw-lib: Added the #:unscaled? optional argument.

(send a-bitmap set-loaded-mask mask) → void?

mask : (is-a?/c bitmap%)

See get-loaded-mask.

25

3 bitmap-dc%

bitmap-dc% : class?
superclass: object%

extends: dc<%>

A bitmap-dc% object allows drawing directly into a bitmap. A bitmap% object must be
supplied at initialization or installed into a bitmap DC using set-bitmap before any other
method of the DC is called, except get-text-extent, get-char-height, or get-char-
width. If any other bitmap-dc% method is called before a bitmap is selected, the method
call is ignored.

Drawing to a bitmap-dc% with a color bitmap is guaranteed to produce the same result as
drawing into a canvas% instance (with appropriate clipping and offsets). Thus, a bitmap-

dc% can be used for offscreen staging of canvas content.

(new bitmap-dc% [bitmap bitmap]) → (is-a?/c bitmap-dc%)

bitmap : (or/c (is-a?/c bitmap%) #f)

Creates a new bitmap DC. If bitmap is not #f, it is installed into the DC so that drawing
commands on the DC draw to bitmap . Otherwise, no bitmap is installed into the DC and
set-bitmap must be called before any other method of the DC is called.

(send a-bitmap-dc draw-bitmap-section-smooth source

dest-x

dest-y

dest-width

dest-height

src-x

src-y

src-width

src-height

[style
color

mask])
→ boolean?

source : (is-a?/c bitmap%)

dest-x : real?

dest-y : real?

dest-width : (and/c real? (not/c negative?))

dest-height : (and/c real? (not/c negative?))

src-x : real?

src-y : real?

src-width : (and/c real? (not/c negative?))

src-height : (and/c real? (not/c negative?))

style : (or/c 'solid 'opaque 'xor) = 'solid

26

color : (is-a?/c color%)

= (send the-color-database find-color "black")

mask : (or/c (is-a?/c bitmap%) #f) = #f

The same as draw-bitmap-section, except that dest-width and dest-height cause
the DC’s transformation to be adjusted while drawing the bitmap so that the bitmap is scaled;
and, if the DC’s smoothing mode is 'unsmoothed, it is changed to 'aligned while draw-
ing.

(send a-bitmap-dc get-argb-pixels x

y

width

height

pixels

[just-alpha?
pre-multiplied?]) → void?

x : real?

y : real?

width : exact-nonnegative-integer?

height : exact-nonnegative-integer?

pixels : (and/c bytes? (not/c immutable?))

just-alpha? : any/c = #f

pre-multiplied? : any/c = #f

Gets a rectangle of pixels in the bitmap, subject to the same rules and performance charac-
teristics of get-pixel, except that the block get is likely to be faster than the sequence of
individual gets. Also, the bitmap% class also provides the same method directly, so it is not
necessary to select a bitmap into a DC to extracts its pixel values.

The pixel RGB values and alphas are copied into pixels (or just alpha values if just-
alpha? is true). The first byte represents an alpha value of the pixel at (x , y), the second
byte represents a red value of the pixel at (x , y), the third byte is the green value, etc. In this
way, the first width * height * 4 bytes of pixels are set to reflect the current pixel values
in the DC. The pixels are in row-major order, left to right then top to bottom.

If the bitmap has an alpha channel, then the alpha value for each pixel is always set in
pixels . If just-alpha? is false and the bitmap does not have an alpha channel, then the
alpha value for each pixel is set to 255. If just-alpha? is true, then only the alpha value is
set for each pixel; if the bitmap has no alpha channel, then the alpha value is based on each
pixel’s inverted RGB average. Thus, when a bitmap has a separate mask bitmap, the same
pixels byte string is in general filled from two bitmaps: one (the main image) for the pixel
values and one (the mask) for the alpha values.

If pre-multiplied? is true, just-alpha? is false, and the bitmap has an alpha channel,
then RGB values in the result are scaled by the corresponding alpha value (i.e., multiplied
by the alpha value and then divided by 255).

27

If the bitmap has a backing scale other than 1.0, the result of get-argb-pixels is as if the
bitmap is drawn to a bitmap with a backing scale of 1.0 and the pixels of the target bitmap
are returned.

(send a-bitmap-dc get-bitmap) → (or/c (is-a?/c bitmap%) #f)

Gets the bitmap currently installed in the DC, or #f if no bitmap is installed. See set-

bitmap for more information.

(send a-bitmap-dc get-pixel x y color) → boolean?

x : real?

y : real?

color : (is-a?/c color%)

Fills color with the color of the current pixel at position (x , y) in the drawing context. If
the color is successfully obtained, the return value is #t, otherwise the result is #f.

(send a-bitmap-dc set-argb-pixels x

y

width

height

pixels

[just-alpha?
pre-multiplied?]) → void?

x : real?

y : real?

width : exact-nonnegative-integer?

height : exact-nonnegative-integer?

pixels : bytes?

just-alpha? : any/c = #f

pre-multiplied? : any/c = #f

Sets a rectangle of pixels in the bitmap, unless the DC’s current bitmap was pro-
duced by make-screen-bitmap or make-bitmap in canvas% (in which case an
exn:fail:contract exception is raised).

The pixel RGB values are taken from pixels . The first byte represents an alpha value, the
second byte represents a red value to used for the pixel at (x , y), the third byte is a blue
value, etc. In this way, the first width * height * 4 bytes of pixels determine the new
pixel values in the DC. The pixels are in row-major order, left to right then top to bottom.

If just-alpha? is false, then the alpha value for each pixel is used only if the DC’s current
bitmap has an alpha channel. If just-alpha? is true and the bitmap has no alpha channel,
then each pixel is set based only on the alpha value, but inverted to serve as a mask. Thus,
when working with bitmaps that have an associated mask bitmap instead of an alpha channel,

28

the same pixels byte string is used with two bitmaps: one (the main image) for the pixel
values and one (the mask) for the alpha values.

If pre-multiplied? is true, just-alpha? is false, and the bitmap has an alpha channel,
then RGB values in pixels are interpreted as scaled by the corresponding alpha value (i.e.,
multiplied by the alpha value and then divided by 255). If an R, G, or B value is greater than
its corresponding alpha value (which is not possible if the value is properly scaled), then it
is effectively reduced to the alpha value.

If the bitmap has a backing scale other than 1.0, then pixels are effectively scaled by the
backing scale to obtain pixel values that are installed into the bitmap.

(send a-bitmap-dc set-bitmap bitmap) → void?

bitmap : (or/c (is-a?/c bitmap%) #f)

Installs a bitmap into the DC, so that drawing operations on the bitmap DC draw to the
bitmap. A bitmap is removed from a DC by setting the bitmap to #f.

A bitmap can be selected into at most one bitmap DC, and only when it is not used by a
control (as a label) or in a pen% or brush% (as a stipple). If the argument to set-bitmap

is already in use by another DC, a control, a pen%, or a brush%, an exn:fail:contract

exception is raised.

(send a-bitmap-dc set-pixel x y color) → void?

x : real?

y : real?

color : (is-a?/c color%)

Sets a pixel in the bitmap.

The current clipping region might not affect the pixel change. Under X, interleaving drawing
commands with set-pixel calls (for the same bitmap-dc% object) incurs a substantial
performance penalty, except for interleaved calls to get-pixel, get-argb-pixels, and
set-argb-pixels.

29

4 brush%

brush% : class?
superclass: object%

A brush is a drawing tool with a color and a style that is used for filling in areas, such as
the interior of a rectangle or ellipse. In a monochrome destination, all non-white brushes are
drawn as black.

In addition to its color and style, a brush can have a brush stipple bitmap. Painting with a
stipple brush is similar to calling draw-bitmap with the stipple bitmap in the filled region.

As an alternative to a color, style, and stipple, a brush can have a gradient that is a linear-
gradient% or radial-gradient%. When a brush has a gradient and the target for drawing
is not monochrome, then other brush settings are ignored. With a gradient, for each point in a
drawing destination, the gradient associates a color to the point based on starting and ending
colors and starting and ending lines (for a linear gradient) or circles (for a radial gradient);
a gradient-assigned color is applied for each point that is touched when drawing with the
brush.

By default, coordinates in a stipple or gradient are transformed by the drawing context’s
transformation when the brush is used, but a brush can have its own brush transformation
that is used, instead. A brush transformation has the same representation and meaning as for
get-transformation in dc<%>.

A brush style is one of the following (but is ignored if the brush has a gradient and the target
is not monochrome):

• 'transparent — Draws with no effect (on the interior of the drawn shape).

• 'solid — Draws using the brush’s color. If a monochrome brush stipple is installed
into the brush, black pixels from the stipple are transferred to the destination using the
brush’s color, and white pixels from the stipple are not transferred.

• 'opaque — The same as 'solid for a color brush stipple. For a monochrome stipple,
white pixels from the stipple are transferred to the destination using the destination’s
background color.

• 'xor — The same as 'solid, accepted only for partial backward compatibility.

• 'hilite — Draws with black and a 0.3 alpha.

• 'panel — The same as 'solid, accepted only for partial backward compatibility.

• The following modes correspond to built-in brush stipples drawn in 'solid mode:

– 'bdiagonal-hatch — diagonal lines, top-left to bottom-right

– 'crossdiag-hatch — crossed diagonal lines

30

– 'fdiagonal-hatch — diagonal lines, top-right to bottom-left

– 'cross-hatch — crossed horizontal and vertical lines

– 'horizontal-hatch — horizontal lines

– 'vertical-hatch — vertical lines

However, when a specific brush stipple is installed into the brush, the above modes are
ignored and 'solid is used, instead.

To draw outline shapes (such as unfilled boxes and ellipses), use the 'transparent brush
style.

To avoid creating multiple brushes with the same characteristics, use the global brush-
list% object the-brush-list, or provide a color and style to set-brush in dc<%>.

See also make-brush.

(new brush%

[[color color]

[style style]

[stipple stipple]

[gradient gradient]

[transformation transformation]])
→ (is-a?/c brush%)

color : (or/c string? (is-a?/c color%)) = "black"

style : brush-style/c = 'solid

stipple : (or/c #f (is-a?/c bitmap%)) = #f

gradient :
(or/c #f

(is-a?/c linear-gradient%)

(is-a?/c radial-gradient%))

= #f

transformation :
(or/c #f (vector/c (vector/c real? real? real?

real? real? real?)

real? real? real? real? real?))

= #f

Creates a brush with the given color, brush style, brush stipple, gradient, and brush transfor-
mation (which is kept only if the gradient or stipple is non-#f). For the case that the color is
specified using a name, see color-database<%> for information about color names; if the
name is not known, the brush’s color is black.

(send a-brush get-color) → (is-a?/c color%)

Returns the brush’s color.

(send a-brush get-gradient) →
(or/c (is-a?/c linear-gradient%)

(is-a?/c radial-gradient%)

#f)

31

Gets the gradient, or #f if the brush has no gradient.

(send a-brush get-handle) → (or/c cpointer? #f)

Returns a low-level handle for the brush content, but only for brushes created with make-

handle-brush; otherwise, the result is #f.

(send a-brush get-stipple) → (or/c (is-a?/c bitmap%) #f)

Gets the brush stipple bitmap, or #f if the brush has no stipple.

(send a-brush get-style) → brush-style/c

Returns the brush style. See brush% for information about brush styles.

(send a-brush get-transformation)

→ (or/c #f (vector/c (vector/c real? real? real? real? real? real?)

real? real? real? real? real?))

Returns the brush’s brush transformation, if any.

If a brush with a stipple or gradient also has a transformation, then the transformation applies
to the stipple or gradient’s coordinates instead of the target drawing context’s transforma-
tion; otherwise, the target drawing context’s transformation applies to stipple and gradient
coordinates.

(send a-brush is-immutable?) → boolean?

Returns #t if the brush object is immutable.

(send a-brush set-color color) → void?
color : (is-a?/c color%)

(send a-brush set-color color-name) → void?

color-name : string?

(send a-brush set-color red green blue) → void?

red : byte?

green : byte?

blue : byte?

Sets the brush’s color. A brush cannot be modified if it was obtained from a brush-list%
or while it is selected into a drawing context.

For the case that the color is specified using a string, see color-database<%> for informa-
tion about color names.

32

(send a-brush set-stipple bitmap

[transformation]) → void?

bitmap : (or/c (is-a?/c bitmap%) #f)

transformation :
(or/c #f (vector/c (vector/c real? real? real?

real? real? real?)

real? real? real? real? real?))

= #f

Sets or removes the brush stipple bitmap, where #f removes the stipple. The brush trans-
formation is set at the same time to transformation . See brush% for information about
drawing with stipples.

If bitmap is modified while is associated with a brush, the effect on the brush is unspecified.
A brush cannot be modified if it was obtained from a brush-list% or while it is selected
into a drawing context.

(send a-brush set-style style) → void?

style : brush-style/c

Sets the brush style. See brush% for information about the possible styles.

A brush cannot be modified if it was obtained from a brush-list% or while it is selected
into a drawing context.

33

5 brush-list%

brush-list% : class?
superclass: object%

A brush-list% object maintains a list of brush% objects to avoid creating brushes repeat-
edly. A brush% object in a brush list cannot be mutated.

A global brush list, the-brush-list, is created automatically.

(new brush-list%) → (is-a?/c brush-list%)

Creates an empty brush list.

(send a-brush-list find-or-create-brush color

style)

→ (is-a?/c brush%)

color : (is-a?/c color%)

style :

(or/c 'transparent 'solid 'opaque

'xor 'hilite 'panel

'bdiagonal-hatch 'crossdiag-hatch

'fdiagonal-hatch 'cross-hatch

'horizontal-hatch 'vertical-hatch)

(send a-brush-list find-or-create-brush color-name

style)

→ (or/c (is-a?/c brush%) #f)

color-name : string?

style :

(or/c 'transparent 'solid 'opaque

'xor 'hilite 'panel

'bdiagonal-hatch 'crossdiag-hatch

'fdiagonal-hatch 'cross-hatch

'horizontal-hatch 'vertical-hatch)

Finds a brush of the given specification, or creates one and adds it to the list. See brush%

for a further explanation of the arguments, which are the same as brush%’s initialization
arguments.

34

6 color%

color% : class?
superclass: object%

A color is an object representing a red-green-blue (RGB) combination of primary colors plus
an “alpha” for opacity. Each red, green, or blue component of the color is an exact integer in
the range 0 to 255, inclusive, and the alpha value is a real number between 0 and 1, inclusive.
For example, (0, 0, 0, 1.0) is solid black, (255, 255, 255, 1.0) is solid white, (255, 0, 0, 1.0)
is solid red, and (255, 0, 0, 0.5) is translucent red.

See color-database<%> for information about obtaining a color object using a color name,
and see also make-color.
(make-object color%) → (is-a?/c color%)

(make-object color% red green blue [alpha]) → (is-a?/c color%)

red : byte?

green : byte?

blue : byte?

alpha : (real-in 0 1) = 1.0

(make-object color% color-name) → (is-a?/c color%)

color-name : string?

Creates a new color with the given RGB values and alpha, or matching the given color
name (using "black" if no color is given or if the name is not recognized). See color-

database<%> for more information on color names.

(send a-color red) → byte?

Returns the red component of the color.

(send a-color green) → byte?

Returns the green component of the color.

(send a-color blue) → byte?

Returns the blue component of the color.

(send a-color alpha) → (real-in 0 1)

Returns the alpha component (i.e., opacity) of the color.

(send a-color set red green blue [alpha]) → void?

red : byte?

green : byte?

blue : byte?

alpha : (real-in 0 1) = 1.0

35

Sets the four (red, green, blue, and alpha) component values of the color.

(send a-color copy-from src) → (is-a?/c color%)

src : (is-a?/c color%)

Copies the RGB values of another color object to this one, returning this object as the result.

(send a-color is-immutable?) → boolean?

Returns #t if the color object is immutable.

See also make-color and find-color in color-database<%>.

(send a-color ok?) → #t

Returns #t to indicate that the color object is valid.

(Historically, the result could be #f, but color objects are now always valid.)

36

7 color-database<%>

color-database<%> : interface?

The global the-color-database object is an instance of color-database<%>. It main-
tains a database of standard RGB colors for a predefined set of named colors (such as “black”
and “light grey”).

