
Unstable GUI: May Change Without Warning
Version 6.0

February 18, 2014

This manual documents GUI libraries available in the unstable collection. See Unstable:
May Change Without Warning for more information about unstable libraries.

1



1 Notify-boxes

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/gui/notify) package: gui-lib

notify-box% : class?
superclass: object%

A notify-box contains a mutable cell. The notify-box notifies its listeners when the contents
of the cell is changed.

Examples:

> (define nb (new notify-box% (value 'apple)))

> (send nb get)

'apple

> (send nb set 'orange)

> (send nb listen (lambda (v) (printf "New value: ∼s\n" v)))

> (send nb set 'potato)

New value: potato

(new notify-box% [value value]) → (is-a?/c notify-box%)

value : any/c

Creates a notify-box initially containing value .

(send a-notify-box get) → any/c

Gets the value currently stored in the notify-box.

(send a-notify-box set v) → void?

v : any/c

Updates the value stored in the notify-box and notifies the listeners.

(send a-notify-box listen listener) → void?

listener : (-> any/c any)

Adds a callback to be invoked on the new value when the notify-box’s contents
change.

2



(send a-notify-box remove-listener listener) → void?

listener : (-> any/c any)

Removes a previously-added callback.

(send a-notify-box remove-all-listeners) → void?

Removes all previously registered callbacks.

(notify-box/pref proc

[#:readonly? readonly?]) → (is-a?/c notify-box%)

proc : (case-> (-> any/c) (-> any/c void?))

readonly? : boolean? = #f

Creates a notify-box with an initial value of (proc). Unless readonly? is true, proc is
invoked on the new value when the notify-box is updated.

Useful for tying a notify-box to a preference or parameter. Of course, changes made directly
to the underlying parameter or state are not reflected in the notify-box.

Examples:

> (define animal (make-parameter 'ant))

> (define nb (notify-box/pref animal))

> (send nb listen (lambda (v) (printf "New value: ∼s\n" v)))

> (send nb set 'bee)

New value: bee

> (animal 'cow)

> (send nb get)

'bee

> (send nb set 'deer)

New value: deer

> (animal)

'deer

(define-notify name value-expr)

value-expr : (is-a?/c notify-box%)

3



Class-body form. Declares name as a field and get-name , set-name , and listen-name

as methods that delegate to the get, set, and listen methods of value.

The value-expr argument must evaluate to a notify-box, not just the initial contents for a
notify box.

Useful for aggregating many notify-boxes together into one “configuration” object.

Examples:

> (define config%

(class object%

(define-notify food (new notify-box% (value 'apple)))

(define-notify animal (new notify-box% (value 'ant)))

(super-new)))

> (define c (new config%))

> (send c listen-food

(lambda (v) (when (eq? v 'honey) (send c set-

animal 'bear))))

> (let ([food (get-field food c)])

(send food set 'honey))

> (send c get-animal)

'bear

(menu-option/notify-box parent

label

notify-box)

→ (is-a?/c checkable-menu-item%)

parent : (or/c (is-a?/c menu%) (is-a?/c popup-menu%))

label : label-string?

notify-box : (is-a?/c notify-box%)

Creates a checkable-menu-item% tied to notify-box . The menu item is checked when-
ever (send notify-box get) is true. Clicking the menu item toggles the value of
notify-box and invokes its listeners.

(check-box/notify-box parent

label

notify-box) → (is-a?/c check-box%)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

label : label-string?

notify-box : (is-a?/c notify-box%)

4



Creates a check-box% tied to notify-box . The check-box is checked whenever (send
notify-box get) is true. Clicking the check box toggles the value of notify-box and
invokes its listeners.

(choice/notify-box parent

label

choices

notify-box) → (is-a?/c choice%)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

label : label-string?

choices : (listof label-string?)

notify-box : (is-a?/c notify-box%)

Creates a choice% tied to notify-box . The choice control has the value (send notify-

box get) selected, and selecting a different choice updates notify-box and invokes its
listeners.

If the value of notify-box is not in choices , either initially or upon an update, an error is
raised.

(menu-group/notify-box parent

labels

notify-box)

→ (listof (is-a?/c checkable-menu-item%))

parent : (or/c (is-a?/c menu%) (is-a?/c popup-menu%))

labels : (listof label-string?)

notify-box : (is-a?/c notify-box%)

Returns a list of checkable-menu-item% controls tied to notify-box . A menu item
is checked when its label is (send notify-box get). Clicking a menu item updates
notify-box to its label and invokes notify-box ’s listeners.

5



2 Preferences

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/gui/prefs) package: gui-lib

(pref:get/set pref) → (case-> (-> any/c) (-> any/c void?))

pref : symbol?

Returns a procedure that when applied to zero arguments retrieves the current value of the
preference (framework/preferences) named pref and when applied to one argument
updates the preference named pref .

6



3 Pict Utilities

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/gui/pict) package: unstable-lib

The functions and macros exported by this module are also exported by unsta-

ble/gui/slideshow.

3.1 Pict Colors

(color c p) → pict?

c : color/c

p : pict?

Applies color c to picture p . Equivalent to (colorize p c).

Example:

> (color "red" (disk 20))

(red pict) → pict?

pict : pict?

(orange pict) → pict?

pict : pict?

(yellow pict) → pict?

pict : pict?

(green pict) → pict?

pict : pict?

(blue pict) → pict?

pict : pict?

(purple pict) → pict?

pict : pict?

(black pict) → pict?

pict : pict?

(brown pict) → pict?

pict : pict?

(gray pict) → pict?

pict : pict?

(white pict) → pict?

pict : pict?

(cyan pict) → pict?

pict : pict?

7



(magenta pict) → pict?

pict : pict?

