Datalog: Deductive Database Programming

Version 6.10

Jay McCarthy <jay @racket-lang . org>

July 31, 2017

Datalog]is
* adeclarative logic language in which each formula is a function-free Horn clause, and
every variable in the head of a clause must appear in the body of the clause.

* a lightweight deductive database system where queries and database updates are ex-
pressed in the logic language.

The use of Datalog syntax and an implementation based on tabling intermediate results en-
sures that all queries terminate.

mailto:jay@racket-lang.org
http://en.wikipedia.org/wiki/Datalog

Contents

I Datalog Module Language| 3
2_Tutorial 5
|3__Parenthetical Datalog Module Language 8
4 Racket Interoperability| 9
[F"Acknowledgments| 13

1 Datalog Module Language

#lang datalog package: datalog

In Datalog input, whitespace characters are ignored except when they separate adjacent to-
kens or when they occur in strings. Comments are also considered to be whitespace. The
character % introduces a comment, which extends to the next line break. Comments do not
occur inside strings.

A variable is a sequence of Unicode "Uppercase" and "Lowercase" letters, digits, and the
underscore character. A variable must begin with a Unicode "Uppercase" letter.

An identifier is a sequence of printing characters that does not contain any of the following
characters: (, 7, "',), =, 1, ., ~, 7, ", %, and space. An identifier must not begin with a Latin
capital letter. Note that the characters that start punctuation are forbidden in identifiers, but
the hyphen character is allowed.

A string is a sequence of characters enclosed in double quotes. Characters other than double
quote, newline, and backslash may be directly included in a string. The remaining characters
may be specified using escape characters, \", \ , and \\ respectively.

A literal, is a predicate symbol followed by an optional parenthesized list of comma sepa-
rated terms. A predicate symbol is either an identifier or a string. A term is either a variable
or a constant. As with predicate symbols, a constant is either an identifier or a string. As a
special case, two terms separated by = (!=) is a literal for the equality (inequality) predicate.
The following are literals:

parent (john, douglas)
zero-arity-literal

n=n (3,3)

" (~0-0-0,&&& ,***,"\00")

A clause is a head literal followed by an optional body. A body is a comma separated list of
literals. A clause without a body is called a fact, and a rule when it has one. The punctuation
: - separates the head of a rule from its body. A clause is safe if every variable in its head
occurs in some literal in its body. The following are safe clauses:

parent (john, douglas)

ancestor(A, B) :-
parent (A, B)

ancestor(A, B) :-
parent (A, C),
ancestor(C, B)

A program is a sequence of zero or more statements. A statement is an assertion, a retraction,
or a query. An assertion is a clause followed by a period, and it adds the clause to the database

if it is safe. A retraction is a clause followed by a tilde, and it removes the clause from the
database. A query is a literal followed by a question mark.

The following BNF describes the syntax of Datalog.

(program) t:=
(statement) 1=
|
|
assertion)y 1=
(retraction) :
{query) ¥
{clause) 1=
|
(body) 1=
|
(literal) 1=

[

|

|

|
(predicate-sym) ::=

|
(terms) 1=

|
(term) 1=

|

{constant) 1=

(statement y*
{assertion)
{retraction)
{query)

{clause) .
{clausey ~
(literaly 7

(literaly =~ {body)
(literaly

(literaly , {body)
(literaly
(predicate-symy ()
(predicate-sym) ({terms))
{predicate-sym)
(term)y = (term)
(termy '= {term)
(IDENTIFIER)
(STRING)

(term)

(term)y , (terms)
(VARIABLE)
{constant)
(IDENTIFIER)
(STRING)

The effect of running a Datalog program is to modify the database as directed by its state-
ments, and then to return the literals designated by the query. The modified database is

provided as theory.

The following is a program:

#lang datalog

edge(a, b). edge(b, c). edge(c, d). edge(d, a).
path(X, Y) :- edge(X, Y).

path(X, Y) :- edge(X, Z), path(Z, Y).

path(X,)7

The Datalog REPL accepts new statements that are executed as if they were in the original

program text.