The following colors are in the database:

Orange Red
OrangeRed
Tomato
DarkRed
Red
Firebrick
Crimson
DeepPink
Maroon
Indian Red
IndianRed
Medium Violet Red
MediumVioletRed
Violet Red
VioletRed
LightCoral
HotPink
PaleVioletRed
LightPink
RosyBrown
Pink
Orchid
LavenderBlush
Snow
Chocolate
SaddleBrown
Brown
DarkOrange
Coral
Sienna
Orange
Salmon
Peru
DarkGoldenrod
Goldenrod
SandyBrown

37

LightSalmon
DarkSalmon
Gold
Yellow
Olive
Burlywood
Tan
NavajoWhite
PeachPuff
Khaki
DarkKhaki
Moccasin
Wheat
Bisque
PaleGoldenrod
BlanchedAlmond
Medium Goldenrod
MediumGoldenrod
PapayaWhip
MistyRose
LemonChiffon
AntiqueWhite
Cornsilk
LightGoldenrodYellow
OldLace
Linen
LightYellow
SeaShell
Beige
FloralWhite
Ivory
Green
LawnGreen
Chartreuse
Green Yellow
GreenYellow
Yellow Green
YellowGreen
Medium Forest Green
OliveDrab
MediumForestGreen
Dark Olive Green
DarkOliveGreen
DarkSeaGreen
Lime
Dark Green

38

DarkGreen
Lime Green
LimeGreen
Forest Green
ForestGreen
Spring Green
SpringGreen
Medium Spring Green
MediumSpringGreen
Sea Green
SeaGreen
Medium Sea Green
MediumSeaGreen
Aquamarine
LightGreen
Pale Green
PaleGreen
Medium Aquamarine
MediumAquamarine
Turquoise
LightSeaGreen
Medium Turquoise
MediumTurquoise
Honeydew
MintCream
RoyalBlue
DodgerBlue
DeepSkyBlue
CornflowerBlue
Steel Blue
SteelBlue
LightSkyBlue
Dark Turquoise
DarkTurquoise
Cyan
Aqua
DarkCyan
Teal
Sky Blue
SkyBlue
Cadet Blue
CadetBlue
Dark Slate Gray
DarkSlateGray
LightSlateGray
SlateGray

39

Light Steel Blue
LightSteelBlue
Light Blue
LightBlue
PowderBlue
PaleTurquoise
LightCyan
AliceBlue
Azure
Medium Blue
MediumBlue
DarkBlue
Midnight Blue
MidnightBlue
Navy
Blue
Indigo
Blue Violet
BlueViolet
Medium Slate Blue
MediumSlateBlue
Slate Blue
SlateBlue
Purple
Dark Slate Blue
DarkSlateBlue
DarkViolet
Dark Orchid
DarkOrchid
MediumPurple
Cornflower Blue
Medium Orchid
MediumOrchid
Magenta
Fuchsia
DarkMagenta
Violet
Plum
Lavender
Thistle
GhostWhite
White
WhiteSmoke
Gainsboro
Light Gray
LightGray

40

Silver
Gray
Dark Gray
DarkGray
Dim Gray
DimGray
Black

The names are not case-sensitive.

See also color%.

(send a-color-database find-color color-name)
→ (or/c (is-a?/c color%) #f)

color-name : string?

Finds a color by name (character case is ignored). If no color is found for the name, #f is
returned, otherwise the result is an immutable color object.

(send a-color-database get-names) → (listof string?)

Returns an alphabetically sorted list of case-folded color names for which find-color re-
turns a color% value.

41

8 dc<%>

dc<%> : interface?

A dc<%> object is a drawing context for drawing graphics and text. It represents output
devices in a generic way; e.g., a canvas has a drawing context, as does a printer.

(send a-dc cache-font-metrics-key) → exact-integer?

Returns an integer that, if not 0, corresponds to a particular kind of device and scaling factor,
such that text-extent information (from get-text-extent, get-char-height, etc.) is the
same. The key is valid across all dc<%> instances, even among different classes.

A 0 result indicates that the current configuration of a-dc does not fit into a common cate-
gory, and so no key is available for caching text-extent information.

(send a-dc clear) → void?

Clears the drawing region (fills it with the current background color, as determined by get-

background). See also erase.

(send a-dc copy x y width height x2 y2) → void?

x : real?

y : real?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

x2 : real?

y2 : real?

Copies the rectangle defined by x , y , width , and height of the drawing context to the
same drawing context at the position specified by x2 and y2 .

The result is undefined if the source and destination rectangles overlap.

(send a-dc draw-arc x

y

width

height

start-radians

end-radians) → void?

x : real?

y : real?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

start-radians : real?

end-radians : real?

42

Draws a counter-clockwise circular arc, a part of the ellipse inscribed in the rectangle spec-
ified by x (left), y (top), width , and height . The arc starts at the angle specified by
start-radians (0 is three o’clock and half-pi is twelve o’clock) and continues counter-
clockwise to end-radians . If start-radians and end-radians are the same, a full
ellipse is drawn.

The current pen is used for the arc. If the current brush is not transparent, it is used to fill
the wedge bounded by the arc plus lines (not drawn) extending to the center of the inscribed
ellipse. If both the pen and brush are non-transparent, the wedge is filled with the brush
before the arc is drawn with the pen.

The wedge and arc meet so that no space is left between them, but the precise overlap
between the wedge and arc is platform- and size-specific. Typically, the regions drawn by
the brush and pen overlap. In unsmoothed or aligned mode, the path for the outline is
adjusted by shrinking the bounding ellipse width and height by, after scaling, one drawing
unit divided by the alignment scale.

(send a-dc draw-bitmap source

dest-x

dest-y

[style
color

mask]) → boolean?

source : (is-a?/c bitmap%)

dest-x : real?

dest-y : real?

style : (or/c 'solid 'opaque 'xor) = 'solid

color : (is-a?/c color%)

= (send the-color-database find-color "black")

mask : (or/c (is-a?/c bitmap%) #f) = #f

Displays the source bitmap. The dest-x and dest-y arguments are in DC coordinates.

For color bitmaps, the drawing style and color arguments are ignored. For monochrome
bitmaps, draw-bitmap uses the style and color arguments in the same way that a brush uses
its style and color settings to draw a monochrome stipple (see brush% for more information).

If a mask bitmap is supplied, it must have the same width and height as source , and
its ok? must return true, otherwise an exn:fail:contract exception is raised. The
source bitmap and mask bitmap can be the same object, but if the drawing context is a
bitmap-dc% object, both bitmaps must be distinct from the destination bitmap, otherwise
an exn:fail:contract exception is raised.

The effect of mask on drawing depends on the type of the mask bitmap:

• If the mask bitmap is monochrome, drawing occurs in the target dc<%> only where

43

the mask bitmap contains black pixels (independent of style , which controls how
the white pixels of a monochrome source are handled).

• If the mask bitmap is color with an alpha channel, its alpha channel is used as the
mask for drawing source , and its color channels are ignored.

• If the mask bitmap is color without an alpha channel, the color components of a given
pixel are averaged to arrive at an inverse alpha value for the pixel. In particular, if the
mask bitmap is grayscale, then the blackness of each mask pixel controls the opacity
of the drawn pixel (i.e., the mask acts as an inverted alpha channel).

The current brush, current pen, and current text for the DC have no effect on how the bitmap
is drawn, but the bitmap is scaled if the DC has a scale, and the DC’s alpha setting determines
the opacity of the drawn pixels (in combination with an alpha channel of source , any given
mask , and the alpha component of color when source is monochrome).

For post-script-dc% and pdf-dc% output, opacity from an alpha channel in source ,
from mask , or from color is rounded to full transparency or opacity.

The result is #t if the bitmap is successfully drawn, #f otherwise (possibly because the
bitmap’s ok? method returns #f).

See also draw-bitmap-section.

(send a-dc draw-bitmap-section source

dest-x

dest-y

src-x

src-y

src-width

src-height

[style
color

mask]) → boolean?

source : (is-a?/c bitmap%)

dest-x : real?

dest-y : real?

src-x : real?

src-y : real?

src-width : (and/c real? (not/c negative?))

src-height : (and/c real? (not/c negative?))

style : (or/c 'solid 'opaque 'xor) = 'solid

color : (is-a?/c color%)

= (send the-color-database find-color "black")

mask : (or/c (is-a?/c bitmap%) #f) = #f

Displays part of a bitmap.

44

The src-x , src-y , src-width , and src-height arguments specify a rectangle in the
source bitmap to copy into this drawing context.

See draw-bitmap for information about dest-x , dest-y , style , color , and mask .

(send a-dc draw-ellipse x y width height) → void?

x : real?

y : real?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

Draws an ellipse contained in a rectangle with the given top-left corner and size. The current
pen is used for the outline, and the current brush is used for filling the shape. If both the pen
and brush are non-transparent, the ellipse is filled with the brush before the outline is drawn
with the pen.

Brush filling and pen outline meet so that no space is left between them, but the precise
overlap between the filling and outline is platform- and size-specific. Thus, the regions
drawn by the brush and pen may partially overlap. In unsmoothed or aligned mode, the path
for the outline is adjusted by, after scaling, shrinking the ellipse width and height by one
drawing unit divided by the alignment scale.

(send a-dc draw-line x1 y1 x2 y2) → void?

x1 : real?

y1 : real?

x2 : real?

y2 : real?

Draws a line from one point to another. The current pen is used for drawing the line.

In unsmoothed mode, the points correspond to pixels, and the line covers both the start and
end points. For a pen whose scaled width is larger than 1, the line is drawn centered over the
start and end points.

See also set-smoothing for information on the 'aligned smoothing mode.

(send a-dc draw-lines points

[xoffset
yoffset]) → void?

points :
(or/c (listof (is-a?/c point%))

(listof (cons/c real? real?)))

xoffset : real? = 0

yoffset : real? = 0

Draws lines using a list points of points, adding xoffset and yoffset to each point. A
pair is treated as a point where the car of the pair is the x-value and the cdr is the y-value.
The current pen is used for drawing the lines.

45

See also set-smoothing for information on the 'aligned smoothing mode.

(send a-dc draw-path path

[xoffset
yoffset

fill-style]) → void?

path : (is-a?/c dc-path%)

xoffset : real? = 0

yoffset : real? = 0

fill-style : (or/c 'odd-even 'winding) = 'odd-even

Draws the sub-paths of the given dc-path% object, adding xoffset and yoffset to each
point. (See dc-path% for general information on paths and sub-paths.) The current pen is
used for drawing the path as a line, and the current brush is used for filling the area bounded
by the path.

If both the pen and brush are non-transparent, the path is filled with the brush before the
outline is drawn with the pen. The filling and outline meet so that no space is left between
them, but the precise overlap between the filling and outline is platform- and size-specific.
Thus, the regions drawn by the brush and pen may overlap. More generally, the pen is
centered over the path, rounding left and down in unsmoothed mode.

The fill-style argument specifies the fill rule: 'odd-even or 'winding. In 'odd-even

mode, a point is considered enclosed within the path if it is enclosed by an odd number of
sub-path loops. In 'winding mode, a point is considered enclosed within the path if it is
enclosed by more or less clockwise sub-path loops than counter-clockwise sub-path loops.

See also set-smoothing for information on the 'aligned smoothing mode.

(send a-dc draw-point x y) → void?

x : real?

y : real?

Plots a single point using the current pen.

(send a-dc draw-polygon points

[xoffset
yoffset

fill-style]) → void?

points :
(or/c (listof (is-a?/c point%))

(listof (cons/c real? real?)))

xoffset : real? = 0

yoffset : real? = 0

fill-style : (or/c 'odd-even 'winding) = 'odd-even

Draw a filled polygon using a list points of points, adding xoffset and yoffset to each
point. A pair is treated as a point where the car of the pair is the x-value and the cdr is the

46

y-value. The polygon is automatically closed, so the first and last point can be different. The
current pen is used for drawing the outline, and the current brush for filling the shape.

If both the pen and brush are non-transparent, the polygon is filled with the brush before the
outline is drawn with the pen. The filling and outline meet so that no space is left between
them, but the precise overlap between the filling and outline is platform- and shape-specific.
Thus, the regions drawn by the brush and pen may overlap. More generally, the pen is
centered over the polygon lines, rounding left and down in unsmoothed mode.

The fill-style argument specifies the fill rule: 'odd-even or 'winding. In 'odd-even

mode, a point is considered enclosed within the polygon if it is enclosed by an odd number of
loops. In 'winding mode, a point is considered enclosed within the polygon if it is enclosed
by more or less clockwise loops than counter-clockwise loops.

See also set-smoothing for information on the 'aligned smoothing mode.

(send a-dc draw-rectangle x y width height) → void?

x : real?

y : real?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

Draws a rectangle with the given top-left corner and size. The current pen is used for the out-
line and the current brush for filling the shape. If both the pen and brush are non-transparent,
the rectangle is filled with the brush before the outline is drawn with the pen.

In unsmoothed or aligned mode, when the pen is size 0 or 1, the filling precisely overlaps
the entire outline. More generally, in unsmoothed or aligned mode, the path for the outline
is adjusted by shrinking the rectangle width and height by, after scaling, one drawing unit
divided by the alignment scale.

See also set-smoothing for information on the 'aligned smoothing mode.

(send a-dc draw-rounded-rectangle x

y

width

height

[radius]) → void?

x : real?

y : real?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

radius : real? = -0.25

Draws a rectangle with the given top-left corner, and with the given size. The corners are
quarter-circles using the given radius. The current pen is used for the outline and the current

47

brush for filling the shape. If both the pen and brush are non-transparent, the rectangle is
filled with the brush before the outline is drawn with the pen.

If radius is positive, the value is used as the radius of the rounded corner. If radius
is negative, the absolute value is used as the proportion of the smallest dimension of the
rectangle.

If radius is less than -0.5 or more than half of width or height , an
exn:fail:contract exception is raised.

Brush filling and pen outline meet so that no space is left between them, but the precise
overlap between the filling and outline is platform- and size-specific. Thus, the regions
drawn by the brush and pen may partially overlap. In unsmoothed or aligned mode, the path
for the outline is adjusted by, after scaling, shrinking the rectangle width and height by one
drawing unit divided by the alignment scale.

See also set-smoothing for information on the 'aligned smoothing mode.

(send a-dc draw-spline x1 y1 x2 y2 x3 y3) → void?

x1 : real?

y1 : real?

x2 : real?

y2 : real?

x3 : real?

y3 : real?

Draws a spline from (x1 , y1) to (x3 , y3) using (x2 , y2) as the control point.

See also set-smoothing for information on the 'aligned smoothing mode. See also dc-

path% and draw-path for drawing more complex curves.

(send a-dc draw-text text

x

y

[combine?
offset

angle]) → void?

text : string?

x : real?

y : real?

combine? : any/c = #f

offset : exact-nonnegative-integer? = 0

angle : real? = 0

Draws a text string at a specified point, using the current text font, and the current text
foreground and background colors. For unrotated text, the specified point is used as the

48

starting top-left point for drawing characters (e.g, if “W” is drawn, the point is roughly the
location of the top-left pixel in the “W”). Rotated text is rotated around this point.

The text string is drawn starting from the offset character, and continuing until the end
of text or the first null character.

If combine? is #t, then text may be measured with adjacent characters combined to liga-
ture glyphs, with Unicode combining characters as a single glyph, with kerning, with right-
to-left rendering of characters, etc. If combine? is #f, then the result is the same as if each
character is measured separately, and Unicode control characters are ignored.

The string is rotated by angle radians counter-clockwise. If angle is not zero, then the text
is always drawn in transparent mode (see set-text-mode).

The current brush and current pen settings for the DC have no effect on how the text is
drawn.

See get-text-extent for information on the size of the drawn text.

See also set-text-foreground, set-text-background, and set-text-mode.

(send a-dc end-doc) → void?

Ends a document, relevant only when drawing to a printer, PostScript, PDF, or SVG device.

For relevant devices, an exception is raised if end-doc is called when the document is not
started with start-doc, when a page is currently started by start-page and not ended
with end-page, or when the document has been ended already.

(send a-dc end-page) → void?

Ends a single page, relevant only when drawing to a printer, PostScript, PDF, or SVG device.

For relevant devices, an exception is raised if end-page is called when a page is not currently
started by start-page.

(send a-dc erase) → void?

For a drawing context that has an alpha channel, erase sets all alphas to zero. Similarly,
for a transparent canvas, erase erases all drawing to allow the background window to show
through. For other drawing contexts that have no alpha channel or transparency, erase fills
the drawing context with white.

(send a-dc flush) → void?

Calls the flush in canvas<%> method for canvas<%> output, and has no effect for other
kinds of drawing contexts.

49

(send a-dc get-alpha) → (real-in 0 1)

Gets the current opacity for drawing; see set-alpha.

(send a-dc get-background) → (is-a?/c color%)

Gets the color used for painting the background. See also set-background.

(send a-dc get-brush) → (is-a?/c brush%)

Gets the current brush. See also set-brush.

(send a-dc get-char-height) → (and/c real? (not/c negative?))

Gets the height of a character using the current font.

Unlike most methods, this method can be called for a bitmap-dc% object without a bitmap
installed.

(send a-dc get-char-width) → (and/c real? (not/c negative?))

Gets the average width of a character using the current font.

Unlike most methods, this method can be called for a bitmap-dc% object without a bitmap
installed.

(send a-dc get-clipping-region) → (or/c (is-a?/c region%) #f)

Gets the current clipping region, returning #f if the drawing context is not clipped (i.e., the
clipping region is the entire drawing region).

(send a-dc get-device-scale) → (and/c real? (not/c negative?))

(and/c real? (not/c negative?))

Gets an “external” scaling factor for drawing coordinates to the target device. For most DCs,
the result is 1.0 and 1.0.