These functions apply appropriate colors to picture p.

Example:

> (red (disk 20))

(light color) → color/c

color : color/c

(dark color) → color/c
color : color/c

These functions produce ligher or darker versions of a color.

Example:

> (hc-append (colorize (disk 20) "red")

(colorize (disk 20) (dark "red"))

(colorize (disk 20) (light "red")))

color/c : flat-contract?

This contract recognizes color strings, color% instances, and RGB color lists.

3.2 Pict Manipulation

(fill pict width height) → pict?

pict : pict?

width : (or/c real? #f)

height : (or/c real? #f)

Extends pict ’s bounding box to a minimum width and/or height , placing the original
picture in the middle of the space.

Example:

> (frame (fill (disk 20) 40 40))

8



(scale-to pict width height [#:mode mode ]) → pict?

pict : pict?

width : real?

height : real?

mode : (or/c 'preserve 'inset 'distort) = 'preserve

Scales pict so that its width and height are at most width and height , respectively. If
mode is 'preserve, the width and height are scaled by the same factor so pict ’s aspect
ratio is preserved; the result’s bounding box may be smaller than width by height . If
mode is 'inset, the aspect ratio is preserved as with 'preserve, but the resulting pict is
centered in a bounding box of exactly width by height . If mode is 'distort, the width
and height are scaled separately.

Examples:

> (frame (scale-to (circle 100) 40 20))

> (frame (scale-to (circle 100) 40 20 #:mode 'inset))

> (frame (scale-to (circle 100) 40 20 #:mode 'distort))

3.2.1 Conditional Manipulations

These pict transformers all take boolean arguments that determine whether to transform
the pict or leave it unchanged. These transformations can be useful for staged slides, as
the resulting pict always has the same size and shape, and its contents always appear at
the same position, but changing the boolean argument between slides can control when the
transformation occurs.

(show pict [show?]) → pict?

pict : pict?

show? : truth/c = #t

(hide pict [hide?]) → pict?

pict : pict?

hide? : truth/c = #t

These functions conditionally show or hide an image, essentially choosing between pict

and (ghost pict). The only difference between the two is the default behavior and
the opposite meaning of the show? and hide? booleans. Both functions are provided for
mnemonic purposes.

9



(strike pict [strike?]) → pict?

pict : pict?

strike? : truth/c = #t

Displays a strikethrough image by putting a line through the middle of pict if strike? is
true; produces pict unchanged otherwise.

Example:

> (strike (colorize (disk 20) "yellow"))

(shade pict [shade? #:ratio ratio ]) → pict?

pict : pict?

shade? : truth/c = #t

ratio : (real-in 0 1) = 1/2

Shades pict to show with ratio of its normal opacity; if ratio is 1 or shade? is #f,
shows pict unchanged.

Example:

> (shade (colorize (disk 20) "red"))

3.2.2 Conditional Combinations

These pict control flow operators decide which pict of several to use. All branches are
evaluated; the resulting pict is a combination of the pict chosen by normal conditional flow
with ghost applied to all the other picts. The result is a picture large enough to accommodate
each alternative, but showing only the chosen one. This is useful for staged slides, as the pict
chosen may change with each slide but its size and position will not.

(pict-if maybe-combine test-expr then-expr else-expr)

maybe-combine =
| #:combine combine-expr

Chooses either then-expr or else-expr based on test-expr , similarly to if. Combines
the chosen, visible image with the other, invisible image using combine-expr , defaulting
to pict-combine.

Example:

10



> (let ([f (lambda (x)

(pict-if x

(disk 20)

(disk 40)))])

(hc-append 10

(frame (f #t))

(frame (f #f))))

(pict-cond maybe-combine [test-expr pict-expr] ...)

maybe-combine =
| #:combine combine-expr

Chooses a pict-expr based on the first successful test-expr , similarly to cond. Com-
bines the chosen, visible image with the other, invisible images using combine-expr , de-
faulting to pict-combine.

Example:

> (let ([f (lambda (x)

(pict-cond

[(eq? x 'circle) (circle 20)]

[(eq? x 'disk) (disk 40)]

[(eq? x 'text) (text "ok" null 20)]))])

(hc-append 10

(frame (f 'circle))

(frame (f 'disk))

(frame (f 'text))))

ok
(pict-case test-expr maybe-combine [literals pict-expr] ...)

maybe-combine =
| #:combine combine-expr

Chooses a pict-expr based on test-expr and each list of literals , similarly to case.
Combines the chosen, visible image with the other, invisible images using combine-expr ,
defaulting to pict-combine.

Example:

> (let ([f (lambda (x)

11



(pict-case x

[(circle) (circle 20)]

[(disk) (disk 40)]

[(text) (text "ok" null 20)]))])

(hc-append 10

(frame (f 'circle))

(frame (f 'disk))

(frame (f 'text))))

ok
(pict-match test-expr maybe-combine [pattern pict-expr] ...)

maybe-combine =
| #:combine combine-expr

Chooses a pict-expr based on test-expr and each pattern , similarly to match. Com-
bines the chosen, visible image with the other, invisible images using combine-expr , de-
faulting to pict-combine.

pict-combine

This syntax parameter determines the default pict combining form used by the above macros.
It defaults to lbl-superimpose.

(with-pict-combine combine-id body ...)

Sets pict-combine to refer to combine-id within each of the body terms, which are
spliced into the containing context.

