Cookies: HTTP State Management

Version 6.10

Jordan Johnson <jmj@fellowhuman.com>

July 31, 2017

This library provides utilities for handling cookies as specified in RFC 6265 [RFC6265].
(require net/cookies) package: net-cookies-1ib

Provides all names exported from net/cookies/common, net/cookies/server, and
net/cookies/user-agent.

The net/cookies/server and net/cookies/user-agent modules are designed to stand
on their own, however, so for any program that is exclusively client- or server-side, it will
suffice to import one of those two modules.


mailto:jmj@fellowhuman.com

1 Cookies: Common Functionality

(require net/cookies/common) package: net-cookies-1ib

The net/cookies/common library contains cookie-related code common to servers and
user agents.

(cookie-name? v) — boolean?
v : any/c

Returns #t if v is a valid cookie name (represented as a string or a byte string), #f otherwise.

Cookie names must consist of ASCII characters. They may not contain control characters
(ASCII codes 0-31 or 127) or the following “separators’:

* double quotes

» whitespace characters

e #\Qor #\7

 parentheses, brackets, or curly braces
e commas, colons, or semicolons

* equals, greater-than, or less-than signs

¢ slashes or backslashes

(cookie-value? v) — boolean?
v : any/c

Returns #t if v is a valid cookie value (represented as a string or byte string), #f otherwise.

Cookie values must consist of ASCII characters. They may not contain:

* control characters

» whitespace characters

* double-quotes, except at the beginning and end if the entire value is double-quoted
* commas

* semicolons

¢ backslashes



(path/extension-value? v) — boolean?
v : any/c

Returns #t iff v is a string that can be used as the value of a “Path=" attribute, or as an
additional attribute (or attribute/value pair) whose meaning is not specified by RFC6265.
(domain-value? v) — boolean?

v : any/c

Returns #t iff v is a string that contains a (sub)domain name, as defined by RFCs 1034
(Section 3.5) [RFC1034] and 1123 (Section 2.1) [RFC1123].



2 Cookies and HTTP Servers

(require net/cookies/server) package: net-cookies-1ib

The net/cookies/server library is for handling cookies on the server side; it includes:

¢ a serializable cookie structure definition

* functions to convert a cookie structure to a string, or a value for the HTTP “Set-

Cookie” response header

* functions that allow reading an HTTP “Cookie” header generated by a user agent

(struct cookie (name
value
expires
max-age
domain
path
secure?
http-only?
extension))
name : (and/c string? cookie-name?)
value : (and/c string? cookie-value?)
expires : (or/c date? #f)
max-age : (or/c (and/c integer? positive?) #f)
domain : (or/c domain-value? #f)
path : (or/c path/extension-value? #f)
secure? : boolean?
http-only? : boolean?
extension : (or/c path/extension-value? #f)

A structure type for cookies the server will send to the user agent. For client-side cookies,
see net/cookies/user-agent. Programs using this library should construct their cookie

structs via make-cookie, below.

(make-cookie name
value
:expires exp-date
:max-age max-age
:domain domain
:path path
:secure? secure?
:http-only? http-only?
:extension extension]) — cookie?

—
HOoH OH OH OH H H



name : cookie-name?

value : cookie-value?

exp-date : (or/c date? #f) = #f

max-age : (or/c (and/c integer? positive?) #f) = #f
domain : (or/c domain-value? #f) = #f

path : (or/c path/extension-value? #f) = #f
secure? : boolean? = #f

http-only? : boolean? = #f

extension : (or/c path/extension-value? #f) = #f

Constructs a cookie for sending to a user agent. If name or value is a byte string, this
procedure will convert it to a string using bytes->string/utf-8; programs requiring a
different encoding should convert their byte strings before calling make-cookie.

Both exp-date and max-age are for specifying a time at which the user agent should
remove the cookie from its cookie store. exp-date is for specifying this expiration time as
a date; max-age is for specifying it as a number of seconds in the future. If both exp-date
and max-age are given, an RFC6265-compliant user agent will disregard the exp-date and
use the max-age.

domain indicates that the recipient should send the cookie back to the server only if the
hostname in the request URI is either domain itself, or a host within domain.

path indicates that the recipient should send the cookie back to the server only if path is a
prefix of the request URI’s path.

secure, when #t, sets a flag telling the recipient that the cookie may only be sent if the
request URI’s scheme specifies a “secure” protocol (presumably HTTPS).

http-only?, when #t, sets a flag telling the recipient that the cookie may be communicated
only to a server and only via HTTP or HTTPS. This flag is important for security rea-
sons: Browsers provide JavaScript access to cookies (for example, via document . cookie),
and consequently, when cookies contain sensitive data such as user session info, malicious
JavaScript can compromise that data. The HttpOnly cookie flag, set by this keyword ar-
gument, instructs the browser not to make this cookie available to JavaScript code. If a
cookie is intended to be confidential, both http-only? and secure? should be #t, and
all connections should use HTTPS. (Some older browsers do not support this flag; see the
OWASP page on HttpOnly|for more info.)