A post-script-dc% or pdf-dc% object returns scaling factors determined via get-

scaling in ps-setup% at the time that the DC was created. A printer-dc% may also
have a user-configured scaling factor.

(send a-dc get-font) → (is-a?/c font%)

Gets the current font. See also set-font.

50

(send a-dc get-gl-context) → (or/c (is-a?/c gl-context<%>) #f)

Returns a gl-context<%> object for this drawing context if it supports OpenGL, #f other-
wise.

See gl-context<%> for more information.

(send a-dc get-initial-matrix)

→ (vector/c real? real? real? real? real? real?)

Returns a transformation matrix that converts logical coordinates to device coordinates. The
matrix applies before additional origin offset, scaling, and rotation.

The vector content corresponds to a transformation matrix in the following order:

• xx : a scale from the logical x to the device x

• xy : a scale from the logical x added to the device y

• yx : a scale from the logical y added to the device x

• yy : a scale from the logical y to the device y

• x0 : an additional amount added to the device x

• y0 : an additional amount added to the device y

See also set-initial-matrix and get-transformation.

(send a-dc get-origin) → real? real?

Returns the device origin, i.e., the location in device coordinates of (0,0) in logical coordi-
nates. The origin offset applies after the initial transformation matrix, but before scaling and
rotation.

See also set-origin and get-transformation.

(send a-dc get-pen) → (is-a?/c pen%)

Gets the current pen. See also set-pen.

(send a-dc get-path-bounding-box path type)

→ real? real? real? real?

path : (is-a?/c dc-path%)

type : (or/c 'path 'stroke 'fill)

51

Returns a rectangle that encloses the path’s points. The return values are the left, top, width,
and, height of the rectangle. The numbers are in logical coordinates.

For the type 'stroke the rectangle covers the area that would be affected (“inked”) when
drawn with the current pen by draw-path in the drawing context (with a transparent brush).
If the pen width is zero, then an empty rectangle will be returned. The size and clipping of
the drawing context is ignored.

For the type 'fill the rectangle covers the area that would be affected (“inked”) by draw-
path in the drawing context (with a non-transparent pen and brush). If the line width is zero,
then an empty rectangle will be returned. The size and clipping of the drawing context are
ignored.

For the type 'path the rectangle covers the path, but the pen and brush are ignored. The size
and clipping of the drawing context are also ignored. More precisely: The result is defined
as the limit of the bounding boxes returned by the 'stroke type for line widths approaching
0 with a round pen cap. The “limit process” stops when an empty rectangle is returned. This
implies that zero-area segments contributes to the rectangle.

For all types if the path is empty, then an empty rectangle (values 0 0 0 0) will be
returned.

(send a-dc get-rotation) → real?

Returns the rotation of logical coordinates in radians to device coordinates. Rotation applies
after the initial transformation matrix, origin offset, and scaling.

See also set-rotation and get-transformation.

(send a-dc get-scale) → real? real?

Returns the scaling factor that maps logical coordinates to device coordinates. Scaling ap-
plies after the initial transformation matrix and origin offset, but before rotation.

See also set-scale and get-transformation.

(send a-dc get-size) → (and/c real? (not/c negative?))

(and/c real? (not/c negative?))

Gets the size of the destination drawing area. For a dc<%> object obtained from a can-

vas<%>, this is the (virtual client) size of the destination window; for a bitmap-dc% object,
this is the size of the selected bitmap (or 0 if no bitmap is selected); for a post-script-dc%
or printer-dc% drawing context, this gets the horizontal and vertical size of the drawing
area.

(send a-dc get-smoothing)

→ (or/c 'unsmoothed 'smoothed 'aligned)

52

Returns the current smoothing mode. See set-smoothing.

(send a-dc get-text-background) → (is-a?/c color%)

Gets the current text background color. See also set-text-background.

(send a-dc get-text-extent string

[font
combine?

offset])

→

(and/c real? (not/c negative?))

(and/c real? (not/c negative?))

(and/c real? (not/c negative?))

(and/c real? (not/c negative?))

string : string?

font : (or/c (is-a?/c font%) #f) = #f

combine? : any/c = #f

offset : exact-nonnegative-integer? = 0

Returns the size of str at it would be drawn in the drawing context, starting from the offset
character of str, and continuing until the end of str or the first null character. The font

argument specifies the font to use in measuring the text; if it is #f, the current font of the
drawing area is used. (See also set-font.)

The result is four real numbers:

• the total width of the text (depends on both the font and the text);

• the total height of the font (depends only on the font);

• the distance from the baseline of the font to the bottom of the descender (included in
the height, depends only on the font); and

• extra vertical space added to the font by the font designer (included in the height, and
often zero; depends only on the font).

The returned width and height define a rectangle is that guaranteed to contain the text string
when it is drawn, but the fit is not necessarily tight. Some undefined number of pixels on
the left, right, top, and bottom of the drawn string may be “whitespace,” depending on the
whims of the font designer and the platform-specific font-scaling mechanism.

If combine? is #t, then text may be drawn with adjacent characters combined to ligature
glyphs, with Unicode combining characters as a single glyph, with kerning, with right-to-left
ordering of characters, etc. If combine? is #f, then the result is the same as if each character
is drawn separately, and Unicode control characters are ignored.

Unlike most methods, this method can be called for a bitmap-dc% object without a bitmap
installed.

53

(send a-dc get-text-foreground) → (is-a?/c color%)

Gets the current text foreground color. See also set-text-foreground.

(send a-dc get-text-mode) → (or/c 'solid 'transparent)

Reports how text is drawn; see set-text-mode.

(send a-dc get-transformation)

→ (vector/c (vector/c real? real? real? real? real? real?)

real? real? real? real? real?)

Returns the current transformation setting of the drawing context in a form that is suitable
for restoration via set-transformation.

The vector content is as follows:

• the initial transformation matrix; see get-initial-matrix;

• the X and Y origin; see get-origin;

• the X and Y scale; see get-origin;

• a rotation; see get-rotation.

(send a-dc glyph-exists? c) → boolean?

c : char?

Returns #t if the given character has a corresponding glyph for this drawing context, #f
otherwise.

Due to automatic font substitution when drawing or measuring text, the result of this method
does not depend on the given font, which merely provides a hint for the glyph search. If the
font is #f, the drawing context’s current font is used. The result depends on the type of the
drawing context, but the result for canvas% dc<%> instances and bitmap-dc% instances is
always the same for a given platform and a given set of installed fonts.

See also screen-glyph-exists? .

(send a-dc ok?) → boolean?

Returns #t if the drawing context is usable.

(send a-dc resume-flush) → void?

54

Calls the resume-flush in canvas<%> method for canvas<%> output, and has no effect
for other kinds of drawing contexts.

(send a-dc rotate angle) → void?

angle : real?

Adds a rotation of angle radians to the drawing context’s current transformation.

Afterward, the drawing context’s transformation is represented in the initial transformation
matrix, and the separate origin, scale, and rotation settings have their identity values.

(send a-dc scale x-scale y-scale) → void?

x-scale : real?

y-scale : real?

Adds a scaling of x-scale in the X-direction and y-scale in the Y-direction to the drawing
context’s current transformation.

Afterward, the drawing context’s transformation is represented in the initial transformation
matrix, and the separate origin, scale, and rotation settings have their identity values.

(send a-dc set-alignment-scale scale) → void?

scale : (>/c 0.0)

Sets the drawing context’s alignment scale, which determines how drawing coordinates and
pen widths are adjusted for unsmoothed or aligned drawing (see set-smoothing).

The default alignment scale is 1.0, which means that drawing coorinates and pen sizes are
aligned to integer values.

An alignment scale of 2.0 aligns drawing coordinates to half-integer values. A value of
2.0 could be suitable for a bitmap-dc% whose destination is a bitmap with a backing scale
of 2.0, since half-integer values coorespond to pixel boundaries. Even when a destinate
context has a backing scale of 2.0, however, an alignment scale of 1.0 may be desirable to
maintain consistency with drawing contexts that have a backing scale and alignment scale of
1.0.

Added in version 1.1 of package draw-lib.

(send a-dc set-alpha opacity) → void?

opacity : (real-in 0 1)

Determines the opacity of drawing. A value of 0.0 corresponds to completely transparent
(i.e., invisible) drawing, and 1.0 corresponds to completely opaque drawing. For interme-
diate values, drawing is blended with the existing content of the drawing context. A color
(e.g. for a brush) also has an alpha value; it is combined with the drawing context’s alpha by
multiplying.

55

(send a-dc set-background color) → void?

color : (is-a?/c color%)

(send a-dc set-background color-name) → void?

color-name : string?

Sets the background color for drawing in this object (e.g., using clear or using a stippled
brush% with the mode 'opaque). For monochrome drawing, all non-black colors are treated
as white.

(send a-dc set-brush brush) → void?
brush : (is-a?/c brush%)

(send a-dc set-brush color style) → void?

color : (is-a?/c color%)

style :

(or/c 'transparent 'solid 'opaque

'xor 'hilite 'panel

'bdiagonal-hatch 'crossdiag-hatch

'fdiagonal-hatch 'cross-hatch

'horizontal-hatch 'vertical-hatch)

(send a-dc set-brush color-name style) → void?

color-name : string?

style :

(or/c 'transparent 'solid 'opaque

'xor 'hilite 'panel

'bdiagonal-hatch 'crossdiag-hatch

'fdiagonal-hatch 'cross-hatch

'horizontal-hatch 'vertical-hatch)

Sets the current brush for drawing in this object. While a brush is selected into a drawing
context, it cannot be modified. When a color and style are given, the arguments are as for
find-or-create-brush in brush-list%.

(send a-dc set-clipping-rect x

y

width

height) → void?

x : real?

y : real?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

Sets the clipping region to a rectangular region.

See also set-clipping-region and get-clipping-region.

(send a-dc set-clipping-region rgn) → void?

rgn : (or/c (is-a?/c region%) #f)

56

Sets the clipping region for the drawing area, turning off all clipping within the drawing
region if #f is provided.

The clipping region must be reset after changing a dc<%> object’s origin or scale (unless it
is #f); see region% for more information.

See also set-clipping-rect and get-clipping-region.

(send a-dc set-font font) → void?
font : (is-a?/c font%)

Sets the current font for drawing text in this object.

(send a-dc set-initial-matrix m) → void?
m : (vector/c real? real? real? real? real? real?)

Set a transformation matrix that converts logical coordinates to device coordinates. The
matrix applies before additional origin offset, scaling, and rotation.

See get-initial-matrix for information on the matrix as represented by a vector m .

See also transform, which adds a transformation to the current transformation, instead of
changing the transformation composition in the middle.

(send a-dc set-origin x y) → void?

x : real?

y : real?

Sets the device origin, i.e., the location in device coordinates of (0,0) in logical coordinates.
The origin offset applies after the initial transformation matrix, but before scaling and rota-
tion.

See also translate, which adds a translation to the current transformation, instead of
changing the transformation composition in the middle.

(send a-dc set-pen pen) → void?

pen : (is-a?/c pen%)

(send a-dc set-pen color width style) → void?

color : (is-a?/c color%)

width : (real-in 0 255)

style :

(or/c 'transparent 'solid 'xor 'hilite

'dot 'long-dash 'short-dash 'dot-dash

'xor-dot 'xor-long-dash 'xor-short-dash

'xor-dot-dash)

(send a-dc set-pen color-name width style) → void?

color-name : string?

57

width : (real-in 0 255)

style :

(or/c 'transparent 'solid 'xor 'hilite

'dot 'long-dash 'short-dash 'dot-dash

'xor-dot 'xor-long-dash 'xor-short-dash

'xor-dot-dash)

Sets the current pen for this object. When a color, width, and style are given, the arguments
are as for find-or-create-pen in pen-list%.

The current pen does not affect text drawing; see also set-text-foreground.

While a pen is selected into a drawing context, it cannot be modified.

(send a-dc set-rotation angle) → void?

angle : real?

Set the rotation of logical coordinates in radians to device coordinates. Rotation applies after
the initial transformation matrix, origin offset, and scaling.

See also rotate, which adds a rotation to the current transformation, instead of changing
the transformation composition.

(send a-dc set-scale x-scale y-scale) → void?

x-scale : real?

y-scale : real?

Sets a scaling factor that maps logical coordinates to device coordinates. Scaling applies
after the initial transformation matrix and origin offset, but before rotation. Negative scaling
factors have the effect of flipping.

See also scale, which adds a scale to the current transformation, instead of changing the
transformation composition in the middle.

(send a-dc set-smoothing mode) → void?

mode : (or/c 'unsmoothed 'smoothed 'aligned)

Enables or disables anti-aliased smoothing for drawing. (Text smoothing is not affected by
this method, and is instead controlled through the font% object.)

The smoothing mode is either 'unsmoothed, 'smoothed, or 'aligned. Both 'aligned

and 'smoothed are smoothing modes that enable anti-aliasing, while both 'unsmoothed

and 'aligned adjust drawing coordinates to match pixel boundaries. For most applications
that draw to the screen or bitmaps, 'aligned mode is the best choice.

Conceptually, integer drawing coordinates correspond to the boundary between pixels, and
pen-based drawing is centered over a given line or curve. Thus, drawing with pen width 1

from (0, 10) to (10, 10) in 'smoothed mode draws a 2-pixel wide line with 50% opacity.

58

In 'unsmoothed and 'aligned modes, drawing coordinates are truncated based on the
alignment scale of the drawing context. Specifically, when the alignment scale is 1.0, draw-
ing coordinates are truncated to integer coordinates. More generally, drawing coordinates
are shifted toward zero so that the result multipled by the alignment scale is integral. For
line drawing, coordinates are further shifted based on the pen width and the alignment scale,
where the shift corrsponds to half of the pen width (reduced to a value such that its multipli-
cation times the alignment scale times two produces an integer). In addition, for pen drawing
through draw-rectangle, draw-ellipse, draw-rounded-rectangle, and draw-arc,
the given width and height are each decreased by 1.0 divided by the alignment scale.

(send a-dc set-text-background color) → void?

color : (is-a?/c color%)

(send a-dc set-text-background color-name) → void?

color-name : string?

Sets the current text background color for this object. The text background color is painted
behind text that is drawn with draw-text, but only for the 'solid text mode (see set-

text-mode).

For monochrome drawing, all non-white colors are treated as black.

(send a-dc set-text-foreground color) → void?

color : (is-a?/c color%)

(send a-dc set-text-foreground color-name) → void?

color-name : string?

Sets the current text foreground color for this object, used for drawing text with draw-text.

For monochrome drawing, all non-black colors are treated as white.

(send a-dc set-text-mode mode) → void?
mode : (or/c 'solid 'transparent)

Determines how text is drawn:

• 'solid — Before text is drawn, the destination area is filled with the text background
color (see set-text-background).

• 'transparent — Text is drawn directly over any existing image in the destination,
as if overlaying text written on transparent film.

(send a-dc set-transformation t) → void?

t :
(vector/c (vector/c real? real? real? real? real? real?)

real? real? real? real? real?)

59

Sets the draw context’s transformation. See get-transformation for information about
t .
(send a-dc start-doc message) → void?

message : string?

Starts a document, relevant only when drawing to a printer, PostScript, PDF, or SVG device.
For some platforms, the message string is displayed in a dialog until end-doc is called.

For relevant devices, an exception is raised if start-doc has been called already (even if
end-doc has been called as well). Furthermore, drawing methods raise an exception if not
called while a page is active as determined by start-doc and start-page.

(send a-dc start-page) → void?

Starts a page, relevant only when drawing to a printer, PostScript, SVG, or PDF device.

Relevant devices, an exception is raised if start-page is called when a page is already
started, or when start-doc has not been called, or when end-doc has been called already.
In addition, in the case of PostScript output, Encapsulated PostScript (EPS) cannot contain
multiple pages, so calling start-page a second time for a post-script-dc% instance
raises an exception; to create PostScript output with multiple pages, supply #f as the as-

eps initialization argument for post-script-dc%.

(send a-dc suspend-flush) → void?

Calls the suspend-flush in canvas<%> method for canvas<%> output, and has no effect
for other kinds of drawing contexts.

(send a-dc transform m) → void?
m : (vector/c real? real? real? real? real? real?)

Adds a transformation by m to the drawing context’s current transformation.

See get-initial-matrix for information on the matrix as represented by a vector m .

Afterward, the drawing context’s transformation is represented in the initial transformation
matrix, and the separate origin, scale, and rotation settings have their identity values.

(send a-dc translate dx dy) → void?

dx : real?

dy : real?

Adds a translation of dx in the X-direction and dy in the Y-direction to the drawing context’s
current transformation.

Afterward, the drawing context’s transformation is represented in the initial transformation
matrix, and the separate origin, scale, and rotation settings have their identity values.

60

(send a-dc try-color try result) → void?

try : (is-a?/c color%)

result : (is-a?/c color%)

Determines the actual color used for drawing requests with the given color. The result

color is set to the RGB values that are actually produced for this drawing context to draw the
color try .