Example:

> (let ([f (lambda (x)

(with-pict-combine cc-superimpose

(pict-case x

[(circle) (circle 20)]

[(disk) (disk 40)]

[(text) (text "ok" null 20)])))])

(hc-append 10

(frame (f 'circle))

(frame (f 'disk))

(frame (f 'text))))

ok

12



3.3 Shapes with Borders
The subsequent
bindings were
added by Vincent
St-Amour.

(ellipse/border w

h

[#:color color

#:border-color border-color

#:border-width border-width ]) → pict?

w : real?

h : real?

color : color/c = "white"

border-color : color/c = "black"

border-width : real? = 2

(circle/border diameter

[#:color color

#:border-color border-color

#:border-width border-width ]) → pict?

diameter : real?

color : color/c = "white"

border-color : color/c = "black"

border-width : real? = 2

(rectangle/border w

h

[#:color color

#:border-color border-color

#:border-width border-width ]) → pict?

w : real?

h : real?

color : color/c = "white"

border-color : color/c = "black"

border-width : real? = 2

(rounded-rectangle/border w

h

[#:color color

#:border-color border-color

#:border-width border-width

#:corner-radius corner-radius

#:angle angle ])
→ pict?

w : real?

h : real?

color : color/c = "white"

border-color : color/c = "black"

border-width : real? = 2

corner-radius : real? = -0.25

angle : real? = 0

13



These functions create shapes with border of the given color and width.

Examples:

> (ellipse/border 40 20 #:border-color "blue")

> (rounded-rectangle/border 40 20 #:color "red")

3.4 Lines with Labels
The subsequent
bindings were
added by Scott
Owens.

(pin-label-line label

pict

src-pict

src-coord-fn

dest-pict

dest-coord-fn

[#:start-angle start-angle

#:end-angle end-angle

#:start-pull start-pull

#:end-pull end-pull

#:line-width line-width

#:color color

#:alpha alpha

#:style style

#:under? under?

#:x-adjust x-adjust

#:y-adjust y-adjust ]) → pict?

label : pict?

pict : pict?

src-pict : pict-path?

src-coord-fn : (-> pict-path? (values real? real?))

dest-pict : pict-path?

dest-coord-fn : (-> pict-path? (values real? real?))

start-angle : (or/c real? #f) = #f

end-angle : (or/c real? #f) = #f

start-pull : real? = 1/4

end-pull : real? = 1/4

line-width : (or/c real? #f) = #f

color : (or/c #f string? (is-a?/c color%)) = #f

alpha : (real-in 0 1) = 1

style : pen-style/c = 'solid

under? : any/c = #f

x-adjust : real? = 0

y-adjust : real? = 0

14



(pin-arrow-label-line label

arrow-size

pict

src-pict

src-coord-fn

dest-pict

dest-coord-fn

[#:start-angle start-angle

#:end-angle end-angle

#:start-pull start-pull

#:end-pull end-pull

#:line-width line-width

#:color color

#:alpha alpha

#:style style

#:solid? solid?

#:under? under?

#:hide-arrowhead? hide-arrowhead?

#:x-adjust x-adjust

#:y-adjust y-adjust ])
→ pict?

label : pict?

arrow-size : real?

pict : pict?

src-pict : pict-path?

src-coord-fn : (-> pict-path? (values real? real?))

dest-pict : pict-path?

dest-coord-fn : (-> pict-path? (values real? real?))

start-angle : (or/c real? #f) = #f

end-angle : (or/c real? #f) = #f

start-pull : real? = 1/4

end-pull : real? = 1/4

line-width : (or/c real? #f) = #f

color : (or/c #f string? (is-a?/c color%)) = #f

alpha : (real-in 0 1) = 1

style : pen-style/c = 'solid

solid? : boolean? = #t

under? : any/c = #f

hide-arrowhead? : any/c = #f

x-adjust : real? = 0

y-adjust : real? = 0

15



(pin-arrows-label-line label

arrow-size

pict

src-pict

src-coord-fn

dest-pict

dest-coord-fn

[#:start-angle start-angle

#:end-angle end-angle

#:start-pull start-pull

#:end-pull end-pull

#:line-width line-width

#:color color

#:alpha alpha

#:style style

#:solid? solid?

#:under? under?

#:hide-arrowhead? hide-arrowhead?

#:x-adjust x-adjust

#:y-adjust y-adjust ])
→ pict?

label : pict?

arrow-size : real?

pict : pict?

src-pict : pict-path?

src-coord-fn : (-> pict-path? (values real? real?))

dest-pict : pict-path?

dest-coord-fn : (-> pict-path? (values real? real?))

start-angle : (or/c real? #f) = #f

end-angle : (or/c real? #f) = #f

start-pull : real? = 1/4

end-pull : real? = 1/4

line-width : (or/c real? #f) = #f

color : (or/c #f string? (is-a?/c color%)) = #f

alpha : (real-in 0 1) = 1

style : pen-style/c = 'solid

solid? : boolean? = #t

under? : any/c = #f

hide-arrowhead? : any/c = #f

x-adjust : real? = 0

y-adjust : real? = 0

These functions behave like pin-line, pin-arrow-line and pin-arrows-line with the
addition of a label attached to the line.

Example:

16



> (let* ([a (red (disk 20))]

[b (blue (filled-rectangle 20 20))]

[p (vl-append a (hb-append (blank 100) b))])

(pin-arrow-label-line

(rotate (text "label" null 10) (/ pi -4))

10 p

a rb-find

b lt-find))

label

3.5 Blur
The subsequent
bindings were
added by Ryan
Culpepper.

(blur p h-radius [v-radius ]) → pict?

p : pict?

h-radius : (and/c real? (not/c negative?))

v-radius : (and/c real? (not/c negative?)) = h-radius

Blurs p using an iterated box blur that approximates a gaussian blur. The h-radius and
v-radius arguments control the strength of the horizontal and vertical components of the
blur, respectively. They are given in terms of pict units, which may not directly correspond
to screen pixels.