(cookie->set-cookie-header c¢) — bytes?
c : cookie?

Produces a byte string containing the value portion of a “Set-Cookie:” HTTP response
header suitable for sending c to a user agent.

Example:


https://www.owasp.org/index.php/HttpOnly
https://www.owasp.org/index.php/HttpOnly

> (cookie->set-cookie-header
(make-cookie "rememberUser" "bob" #:path "/main"))
#"rememberUser=bob; Path=/main"

This procedure uses string->bytes/utf-8 to convert the cookie to bytes; for an applica-
tion that needs a different encoding function, use cookie->string and perform the bytes
conversion with that function.

(clear-cookie-header name
[#:domain domain
#:path path]) — bytes?
name : cookie-name?
domain : (or/c domain-value? #f) = #f
path : (or/c path/extension-value? #f) = #f

Produces a byte string containing a “Set-Cookie:” header suitable for telling a user agent to
clear the cookie with the given name. (This is done, as per RFC6265, by sending a cookie
with an expiration date in the past.)

Example:

> (clear-cookie-header "rememberUser" #:path "/main")
#"rememberUser=; Expires=Thu, 01 Jan 2015 00:00:00 GMT;
Path=/main"

(cookie-header->alist header) — (listof (cons/c bytes? bytes?))
header : bytes?

(cookie-header->alist header decode) — (listof (comns/c X X))
header : bytes?
decode : (-> bytes? X)

Given the value part of a “Cookie:” header, produces an alist of all cookie name/value
mappings in the header. If a decode function is given, applies decode to each key and
each value before inserting the new key-value pair into the alist. Invalid cookies will not be
present in the alist.

If a key in the header has no value, then #"", or (decode #"") if decode is present, is
used as the value.

Examples:

> (cookie-header->alist #"SID=31d4d96e407aad42; lang=en-US")

"((#"SID" . #"31d4d96e407aad42") (#"lang" . #"en-US"))

> (cookie-header->alist #"SID=31d4d96e407aad42; lang=en-US"
bytes->string/utf-8)



"(("SID" . "31d4d96e407aad42") ("lang" . "en-US"))
> (cookie-header->alist #"seenIntro=; logins=3"
(compose (lambda (s) (or (string->number s) s))
bytes->string/utf-8))
"(("seenIntro" . "") ("logins" . 3))

(cookie->string c) — string?
c : cookie?

Produces a string containing the given cookie as text.
Examples:

> (cookie->string
(make-cookie "usesRacket" "true"))
"usesRacket=true"
> (cookie->string
(make-cookie "favColor" "teal"
#:max-age 86400
#:domain "example.com"
#:secure? #t))
"favColor=teal; Max-Age=86400; Domain=example.com; Secure"



3 Cookies and HTTP User Agents

(require net/cookies/user-agent)
package: net-cookies-1ib

The net/cookies/user-agent library provides facilities specific to user agents’ handling
of cookies.

Many user agents will need only two of this library’s procedures:

* extract-and-save-cookies!, for storing cookies

* cookie-header, for retrieving them and generating a “Cookie:” header

(struct ua-cookie (name
value
domain
path
expiration-time
creation-time
access-time
persistent?
host-only?
secure-only?
http-only?))
name : cookie-name?
value : cookie-value?
domain : domain-value?
path : path/extension-value?
expiration-time : (and/c integer? positive?)
creation-time : (and/c integer? positive?)
access-time : (and/c integer? positive?)
persistent? : boolean?
host-only? : boolean?
secure-only? : boolean?
http-only? : boolean?

A structure representing a cookie from a user agent’s point of view.

All times are represented as the number of seconds since midnight UTC, January 1, 1970,
like the values produced by current-seconds.