61

9 dc-path%

dc-path% : class?
superclass: object%

A path is a set of figures defined by curves. A path can be used with the draw-path method
of a dc<%> object to draw the path’s curves as lines, fill the region bounded by the path’s
curves, or both. A path can also be used with the set-path method of a region% object to
generate a region bounded by the path’s curves.

A path consists of zero or more closed sub-paths, and possibly one open sub-path. Some dc-
path% methods extend the open sub-path, some dc-path% methods close the open sub-path,
and some dc-path% methods add closed sub-paths. This approach to drawing formulation
is inherited from PostScript [Adobe99].

When a path is drawn as a line, a closed sub-path is drawn as a closed figure, analogous to
a polygon. An open sub-path is drawn with disjoint start and end points, analogous lines
drawn with draw-lines in dc<%>.

When a path is filled or used as a region, the open sub-path (if any) is treated as if it were
closed. The content of a path is determined either through the 'even-odd rule or the 'wind-
ing rule, as selected at the time when the path is filled or used to generate a region.

A path is not connected to any particular dc<%> object, so setting a dc<%> origin or scale
does not affect path operations. Instead, a dc<%>’s origin and scale apply at the time that the
path is drawn or used to set a region.

(new dc-path%) → (is-a?/c dc-path%)

Creates a new path that contains no sub-paths (and no open sub-path).

(send a-dc-path append path) → void?

path : (is-a?/c dc-path%)

Adds the sub-paths of path to a-dc-path . Closed sub-paths of path are added as closed
sub-paths to a-dc-path . If both paths have an open sub-path, then this path’s sub-path is
extended by the given path’s open sub-path, adding a line from this path’s current ending
point to the given path’s starting point. If only one of the paths has an open sub-path, then it
becomes (or remains) this path’s open sub-path.

(send a-dc-path arc x

y

width

height

start-radians

end-radians

[counter-clockwise?]) → void?

62

x : real?

y : real?

width : real?

height : real?

start-radians : real?

end-radians : real?

counter-clockwise? : any/c = #t

Extends or starts the path’s open sub-path with a curve that corresponds to a section of an
ellipse. If width and height are non-negative, the ellipse is the one bounded by a rectangle
whose top-left corner is (x , y) and whose dimensions are width by height ; if width is
negative, then the rectangle’s right edge is x , and the ellipse width is (abs width), while
a negative height similarly makes y is the bottom edge of the ellipse and the height (abs
height). The ellipse section starts a the angle start-radians (0 is three o’clock and half- Support for

negative width and
height helps avoid
round-off problems
for aligned drawing
in an eventual
destination, since
arc reduces its
input to a sequence
of curves. In
contrast, draw-arc
in dc<%> can
automatically
correct for round
off, since the
drawing mode is
known immediately.

π is twelve o’clock) and continues to the angle end-radians ; if counter-clockwise? is
true, then the arc runs counter-clockwise from start-radians to end-radians , otherwise
it runs clockwise.

If the path has no open sub-path, a new one is started with the arc’s starting point. Otherwise,
the arc extends the existing sub-path, and the existing path is connected with a line to the
arc’s starting point.

(send a-dc-path close) → void?

Closes the path’s open sub-path. If the path has no open sub-path, an exn:fail:contract

exception is raised.

(send a-dc-path curve-to x1 y1 x2 y2 x3 y3) → void?

x1 : real?

y1 : real?

x2 : real?

y2 : real?

x3 : real?

y3 : real?

Extends the path’s open sub-path with a Bezier curve to the given point (x3 ,y3), using
the points (x1 , y1) and (x2 , y2) as control points. If the path has no open sub-path, an
exn:fail:contract exception is raised.

(send a-dc-path ellipse x y width height) → void?

x : real?

y : real?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

63

Closes the open sub-path, if any, and adds a closed sub-path that represents an ellipse
bounded by a rectangle whose top-left corner is (x , y) and whose dimensions are width

by height . (This convenience method is implemented in terms of close and arc.)

(send a-dc-path get-bounding-box) → real? real? real? real?

Returns a rectangle that encloses the path’s points. The return values are the left, top, width,
and height of the rectangle.

For curves within the path, the bounding box enclosed the two control points as well as the
start and end points. Thus, the bounding box does not always tightly bound the path.

(send a-dc-path line-to x y) → void?

x : real?

y : real?

Extends the path’s open sub-path with a line to the given point. If the path has no open
sub-path, an exn:fail:contract exception is raised.

(send a-dc-path lines points

[xoffset
yoffset]) → void?

points :
(or/c (listof (is-a?/c point%))

(listof (cons/c real? real?)))

xoffset : real? = 0

yoffset : real? = 0

Extends the path’s open sub-path with a sequences of lines to the given points. A pair is
treated as a point where the car of the pair is the x-value and the cdr is the y-value. If the
path has no open sub-path, an exn:fail:contract exception is raised. (This convenience
method is implemented in terms of line-to.)

(send a-dc-path move-to x y) → void?

x : real?

y : real?

After closing the open sub-path, if any, starts a new open sub-path with the given initial
point.

(send a-dc-path open?) → boolean?

Returns #t if the path has an open sub-path, #f otherwise.

(send a-dc-path rectangle x y width height) → void?

x : real?

y : real?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

64

Closes the open sub-path, if any, and adds a closed path that represents a rectangle whose
top-left corner is (x , y) and whose dimensions are width by height . (This convenience
method is implemented in terms of close, move-to, and line-to.)

(send a-dc-path reset) → void?

Removes all sub-paths of the path.

(send a-dc-path reverse) → void?

Reverses the order of all points in all sub-paths. If the path has an open sub-path, the starting
point becomes the ending point, and extensions to the open sub-path build on this new end-
ing point. Reversing a closed sub-path affects how it combines with other sub-paths when
determining the content of a path in 'winding mode.

(send a-dc-path rotate radians) → void?

radians : real?

Adjusts all points within the path (including all sub-paths), rotating them radians counter-
clockwise around (0, 0). Future additions to the path are not rotated by this call.

(send a-dc-path rounded-rectangle x

y

width

height

[radius]) → void?

x : real?

y : real?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

radius : real? = -0.25

Closes the open sub-path, if any, and adds a closed sub-path that represents a round-cornered
rectangle whose top-left corner is (x y) and whose dimensions are width by height . (This
convenience method is implemented in terms of close, move-to, arc, and line-to.)

If radius is positive, the value is used as the radius of the rounded corner. If radius
is negative, the absolute value is used as the proportion of the smallest dimension of the
rectangle.

If radius is less than -0.5 or more than half of width or height , an
exn:fail:contract exception is raised.

(send a-dc-path scale x y) → void?

x : real?

y : real?

65

Adjusts all points within the path (including all sub-paths), multiplying each x-coordinate
by x and each y-coordinate by y . Scaling by a negative number flips the path over the
corresponding axis. Future additions to the path are not scaled by this call.

(send a-dc-path text-outline font

str

x

y

[combine?]) → void?

font : (is-a?/c font%)

str : string?

x : real?

y : real?

combine? : any/c = #f

Closes the open sub-path, if any, and adds a closed sub-path to outline str using font . The
top left of the text is positioned at x and y . The combine? argument enables kerning and
character combinations as for draw-text in dc<%>.

(send a-dc-path transform m) → void?

m : (vector/c real? real? real? real? real? real?)

Adjusts all points within the path (including all sub-paths) by applying the transformation
represented by m .

See get-initial-matrix for information on the matrix as represented by a vector m .

(send a-dc-path translate x y) → void?

x : real?

y : real?

Adjusts all points within the path (including all sub-paths), shifting then x to the right and y

down. Future additions to the path are not translated by this call.

66

10 font%

font% : class?
superclass: object%

A font is an object which determines the appearance of text, primarily when drawing text to
a device context. A font is determined by seven properties:

• size — The size of the text, either in points (the default) or logical drawing units,
depending on the “size-in-pixels?” property (see below).

• family — A platform- and device-independent font designation. The families are:

– 'default

– 'decorative

– 'roman

– 'script

– 'swiss

– 'modern (fixed width)

– 'symbol (Greek letters and more)

– 'system (similar to the font to draw control labels, but see normal-control-
font)

The terminology
“family” and “face”
is mangled relative
to its usual
meaning. A font%

“face” is really used
more like a font
family in the usual
terminology or
more generally as a
face-description
string that is
combined with
other font%
attributes to arrive
at a face. A font%

“family” is a kind
of abstract font
family that is
mapped to a
particular font
family on a given
platform.

• face — A string face name, such as "Courier". The format and meaning of a face
name is platform- and device-specific. If a font’s face name is #f, then the font’s ap-
pearance depends only on the family. If a face is provided but no mapping is available
for the face name (for a specific platform or device), then the face name is ignored and
the family is used. See font-name-directory<%> for information about how face
names are mapped for drawing text.

• style — The slant style of the font, one of:

– 'normal

– 'slant (a.k.a “oblique”)

– 'italic

• weight — The weight of the font, one of:

– 'normal

– 'light

– 'bold

• underline? — #t for underlined, #f for plain.

67

• smoothing — Amount of anti-alias smoothing, one of:

– 'default (platform-specific, sometimes user-configurable)
– 'partly-smoothed (gray anti-aliasing)
– 'smoothed (sub-pixel anti-aliasing)
– 'unsmoothed

• size-in-pixels? — #t if the size of the font is in logical drawing units (i.e., pixels for
an unscaled screen or bitmap drawing context), #f if the size of the font is in points
(which can depend on screen resolution).

• hinting — Whether font metrics should be rounded to integers:

– 'aligned (the default) — rounds to integers to improve the consistency of letter
spacing for pixel-based targets, but at the expense of making metrics unscalable

– 'unaligned — disables rounding

To avoid creating multiple fonts with the same characteristics, use the global font-list%
object the-font-list.

See also font-name-directory<%>.

(make-object font%) → (is-a?/c font%)

(make-object font% size

family

[style
weight

underline?

smoothing

size-in-pixels?

hinting]) → (is-a?/c font%)

size : (integer-in 1 1024)

family : font-family/c

style : font-style/c = 'normal

weight : font-weight/c = 'normal

underline? : any/c = #f

smoothing : font-smoothing/c = 'default

size-in-pixels? : any/c = #f

hinting : font-hinting/c = 'aligned

(make-object font% size

face

family

[style
weight

underline?

smoothing

size-in-pixels?

hinting]) → (is-a?/c font%)

68

size : (integer-in 1 1024)

face : string?

family : font-family/c

style : font-style/c = 'normal

weight : font-weight/c = 'normal

underline? : any/c = #f

smoothing : font-smoothing/c = 'default

size-in-pixels? : any/c = #f

hinting : font-hinting/c = 'aligned

When no arguments are provided, creates an instance of the default font. If no face name is
provided, the font is created without a face name.

See font% for information about family , style , weight , smoothing , size-in-

pixels?, and hinting . font-name-directory<%>.

See also make-font.

(send a-font get-face) → (or/c string? #f)

Gets the font’s face name, or #f if none is specified.

(send a-font get-family) → font-family/c

Gets the font’s family. See font% for information about families.

(send a-font get-font-id) → exact-integer?

Gets the font’s ID, for use with a font-name-directory<%>. The ID is determined by the
font’s face and family specifications, only.

(send a-font get-hinting) → font-hinting/c

Gets the font’s hinting. See font% for information about hinting.

(send a-font get-point-size) → (integer-in 1 1024)

Gets the font’s size (roughly the height). Despite the method name, the size may be in logical
units instead of points, depending on the result of get-size-in-pixels.

Due to space included in a font by a font designer, a font tends to generate text that is slightly
taller than the nominal size.

(send a-font get-size-in-pixels) → boolean?

69

Returns #t if the size reported by get-point-size is in logical drawing units, #f if it is in
points.

For a size in points and a screen or bitmap drawing context, the logical height depends on
the resolution of the screen.

(send a-font get-smoothing) → font-smoothing/c

Gets the font’s anti-alias smoothing mode. See font% for information about smoothing.

(send a-font get-style) → font-style/c

Gets the font’s slant style. See font% for information about styles.

(send a-font get-underlined) → boolean?

Returns #t if the font is underlined or #f otherwise.

(send a-font get-weight) → font-weight/c

Gets the font’s weight. See font% for information about weights.

(send a-font screen-glyph-exists? c

[for-label?]) → boolean?

c : char?

for-label? : any/c = #f

Returns #t if the given character has a corresponding glyph when drawing to the screen or a
bitmap, #f otherwise.

If the second argument is true, the result indicates whether the glyph is available for control
labels. Otherwise, it indicates whether the glyph is available for dc<%> drawing.

For dc<%> drawing, due to automatic font substitution when drawing or measuring text, the
result of this method does not depend on this font’s attributes (size, face, etc.). The font’s
attributes merely provide a hint for the glyph search.

See also glyph-exists? .

70

11 font-list%

font-list% : class?
superclass: object%

A font-list% object maintains a list of font% objects to avoid repeatedly creating fonts.

A global font list, the-font-list, is created automatically.

(new font-list%) → (is-a?/c font-list%)

Creates an empty font list.

(send a-font-list find-or-create-font size

family

style

weight

[underline?
smoothing

size-in-pixels?

hinting])
→ (is-a?/c font%)

size : (integer-in 1 255)

family :
(or/c 'default 'decorative 'roman 'script

'swiss 'modern 'symbol 'system)

style : (or/c 'normal 'italic 'slant)

weight : (or/c 'normal 'bold 'light)

underline? : any/c = #f

smoothing : (or/c 'default 'partly-smoothed 'smoothed 'unsmoothed)

= 'default

size-in-pixels? : any/c = #f

hinting : (or/c 'aligned 'unaligned) = 'aligned

(send a-font-list find-or-create-font size

face

family

style

weight

[underline
smoothing

size-in-pixels?

hinting])
→ (is-a?/c font%)

size : (integer-in 1 255)

face : string?

family :
(or/c 'default 'decorative 'roman 'script

'swiss 'modern 'symbol 'system)

71

style : (or/c 'normal 'italic 'slant)

weight : (or/c 'normal 'bold 'light)

underline : any/c = #f

smoothing : (or/c 'default 'partly-smoothed 'smoothed 'unsmoothed)

= 'default

size-in-pixels? : any/c = #f

hinting : (or/c 'aligned 'unaligned) = 'aligned

Finds an existing font in the list or creates a new one (that is automatically added to the list).
The arguments are the same as for creating a font% instance.

72

12 font-name-directory<%>

font-name-directory<%> : interface?

There is one font-name-directory<%> object: the-font-name-directory. It imple-
ments a mapping from font specifications (face, family, style, and weight) to information
for rendering text on a specific device. Programmers rarely need to directly invoke methods
of the-font-name-directory. It is used automatically when drawing text to a dc<%>

object. Nevertheless, the-font-name-directory is available so that programmers can
query or modify the mapping manually. A programmer may also need to understand how
the face-and-family mapping works.

To extract mapping information from the-font-name-directory, first obtain a font ID,
which is an index based on a family and optional face string. Font IDs are returned by
find-or-create-font-id and get-font-id . A Font ID can be combined with a weight
and style to obtain a specific mapping value via get-screen-name or get-post-script-
name.

For a family without a face string, the corresponding font ID has a useful built-in mapping
for every platform and device. For a family with a face string, the-font-name-directory
interprets the string (in a platform-specific way) to generate a mapping for drawing (to a
canvas’s dc<%>, a bitmap-dc%, or a printer-dc%).

Currently, on all platforms, a face string is interpreted as a Pango font description when
it contains a comma, otherwise it is treated as a family name. A face can thus be just a
family name such as "Helvetica", a family followed by a comma and font modifiers as in
"Helvetica, Bold", or a sequence of comma-separated familie names followed by space-
separated font options as an "Helvetica, Arial, bold italic". Any size in a font
description is overridden by a given font%’s size. Any (slant) style or weight options in a
font description are overridden by a non-'normal value for a given font%’s style or weight,
respectively.

(send a-font-name-directory find-family-default-font-id family)

→ exact-integer?

family :
(or/c 'default 'decorative 'roman 'script

'swiss 'modern 'symbol 'system)

Gets the font ID representing the default font for a family. See font% for information about
font families.

(send a-font-name-directory find-or-create-font-id name

family)

→ exact-integer?

name : string?

family :
(or/c 'default 'decorative 'roman 'script

'swiss 'modern 'symbol 'system)

73

http://www.pango.org

Gets the face name for a font ID, initializing the mapping for the face name if necessary.

Font ID are useful only as mapping indices for the-font-name-directory.

(send a-font-name-directory get-face-name font-id)

→ (or/c string? #f)

font-id : exact-integer?

Gets the face name for a font ID. If the font ID corresponds to the default font for a particular
family, #f is returned.

(send a-font-name-directory get-family font-id)

→ (or/c 'default 'decorative 'roman 'script

'swiss 'modern 'symbol 'system)

font-id : exact-integer?

Gets the family for a font ID. See font% for information about font families.