2 Tutorial

Start DrRacket and type

#lang datalog

in the Definitions window. Click Run, then click in the REPL.
>
Facts are stored in tables. If the name of the table is parent, and john is the parent of
douglas, store the fact in the database with this:
> parent (john, douglas).
Each item in the parenthesized list following the name of the table is called a ferm. A term

can be either a logical variable or a constant. Thus far, all the terms shown have been
constant terms.

A query can be used to see if a particular row is in a table. Type this to see if john is the
parent of douglas:

> parent (john, douglas)?

parent (john, douglas).

Type this to see if john is the parent of ebbon:

> parent (john, ebbon)?

The query produced no results because john is not the parent of ebbon. Let’s add more
TOWS.

> parent (bob, john).

> parent (ebbon, bob).

Type the following to list all rows in the parent table:

> parent(A, B)?

parent (john, douglas).

parent (bob, john).

parent (ebbon, bob) .

Type the following to list all the children of john:

> parent(john, B)?

parent (john, douglas).

A term that begins with a capital letter is a logical variable.When producing a set of answers,
the Datalog interpreter lists all rows that match the query when each variable in the query
is substituted for a constant. The following example produces no answers, as there are no
substitutions for the variable A that produce a fact in the database. This is because no one is
the parent of oneself.

> parent(A, A)?
A deductive database can use rules of inference to derive new facts. Consider the following
rule:

> ancestor (A, B) :- parent(A, B).
The rule says that if A is the parent of B, then A is an ancestor of B. The other rule defining

an ancestor says that if A is the parent of C, C is an ancestor of B, then A is an ancestor of
B.

> ancestor(A, B) :-
parent (A, C),
ancestor(C, B).

In the interpreter, DrRacket knows that the clause is not complete, so by pressing Return, it
doesn’t interpret the line.

Rules are used to answer queries just as is done for facts.

> ancestor(A, B)?

ancestor (ebbon, bob).

ancestor(bob, john).
ancestor(john, douglas).
ancestor (bob, douglas).
ancestor (ebbon, john).
ancestor (ebbon, douglas).
> ancestor (X, john)?
ancestor(bob, john).

ancestor(ebbon, john).

A fact or a rule can be retracted from the database using tilde syntax:

> parent(bob, john)~
> parent(A, B)?

parent (john, douglas).
parent (ebbon, bob) .

> ancestor(A, B)?
ancestor (ebbon, bob).

ancestor(john, douglas).

Unlike Prolog, the order in which clauses are asserted is irrelevant. All queries terminate,
and every possible answer is derived.

> qX) - p(X).
> q(a).
> p(X) - q(X).
> q(X)?

q(a).

3 Parenthetical Datalog Module Language

#lang datalog/sexp package: datalog

The semantics of this language is the same as the normal Datalog language, except it uses
the parenthetical syntax described in[§4 “Racket Interoperability™}

All identifiers in racket/base are available for use as predicate symbols or constant values.
Top-level identifiers and datums are not otherwise allowed in the program. The program may
contain require expressions.

The following is a program:

#lang datalog/sexp

(! (edge a b))

(! (edge b c))

(1 (edge c 4))

(1 (edge d a))

(* (:- (path X V)
(edge X Y)))

(* (:- (path X Y)
(edge X Z)
(path Z Y)))

(? (path X Y))

This is also a program:

#lang datalog/sexp
(require racket/math)

(7 (sqr 4 :- X))

The Parenthetical Datalog REPL accepts new statements that are executed as if they were in
the original program text, except require is not allowed.

4 Racket Interoperability

(require datalog) package: datalog
The Datalog database can be directly used by Racket programs through this API.

Examples:

> (define family (make-theory))
> (datalog family
(! (parent joseph2 josephl))
(! (parent joseph2 lucy))
(! (parent joseph3 joseph2)))
O]
> (datalog family
(? (parent X joseph2)))
' (#hasheq((X . joseph3)))
> (datalog family
(? (parent X (string->symbol "joseph2"))))
' (#hasheq((X . joseph3)))
> (let ([atom 'joseph2])
(datalog family
(? (parent X #,atom))))
' (#hasheq((X . joseph3)))
> (let ([table 'parent])
(datalog family
(? (#,table X joseph2))))
' (#hasheq((X . joseph3)))
> (datalog family
(? (parent joseph2 X)))
' (#hasheq((X . josephl)) #hasheq((X . lucy)))
> (datalog family
(? (parent joseph2 X))
(? (parent X joseph2)))
' (#hasheq((X . joseph3)))
> (datalog family
(! (:- (ancestor A B)
(parent A B)))
(! (:- (ancestor A B)
(parent A C)
(=D 0
(ancestor D B))))
'O
> (datalog family
(? (ancestor A B)))
' (#hasheq((A . joseph3) (B . joseph2))