It’s unlikely a client will need to construct a ua-cookie instance directly (except perhaps
for testing); extract-cookies produces struct instances for all the cookies received in a
server’s response.



(cookie-expired? cookie [current-time]) — boolean?
cookie : ua-cookie?
current-time : integer? = (current-seconds)

True iff the given cookie’s expiration time precedes current-time.

3.1 Cookie jars: Client storage

(extract-and-save-cookies! headers
url
[decode]) — void?
headers : (or/c (listof (cons/c bytes? bytes?)) (listof bytes?))
url : url?
decode : (-> bytes? string?) = bytes->string/utf-8

Reads all cookies from any “Set-Cookie” headers present in headers received in an
HTTP response from url, converts them to strings using decode, and stores them in the
current-cookie-jar.

The given headers may be provided either as an alist mapping header names to header val-
ues, or as a raw list of bytes such as the second return value produced by http-conn-recv!
innet/http-client. Here is an example of each:

Examples:

> (require net/url)
> (define site-url
(string->url "http://test.example.com/apps/main"))
> (extract-and-save-cookies!
"((#"X-Test-Header" . #"isThisACookie=no")
(#"Set-Cookie" . #"a=b; Max-Age=2000; Path=/")
(#"Set-Cookie" . #"user=bob; Max-Age=86400; Path=/apps"))
site-url)
> (cookie-header site-url)
#"user=bob; a=b"
> (extract-and-save-cookies!
' (#"X-Ignore-This: thisIsStillNotACookie=yes"
#"Set-Cookie: p=q; Max-Age=2000; Path=/"
#"Set-Cookie: usersMom=alice; Max-Age=86400; Path=/apps")
site-url)
> (cookie-header site-url)
#"usersMom=alice; user=bob; p=q; a=b"



(save-cookie! ¢ [via-http?]) — void?
Cc : ua-cookie?
via-http? : boolean? = #t

Attempts to save a single cookie c, received via an HTTP API iff via-http?, to the
current-cookie-jar. Per Section 5.3 of RFC 6265, the cookie will be ignored if its
http-only? flag (or that of the cookie it would replace) is set and it wasn’t received via an
HTTP APL

(cookie-header url [encode #:filter-with ok?]) — (or/c bytes? #f)
url : url?
encode : (-> string? bytes?) = string->bytes/utf-8

ok? : (-> ua-cookie? boolean?) = (lambda (x) #t)

Finds any unexpired cookies matching url in the current-cookie-jar, removes any for
which ok? produces #£, and produces the value portion of a “Cookie:” HTTP request header.
Produces #f if no cookies match.

Cookies with the “Secure” flag will be included in this header iff (url-scheme url) is
"https", unless you remove them manually using the ok? parameter.

Example:

> (cookie-header
(string->url "http://test.example.com/home"))
#npzq; a=b"

cookie-jar<)> : interface?

An interface for storing cookies received from servers. Implemented by
list-cookie-jar%. Provides for saving cookies (imperatively) and extracting all
cookies that match a given URL.

Most clients will not need to deal with this interface, and none should need to call its meth-
ods directly. (Use cookie-header and extract-and-save-cookies!, instead.) It is
provided for situations in which the default 1ist-cookie-jar? class will not suffice. For
example, if the user agent will be storing thousands of cookies, the linear insertion time of
list-cookie-jarY could mean that writing a cookie-jar<y%> implementation based on
hash tables, trees, or a DBMS might be a better alternative.

Programs requiring such a class should install an instance of it using the
current-cookie-jar parameter.

10



(send a-cookie-jar save-cookie! ¢
[via-http?]) — void?
c : ua-cookie?
via-http? : boolean? = #t

Saves c to the jar, and removes any expired cookies from the jar as well.

via-http? should be #t if the cookie was received via an HTTP API; it is for
properly ignoring the cookie if the cookie’s http-only? flag is set, or if the
cookie is attempting to replace an “HTTP only” cookie already present in the
jar.
(send a-cookie-jar save-cookies! cs
[via-http?]) — void?
cs : (listof ua-cookie?)
via-http? : boolean? = #t

Saves each cookie in cs to the jar, and removes any expired cookies from the
jar. See the note immediately above, for explanation of the via-http? flag.

(send a-cookie-jar cookies-matching url

[secure?])
— (listof ua-cookie?)
url : url?
secure? : boolean? = (equal? (url-scheme url) "https")

Produces all cookies in the jar that should be sent in the “Cookie” header for
a request made to url. secure? specifies whether the cookies will be sent
via a secure protocol. (If not, cookies with the “Secure” flag set should not be
returned by this method.)