The blur function takes work proportional to

(* (pict-width p) (pict-height p))

but it may be sped up by a factor of up to (processor-count) due to the use of futures.

Examples:

> (blur (text "blur" null 40) 5)

> (blur (text "more blur" null 40) 10)

17



> (blur (text "much blur" null 40) 20)

> (blur (text "horiz. blur" null 40) 10 0)

The resulting pict has the same bounding box as p , so when picts are automatically clipped
(as in Scribble documents), the pict should be inset by the blur radius.

Example:

> (inset (blur (text "more blur" null 40) 10) 10)

(shadow p

radius

[dx
dy

#:color color

#:shadow-color shadow-color ]) → pict?

p : pict?

radius : (and/c real? (not/c negative?))

dx : real? = 0

dy : real? = dx

color : (or/c #f string? (is-a?/c color%)) = #f

shadow-color : (or/c #f string? (is-a?/c color%)) = #f

Creates a shadow effect by superimposing p over a blurred version of p . The shadow is
offset from p by (dx , dy ) units.

If color is not #f, the foreground part is (colorize p color); otherwise it is just p . If
shadow-color is not #f, the shadow part is produced by blurring (colorize p shadow-

color); otherwise it is produced by blurring p .

The resulting pict has the same bounding box as p .

Examples:

18



> (inset (shadow (text "shadow" null 50) 10) 10)

shadow
> (inset (shadow (text "shadow" null 50) 10 5) 10)

shadow
> (inset (shadow (text "shadow" null 50)

5 0 2 #:color "white" #:shadow-color "red")

10)

shadow
(blur-bitmap! bitmap h-radius [v-radius ]) → void?

bitmap : (is-a?/c bitmap%)

h-radius : (and/c real? (not/c negative?))

v-radius : (and/c real? (not/c negative?)) = h-radius

Blurs bitmap using blur radii h-radius and v-radius .

3.5.1 Tagged Picts

(tag-pict p tag) → pict?

p : pict?

tag : symbol?

Returns a pict like p that carries a symbolic tag. The tag can be used with find-tag to
locate the pict.

(find-tag p find) → (or/c pict-path? #f)

p : pict?

find : tag-path?

Locates a sub-pict of p . Returns a pict-path that can be used with functions like lt-find,
etc.

19



Example:

> (let* ([a (tag-pict (red (disk 20)) 'a)]

[b (tag-pict (blue (filled-rectangle 20 20)) 'b)]

[p (vl-append a (hb-append (blank 100) b))])

(pin-arrow-line 10 p

(find-tag p 'a) rb-find

(find-tag p 'b) lt-find))

(find-tag* p find) → (listof pict-path?)

p : pict?

find : tag-path?

Like find-tag, but returns all pict-paths corresponding to the given tag-path.

Example:

> (let* ([a (lambda () (tag-pict (red (disk 20)) 'a))]

[b (lambda () (tag-pict (blue (filled-

rectangle 20 20)) 'b))]

[as (vc-append 10 (a) (a) (a))]

[bs (vc-append 10 (b) (b) (b))]

[p (hc-append as (blank 60 0) bs)])

(for*/fold ([p p])

([apath (in-list (find-tag* p 'a))]

[bpath (in-list (find-tag* p 'b))])

(pin-arrow-line 4 p

apath rc-find

bpath lc-find)))

(tag-path? x) → boolean?

x : any/c

Returns #t if x is a symbol or a non-empty list of symbols, #f otherwise.

20



3.6 Shadow Frames

(shadow-frame pict

...

[#:sep separation

#:margin margin

#:background-color bg-color

#:frame-color frame-color

#:frame-line-width frame-line-width

#:shadow-side-length shadow-side-length

#:shadow-top-y-offset shadow-top-y-offset

#:shadow-bottom-y-offset shadow-bottom-y-offset

#:shadow-descent shadow-descent

#:shadow-alpha-factor shadow-alpha-factor

#:blur blur-radius ])
→ pict?

pict : pict?

separation : real? = 5

margin : real? = 20

bg-color : (or/c string? (is-a?/c color%)) = "white"

frame-color : (or/c string? (is-a?/c color%)) = "gray"

frame-line-width : (or/c real? #f) = 0

shadow-side-length : real? = 4

shadow-top-y-offset : real? = 10

shadow-bottom-y-offset : real? = 4

shadow-descent : (and/c real? (not/c negative?)) = 40

shadow-alpha-factor : real? = 3/4

blur-radius : (and/c real? (not/c negative?)) = 20

Surrounds the picts with a rectangular frame that casts a symmetric “curled paper” shadow.

The picts are vertically appended with separation space between them. They are placed
on a rectangular background of solid bg-color with margin space on all sides. A frame
of frame-color and frame-line-width is added around the rectangle. The rectangle
casts a shadow that extends shadow-side-length to the left and right, starts shadow-

top-y-offset below the top of the rectangle and extends to shadow-bottom-y-offset

below the bottom of the rectangle in the center and an additional shadow-descent below
that on the sides. The shadow is painted using a linear gradient; shadow-alpha-factor
determines its density at the center. Finally, the shadow is blurred by blur-radius ; all
previous measurements are pre-blur measurements.

Example:

> (scale (shadow-frame (text "text in a nifty

frame" null 60)) 1/2)

21



text in a nifty frame

(arch outer-width

inner-width

solid-height

leg-height) → pict?

outer-width : real?

inner-width : real?

solid-height : real?

leg-height : real?

Creates an arch.

Example:

> (colorize (arch 100 80 20 20) "red")

3.7 Additional combinators
The subsequent
bindings were
added by Asumu
Takikawa.

(backdrop pict [#:color color ]) → pict?

pict : pict?

color : color/c = "white"

Adds a background highlighted with color to pict .

