Creating PLT-Style Web Pages

Version 6.0.1

May 5, 2014

#lang plt-web package: plt-web-1ib

The plt-web language builds on scribble/html for generating pages in the same style as
http://racket-lang.org/.

Unlike scribble/html, the values of expressions in a plt-web module are not treated as
HTML. Instead, top-level expressions in plt-web are as in racket/base.

Meanwhile, a main submodule is added that runs render-all (after parsing command-line
arguments) to render all registered resources, including HTML pages. Pages are meant to be
registers through a page form that is defined by a define-context or define+provide-
context declaration that configures a particular site (i.e., collection of pages).

http://racket-lang.org/

1 Configuring a Site

A site is identifiers by a relative directory path, which determines where the site’s content is
generated. For a non-local build, the relative directory is mapped to a destination URL via
url-roots.

(site dir

#:url url

ralways-abs-url? always-abs-url?
:generate? generate?

:share-from share-from
:page-style? page-style?
:page-headers page-headers
:meta? meta?

—

:robots robots
:htaccess htaccess

H o R H

‘navigation navigation]) — site?
dir : path-string?

url : (or/c string? #f) = #f
always-abs-url? : any/c = #t

generate? : any/c = #t

share-from : (or/c site? #f) = #f
page-style? : any/c = #t

page-headers : outputable/c = null

meta? : any/c = page-style?

robots : (or/c #f #t outputable/c) = #t
htaccess : (or/c #f #t outputable/c) = #t
navigation : (listof outputable/c) = null

Creates a value that represents a site.

If url is not #£, then it will be registered to url-roots for a build in web mode (as opposed
to local mode) and recorded as the target for dir in a "sites.rktd" file when building in
deployment mode.

If always-abs-url?is true (the default), then url is registered with a > abs flag, so that (in
deployment mode) references within a site are relative to the site root, as opposed to relative
to the referencing resource.

If generate?is #f, then resources for the site (such as icons or CSS files) are not generated.

If share-from is a site, then resources generated for the site (such as icons or CSS files)
are used when as possible for the new site.

If page-style?is true, HTML pages generated for the site include content to set the style
of the overall page. Otherwise, only sufficient resources and content are included to specify

the style of the PLT web-page header (i.e., a bar with the Racket logo).

The page-headers argument provides content for the header of any HTML page generated
at the site via page or page*.

If meta? is true, then ".htaccess", "robots.txt", and similar files are generated for
the site. The robots and htaccess arguments determine robot and access information
included by the default resource-mapping function. A #t value enables normal access, a #f
value disables access, and any other value is used as the corresponding specification.

The navigation argument determines content (usually links) to be included in the PLT
header. Currently, up to four such links are supported.

(site? v) — boolean?
v : any/c
Returns #t if v represents a site, #f otherwise.
(site-dir s) — path-string?
s @ site?
Extracts the destination directory of s.
(site-css-path s) — outputable/c
s @ site?
Extracts a reference to a CSS resource for HTML pages at site s.
(site-favicon-path s) — outputable/c
s @ site?
Extracts a reference to a "favicon.ico" file for the site s. The result is #f if meta-file
resources are not generated for the site.
(site-navbar s) — outputable/c
s @ site?
Generates HTML for the banner on HTML pages at the site s.
(site-navbar-dynamic-js s) — outputable/c

s : site?

Generates a JavaScript definition of a AddNavbarToBody function, which adds a banner
dynamically to the current page for a page at site s.

2 Creating Site Content

(page keyword-arg ... form ...)

keyword-arg = keyword expr

Equivalent to (page* keyword-arg ... (lambda () (begin/text form ...)))

(page* #:site s
:html-only html-only?
:id id
:file file
:title title
:link-title link-title
:window-title window-title
:width width
:description description
:extra-headers extra-headers
:extra-body-attrs body-attrs
:referrer referrer
:part-of part-of]

content) — outputable/c
s @ site?
html-only? : any/c = #f
id : path-string? = #f
file : (or/c path-string? #f) = #f

R E E

title : string? = (... id)
link-title : outputable/c = title
window-title : string? = (string-append "Racket: " label)

width : (or/c #f >full outputable/c) = #f
description : string? = #f
extra-headers : outputable/c = #f
body-attrs : outputable/c = #f
referrer : (string? outputable/c -> . outputable/c)
(X (url . content)
" (a href: url (if (null? content) linktitle content)))
part-of : (or/c #f symbol?) = #f
content : outputable/c

Registers an HTML page as a resource (via resource) and returns a value that can be used
to refer to the page within another resource, assuming that html-only? is #f. If html-
only? is true, then the result represents HTML for the page, instead of a way to reference
the page, and no resource is registered.