This method should produce its cookies in the order expected according to
RFC6265:

* Cookies with longer paths are listed before cookies with shorter paths.

* Among cookies that have equal-length path fields, cookies with earlier
creation-times are listed before cookies with later creation-times.

If there are multiple cookies in the jar with the same name and different
domains or paths, the RFC does not specify which to send. The default
list-cookie-jar class’s implementation of this method produces all cook-
ies that match the domain and path of the given URL, in the order specified
above.

list-cookie-jary : class?
superclass: object’
extends: cookie-jar<y>

Stores cookies in a list, internally maintaining a sorted order that mirrors the sort order
specified by the RFC for the “Cookie” header.

11



(current-cookie-jar) — (is-a?/c cookie-jar<}>)
(current-cookie-jar jar) — void?

jar : (is-a?/c cookie-jar<}>)

= (new list-cookie-jar)

A parameter that specifies the cookie jar to use for storing and retrieving cookies.

3.2 Reading the Set-Cookie header

(extract-cookies headers url [decode]) — (listof ua-cookie?)
headers : (or/c (listof (cons/c bytes? bytes?))
(listof bytes?))
url : url?
decode : (-> bytes? string?) = bytes->string/utf-8

Given a list of all the headers received in the response to a request from the given url, pro-
duces a list of cookies corresponding to all the “Set-Cookie” headers present. The decode
function is used to convert the cookie’s fields to strings.

The given headers may be provided either as an alist mapping header names to header val-
ues, or as a raw list of bytes such as the second return value produced by http-conn-recv!
in net/http-client.

This function is suitable for use with the headers/raw field of a request structure (from
web-server/http/request-structs), or with the output of (extract-all-fields
h), where h is a byte string.

(parse-cookie set-cookie-bytes url [decode]) — (or/c ua-cookie? #f)
set-cookie-bytes : bytes?
url : url?
decode : (-> bytes? string?) = bytes->string/utf-8

Given a single “Set-Cookie” header’s value set-cookie-bytes received in response to a
request from the given url, produces a ua-cookie representing the cookie received, or #f
if set-cookie-bytes can’t be parsed as a cookie.

The decode function is used to convert the cookie’s textual fields (name, value, domain,
and path) to strings.

(default-path url) — string?
url : url?

12



Given a URL, produces the path that should be used for a cookie that has no “Path” attribute,
as specified in Section 5.1.4 of the RFC.

max-cookie-seconds : (and/c integer? positive?)
min-cookie-seconds : (and/c integer? negative?)

The largest and smallest integers that this user agent library will use, or be guaranteed to
accept, as time measurements in seconds since midnight UTC on January 1, 1970.
(parse-date s) — (or/c string? #f)

s : string?

Parses the given string for a date, producing #f if it is not possible to extract a date from the
string using the algorithm specified in Section 5.1.1 of the RFC.

13



4 Acknowledgements

The server-side library is based on the original net/cookie library by Francisco Solsona
<solsona@acm.org>>. Many of the cookie-construction tests for this library are adapted
from the net/cookie tests.

Roman Klochkov <kalimehtar @mail . ru> wrote the first client-side cookie library on which

this user-agent library is based. In particular, this library relies on his code for parsing dates
and other cookie components.

14


mailto:solsona@acm.org
mailto:kalimehtar@mail.ru

Bibliography

[RFC1034] P. Mockapetris, “Domain Names - Concepts and Facilities,” RFC, 1987.

http://tools.ietf.org/html/rfc1034.html
[REC1123] R. Braden (editor), “Requirements for Internet

Hosts - Application and Support,” RFC, 1989.

http://tools.ietf.org/html/rfc1123.html
[RFC6265] A. Barth, “HTTP State Management Mechanism,” RFC, 2011.
http://tools.ietf.org/html/rfc6265.html

15


http://tools.ietf.org/html/rfc1034.html
http://tools.ietf.org/html/rfc1123.html
http://tools.ietf.org/html/rfc6265.html

	1 Cookies: Common Functionality
	2 Cookies and HTTP Servers
	3 Cookies and HTTP User Agents
	3.1 Cookie jars: Client storage
	3.2 Reading the Set-Cookie header

	4 Acknowledgements
	Bibliography