Examples:

> (backdrop (circle 20) #:color "whitesmoke")

> (backdrop (text "broccoli rabé") #:color "PaleGreen")

broccoli rabé

(cross-out pict

[#:width width

#:style style

#:color color ]) → pict?

22



pict : pict?

width : real? = 1

style :

(or/c 'transparent 'solid 'xor

'hilite 'dot 'long-dash 'short-dash

'dot-dash 'xor-dot 'xor-long-dash

'xor-short-dash 'xor-dot-dash)

= 'solid

color : color/c = "black"

Crosses out pict with two diagonal lines drawn with the given line width and with the line
style . The lines are colored with color .

Examples:

> (cross-out (circle 20))

> (cross-out (rectangle 30 20) #:width 2 #:style 'long-dash)

> (cross-out (text "rapini") #:width 3 #:color "red")

rapini

23



4 Slideshow Presentations

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/gui/slideshow) package: unstable-lib

This module also exports everything provided by unstable/gui/pict.

4.1 Text Formatting

(with-size size expr)

Sets current-font-size to size while running expr .

(with-scale scale expr)

Multiplies current-font-size by scale while running expr .

(big text)

(small text)

Scale current-font-size by 3/2 or 2/3, respectively, while running text .

(with-font font expr)

Sets current-main-font to font while running expr .

(with-style style expr)

Adds style to current-main-font (via cons) while running expr .

(bold text)

(italic text)
(subscript text)

(superscript text)

(caps text)

Adds the attributes for bold, italic, superscript, subscript, or small caps text, respectively, to
current-main-font while running text .

24



4.2 Tables

(tabular row

...

[#:gap gap

#:hgap hgap

#:vgap vgap

#:align align

#:halign halign

#:valign valign ]) → pict?

row : (listof (or/c string? pict?))

gap : natural-number/c = gap-size

hgap : natural-number/c = gap

vgap : natural-number/c = gap

align : (->* [] [] #:rest (listof pict?) pict?)

= lbl-superimpose

halign : (->* [] [] #:rest (listof pict?) pict?) = align

valign : (->* [] [] #:rest (listof pict?) pict?) = align

Constructs a table containing the given rows, all of which must be of the same length.
Applies t to each string in a row to construct a pict. The hgap , vgap , halign , and valign

are used to determine the horizontal and vertical gaps and alignments as in table (except
that every row and column is uniform).

4.3 Multiple Columns

(two-columns one two)

Constructs a two-column pict using one and two as the two columns. Sets current-para-
width appropriately in each column.

(mini-slide pict ...) → pict?

pict : pict?

Appends each pict vertically with space between them, similarly to the slide function.

(columns pict ...) → pict?

pict : pict?

Combines each pict horizontally, aligned at the top, with space in between.

(column width body ...)

25



Sets current-para-width to width during execution of the body expressions.

(column-size n [r ]) → real?

n : exact-positive-integer?

r : real? = (/ n)

Computes the width of one column out of n that takes up a ratio of r of the available space
(according to current-para-width).

4.4 Staged Slides

(staged [name ...] body ...)

Executes the body terms once for each stage name . The terms may include expressions and
mutually recursive definitions. Within the body, each name is bound to a number from 1 to
the number of stages in order. Furthermore, during execution stage is bound to the number
of the current stage and stage-name is bound to a symbol representing the name of the
current stage. By comparing stage to the numeric value of each name , or stage-name to
quoted symbols of the form 'name, the user may compute based on the progression of the
stages.

stage

stage-name

These keywords are bound during the execution of staged and should not be used otherwise.

(slide/staged [name ...] arg ...)

Creates a staged slide. Equivalent to (staged [name ...] (slide arg ...)).

Within a staged slide, the boolean arguments to hide, show, strike, and shade can be
used to determine in which stages to perform a transformation. The macros pict-if, pict-
cond, pict-case, and pict-match may also be used to create images which change natu-
rally between stages.

4.5 Revealing Slides
The subsequent
bindings were
added by Jon
Rafkind.

(reveal number expr ...)

Expands to either (show expr ...) or (hide expr ...) if number is greater than or
equal to the current revealed slide within a revealing-slide.

26



(revealing-slide expr ...)

Creates N slides where N is the maximum number given to a reveal expression as the first
argument. Each slide has the current reveal number incremented by one so progressive slides
can reveal picts in that appear in arbitrary places.

(revealing-slide

(hc-append (reveal 0 (t "I show up first"))

(reveal 1 (t "I show up second")))

(reveal 1 (t "I also show up second")))

(items-slide (name ...) expr ...)

Creates N slides where N is the maximum number given to a reveal similar to revealing-
slide. Each slide will show the names on the left hand side using right justification and only
one reveal will be displayed on the right. The order of the names will be matched with the
current reveal number so the first item will be displayed while the first reveal is displayed.
Reveals that are not active will have their corresponding items displayed but in a light font
so as to indicate inactivity.

(items-slide ("item1" "item2" "item3")

(reveal 0

(t "I will show up for item1"))

(reveal 1

(t "I will show up for item2"))

(reveal 2

(t "I will show up for item3")))

4.6 Miscellaneous Slide Utilities
The subsequent
bindings were
added by Scott
Owens.

(blank-line) → pict?

Adds a blank line of the current font size’s height.

27



5 Progressive Picts and Slides

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

5.1 Progressive Picts

(require unstable/gui/ppict) package: unstable-lib

A progressive pict or “ppict” is a kind of pict that has an associated “pict placer,” which
generally represents a position and alignment. New picts can be placed on the progressive
pict by calling ppict-add, and the placer can be updated by calling ppict-go. The ppict-
do form provides a compact notation for sequences of those two operations.