(send a-font-name-directory get-font-id name

family)

→ exact-integer?

name : string?

family :
(or/c 'default 'decorative 'roman 'script

'swiss 'modern 'symbol 'system)

Gets the font ID for a face name paired with a default family. If the mapping for the given
pair is not already initialized, 0 is returned. See also find-or-create-font-id.

Font ID are useful only as mapping indices for the-font-name-directory.

(send a-font-name-directory get-post-script-name font-id

weight

style)

→ (or/c string? #f)

font-id : exact-integer?

weight : (or/c 'normal 'bold 'light)

style : (or/c 'normal 'italic 'slant)

Gets a PostScript font description for a font ID, weight, and style combination.

See font% for information about weight and style .

(send a-font-name-directory get-screen-name font-id

weight

style)

→ (or/c string? #f)

74

font-id : exact-integer?

weight : (or/c 'normal 'bold 'light)

style : (or/c 'normal 'italic 'slant)

Gets a platform-dependent screen font description (used for drawing to a canvas’s dc<%>, a
bitmap-dc%, or a printer-dc%) for a font ID, weight, and style combination.

See font% for information about weight and style .

(send a-font-name-directory set-post-script-name font-id

weight

style

name)

→ void?

font-id : exact-integer?

weight : (or/c 'normal 'bold 'light)

style : (or/c 'normal 'italic 'slant)

name : string?

Sets a PostScript font description for a font ID, weight, and style combination. See also
get-post-script-name.

See font% for information about weight and style .

(send a-font-name-directory set-screen-name font-id

weight

style

name) → void?

font-id : exact-integer?

weight : (or/c 'normal 'bold 'light)

style : (or/c 'normal 'italic 'slant)

name : string?

Sets a platform-dependent screen font description (used for drawing to a canvas’s dc<%>, a
bitmap-dc%, or a printer-dc%) for a font ID, weight, and style combination.

See font% for information about weight and style .

75

13 gl-config%

gl-config% : class?
superclass: object%

A gl-config% object encapsulates configuration information for an OpenGL drawing con-
text. Use a gl-config% object as an initialization argument for canvas% or provide it to
make-gl-bitmap.

(new gl-config%) → (is-a?/c gl-config%)

Creates a GL configuration that indicates double buffering, a depth buffer of size one, no
stencil buffer, no accumulation buffer, no multisampling, and not stereo.

(send a-gl-config get-accum-size) → (integer-in 0 256)

Reports the accumulation-buffer size (for each of red, green, blue, and alpha) that the con-
figuration requests, where zero means no accumulation buffer is requested.

(send a-gl-config get-depth-size) → (integer-in 0 256)

Reports the depth-buffer size that the configuration requests, where zero means no depth
buffer is requested.

(send a-gl-config get-double-buffered) → boolean?

Reports whether the configuration requests double buffering or not.

(send a-gl-config get-multisample-size) → (integer-in 0 256)

Reports the multisampling size that the configuration requests, where zero means no multi-
sampling is requested.

(send a-gl-config get-share-context)

→ (or/c #f (is-a?/c gl-context<%>))

Returns a gl-context<%> object that shares certain objects (textures, display lists, etc.)
with newly created OpenGL drawing contexts, or #f is none is set.

See also set-share-context.

(send a-gl-config get-stencil-size) → (integer-in 0 256)

Reports the stencil-buffer size that the configuration requests, where zero means no stencil
buffer is requested.

76

(send a-gl-config get-stereo) → boolean?

Reports whether the configuration requests stereo or not.

(send a-gl-config set-accum-size on?) → void?

on? : (integer-in 0 256)

Adjusts the configuration to request a particular accumulation-buffer size for every channel
(red, green, blue, and alpha), where zero means no accumulation buffer is requested.

(send a-gl-config set-depth-size on?) → void?

on? : (integer-in 0 256)

Adjusts the configuration to request a particular depth-buffer size, where zero means no
depth buffer is requested.

(send a-gl-config set-double-buffered on?) → void?

on? : any/c

Adjusts the configuration to request double buffering or not.

(send a-gl-config set-multisample-size on?) → void?

on? : (integer-in 0 256)

Adjusts the configuration to request a particular multisample size, where zero means no
multisampling is requested. If a multisampling context is not available, this request will be
ignored.

(send a-gl-config set-share-context context) → void?

context : (or/c #f (is-a?/c gl-context<%>))

Determines a gl-context<%> object that shares certain objects (textures, display lists, etc.)
with newly created OpenGL drawing contexts, where #f indicates that no sharing should
occur.

When a context B shares objects with context A , it is also shares objects with every other
context sharing with A , and vice versa.

If an OpenGL implementation does not support sharing, context is effectively ignored
when a new context is created. Sharing should be supported in all versions of Mac OS X. On
Windows and Linux, sharing is provided by the presence of the WGL_ARB_create_context
and GLX_ARB_create_context extensions, respectively (and OpenGL 3.2 requires both).

(send a-gl-config set-stencil-size on?) → void?

on? : (integer-in 0 256)

77

Adjusts the configuration to request a particular stencil-buffer size, where zero means no
stencil buffer is requested.

(send a-gl-config set-stereo on?) → void?

on? : any/c

Adjusts the configuration to request stereo or not.

78

14 gl-context<%>

gl-context<%> : interface?

A gl-context<%> object represents a context for drawing with OpenGL to a specific dc<%>
instance. To obtain a gl-context<%> object, call get-gl-context of the target drawing
context.

Only canvas dc<%> and bitmap-dc% objects containing a bitmap from make-gl-bitmap

support OpenGL (always on Windows and Mac OS X, sometimes on Unix). Normal dc<%>
drawing and OpenGL drawing can be mixed in a bitmap-dc%, but a canvas that uses the
'gl style to support OpenGL does not reliably support normal dc<%> drawing; use a bitmap
if you need to mix drawing modes, and use a canvas to maximize OpenGL performance.

When the target bitmap for a bitmap-dc% context is changed via set-bitmap, the associ-
ated gl-context<%> changes. Canvas contexts are normally double buffered, and bitmap
contexts are single buffered.

The racket/gui/base library provides no OpenGL routines. Instead, they must be ob-
tained from a separate library, such as sgl. The facilities in racket/gui/base merely
manage the current OpenGL context, connecting it to windows and bitmaps.

Only one OpenGL context can be active at a time across all threads and eventspaces.
OpenGL contexts are not protected against interference among threads; that is, if a thread se-
lects one of its OpenGL contexts, then other threads can write into the context via OpenGL
commands. However, if all threads issue OpenGL commands only within a thunk passed
to call-as-current, then drawing from the separate threads will not interfere, because
call-as-current uses a lock to serialize context selection across all threads in Racket.
(send a-gl-context call-as-current thunk

[alternate
enable-breaks?]) → any/c

thunk : (-> any)

alternate : evt? = never-evt

enable-breaks? : any/c = #f

Calls a thunk with this OpenGL context as the current context for OpenGL commands.

The method blocks to obtain a lock that protects the global OpenGL context, and it releases
the lock when the thunk returns or escapes. The lock is re-entrant, so a nested use of the
method in the same thread with the same OpenGL context does not obtain or release the
lock.

The lock prevents interference among OpenGL-using threads. If a thread is terminated while
holding the context lock, the lock is released. Continuation jumps into the thunk do not
grab the lock or set the OpenGL context. See gl-context<%> for more information on
interference.

79

The method accepts an alternate synchronizable event for use while blocking for the context
lock; see also sync.

The result of the method call is the result of the thunk if it is called, or the result of the
alternate event if it is chosen instead of the context lock.

If ok? returns #f at the time that this method is called, then an exn:fail:contract excep-
tion is raised.

If enable-breaks? is true, then the method uses sync/enable-break while blocking for
the context-setting lock instead of sync.

(send a-gl-context get-handle) → cpointer?

Returns a handle to the platform’s underlying context. The value that the pointer represents
depends on the platform:

• Windows: HGLRC

• Mac OS X: NSOpenGLContext

• Unix: GdkGLContext

Note that these values are not necessary the most “low-level” context objects, but are in-
stead the ones useful to Racket. A NSOpenGLContext wraps a CGLContextObj, and a
GdkGLContext contains a GLXcontext.

(send a-gl-context ok?) → boolean?

Returns #t if this context is available OpenGL drawing, #f otherwise.

A context is unavailable if OpenGL support is disabled at compile time or run time, if the
context is associated with a bitmap-dc% with no selected bitmap or with a monochrome
selected bitmap, if the context is for a canvas that no longer exists, or if there was a low-level
error when preparing the context.

(send a-gl-context swap-buffers) → void?

Swaps the front (visible) and back (OpenGL-drawing) buffer for a context associated with a
canvas, and has no effect on a bitmap context.

This method implicitly uses call-as-current to obtain the context lock. Since the lock
is re-entrant, however, the swap-buffers method can be safely used within a call-as-

current thunk.

80

15 linear-gradient%

linear-gradient% : class?
superclass: object%

A linear gradient is used with a brush% to fill areas with smooth color transitions. Color
transitions are based on a line, where colors are assigned to stop points along the line, and
colors for in-between points are interpolated from the stop-point colors. The color of a point
on the gradient’s line is propagated to all points in the drawing context that are touched by a
line through the point and perpendicular to the gradient’s line.

(new linear-gradient%

[x0 x0]

[y0 y0]

[x1 x1]

[y1 y1]

[stops stops])

→ (is-a?/c linear-gradient%)

x0 : real?

y0 : real?

x1 : real?

y1 : real?

stops : (listof (list/c (real-in 0 1) (is-a?/c color%)))

Creates a linear gradient with a line from (x0 , y0) to end point (x1 , y1). The stops

list assigns colors to stop points along the line, where 0.0 corresponds to (x0 , y0), 1.0
corresponds to (x1 , y2), and numbers in between correspond to points in between.

Elements in stops are implicitly sorted by point (i.e., by the number between 0.0 and 1.0).
Order is preserved for multiple elements for the same point, in which case the first element
for a given point is treated infinitesimally before the point, and additional elements between
the first and last for a stop point are effectively ignored.

Examples:

> (define ellipse-brush

(new brush%

[gradient

(new linear-gradient%

[x0 0]

[y0 200]

[x1 200]

[y1 0]

[stops

(list (list 0 (make-object color% 255 0 0))

(list 0.5 (make-object color% 0 255 0))

81

(list 1 (make-object color% 0 0 255)))])]))

> (define rectangle-brush

(new brush%

[gradient

(new linear-gradient%

[x0 0]

[y0 100]

[x1 100]

[y1 0]

[stops

(list (list 0 (make-object color% 255 0 0))

(list 0.5 (make-object color% 0 255 0))

(list 1 (make-object color% 0 0 255)))])]))

> (dc

(λ (dc dx dy)

(define old-pen (send dc get-pen))

(define old-brush (send dc get-brush))

(define-values (ox oy) (send dc get-origin))

(send dc set-pen "black" 1 'transparent)

(send dc set-brush ellipse-brush)

(send dc set-origin (+ ox dx 50) (+ oy dy 50))

(send dc draw-ellipse 0 0 200 200)

(send dc set-brush rectangle-brush)

(send dc set-origin (+ ox dx 300) (+ oy dy 50))

(send dc draw-rectangle 0 0 200 200)

(send dc set-pen old-pen)

(send dc set-brush old-brush)

(send dc set-origin ox oy))

550 300)

82

(send a-linear-gradient get-line) → real? real? real? real?

Returns the gradient’s control line as x0 , y0 , x1 , and y1 .

(send a-linear-gradient get-stops)

→ (listof (list/c (real-in/c 0 1) (is-a?/c color%)))

Returns the gradient’s list of color stops.

83

16 pdf-dc%

pdf-dc% : class?
superclass: object%

extends: dc<%>

Like post-script-dc%, but generates a PDF file instead of a PostScript file.

(new pdf-dc%

[[interactive interactive]

[parent parent]

[use-paper-bbox use-paper-bbox]

[as-eps as-eps]

[width width]

[height height]

[output output]])
→ (is-a?/c pdf-dc%)

interactive : any/c = #t

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) #f) = #f

use-paper-bbox : any/c = #f

as-eps : any/c = #t

width : (or/c (and/c real? (not/c negative?)) #f) = #f

height : (or/c (and/c real? (not/c negative?)) #f) = #f

output : (or/c path-string? output-port? #f) = #f

See post-script-dc% for information on the arguments. The as-eps argument is allowed
for consistency with post-script-dc%, but its value is ignored.

84

17 pen%

pen% : class?
superclass: object%

A pen is a drawing tool with a color, width, and style. A pen draws lines and outlines, such
as the outline of a rectangle. In a monochrome destination, all non-white pens are drawn as
black.

In addition to its color, width, and style, a pen can have a pen stipple bitmap. Drawing with
a stipple pen is similar to calling draw-bitmap with the stipple bitmap in region painted by
the pen.

A pen style is one of the following:

• 'transparent — Draws with no effect (on the outline of the drawn shape).

• 'solid — Draws using the pen’s color. If a (monochrome) pen stipple is installed
into the pen, black pixels from the stipple are transferred to the destination using the
brush’s color, and white pixels from the stipple are not transferred.

• 'xor — The same as 'solid, accepted only for partial backward compatibility.

• 'hilite — Draws with black and a 0.3 alpha.

• The following special pen modes use the pen’s color, and they only apply when a pen
stipple is not used:

– 'dot

– 'long-dash

– 'short-dash

– 'dot-dash

– 'xor-dot

– 'xor-long-dash

– 'xor-short-dash

– 'xor-dot-dash

To avoid creating multiple pens with the same characteristics, use the global pen-list%
object the-pen-list, or provide a color, width, and style to set-pen in dc<%>.

When drawing in 'unsmoothed or 'aligned mode, a pen’s size is truncated after scaling
to size that is integral after multiplication by the drawing context’s alignment scale. A pen
of size 0 (after truncation, if applicable) uses a non-zero, scale-insensitive line size for the
destination drawing context: 1/4 unit (after scaling) for post-script-dc% or pdf-dc%

85

contexts in 'smoothed mode, or 1 unit (after scaling) divided by the alignment scale for any
other context. For example, in unscaled canvas and bitmap contexts with an alignment scale
of 1.0, a zero-width pen behaves the same as a pen of size 1.

See also make-pen.

(new pen%

[[color color]

[width width]

[style style]

[cap cap]

[join join]

[stipple stipple]]) → (is-a?/c pen%)

color : (or/c string? (is-a?/c color%)) = "black"

width : (real-in 0 255) = 0

style : pen-style/c = 'solid

cap : pen-cap-style/c = 'round

join : pen-join-style/c = 'round

stipple : (or/c #f (is-a?/c bitmap%)) = #f

Creates a pen with the given color, width, pen style, cap style, join style, and pen stipple
bitmap. For the case that the color is specified using a name, see color-database<%> for
information about color names; if the name is not known, the pen’s color is black.

(send a-pen get-cap) → pen-cap-style/c

Returns the pen cap style, which determines the shape of a line at each of its ending points
when drawn by draw-line or at the non-connecting ends of lines when drawn by draw-

lines or draw-path. The default is 'round, which draws the end of a line as a semi-
circle. The 'projecting style draws a square in place of the semi-circle (i.e., past the
point at which the line stops). The 'butt style ends the line with a straight edge, instead of
projecting past the ending point of the line.

This code draws three diagonal lines, one with each of the possible caps ('round, 'butt,
and then 'projecting) and puts a little red dot on the end points of the line.

Examples:

> (define (plot-line dc x1 y1 x2 y2 cap)

(send dc set-pen

(send the-pen-list find-or-create-pen

"black" 40 'solid cap))

(send dc draw-line x1 y1 x2 y2)

(send dc set-brush "red" 'solid)

(send dc set-pen "black" 1 'transparent)

(send dc draw-ellipse (- x1 4) (- y1 4) 8 8)

(send dc draw-ellipse (- x2 4) (- y2 4) 8 8))

86

> (dc

(λ (dc dx dy)

(define old-pen (send dc get-pen))

(define old-brush (send dc get-brush))

(plot-line dc 20 30 80 90 'round)

(plot-line dc 100 30 160 90 'butt)

(plot-line dc 180 30 240 90 'projecting)

(send dc set-pen old-pen)

(send dc set-brush old-brush))

270 120)

(send a-pen get-color) → (is-a?/c color%)

Returns the pen’s color object.

(send a-pen get-join) → pen-join-style/c

Returns the pen join style that is used between multiple lines connected through draw-

lines, draw-rectangle, draw-polygon, or draw-path. The join style fills the space
that would be left at the outside corner of two lines if they were draw separately with 'butt

line endings. The default join style is 'round, which fills under an arc that lines up with the
outside of each of the two lines. The 'bevel style fills in the gap without adding extra pixels
(i.e., it makes a blunt corner). The 'miter style fills the gap by adding pixels that would be
covered by both lines if they were extended past the corner (i.e., it makes a sharp corner).

This code shows the three join styles ('round, 'bevel and then 'miter) by drawing a
sequence of lines, first with a sharp corner and then with a right-angle. Each of the end
points of the lines i with a red dot.