#hasheq((A . joseph2) (B . lucy))
#hasheq((A . joseph2) (B . josephl))
#hasheq((A . joseph3) (B . lucy))
#hasheq((A . joseph3) (B . josephl)))
> (let ([x 'joseph2])
(datalog family
(? (parent x X))))
' (#hasheq((X . josephl)) #hasheq((X . lucy)))
> (datalog family
(7 (add1l 1 :- X)))
' (#hasheq((X . 2)))
> (datalog family
(7 (addl X :- 2)))
O]
> (datalog family
7 @, x) (+x 1)1 :-X))
' (#hasheq((X . 2)))

theory/c : contract?

A contract for Datalog theories.

(make-theory) — theory/c

Creates a theory for use with datalog.

(write-theory t) — void
t : theory/c

Writes a theory to the current output port. Source location information is lost.

(read-theory) — theory/c

Reads a theory from the current input port.

(datalog thy-expr
stmt ...)

thy-expr : theory/c

Executes the statements on the theory given by thy-expr. Returns the answers to the final
query as a list of substitution dictionaries or returns empty.

10

(datalog! thy-expr
stmt ...)

thy-expr : theory/c
Executes the statements on the theory given by thy-expr. Prints the answers to every query
in the list of statements. Returns (void).

Statements are either assertions, retractions, or queries.

(' clause)

Asserts the clause.

(~ clause)

Retracts the literal.

(:- literal question ...)

A conditional clause.
(? question)
Queries the literal and prints the result literals.
Questions are either literals or external queries.
Literals are represented as identifier or (table term ...).
A table is either an identifier or #, expr where expr evaluates to a symbol.

External queries are represented as (ext-table term ... :- term ...), where ext-
table is an identifier bound to a procedure or #, expr where expr evaluates to a procedure
that when given the first set of terms as arguments returns the second set of terms as values.

A term is either a non-capitalized identifiers for a constant symbol, a Racket expression for
a constant datum, or a capitalized identifier for a variable symbol, or #,expr where expr
evaluates to a constant datum. Bound identifiers in terms are treated as the datum they are
bound to.

External queries fail if any logic variable is not fully resolved to a datum on the Datalog side.
In other words, unbound logic variables never flow to Racket.

External queries invalidate Datalog’s guaranteed termination. For example, this program
does not terminate:

11

(datalog (make-theory)
(Y (:- (loop X)
(addl X :- 2)
(Loop Z)))
(7 (Loop 1))

12

5 Acknowledgments

This package was once structurally based on Dave Herman’s (planet dher-
man/javascript) library and John Ramsdell’s Datalog library.

The package uses the tabled logic programming algorithm described in Efficient Top-Down
Computation of Queries under the Well-Founded Semantics by W. Chen, T. Swift, and D. S.
Warren. Another important reference is Tabled Evaluation with Delaying for General Logic
Programs by W. Chen and D. S. Warren. Datalog is described in[What You Always Wanted
to Know About Datalog (And Never Dared to Ask) by Stefano Ceri, Georg Gottlob, and
Letizia Tanca.

13

http://www.ccs.neu.edu/home/ramsdell/tools/datalog/datalog.html
http://scholar.google.com/scholar?q=author:%22Chen%22+intitle:%22Efficient+top-down+computation+of+queries+under+the+...%22+&oi=scholarr
http://scholar.google.com/scholar?q=author:%22Chen%22+intitle:%22Efficient+top-down+computation+of+queries+under+the+...%22+&oi=scholarr
http://portal.acm.org/citation.cfm?id=227597
http://portal.acm.org/citation.cfm?id=227597
http://doi.ieeecomputersociety.org/10.1109/69.43410
http://doi.ieeecomputersociety.org/10.1109/69.43410

	1 Datalog Module Language
	2 Tutorial
	3 Parenthetical Datalog Module Language
	4 Racket Interoperability
	5 Acknowledgments