(ppict-do base-expr ppict-do-fragment ...)

(ppict-do* base-expr ppic-do-fragment ...)

ppict-do-fragment = #:go placer-expr

| #:set pict-expr

| #:next

| #:alt (ppict-do-fragment ...)

| elem-expr

base-expr : pict?

placer-expr : placer?

pict-expr : pict?

elem-expr : (or/c pict? real? #f)

Builds a pict (and optionally a list of intermediate picts) progressively. The ppict-do form
returns only the final pict; any uses of #:next are ignored. The ppict-do* form returns
two values: the final pict and a list of all partial picts emitted due to #:next (the final pict is
not included).

A #:go fragment changes the current placer. A #:set fragment replaces the current pict
state altogether with a new computed pict. A #:next fragment saves a pict including only
the contents emitted so far (but whose alignment takes into account picts yet to come). A
#:alt fragment saves the current pict state, executes the sub-sequence that follows, saves
the result (as if the sub-sequence ended with #:next), then restores the saved pict state
before continuing.

The elem-exprs are interpreted by the current placer. A numeric elem-expr usually rep-
resents a spacing change, but some placers do not support them. A spacing change only

28



affects added picts up until the next placer is installed; when a new placer is installed, the
spacing is reset, usually to 0.

The ppict-do-state form tracks the current state of the pict. It is updated before a #:go
or #:set fragment or before a sequence of elem-exprs. It is not updated in the middle of
a chain of elem-exprs, however.

Examples:

> (define base

(ppict-do (colorize (rectangle 200 200) "gray")

#:go (coord 1/2 1/2 'cc)

(colorize (hline 200 1) "gray")

#:go (coord 1/2 1/2 'cc)

(colorize (vline 1 200) "gray")))

> base

The use of ppict-do in the defnition of base above is equivalent to

(let* ([pp (colorize (rectangle 200 200) "gray")]

[pp (ppict-go pp (coord 1/2 1/2 'cc))]

[pp (ppict-add pp (colorize (hline 200 1) "gray"))]

[pp (ppict-go pp (coord 1/2 1/2 'cc))]

[pp (ppict-add pp (colorize (vline 1 200) "gray"))])

pp)

Examples:

> (define circles-down-1

(ppict-do base

#:go (grid 2 2 2 1 'ct)

10

29



(circle 20)

(circle 20)

30

(circle 20)))

> circles-down-1

> (define circles-down-2

(ppict-do circles-down-1

(colorize (circle 20) "red")

40

(colorize (circle 20) "red")))

> (inset circles-down-2 20) ; draws outside its bounding box

> (inset (clip circles-down-2) 20)

30



> (ppict-do base

#:go (coord 0 0 'lt)

(tag-pict (circle 20) 'circA)

#:go (coord 1 1 'rb)

(tag-pict (circle 20) 'circB)

#:set (let ([p ppict-do-state])

(pin-arrow-line 10 p

(find-tag p 'circA) rb-find

(find-tag p 'circB) lt-find)))

> (let-values ([(final intermediates)

(ppict-do* base

#:go (coord 1/4 1/2 'cb)

(text "shapes:")

#:go (coord 1/2 1/2 'lb)

#:alt [(circle 20)]

#:alt [(rectangle 20 20)]

31



(text "and more!"))])

(append intermediates (list final)))

'(

shapes: shapes: shapes: and more!

)

More examples of ppict-do are scattered throughout this section.

ppict-do-state

Tracks the current state of a ppict-do or ppict-do* form.

(ppict? x) → boolean?

x : any/c

Returns #t if x is a progressive pict, #f otherwise.

(ppict-go p pl) → ppict?

p : pict?

pl : placer?

Creates a progressive pict with the given base pict p and the placer pl .

(ppict-add pp elem ...) → pict?

pp : ppict?

elem : (or/c pict? real? #f 'next)

(ppict-add* pp elem ...) → pict? (listof pict?)

pp : ppict?

elem : (or/c pict? real? #f 'next)

Creates a new pict by adding each elem pict on top of pp according to pp ’s placer. The
result pict may or may not be a progressive pict, depending on the placer used. The ppict-
add function only the final pict; any occurrences of 'next are ignored. The ppict-add*

function returns two values: the final pict and a list of all partial picts emitted due to 'next

(the final pict is not included).

32



An elem that is a real number changes the spacing for subsequent additions. A elem that
is #f is discarded; it is permitted as a convenience for conditionally including sub-picts.
Note that #f is not equivalent to (blank 0), since the latter will cause spacing to be added
around it.

(placer? x) → boolean?

x : any/c

Returns #t if x is a placer, #f otherwise.

(refpoint-placer? x) → boolean?

x : any/c

Returns #t if x is a placer based on a reference point, #f otherwise.

(coord rel-x

rel-y

[align
#:abs-x abs-x

#:abs-y abs-y

#:compose composer ]) → refpoint-placer?

rel-x : real?

rel-y : real?

align : (or/c 'lt 'ct 'rt 'lc 'cc 'rc 'lb 'cb 'rb) = 'cc

abs-x : real? = 0

abs-y : real? = 0

composer : procedure? = computed from align

Returns a placer that places picts according to rel-x and rel-y , which are interpeted as
fractions of the width and height of the base progressive pict. That is, 0, 0 is the top left
corner of the base’s bounding box, and 1, 1 is the bottom right. Then abs-x and abs-y

offsets are added to get the final reference point.

Additions are aligned according to align , a symbol whose name consists of a horizontal
alignment character followed by a vertical alignment character. For example, if align is
'lt, the pict is placed so that its left-top corner is at the reference point; if align is 'rc, the
pict is placed so that the center of its bounding box’s right edge coincides with the reference
point.