Examples:

> (define points '((100 . 100)

(0 . 0)

(0 . 100)

(40 . 100)))

87

> (define (connect-points dc dx dy join)

(send dc set-pen

(send the-pen-list find-or-create-pen

"black" 40 'solid 'round join))

(send dc draw-lines points dx dy)

(send dc set-brush "red" 'solid)

(send dc set-pen "black" 1 'transparent)

(for ([pt (in-list points)])

(send dc draw-ellipse

(+ dx (car pt) -4) (+ dy (cdr pt) -4)

8 8)))

> (dc

(λ (dc dx dy)

(define old-pen (send dc get-pen))

(define old-brush (send dc get-brush))

(connect-points dc 20 50 'round)

(connect-points dc 180 50 'bevel)

(connect-points dc 340 50 'miter)

(send dc set-pen old-pen)

(send dc set-brush old-brush))

460 170)

(send a-pen get-stipple) → (or/c (is-a?/c bitmap%) #f)

Gets the current pen stipple bitmap, or returns #f if no stipple bitmap is installed.

(send a-pen get-style) → pen-style/c

Returns the pen style. See pen% for information about possible styles.

(send a-pen get-width) → (real-in 0 255)

88

Returns the pen width.

(send a-pen is-immutable?) → boolean?

Returns #t if the pen object is immutable.

(send a-pen set-cap cap-style) → void?

cap-style : pen-cap-style/c

Sets the pen cap style. See get-cap for information about cap styles.

A pen cannot be modified if it was obtained from a pen-list% or while it is selected into a
drawing context.

(send a-pen set-color color) → void?

color : (is-a?/c color%)

(send a-pen set-color color-name) → void?

color-name : string?

(send a-pen set-color red green blue) → void?

red : byte?

green : byte?

blue : byte?

Sets the pen color.

A pen cannot be modified if it was obtained from a pen-list% or while it is selected into a
drawing context.

(send a-pen set-join join-style) → void?

join-style : pen-join-style/c

Sets the pen join style. See get-join for information about join styles.

A pen cannot be modified if it was obtained from a pen-list% or while it is selected into a
drawing context.

(send a-pen set-stipple bitmap) → void?

bitmap : (or/c (is-a?/c bitmap%) #f)

Sets the pen pen stipple bitmap, where #f turns off the stipple bitmap.

If bitmap is modified while is associated with a pen, the effect on the pen is unspecified. A
pen cannot be modified if it was obtained from a pen-list% or while it is selected into a
drawing context.

89

(send a-pen set-style style) → void?

style : pen-style/c

Sets the pen style. See pen% for information about the possible styles.

A pen cannot be modified if it was obtained from a pen-list% or while it is selected into a
drawing context.

(send a-pen set-width width) → void?

width : (real-in 0 255)

Sets the pen width.

A pen cannot be modified if it was obtained from a pen-list% or while it is selected into a
drawing context.

90

18 pen-list%

pen-list% : class?
superclass: object%

A pen-list% object maintains a list of pen% objects to avoid repeatedly creating pen ob-
jects. A pen% object in a pen list cannot be mutated.

A global pen list the-pen-list is created automatically.

(new pen-list%) → (is-a?/c pen-list%)

Creates an empty pen list.

(send a-pen-list find-or-create-pen color

width

style

[cap
join]) → (is-a?/c pen%)

color : (is-a?/c color%)

width : (real-in 0 255)

style :

(or/c 'transparent 'solid 'xor 'hilite

'dot 'long-dash 'short-dash 'dot-dash

'xor-dot 'xor-long-dash 'xor-short-dash

'xor-dot-dash)

cap : (or/c 'round 'projecting 'butt) = 'round

join : (or/c 'round 'bevel 'miter) = 'round

(send a-pen-list find-or-create-pen color-name

width

style

[cap
join])

→ (or/c (is-a?/c pen%) #f)

color-name : string?

width : (real-in 0 255)

style :

(or/c 'transparent 'solid 'xor 'hilite

'dot 'long-dash 'short-dash 'dot-dash

'xor-dot 'xor-long-dash 'xor-short-dash

'xor-dot-dash)

cap : (or/c 'round 'projecting 'butt) = 'round

join : (or/c 'round 'bevel 'miter) = 'round

Finds a pen of the given specification, or creates one and adds it to the list. The arguments
are the same as for creating a pen% instance plus a cap and join style as for set-cap and
set-join. When color-name is provided, however, the return value is #f when no color
matching color-name can be found in the-color-database.

91

19 point%

point% : class?
superclass: object%

A point% is used for certain drawing commands. It encapsulates two real numbers.

(make-object point%) → (is-a?/c point%)

(make-object point% x y) → (is-a?/c point%)

x : real?

y : real?

Creates a point. If x and y are not supplied, they are set to 0.

(send a-point get-x) → real?

Gets the point x-value.

(send a-point get-y) → real?

Gets the point y-value.

(send a-point set-x x) → void?

x : real?

Sets the point x-value.

(send a-point set-y y) → void?

y : real?

Sets the point y-value.

92

20 post-script-dc%

post-script-dc% : class?
superclass: object%

extends: dc<%>

A post-script-dc% object is a PostScript device context, that can write PostScript files on
any platform. See also ps-setup% and pdf-dc%.

Be sure to use the following methods to start/end drawing:

• start-doc

• start-page

• end-page

• end-doc

Attempts to use a drawing method outside of an active page raises an exception.

See also printer-dc%.

(new post-script-dc%

[[interactive interactive]

[parent parent]

[use-paper-bbox use-paper-bbox]

[as-eps as-eps]

[width width]

[height height]

[output output]])
→ (is-a?/c post-script-dc%)

interactive : any/c = #t

parent : (or/c (is-a?/c frame%) (is-a?/c dialog%) #f) = #f

use-paper-bbox : any/c = #f

as-eps : any/c = #t

width : (or/c (and/c real? (not/c negative?)) #f) = #f

height : (or/c (and/c real? (not/c negative?)) #f) = #f

output : (or/c path-string? output-port? #f) = #f

If interactive is true, the user is given a dialog for setting printing parameters (see get-
ps-setup-from-user); the resulting configuration is installed as the current configura-
tion). If the user chooses to print to a file (the only possibility on Windows and Mac OS
X), another dialog is given to select the filename. If the user hits cancel in either of these
dialogs, then ok? returns #f.

93

If parent is not #f, it is used as the parent window of the configuration dialog.

If interactive is #f, then the settings returned by current-ps-setup are used. A file
dialog is still presented to the user if the get-file method returns #f and output is #f,
and the user may hit Cancel in that case so that ok? returns #f.

If use-paper-bbox is #f, then the PostScript bounding box for the output is determined
by width and height (which are rounded upward using ceiling). If use-paper-bbox
is not #f, then the bounding box is determined by the current paper size (as specified by
current-ps-setup). When width or height is #f, then the corresponding dimension is
determined by the paper size, even if use-paper-bbox is #f.

If as-eps is #f, then the generated PostScript does not include an Encapsulated PostScript
(EPS) header, and instead includes a generic PostScript header. The margin and translation
factors specified by current-ps-setup are used only when as-eps is #f. If as-eps is
true, then the generated PostScript includes a header that identifiers it as EPS.

When output is not #f, then file-mode output is written to output . If output is #f, then
the destination is determined via current-ps-setup or by prompting the user for a path-
name. When output is a port, then data is written to port by a thread that is created with
the post-script-dc% instance; in case that writing thread’s custodian is shut down, calling
end-doc resumes the port-writing thread with thread-resume and (current-thread) as
the second argument.

See also ps-setup% and current-ps-setup. The settings for a particular post-script-
dc% object are fixed to the values in the current configuration when the object is created
(after the user has interactively adjusted them when interactive is true).

94

21 ps-setup%

ps-setup% : class?
superclass: object%

A ps-setup% object contains configuration information for producing PostScript files using
a post-script-dc% object. To a lesser extent, it contains information for printing with a
printer-dc% object.

When a post-script-dc% object is created, its configuration is determined by the
current-ps-setup parameter’s ps-setup% value. After a post-script-dc% object is
created, it is unaffected by changes to the current-ps-setup parameter or mutations to
the ps-setup% object.

(new ps-setup%) → (is-a?/c ps-setup%)

Creates a new ps-setup% object with the (platform-specific) default configuration.

(send a-ps-setup copy-from source

[copy-filename?]) → void?

source : (is-a?/c ps-setup%)

copy-filename? : any/c = #f

Copies the settings copy-from to a-ps-setup , excluding the filename unless copy-

filename? is true.

(send a-ps-setup get-command) → string?

Historically, gets the printer command used to print a file on Unix. The default is "lpr".
This value is not currently used by any platforms.

(send a-ps-setup get-editor-margin h-margin

v-margin) → void?

h-margin : (box/c (and/c real? (not/c negative?)))

v-margin : (box/c (and/c real? (not/c negative?)))

Returns the current settings for horizontal and vertical margins when printing an editor<%>.
See also set-editor-margin.

(send a-ps-setup get-file) → (or/c path-string? #f)

Gets the PostScript output filename. A #f value (the default) indicates that the user should
be prompted for a filename when a post-script-dc% object is created.

(send a-ps-setup get-level-2) → boolean?

95

Reports whether Level 2 commands are output in PostScript files.

Currently, Level 2 commands are only needed to include color bitmap images in PostScript
output (drawn with draw-bitmap), or bitmap pen and brush stipples. When Level 2 com-
mands are disabled, bitmaps are converted to grayscale images and stipples are not sup-
ported.

(send a-ps-setup get-margin h-margin

v-margin) → void?

h-margin : (box/c (and/c real? (not/c negative?)))

v-margin : (box/c (and/c real? (not/c negative?)))

Returns the current settings for horizontal and vertical PostScript margins. See also set-

margin.

(send a-ps-setup get-mode) → (or/c 'preview 'file 'printer)

Gets the printing mode that determines where output is sent: 'preview, 'file, or
'printer. The default for X is 'preview. The value in Windows and Mac OS X is al-
ways 'file.

(send a-ps-setup get-orientation)

→ (or/c 'portrait 'landscape)

Gets the orientation: 'portrait or 'landscape. The default is 'portrait. Unlike most
other settings, this one affects native printing (via printer-dc%) as well as PostScript out-
put.

Landscaped orientation affects the size of the drawing area as reported by get-size: the
horizontal and vertical sizes determined by the selected paper type are transposed and then
scaled.

(send a-ps-setup get-paper-name) → string?

Returns the name of the current paper type: "A4 210 x 297 mm", "A3 297 x 420 mm",
"Letter 8 1/2 x 11 in", or "Legal 8 1/2 x 14 in". The default is "Letter 8

1/2 x 11 in".

The paper name determines the size of the drawing area as reported by get-size (along
with landscape transformations from get-orientation and/or the scaling factors of get-
scaling). It also determines the bounding box of PostScript output when a post-script-
dc% context is created with a true value for the use-paper-bbox? initialization argument.

(send a-ps-setup get-preview-command) → string?

Gets the command used to view a PostScript file for X. The default is "gv". This value is
not used by other platforms.

96

(send a-ps-setup get-scaling x y) → void?

x : (box/c (and/c real? (not/c negative?)))

y : (box/c (and/c real? (not/c negative?)))

Gets the scaling factor for PostScript output. The x box is filled with the horizontal scaling
factor. The y box is filled with the vertical scaling factor. The default is 0.8 by 0.8.

This scale is in addition to a scale that can be set by set-scale in a post-script-dc%

context. The size reported by get-size is the size of the selected paper type (transposed
for landscaped mode) divided by this scale.

(send a-ps-setup get-translation x y) → void?

x : (box/c (and/c real? (not/c negative?)))

y : (box/c (and/c real? (not/c negative?)))

Gets the translation (from the bottom left corner) for PostScript output. The x box is filled
with the horizontal offset. The y box is filled with the vertical offset. The default is 0.0 and
0.0.

The translation is not scaled by the numbers returned from get-scaling and the translation
does not affect the size of the drawing area.

(send a-ps-setup set-command command) → void?

command : string?

Historically, sets the printer command that was used to print a file on Unix. See get-

command.

(send a-ps-setup set-editor-margin h v) → void?

h : exact-nonnegative-integer?

v : exact-nonnegative-integer?

Sets the horizontal and vertical margins used when printing an editor with the print method.
These margins are always used for printing, whether the drawing destination is a post-

script-dc% or printer-dc%. The margins are in the units of the destination printer-

dc% or post-script-dc%. In the case of post-script-dc% printing, the editor margin is
in addition to the PostScript margin that is determined by set-margin.

(send a-ps-setup set-file filename) → void?

filename : (or/c path-string? #f)

Sets the PostScript output filename. See get-file.

(send a-ps-setup set-level-2 on?) → void?

on? : any/c

97

Sets whether Level 2 commands are output in PostScript files. See get-level-2.

(send a-ps-setup set-margin h v) → void?

h : (and/c real? (not/c negative?))

v : (and/c real? (not/c negative?))

Sets the horizontal and vertical PostScript margins. When drawing to a post-script-

dc%, the page size reported by get-size subtracts these margins from the normal page area
(before taking into account scaling affects). In addition, drawing into the post-script-dc%
produces PostScript output that is offset by the margins.

When using the output of a post-script-dc% as Encapsulated PostScript, the margin val-
ues are effectively irrelevant. Changing the margins moves the PostScript image in absolute
coordinates, but it also moves the bounding box.

The margins are in unscaled post-script-dc% units, which are points. The default margins
are 16 points.

(send a-ps-setup set-mode mode) → void?

mode : (or/c 'preview 'file 'printer)

Sets the printing mode controlling where output is sent. See get-mode.

On Windows and Mac OS X, if 'preview or 'printer is provided, an
exn:fail:contract exception is raised.

(send a-ps-setup set-orientation orientation) → void?

orientation : (or/c 'portrait 'landscape)

Sets the orientation. See get-orientation.

(send a-ps-setup set-paper-name type) → void?

type : string?

Sets the name of the current paper type. See get-paper-name.

(send a-ps-setup set-preview-command command) → void?

command : string?

Sets the command used to view a PostScript file on Unix. See get-preview-command.

(send a-ps-setup set-scaling x y) → void?

x : (and/c real? (not/c negative?))

y : (and/c real? (not/c negative?))

Sets the scaling factor for PostScript output. See get-scaling.

98

(send a-ps-setup set-translation x y) → void?

x : real?

y : real?

Sets the translation (from the bottom left corner) for PostScript output. See get-

translation.

99

22 radial-gradient%

radial-gradient% : class?
superclass: object%

A radial gradient is used with a brush% to fill areas with smooth color transitions. Color
transitions are based on two circles and the sequence of circles that “morph” from the starting
circle to the ending circle. Normally, one of the two circles defining a gradient is nested
within the other; in that case, points within the inner circle get the same color as the inner
circle’s edge, while points outside the outer circle get the same color as the outer circle’s
edge.

(new radial-gradient%

[x0 x0]

[y0 y0]

[r0 r0]

[x1 x1]

[y1 y1]

[r1 r1]

[stops stops])

→ (is-a?/c radial-gradient%)

x0 : real?

y0 : real?

r0 : real?

x1 : real?

y1 : real?

r1 : real?

stops : (listof (list/c (real-in 0 1) (is-a?/c color%)))

Creates a radial gradient with the starting circle as the one with radius r0 centered at (x0 ,
y0) and the ending circle as the one with radius r1 centered at (x1 , y1). The stops list
assigns colors to circles, where 0.0 corresponds to the starting circle, 1.0 corresponds to
the ending circle, and numbers in between correspond to circles in between.

The order of elements within stops and duplicate points are treated in the same way for as
linear-gradient%.

Examples:

> (define ellipse-brush

(new brush%

[gradient

(new radial-gradient%

[x0 100] [y0 100] [r0 0]

[x1 100] [y1 100] [r1 100]

[stops

100

(list (list 0 (make-object color% 0 0 255))

(list 0.5 (make-object color% 0 255 0))

(list 1 (make-object color% 255 0 0)))])]))

> (define rectangle-brush

(new brush%

[gradient

(new radial-gradient%

[x0 100] [y0 100] [r0 10]

[x1 100] [y1 100] [r1 100]

[stops

(list (list 0 (make-object color% 255 0 0))

(list 0.5 (make-object color% 0 255 0))

(list 1 (make-object color% 0 0 255)))])]))

> (dc

(λ (dc dx dy)

(define old-pen (send dc get-pen))

(define old-brush (send dc get-brush))

(define-values (ox oy) (send dc get-origin))

(send dc set-pen "black" 1 'transparent)

(send dc set-brush ellipse-brush)

(send dc set-origin (+ ox dx 50) (+ oy dy 50))

(send dc draw-ellipse 0 0 200 200)

(send dc set-origin (+ ox dx 300) (+ oy dy 50))

(send dc set-brush rectangle-brush)

(send dc draw-rectangle 0 0 200 200)

(send dc set-pen old-pen)

(send dc set-brush old-brush)

(send dc set-origin ox oy))

550 300)

101

(send a-radial-gradient get-circles)

→ real? real? real? real? real? real?