The page is generated as part of the site s, and either an id or file must be provided
to identify the page within the site. Furthermore, either id or title must be provided to

determine the page’s title.

The link-title and window-title arguments control separate the title of the page as
used by references and for the page as viewed.

The width argument determines the page wide: #f is the default, *full is full width, and
any other value is used as a CSS width.

The description argument provides a meta tag for the page.

The part-of argument determines where the page resides in a larger site when the layout
uses a global navigation bar (but the current format does not use a navigation bar in that
sense).

(plain keyword-arg ... form ...)

keyword-arg = keyword expr

Equivalent to (plain* keyword-arg ... (lambda () (begin/text form ...))).

(plain* #:site s
[#:id id
#:suffix suffix
#:file file
#:referrer referrer
#:newline newline?]
content) — outputable/c
s @ site?
id : path-string? = #f
suffix : (or/c #f string?) = #f
file : (or/c path-string? #f) = #f
referrer : (string? outputable/c -> . outputable/c)
_ (A (url . content)
~ (a href: url (if (null? content) linktitle content)))
newline? : any/c = #t
content : outputable/c

Like pagex, but for a resource that is a plain file.

(copyfile #:site s src [dest]) — outputable/c

s : site?
src : path-string?
dest : string? = (basename src)
(symlink #:site s src [dest]) — outputable/c
s : site?

src : path-string?
dest : string? = (basename src)

Registers a resource that is either a copy of a file or a symbolic link, returning a value that
can be used to reference the resource.

(make-indexes s
dir
[#:depth depth
#:use-dir? use-dir?]) — void?
s : site?
dir : (or/c ’same relative-path?)
depth : (or/c #f exact-nonnegative-integer?) = #f
use-dir? : ((or/c ’same relative-path?) . -> . any/c)
= (lambda (dir) #t)

Uses index-site and index-page to register an "index.html" file for every directory
within dir (relative to the current directory) that does not have an "index.html" file al-
ready. If depth is not #£, then subdirectories are explored at most depth layers deep.
The use-dir? predicate is called for each directory to determine whether the directory’s
subdirectories are traversed.

The generated index files are registered for the site s at destinations that correspond to
treating the current directory as the site root.

(index-site? v) — boolean?
v : any/c
(index-site site) — index-site?
site : site?
(index-page isite
path
content
[#:html-only? html-only?]) — outputable/c
isite : index-site?
path : (or/c ’same relative-path?)
content : (listof (cons/c path-string? (or/c exact-integer? ’dir)))
html-only? : any/c = #f

The index-page function registers an individual "index.html" file (or returns its content
if html-only?is true) for the given index site, where an index site is created once for a given
site (to register support resources, such as icons). The "index.html" file is generated for
the subdirectory indicated by path. The index file lists the content specified by content,
where an integer corresponds to a file size and ’dir indicates a directory.

(call-with-registered-roots thunk) — any
thunk : (-> any)

Calls thunk with url-roots set to a mapping for registered sites.

3 Generating Site Content

To generate web pages from a plt-web module, run the module, typically with a -o flag to
specify the output directory. For example, if "pages.rkt" is the module, then

racket pages.rkt -o /tmp/pages
builds the output to a " /tmp/pages" directory.

The command-line flags are recognized by the main submodule that is introduced by plt-
web:

* -wor --web — Build output in deployment mode, where references within a top-level
site use relative paths or site-relative paths (that start with /), while references across
top-level sites use absolute URLs. This mode is the default.

e -1 or --local — Build output in local mode using "file://" URLs between top-
level sites and relative paths within a site.

e -r or --relative — Build output in local-relative mode, where all references use
relative paths, exploiting the fact that sites are rendered in adjacent directories within
the output directory. (You may need to deal with an occasional manual selection of
"index.html" when viewing relative output.)

* -o (dir) or --output (dir) — Writes output to subdirectories of (dir), which defaults
to the current directory. All existing files and directories within (dir) will be deleted.
As a safety check, the destination directory must overlap with any installed package
directory.

e -f or --force — Overwrite files in the destination directory.

* +e (path) or ++extra (path) — Require the module (path) before running build-
all. This flag can be used multiple times.

4 Utilities

(basename p) — string?
p : path-string?

Extracts a file name from a path.
(web-path str ...) — string?

str : string?

Joins strs with a "'/" separator to form a relative URL path.

	1 Configuring a Site
	2 Creating Site Content
	3 Generating Site Content
	4 Utilities