By default, if there are multiple picts to be placed, they are vertically appended, aligned
according to the horizontal component of align . For example, if align is 'cc, the default
composer is vc-append; for 'lt, the default composer is vl-append. The spacing is
initially 0.

Examples:

33



> (ppict-do base

#:go (coord 1/2 1/2 'rb)

(colorize (circle 20) "red")

#:go (coord 1/2 1/2 'lt)

(colorize (circle 20) "darkgreen"))

> (ppict-do base

#:go (coord 1 0 'rt #:abs-x -5 #:abs-y 10)

50 ; change spacing

(text "abc")

(text "12345")

0 ; and again

(text "ok done"))

abc

12345
ok done

> (ppict-do base

#:go (coord 0 0 'lt #:compose ht-append)

(circle 10)

(circle 20)

(circle 30))

34



(grid cols

rows

col

row

[align
#:abs-x abs-x

#:abs-y abs-y

#:compose composer ]) → refpoint-placer?

cols : exact-positive-integer?

rows : exact-positive-integer?

col : exact-integer?

row : exact-integer?

align : (or/c 'lt 'ct 'rt 'lc 'cc 'rc 'lb 'cb 'rb) = 'cc

abs-x : real? = 0

abs-y : real? = 0

composer : procedure? = computed from align

Returns a placer that places picts according to a position in a virtual grid. The row and col

indexes are numbered starting at 1.

Uses of grid can be translated into uses of coord, but the translation depends on the align-
ment. For example, (grid 2 2 1 1 'lt) is equivalent to (coord 0 0 'lt), but (grid
2 2 1 1 'rt) is equivalent to (coord 1/2 0 'rt).

Examples:

> (define none-for-me-thanks

(ppict-do base

#:go (grid 2 2 1 1 'lt)

(text "You do not like")

(colorize (text "green eggs and

ham?") "darkgreen")))

35



> none-for-me-thanks
You do not like
green eggs and ham?

> (ppict-do none-for-me-thanks

#:go (grid 2 2 2 1 'rb)

(colorize (text "I do not like them,") "red")

(text "Sam-I-am."))
You do not like
green eggs and ham?

I do not like them,
Sam-I-am.

(cascade [step-x step-y ]) → placer?

step-x : (or/c real? 'auto) = 'auto

step-y : (or/c real? 'auto) = 'auto

Returns a placer that places picts by evenly spreading them diagonally across the base pict
in “cascade” style. This placer does not support changing the spacing by including a real
number within the pict sequence.

When a list picts is to be placed, their bounding boxes are normalized to the maximum width
and height of all picts in the list; each pict is centered in its new bounding box. The picts are
then cascaded so there is step-x space between each of the picts’ left edges; there is also
step-x space between the base pict’s left edge and the first pict’s left edge. Similarly for
step-y and the vertical spacing.

36



If step-x or step-y is 'auto, the spacing between the centers of the picts to be placed is
determined automatically so that the inter-pict spacing is the same as the spacing between
the last pict and the base.

Examples:

> (ppict-do base

#:go (cascade)

(colorize (filled-rectangle 100 100) "red")

(colorize (filled-rectangle 100 100) "blue"))

> (ppict-do base

#:go (cascade 40 20)

(colorize (filled-rectangle 100 100) "red")

(colorize (filled-rectangle 100 100) "blue"))

(tile cols rows) → placer?

cols : exact-positive-integer?

rows : exact-positive-integer?

Returns a placer that places picts by tiling them in a grid cols columns wide and rows rows

37



high.

Example:

> (ppict-do base

#:go (tile 2 2)

(circle 50)

(rectangle 50 50)

(jack-o-lantern 50)

(standard-fish 50 30 #:color "red"))

(at-find-pict find-path

[finder
align

#:abs-x abs-x

#:abs-y abs-y

#:compose composer ]) → refpoint-placer?

find-path : (or/c tag-path? pict-path?)

finder : procedure? = cc-find

align : (or/c 'lt 'ct 'rt 'lc 'cc 'rc 'lb 'cb 'rb) = 'cc

abs-x : real? = 0

abs-y : real? = 0

composer : procedure? = computed from align

Returns a placer that places picts according to a reference point based on an existing pict
within the base.

Example:

> (ppict-do base

#:go (cascade)

(tag-pict (standard-fish 40 20 #:direction 'right #:color "red") 'red-

fish)

38



(tag-pict (standard-fish 50 30 #:direction 'left #:color "blue") 'blue-

fish)

#:go (at-find-pict 'red-fish rc-find 'lc #:abs-x 10)

(text "red fish"))

red fish

(merge-refpoints x-placer y-placer) → refpoint-placer?

x-placer : refpoint-placer?

y-placer : refpoint-placer?

Returns a placer like x-placer except that the y-coordinate of its reference point is com-
puted by y-placer .

Example:

> (ppict-do base

#:go (cascade)

(tag-pict (standard-fish 40 20 #:direction 'right #:color "red") 'red-

fish)

(tag-pict (standard-fish 50 30 #:direction 'left #:color "blue") 'blue-

fish)

#:go (merge-refpoints (coord 1 0 'rc)

(at-find-pict 'red-fish))

(text "red fish"))

39



red fish

5.2 Progressive Slides

(require unstable/gui/pslide) package: unstable-lib

(pslide ppict-do-fragment ...)

Produce slide(s) using progressive picts. See ppict-do for an explanation of ppict-do-
fragments.

Note that like slide but unlike ppict-do*, the number of slides produced is one greater
than the number of #:next uses; that is, a slide is created for the final pict.

Remember to include gap-size after updating the current placer if you want slide-like
spacing.