Returns the gradient’s boundary circles as x0 , y0 , r0 , x1 , y1 , and r1 .

(send a-radial-gradient get-stops)

→ (listof (list/c (real-in 0 1) (is-a?/c color%)))

Returns the gradient’s list of color stops.

102

23 record-dc%

record-dc% : class?
superclass: object%

extends: dc<%>

A record-dc% object records drawing actions for replay into another drawing context.
The recorded drawing operations can be extracted as a procedure via get-recorded-

procedure, or the actions can be extracted as a datum (that can be printed with write

and recreated with read) via get-recorded-datum.

When drawing recorded actions, the target drawing context’s pen, brush, font, text, back-
ground, text background, and text foreground do not affect the recorded actions. The target
drawing context’s transformation, alpha, and clipping region compose with settings in the
recorded actions (so that, for example, a recorded action to set the clipping region actually
intersects the region with the drawing context’s clipping region at the time that the recorded
commands are replayed). After recoded commands are replayed, all settings in the target
drawing context, such as its clipping region or current font, are as before the replay.

(new record-dc%

[[width width]

[height height]]) → (is-a?/c record-dc%)

width : (>=/c 0) = 640

height : (>=/c 0) = 480

Creates a new recording DC. The optional width and height arguments determine the
result of get-size on the recording DC; the width and height arguments do not clip
drawing.

(send a-record-dc get-recorded-datum) → any/c

Extracts a recorded drawing to a value that can be printed with write and re-read with read.
Use recorded-datum->procedure to convert the datum to a drawing procedure.

(send a-record-dc get-recorded-procedure)

→ ((is-a?/c dc<%>) . -> . void?)

Extracts a recorded drawing to a procedure that can be applied to another DC to replay the
drawing commands to the given DC.

The get-recorded-procedure method can be more efficient than composing get-

recorded-datum and recorded-datum->procedure.

103

24 region%

region% : class?
superclass: object%

A region% object specifies a portion of a drawing area (possibly discontinuous). It is nor-
mally used for clipping drawing operations.

A region% object can be associated to a particular dc<%> object when the region is created.
In that case, the region uses the drawing context’s current transformation matrix, translation,
scaling, and rotation, independent of the transformation that is in place when the region is
installed. Otherwise, the region is transformed as usual when it is installed into a dc<%>.
For an auto-scrolled canvas, the canvas’s current scrolling always applies when the region is
used (and it does not affect the region’s bounding box).

Region combination with operations like region% union are approximate, and they are im-
plemented by combining paths. Certain combinations work only if the paths have a suitable
fill mode, which can be either 'winding, 'even-odd, or a flexible fill mode. When a region
is installed as a device context’s clipping region, any subpath with a flexible fill mode uses
'even-odd mode if any other path uses 'even-odd mode.

See also set-clipping-region in dc<%> and get-clipping-region in dc<%>.

(new region% [dc dc]) → (is-a?/c region%)

dc : (or/c (is-a?/c dc<%>) #f)

Creates an empty region. If dc is a dc<%> object, the dc<%>’s current transformation matrix
is essentially recorded in the region.

(send a-region get-bounding-box) → real? real? real? real?

Returns a rectangle that approximately encloses the region. The return values are the left,
top, width, and height of the rectangle. If the region has an associated drawing context, the
bounding box is in the drawing context’s current logical coordinates.

(send a-region get-dc) → (or/c (is-a?/c dc<%>) #f)

Returns the region’s drawing context, if it was created for one.

(send a-region in-region? x y) → boolean?

x : real?

y : real?

Returns #t if the given point is approximately within the region, #f otherwise. If the region
has an associated drawing context, the given point is effectively transformed according to
the region’s dc<%>’s current transformation matrix.

104

(send a-region intersect rgn) → void?

rgn : (is-a?/c region%)

Sets the region to the intersection of itself with the given region.

The drawing context of rgn and a-region must be the same, or they must both be unasso-
ciated to any drawing context.

An intersect corresponds to clipping with this region’s path, and then clipping with the given
region’s path. Further combining sends to this region correspond to combination with the
original path before initial clip, and further combination with this region as an argument
correspond to a combination with the given path after the initial clip. Thus, an intersecting
region is a poor input for union, subtract, or xor, but it intersects properly in further calls
to intersect.
(send a-region is-empty?) → boolean?

Returns #t if the region is approximately empty, #f otherwise, but only if the region is
associated with a drawing context. If the region is unassociated to any drawing context, the
exn:fail:contract exception is raised.

(send a-region set-arc x

y

width

height

start-radians

end-radians) → void?

x : real?

y : real?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

start-radians : real?

end-radians : real?

Sets the region to the interior of the specified wedge.

See also draw-ellipse in dc<%>, since the region content is determined the same way as
brush-based filling in a dc<%>.

The region corresponds to a clockwise path with a flexible fill. The region is also atomic for
the purposes of region combination.

(send a-region set-ellipse x y width height) → void?

x : real?

y : real?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

105

Sets the region to the interior of the specified ellipse.

See also draw-ellipse in dc<%>, since the region content is determined the same way as
brush-based filling in a dc<%>.

The region corresponds to a clockwise path with a flexible fill. The region is also atomic for
the purposes of region combination.

(send a-region set-path path

[xoffset
yoffset

fill-style]) → void?

path : (is-a?/c dc-path%)

xoffset : real? = 0

yoffset : real? = 0

fill-style : (or/c 'odd-even 'winding) = 'odd-even

Sets the region to the content of the given path.

See also draw-path in dc<%>, since the region content is determined the same way as
brush-based filling in a dc<%>.

The fill style affects how well the region reliably combines with other regions (via union,
xor, and subtract). The region is also atomic for the purposes of region combination.

(send a-region set-polygon points

[xoffset
yoffset

fill-style]) → void?

points :
(or/c (listof (is-a?/c point%))

(listof (cons/c real? real?)))

xoffset : real? = 0

yoffset : real? = 0

fill-style : (or/c 'odd-even 'winding) = 'odd-even

Sets the region to the interior of the polygon specified by points . A pair is treated as a
point where the car of the pair is the x-value and the cdr is the y-value.

See also draw-polygon in dc<%>, since the region content is determined the same way as
brush-based filling in a dc<%>.

The fill style affects how well the region reliably combines with other regions (via union,
xor, and subtract). The region is also atomic for the purposes of region combination.

(send a-region set-rectangle x

y

width

height) → void?

106

x : real?

y : real?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

Sets the region to the interior of the specified rectangle.

The region corresponds to a clockwise path with a flexible fill. The region is also atomic for
the purposes of region combination.

(send a-region set-rounded-rectangle x

y

width

height

[radius]) → void?

x : real?

y : real?

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

radius : real? = -0.25

Sets the region to the interior of the specified rounded rectangle.

See also draw-rounded-rectangle in dc<%>, since the region content is determined the
same way as brush-based filling in a dc<%>.

The region corresponds to a clockwise path with a flexible fill. The region is also atomic for
the purposes of region combination.

(send a-region subtract rgn) → void?

rgn : (is-a?/c region%)

Sets the region to the subtraction of itself minus the given region. In other words, a point is
removed from the region if it is included in the given region. (The given region may contain
points that are not in the current region; such points are ignored.)

This region’s drawing context and given region’s drawing context must be the same, or they
must both be unassociated to any drawing context.

The result is consistent across platforms and devices, but it is never a true subtraction. A
subtraction corresponds to combining the sub-paths of this region with the reversed sub-
paths of the given region, then intersecting the result with this region. This fails as a true
subtraction, because the boundary of loops (with either 'odd-even or 'winding filling) is
ambiguous.

(send a-region union rgn) → void?

rgn : (is-a?/c region%)

107

Sets the region to the union of itself with the given region.

This region’s drawing context and given region’s drawing context must be the same, or they
must both be unassociated to any drawing context.

A union corresponds to combining the sub-paths of each region into one path, using an
'odd-even fill if either of the region uses an 'odd-even fill (otherwise using a 'winding
fill), a 'winding fill in either region uses a winding fill, or the fill remains a flexible fill if
both paths have a flexible fill. Consequently, while the result is consistent across platforms
and devices, it is a true union only for certain input regions. For example, it is a true union
for non-overlapping atomic and union regions. It is also a true union for atomic and union
regions (potentially overlapping) that are all clockwise and use 'winding fill or if the fills
are all flexible fills.

(send a-region xor rgn) → void?

rgn : (is-a?/c region%)

Sets the region to the xoring of itself with the given region (i.e., contains points that are
enclosed by exactly one of the two regions).

This region’s drawing context and given region’s drawing context must be the same, or they
must both be unassociated to any drawing context.

The result is consistent across platforms and devices, but it is not necessarily a true xoring.
An xoring corresponds to combining the sub-paths of this region with the reversed sub-paths
of the given region. The result uses an 'odd-even fill if either of the region uses an 'odd-

even fill, a 'winding fill in either region uses a winding fill, or the fill remains a flexible
fill if both paths have a flexible fill. Consequently, the result is a reliable xoring only for
certain input regions. For example, it is reliable for atomic and xoring regions that all use
'even-odd fill.

108

25 svg-dc%

svg-dc% : class?
superclass: object%

extends: dc<%>

Similar to post-script-dc%, but generates a SVG (scalable vector graphics) file instead
of a PostScript file.

Be sure to use the following methods to start/end drawing:

• start-doc

• start-page

• end-page

• end-doc

Attempts to use a drawing method outside of an active page raises an exception.

(new svg-dc%

[width width]

[height height]

[output output]

[[exists exists]]) → (is-a?/c svg-dc%)

width : (and/c real? (not/c negative?))

height : (and/c real? (not/c negative?))

output : (or/c path-string? output-port?)

exists :
(or/c 'error 'append 'update 'can-update

'replace 'truncate

'must-truncate 'truncate/replace)

= 'error

The width and height arguments determine the width and height of the generated image.

The image is written to output . If output is a path and the file exists already, then exists
determines how the existing file is handled in the same way as for the #:exists argument
to open-output-file.

109

26 Drawing Functions

(current-ps-setup) → (is-a?/c ps-setup%)

(current-ps-setup pss) → void?

pss : (is-a?/c ps-setup%)

A parameter that determines the current PostScript configuration settings. See post-

script-dc% and printer-dc%.

(get-face-list [kind
#:all-variants? all-variants?])

→ (listof string?)

kind : (or/c 'mono 'all) = 'all

all-variants? : any/c = #f

Returns a list of font face names available on the current system. If kind is 'mono, then
only faces that are known to correspond to monospace fonts are included in the list.

If all-variants? is #f (the default), then the result is in more standard terminology a list
of font family names, which are combined with style and weight options to arrive at a face;
if all-variants? is true, then the result includes a string for each available face in the
family.

(get-family-builtin-face family) → string?

family :
(or/c 'default 'decorative 'roman 'script

'swiss 'modern 'symbol 'system)

Returns the built-in default face mapping for a particular font family.

See font% for information about family .

(make-bitmap width

height

[alpha?
#:backing-scale backing-scale]) → (is-a?/c bitmap%)

width : exact-positive-integer?

height : exact-positive-integer?

alpha? : any/c = #t

backing-scale : (>/c 0.0) = 1.0

Returns (make-object bitmap% width height #f alpha? backing-scale), but
this procedure is preferred because it defaults alpha? in a more useful way.

See also make-platform-bitmap and §1.8 “Portability and Bitmap Variants”.

Changed in version 1.1 of package draw-lib: Added the #:backing-scale optional argument.

110

(make-brush [#:color color

#:style style

#:stipple stipple

#:gradient gradient

#:transformation transformation

#:immutable? immutable?]) → (is-a?/c brush%)

color : (or/c string? (is-a?/c color%)) = (make-color 0 0 0)

style :

(or/c 'transparent 'solid 'opaque

'xor 'hilite 'panel

'bdiagonal-hatch 'crossdiag-hatch

'fdiagonal-hatch 'cross-hatch

'horizontal-hatch 'vertical-hatch)

= 'solid

stipple : (or/c #f (is-a?/c bitmap%)) = #f

gradient :
(or/c #f

(is-a?/c linear-gradient%)

(is-a?/c radial-gradient%))

= #f

transformation :
(or/c #f (vector/c (vector/c real? real? real?

real? real? real?)

real? real? real? real? real?))

= #f

immutable? : any/c = #t

Creates a brush% instance. This procedure provides a nearly equivalent interface compared
to using make-object with brush%, but it also supports the creation of immutable brushes
(and creates immutable burshes by default).

When stipple is #f, gradient is #f, transformation is #f, immutable? is true, and
color is either a color% object or a string in the-color-database, the result brush is
created via find-or-create-brush of the-brush-list.

(make-color red green blue [alpha]) → (is-a?/c color%)

red : byte?

green : byte?

blue : byte?

alpha : (real-in 0 1) = 1.0

Creates a color% instance. This procedure provides a nearly equivalent interface compared
to using make-object with color%, but it creates an immutable color% object.

To create an immutable color based on a color string, use find-color or the-color-
database.

111

(make-font [#:size size

#:face face

#:family family

#:style style

#:weight weight

#:underlined? underlined?

#:smoothing smoothing

#:size-in-pixels? size-in-pixels?

#:hinting hinting]) → (is-a?/c font%)

size : (integer-in 1 1024) = 12

face : (or/c string? #f) = #f

family :
(or/c 'default 'decorative 'roman 'script

'swiss 'modern 'symbol 'system)
= 'default

style : (or/c 'normal 'italic 'slant) = 'normal

weight : (or/c 'normal 'bold 'light) = 'normal

underlined? : any/c = #f

smoothing :
(or/c 'default 'partly-smoothed

'smoothed 'unsmoothed)
= 'default

size-in-pixels? : any/c = #f

hinting : (or/c 'aligned 'unaligned) = 'aligned

Creates a font% instance. This procedure provides an equivalent but more convenient inter-
face compared to using make-object with font%.

(make-monochrome-bitmap width height [bits]) → (is-a?/c bitmap%)

width : exact-positive-integer?

height : exact-positive-integer?

bits : (or/c bytes? #f) = #f

Returns (make-object bitmap% width height #t) if bits is #f, or (make-object
bitmap% bits width height) otherwise. This procedure is preferred to using make-

object on bitmap% because it is less overloaded.

(make-pen [#:color color

#:width width

#:style style

#:cap cap

#:join join

#:stipple stipple

#:immutable? immutable?]) → (is-a?/c pen%)

color : (or/c string? (is-a?/c color%)) = (make-color 0 0 0)

width : (real-in 0 255) = 0

style :

(or/c 'transparent 'solid 'xor 'hilite

'dot 'long-dash 'short-dash 'dot-dash

'xor-dot 'xor-long-dash 'xor-short-dash

'xor-dot-dash)

= 'solid

112

cap : (or/c 'round 'projecting 'butt) = 'round

join : (or/c 'round 'bevel 'miter) = 'round

stipple : (or/c #f (is-a?/c bitmap%)) = #f

immutable? : any/c = #t

Creates a pen% instance. This procedure provides a nearly equivalent interface compared
to using make-object with pen%, but it also supports the creation of immutable pens (and
creates immutable pens by default).

When stipple is #f, immutable? is true, and color is either a color% object or a string
in the-color-database, the result pen is created via find-or-create-pen of the-pen-
list.

(make-platform-bitmap width

height

[#:backing-scale backing-scale])
→ (is-a?/c bitmap%)

width : exact-positive-integer?

height : exact-positive-integer?

backing-scale : (>/c 0.0) = 1.0

Creates a bitmap that uses platform-specific drawing operations as much as possible, which
is different than a make-bitmap result on Windows and Mac OS X. See §1.8 “Portability
and Bitmap Variants” for more information.

Changed in version 1.1 of package draw-lib: Added the #:backing-scale optional argument.

(read-bitmap in

[kind
bg-color

complain-on-failure?

#:backing-scale backing-scale

#:try-@2x? try-@2x?]) → (is-a?/c bitmap%)

in : (or path-string? input-port?)

kind :

(or/c 'unknown 'unknown/mask 'unknown/alpha

'gif 'gif/mask 'gif/alpha

'jpeg 'jpeg/alpha

'png 'png/mask 'png/alpha

'xbm 'xbm/alpha 'xpm 'xpm/alpha

'bmp 'bmp/alpha)

= 'unknown/alpha

bg-color : (or/c (is-a?/c color%) #f) = #f

complain-on-failure? : any/c = #t

backing-scale : (>/c 0.0) = 1.0

try-@2x? : any/c = #f

113

Returns (make-object bitmap% in kind bg-color complain-on-failure?

backing-scale), but this procedure is preferred because it defaults kind and complain-

on-failure? in a more useful way.

If try-@2x? is true, in is a path, and kind is not one of the /mask symbols, then read-

bitmap checks whether a file exists matching in but with "@2x" added to the name (before
the file suffix, if any). If the "@2x" path exists, it is used instead of in , and backing-store

is multiplied by 2.

Changed in version 1.1 of package draw-lib: Added the #:backing-scale and #:try-@2x? optional argu-
ments.