Example:

> (pslide #:go (coord 0 0 'lt)

(t "You do not like")

(colorize (t "green eggs and ham?") "darkgreen")

#:next

#:go (coord 1 1 'rb)

(colorize (t "I do not like them,") "red")

(t "Sam-I-am."))

40



slides

You do not like
green eggs and ham?

You do not like
green eggs and ham?

I do not like them,
Sam-I-am.

Note that the text is not flush against the sides of the slide, because pslide uses a base pict
the size of the client area, excluding the margins.

(pslide-base-pict) → (-> pict)

(pslide-base-pict make-base-pict) → void?

make-base-pict : (-> pict)

Controls the initial pict used by pslide. The default value is

(lambda () (blank client-w client-h))

(pslide-default-placer) → placer?

(pslide-default-placer placer) → void?

placer : placer?

Controls the initial placer used by pslide. The default value is

(coord 1/2 1/2 'cc)

41



6 Snip Utilities

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/gui/snip) package: unstable-lib

snip-canvas% : class?
superclass: editor-canvas%

A canvas that contains a single snip.

Snips cannot be placed directly on dialogs, frames and panels. To use an interactive snip in
a GUI, it must be inserted into an editor, which itself must be placed on a special canvas,
which can be placed in a GUI container. To provide a seamless user experience, the editor
should be enabled but not writable, not be able to receive focus, not have scrollbars, and
other small details.

The snip-canvas% class handles these details, making it easy to use interactive snips as
normal GUI elements.

(new snip-canvas%

[parent parent]

[make-snip make-snip]

[[style style]

[label label]

[horizontal-inset horizontal-inset]

[vertical-inset vertical-inset]

[enabled enabled]

[vert-margin vert-margin]

[horiz-margin horiz-margin]

[min-width min-width]

[min-height min-height]

[stretchable-width stretchable-width]

[stretchable-height stretchable-height]])
→ (is-a?/c snip-canvas%)

parent :
(or/c (is-a?/c frame%) (is-a?/c dialog%)

(is-a?/c panel%) (is-a?/c pane%))

make-snip : ((integer-in 0 10000) (integer-in 0 10000) . -> . snip%)

style :
(listof (one-of/c 'no-border 'control-border 'combo

'resize-corner 'no-focus 'deleted

'transparent))

= null

label : (or/c label-string? false/c) = #f

horizontal-inset : (integer-in 0 1000) = 5

42



vertical-inset : (integer-in 0 1000) = 5

enabled : any/c = #t

vert-margin : (integer-in 0 1000) = 0

horiz-margin : (integer-in 0 1000) = 0

min-width : (integer-in 0 10000) = 0

min-height : (integer-in 0 10000) = 0

stretchable-width : any/c = #t

stretchable-height : any/c = #t

Unlike instances of editor-canvas%, each instance of this class creates and
manages its own editor. The editor contains one object: a snip% instance cre-
ated by make-snip .

The make-snip function receives the requested width and height of the snip,
which are calculated from the size of the snip canvas. It is called the first time
the snip canvas is resized, which most likely coincides with the first time the
snip canvas is shown. The snip is thus created lazily: only when needed, at the
size needed. See on-size for more details and an example.

The style list is prepended with 'no-hscroll and 'no-vscroll before be-
ing passed to the editor-canvas% constructor. The other constructor argu-
ments are passed untouched.

(send a-snip-canvas get-snip) → (or/c (is-a?/c snip%) #f)

Returns the wrapped snip, or #f if make-snip has not been called yet.

(send a-snip-canvas on-size width height) → void?

width : (integer-in 0 10000)

height : (integer-in 0 10000)

Overrides on-size in editor-canvas%.

This is called when the snip canvas is resized.

On the first call, on-size calls make-snip with width and height arguments
respectively (max 0 (- width (* 2 horizontal-inset))) and (max 0

(- height (* 2 vertical-inset))). It then inserts the resulting snip into
its editor.

On subsequent calls, on-size calls the snip’s resize method, calculating the
width and height arguments the same way.

When a snip-canvas% instance is intended to wrap an existing snip% instance,
make-snip should simply resize it and return it.

Example: functions from plot create snips and call a function similar to the
following to place plots in a frame:

(define (make-snip-frame snip w h label)

(define (make-snip width height)

43



(send snip resize width height)

snip)

(define frame

(new frame%

[label label]

[width (+ 5 5 5 5 w)]

[height (+ 5 5 5 5 h)]))

(new snip-canvas%

[parent frame]

[make-snip make-snip]

[horiz-margin 5] [vert-margin 5]

[horizontal-inset 5] [vertical-inset 5])

frame)

44



7 Scribble Utilities

This library is unstable; compatibility will not be maintained. See Unstable: May Change
Without Warning for more information.

(require unstable/gui/scribble) package: unstable-lib

(codeblock->pict block) → pict?

block : block?

Converts a scribble block element into a pict.

45


	1 Notify-boxes
	2 Preferences
	3 Pict Utilities
	3.1 Pict Colors
	3.2 Pict Manipulation
	3.2.1 Conditional Manipulations
	3.2.2 Conditional Combinations

	3.3 Shapes with Borders
	3.4 Lines with Labels
	3.5 Blur
	3.5.1 Tagged Picts

	3.6 Shadow Frames
	3.7 Additional combinators

	4 Slideshow Presentations
	4.1 Text Formatting
	4.2 Tables
	4.3 Multiple Columns
	4.4 Staged Slides
	4.5 Revealing Slides
	4.6 Miscellaneous Slide Utilities

	5 Progressive Picts and Slides
	5.1 Progressive Picts
	5.2 Progressive Slides

	6 Snip Utilities
	7 Scribble Utilities