(recorded-datum->procedure datum)

→ ((is-a?/c dc<%>) . -> . void?)

datum : any/c

Converts a value from get-recorded-datum in record-dc% to a drawing procedure.

the-brush-list : (is-a?/c brush-list%)

See brush-list%.

the-color-database : (is-a?/c color-database<%>)

See color-database<%>.

the-font-list : (is-a?/c font-list%)

See font-list%.

the-font-name-directory : (is-a?/c font-name-directory<%>)

See font-name-directory<%>.

the-pen-list : (is-a?/c pen-list%)

See pen-list%.

114

27 Drawing Contracts

This page documents the contracts that are used to describe the specification of
racket/draw objects and functions.

font-family/c : flat-contract?

Recognizes font designations. Corresponds to the family initialization argument of the
font% class.

Equivalent to the following definition:

(or/c 'default 'decorative 'roman 'script 'swiss

'modern 'symbol 'system)

font-style/c : flat-contract?

Recognizes font styles. Corresponds to the style initialization argument of the font% class.

Equivalent to the following definition:

(or/c 'normal 'italic 'slant)

font-weight/c : flat-contract?

Recognizes font weights. Corresponds to the weight initialization argument of the font%

class.

Equivalent to the following definition:

(or/c 'normal 'bold 'light)

font-smoothing/c : flat-contract?

Recognizes a font smoothing amount. Corresponds to the smoothing initialization argu-
ment of the font% class.

Equivalent to the following definition:

(or/c 'default 'partly-smoothed

'smoothed 'unsmoothed)

115

font-hinting/c : flat-contract?

Recognizes font hinting modes. Corresponds to the hinting initialization argument of the
font% class.

Equivalent to the following definition:

(or/c 'aligned 'unaligned)

pen-style/c : flat-contract?

Recognizes pen styles. Corresponds to the style initialization argument of the pen% class.

Equivalent to the following definition:

(or/c 'transparent 'solid 'xor 'hilite

'dot 'long-dash 'short-dash 'dot-dash

'xor-dot 'xor-long-dash 'xor-short-dash

'xor-dot-dash)

pen-cap-style/c : flat-contract?

Recognizes pen cap styles. Corresponds to the cap initialization argument of the pen% class.

Equivalent to the following definition:

(or/c 'round 'projecting 'butt)

pen-join-style/c : flat-contract?

Recognizes pen join styles. Corresponds to the join initialization argument of the pen%

class.

Equivalent to the following definition:

(or/c 'round 'bevel 'miter)

brush-style/c : flat-contract?

116

Recognizes brush styles. Corresponds to the style initialization argument of the brush%

class.

Equivalent to the following definition:

(or/c 'transparent 'solid 'opaque

'xor 'hilite 'panel

'bdiagonal-hatch 'crossdiag-hatch

'fdiagonal-hatch 'cross-hatch

'horizontal-hatch 'vertical-hatch)

117

28 Signature and Unit

The racket/draw/draw-sig and racket/draw/draw-unit libraries define the draw^

signature and draw@ implementation.

28.1 Draw Unit

(require racket/draw/draw-unit) package: draw-lib

draw@ : unit?

Re-exports all of the exports of racket/draw.

28.2 Draw Signature

(require racket/draw/draw-sig) package: draw-lib

draw^ : signature

Includes all of the identifiers exported by racket/draw.

118

29 Unsafe Libraries

The racket/draw library is currently implemented using Cairo and Pango. The get-

handle in bitmap% method exposes the underlying Cairo surface for a bitmap% object,
while make-handle-brush supports the creation of a brush from an existing Cairo sur-
face. The representation of handles for these methods, however, is subject to change if the
racket/draw library is implemented differently in the future.

29.1 Handle Brushes

(require racket/draw/unsafe/brush) package: draw-lib

(make-handle-brush handle

width

height

transformation

[#:copy? copy?]) → (is-a?/c brush%)

handle : cpointer?

width : exact-nonnegative-integer?

height : exact-nonnegative-integer?

transformation :
(or/c #f (vector/c (vector/c real? real? real?

real? real? real?)

real? real? real? real? real?))

copy? : any/c = #t

Creates a brush given a handle that (currently) is a cairo_surface_t. If copy? is true,
then the surface is copied, so that it can be freed or modified after the brush is created; if
copy? is #f, the surface must remain available and unchanged as long as the brush can be
used.

The width and height arguments specify the surface bounds for use when the surface
must be copied—even when copy? is #f. The surface may need to be converted to a stipple
bitmap, for example, when drawing to a monochrome target.

The given surface is treated much like a stipple bitmap: it is implicitly repeated, and the
given transformation (if any) determines the surface’s alignment relative to the target
drawing context.

When the brush is used with a record-dc% object, and if that object’s get-recorded-

datum method is called, then the surface is effectively converted to a stipple bitmap for the
result datum.

119

29.2 Cairo Library

(require racket/draw/unsafe/cairo-lib)

package: draw-lib

cairo-lib : (or/c ffi-lib? #f)

A reference to the Cairo library for use with functions such as get-ffi-obj, or #f if Cairo
is unavailable.

120

30 Platform Dependencies

On Windows and Mac OS X, the Racket distribution includes all necessary libraries that
are not part of a stock installation of the operating system, and the libraries are included
in any distribution created with raco distribute (see §3 “raco distribute: Sharing
Stand-Alone Executables”).

On Unix, the following system libraries must be installed. Numbers in square brackets
indicate a version that is tried first, and if that fails, the name without the version is tried.

• "libglib-2.0[.0]"

• "libgmodule-2.0[.0]"

• "libgobject-2.0[.0]"

• "libpango-1.0[.0]"

• "libpangocairo-1.0[.0]"

• "libcairo[.2]"

• "libjpeg[.{62,8,9}]"

• "libpng[{16[.16],15[.15],12[.0]]}"

121

Bibliography

[Adobe99] Adobe Systems Incorporated, PostScript Lan-
guage Reference, third edition. 1999.
http://partners.adobe.com/public/developer/en/ps/PLRM.pdf

122

http://partners.adobe.com/public/developer/en/ps/PLRM.pdf

Index
'aligned, 68
alignment scale, 55
alpha, 35
alpha blending, 15
alpha channel, 14
Alpha Channels and Alpha Blending, 14
append, 62
arc, 62
atomic, 108
backing scale, 19
'bdiagonal-hatch, 30
make-object, 19
bitmap%, 19
new, 26
bitmap-dc%, 26
blue, 35
'bold, 67
brush, 5
brush stipple, 30
brush style, 30
brush transformation, 30
new, 31
brush%, 30
new, 34
brush-list%, 34
brush-style/c, 116
cache-font-metrics-key, 42
Cairo Library, 120
cairo-lib, 120
call-as-current, 79
cap style, 86
clear, 42
Clipping, 15
clipping region, 15
close, 63
closed sub-paths, 62
make-object, 35
color%, 35
color-database<%>, 37
copy, 42

copy-from, 36
copy-from, 95
'cross-hatch, 31
'crossdiag-hatch, 30
current-ps-setup, 110
curve-to, 63
DC, 4
new, 62
dc-path%, 62
dc<%>, 42
'decorative, 67
'default, 67
'default, 68
'dot, 85
'dot-dash, 85
Draw Signature, 118
Draw Unit, 118
draw-arc, 42
draw-bitmap, 43
draw-bitmap-section, 44
draw-bitmap-section-smooth, 26
draw-ellipse, 45
draw-line, 45
draw-lines, 45
draw-path, 46
draw-point, 46
draw-polygon, 46
draw-rectangle, 47
draw-rounded-rectangle, 47
draw-spline, 48
draw-text, 48
draw@, 118
draw^, 118
drawing, outlines, 31
drawing context, 4
Drawing Contracts, 115
drawing curves, 48
Drawing Functions, 110
Drawing Paths, 9
ellipse, 63
Encapsulated PostScript (EPS), 94
end-doc, 49

123

end-page, 49
erase, 49
'fdiagonal-hatch, 31
find-color, 41
find-family-default-font-id, 73
find-or-create-brush, 34
find-or-create-font, 71
find-or-create-font-id, 73
find-or-create-pen, 91
flexible fill, 104
flush, 49
make-object, 68
font%, 67
font-family/c, 115
font-hinting/c, 116
new, 71
font-list%, 71
font-name-directory<%>, 73
font-smoothing/c, 115
font-style/c, 115
font-weight/c, 115
gamma correction, 23
get-accum-size, 76
get-alpha, 50
get-argb-pixels, 20
get-argb-pixels, 27
get-background, 50
get-backing-scale, 21
get-bitmap, 28
get-bounding-box, 64
get-bounding-box, 104
get-brush, 50
get-cap, 86
get-char-height, 50
get-char-width, 50
get-circles, 102
get-clipping-region, 50
get-color, 87
get-color, 31
get-command, 95
get-dc, 104
get-depth, 21

get-depth-size, 76
get-device-scale, 50
get-double-buffered, 76
get-editor-margin, 95
get-face, 69
get-face-list, 110
get-face-name, 74
get-family, 69
get-family, 74
get-family-builtin-face, 110
get-file, 95
get-font, 50
get-font-id, 69
get-font-id, 74
get-gl-context, 51
get-gradient, 31
get-handle, 21
get-handle, 80
get-handle, 32
get-height, 21
get-hinting, 69
get-initial-matrix, 51
get-join, 87
get-level-2, 95
get-line, 83
get-loaded-mask, 21
get-margin, 96
get-mode, 96
get-multisample-size, 76
get-names, 41
get-orientation, 96
get-origin, 51
get-paper-name, 96
get-path-bounding-box, 51
get-pen, 51
get-pixel, 28
get-point-size, 69
get-post-script-name, 74
get-preview-command, 96
get-recorded-datum, 103
get-recorded-procedure, 103
get-rotation, 52

124

get-scale, 52
get-scaling, 97
get-screen-name, 74
get-share-context, 76
get-size, 52
get-size-in-pixels, 69
get-smoothing, 70
get-smoothing, 52
get-stencil-size, 76
get-stereo, 77
get-stipple, 32
get-stipple, 88
get-stops, 83
get-stops, 102
get-style, 70
get-style, 32
get-style, 88
get-text-background, 53
get-text-extent, 53
get-text-foreground, 54
get-text-mode, 54
get-transformation, 32
get-transformation, 54
get-translation, 97
get-underlined, 70
get-weight, 70
get-width, 22
get-width, 88
get-x, 92
get-y, 92
GIF, 23
new, 76
gl-config%, 76
gl-context<%>, 79
glyph-exists?, 54
gradient, 30
green, 35
Handle Brushes, 119
has-alpha-channel?, 22
'hilite, 30
'hilite, 85
'horizontal-hatch, 31

in-region?, 104
intersect, 105
is-color?, 22
is-empty?, 105
is-immutable?, 89
is-immutable?, 32
is-immutable?, 36
'italic, 67
join style, 87
JPEG, 23
JPEG, 24
'light, 67
line-to, 64
linear gradient, 81
new, 81
linear-gradient%, 81
lines, 64
Lines and Simple Shapes, 4
load-file, 22
'long-dash, 85
make-bitmap, 110
make-brush, 111
make-color, 111
make-dc, 24
make-font, 112
make-handle-brush, 119
make-monochrome-bitmap, 112
make-pen, 112
make-platform-bitmap, 113
'modern, 67
move-to, 64
'normal, 67
'normal, 67
ok?, 80
ok?, 54
ok?, 24
ok?, 36
'opaque, 30
open sub-path, 62
open?, 64
OpenGL, 79
Overview, 4

125

'panel, 30
'partly-smoothed, 68
path, 9
paths, flipping, 66
new, 84
pdf-dc%, 84
pen stipple, 85
pen style, 85
new, 86
pen%, 85
Pen, Brush, and Color Objects, 6
pen-cap-style/c, 116
pen-join-style/c, 116
new, 91
pen-list%, 91
pen-style/c, 116
Platform Dependencies, 121
PNG, 23
PNG, 24
make-object, 92
point%, 92
Portability and Bitmap Variants, 17
new, 93
post-script-dc%, 93
new, 95
ps-setup%, 95
racket/draw, 1
racket/draw/draw-sig, 118
racket/draw/draw-unit, 118
racket/draw/unsafe/brush, 119
racket/draw/unsafe/cairo-lib, 120
radial gradient, 100
new, 100
radial-gradient%, 100
read-bitmap, 113
new, 103
record-dc%, 103
recorded-datum->procedure, 114
rectangle, 64
red, 35
new, 104
region%, 104

reset, 65
resume-flush, 54
reverse, 65
'roman, 67
rotate, 65
rotate, 55
rounded-rectangle, 65
save-file, 24
scale, 55
scale, 65
screen-glyph-exists?, 70
SCREEN_GAMMA, 23
'script, 67
set, 35
set-accum-size, 77
set-alignment-scale, 55
set-alpha, 55
set-arc, 105
set-argb-pixels, 28
set-argb-pixels, 25
set-background, 56
set-bitmap, 29
set-brush, 56
set-cap, 89
set-clipping-rect, 56
set-clipping-region, 56
set-color, 89
set-color, 32
set-command, 97
set-depth-size, 77
set-double-buffered, 77
set-editor-margin, 97
set-ellipse, 105
set-file, 97
set-font, 57
set-initial-matrix, 57
set-join, 89
set-level-2, 97
set-loaded-mask, 25
set-margin, 98
set-mode, 98
set-multisample-size, 77

126

set-orientation, 98
set-origin, 57
set-paper-name, 98
set-path, 106
set-pen, 57
set-pixel, 29
set-polygon, 106
set-post-script-name, 75
set-preview-command, 98
set-rectangle, 106
set-rotation, 58
set-rounded-rectangle, 107
set-scale, 58
set-scaling, 98
set-screen-name, 75
set-share-context, 77
set-smoothing, 58
set-stencil-size, 77
set-stereo, 78
set-stipple, 33
set-stipple, 89
set-style, 90
set-style, 33
set-text-background, 59
set-text-foreground, 59
set-text-mode, 59
set-transformation, 59
set-translation, 99
set-width, 90
set-x, 92
set-y, 92
'short-dash, 85
Signature and Unit, 118
'slant, 67
'smoothed, 68
'solid, 30
'solid, 85
start-doc, 60
start-page, 60
stipple, 7
subtract, 107
suspend-flush, 60

new, 109
svg-dc%, 109
swap-buffers, 80
'swiss, 67
'symbol, 67
'system, 67
Text, 13
text-outline, 66
The Racket Drawing Toolkit, 1
the-brush-list, 114
the-brush-list, 31
the-color-database, 114
the-color-database, 37
the-font-list, 114
the-font-list, 68
the-font-name-directory, 114
the-font-name-directory, 74
the-font-name-directory, 74
the-pen-list, 114
the-pen-list, 85
the-pen-list, 91
transform, 60
transform, 66
Transformations, 8
translate, 66
translate, 60
'transparent, 30
'transparent, 85
try-color, 61
'unaligned, 68
union, 107
Unsafe Libraries, 119
'unsmoothed, 68
'vertical-hatch, 31
XBM, 23
XBM, 24
xor, 108
'xor, 30
'xor, 85
'xor-dot, 85
'xor-dot-dash, 85
'xor-long-dash, 85

127

'xor-short-dash, 85
XPM, 24
XPM, 23

128

	1 Overview
	1.1 Lines and Simple Shapes
	1.2 Pen, Brush, and Color Objects
	1.3 Transformations
	1.4 Drawing Paths
	1.5 Text
	1.6 Alpha Channels and Alpha Blending
	1.7 Clipping
	1.8 Portability and Bitmap Variants

	2 IdentifierColorbluebitmap%
	3 IdentifierColorbluebitmap-dc%
	4 IdentifierColorbluebrush%
	5 IdentifierColorbluebrush-list%
	6 IdentifierColorbluecolor%
	7 IdentifierColorbluecolor-database<%>
	8 IdentifierColorbluedc<%>
	9 IdentifierColorbluedc-path%
	10 IdentifierColorbluefont%
	11 IdentifierColorbluefont-list%
	12 IdentifierColorbluefont-name-directory<%>
	13 IdentifierColorbluegl-config%
	14 IdentifierColorbluegl-context<%>
	15 IdentifierColorbluelinear-gradient%
	16 IdentifierColorbluepdf-dc%
	17 IdentifierColorbluepen%
	18 IdentifierColorbluepen-list%
	19 IdentifierColorbluepoint%
	20 IdentifierColorbluepost-script-dc%
	21 IdentifierColorblueps-setup%
	22 IdentifierColorblueradial-gradient%
	23 IdentifierColorbluerecord-dc%
	24 IdentifierColorblueregion%
	25 IdentifierColorbluesvg-dc%
	26 Drawing Functions
	27 Drawing Contracts
	28 Signature and Unit
	28.1 Draw Unit
	28.2 Draw Signature

	29 Unsafe Libraries
	29.1 Handle Brushes
	29.2 Cairo Library

	30 Platform Dependencies
	Bibliography
	Index
	Index

